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Abstract
It is argued that important information on the emergence of space is hidden at the quark/
hadron level. The arguments follow from the acceptance of the conception that space is an 
attribute of matter. They involve in particular the discussion of possibly relevant mass and 
distance scales, the generalization of the concept of mass as suggested by the phase-space-
based explanation of the rishon model, and the phenomenological conclusions on the 
structure of excited baryons that are implied by baryon spectroscopy. A counterpart of the 
Eddington–Weinberg relation concerning Regge towers of hadronic resonances is noted.

Keywords  Planck and hadronic scales · Quantized and emergent space · Rishons · Quarks 
and hadrons

1  Introduction

Modern fundamental physics is dominated by two divergent lines of philosophical thought 
concerning the notion of space. Both these lines originated in ancient Greece. They have 
led us to two disjoint but very successful theories that describe the behaviour of matter 
‘in the small’ and ‘in the large’, the standard model (SM) and general relativity (GR). The 
SM, a relativistic quantum field theory of interacting elemantary particles, is a descend-
ant of the Democritean line of thought which accepts separation of matter and space, and 
views space as a mere container in which indivisible ‘atoms’ move. General relativity is a 
remote heir of Aristotle’s way of thinking in which space (or rather ‘place’) is regarded as 
an attribute of matter. Such a logical priority of matter over space is a cornerstone of the 
views of many modern philosophically-minded thinkers such as Leibniz or Mach and con-
tributed to Einstein’s development of GR.

Now, if one accepts the latter position, i.e. the philosophically very attractive view that 
‘space and time are (...) stretched out by matter’ (Heisenberg 1979), that ‘objects make 
space’, that without matter there is no space, properties of space should follow those of 
matter. Accordingly, quantum properties of matter and the discretization of mass prompt 
us to expect some form of discretization (or quantization) of space. Such arguments and 
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the general wish to unite the classical and quantum aspects of reality lead to the idea 
of quantum gravity, according to which the macroscopic classical continuous space 
is to be replaced in the microcosm by some form of quantized space. A simple dimen-
sional argument which involves the gravitational, quantum and relativistic constants 
G = 6.67 × 10−8 cm3/(g s2 ), h = 6.62 × 10−27 g cm2/s, and c = 3 × 1010 cm/s, and singles 
out the Planck units of length lP =

√

hG∕c3 = 4.05 × 10−33 cm and time tP = lP∕c (as well 
as mass mP =

√

hc∕G = 5.46 × 10−5 g), is then widely accepted as providing the distance 
and time scales at which the quantum nature of space should manifest.

One of the problems associated with the idea of the emergence of macroscopic continu-
ous space at Planck’s length is its diminutive size and the resulting lack of. experimental 
information that could guide our theoretical speculations. Instead, the available experimen-
tal input is located in the particle sector, at distance scales that are generally deemed irrel-
evant for the idea. Indeed, with field-theoretical approaches describing the behaviour of 
elementary particles fairly well, the idea to link the particle sector with the concept of the 
emergence of space may appear far-fetched. Yet-although something may indeed happen 
at the Planck distance scale-important information on the idea of space emergence may 
still reside at the particle and hadronic scales. After all, with space regarded as an attribute 
(or derivative) of matter, and with the discretization of mass hinting at some form of the 
discretization of space, it is the variety of particles and the spectrum of their masses that 
should direct our ideas on the quantization of space.

2 � Mass and Distance Scales

2.1 � Planck Scale

The lack of experimental input that could direct theoretical research on quantum gravity 
raises various questions. In particular, one may doubt both the need for the existence of 
the underlying quantized space and the relevance of Planck scale to such ideas. Indeed, 
gravity may be a strictly classical long-distance (residual?) phenomenon that does not 
have an underlying quantum counterpart (Wüthrich 2005). Furthermore, as observed by 
some authors (Amelino-Camelia; Baez 2001) and as clearly voiced by Meschini (2007), 
the only links between the general idea of an underlying quantized space and the Planck 
natural units are the dimensional analysis and the theoretical ad hoc considerations of 
Planck-size black holes. However, as pointed out in Meschini (2007), dimensional analy-
sis is not a trustworthy tool that could provide us with reliable information on the realm 
of the unknown. This claim is justified in Meschini (2007) with a few examples from the 
history of physics which show that dimensional analysis becomes reliable only when the 
underlying theory is already known. For example, Meschini considers estimates of the 
size of hydrogen’s atom and its binding energy that could have been made on the basis of 
dimensional analysis before any knowledge of Planck constant and the associated quantum 
features of reality were available. Assuming that hydrogen atom is built from electron and 
proton and accepting that the relevant dimensional constants are those involved in the clas-
sical theories of mechanics and electromagnetism, he shows that the predicted numbers are 
some five orders of magnitude away from their physical values.

On the other hand, the field-theoretical approach of the Standard Model works quite 
well down to the distances of the order of some 10−16 cm, three orders of magnitude below 
typical hadronic size. On this basis one may hope that no change in the properties of space 
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should occur for still smaller distances and that this trend continues down to the naturally 
distinguished scale of Planck’s length. Yet, such a point of view ignores the fact that our 
conclusions concerning properties of space at small distances do not follow from direct 
observations but are inferred with the help of quantum field theory (which itself has a 
hybrid classical-quantum nature (Finkelstein 1969, 1972). In particular, it also ignores the 
issue of quantum nonlocality which questions the classical conception of an underlying 
spacetime even at macroscopic distances. Of course, quantum nonlocality does not directly 
jeopardize relativistic local quantum field theory. Yet, there is a clear tension between the 
classical and quantum descriptions, between locality and nonlocality. The deep and unas-
wered question is how classical locality emerges out of quantum nonlocality.

