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Abstract

A model is said to be Leibnizian if it has no pair of indiscernibles.
Mycielski has shown that there is a first order axiom LM (the Leibniz-
Mycielski axiom) such that for any completion T of Zermelo-Fraenkel set
theory ZF , T has a Leibnizian model iff T proves LM. Here we prove:

Theorem A. Every complete theory T extending ZF + LM has 2ℵ0

nonisomorphic countable Leibnizian models.

Theorem B. If κ is a prescribed definable infinite cardinal of a com-

plete theory T extending ZF+ V =OD, then there are 2ℵ1 nonisomorphic

Leibnizian models M of T of power ℵ1 such that (κ+)M is ℵ1-like.

Theorem C. Every complete theory T extending ZF+ V = OD has

2ℵ1 nonisomorphic ℵ1-like Leibnizian models.

∗2000 Mathematics Subject Classification: 03C62, 03C50; Secondary 03H99.



1. INTRODUCTION

Leibniz’s well-known principle of the identity of indiscernibles [L, p. 308]
suggests the following model theoretic definition: a structure M in a first order
language L is Leibnizian if M contains no pair of indiscernibles, i.e., there are no
distinct elements a and b in M such that for every formula ϕ(x) of L with one

free variable x,

M � ϕ(a)↔ ϕ(b).

For example, the field R of real numbers is Leibnizian (since distinct real numbers
have distinct Dedekind cuts1), but the field C of complex numbers is not (since i
and −i are indiscernible). In this paper we build large families of countable and
uncountable Leibnizian models of Zermelo-Fraenkel set theory ZF . Our source of
inspiration was Mycielski’s reflections on the foundations of set theory [My-1, My-
2]. In particular, we were struck by Mycielski’s discovery of a first order axiom2

LM in the language of set theory {∈}, which captures the spirit of Leibniz’s
dictum, as witnessed by the following result:

Theorem 1 (Mycielski [My-1]). A complete extension T of ZF proves LM

iff T has a Leibnizian model.

In Section 2 we refine Theorem 1 by showing that every completion T of
ZF+LM has continuum-many nonisomorphic countable Leibnizian models. Sur-
prisingly, the proof relies on two distinct model theoretic constructions, depending
on whether or not the axiom V = OD is proved by the theory T . In Section 3
we turn to the construction of uncountable Leibnizian models of set theory (note
that a Leibnizian model in a countable language must have cardinality at most

2
ℵ0). More specifically, given a completion T of ZF +V = OD, in Section 3.1

we build 2ℵ1 nonisomorphic Leibnizian modelsM of T such that (κ+)M is ℵ1-like,
where κ is a prescribed T -definable infinite cardinal, while in Section 3.2 we use a
very different method to build 2ℵ1 nonisomorphic Leibnizian models of T whose
class of ordinals is ℵ1-like. As pointed out in Remark 3.3.2(c), our work in Sec-
tion 3.2 allows us to answer a question of Abramson and Harrington [AH]. We

1Indeed the same reasoning shows that every Archimedean ordered field is Leibnizian. More-

over, Tarski’s elimination of quantifiers theorem for real closed fields implies that the Leibnizian

real closed fields are precisely the Archimedean real closed fields. However, non-Archimedean

Leibnizian ordered fields exist in every infinite cardinality ≤ 2
ℵ0 .

2Mycielski called this axiomA
′

2
in [My-1], and E in [My-2]. The Leibniz-Mycielski appellation

is proposed in [En-5], which probes the relationship between LM and other axioms of set theory.
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would have liked to construct uncountable Leibnizian models of all extensions of

ZF + LM , but our techniques seem to work only for extensions of the stronger

theory ZF + V = OD. Finally, in Section 4 we probe well-founded Leibnizian

models of set theory.

I am grateful to Jan Mycielski for pointing the way, and to Robert Solovay for

providing the key Lemma 3.1.3.

PRELIMINARIES

Here we review a list of definitions and results about models of set theory

which are central to this paper. Suppose M = (M,E) is a model of ZF , where

E = ∈
M.

• Ord
M denotes the ordered set of “ordinals” of M (ordered by E).

• For c ∈M, cE = {x ∈M : xEc}.

• If M ⊆ N = (N,F ) and c ∈ M , then N fixes c if cE = cF , and N enlarges

c, if cE � cF .

• N end extends M, writtenM ⊆e N, if N fixes every element of M.

• M is an e.e.e. (elementary end extension) ofM ifM ≺ N andN end extends
M. It is easy to see that ifM ≺e N � ZF thenN is a rank extension of M,

i.e., the ordinal rank of every member of N\M (as computed in N) exceeds
the ordinal rank of every member of M.

• Suppose κ is a regular cardinal ofM. N is said to be a κ-e.e.e. if N enlarges
κ but N fixes every γ ∈ κE.

• The sentence V = OD expresses - for models of ZF - the statement “every
set is first order definable from ordinal parameters”. There is a parameter-
free formula ϕ(x, y) such that ZF + V = OD proves “ϕ well-orders the
universe”. Consequently, the theory ZF + V = OD has definable Skolem
functions, and every completion T of ZF +V = OD has a unique (up to
isomorphism) modelMT which is pointwise definable (i.e., every element of
MT is definable inMT via a parameter-free formula).
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• N is a minimal elementary extension of M iff M ≺ N and there is no
model N∗ such that M ≺ N

∗

≺ N. It is easy to see that for models of

ZF+V = OD, N is a minimal elementary extension ofM, ifM ≺ N and for

any two elements a and b of N, there exists a definable term τ(x), possibly
with parameters from M, such that N � τ (a) = b. This characterization

relies on the availability of definable Skolem functions in models ofV = OD.

