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Abstract

A DO model (here also referred to a Paris model) is a model M of set
theory all of whose ordinals are first order definable in M. Jeffrey Paris
(1973) initiated the study of DO models and showed that (1) every consis-
tent extension T of ZF has a DO model, and (2) for complete extensions
T, T has a unique DO model up to isomorphism iff T proves V = OD.

Here we provide a comprehensive treatment of Paris models. Our results

include the following:

1. If T is a consistent completion of ZF+V �=OD then T has continuum-

many countable nonisomorphic Paris models.

2. Every countable model of ZFC has a Paris generic extension.

3. If there is an uncountable well-founded model of ZFC, then for every

infinite cardinal κ there is a Paris model of ZF of cardinality κ which

has a nontrivial automorphism.

4. For a model M � ZF ,M is a prime model ⇒M is a Paris model and

satisfies AC ⇒M is a minimal model. Moreover, Neither implication

reverses assuming Con(ZF).

∗2000 Mathematics Subject Classification: 03C62, 03C50; Secondary 03H99.
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1. INTRODUCTION

Some first order theories such as Peano Arithmetic PA, or the theory RCF
of real closed fields, have the luxury of possessing a pointwise definable model,
i.e., a model in which every element is definable by a first order formula. In
the context of set theory, a distinguished example of a pointwise definable model
is the Shepherdson-Cohen minimal model [C, III.6] which served as the ground
model for Cohen’s original forcing constructions. It is natural to wonder “When
does an extension of Zermelo-Fraenkel set theory ZF possess a pointwise definable
model?” The concept of ordinal definability1 provides a satisfying answer to this
question. Set theorists now know that the assertion “every set is definable from
an ordinal parameter” can be expressed for models of ZF by a single first order
sentence V = OD, a sentence which explains the existence of pointwise definable
models by the following result [My-Sc].

Theorem 1.1. Suppose T is a completion of ZF. The following are equivalent.

(i) T has a pointwise definable model.

(ii) There is a parameter-free formula ϕ(x, y) such that T proves “ϕ well-orders

the universe”.

(iii) T proves V = OD.

The point of departure for the work presented here is a fruitful generalization
of the notion of pointwise definability introduced by Jeffrey Paris. Paris dubbed
a model of set theory whose ordinals are first order definable a DO model (for
definable ordinals) and established the following elegant existence and uniqueness
results via Henkin constructions.

Theorem 1.2. (Paris [P]) Every consistent extension of ZF has a DO model.

Moreover, a completion T of ZF has a unique DO model up to isomorphism iff

T � V = OD.

In this paper we acknowledge Paris’ pioneering work by referring to DO models

as Paris models. Our aim is to provide a broad view of the fascinating territory of

Paris models. After dealing with preliminaries in Part 1, we use the omitting types

method of Model Theory, and the forcing technique of Set Theory, to construct a

1The concept of ordinal definability was independently discovered by various logicians, in-
cluding Gödel, Post, Myhill-Scott [My-Sc], Takeuti, and Vopĕnka-Balcar.
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large variety of Paris models in Part 2. For instance, in Theorem 2.4 we fine-tune

the second clause of Theorem 1.2 by showing that every completion of ZF +V �=

OD has continuum-many countable nonisomorphic Paris models. In Theorem

2.8 we prove that every countable model of ZFC has a generic extension to a

Paris model of ZFC. Aside from its intrinsic interest, Theorem 2.8 helps to

answer a question of Mycielski by showing that under reasonable conditions the

ordinal heights of well-founded Paris models are unbounded in ω1 (see Corollary
2.9). Section 2.2 focuses on another question of Mycielski on the existence of
Paris elementary submodels, while Section 2.3 concentrates on uncountable Paris
models. For instance in Theorem 2.19 we show that if ZFC has an uncountable
model, then there exist Paris models of ZF of arbitrarily large cardinality. Part 3
focuses on the structural properties of Paris models of ZF . Section 3.1 deals with
well-foundedness, Section 3.2 addresses the existence of a pair of indiscernibles in
Paris models, Section 3.3 discusses the rigidity of Paris models, and Section 3.4
probes the relation between Paris models, prime models, and minimal models of
ZF .

I owe a debt of gratitude to Jan Mycielski, whose thought provoking questions
prompted me to initiate this project, and whose moral support assisted me in
bringing it to fruition. I am also indebted to Robert Solovay and Amir Togha for
helpful comments on earlier drafts of this paper.

Preliminaries

Our notation is standard and follows the canonical texts of Jech [J] and Kunen
[Ku], however we wish to review a list of definitions and results involving models
of set theory which are central to this paper.

Suppose M = (M,E) is a model of ZF , where E = ∈
M.

• Ord
M denotes the ordered set of “ordinals” of M.

• M is a Paris model if for every α ∈ Ord
M there is a first order formula ϕ(x)

in the language {∈} with only one free variable such that α is the unique

element of M such that M � ϕ(α).

• If M ⊆ N = (N,F ), then N end extends M, written M ⊆e N, if N fixes

every element ofM, i.e., for every c ∈M, {x ∈M : xEc} = {x ∈ N : xFc}.

• OD is the class of ordinal definable sets, and the submodel HODM of M

consisting of hereditarily ordinal definable elements ofM satisfies ZFC, but

HOD
M is not necessarily a model of V = OD.
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• L
α

is the α-th level of Gödel’s class of constructible sets L. If N is also

model of ZF withM ⊆e N and Ord
M
= Ord

N, then LM = LN. Moreover,
within ZF , V = L ⇒ V = OD ⇒ AC (the axiom of choice), but neither
implication in general reverses.

• A partial order P is said to be weakly homogeneous if for any two conditions
p and q in P, there is an automorphism f of P such that f(p) and q are
compatible. If P is a weakly homogeneous partial order in the sense of M,
then (1) the first order theory of P-generic extensions is independent of the
choice of the P-generic filter, (2) V �= OD holds in P-generic extensions of

M.

• A model is standard if it is isomorphic to some (M,∈), where M is a transi-

tive set. When M is standard we shall use M instead of (M , ∈) or M. By

Mostowski’s collapsing lemma, each well-founded model of extensionality is

isomorphic to a unique standard model. M is said to be ω-standard if M

has no nonstandard integers.

• ρ is the usual ordinal valued rank function on sets and Vα is the α-th level

of the von Neumann cumulative hierarchy, so Vα = {x : ρ(x) < α}.