Now, experiments show that nonlocal quantum correlations appear at all probed dis-
tance scales. It looks as if spacial distances were completely irrelevant at the ‘true’ quan-
tum level. It seems that the macroscopic spacetime of the classical description of nature 
emerges from the underlying quantum layer in a subtle and intrinsically nonlocal (holo-
graphic?) way, as the recent idea of building spacetime from quantum entanglement also 
suggests. There does not seem to be a reason to choose the Planck distance scale over the 
particle/hadronic scale (or the universe scale) as more appropriate for the emergence of 
the classical spacetime. From the vantage point of quantum nonlocality the Planck dis-
tance scale seems to lose its priviliged status. In fact, it was argued in the quantum gravity 
context (Bojowald 2007) that the typical distance scale lQS relevant for the idea of space 
quantization may be dynamical and much larger than lP : lP << lQS << lU = cH−1

0
 (where 

lU is the observable radius of the Universe and H0 is the Hubble constant), and that the cor-
responding mass scale mQS = h∕(c lQS) is much smaller than mP.

2.2 � Hadronic Scale

The case for space quantization and emergence may look altogether different when other 
fundamental constants are admitted into the game. For example, there seems to be no rea-
son why cosmological constant Λ = 1.19 × 10−56 cm−2 ( ≈ (1∕lU)

2 ) should not be regarded 
as a constant as important as h, G, and c. If Λ is relevant, one can form (after Wesson 
(2004)) two additional mass scales that differ from mP , namely

and

with the Planck mass being their geometrical mean

Masses mU and mW are connected by an enormous dimensionless quantity:

The Wesson mass mW , being proportional to h and independent of G, may be inter-
preted as the quantum of mass. The other mass, mU , which is independent of h, and 
thus seems appropriate for the classical limit, is of the order of the mass of the observ-
able Universe. Now, with Planck mass being around one tenth of the mass of a flea, 
one may convincingly argue that mP corresponds to the classical and not the quantum 
realm. What meaning should be assigned then to Planck length which is directly related 
to mP by standard quantum considerations: lP = h∕(mPc) ? Does it make sense to apply 

(1)mW = (h∕c)
√

Λ∕3 = 1.39 × 10−65 g,

(2)mU = (c2∕G)
√

3∕Λ = 2.14 × 1056 g,

(3)m2
P
= mWmU .

(4)N = mU∕mW = 3c3∕(hGΛ) = 15.4 × 10120 = m2
U
∕m2

P
.
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quantum ideas to flea-weight objects in this way? Why is the interest of the majority 
focused on space and tiny distances ( lP ), and not on matter and tiny masses (e.g. mW )? 
Shouldn’t the length and mass scales lQS and mQS be both far from the classical realm?

It may be observed that mass scales mW , mP , and mU are defined by expressions in 
which one of the four fundamental constants is missing (respectively: G, Λ , and h) 
(Burikham et al. 2016). Thus, one additional mass scale (the one without c) may be sin-
gled out as potentially important. It is

This number, which is smaller than the Planck mass by some 20 orders of magnitude, i.e.

should be compared with the electron, pion and nucleon masses: me = 0.91 × 10−27  g, 
m� = 0.25 × 10−24  g, mn = 1.67 × 10−24  g. The fact that mN , the particular combination 
of h, G, and Λ , is of the order of mn (or m� ) was noticed by many authors and is some-
times called the Eddington-Weinberg relation (Eddington 1946; Weinberg 1972) (see also 
Burikham et al. (2016) and Funkhouser (2008)). Furthermore, the distance scale related to 
mN by typical quantum considerations, ie. lN = h∕(mNc) = 6.37 × 10−13 cm , is obviously of 
the order of typical hadronic size. Note that, unlike lP and mP , both the distance and mass 
scales lN and mN are relatively small with respect to typical classical macroscopic distances 
and masses. Are hadronic scales relevant for the idea of space quantization?

In fact, there is not one but two a priori independent mass-related parameters that 
describe the hadronic spectrum. The first is the mass of the lowest lying hadronic states 
such as nucleon that fits the Eddington-Weinberg relation. The other parameter is con-
cerned with the pattern of excited hadronic states. Here, the relevant feature of the had-
ronic spectrum is the appearance of linear Regge trajectories which describe infinite 
‘towers’ of similar hadronic resonances (i.e. the recurrences of the ground state mesons 
and baryons with increasing spins J and masses m) according to the generic formula:

where �0 is the ‘intercept’ and �′—the slope of the trajectory. The slopes of all trajecto-
ries are similar: �� ≈ 0.9  GeV−2 (with masses measured in GeV’s, the units of energy). 
For example, for nucleon one has 1∕2 = �0,n + ��m2

n
 (i.e. the intercept of nucleon trajec-

tory is �0,n ≈ −1∕2 ). The recurrences of nucleon appear at J = 1∕2, 5∕2, 9∕2, 13∕2, ... and 
their masses m are given by Regge formula (7). Quark confinement ensures that such had-
ronic towers are infinite. When proper care is taken of spin dimension the universal slope 
is equal to

(experiment tells us that Δm2 , which describes the spacing of the masses of Regge recur-
rences, is approximately equal to proton mass squared). The slope �′ takes care of the 
string-like character of excited hadrons (the emergence of interquark strings) and permits 
one to express momenta as proportional (not inversely proportional) to positions via the 
dimensional constant

which describes string tension and has the dimension of momentum/position (ie. (g cm/s)/
cm).

(5)mN = mWN
1∕3 = mUN

−2∕3 =
�

(h2∕G)
√

Λ∕3
�1∕3

= 0.346 × 10−24 g.

(6)mP = mNN
1∕6,

(7)J = �0 + ��m2,

(8)�� = h∕(2�Δm2) ≈ 0.378 × 1021 cm2∕(g s)

(9)�R = c2∕�� = 2.37 g/s,
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It should be clear that the mass scale of ground state hadrons (which is of the order of 
10−24 g), and the slope of Regge trajectories (with �R of the order of a few g/s) are two a 
priori independent parameters. After all, with mn (or m� ) fixed, the relevant Regge trajecto-
ries could still be very steep or very flat (with Δm2 << m2

n
 or Δm2 >> m2

n
) . Yet the Regge 

scale of Eq. (9) satisfies a relation somewhat similar to the Eddington–Weinberg relation 
of Eq. (5). Indeed, we observe that from the four fundamental constants h, G, c, and Λ one 
can form two constants of dimension g / s:

the ‘classical’ constant

and the ‘quantum’ constant

which differ by the N factor of Eq. (4). From Eq. (9) one finds that

with the proportionality factor not far from N−1∕3 = 0.4 × 10−40 . Thus, up to a factor of 
100, one has

which gives a rough estimate of Regge slope:

The presence of a factor close to N−1∕3 in expression (12) constitutes a large number 
coincidence that seems to have not been noticed earlier. The fact that the particular combi-
nation of h, G, and Λ given in Eq. (14) is of the order of �′ may be viewed as a counterpart 
of the Eddington-Weinberg relation of Eq. (5). Yet, it concerns not just the nucleon, but the 
whole Regge tower (trajectory) of hadronic resonances. The appearance of the same factor 
of N±1∕3 in connection with hadronic parameters mn and �′ points to their common origin.

