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ABSTRACT 

This thesis examines A. N. Whitehead and B. Russell’s ramified theory of types. It consists of 

three parts. The first part (pp. 8–22) considers the Poincaré-Russell notion of predicativity, as 

well as the rationale for eliminating impredicative definitions from mathematics. It outlines 

the construction of the ramified hierarchy; and finally discusses the shortcomings of the rami-

fied analysis for the formalization of the most basic parts of classical analysis.  

The second part (pp. 23–33) considers two versions of the Russell antinomy. The greater por-

tion deals with the proposition-theoretic version of the Russell antinomy, a solution to which 

is offered based on the construction of a hierarchy of propositions. Alternative ways out by 

relaxing the criterion for identity of equivalent propositions are also mentioned. 

The third part (pp. 34–44) attempts to explain the requirement of predicativity as a by-product 

of the substitution interpretation of the second-order quantifiers; it is suggested that this ex-

planation coheres well with a predicative conception of sets, according to which set-existence 

is parasitic upon identity conditions for predicatively definable sets. 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INTRODUCTION 

One of Bertrand Russell’s key contributions to the mathematical logic was to introduce the 

notions of type and order so as to provide the frame for a logical reconstruction mathematics. 

In what sense do the logical antinomies suggest the need for a theory of types and orders? 

This is the question that we shall seek to partly clarify in the present thesis. 

A preliminary section (pp. 3–7) is included for the purpose of recalling the relevant no-

tions of set theory such as 1-1 correspondence and cardinality. We also recall the proof of the 

diagonal lemma and Cantor’s theorem, which will be relevant especially in the second part. 

The first part (pp. 8–22) begins by considering the aftermath of the logical antinomies. 

The larger portion of this part is devoted to understanding the Poincaré-Russell notion of 

predicativity. It is notoriously difficult to make fully exact the philosophical notion of predica-

tivity. We describe some prominent features of impredicative definitions, and illustrate them  

by classic examples. Next, we discuss the rationale for eliminating impredicative definitions 

from mathematics by referring to the Poincaré-Russell debate. Having discussed Russell’s es-

sential ideas leading to the ramified theory of types, we next outline the construction of the 

ramified hierarchy. Our attention will be directed towards foundational problems surrounding 

the interpretation of the ramified type structure rather than the formalization of the syntax of 

the ramified type theory. The first part ends with a discussion of the shortcomings of the rami-

fied analysis for the formalization of the basic parts of classical analysis. 

The second part (pp. 23–33) considers two versions of the Russell antinomy. The greater 

portion deals with the proposition-theoretic version of the Russell antinomy, a solution to 

which is offered based on the construction of a hierarchy of propositions. Alternative ways out 

by relaxing the criterion for identity of equivalent propositions are also mentioned. 
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The third part (pp. 34–44) attempts to justify the vicious-circle principle as a natural by-

product of the semantic interpretation of the ramified second-order logic. The key idea to 

achieve the goal of coming up with an adequate interpretation of the first layer of ramified hi-

erarchy is to switch to a non-standard way of stating the truth conditions for the second-order 

quantifiers in terms of substitution. The substitution interpretation of the quantifiers provides a 

natural way to explain the predicative restrictions brought by the vicious-circle principle. The 

explanation is that an assignment of truth conditions to sentences of a set-theoretic language 

that express propositions about sets of numbers presuppose a prior assignment of truth condi-

tions to sentences of a number-theoretic language. 

Russell has been the major source of influence to me throughout the time I have been 

working on this thesis. Reading his papers prior to the writing of the Principia Mathematica 

had a transformative impact on me, and led me to see better the intricacies involved in the way 

of finding an adequate solution to the antinomies (see RUSSELL [1956, 1973]). I do not claim 

to have understood the big picture yet, but I am certainly inclined to think that Russell’s solu-

tion was essentially correct. This might have caused a potentially undesirable feature of this 

thesis in that our discussion is not wholly impartial. The fact is that Russell’s philosophy of 

mathematics and logic has many aspects, which do sometimes conflict with each other. In this 

thesis, the constructive and critical side of his philosophy is emphasized over and above his 

logicism, at the risk of misrepresenting some of his original views in certain ways. We also 

sometimes suggest certain departures from his philosophy of mathematics, but his philosophy 

of logic is unique and absolutely impeccable. So I wish to dedicate this thesis to Russell. 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PRELIMINARIES 

In this preliminary section, we recall the very basics of naive set theory to facilitate our dis-

cussion in the subsequent sections. For our purposes, the important notions of naive set theory 

are 1-1 correspondence and cardinal number. We also recall the proof of Cantor’s theorem.  