• N is a minimal e.e.e. of M iff N is a minimal elementary extension of M

and M ≺
e
N. Similarly, N is a minimal κ-e.e.e. of M if N is a minimal

elementary extension of M and N is a κ-e.e.e. of M.

• The Leibniz-Mycielski axiom LM , is the following statement:

LM : ∀x∀y ([∀α > max{ρ(x), ρ(y)} Th(Vα,∈, x) = Th(Vα,∈, y)]→ x = y).

Here ρ(x) denotes the ordinal rank of x, Vα refers to the α-th level of the von
Neumann hierarchy consisting of sets of ordinal rank less than α, and for structures
A of the form (V

α
,∈, a), with a ∈ V

α
, Th(A) denotes the set of sentences in the

language {∈, c} that are true in A, where c
A
= a. It is shown in [En-5] that

in the presence of ZF , LM is equivalent to the existence of a parameter-free

definable map G which injects the universe into the class of subsets of ordinals.

Consequently:

1. ZF +V = OD � LM ;

2. ZF+ LM proves that the universe has a global linear ordering. In particular
ZF+ LM provesAC<ω (the axiom of choice for arbitrary collections of finite
sets).

Moreover, by a theorem of Solovay [En-5], if ZF is consistent, then the axiom
of choice is independent of ZF + LM.

• Our blanket assumption throughout the paper is that ZF is a consistent

first order theory. Also, a completion of a consistent theory T0 refers to a

consistent completion of T0.
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2. COUNTABLE LEIBNIZIAN MODELS

This section is devoted to the proof of Theorem 2.1 which refines Mycielski’s

Theorem 1 mentioned in the introduction.

Theorem 2.1. The following are equivalent for a completion T of ZF :

(i) T has a Leibnizian model.

(ii) T proves LM.

(iii) T has 2
ℵ0 nonisomorphic countable Leibnizian models.

Proof: (i)⇒ (ii) is an immediate consequence of the following lemma:

Lemma 2.1.1. If M is a model of ZF+ ¬LM , then the expanded model

(M, α)
α∈Ord contains a pair of indiscernibles.

Proof: Suppose M is a model of ZF+ ¬LM. Since LM fails inM there are
elements a and b of M such that

(1) M � ∀γ > max{ρ(a), ρ(b)} Th(Vγ,∈, a) = Th(Vγ,∈, b).

We claim that a and b are indiscernible over (M, α)
α∈Ord

M . To see this, sup-

pose that for some α1, · · ·, α
n
in OrdM,

(2) M � ϕ(a, α1, · · ·, αn).

By the extended reflection theorem of Myhill and Scott [MS, p. 273], there is
an ordinal θ of M such that

(3) M � “{a, b} ⊆ Vθ and α1, · · ·, αn are all definable in (Vθ,∈)”, and

(4) M � ∀x0∀x1 · · · ∀xn ∈ V
α

(ϕ(x0, x1, · ··, xn)←→ ϕ
Vθ(x0, x1, · ··, xn)).

By setting γ = θ in (1), and using (2), (3), and (4), we conclude

(5) M � ϕ(b, α1, · · ·, α
n
).

� (Lemma 2.1.1)

Now we establish (ii)⇒ (iii). Suppose T proves LM . We distinguish the

following two cases:
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(a) T � V = OD;

(b) T � V �= OD.

Proof of (ii)⇒ (iii) for Case (a): the desired family of size continuum of
Leibnizian models of T in this case is the family of (isomorphism types of) minimal
e.e.e.’s of the pointwise definable model MT of T. To verify this, we need three
preliminary lemmas.

Lemma 2.1.2. Every pointwise definable model of ZF + V = OD has

continuum-many countable nonisomorphic minimal e.e.e.’s.

Proof: This follows from [En-4, Lemma 3.1.3]. Alternatively, it is also an
immediate consequence of Theorem 3.2 of this paper. � (Lemma 2.1.2)

Thanks to Lemma 2.1.2, the proof of (ii)⇒ (iii) for case (a) will be complete
once we show minimal e.e.e.’s of MT are Leibnizian. To accomplish this task
we need the following result, whose proof is inspired by a parity argument of
Ehrenfeucht [Eh] and Gaifman [G-2, Theorem 4.1] involving models of arithmetic.

Lemma 2.1.3. Suppose M � ZF. If α and β are in Ord
M and satisfy con-

ditions (a) and (b) below, then α and β are discernible in M.

(a) M � α > β.

(b) For some parameter-free definable term τ (x) of M, M � τ (α) = β.

Proof: Suppose, on the contrary, that α and β are indiscernible in M. (a)
and (b) together yield

(1) M � τ (α) = β < α.

Arguing inM, define a class function F : Ord→ ω assigning a natural number

F(θ) to each ordinal θ that measures the length of the longest decreasing sequence

of iterates of τ which starts with θ, i.e., F(θ) = n iff

θ > τ (θ) > τ (τ (θ)) > · · · > τn(θ), and τn+1(θ) /∈ Ord,

where τn is the n-th iterate of τ . Officially speaking, F(θ) = n can be expressed

by the following formula ψ(θ, n) :

∃(δ0, · · ·, δn+1) ∈ Ord
<ω[δ0 = θ ∧ (∀i < n+1 τ (δi) = δi+1 < δi)∧ τ(δn+1) /∈ Ord].