• Thanks to the Scott-Solovay Boolean-valued formulation of the method of
forcing ([J, Ch.3], [Ku, Ch.VII, sec.7]), one can use forcing over countable
modelsM of ZF to build generic extensions even whenM is a nonstandard

model.

• Our blanket assumption throughout the paper is that ZF is a consistent

first order theory. However, we do not make a similar blanket assumption

regarding stronger consistency assertions such as “ZF has a well-founded

model”, or “ZFC has an uncountable well-founded model”. Also, a com-

pletion of a consistent theory T0 refers to a consistent completion of T0.
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2. CONSTRUCTING PARIS MODELS

2.1. A Wealth of Paris Models

The following fundamental result of Paris was originally proved via a Henkin con-
struction but, as shown below, it can also be conveniently obtained by a straight-
forward application of the Henkin-Orey omitting types theorem [CK, Theorem
2.2.15].

Theorem 2.1. (Paris [P]) Every completion of ZF has a Paris model.

Proof: Suppose T is a completion of ZF. Let FORM(x) denote the set of
first order formulas in the language of set theory {∈} with one free variable x,
and for each formula ϕ(x) ∈ FORM(x) define

ϕ(x) := ϕ(x)→ ∃y(ϕ(y) ∧ y �= x).

Next consider the 1-type Σ(x) := {x ∈ Ord} ∪ {ϕ(x) : ϕ(x) ∈ FORM(x)}.
Note that Paris models are precisely the models omitting Σ(x). We wish to use
the omitting types theorem [CK, Theorems 2.2.9] to show that T has a model
omitting Σ(x), i.e., we wish to show that T locally omits Σ(x). To see this, suppose
ψ(x) ∈ FORM(x) is a formula such that:

(1) T � ∃xψ(x), and

(2) T � ψ(x)→ x ∈ Ord.

Consider the formula θ(x) = ψ(x)∧∀y ∈ x¬ψ(y). Clearly T � θ(x)→ ¬ψ(x).
Moreover, since one can prove in ZF that every nonempty subset of ordinals has
a least member, T � ∃xθ(x). Therefore T locally omits Σ(x), and our proof is
complete. �

Theorem 2.1 allows us to obtain a straightforward proof of Myhill-Scott’s ex-
tension [My-Sc] of the Montague-Vaught reflection theorem ([J, Theorem 29], [Ku,
Theorem 7.5]):
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Corollary 2.2. (The Extended Reflection Principle) Given any unary formula

ϕ(x), we have ZF � ERPϕ, where

ERPϕ := [∀α ∈ Ord ∃γ > α such that α is first order definable in (Vγ,∈), and
∀x ∈ Vγ(ϕ(x)↔ ϕVγ (x)].

Proof: Thanks to Theorem 2.1, it is sufficient to observe that ERPϕ holds in

every Paris model of ZF by the reflection theorem. �

It is natural to wonder about the number of nonisomorphic Paris models of ZF .

The Gödel-Rosser incompleteness theorem implies that ZF has continuum-many

completions. Coupled with Theorem 2.1, this implies that there are continuum-

many nonisomorphic countable Paris models of ZF . This does not address the

question of the number of countable Paris models of a complete theory T extending

ZF . As we shall see, the answer to this question depends only on whether T

contains the axiom V = OD or not. If T includes the sentence V = OD, then
there is exactly one Paris model of T up to isomorphism, thanks to the following
observation:

Proposition 2.3. (Folklore) If M and N are elementarily equivalent Paris

models of ZF then ODM ∼= OD
N

.

Proof: The desired isomorphism is given by the map τ
M
�→ τ

N
, where τ

M

and τ
N respectively are the denotations of the ordinal definable term τ inM and

N. �

In contrast, in Theorem 2.4 below we fine-tune the second clause of Theorem

1.2 by showing that if a completion T of ZF includes the axiomV �= OD, then the

number of countable nonisomorphic Paris models of T is the maximum possible.

Theorem 2.4. Every completion of ZF+ V �= OD has 2
ℵ0 nonisomorphic

countable Paris models.

Proof: We shall first establish the existence of at least ℵ1 nonisomorphic

countable Paris models of a completion T of ZF+ V �= OD. To do so, use

Theorem 2.1 to get hold of some countable Paris model M of T to serve as the

stepping stone to the construction of a sequence of nonisomorphic countable Paris

models (Mγ : γ < ω1) of T withM0 :=M. To construct M1 we first observe:

M0 � ∃s0 ⊆ Ord such that s0 /∈ OD.

This is an immediate consequence of (1) and (2) below.
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(1) By a result of Vopĕnka and Balcar [J, Lemma 15.1], ifM andN are transitive
models of ZF of the same ordinal height which have the same sets of ordi-
nals, andN satisfiesAC, thenM = N (we invoke this result withinM0, with
M = V

M0 and N =HOD
M0).

(2) HODM0 �=M0, and AC holds in HOD
M0

.

Since M0 is Paris, for each α ∈ Ord
M0 there is a first order formula ϕ

α
(x)

which defines α in M0. This allows us to construct the 1-types Π(x) and Λ0(x)
in the language {∈}, with no parameters, by

Π(x) := {x ∈ Ord} ∪ {¬ϕ
α
(x) : α ∈ OrdM0},

Λ0(x) := {x ⊆ Ord} ∪ {∀v(ϕ
α
(v)→ v ∈ x) : (α ∈ s0)

M0} ∪
{∀v(ϕ

α
(v) → v /∈ x) : (α /∈ s0)

M0}.

Clearly Π(x) is locally omitted by T since M0 omits Π(x). To see that Λ0(x)
is also locally omitted by T , suppose that for some formula ψ(x), we have

T � ∃xψ(x),

and

α ∈ s0 iff T � ψ(x)→ ϕ
α
(x) .

This implies that the term “the unique x satisfying ψ(x)” serves as a definition of

s0 inM0, contradicting the choice of s0 /∈ ODM0
. By the extended omitting types

Theorem [CK, Theorem 2.2.15] there exists a countable model M1 of T which

omits both types Π and Λ0. Moreover, sinceM0 realizes Λ0,M0 is not isomorphic

to M1.

We can now easily repeat this process for each δ < ω1. Suppose we have

constructed a sequence of nonisomorphic countable models (Mγ : γ < δ) for some

δ < ω1 such that each Mγ is a countable model of T omitting Π(x). For each

γ < δ, choose sγ ⊆ Ord
Mγ

such that

Mγ � sγ /∈ OD,

and let Λγ(x) denote the type defined by
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Λγ(x) := {x ⊆ Ord} ∪ {∀v(ϕ
α
(v)→ v ∈ x) : (α ∈ sγ)

Mγ} ∪

{∀v(ϕα(v) → v /∈ x) : (α /∈ sγ)
Mγ}.