With mn and ln being both much smaller than the macroscopic masses and distances it 
was contemplated quite early that the spacetime-based description of nature breaks down 
at the distance scale of hadronic physics (Zimmerman 1962)1. A decade or more after the 
introduction of quarks this idea was still on the mind of several physicists. For example, 
Penrose viewed his spin-network-induced twistor conceptions on the emergence of space-
time as appropriate at the hadronic scale (Penrose 1974). Today we know that hadrons are 
made of quarks which are conceived as pointlike objects. This discovery is usually taken to 
mean that there is no close connection between hadronic physics and the idea of the emer-
gence of spacetime. Yet, one may argue that such a conclusion is premature as it is based 

(10)�C = c3∕G = 4.04 × 1038 g/s,

(11)�Q = hΛ = 0.79 × 10−82 g/s.

(12)�R = 5.9 × 10−39�C,

(13)�R ≈ N−1∕3�C = c2
(

hΛ

3G2

)1∕3

,

(14)�� ≈

(

3G2

hΛ

)1∕3

= 55 × 1021 cm2∕(g s).

1  Strictly speaking, the classical notions of space and time are valid on the macroscopic level only, or (as 
put in Zimmerman (1962)): ‘in situations where (...) a dense assembly of clocks and rods may be introduced 
without significant alteration of the physical situation’. Thus, the application of the classical picture of spa-
cetime to hadron-level physics already constitutes a far-reaching extrapolation. It is achieved by way of 
merging the classical and quantum aspects of reality in a hybrid classical-quantum approach known under 
the name of quantum field theory (Finkelstein 1969, 1972).
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on a misidentification of current (admittedly very successful) field-theoretical description 
of strong interactions with physical reality. One may believe that the current SM descrip-
tion constitutes an idealization that will yield in time to a deeper description of elemen-
tary particles, a description more closely associated with the nature of spacetime (Pen-
rose 1968). The search for physics ‘beyond the Standard Model’ does not have to mean ‘at 
smaller distances’ or ‘at larger energies’. It may mean ‘beyond the field-theoretical frame-
work’, or ‘beyond the current conception of spacetime’.

3 � Internal Quantum Numbers and Phase Space

3.1 � Nonrelativistic Phase Space

The Standard Model contains several ingredients that are put in by hand. We do not know 
why there are three generations of fundamental fermions or why each generation is com-
posed of two leptons and two sets of three quarks, all these particles being characterized by 
such internal quantum numbers as weak isospin, hypercharge, and color. It seems that the 
first problem that should be addressed is the issue of this generation structure.

With space viewed as an attribute of matter, properties of macroscopic 3D space and 
time should be associated with the properties of elementary particles. Indeed, the quantum 
numbers of spin and parity are connected with spatial 3D rotations and reflections, while 
the existence of particles and antiparticles may be linked to the operation of time rever-
sal. With spatial quantum numbers being associated with the nonrelativistic conception of 
space and time, it is natural to expect that their existence could be deduced via some appro-
priate nonrelativistic analysis.2 Indeed, although inclusion of relativity leads to left and 
right spinors transforming differently under Lorentzian boosts, it does not affect the very 
existence and nonrelativistic properties of such concepts as spin or parity. At this point it is 
interesting to note that the above argument concerning the relative unimportance of special 
relativity in the study of some aspects of particle physics seems to go hand in hand with the 
absence of c in the expression for mN , which is essentially the hadronic scale.

Given the existence of the nonrelativistic connection between space and spatial quantum 
numbers, it is tempting to expect that the internal quantum numbers could be associated 
with some nonrelativistic extension of the 3D space + time picture. Although relativity 
has to appear at some later stage of any full discussion, its introduction should not affect 
the main (‘nonrelativistic’) conclusions of such an approach. Furthermore, we think that it 
is too early for the inclusion of special relativity at the level of individual colored quarks. 
Indeed, we do not understand some important aspects of intra-hadronic physics already at 
the nonrelativistic level (for more details see Sect. 4.3). Thus, for our purposes, we may 
restrict attention to a nonrelativistic case. Now, the existence of dimensional constant �R 
permits expressing positions as proportional to momenta, and allows the introduction of 
additional symmetry between these two sets of coordinates of the 6D phase space.3 With 
� having dimension [momentum/position], such a symmetry does not have much to do 
with the quantum connection which involves Planck constant of dimension [momentum × 
position].
2  Although the existence of particles and antiparticles is generally viewed as an implication of the relativ-
istic Dirac approach, it may be inferred from nonrelativistic analysis as well (Horzela and Kapuścik 2003).
3  For example, the existence of � permits a replacement of positions by momenta and vice versa (actually 
� → � , � → −� ), a ’reciprocity’ symmetry originally introduced by Born (1949) in connection with the 
problem of mass.
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Such a phase-space-based description of reality seems to constitute a very natural and 
truly minimal ‘extension’ of the standard 3D description. Indeed, it may be viewed as (in a 
sense) ‘a null extension’, for it does not introduce any additional dimensions of (position) 
space. It is therefore more minimal than, for example, the approach of Trayling and Baylis 
(2001) which assumes seven spatial dimensions.4 In addition, the phase space approach 
realizes the philosophical condition of a symmetric treatment of things and processes (i.e. 
positions of things and their changes or, in other words, motions) as advocated by such 
thinkers as Heraclitus, Leibniz, and—most notably—Whitehead (Irvine 2010; Kraus 1979; 
Żenczykowski 2014). The utmost parsimony of this extension and its deep philosophical 
underpinning makes one hope that the expected additional phase-space-related quantum 
numbers could be identified with some observed internal quantum numbers. Of course, the 
above arguments should be backed by other arguments, ideally of observational or experi-
mental nature. Such arguments will be provided later on.