By (1), F(α) = F(β) + 1 holds withinM. Therefore
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(2) M � “F(α) is even iff F(β) is odd”,

This contradicts the indiscernibility of α and β inM. � (Lemma 2.1.3)

We now use Lemma 2.1.3 to show that minimal e.e.e.’s ofMT are Leibnizian.

Lemma 2.1.4. Suppose T is a completion of ZF + V = OD. If M is a

minimal elementary extension of MT , then M is Leibnizian.

Proof: Since V = OD holds in M it suffices to verify that there are no

indiscernibles α > β in OrdM. Furthermore, we can assume that neither α nor β

is inM0 because every element ofMT is definable without parameters. Therefore
α and β are discernible by Lemma 2.1.3. because condition (b) of Lemma 2.1.3 is
satisfied by the minimality of M over MT . � (Lemma 2.1.4)

This concludes the proof of (ii)⇒ (iii) for case (a).

Proof of Case (b) of (ii)⇒ (iii): This case is settled by combining Lemma
2.1.5 and Lemma 2.1.6 below.

Lemma 2.1.5. If M is a model of ZF + LM whose ordinals are definable,

then M is Leibnizian.

Proof: Suppose M is a model of ZF + LM whose ordinals are definable.

Given distinct a and b, we know that

(M, a, b) � ∃α > max{ρ(a), ρ(b)} Th(Vα,∈,a) �= Th(Vα,∈, b).

Therefore for some ϕ,

M � [(V
α
,∈, a) � ϕ(a) ] and [(V

α
,∈, b) � ¬ϕ(b)].

Since ωM might be nonstandard, ϕ might be a formula of nonstandard length,

however since every ordinal of M is definable, both ϕ and α have first order

definitions in M. Hence, there is a first order formula ψ(x) with no parameters

fromM, s such that

M � ∀x(ψ(x) ↔ [(Vα,∈, x) � ϕ(x)]).

Therefore a and b are discernible in M because M � ψ(a), but M � ¬ψ(b). �

(Lemma 2.1.5)
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Lemma 2.1.6 below extends a result of Paris [P] who showed that every com-
pletion of ZF +V �= OD has at least two nonisomorphic countable models whose
ordinals are definable.

Lemma 2.1.6. [En-6] Every theory extending ZF + V �= OD has 2ℵ0 non-

isomorphic countable models whose ordinals are definable.

This concludes the proof of (ii)⇒ (iii) for case (b). Since (iii)⇒ (i) is trivial,
the proof of Theorem 2.1 is complete. � (Lemma 2.1.6)

3. UNCOUNTABLE LEIBNIZIAN MODELS

In this section we build two families, F(T, κ) and G(T ), of power 2ℵ1 of noniso-

morphic Leibnizian models of power ℵ1 of a given completion T of ZF+V = OD,

where κ is a prescribed infinite cardinal of MT (the pointwise definable model of
T ), such that:

• For every M ∈ F(T, κ), (κ+)M is ℵ1-like.

• Every M ∈ G(T ),OrdM is ℵ1-like.

Recall that a linear order (X, <) is said to be θ-like, where θ is an infinite
cardinal, if |X| = θ but the set of <-predecessors of each element of X has
cardinality less than θ.

3.1. The Construction of F(T, κ)

Theorem 3.1. Suppose T is a completion of ZF + V = OD, and let κ be

a prescribed infinite cardinal of MT . There exist 2
ℵ1 nonisomorphic Leibnizian

models N of T such that (κ+)M is ℵ1-like.

We need to prove a series of preliminary lemmas.

Lemma 3.1.1. Suppose M is a countable model of ZFC and κ is a regular

cardinal of M. There exist minimal κ-e.e.e.’s N1 and N2 of M such that N1

and N2 are nonisomorphic over M.

Proof: By [En-1, Theorem 2.12] there exist minimal κ-e.e.e.’s N1 and N2

such that:
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(a) κ
N1\κM has a least member.

(b) κ
N2\κM has no least member.

This shows that N1 and N2 are nonisomorphic overM3. � (Lemma 3.1.1)

In what follows 2α denotes the set of binary sequences of length α, where α is

an ordinal.

Lemma 3.1.2. Suppose T is a completion of ZF + V = OD, and κ is

an infinite cardinal of MT . There is a family F(T, κ) = {Ms : s ∈ 2ω1} of

nonisomorphic elementary extensions of MT such that for every s ∈ 2
ω1

(a) M
s
fixes every element of κ

MT ;

(b) (κ+)Ms is ℵ1-like;

(c) M
s
is generated from the elements of (κ+)Ms (via the definable terms).

Proof: It is routine, using Lemma 3.1.1, to build a family of models {Ms :

s ∈

⋃

α≤ω1

2
α} by recursion on the length of s, such that

(1) M∅ =M0;

(2) For every s ∈

⋃

α<ω1

2
α
, Ms�0 and Ms�1 are minimal κ+-e.e.e.’s of Ms which

are nonisomorphic overM
s
;

(3) For every limit α ≤ ω1, and every s ∈ 2α, Ms =

⋃

β<α

Ms�β.