As usual, by a set (or class) we mean a collection of distinct objects whose ordering, mul-

tiplicity, and mode of specification are not considered. The objects in a set are its elements (or 

members). The membership relation (∈) between sets and their elements is a primitive notion. 

The set-inclusion relation (⊆) is defined in terms of the set-membership primitive: a set M 

is said to be a subset of some other set N just when each element of M is also an element of N. 

The set of all subsets of a set M is denoted by S(M). That is, S(M) = {X ∣ X ⊆ M}. 

A set may be introduced either by an enumeration of its elements or by a specification as 

the collection of exactly those objects that fulfill a certain condition or definition. In general, a 

set whose elements are enumerable is also specifiable by means of a condition. The converse 

does not hold, since the first method of definition is in general not applicable to infinite sets. 

Accordingly, we think of any set as specifiable by a certain condition. 

A specification of a set M by a condition or definition A(x) is a statement to the effect that 

M is a set all and only objects such that A(x) holds. So a specification of a set M is of the form:

(∀x)[x ∈ M ↔ A(x)] 

A set M is said to be definable by a first-order formula A(x) if and only if A(x) holds for all and 

only the elements of M. A set is called arithmetical if it is definable by a formula in the lan-

guage of first-order number theory. 
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The basic principles of naive set theory are two in number. 

The axiom of comprehension (or specification) states that any given condition specifies a 

set comprising all of those objects satisfying that condition. It is expedient to write it as a 

schema which yields by substitution an infinity of statements of the form:

(1) (∃y)(∀x)[x ∈ y ↔ A(x)]. 

We read (1) as “there is a set Y comprising all and only objects x such that A(x) holds”. Note 

that naive set theory, there no operative principle to prevent sets being elements of other sets. 

The axiom of extensionality states that we can describe a set completely by identifying its 

elements: for any given sets M and N (not necessarily distinct), M = N holds if and only if M 

comprise all and only the elements of N. In symbols, for any given sets M, N, 

(2) M = N ↔ (∀x)[x ∈ M ↔ x ∈ N].  

In consequence of (2), for any condition A(x), the set of all x such that A(x) holds is unique, 

called the extension of A(x) and denoted by {x ∣ A(x)}. 

We sometimes abbreviate statements of the form (∀x)[x ∈ M → A(x)] by statements of the 

form ∀m ∈ M : A(m). Similarly, we abbreviate (∃x)[x ∈ M ∧ A(x)] by ∃m ∈ M : A(m). 

Intuitively, a pairing m ⟷ n is said to establish a 1-1 correspondence from a set M onto 

some other set N when to each element of M corresponds exactly one element of N, and each 

element of N is the correspondent of exactly one element of M. One writes M ~ N to express 

the fact that the elements of M can be put into 1-1 correspondence with those of N. 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Definition. M ~ N holds if and only if there is a relation R that fulfills the conditions: 

(3)   ∀m ∈ M  : ∀n, n' ∈ N    : R(m, n) ∧ R(m, n' ) → n = n' 

(4)   ∀n ∈ N   : ∀m, m' ∈ M : R(m, n) ∧ R(m', n) → m = m' 

(5)   ∀m ∈ M : ∃n ∈ N   : R(m, n) 

(6)   ∀n ∈ N   : ∃m ∈ M : R(m, n) 

Let us recall Cantor’s Diagonal Lemma, which is crucial for future reference. 

Cantor’s Diagonal Lemma. Let M be a set. If Σ is a collection of subsets of M such that M ~ 

Σ, there is at least one subset of M that fails to be an element of Σ.  1

Proof. There are (at least) two ways to prove this lemma. 