3.2 � Linearization

The simplest argument that leads from the level of macroscopic classical space (of either 
positions � or momenta � ) to the level of spatial quantum numbers is supplied by the Dirac 
linearization idea. According to this idea the 3D rotational invariant of momentum square 
�
2 may be written as a product of two identical factors � ⋅ � ≡

∑

m Ampm , linear in momen-
tum p:

where � is some momentum-independent object that behaves like � under rotations (so that 
� ⋅ � is a rotational invariant) and satisfies certain requirements that follow from (15). Spe-
cifically, as terms proportional to pmpn are absent on the l.h.s. above, the Am ’s must satisfy 
anticommutation rules

which means that Am cannot be represented by ordinary numbers. As is well known, the 
above equation may be satisfied if one takes Am = �m where �m are Pauli ( 2 × 2 ) matrices. 
Thus, linearization connects the rotational properties of the classical 3D macroscopic space 
with the quantum concept of spin Sk = �k∕2.

When an extension from the 3D momentum (or position) space to the 6D phase space 
is investigated, it is natural to consider5 the phase-space analogue of �2 , i.e. �2 + �

2 and to 
attempt its linearization à la Eq. (15):

where Am and Bn are the analogues of Am in Eq. (15). Let us now look at some details 
this idea entails. With momentum and position coordinates considered as classical 
(i.e. commuting) variables, the above equality requires six objects Am and Bn to satisfy 

(15)�
2 = (� ⋅ �)(� ⋅ �),

(16)AmAn + AnAm = 2�mn,

(17)�
2 + �

2 = (� ⋅ � + � ⋅ �)(� ⋅ � + � ⋅ �),

4  In paper of Trayling and Baylis (2001) the first three dimensions are the (observed) dimensions of posi-
tion space, while the remaining four are added to make possible such an enlargement of the underlying geo-
metric algebra that would permit – with the help of the concept of an algebraic spinor – the incorporation of 
all eight fermions of one generation of the Standard Model.
5  For simplicity in the following we measure � and � in such units that both � and h are 1.
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anticommutation conditions analogous to (16), which define the Clifford algebra of 6D 
phase space. One finds that these conditions may be satisfied with Am and Bn represented 
by 8 × 8 matrices (Żenczykowski 2007, 2008, 2014, 2015). A convenient representation of 
these six elements is provided by tensor products of Pauli matrices:

When momenta and positions are considered as quantum variables, then - due to the 
nonzero value of commutator [xm, pn] = i�mn—there appears an additional term on the l.h.s. 
of (17), i.e. one gets

with

After introducing the element

multiplying a rescaled version of Eq. (19) by B:

(where (�2 + �
2)vac = 3 is the lowest eigenvalue of �2 + �

2 ), and defining matrices

one obtains

It may be checked that the 8 × 8 matrices I3 and Y commute among themselves and are 
invariant under ordinary 3D rotations and reflections. Consequently, their eigenvalues con-
stitute natural candidates for internal quantum numbers. With these eigenvalues being

the eigenvalues of Q are (0,+2∕3,+2∕3,+2∕3,−1,−1∕3,−1∕3,−1∕3) , identical with 
the charges of eight fundamental fermions composing a single generation of the SM. It is 
therefore natural to identify (25) with the Gell-Mann-Nishijima formula for electric charge 
Q, and I3 and Y with weak isospin and hypercharge.

(18)
Am =𝜎m ⊗ 𝜎0 ⊗ 𝜎1,

Bn =𝜎0 ⊗ 𝜎n ⊗ 𝜎2.

(19)(� ⋅ � + � ⋅ �)(� ⋅ � + � ⋅ �) = �
2 + �

2 + R,

(20)R = −
i

2

∑

k

[Ak,Bk] =
∑

k

𝜎k ⊗ 𝜎k ⊗ 𝜎3.

(21)B = iA1A2A3B1B2B3 = 𝜎0 ⊗ 𝜎0 ⊗ 𝜎3,

(22)Q ≡
1

6

[

(�2 + �
2)vac + R

]

B

(23)I3 =
1

2
B,

(24)Y =
1

3
RB =

1

3

∑

k

𝜎k ⊗ 𝜎k ⊗ 𝜎0,

(25)Q = I3 + Y∕2.

(26)
I3 → ± 1∕2, (for any Y),

Y → − 1,+1∕3,+1∕3,+1∕3, (for any I3),
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3.3 � Rishons or ‘Partial Hypercharges’

The triple appearance of the Y eigenvalue of +1∕3 is naturally associated with the triplicity 
of the color quantum number. It is instructive to see how this triplicity emerges. From (19) 
we observe that the hypercharge Y is built as a sum of three mutually commuting ‘partial 
hypercharges’

Calculation shows that the values of Y are constructed from Yk in the way indicated in 
Table 1. The rightmost column in Table 1 provides the correspondence between the struc-
ture of Y and the quartet composed of a lepton and three colored quarks. The triplicity of 
color is attributed here to three different orderings in which Y = +1∕3 may be built out of 
−1∕3 , +1∕3 , and +1∕3.