It is also routine to show that for every s ∈ 2
ω1, conditions (a) and (b) of the

lemma are satisfied. To see that condition (c) is satisfied, for each α < ω1 choose

δ
α
∈ (κ+)Ms(α+1)\(κ+)Ms(α)

,

and use the fact thatMs(α+1) is a minimal elementary extension ofMs(α) to verify

that Ms is generated from {δα : α < ω1}. It remains to show that if s and t are

distinct elements of 2
ω1

, then Ms and Mt are nonisomorphic. Given distinct s

and t in 2
ω1, let

θ := min{α < ω1 : s(α) �= t(α)}.

Therefore by (2),
3With a little more work one can show that there are continuum-many countable κ-e.e.e.’s

of M which are pairwise nonisomorphic over M.
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(4) M
s�θ+1 is not isomorphic to Mt�θ+1 overMs�θ (=Mt�θ).

On the other hand, the construction of Ms makes it evident that the family

{N : N ≺ Ms} of elementary submodels of Ms has order type ω1 under ≺ .

Therefore for every α < ω1 Ms�α is unambiguously recoverable fromMs since

(5) Ms�α is the α-th elementary submodel of Ms.

(4) and (5) together show that

(6) Ms�θ+1 is not isomorphic toMt�θ+1.

This makes it clear that Ms �Mt, as desired. � (Lemma 3.1.2)

Lemma 3.1.3. (Solovay, private communication) Suppose M is a model of

ZF +V = OD, and κ is an ordinal of M all of whose elements are definable in

M. If N is the model generated by the elements of the M-power set PM(κ) via

the definable terms of M, then N is Leibnizian.

Proof: Suppose, on the contrary, that

(1) a and b form a pair of indiscernibles in N.

By the choice of N, there is a definable term τ (x, y) such that a = τM(U )
for some U ∈ PM(κ) (thanks to the availability of a definable pairing function,
finitely many parameters can be coded into one). Coupled with (1), this implies

(2) b = τ
M(V ) for some V ∈ PM(κ).

Let � denote the parameter-free definable global well-ordering in N. Define
U0 and V0 as

(3) U0 is the �-first U such that a = τ (U), and V0 is the �-first V such that
b = τ (V ).

(1) and (3) together imply

(4) U0 and V0 form a pair of indiscernibles in N.
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But since every element of κ is definable, and U0 and V0 are both subsets of
κM, (4) implies that U0 = V0 (if U0 �= V0, there is a definable element in the
symmetric difference U0 � V0, contradicting (4)). Hence a = τ (U0) = τ (V0) = b,
contradiction. � (Lemma 3.1.3)

Proof of Theorem 3.1: Given a completion T of ZF+V = OD, let F(T, κ)
be the family given by Lemma 3.1.2. In light of Lemmas 3.1.2 and 3.1.3, it suffices
to verify that every modelM in F(T, κ) is generated by the elements of PM(κ).
SinceM satisfies condition (c) of Lemma 3.1.2,M is generated from the elements
of (κ+)Ms

. Therefore the proof would be complete once we verify that there is a

parameter-free definable injective map f such that

T � f : κ+ → P(κ).

Let � be a parameter-free definable global well-order in M, and let Γ be a
parameter-free definable bijection between Ord×Ord and Ord [J, p. 20]. For
κ ≤ α < κ

+
, let Sα be the �-first subset S of κ×κ such that (α,∈) ∼= (κ, S), and

define

f (α) :=

{
{α}, if α < κ,

{Γ(x, y) : (x, y) ∈ Sα}, if κ ≤ α < κ+ .

� (Theorem 3.1)

Remark 3.1.4. LetKM be the Kelley- Morse theory of classes. The strategy
of the proof of Theorem 3.1 can also be used to prove that every completion
of the KM + Π1

∞
-CHOICE

4 has 2ℵ1 nonisomorphic Leibnizian models (M,A),
where M = (M,E) is a model of ZFC and forms the “sets” of the model, and

A ⊆ P(M ) forms the “classes” of M, such that M is countable and A has power

ℵ1. A similar comment applies to completions of the theory Z2+ Π1

∞
-CHOICE,

where Z2 is “second order number theory”.

Remark 3.1.5. Suppose κ is a definable weakly compact cardinal of a com-

pletion T of ZF +V = OD (where κ = ℵ0 is allowed). As shown in [En-7], there
is a family of size 22

ℵ0 of nonisomorphic Leibnizian models M of T of power 2ℵ0

such that κM is 2
ℵ0-like.

4
Π
1

∞
-CHOICE is the scheme in the theory of classes consisting of all sentences of the form

∀α ∈ Ord ∃X ⊆ Ord ϕ(α,X) → ∃Y ⊆ Ord ∀α ∈ Ord ϕ(α, (Y )
α
).

Here (Y )
α
= {y : Γ(α,y) ∈ Y }, where Γ is a canonical pairing function.
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3.2. The Construction of G(T )

We now turn to the construction of a family G(T ) of size 2ℵ1 of nonisomorphic

ℵ1-like Leibnizian models of a completion T of ZF + V = OD. Recall that a

modelM = (M,E) of ZF is said to be κ-like, where κ is an uncountable cardinal,

if

|M | = κ but ∀a ∈ M, |{x ∈ M : xEa}| < κ.