1. Let Σ be a collection of subsets of M. 

2. Let m ⟷ Sm be a pairing of each element m of M with exactly one subset Sm of M. 

3. Let Σ = {Sm ∣ m ∈ M} so that m ⟷ Sm yields a 1-1 correspondence from M onto Σ. 

4. Define D = {m ∈ M ∣ m ∉ Sm}. 

5. If m ∈ M such that Sm = D holds, then m ∈ D holds if and only if m ∉ Sm = D holds. 

6. So, by reductio ad absurdum, D = Sm fails to hold for each m ∈ M. 

7. It follows that D fails to be an element of Σ. 

———————————————————— 

1. Suppose that Σ is a collection of subsets of M such that M ~ Σ. 

2. Let R : M ⟷ Σ be the relation defining the 1-1 correspondence. 

3. Define: D = {m ∈ M ∣ ∃S ∈ Σ : R(S, m) ∧ m ∉ S} 

4. Observe that D is a subset of M by construction.  

5. So, if D ∉ Σ holds, we are done. 
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6. Otherwise, without loss of generality, let m0 ∈ M such that R(D, m0) holds. 

7. If m0 ∉ D holds, m0 ∈ D holds. So, by reductio, m0 ∉ D fails to hold. 

8. If m0 ∈ D holds, let S0 ∈ Σ such that both R(S0, m0) and m0 ∉ S0 hold. 

9. It follows immediately that S0 ≠ D holds. 

10. But, R is 1-1 —in particular R satisfies the condition (4); whence D ∉ Σ holds. 

11. So m0 ∈ D reduces to a contradiction. 

12. So there is no such m0, whence D fails to be an element of Σ. 

———————————————————— 

Definition. A set M is said to have cardinality n if and only if the elements of M can be put 

into 1-1 correspondence with the natural numbers upto n exclusive. In symbols, 

∣M∣ = n  if and only if  M ~ {0, 1, …, n-1}, 

where ∣M∣ denotes the cardinality of M. In general, a set M has cardinality equal to a set N if 

and only if M ~ N. A set M is finite if and only if ∣M∣ = n for some natural number n; other-

wise M is infinite. A set M is countably infinite if the elements of M can be put into a 1-1 cor-

respondence with the set of all natural numbers. 

Given two sets M and N, there are four logically possible circumstances:  

(7)  S ~ N for some S ⊆ M, but M ~ T for no T ⊆ N, 

(8)  S ~ N for no S ⊆ M, but M ~ T for some T ⊆ N, 

(9)  S ~ N for some S ⊆ M, and M ~ T for some T ⊆ N, 

(10)  S ~ N for no S ⊆ M, and M ~ T for no T ⊆ N. 

If (7) holds, we say that M has cardinality greater than N and write ∣M∣ > ∣N∣. If (8) holds, we 

say that M has cardinality less than N, and write ∣M∣ < ∣N∣. According to Schröder-Bernstein 

theorem in set theory, M ~ N whenever M and N satisfy the condition (9). If (10) holds, we say 
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that the cardinalities of M and N are incomparable. However, in set theory, the case (10) is 

excluded, so that any two cardinal numbers are comparable. In fact, the statement that any two 

cardinals are comparable turns out to be equivalent to Zermelo’s axiom of choice. 

We say: M has cardinality less than or equal to N, and write ∣M∣ ≤ ∣N∣, to mean that either 

∣M∣ < ∣N∣ or M ~ N holds. Similarly, we say: M has cardinality greater than or equal to N, and 

write ∣M∣ ≥ ∣N∣ to mean that either ∣M∣ > ∣N∣ or M ~ N holds. In consequence, M ⊆ N implies 

∣M∣ ≤ ∣N∣. The converse implication does not hold, of course. 

Cantor’s Theorem. For any set M, ∣M∣ < ∣S(M)∣. 

Proof. Clearly, ∣M∣ ≤ ∣S(M)∣ holds, since we can put the elements of M into 1-1 correspon-

dence with the unit subsets of M by pairing each element m of M with that unit subset of M 

whose sole element is m. That is, M ~ {{m} ∣ m ∈ M} ⊆ S(M). Suppose, for the sake of a con-

tradiction, that M ~ S(M). Observe that S(M) is a collection of subsets of M. So, by the satis-

fies the conditions for the Lemma. So by the Lemma, there must be a subset S of M such that 

S ∉ S(M). This is impossible, since by definition S(M) comprises all subsets of M. 

Cantor’s Paradox. Where V is the set of all sets, ∣V∣ < ∣S(V)∣ both holds and does not hold. 

Proof. Any subset of V is a set; so S(V) ⊆ V, whence ∣S(V)∣ ≤ ∣V∣, so ∣S(V)∣ > ∣V∣ does not 

hold. In conjunction with Cantor’s theorem this yields the contradiction. 