It appears (Żenczykowski 2015) that the pattern exhibited in Table 1 is in one-to-one 
correspondence with the way in which the charges of leptons and quarks are built out of 
the charges of their alleged subparticles, the so-called ‘rishons’ of the Harari-Shupe (HS) 
model (Harari 1979; Shupe 1979). In that model the eight fermions of a single SM genera-
tion are conceived as ordered triplets of two ‘truly fundamental’ spin-1/2 subparticles (ris-
hons) T and V of charges +1∕3 and 0 respectively. For example, the red u quark is identified 
with the triplet VTT, while the neutrino �—with VVV. With only two types of rishons the 
HS scheme is very economic in the number of fundamental particles. Yet, it exhibits many 
shortcomings in other places. In particular, it predicts the existence of unobserved particles 
(e.g. spin-3/2 partners of leptons and quarks), its concept of color is not connected with the 
SU(3) color group of the SM, it violates the condition of fermion antisymmetrization at the 
rishon level, etc., etc. It turns out that in the phase-space framework these shortcomings 
of the HS rishon model do not appear. The basic reason is that in that approach the par-
tial hypercharges (the counterparts of HS rishons) constitute algebraic components of the 
hypercharge operator only. They do not reside on any subparticles. Lepton and quarks of a 
single SM generation are connected by phase-space-induced symmetry, but its explanation 
in terms of subparticles is neither needed nor possible. For a more detailed presentation 
of the relevant arguments see Żenczykowski (2016). By Ockham’s razor, the phase-space 
explanation of the observed pattern of fundamental fermions is vastly superior to that pro-
vided by the original rishon model.

The shortcomings of the HS model result from the intuitive wish to divide mat-
ter again and again. Yet, the divisibility of matter must come to an end. As noted by 
Heisenberg (1976), this comes about as a change in the meaning of the word ’to divide’ 
so that after several steps down the ladder of compositeness the concept of further 
subdivision loses most of its original meaning. One of the lowest and most important 
steps of this ladder seems to occur when the concept of macroscopic separability is 

(27)Yk = −
i

6
[Ak,Bk]B =

1

3
𝜎k ⊗ 𝜎k ⊗ 𝜎0.

Table 1   Decomposition of 
hypercharge eigenvalues

Y
1

Y
2

Y
3

Y Particle

−1∕3 +1∕3 +1∕3 +1∕3 Red quark
+1∕3 −1∕3 +1∕3 +1∕3 Blue quark
+1∕3 +1∕3 −1∕3 +1∕3 Green quark
−1∕3 −1∕3 −1∕3 −1 Lepton
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lost, i.e. during the transition from the hadronic to the quark level. As the phase-space 
scheme suggests, going further down (to the supposed rishon level) seems to require a 
strictly algebraic understanding of the compositeness of matter (i.e. the construction of 
hypercharge from ‘partial hypercharges’ that do not reside on subparticles) and, con-
sequently, the inapplicability of the ordinary conception of matter below the lepton/
quark level. The conceptual superiority of the phase-space scheme over that provided 
by the original HS model strongly suggests that the ordinary conception of matter 
starts at the lepton/quark scale, not below it. With space understood as an attribute of 
matter, it seems therefore that it is the transition from the partial hypercharge (’rishon’) 
level through the lepton/quark level and on to the hadronic level (i.e. the emergence of 
matter) that should be relevant for the understanding of the emergence of space. The 
Planck scales seem quite irrelevant here.

4 � Generalization of Mass, Emergence of Hadrons

4.1 � Problem of Mass

The problem of mass is a thorny one. For a long time the main controversy seemed 
to have been between the view that mass is an intrinsic property of a given particle 
and the opinion that it results from the interaction of that particle with other objects. 
According to Wigner (1939), from the group-theoretical standpoint the observed parti-
cles may be labelled by two space-related properties, namely spin and mass, associated 
with rotations and translations respectively. This seems to suggest similar physical ori-
gins of mass and spin. Yet, the current view treats spin and mass somewhat asymmetri-
cally: it holds that while spin is an intrinsic property of a particle, it is the interaction 
with the Higgs field that generates the masses of originally massless particles.

Still, the Higgs mechanism (as it stands now) does not provide us with a substan-
tial improvement in our understanding of the problem of mass. As noted in Hansson 
(2014a, b), it ‘merely replaces one set of unknown parameters (particle masses) with 
an equally unknown set of parameters (coupling constants to the Higgs field(s)), so 
nothing is gained in the fundamental understanding of masses.’ The problem of mass 
is further exacerbated by the existence of mixing between different generations. Thus, 
we need a principle deeper than the Higgs mechanism. It should provide a single 
rationale behind the existence of the whole variety of fundamental particles, explain 
the observed pattern of their masses and mixings, and reduce the number of free SM 
parameters. For example, Hansson (2014a, b) argues that the relative values of neu-
trino, electron, and quark masses are correlated with the strength of fundamental inter-
actions in which these particle participate. Given our ignorance as far as origin of mass 
is concerned it is obvious that one should welcome any additional light that could be 
shed on this problem.

4.2 � Phase Space and Mass

The phase-space scheme provides an attractive explanation of the origin of several internal 
quantum numbers. It turns out that it has other interesting implications as well. They bear 
on the idea of space as a property of matter. Generalization of the concept of mass is one 
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of them. It is this generalization that (as we believe) may help us in future to uncover how 
classical macroscopic space emerges from (and is constructed as a limiting property of) 
the underlying material quantum layer. It was observed by Born (1949) that the ordinary 
concept of mass distinguishes between momentum and position variables. Indeed, mass of 
individual free physical bodies always enters into dispersion formulas in association with 
momentum (and not with position), be it in a nonrelativistic or relativistic expressions for 
particle energies i.e.

Born’s reciprocity symmetry between � and � violates this association of mass with 
momentum.

The introduction of � permits a completely parallel treatment of momentum and posi-
tion variables and suggests the introduction of phase-space invariant �2 + �

2 . This invariant 
admits the consideration of transformations that replace momenta with positions in various 
ways, not only via Born’s reciprocity transformation. Specifically, consider the following 
rotations in phase space:

Invariance of � ⋅ � + � ⋅ � requires that Am and Bn transform as above with pm → Am and 
xn → Bn , and with similar replacements for primed objects. For � = �∕2 one then immedi-
ately finds that

and, consequently,

i.e. nothing happens to the values of I3 = B∕2 and Y2 , while the values of Y1 and Y3 are 
interchanged (with additional negative signs). This leads to Table 1 being transformed (row 
by row) into Table 2. We see that the lepton and the blue quark are interchanged, while the 
red and green quarks are unaffected. One may say that a quark of a given color is a lepton 
appropriately rotated in phase space.