It is easy to see that ifM is a model of ZFC, thenM is κ-like iff its linearly ordered

set of ordinalsOrdM is κ-like. The axiom of choice is important here since we can
start with an ℵ1-like model M of ZF and add continuum-many mutually generic
Cohen reals to M to obtain a model N, in which the axiom of choice fails, and
whose class of ordinals is ℵ1-like, but which is itself not ℵ1-like. The classical
theorem of Keisler and Morley on e.e.e.’s of models of ZF [CK, theorem 2.2.18]
implies - via an iteration of length ω1 - that every completion T of ZF has an
ℵ1-like model. Keisler’s work [Ke, Section 5] also shows that every completion
of ZF has 2

ℵ1 nonisomorphic ℵ1-like models. However, as shown in [En-2], for
κ ≥ ℵ2 the existence of κ-like models of a completion T of ZFC, depends both on
the object theory T, as well as the meta-theory adopted. See also Remark 3.3.2
(a,b) below.

We need a new idea - superminimality - to build ℵ1-like Leibnizian models:

• An e.e.e. N of M is a superminimal extension, if for any pair of elements

a ∈ N\M , and b ∈ N there is a definable term τ(x) without parameters

such that M � τ(a) = b.

Theorem 3.2
5 Every countable model M of ZF+V = OD has a supermini-

mal e.e.e. . Moreover, there are continuum-many countable superminimal e.e.e.’s

of M which are pairwise nonisomorphic over M.

Proof: Let M = (M,E) be a countable model of ZF +V = OD, (VOrd)M

be the family of functions from Ord
M into M whose graphs are parametrically

definable in M, and B be the Boolean algebra of subsets of OrdM which are

parametrically definable in M. Given an ultrafilter U on B, and f ∈ (VOrd)M,

5A similar proof shows that every countable model of Peano arithmetic has a superminimal

e.e.e. This result was independently obtained by Kossak and Schmerl [KS], and generalizes a
result of Knight [Kn].
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[f ]U as usual is the U -equivalence class of f consisting of members of (VOrd)M

which agree with f on a member of U . Let NU = (NU , FU ), where

NU := (VOrd)M/U := {[f ]U : f ∈ (VOrd)M},

and
[f ]U FU [g]U iff {α ∈ OrdM : f(α) E g(α)} ∈ U .

Thanks to the presence of a definable global well-ordering within M, the Łoš

Theorem for ultrapowers holds in this context. Consequently, if U is a non-

principal ultrafilter, then NU is a proper elementary extension of M (with the
obvious identification of the U-equivalence classes of constant maps with elements
of M).

We now describe the construction of an ultrafilter U on B such that NU is
a superminimal e.e.e. of M. Our construction involves weaving an external
recursion of length ω with internal recursions of length OrdM. Let

((fn, αn) : n ∈ ω)

be an enumeration of the Cartesian product (VOrd)M× Ord
M

. We shall recur-

sively construct a sequence (X
n

: n ∈ ω) of elements of B, and a sequence of

parameter-free definable terms (τ
n

: n ∈ ω), such that (1) through (3) below hold:

(1) ∀n ∈ ω (Xn ⊇ Xn+1) and Xn is unbounded in Ord
M;

(2) ∀n ∈ ω (f
n
� X

n+1 is constant, or f
n
� X

n+1 is injective);

(3) ∀n ∈ ω (f
n
� X

n+1 is injective ⇒ ∀x ∈ X
n+1(τ

M

n
(f

n
(x)) = α

n
).

At stage 0 of the construction, we set X0 = Ord
M

, and at stage (n+ 1), we
define τ

n
and X

n+1 from X
n
by distinguishing two cases:

I. f
n
� X

n
is a set.

II. fn � Xn is a proper class.

If case I holds, then by the replacement scheme, there exists θ ∈ Ord
M

such

that f−1
n

(θ)∩X
n
is unbounded in Ord

M
. So define X

n+1 := f−1
n

(θ0)∩X
n
, where

θ0 = least θ ∈ Ord
M

such that f−1
n

(θ) ∩Xn is unbounded in Ord
M

. In this case

define τn(x) to be identically zero.

If case II holds then first construct an unbounded Y ⊆ X
n
such that f � Y is

injective and Y ∈ B by transfinite, using transfinite recursion withinM:
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• y0 = the first member of X
n
.

• yα = the least member x of Xn such that ∀γ < α, fn(x) > fn(yγ).

Note that yα is well-defined for all ordinals α ofM since X
n
is a proper class,

and {f
n
(yγ) : γ < α} is a set (thanks to the replacement scheme). Let ψ(x, δ0) be

a formula which defines {fn(y) : y ∈ Y } inM, where δ0 is a parameter in Ord
M
.

For each ordinal δ, let Cδ be the class {x : ψ(x, δ)}. Within M we wish to define

a uniform refinement Dδ ⊆ Cδ for each δ ∈ Ord such that conditions A and B
below hold:

A. ∀δ ∈ Ord (Cδ is a proper class⇒ Dδ is a proper class);

B. ∀δ, δ′
∈ Ord (δ �= δ

′ ⇒ Dδ ∩Dδ
′ = ∅).

Since Cδ0
is a proper class, {Γ(x, δ) : x ∈ Cδ, δ ∈ Ord} is also a proper class,

and can be enumerated by a sequence (a
α
: α ∈ Ord), where Γ is a parameter-free

definable bijection between Ord×Ord and Ord. Also, for each ordinal θ let (θ)1
and (θ)2 be the unique ordinals satisfying

Γ((θ)1, (θ)2) = θ.