 The lemma is stated almost the same way as in S. Kleene (see KLEENE [1952, §5 Lemma A]). Also 1

compare our proofs with those in BOOLOS [1997] and BELL [2004], wherein similar arguments are 

used to directly prove Cantor’s theorem itself by taking Σ be the set of all subsets of M. My reason for 

not doing so are based on concerns about finding a neutral formulation of the lemma that does not pre-

suppose the full powerset of an arbitrary set.
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I 

The earliest marks of the fact that the naive conception of sets is contentious were the logical 

antinomies directly stemming from Cantor’s transfinite arithmetic. The most prominent ones 

are: (a) Cantor’s paradox of the greatest cardinal (1895), (b) Burali-Forti’s paradox of the 

greatest ordinal (1897), and (c) Russell’s paradox (1902). These are called logical antinomies 

because we have in each case a logically flawless argument that is used to prove a contradic-

tion from basic principles. 

Logicians were subsequently able to discover a considerable number of antinomies that 

involved no reference to the fundamental concepts of set theory. Among these the most prom-

inent ones are: (d) Richard’s paradox (1905), (e) König's paradox of the least indefinable ordi-

nal (1905), (f) Berry’s paradox of the least integer not nameable in fewer than nineteen sylla-

bles (1906), (g) the Nelson-Grelling paradox of the expression ‘heterological’ (1908) and, of 

course, (h) the paradox of the statement ‘this statement is false’. Antinomies of this kind are 

called semantical antinomies because they deal with semantical notions such as definability 

and truth. RAMSEY [1926] and HILBERT-ACKERMANN [1928] suggested that these have to be 

distinguished from the antinomies of logic and set theory, because they thought that the der-

ivation of semantical antinomies somehow depend upon extra-logical features, such as lin-

guistic features, of the relevant paradoxical statements. Nonetheless, the so called semantical 

antinomies share important characteristics in common with the logical antinomies. 

In fact, it does not seem far-fetched to suspect that the antinomies of logic and set theory 

also have to do with problems pertaining to the use of symbolism. We saw that underlying the 

naive set theory are two principles that allow the passage from any condition to infer the exis-

tence and uniqueness of the set of objects satisfying that condition. So the relation of condi-
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tions to sets is many-one, which induces an operation on the domain semantically associated 

with a class of expressions. Seen in this way, (1) allows us to take any well-formed formula 

and to assert existence of an object named by the corresponding closed expression that pur-

ports to involve reference to a set; and (2) guarantees that no other object is named by the 

same expression. So one way to spell out the critique of naive set theory is the following: 

paradoxes result from processes of concept-formation terminating with a description that 

refers to nothing (like Frege’s ‘the least rapidly converging series’). The expression ‘the set of 

all sets’ refers to nothing. The logical status of statements containing expressions of this kind 

would of course depend on one’s theory of referential failure. At any rate, no paradox is forth-

coming unless we adopt the untenable assumption that any condition A(x) can be used to gen-

erate a substantive existence claim “the set of all x such that A(x) holds exists”. So, each of the 

paradoxes of set theory reduces the relevant instance of the comprehension axiom into a defi-

nite contradiction. The inconsistency of naive set theory is due to the fact that the comprehen-

sion principle is taken without any restriction on its range of application. As such, the proce-

dure is illegitimate as a means of definition. 

But this is not the whole story. The problem disclosed by set-theoretic paradoxes is a very 

deep one in the foundations of mathematics that directly concerns the conceptual construc-

tions underlying set-existence claims made in actual mathematical practice. As E. Beth re-

marked, “the effect of a contradiction arising in such a context is fatal, because the inconsis-

tency of a proposed basis for pure mathematics entails the inconsistency of the resulting de-

ductive development of pure mathematics itself.” (BETH [1966: 307]) Even after the situation 

caused by the discovery of the antinomies is diagnosed in some way or another, there remains 

a serious problem of establishing a consistent basis upon which mathematics could be devel-

oped. The minimal requirement is to somehow restrict the range of application of the compre-
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hension principle in set theory. This task was achieved to a certain extent by the axiomatiza-

tion of set theory by ZERMELO [1908] by supplanting the comprehension principle with the 

separation axiom [Aussonderung] together with substantive set-existence axioms. The separa-

tion axiom allows, for any given set M, the formation of a subset of those elements of M that 

satisfy a certain definite condition or property φ, i.e. a condition or property that for any given 

argument x yields a determinately true or false statement or proposition φ(x). 