Since each of the types Λγ(x) is locally omitted by T , by the extended omitting
types theorem there is a model Mδ of T omitting the type Π(x) as well as the
countable set of types {Λγ(x) : γ < δ}. ThereforeMδ is not isomorphic toMγ for

γ < δ since for each γ < δ,Mγ realizes Λγ(x) but Mδ omits Λγ(x).

The above argument not only shows that there are at least ℵ1 nonisomorphic

Paris models of T , but also shows that the set S1(T ) of complete first order 1-types

which are realized in models of the the Lω1,ω
theory

T := T ∪ {∀x ∈ Ord
∨

α∈Ord
M

ϕ
α
(x)}

is uncountable. But it is well-known that S1(T ) can be viewed as an analytic

subset of the Cantor set [Mo, Theorem 2.3], hence by the perfect set property of
analytic sets [J-2, Theorem 94(c)],

∣
∣S1(T )

∣
∣ = 2ℵ0 .

So T has 2ℵ0 nonisomorphic countable Paris models. �

Remark 2.4.1. One can also prove Theorem 2.4 using a “purely set theoretic”

argument at the cost of substantially increasing the complexity of the proof. Here

is an outline. Suppose, first, that T is a completion of the theory ZF + “V �=

OD” + ∃aV = L[a]. By a classical result of Vopĕnka [J, Theorem 65] there is
a partial order P in HOD with the property that the universe V is a P-generic
extension of HOD. Moreover, as noted by Grigorieff [G, Sec.5, Theorem 1] the
partial order P can be arranged to be weakly homogeneous. Relativizing these to

some Paris model M of T , we conclude that M is a generic extension of N =

HOD
M via a weakly homogeneous notion of forcing. Now let {Gα : α < 2

ℵ0}
denote a family of mutually generic P-filters overM. The weak homogeneity of P

can be used to show that for each α < 2
ℵ0

, N[G
α
] is a Paris model of T . Moreover,

if α < β < 2ℵ0, then by mutual genericity,

N[Gα ×Gβ] � N[Gα] ∩N[Gβ] = N.

This implies that N[G
α
] and N[Gβ] are not isomorphic since they realize different

types (recall the types Λγ(x) in the proof of Theorem 2.4.1). For theories contain-
ing ∀aV �= L(a) one has to work harder by constructing a weakly homogeneous
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class notion of forcing P in HOD such that V is a P-generic extension of HOD.

Remark 2.4.2. Let ψ denote the axiom “there is a real number which is not
ordinal definable”. The proof of Theorem 2.4 can be easily adapted to show that if
T is a complete extension of ZF+ ψ, then there are continuum many Paris models
of T whose “real lines”, viewed as fields, are pairwise nonisomorphic. Mycielski
(private communication) considers this result to be of significant foundational
interest since it demonstrates that even in the presence of an “ideal” complete set
theory T , and a commitment to only definable ordinals, the structure of the real
line remains dynamic and highly elusive.

Remark 2.4.3. Paris [P] observed that if T has a well-founded model then
all Paris models of T must be well-founded (see Theorem 3.1). Coupled with
Mostowski’s collapsing lemma and Theorem 2.4, this shows if a complete extension
T of ZF +V �= OD has at least one well-founded model, then the collection

MT := {M : M is a countable transitive Paris model of T}

has size continuum. The following examples illustrate the fact that the structure
of the partially ordered set (MT ,⊆) is heavily dependent on the theory T . In
Example A, MT turns out to be a trivial partial order, but in Example B, MT

contains a directed subfamily of size continuum.

Example A. Suppose L
α
is a Paris model of ZF + V = L and x is Sacks

generic over L
α
. For any distinct transitive Paris modelsM andM ′ of Th(L

α
[x]),

M ∩M ′
= Lα. This is a direct consequence of the fact that the Sacks reals are

minimal, i.e., if x is Sacks generic over Lα and y ∈ Lα[x] then either y ∈ Lα or
x ∈ L

α
[y] [J, Theorem 64]. Note that L

α
[x] satisfies V �= OD since the Sacks

partial order is weakly homogeneous.

Example B. Suppose L
α
is a Paris model of ZF + V = L, x is Cohen

generic over L
α
, and T = Th(L

α
[x]) . MT has a directed subfamily F of size

continuum. To build F , first build a family {Gγ : γ < 2
ℵ0} of mutually P-generic

filters over Lα (see, e.g., [Fr]), where P is the Cohen partial order. P is weakly
homogenous, and moreover, forcing with P is equivalent to forcing with Pn for any
n < ω. Therefore, all models in F satisfy the same first order theory T . To show
that F is directed under inclusion is now easy, because if M = L

α
[
∏

γ∈S1

Gγ ], and
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M
′
= L

α
[
∏

γ∈S2

Gγ] are in F (where S1 and S2 are finite subsets of 2ℵ0) then the

desired model M of T containing M ∪M
′
is M = L

α
[
∏

γ∈S1∪S2

Gγ].

2.2. Paris Expansions and Extensions

We now turn to the construction of Paris expansions and Paris extensions of an

arbitrary countable model M of ZF . The following concept plays a key role in

this section.

• Given a model M = (M, E) of ZF , X ⊆ M is said to be a class of M

if (M,X) � ZF ( ˜X), where ZF ( ˜X) is the natural extension of ZF in the

expanded language {∈, ˜X} in which the unary predicate ˜X is allowed to

occur in the replacement schema.

Note that every parametrically first order definable subset ofM is a class ofM,
but the converse fails in general. For example, if M is a countable model of ZF
thenM has many undefinable classes (see, e.g., [E-2]). It is easy to see that every
countable model A = (A, · · ·) of any theory has an expansion (A, R), where R is a
binary relation on A, in which every element of A is definable without parameters
(choose R to be a well-ordering of A of order type ω). If A is a model of set theory

then of course (A, R) fails to satisfy ZF (˜R) if R is a well-ordering of A of order
type ω. However, by a forcing argument of Simpson [Si], every countable model
M � ZFC has a class X such that (M,X) is pointwise definable. Note that if
M � ZF has a class X such that (M,X) is pointwise definable then the axiom

of choice holds in M since (M,X) � V = OD( ˜X). One can modify Simpson’s
argument to prove the following more general result.