Define a subsequence (bα : α ∈ Ord) of (aα : α ∈ Ord) by transfinite recursion

which is monotone increasing in its first coordinate as follows:

• b0 := a0;

• bα := the first aθ such that for all γ < α, (aθ)1 > (bγ)1 .

Next, define

Dδ := Cδ ∩ {(bα)1 : α ∈ Ord)}.

It is routine to verify that the Dδ’s are well-defined and satisfy conditions A and

B. We are now in a position to describe a term σ(x) which will serve as τn(x):

σ(x) :=

{
(θ)1, if ∃δ(y ∈ Dδ, and x is the θ-th element of Dδ).
0, otherwise.

It is now easy to see, using condition A, that

(4) ∀α, δ ∈ Ord (Dδ is a proper class⇒ σ−1(α) ∩Dδ is a proper class).

14



Finally, we define X
n+1 by:

Xn+1 := {x ∈ OrdM :M � (x ∈ Dδ0
∧ σ(x) = αn)}.

By (4) Xn+1 is an M-definable unbounded subset of OrdM, and

∀x ∈ X
n+1(σ

M(f
n
(x)) = α

n
).

This concludes the description of the sequences (Xn : n ∈ ω) and (τn : n ∈ ω)
satisfying conditions (1) through (3).

The family of Xn’s forms a pre-filter by (1), and by (2) the characteristic
function χ

S
: OrdM → {0,1} of every S ∈ B is constant on some X

n
. Therefore,

since every X
n
is unbounded in OrdM by (1), the pre-filter {X

n
: n ∈ ω} can be

uniquely extended to a nonprincipal ultrafilter U on B.

The ultrapowerNU is an e.e.e. ofM since as noted earlier, the Łoš Theorem on
ultrapowers holds in this context, and by (2) every bounded function in (VOrd)M

is constant on a member of U . We now arrive at the crucial part of the proof,

where we verify that N is a superminimal extension of M. We shall first show

that N is a minimal extension of M. Observe that if the graph of f ∈ (VOrd)M

is defined by some formula ϕ(x, y, δ0) (δ0 is a parameter in OrdM), then

NU � ϕ([id]U , [f ]U , δ0),

where id is the identity map on Ord
M. Given [f ]U ∈ NU\M, f = fn for some

n ∈ ω, so by (2) f � Xn+1 is injective. Let ψ(x, δ1) define Xn+1 in M. Then

NU � ψ([id]U , δ1),

since X
n+1 ∈ U . Moreover

NU � ∀x∀x
′
∀y [ψ(x, δ1) ∧ ψ(x′, δ1) ∧ ϕ(x, y, δ0) ∧ ϕ(x′, y, δ0)]→ x = x′,

because M ≺ NU . Therefore [id]U can be defined in NU as the unique element x

satisfying the formula

ϕ(x, [f ]U , δ0) ∧ ψ(x, δ1).

So now we know that NU is a minimal elementary extension of M.

Since NU is a minimal extension of M and V = OD holds in M, N is shown

to be a superminimal extension of M if every α ∈ Ord
M is definable in N from

15



every element of NU\M . So choose [f ]U ∈ NU\M, and α ∈ Ord
M

. Then for
some n ∈ ω, (f, α) = (fn, αn). Therefore by (2) and (3):

NU � τ
n
([f ]U) = α.

This concludes the construction of a superminimal e.e.e. of M.

We now verify that indeed there are continuum many superminimal e.e.e.’s

of M which are pairwise nonisomorphic over M. The basic idea is to modify

the construction of the ultrafilter U by a construction which produces a family

of ultrafilters {Ug : g ∈ 2
ω}. To do so, we need a uniform way of splitting

definable classes X in B into two disjoint pieces. This is easy: if X ∈ B is

unbounded in Ord
M

, then X can be enumerated in increasing order within M

as {x
α

: α < Ord
M}, therefore Lim(X) := {x

α
: α is a limit ordinal of M}, and

Succ(X) := {x
α
: α is a successor ordinal of M} yield the desired partition. To

construct the ultrafilter Uh, given g : ω → {0, 1}, modify the recursive definition
of U as follows: to construct τn and X

g

n+1 at stage (n + 1), first refine Xg

n
to Zg

n
,

where

Zg

n
:=

{
Succ(Xg

n
), if g(n) = 0,

Lim(Xg

n
), if g(n) = 1.

Then define τn and X
g

n+1 ⊆ Zg

n
as before so that (1), (2), and (3) are satisfied.

For each n ∈ ω let ϕg

n
(x, δn) define Zg

n
in M (where δn is a parameter in OrdM).

Since [id]Ug satisfies the 1-type

Γ
g(x) := {ϕg

n
(x, δn) : n ∈ ω},

and Γg(x) and Γg(x) are incompatible for g �= g, there are continuum many com-

plete 1-types over M which are realized in the family of countable superminimal
e.e.e.’s of M. This shows that there are continuum many superminimal e.e.e.’s
of M which are pairwise nonisomorphic overM. � (Theorem 3.2)

Theorem 3.3. Every completion T of ZF +V = OD has 2ℵ1 nonisomorphic

ℵ1-like Leibnizian models.