A natural attempt to avoid the antinomies to scrutinize the construction inducing this state 

of affairs to mark out what is characteristic of a whole variety of pathological cases. This is 

not only supposed to provide an extensionally correct way of circumscribing what predicates 

that have to be rejected as failing to determine an extension, but it is also supposed to deliver 

an explanation of why they fail to do so. This second aspect of the problem is very important, 

as it is the only way one can attain the certainty that mathematics is free of contradictions. 

From the standpoint of predicative foundations of mathematics, the main objectionable 

feature of the logical antinomies was a peculiar kind of circularity implicit in the definitions 

that form the bases for the arguments. The sort of circular definitions in question are called 

impredicative definitions. In general, a definition of an object (individual, set, property, propo-

sition, etc.) is said to be impredicative if the definiens involves (explicit or implicit) reference 

to the object defined. This is the general form of circularity that one encounters in mathemat-

ics. The easiest way to grasp this notion is to look at examples that the predicativist rejects. 

The Leibniz identity relation is defined as follows: x is identical to y if and only if x pos-

sesses all (and only) the properties of y. One property that y is certain to possess is that of be-

ing identical to y. Thus, as we need to run through the properties of y so as to ascertain 

whether x possesses each of them, we would have to ascertain whether x has the property of 
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being identical to y. Since the procedure for determining whether the identity relation holds 

between two objects leads us back to the question with which we started off, the definition of 

Leibniz identity is impredicative. 

The Dedekind-Frege-Russell definition of the natural numbers is the following: n is a nat-

ural number iff n possesses every inductive property, where a property F is inductive iff F be-

longs to 0, and F belongs to n+1 whenever F belongs to n. This definition is circular because 

the property of being a natural number is an inductive property. Thus, e.g. to ascertain that the 

number 3 is a natural number we need to see whether 3 has every inductive property; in par-

ticular, whether 3 has the property of being a natural number. (cf. CARNAP [1931]) So the pro-

cedure for ascertaining whether an object is a number leads us to a circle. Similarly, the set of 

all naturals ω is defined the intersection of all sets containing ∅ which are closed with respect 

to the successor operation n ↦ n ∪ {n}. So to ascertain whether something is an element of ω 

we would have to ascertain whether it is an element of each set in a certain collection to which 

ω belongs in particular. So the definition of the natural numbers ω is impredicative. 

Compare our description of impredicativity with those given by S. Kleene and A. Church: 

When a set M and a particular a particular object m are so defined that on the one hand m is 

a member of M, and on the other hand the definition of m depends on M, we say that the 

procedure (or the definition of m, or the definition of M) is impredicative. Similarly, when a 

property P is possessed by an object m whose definition depends on P (here M is the set of 

the objects which possess the property P). An impredicative definition is circular, at least 

on its face, as what is defined participates in its own definition. (KLEENE [1952: 42]) 

To avoid impredicativity, the essential restriction is that quantification over any domain 

(type) must not be allowed to add new members to the domain, as it is held that adding new 
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members changes the meaning of quantification over the domain in such a way that a vi-

cious circle results.” (CHURCH [1976: 747])  

In this thesis, we shall be concerned with one very basic predicative requirement: the closed 

singular term that purports to refer to a set of objects must never contain a bound set-variable. 

Thus, the definition of a set of objects {x ∣ A(x)} is impredicative if A contains set-quantifica-

tion and {x ∣ A(x)} belongs to the domain of quantification. 

So predicative mathematics emphasize semantic notions such as definability and places 

restrictions on formulas so as to distinguish those that constitute defining conditions for sets. 

It is crucial on this view the elements of a collection can be generated in a non-circular way; 

otherwise the purported definition is rejected as impredicative. An instance of the comprehen-

sion schema expresses nonsense unless the formula used to instantiate it satisfies these pred-

icative requirements. Since instances of the comprehension axiom are all statements of set-

existence, this means that, on the predicativist approach, set-existence is logically parasitic 

upon identity conditions for predicatively definable sets. The vicious-circle principle was put 

forward by Russell to eliminate impredicative definitions from mathematics. 

Some of the key ideas involved in the foundations of predicative mathematics originated 

in the famous Poincaré-Russell debate that took place at the turn of the 20th century; reading 

their exchange helps to understand the reasons why impredicative definitions are worrisome. 