Theorem 2.7. ([E-3, Lemma 4.1.1]) Every countable model M of ZF has a

class X ⊆ Ord
M such that the expanded model (M,X) is a Paris model.

Aside from its intrinsic interest, Theorem 2.7 also plays a role in the proof of

Theorem 2.8 .

Theorem 2.8. Every countable model of ZFC has a generic Paris extension

satisfying ZFC.

Proof: Suppose M is a countable model of ZFC. The desired extension N

is constructed in four stages:
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• Stage 1 : Use Theorem 2.7 to build a class X ⊆ Ord
M

such that (M,X) is

Paris.

• Stage 2: Build an expansion (M,X, F ) � ZF ( ˜X, ˜F ), where F is a global
choice function. This is possible by a well-known forcing construction [Fe].
Using F we can define an ordering <F in (M, F ) such that every proper

initial segment of <F is a set, and

(M, F ) � “ <F well-orders the universe”.

Therefore there is a definable well-ordering {sα : α ∈ Ord
M} in (M, F )

of all subsets of ordinals in the sense of M. Let Y = {(α, β) : α ∈ sβ}
and use the canonical pairing function Γ : (OrdM)2 → Ord

M to code Y by

Z = Γ(Y ) ⊆ Ord
M

. Since in the presence of the axiom of choice every set
is constructible from a set of ordinals [J, Exercise 15.4], M is constructible

from Z, in the following sense:

(M, Z) � V = L[Z] =
⋃

α∈Ord

L[Z ∩ α].

• Stage 3: Build a generic extension (M[G],X,Z) of (M,X,Z) in whichGCH
holds. This is possible by a theorem of Jensen [J, Exercise 20.8] which shows
that for an appropriate partial order P, which is a definable class of M,

M � 1P � GCH.

Also, since G is generic over (M[G],X,Z), X and Z remain classes ofM[G].

• Stage 4. Use the coding function Γ again to code X and Z into a single

class S ⊆ Ord
M

. By Easton’s Theorem [J, Theorem 46] there is a definable
class partial order Q of (M[G], S) such that

(M[G], S) � 1Q � (2ℵα+1 = ℵ
α+2)↔ α ∈ S).

The desired Paris model is N = M[G][H], where H is Q-generic over

(M[H],X,Y ). Clearly S is definable in N as {α ∈ Ord : 2ℵα+1 = ℵ
α+2}.

Therefore, by de-coding S via Γ−1, both classes X and Z are also definable

in N. Since M is definable in N as L[Z], and (M,X) is Paris, N is also

Paris. �

12



Remark 2.8.1. In stage 4 of the proof above of Theorem 2.8, instead of using
the partial order Q one can use McAloon’s coding technique [Mc] to construct
a definable class partial order Q∗ of (M[G], S) such that for every Q∗-generic

H,M[G][H] not only codes the class Z, but also satisfies V = OD. Therefore

every model of ZFC can be generically extended to a pointwise definable model

of ZFC.

Mycielski (private communication) has asked whether the ordinal heightsOrdM

of well-founded Paris models M of ZFC are unbounded in ω1. Corollary 2.9 an-

swers this question in the positive.

Corollary 2.9. Assume ZFC has an uncountable well-founded model. The

collection

{α < ω1 : α = Ord
M for some transitive Paris model M � ZFC}

is unbounded in ω1.

Proof: Suppose N is an uncountable well-founded model of ZFC. By a

Mostowski collapse, we may assume that N is transitive. Since the axiom of choice

holds withinN, ω1 ⊆ Ord
N (see Proposition 2.14). A routine Lowenheim-Skolem

argument shows that {OrdM :M ≺ N and M is countable} is unbounded in ω1.
We are now done, thanks to Theorem 2.8. �

2.3. Mycielski’s Question

This section is concerned with another question of Mycielski:

• Question (Mycielski [My-1]) Does every model M � ZF have a Paris

elementary submodel?

John Steel has recently answered Mycielski’s question in the negative by con-

structing the following counterexample, which is presented below with his permis-

sion.

Theorem 2.10. (Steel). If there is some α < ω1 such that Lα � ZF and

some countable ordinal of Lα is undefinable in Lα, then there is a transitive model

of ZFC which does not have an elementary Paris submodel.
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Proof: Suppose L
α
� ZF and some θ ∈ ℵLα

1
is undefinable in Lα. Let P ∈ L

α

denote the usual notion of forcing for collapsing ℵ1 to a countable ordinal, and
let G be P-generic over Lα. Since P is weakly homogeneous [J, Theorem 63], and
is parameter-free definable in Lα, a standard truth-and-forcing argument shows
that the definable ordinals of L

α
[G] and L

α
coincide.

We claim that L
α
[G] has no Paris elementary submodel. To verify this claim,

it suffices to show that if M ≺ L
α
[G] then ℵ

Lα

1
⊆ M . To see this, we observe

that β = ℵ
Lα

1
is countable in the sense of Lγ [G]. Therefore, by elementarity, β is

also countable in the sense of M . So there is some f ∈ M such that f maps ω

onto β. Hence, for each n ∈ ω, f(n) ∈M, and therefore β ⊆M. �

Remark 2.10.1. We can adapt the proof of Proposition 2.10 to produce

a model of ZFC which has no Paris elementary submodel by just assuming

Con(ZF ). To do so, we need to replace the ground model Lα in the proof

of Proposition 2.10 with a countable model M � ZF + V = L satisfying the
following two conditions:

(1) Some θ ∈ ℵM
1

is undefinable inM.
(2) Every “natural number” c ∈ ω

M is definable in M.

To build such an M, start with a countable Paris model M0 of
ZF + V = L, and use the regularity of ℵM0

1
in M0 to construct a nonprinci-

pal ultrafilter U on (P(ℵ1))
M0 such that U is ℵM0

1
-complete, i.e., U ∩ p �= ∅ for all

partitions p inM0 of ℵM0

1
which are countable in the sense ofM0. Then chooseM

to be the ultrapower
(
V

ℵ1
)M0 /U . M satisfies condition (1) since M introduces

a new (hence undefinable) countable ordinal toM0, but since U is ℵM0

1
-complete,

M does not introduce any new members to ωM0
, soM also satisfies condition (2)

since M is an elementary extension of M0.