Proof: We first describe the construction of an ℵ1-like Leibnizian model of

a completion T of ZF + V = OD. Start with a pointwise definable model MT

of T , and use Theorem 3.2 to build a continuous e.e.e. chain of countable models

(Mα : α ≤ ω1) such that for every ordinal α < ω1,Mα+1 is a superminimal e.e.e.

ofM
α
. In light of the fact thatMT is Leibnizian, the following lemma shows that

Mω1
is Leibnizian.
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Lemma 3.3.1. If (M
α

: α ≤ ω1) is a sequence of models satisfying conditions

(a) through (c) below, then Mω1
is an ℵ1-like Leibnizian e.e.e. of M0.

(a) M0 is Leibnizian model of ZF +V = OD;

(b) For every ordinal α < ω1, Mα+1 is a superminimal e.e.e. of Mα;

(c) For every limit ordinal α ≤ ω1,Mα
=

⋃

β<α

Mβ.

Proof: It is easy to see thatMω1 is an ℵ1-like e.e.e. of T . To show thatM
ω1

is Leibnizian it suffices to verify that for every ordinal α < ω1, Mα
is Leibnizian.

This is achieved by induction on α : (1)M0 is Leibnizian by assumption; (2) ifMα

is Leibnizian then by condition (b), Lemma 2.1.3, and the fact thatMα+1 satisfies
V = OD,Mα+1 is also Leibnizian; (3) the case of limit α is easily handled by (c),
and Tarski’s elementary chain theorem. �(Lemma 3.3.1)

Given a completion T of ZF + V = OD, use Theorem 3.2 to construct a

family of models

G(T ) := {M
s

: s ∈ 2
≤ω1},

by recursion on the length of s, such that

• M∅ =MT ;

• For every s ∈

⋃

α<ω1

2
α
,Ms�0 andMs�1 are superminimal e.e.e.’s ofMs which

are nonisomorphic overM
s
;

• For every limit α ≤ ω1, and every s ∈ 2
α
, Ms =

⋃

β<α

Ms�β.

By Lemma 3.3.1 Ms is an ℵ1-like Leibnizian model of T for every s ∈ 2
ω1

.

The verification of the fact that Ms and Mt are nonisomorphic for distinct s, t

in 2
ω1 is very similar to the proof of Lemma 3.1.2, and is left to the reader. �

(Theorem 3.3)

Remark 3.3.2.

(a) In general, ℵ1 cannot be replaced by 2
ℵ0 in the statement of Theorem 3.3

because, assuming the consistency of (ZFC + ∃ ω-Mahlo cardinal”), it is
consistent that many completions of ZF + V = OD lack 2ℵ0-like models.
This is a consequence of [En-3, Theorem 4.9] which shows that if ZFC+
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“∃ ω-Mahlo cardinal” is consistent, then so is ZFC + 2ℵ0 = ℵ2 + “the only

ℵ2-like models of ZFC are those satisfying the recursive scheme Φ”, where

Φ := {∃κ(κ is n-Mahlo and Vκ ≺n V) : n ∈ ω}.

(b) Since every consistent extension of ZFC + Φ has a κ-like model for all
uncountable cardinals κ [En-2, Theorem 3.8], one might wonder whether one
can prove in ZFC that every consistent extension of the theory T0 obtained
by adding V = OD +Φ to ZF has a 2

ℵ0-like Leibnizian model. Assuming
the consistency of ZFC + “∃ weakly compact cardinal”, this turns out to
be false, since:

(1) By Gödel’s second incompleteness theorem, the theory T0 + ¬Con(T0)
is consistent, but has no ω-standard model;

(2) If ℵ2 has the tree property, then every non ω-standard ℵ2-like model has
large sets of indiscernibles [En-3, Theorem 4.5(iiii)];

(3) As shown by Silver [Mi], Con (ZF+2ℵ0 = ℵ2 + ℵ2 has the tree property)
iff Con (ZFC + “∃ weakly compact cardinal”).

(c) Abramson and Harrington [AH, p.593] have asked whether the Shepherdson-
Cohen minimal model of set theory [C, III.6] has “large” e.e.e.’s without
indiscernibles. The proof of Theorem 3.3 answers this question if “large” is
interpreted as “uncountable” since the Leibnizian models produced in the
proof of Theorem 3.3 are e.e.e.’s of the pointwise definable modelMT of the
prescribed theory T .

Parts (b) and (c) of Remark 3.3.2 motivate the following questions:

Question 3.3.3. Suppose T is a completion of (ZF +V = OD +Φ) which
has an ω-standard model. Does T have a 2ℵ0-like Leibnizian model?

Question 3.3.4. Suppose 2ℵ0 > ℵ1 and T is a completion of ZF +V = OD.

Does MT have a Leibnizian e.e.e. of power 2ℵ0?

Remark 3.3.5. Let us define a model M to be a maximal (e-maximal)
Leibnizian model if M is Leibnizian, but no proper elementary (end) extension
of M is Leibnizian. By Zorn’s lemma every Leibnizian model has maximal as
well as e-maximal elementary extensions. Since the proof of Theorem 3.3 shows
that every countable Leibnizian model of ZF +V = OD can be elementarily end
extended to an ℵ1-like Leibnizian model, we conclude:
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(a) Every maximal Leibnizian models of ZF +V = OD is uncountable.