Consider now the effect that this transformation has on the connection between phase 
space variables and the classical concept of mass. Let us focus on the standard dispersion 

(28)E = �
2∕2m or E2 = �

2 + m2.

(29)

p�
1
= p1 cos� + x3 sin�,

x�
3
= x3 cos� − p1 sin�,

p�
2
= p2,

x�
2
= x2,

p�
3
= p3 cos� − x1 sin�,

x�
1
= x1 cos� + p3 sin�.

(30)
A�
1
= B3, A�

2
= A2, A�

3
= −B1,

B�
3
= −A1, B�

2
= B2, B�

1
= A3,

(31)

B� =B,

Y �
1
= − Y3,

Y �
2
=Y2,

Y �
3
= − Y1,
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relation for a macroscopic body, that is naturally extrapolated to free microscopic objects, 
such as a lepton. Then, according to Eq. (29), in the dispersion formula appropriate for the 
blue quark, the ordinary three-momentum (p1, p2, p3) is replaced by a ‘mixed’ triplet of 
phase space variables, i.e. by a new canonical momentum

Thus, a free blue quark would have to satisfy a symmetry-related phase-space counterpart 
of Eq.(28) i.e. (for an originally relativistic relation)

By analogy, similar mixed triplets and dispersion formulas (with cyclic relabelling 
2 → 3 → 1 → 2 ) appear for the red and green quarks.

It may be objected that these implications of the phase-space scheme are totally unac-
ceptable as they violate rotational, translational, and relativistic invariances of the sur-
rounding macroscopic world. We think, however, that the appearance of such violations is 
not a vice but one of the greatest assets of the proposed scheme. In our view, such would-
be violations lie at the origin of quark confinement (or—more conservatively speaking—of 
a novel perspective on it). In other words, we believe that it is due to the would-be violation 
of rotational and translational invariances by the quark dispersion formula that a single 
quark cannot be observed in the familiar classical 3D world in which these invariances 
obviously have to hold. Thus, unobservability of individual quarks is predicted by the 
scheme.

The proposed explanation of quark confinement seems to be in a manifest contradiction 
with the generally accepted standard picture of quarks and their confinement via gluon-
mediated long-range QCD interactions. Therefore, a first reaction to the phase-space pic-
ture could be to discard it right away. Yet, before one makes such a hasty decision, one 
should discuss possible ways of resolving the conflict. In particular, one should first 
address such issues as the possible connection between phase-space ideas and the ordinary 
description of hadron substructure in terms of quantum quark fields, and the disagreement 
with the widely embraced standard view on quark masses. Then, one may turn to the dis-
cussion of a seemingly unacceptable description of quark confinement.

4.3 � Defense of Phase Space Picture

First, let us stress that in our phase-space considerations we are concerned with the disper-
sion relation of a free quark (i.e. in the precise association of the concept of quark mass 
with phase-space variables), not with other quark properties such as e.g. quark spin, chiral 
properties, etc. which are assumed to be fully relevant for the field-theoretical description 
of the interaction of quarks with external probes such as photon or weak bosons. The 

(32)(p�
1
, p�

2
, p�

3
) = (x3, p2,−x1).

(33)E2 = x2
3
+ p2

2
+ x2

1
+ m2.

Table 2   Structure of Y after 
rotation in phase space Y

′
1

Y
′
2

Y
′
3

Y
′ Particle

−1∕3 +1∕3 +1∕3 +1∕3 Red quark
−1∕3 −1∕3 −1∕3 −1 Lepton
+1∕3 +1∕3 −1∕3 +1∕3 Green quark
+1∕3 −1∕3 +1∕3 +1∕3 Blue quark



299Quarks, Hadrons, and Emergent Spacetime﻿	

1 3

non-standard dispersion relation that an individual quark is supposed to satisfy is viewed as 
a classical constraint that should be introduced into the quantum field-theoretical frame-
work from the ‘outside’ (i.e. from the classical level, just as it is done in the case of the 
standard dispersion formula). The fact that in our approach the individual quarks are 
expected to subscribe to a non-standard dispersion relation does not mean that in the quan-
tum field-theoretical approach (and from the point of view of the 3D space + time back-
ground and color-blind external probes) they cannot be described with the help of a pair of 
ordinary (left and right) spinorial fields (the bispinor q(x)), as it is standardly done in 
quark/hadron phenomenology and in QCD. A large part of standard phenomenological and 
field-theoretical description of hadrons in terms of quark substructure is thereby automati-
cally accepted. What should be skipped are those parts of that picture which involve the 
classically-motivated on-mass-shell constraints such as e.g. the Dirac equa-
tion(/p−m)q(x) = 0 (Żenczykowski 2015). This is highly welcome as the use of ordinary 
on-mass-shell formulas for quarks is unacceptable on conceptual grounds: in the standard 
field-theoretical approach the ordinary on-mass-shell condition ( p2 = m2 ) corresponds to 
spatial infinity which obviously cannot be reached by confined quarks. For similar reasons 
I find it hard to accept without reservations those quark-level calculations which involve 
standard quark propagators1/(/p−m): after all, the very idea of confinement forbids the 
existence of quark poles at p2 = m2 . In my view, such calculations have to be treated as 
approximations that may lead to a variety of artefacts and—for these reasons—cannot be 
really trusted. And indeed, not only are the standard quark propagators in conceptual con-
flict with the very unobservability of free quarks, but their carefree use does lead to incor-
rect predictions also in other, less obvious places (see eg. Żenczykowski 2006).