The remaining results of this section deal with partial positive answers to
Mycielski’s question. Myhill and Scott [My-Sc] showed that if M � V = OD,
then the definable elements of M form a Paris elementary submodel of M. The

following result generalizes this fact:

Theorem 2.11. Every model M of ZF has a submodel N �HODM whose

ordinals are precisely the definable ordinals of M.

Proof: SupposeM is a model of ZF and letD(M) denote the set of parameter-

free definable elements of M. Note that even though ODM is a definable subset
of M, D(M) itself is not a definable subset of M in general, e.g., if M has an
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undefinable ordinal, then D(M) cannot be a definable subset of M (otherwise
the least undefinable ordinal would have to be definable). Our desired submodel
is N = D(M) ∩ HODM. To see that N � HOD

M, we shall use Tarski’s test.

Assume that for some a ∈ N

HOD
M
� ∃xϕ(x,a).

Since a = δM for some term δ, we can introduce a term α0 by

α0 := “the first ordinal α such that ∃x ∈ V
α
ϕ(x, δ)”.

Now we can employ the definable well-ordering � of the class of ordinal definable

sets OD to introduce another term τ as:

τ := “the � - first member of {x ∈ V
α0

: ϕ(x, a)}”.

Clearly

HOD
M
� ϕ(τM , a).

�

Theorem 2.12. If M is a well-founded model of ZF whose definable ordinals

are not cofinal in Ord
M , then M contains a submodel M∗ as a transitive element

which is a Paris model of Th(M ).

Proof: Recall that within ZF, Σn-truth is Σn-definable for n ≥ 1 [J, Section
14]. Therefore, by the reflection theorem, for each natural number n,

ZF � ∃α ∈ Ord (Vα ≺n V).

Here “Vα ≺n V” is a single first order sentence of set theory expressing the

statement “for all Σn formulae ϕ(v0, · · ·, vk), and all a1, · · ·, ak in Vα, ϕ(a0, · · ·, ak)
holds iff its relativization ϕVα(a0, · · ·, ak) to V

α
holds”. So, given a well-founded

model M of ZF , we can choose αn ∈ Ord
M to denote the first ordinal α in M

such that

(Vα ≺n
V)M .

SinceM is well-founded and the definable ordinals ofM are not cofinal in OrdM ,

there is an ordinal δ ∈ OrdM such that δ = sup

n∈ω

αn. Note that V
M

δ
≺M since

Vα1 ≺1 Vα2 ≺2 · · · ≺n−1 Vαn ≺n Vαn+1 ≺n+1 · · · .

15



At this point we move within M and invoke Theorem 2.1 to get hold of a Paris
model M of Th(Vδ) (note that the ordinals of M are also definable in the real
world by routine absoluteness considerations). It is easy to see that M is also
well-founded in the eyes of M , and therefore it is also well-founded in the real
world. To see this, suppose on the contrary that

M � ∃f : ω →M ∀n ∈ ω((f (n+ 1) ∈ f(n))M ,

then in M we can choose terms τn with f(n) = τM
n

. This leads to the absurd

conclusion

∀n ∈ ω M � (τn+1 ∈ τn)
Vδ

.

Hence the desired transitive M∗ is the Mostowski collapse of M . �

Corollary 2.13. If M is a well-founded model of ZF with cf (OrdM) > ℵ0,

then there is a Paris model M ∗

∈M of Th(M ).

2.4. Uncountable Paris Models

This section focuses on the enigmatic class of uncountable Paris models which

exhibit a dramatic tension between a gargantuan universe and a miniature class

of ordinals. Clearly if M is a Paris model then Ord
M is countable, but as we

shall see, without at least some weak form of the axiom of choice this gives no

information whatsoever on the cardinality of M itself. We begin with a basic

result which implies that Paris models of ZFC must be countable.

Proposition 2.14. If M � ZFC then
∣
∣Ord

M
∣
∣
= |M |.

Proof: This follows from (1), (2), and (3) below.

(1) M =

⋃

α∈Ord
M

V
M

α
for any M model of ZF .

(2) By basic cardinal arithmetic,

∣
∣
∣
∣
∣

⋃

α∈Ord
M

V
M

α

∣
∣
∣
∣
∣
=

∣
∣Ord

M
∣
∣
. sup

α∈Ord
M

∣
∣V
M

α

∣
∣
.

(3) Since the axiom of choice holds in M,
∣
∣V
M

α

∣
∣ ≤

∣
∣Ord

M
∣
∣ for every α ∈

Ord
M

.�
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One does not need the full force of the axiom of choice in Proposition 2.14. To
see this we need to look at a weaker form of the axiom of choice, introduced by
Keisler.

Definition 2.15. (Keisler, [Ke, Ch. 25])

• x ∈WO
0
iff x is well-orderable.

• x ∈WO
α+1

iff x can be written as a well-ordered union of sets inWO
α

.

• For limit α,WO
α

=

⋃

β<α

WO
β
.

• The axiom V =WO
∞

denotes the assertion ∀x∃α ∈ Ord(x ∈WOα).

Remark 2.15.1.

(a) As shown by Keisler [Ke, Ch. 25], the theory ZF + “every countable non-
empty family has a choice function” proves “no infinite set which is Dedekind
finite is in WO∞”. Coupled with the work of Halpern and Lévy [HL] on
the consistency of the existence of infinite but Dedekind finite subsets of
the real line, this implies that the theory ZF +DC (dependent choice) +
V �=WO∞ is consistent.

(b) There is a model of ZF + DC + P(ω) /∈ WO∞. (Solovay [So] assuming
Con(ZF +∃ an inaccessible cardinal), Shelah [Sh] without the inaccessible).

(c) The axiom of determinacyAD implies P(ω) /∈WO∞(Mycielski-Swierczkowski
[My-Sw]).

Theorem 2.16. (Keisler). If M is a well-founded model of ZF+V =WO∞

then |M | =
∣
∣Ord

M
∣
∣
.

Proof: SupposeM is a well-founded model of ZF+V =WO∞. An argument

similar to that of the proof of Proposition 2.14 shows that
∣
∣(WO0)M

∣
∣
=

∣
∣Ord

M
∣
∣
.

This helps to establish, via an external induction argument on α ∈ Ord
M , that

∣
∣(WO

α)M
∣
∣ =

∣
∣Ord

M
∣
∣
, which shows that |M | =

∣
∣(WO∞)M

∣
∣
=

∣
∣Ord

M
∣
∣
. �

We are now in a position to unveil examples of uncountable Paris models of

ZF .
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Theorem 2.17. Every completion T of ZF+ V �=WO∞ has a Paris model

of cardinality ℵ1.