Moreover, since by [En-1, Theorem 1.5 (b)] no ℵ1-like e.e.e. of a pointwise
definable model of ZF has an e.e.e.,

(b) Every completion of ZF + V = OD has an ℵ1-like e-maximal Leibnizian

model.

With a little more work one can even construct, for every completion of ZF +

V = OD, an e-maximal Leibnizian model which is not a maximal Leibnizian
model. These considerations motivate the following questions:

Question 3.3.6. Is the theory (ZFC+ 2ℵ0 > ℵ1 + “some maximal Leibnizian

model of ZF has power ℵ1”) consistent?

Question 3.3.7. Let Ω(T ) denote the set of isomorphism types of maximal
Leibnizian models of a completion T of ZF +LM . What are the possible values
for |Ω(T )|?

Question 3.3.8. Is every maximal Leibnizian model of ZF + LM uncount-
able?

We also take this opportunity to reiterate an open question posed in [AH].

Question 3.3.9. (Abramson and Harrington). Does every completion T of
ZF have an uncountable model without a pair of indiscernible ordinals?

4. WELL-FOUNDED LEIBNIZIAN MODELS

Suppose T is a completion of ZF + LM which has a well-founded model. It is
natural to wonder about the cardinality of the set Λ(T ) of isomorphism types of
countable well-founded Leibnizian models of T. As observed by Paris [P], every
model of T all of whose ordinals are definable, must be well-founded. Hence,
by Lemma 2.1.5, |Λ(T )| > 0 . Furthermore, by Lemmas 2.1.5 and 2.1.6, if T

proves V �= OD, then |Λ(T )| = 2ℵ0 . On the other hand, if T proves V = OD,

then MT might be the only well-founded model of T up to isomorphism so it is
possible to have |Λ(T )| = 1 (e.g., if T is the theory of the Shepherdson-Cohen
minimal model). More generally, it is shown in [En-4] that under reasonable
conditions, for each cardinal κ ∈ I = ω ∪ {ℵ0,ℵ1, 2

ℵ0}, there is a completion Tκ
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of ZF +V = OD with exactly κ nonisomorphic countable well-founded models.

In particular for every κ ∈ I, |Λ(Tκ)| ≤ κ. This motivates the following question:

Question 4.1 Is there a completion T of ZF +V = OD such that

1 < |Λ(T )| < 2ℵ0 ?

More generally, what are the possible values of |Λ(T )| as T ranges over completions

of ZF +V = OD?

We conclude with remarks on uncountable well-founded Leibnizian models.

The example below shows that it is possible for a theory with an uncountable

well-founded model to lack an uncountable Leibnizian well-founded model:

Example 4.2. If ℵ1 ≥ ℵL
2
= (ℵ2 of the constructible universe L) holds in

the meta-theory, then the theory ZF +V = L has no uncountable well-founded

Leibnizian model. If not, by Gödel’s condensation lemma, there is some α ≥ ℵ1

such that Lα is Leibnizian. But since
(
2
ℵ0 = ℵ1

)L
, as viewed from L, the cardi-

nality of Lα is larger than that of the continuum and therefore, by an elementary
counting argument, there are indiscernibles in Lα, contradiction.

On the other hand, by Solovay’s Lemma 3.1.3, every well-founded model M
of ZF +V = OD has a Leibnizian elementary submodel N with the same reals
asM (since every n ∈ ω

M is definable in M). Therefore

Theorem 4.3. (Solovay) If T is a completion of ZF +V = OD which has a

well-founded model with
∣
∣R
M

∣
∣
= θ, then there is a Leibnizian well-founded model

of T of power θ.

In light of Theorems 4.3 and 3.3, one might ask whether there are any ℵ1-

like well-founded Leibnizian models of ZF . The following result shows that the

answer is in the negative.

Theorem 4.4 If M is a well-founded Leibnizian model of ZF , then the

cofinality of OrdM is ℵ0.

Proof: Recall that within ZF, Σn-truth is Σn-definable for n ≥ 1 [J, Section
14]. Therefore, by the reflection theorem, for each natural number n,

(1) ZF � ∀δ ∈ Ord ∃α ∈ Ord (δ ∈ α ∧ Vα ≺n V).

Here “Vα ≺n V” is a single first order sentence of set theory expressing the

statement “for all Σ
n
formulae ϕ(v0, · · ·, vk), and all a0, · · ·, ak in Vα, ϕ(a0, · · ·, ak)

holds iff its relativization ϕVα(a0, · · ·, ak) to V
α
holds”. Therefore given any model

M of ZF , there is a sequence (αn : n ∈ ω) of ordinals of M such that
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(2) ∀n ∈ ω α
n
< α

n+1 V
M

αn
≺
n
M.

Hence

(3) V
M

α1
≺1 V

M

α2
≺2 · · · ≺n−1 V

M

αn
≺n V

M

αn+1
≺n+1 · · · .

Now suppose that M is a well-founded Leibnizian model of ZF , and suppose

to the contrary that the cofinality of OrdM is uncountable. Since OrdM is

well-founded and the sequence of α
n
’s is bounded in Ord

M, there is an ordinal

δ ∈ Ord
M such that δ = sup

n∈ω

αn. Therefore, (3) implies that V
M

δ
≺ M, which

in turn shows that V M
δ

is Leibnizian. This contradicts the fact that V M
δ

is not

Leibnizian since

M � |Vδ| = �δ > 2
ℵ0

.

� (Theorem 4.4)
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