Second, when confronted with the above claim that the standard concept of mass is not 
appropriate for a quark, most physicists would presumably argue that our understanding of 
quark masses cannot be that bad: they would be inclined to belief in the soundness of 
standard quark mass extraction procedures. After all, respectable scientific literature 
accepts standard (Dirac) character of quark masses and lists quite precise values for these 
parameters. The point is, however, that—with free quarks being unobservable in asymp-
totic states—any extraction of quark mass from experimental data must depend heavily on 
theory, i.e. on the way quark ‘mass’ is defined and built into the relevant theoretical 
scheme. Obviously, there is no doubt that a quark may be assigned some effective mass 
parameter that can be extracted from hadronic level data. Yet, what is actually being 
extracted via the relevant theoretical procedures? Are the extracted quark masses the Dirac 
masses? Or are they mass-like parameters of a more general nature? Do we know the rele-
vant theory sufficiently well for such extractions to be fully reliable? It turns out that the 
original, fifty years old prescription for the extraction of the so-called ‘current’ quark 
masses (via the ‘current algebra’ of hadronic currents) does not actually treat quarks as 
Dirac particles ‘moving’ within hadrons.6 For our purposes it is sufficient to say that in 
these extractions one uses global chiral properties of effective quark mass terms as well as 
spacetime concepts defined at the hadronic level. Some quark-level symmetries do enter 
into the game but no assumption is made concerning the existence of ordinary background 
space within hadrons. Moreover, in such extractions the on-mass-shell Dirac 

6  For a brief discussion of how the standard values of quark masses are extracted from experiment via ‘cur-
rent algebra’ see eg. Żenczykowski (2015).
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condition(/p −m)q(x) = 0 does not have to be used (although it sometimes is), thus mak-
ing it possible to avoid the pending conceptual conflict between its use and quark 
confinement.

More modern quark mass extractions are based on lattice QCD calculations in which, 
although the quarks are pictured on the background of classical spacetime, standard quark 
propagators do not appear. Thus, just as in the case of current algebra, there emerges no 
conceptual conflict with the unobservability of individual quarks in asymptotic states. The 
mass values extracted via such more sophisticated calculations are in good agreement with 
the old current algebra estimates. This seems to suggest that one may go beyond the simple 
current algebra picture and extend the standard spacetime concepts right into the hadronic 
‘interior’. Accordingly, the concept of quark mass may be regarded as quite standard, with 
its Dirac nature being masked by QCD confinement effects. Yet, we shall point out below 
that this extension seems to go too far.

Before we turn to the issue of the essential difference in the pictures of confinement, let 
us comment on some interesting aspects of the phase-space-induced view on the notion of 
mass that are missing in the SM approach. Namely, a study of all 64 elements of the Clif-
ford algebra of phase space shows (Żenczykowski 2009, 2017, 2014) that there is only one 
element of this algebra (up to Born’s reciprocity transformation) that may be associated 
with the concept of lepton mass. Its rotations in phase space / Clifford algebra (using Eq. 
(30) etc.) lead to three Clifford algebra elements that have to be associated with the con-
cepts of mass for tri-colored quarks. It turns out that these elements are diagonal elements 
of a rank-2 tensor that is symmetric in 3D indices7, possibly hinting at the connection of 
quarks with the appearance of metric and thus with the idea of space emergence. Further-
more, the rotations in phase space involve string tension �R . This seems to indicate that the 
problem of mass does not really break up into two independent problems: the problem of 
the mass of fundamental fermions (Clifford algebra elements for lepton and quark masses) 
and the problem of the strength of interquark confining interactions (string tension, �R ), as 
it is often thought nowadays. Instead, these two problems seem to constitute two closely 
related parts of a single puzzle.

Finally, we come to the third point—the issue of confinement and the difference 
between the phase-space view and the QCD picture. The conceptual simplicity and par-
simony of the phase space approach strongly suggests that this approach contains several 
important elements of truth. If so, we should not reject it immediately but rather find a way 
to marry it with the QCD picture. This may be attempted if one accepts the view that both 
the phase-space ideas and the QCD picture are idealizations that may deviate from real-
ity in various places.8 Thus, the phase-space and QCD pictures should be viewed as two 
different perspectives on the nature of quark confinement. As such they may benefit from 
each other. It is therefore gratifying that the two pictures exhibit important similarities. 
For example, the phase space approach provides the justification for the appearance of the 
SU(3) color symmetry group of QCD. Furthermore, both the phase-space picture and QCD 

8  After all, all our theories are abstract descriptions, models built with the goal of representing various fea-
tures of nature and applicable to its limited regions only (Heisenberg 1958). They must not be treated as the 
underlying and complete truths that are valid everywhere.

7  While Clifford algebras in general lead to antisymmetric tensors only, the phase-space-induced doubling 
of the 3D structure (the parallel treatment of position and momentum spaces) leads to elements that—from 
the point of view of our 3D world—are symmetric in 3D indices.
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involve the description of confinement in terms of strings, even though these strings are 
pictured differently.

Addressing the question of how to marry the phase-space view with the QCD picture 
requires going beyond the intended scope of the present paper. Nonetheless, we should 
mention here an idea that was put forward in Mulders (2016, 2018) and could be relevant to 
this question. The proposal of Mulders (2016, 2018) bears some resemblance to the phase-
space scheme: it links the number of colors to the number of space dimensions, constructs 
leptons and quarks from one-dimensional structures somewhat akin to our interpretation of 
Harari-Shupe rishons, and does away right from the beginning with the confinement prob-
lem. At the same time it involves left and right objects, dynamical gluons, and more. An 
intriguing question is if such ideas can be adapted to our scheme, marrying it with QCD 
and bringing in a way to incorporate special relativity.

Now, while the phase-space picture (as it stands now) misses important elements of 
QCD (eg. gluons), QCD also seems to be deficient, although from a different angle. In 
particular, there are strong phenomenological indications from baryon spectroscopy that 
something important is missing in the original quark model/ QCD picture. It appears that 
the standard quark model and lattice QCD both predict the existence of many more excited 
baryonic states than experimentally observed (Capstick and Roberts 2000). More specifi-
cally, it seems that in excited baryons one internal spatial degree of freedom is frozen (this 
provides a direct suggestion that there is a close connection of quark-to-hadron transition, 
the mechanism of quark confinement, and hadronic scale with the idea of space emer-
gence). On this issue Capstick and Roberts write (Capstick and Roberts 2000): ‘If no new 
baryons are found, both QCD and the quark model will have made incorrect predictions, 
and it would be necessary to correct the misconceptions that led to these predictions. Cur-
rent understanding of QCD would have to be modified and the dynamics within the quark 
model would have to be changed’. We conclude that it is not sufficient to calculate the 
masses of the ground-state mesons and baryons and to claim—on the basis of their approx-
imate agreement with experimental values—that the relevant theoretical scheme is correct. 
One cannot view such successes of lattice QCD as a sufficient argument favoring the exist-
ence of standard spacetime background in hadronic ‘interior’. The real challenge for the 
lattice QCD is the description of baryonic excited states. It is only after this is achieved that 
one can accept the applicability of unmodified QCD to the description of quark confine-
ment. As the situation stands now, the apparent freezing of one spatial degree of freedom 
in excited baryons strongly suggests that the nature of hadronic ‘interior’ may be different 
from naive extrapolations. We repeat: the fact that one can describe quarks as quantum 
fields on the background of classical continuous spacetime and that many interesting con-
ceptions (including various ideas on quark/hadron transition) were developed within such 
a picture does not mean that this background, assigned to the interior of hadrons by an 
extrapolation from the macroscopic domain, is fully adequate for a deeper description of 
quarks and hadronic structure.