Proof : Suppose T is a completion T of ZF+ V �=WO∞. By Theorem 2.1,

T has a countable Paris model M . This model provides the stepping stone to

the construction of an elementary continuous chain (Mα : α < ω1) of countable
models with M0 =M, such that

∀α < ω1, Ord
M
= Ord

Mα

.

The construction ofMα+1 fromMα uses the Henkin-Orey omitting types theorem,
and hinges on Keisler’s key observation [Ke, Ch. 25] thatM � V �=WO∞ ensures

that the 1-type

Σ(x) := {x ∈ Ord} ∪ {x �= α̃ : α ∈ OrdM}

is locally omitted by the following theory T formulated in the language {∈} aug-

mented with the constant c, and constants m̃ for each element m ∈M .

T := Th(M,m)m∈M ∪ {c /∈WO∞} ∪ {c �= m̃ : m ∈M}.
⋃

α<ω1

Mα is the desired Paris model of T of power ℵ1. �

Theorems 2.16 and 2.17 together yield the following corollary.

Corollary 2.18. Suppose T is a completion of ZF which has a well-founded

model. T has an uncountable Paris model iff T � V �=WO∞.

We can push the cardinality of Paris models even higher than ℵ1, as witnessed

by Theorem 2.19.

Theorem 2.19. Suppose the statement “ZFC has an uncountable well-

founded model” holds in the constructible universe. For every infinite cardinal

κ there exists a Paris model of ZF of cardinality κ.

Proof: Let FORM (x) denote the set of first order formulas in the language

of set theory {∈} with one free variable x, and for each ϕ ∈ FORM (x) define

ϕ̂(x) := ϕ(x) ∧ (∀y ∈ x ¬ϕ(y)).

Consider the following countable L
ω1,ω

theory T0 consisting of ZF plus the infini-

tary formula

∀v (Ord(v)→
∨

ϕ∈FORM(x)

ϕ̂(v)).
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Clearly models of T0 are precisely the Paris models of ZF . By invoking Morley’s

two cardinal theorem ([Ke, chapter 17], [B, Section VII.4]) within the constructible
universe L, we observe that T0 has a model of prescribed infinite cardinality κ as
soon as

(∗) L � “For unboundedly many ordinals α in ω1, T0 has a model of cardinality �
α
”.

Happily, (∗) follows from the following known results (1) and (2) below.

(1) (Friedman [Fr]). Every countable transitive model M of ZF has a generic

extension which satisfies ZF and has cardinality �
α
, where α = Ord

M
.

(2) [E-3, Theorem 3.7] If ZFC has an uncountable well-founded model then the

collection of countable ordinals α such that Lα is a Paris model of ZF is

unbounded in ωL
1
.

�

3. THE STRUCTURE OF PARIS MODELS

We now turn our attention to the structural properties of Paris models. It is

easy to see that if M is a Paris model of ZF + V = OD then M is pointwise

definable. In particular M is rigid, prime, minimal, and does not contain a pair

of indiscernibles. But as we shall see the situation is far more complex for other

extensions of ZF , even when the axiom of choice holds in M. We begin with a

brief discussion of well-foundedness of Paris models.

3.1. Well-foundedness

Theorem 3.1. (Paris [P]) If a completion T of ZF has a well-founded model,

then every Paris model of T is well-founded.

Proof: Suppose that a Paris model M of T contains an infinite decreasing

“∈” sequence of elements. This implies that there exists a sequence of definable

terms (τ
n

: n ∈ ω) such that

∀n ∈ ω, T � τn+1 ∈ τn.
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Therefore,

∀n ∈ ω, T � ρ(τn+1) ∈ ρ(τn),

where ρ(x) = the ordinal rank of x. This contradicts the existence of a well-

founded model of T . �

Remark 3.1.1.

(a) By Gödel’s second incompleteness theorem, ZF has continuum many com-
pletions with no well-founded models since any model of ZF satisfying
¬Con(ZF ) cannot be ω-standard.

(b) A similar argument to the proof of Theorem 3.1 shows that if T has an
ω-standard model, then every Paris model of T is ω-standard.

3.2. Existence of Indiscernibles

Can a Paris model M contain a pair of indiscernibles? Recall that a pair of

indiscernibles for a modelM is a pair of distinct elements a and b ofM such that

for every first order formula ϕ(x) with one free variable x,

M � ϕ(a)↔ ϕ(b).

To answer this question we first need to briefly discuss the Leibniz-Mycielski

axiom LM introduced by Mycielski2:

LM : ∀x∀y [x �= y→ ∃α∃ϕ({x, y} ⊆ Vα ∧ (ϕ(x) ∧ ¬ϕ(y))Vα).

By a general result of Ehrenfeucht and Mostowski [CK, Theorem 3.3.10] every
first order theory which has an infinite model possesses a model with a pair of
indiscernibles. In contrast, Mycielski [My-1] showed that LM captures the spirit
of Leibniz’s dictum on the identity of indiscernibles by proving that a complete
theory T extending ZF possesses a model without a pair of indiscernible elements

iff T proves LM . His proof uses Paris models, and also shows the following

result3.

2Mycielski refers to this axiom as A′

2
in [My-1], and L in [My-2]. The Leibniz-Mycieskli

appellation LM was proposed in [E-4].
3See [E-5] for more on models of set theory without indiscernibles.
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Theorem 3.2. (Mycielski) A Paris model M of ZF contains a pair of

indiscernibles iff LM fails in M.

Note that ZF is consistent with LM since in the presence of ZF , LM is
a consequence of V = OD. As shown in [E-4], LM and AC are mutually
independent (the independence of AC from LM is due to Solovay). Moreover,
LM turns out to be equivalent to certain global “choice-like” principles within
ZF. This fact plays a key role in the proof of Theorem 3.5(2).

Theorem 3.3. [E-4] The following are equivalent for a model M � ZF .

(i) There is a parameter free definable map F in M such that

M � ∀x(|x| > 1→ (∅ �= F(x) � x).

(ii) There is a parameter free definable map G in M such that

M � “G injects V into the class of subsets of Ord”.

(iii) M � LM.

3.3. Rigidity

Recall that a model M is said to be rigid if the only automorphism of M is the
trivial one. The rigidity of a countable model M also gives information about
the definability of elements of M by infinitary formulas, thanks to the following
classical theorem.

Theorem 3.4. (Scott, [B, Ch.VII]). The following are equivalent for a count-

able model M in a countable language.

(i) M is rigid.

(ii) Every element of M is Lω1,ω-definable in M.

One would expect Paris models to be rigid. Theorem 3.5 shows that this is

true in many cases, but not always.
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Theorem 3.5. Assume that T is a complete extension of ZF .

(1) If T has a well-founded model, then every Paris model of T is rigid.

(2) If T includes AC or LM , then every Paris model of T is rigid.

(3) Paris models of ZF with nontrivial automorphisms exist.

Proof:

(1) If f is an automorphism of a transitive model M, then

∀x ∈ M f (x) = {f(y) : y ∈ x}.

This immediately implies - via an induction argument on the ordinal rank of x
- that f fixes every x ∈ M. In light of Theorem 3.1 and Mostowski’s collapsing
lemma, this completes the proof of (1).
� (part 1)

(2) Suppose M is a Paris model of T and f is an automorphism of M. f

must fix every α ∈ Ord
M since f fixes every definable element of M. Thanks

to extensionality, this implies that f fixes every subset of ordinals inM. Suppose
T includes AC, and let a ∈ M. In the presence of AC, a is constructible from
a subset s of ordinals in M [J, Exercise 15.4]. In particular, there is an ordinal
definable term τ (x) such that a = τM(s). Therefore,

f(a) = f(τM(s)) = τM(f(s)) = τM(s) = a.

Hence every Paris model of T is rigid.

Thanks to the equivalence of LM with the existence of a parameter free de-
finable injection of the universe into the class of subsets of ordinals (see Theorem
3.3), an identical argument shows that Paris models of ZF + LM are also rigid.
� (part 2)

(3) By Gödel, the theory T0 = ZF + V = L + ¬Con(ZF ) is consistent.
Moreover, no model of T0 can be ω-standard. Let M be a Paris model of T0.
The desired Paris model with a nontrivial automorphism can be built as a generic
extension of M using the following surprising theorem of Cohen.

• (Cohen, [C-2]). Every countable nonstandard model M � ZF has a generic

extension M[G] which possesses a nontrivial automorphism f of order 2,

that is f (f (x )) = x for every x ∈M[G]).
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By Cohen’s result above there is a generic extension M[G] which has a non-
trivial automorphism. M[G] remains Paris because LM[G] is definable in M, and
equalsM itself.
� (part 3)

Remark 3.5.1. With more work, and invoking stronger consistency hypothe-
ses, one can even construct ω-standard Paris models which possess nontrivial
automorphisms. This can be done in at least two ways:

Method 1. Apply Cohen’s aforementioned theorem to a nonstandard but ω-
standard Paris modelM. If ZF has an ω-standard model then such anM exists,
thanks to the fact, established by Suzuki and Wilmers [SW], that if ZF has an
ω-standard model then (1) the theory T1 := ZF + “ZF has no ω-standard model”
has an ω-model, and (2) every model of T1 is nonstandard.

Method 2. An examination of the proof of Morley’s two cardinal theorem
reveals that the argument used to prove Theorem 2.19 produces an Ehrenfeucht-

Mostowski Paris model of ZF which is generated from a prescribed ordered set
(X,<) of indiscernibles of cardinality κ. Since the property of being an ω-standard
model can be expressed by a single L

ω1,ω
sentence, the conclusion of Theorem 2.19

can be strengthened to “there is a Paris model of cardinality κ with a nontrivial

automorphism”.

Note that the first method produces a countable ω-standard Paris model with

an automorphism of order 2, while the second method produces an arbitrarily

large ω-standard Paris model with an automorphism of infinite order.

3.4. Relation with Prime and Minimal Models

Recall the following definitions from Model Theory.

• A model M is prime if M can be elementarily embedded into every model

of Th(M).

• A model M is minimal if M has no proper elementary submodels.

It is known that arbitrary first order theories need not have either prime or

minimal models. Also, in general, prime models need not be minimal, and minimal
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models need not be prime. However, the results of this section show that for

M � ZF ,

M is prime⇒M is Paris and satisfies AC ⇒M is minimal.

It is easy to see that ifM satisfies V = OD then both implications above reverse,
but we shall see that in general, neither implication reverses (see Remark 3.9.1).

We first examine prime models of ZF .

Theorem 3.6. Suppose T is a complete extension of ZF . The following are

equivalent:

(i) T � V = OD.

(ii) T has a unique Paris model up to isomorphism.

(iii) T has a prime model.

Proof: (i) ⇒ (ii) follows from Proposition 2.3, and (ii) ⇒ (i) follows from

Theorem 2.4. To see that (i) ⇒ (iii), recall that if T � V = OD then the

definability of a global well-ordering implies that T has definable Skolem functions.

Consequently there is a pointwise definable modelM0 of T (take the Skolem hull
of the empty set inside any model of T ). Given anyM � T, the desired embedding
given by:

τM0
�→ τ

M
,

where τ
M0 and τ

M respectively are the denotations of the definable term τ inM

andM0.

We now complete the proof by showing (iii) ⇒ (i). Suppose M is a prime

model, and suppose on the contrary that M satisfies V �= OD . The proof of

Theorem 2.4 shows that there exists a modelM1 of T such thatM1 omits a 1-type

which is realized in M. So M cannot be elementarily embedded into M1, which

contradicts the primality of M. �

We now turn to the discussion of the relation between Paris and minimal mod-

els of ZF . The following proposition provides us with useful sufficient conditions

under which Paris models are minimal.
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Proposition 3.7. Assume N �M � ZF and Ord
M
= Ord

N
.

(1) If M � AC then M = N.

(2) [Ke, Ch. 25] If M � V =WO
∞ and M is well-founded, then M = N.

Proof of (1): It suffices to prove that for every α ∈ OrdM, V M
α

and V N

α
have

the same elements. Invoking the axiom of choice in N, there are f in M and

θ ∈ OrdM such that

N � f : θ→ V
α
is a surjection.

Coupled with N �M this implies

M � f : θ→ Vα is a surjection.

Therefore, m ∈ V M
α

iff ∃β ∈ Ord
M(m = f(β)) iff ∃β ∈ Ord

N(m = f(β)) iff

m ∈ V N
α

.

�

Corollary 3.8. Suppose T is a theory extending ZF.

(1) If T � AC, then every Paris model of T is minimal.

(2) If T � V =WO
∞ and T has a well-founded model, then every Paris model

of T is minimal.

Theorem 3.6 and Corollary 3.8 together clarify the relation between prime,

Paris, and minimal models of ZF :

Corollary 3.9. Suppose M � ZF .