Now, it is interesting to note that on the issue of hadronic ‘interior’ the phase-space 
picture seems to differ from standard quark approaches. The implication that masses of 
individual quarks should enter into rotationally and translationally non-invariant disper-
sion relations means that quarks cannot exist as individual free objects. It does not mean, 
however, that they cannot exist as inseparable components of multi-quark conglomerates 
provided these conglomerates satisfy all the invariances that ordinary objects are supposed 
to satisfy. The phase-space approach seems to admit the emergence of such conglomer-
ates. Indeed, although in this approach a precise prescription for the construction of had-
ronic states is missing, an interesting argument that leads to the emergence of mesonic and 
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baryonic structures may be given. This argument is based on an extension of the principle 
of additivity of physical momenta of ordinary macroscopically separable objects. Accord-
ing to this principle, the total momentum of a composite system of ordinary objects is 
given by the sum of the momenta of its components ( �tot =

∑

k �
(k) ). In the phase space 

picture one may expect this trivial principle to be generalized to the principle of additivity 
of canonical momenta. This leads in particular to the addition of canonical momenta of 
three quarks of different colors, i.e. of

and suggests the appearance of a translationally invariant expression

which can be made rotationally covariant if the three quarks conspire so that � and � − � 
are actually ordinary vectors. Thus, using the additivity principle one may construct 
expressions that satisfy the condition of proper rotational and translational behavior at 
the composite level, and are therefore appropriate for the description of ordinary objects. 
Accepting this generalization of the additivity principle leads to the emergence of expres-
sions appropriate for the description of mesons and baryons, in a way somewhat similar to 
their standard group-theoretical description. Further discussion of this idea may be found 
in Żenczykowski (2009, 2014, 2015, 2017). Here, we would just like to point out that the 
additivity prescription treats the two a priori possible internal baryonic spatial degrees of 
freedom in an asymmetrical manner (as only one vector of internal displacement is present 
in Eq. (35)), which may have something to do with the apparent freezing of one inter-
nal degree of freedom in excited baryons. Thus, the phase space picture—if developed 
for the description of hadrons in an as yet unknown way— may provide hints on how the 
QCD picture should be modified. Obviously, with QCD requiring a prior acceptance of the 
existence of an underlying background spacetime, introduction of gluons into the phase-
space approach should be postponed until a working idea on the emergence of spacetime is 
proposed.

5 � Conclusions

In conclusion, I think that important information on the idea of space emergence could be 
extracted from the hadronic realm. There is a couple of arguments that support this point 
of view.

First, with space viewed as an attribute of matter, it seems that it is the discrete spec-
trum of masses of elementary particles that should define discrete properties of space in 
the microcosm. Thus, one should start not from discrete (or quantized) space but from dis-
crete (or quantized) matter. Hadrons seem particularly relevant here as their spectrum com-
prises objects of all spins.

Second, the standard dimensional argument that singles out Planck mass scale (and the 
related distance scale) as relevant for space emergence has a natural counterpart that sin-
gles out the hadronic mass scale instead of Planck scale. Indeed, if one accepts four funda-
mental constants: h, G, c, and Λ , then the Planck mass scale mP is obtained if Λ is not used, 
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while the hadronic mass scale mN is obtained if c is not used. As the hadronic mass scale 
mN is much farther from the classical realm than the Planck mass scale (which is essen-
tially of classical size) it seems that it is mN (and not mP ) that should be relevant for the 
consideration of spacetime emergence. Moreover, in addition to mN there is another a priori 
independent scale (the Regge tension �R ) that characterizes the hadronic spectrum and is 
far from the classical realm ( 𝜅R << 𝜅C).

Third, the existence of hadronic spectrum parameter �R supports a phase-space pic-
ture that provides a justification for the emergence of internal quantum numbers of weak 
isospin, hypercharge and color. As this picture is essentially unique in its parsimony, it is 
very attractive. It suggests an extension of the concept of mass (and a more general view on 
matter that involves a symmetric treatment of things and processes) and predicts the unob-
servability of individual quarks. It also seems to involve an asymmetric treatment of the 
two intra-baryonic spatial degrees of freedom, which are expected in simple extrapolations 
of the macroscopic conception of space to the hadronic ‘interior’. Thus, it questions the 
idea of ordinary divisibility of space when going from the hadronic to the quark level, and 
suggests that standard ideas on intra-baryonic space constitute an approximation to reality 
only. Such a view on hadronic ‘interior’ is corroborated by phenomenological analyses of 
the spectrum of excited baryons which indicate that one internal spatial degree of freedom 
is frozen.

Fourth, extending the idea of the divisibility of matter below the lepton/quark level, as 
it is assumed in the rishon model, leads to many shortcomings which are automatically 
absent if one adopts a strictly algebraic interpretation of rishons as obtained in the phase-
space picture.

To summarize, I think that the emergence of space may and should be viewed as a 
byproduct of the transition of matter from the (algebraic) rishon level via the (particle/
quasi-particle) lepton/quark level and on to the (particle) lepton/hadron level. The cur-
rently dominant view of continuous space emerging at the Planck distance scale seems to 
be in conflict with the philosophical position accepting logical priority of matter over space 
when this position is combined with the analysis of the salient properties of (quantized) 
matter.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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