M is prime ⇒M is Paris and satisfies AC ⇒M is minimal.

Remark 3.8.1. Some completions of ZF lack minimal models. For example,

let T denote the first order theory of Cohen’s model N of the negation of AC
obtained by adjoining an infinite set S of mutually generic Cohen reals to a model
M of ZF +V = L without adding an enumeration of S itself [J-2, Ex.1, p.203].
If M � T then

M �“V = L(S) for some infinite collection S of mutually Cohen generic reals”.
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Choose some s ∈ S and let S = S\{s}. A standard symmetry argument using

the homogenous character of Cohen forcing reveals that LM(S) ≺ M, thereby
showing that M is not minimal. Also, as shown by Lévy, T proves that S is an
infinite Dedekind finite set [J, Sec.21], so T also proves V �=WO∞ (see Remark
2.15.1(a)). Therefore, AC cannot be deleted from part (1) of Corollary 3.8, and
if ZF has a well-founded model, then V =WO∞ cannot be eliminated from part
(2).

Remark 3.9.1. Neither implication in Corollary 3.9 reverses, even if M

satisfies AC. For the first implication, this follows from Theorem 3.6 and the

independence of V = OD from ZFC. To see that the second implication does

not reverse, start with a Paris modelM0 of ZF +V = L and build a nonprincipal

ℵ
M0

1
-complete ultrafilter U over (P(ℵ1))

M0 such that whenever (f : ℵ1 → ℵ1)M0

there is some X ∈ U such that the restriction of f to X is either constant or is 1-1

[E-1, Theorem 2.12]. LetM be the ultrapower
(
V

ℵ1
)M0 /U . Standard arguments

show that M is an elementary extension of M0 which does not introduce any
new members to ωM0 , and moreover, there is no proper intermediate elementary
submodel betweenM andM0, i.e.,

(1) If M0 �M �M, then either M0 =M orM =M.

Note that M is not a Paris model since it has new and therefore undefinable

countable ordinals. Now, collapse ℵM
1

to ℵ0 in the usual way to obtain the generic

extensionM[G]. M[G] is our desired example of a minimal model of ZFC which

is not a Paris model. M[G] is not Paris since by the homogeneity of the collapsing

partial order no new definable ordinals are introduced in the transition from M

to M[G]. To verify minimality, suppose N �M[G]. Clearly

(2) M0 � L
N � L

M[G]
=M.

Since ω
M0 and ω

M have the same members, and Ord
M[G]

= Ord
M

, every

c ∈ ω
M[G]

is definable in M[G]. So we can repeat the argument establishing

Proposition 2.10 to show that every member of ℵM
1

is in N and therefore OrdN

properly contains OrdM0. Coupled with (1) and (2) this shows that LN = M
and, a fortiori

(3) OrdN = Ord
M
= Ord

M[G]
.

Putting (3), Proposition 3.7(1), and the fact that M[G] � ZFC together, we
obtain N =M[G].
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3.5. Rank Extensions

SupposeM is a model of the fragment KP (Kripke-Platek set theory) of ZF . A
model N of KP rank extends M, written M ⊆r N, if the ordinal rank of each
member of N \M (as computed withinN) is greater than the ordinal rank of each
member of M . It is easy to see that M ⊆

r
N ⇒ M ⊆

e
N, but in general end

extensions are not rank extensions, e.g., generic extensions of models of ZF are
always end extensions and never rank extensions. However, it is well-known that
for modelsM of ZF ,

M �e N⇒M �r N.

Moreover, by a classical theorem of Keisler and Morley [CK, Theorem 2.2.18]
every countable model of ZF has an elementary end extension. But as shown
below, a rank extension of a Paris model of ZF can never have a least new
ordinal. In particular, no Paris model of ZF can have a well-founded elementary

end extension.

Theorem 3.10. If M is a Paris model of ZF which is rank extended to a

model N of KP , then OrdN \ OrdM has no least element.

Proof: Suppose, on the contrary, that M is a Paris model of ZF which is

rank extended by a model N of KP with α := min(OrdN\OrdM). It is easy to

see that if M ⊆r N then ℵ
M

1
= ℵ

N

1
< α. Moreover, since Tarski’s truth predicate

x � y can be implemented in models of KP [B, III.1], for any first order formula
ϕ(x), and any a ∈M,

M � ϕ(a) iff N � “Vα exists and Vα � ϕ(a)”.

This immediately implies that N � “Vα is a Paris model”. So α is a countable

ordinal in the sense of N, which contradicts ℵN
1
< α. �

In light of the fact that elementary end extensions of models of ZF are rank

extensions, we obtain the following corollary.

Corollary 3.11. No elementary end extension of a Paris model of ZF has a

first new ordinal.
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4. OPEN QUESTIONS

1. Let ZFn := {ϕ ∈ ZF : ϕ is a Σn-formula}, where n is a fixed natural

number. Is there a consistent extension T of ZFn which has no Paris model?

• This is motivated by the proof of Theorem 2.1, and the fact that some
instance of the induction scheme is unprovable in ZF

n
(by a general re-

sult of Kreisel andWang [KW], coupled with the finite axiomatizability
of ZFn for n ≥ 1).

2. (Paris [P]). Can an ω-standard Paris model of ZF contain its own first

order theory?

• It is easy to see that if M is a Paris model of ZF such that either (1) ωM
1

is well-founded, or (2) (P(ω) ⊆ OD)M, then Th(M)/∈ M. In particular,
Question 2 has a negative answer if M satisfies V = OD, or M is well-
founded. Moreover, if T is an extension of ZF + V �= OD which has an
ω-standard model, then the proof of Theorem 2.4 can be slightly modified
to show that T /∈M for continuum-many ω-standard Paris modelsM of T .

• As observed by Paris [P], if M is an ω-standard Paris model whose elemen-
tary diagram is recursive in its own theory T , then T /∈ M (such a Paris
model exists by the proof of Theorem 2.1 since the Henkin proof of the
omitting types theorem can be conveniently effectivized).

3. Does every countable model of ZF have a generic extension to a Paris model

of ZF?

• This is inspired by Theorems 2.7 and 2.8.

4. Is there a set of first order sentences Σ such that M � ZF has a Paris

elementary submodel iff M � Σ?

• This is motivated by the results in Section 2.3.

5. Do arbitrarily large Paris models of ZF with automorphisms of order 2

exist?

• This is inspired by Theorem 3.5(3) and Remark 3.5.1.
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