For one thing, Poincaré pointed out that in the case of an impredicative specification the do-

main of quantification is constantly expanded, whence such a classification is “disordered by 

the introduction of new elements”. A classification of this kind is not rigid, while Poincaré 

thought that “the condition necessary for the rules of this logic to be valid... is that the classi-

fication which is adopted be immutable.” (POINCARÉ [1913: 45])  1
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Russell held views similar to Poincaré although he held that “the contradictions have no 

essential reference to infinity” (RUSSELL [1906: 197]) Nevertheless, Russell agreed that the 

paradoxes result from the fact that it is illegitimate to suppose that infinite sets form a totality, 

as well as the observation that the solution to the paradoxes require the elimination of impred-

icative definitions. In a series of papers, Russell gave a definitive analysis of the antinomies. 

The most important among these papers is RUSSELL [1905]. Below are excerpted what I take 

to be the key points of Russell’s analysis of the logical antinomies in this paper: 

a propositional function φ!x may be perfectly definite, in the sense that, for every value of 

x, φ!x is determinably true or determinably false, while yet the values of x for which φ!x is 

true do not form a class. [1905: 137] 

The refutable assumption as to the nature of classes and relations is only this: that a class is 

always uniquely determined by a norm or property containing one variable, and that two 

norms which are not equivalent (i.e. such that, for any value of the variable, both are true or 

both false) do not determine the same class, with a similar assumption as regards relations. 

We have thus reached the conclusion that some norms (if not all) do not define classes. 

Norms (containing one variable) which do not define classes I propose to call non-predica-

tive; those which do define classes I shall call predicative. [1905: 141] 

 …the contradictions result from the fact that, according to the current logical assumptions, 

there are what we may call self-reproductive processes and classes. That is, there are some 

properties such that, given any class of terms all having such a property, we can always 

define a new term also having the property in question. Hence we can never collect all of 

the terms having the said property into a whole; because, whenever we hope we have them 

all, the collection which we have immediately proceeds to generate a new term also having 

the said property. [1905: 144] 
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The idea of the introduction of “new” objects (terms) needs clarification. For example, H. 

Curry said of this type of argument: “Ebensogut aber ist dieses Argument: man könnte nichts 

über alle Apfelsinen behaupten, weil jedes Jahr neue Apfelsinen ershaffen werden, und es also 

keine bestimmte Gesamtheit von Apfelsinen gäbe u.s.w.” (CURRY [1930: 517]). This amusing 

interpretation is based on a misunderstanding. According to Russell’s statement quoted above, 

the question whether the newly introduced object x has the said property F depends for its an-

swer on a prior determination of a set of objects M possessing that property. Under these con-

ditions, if x possesses the property F and yet fails to be an element of M, this shows that M 

fails to exhaust all objects with the property F. It hardly needs noting that the newly created 

orange does not depend for its identity on the set of previously existing oranges; on the con-

trary, any particular orange —and more generally any concrete spatiotemporal object— comes 

with its own principle of individuation. So the Poincaré-Russell notion of predicativity does 

not prevent the possibility of making generalized claims about concrete objects. 

The above analysis immediately yields the vicious-circle principle, of which Russell gave 

several formulations. The earliest formulation runs as follows: “Whatever involves an apparent 

variable must not be among the possible values of that variable” [1906: 198] This was later 

superseded by the classic formulation which appeared in the Principia Mathematica: 

Whatever involves all of a collection must not be one of the collection”; or, conversely: “If, 

provided a certain collection had a total, it would have members only definable in terms of 

that total, then the said collection has no total. [1925: 37] 

The adoption of the vicious-circle principle was criticized in GÖDEL [1944] who distin-

guished three formulations of the vicious-circle principle, and pointed out that they are not 

equivalent, provided that one grants that sets exist independently of our definitions. It seems 

clear, however, that these ontological assumptions about set-existence were explicitly rejected 
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by Russell, so that it is more appropriate to say that Gödel’s remark merely discloses one of 

the assumptions on which the justification of the vicious-circle principle rests.  2

In the third part of the thesis, we adopt as a basic assumption that set-existence is logically 

parasitic upon the identity conditions for predicatively definable sets, and undertake the task 

of justifying the vicious-circle principle on this basis. Admittedly, this is a controversial thesis 

in the foundations of mathematics, but so are many theses of the classical (cantorist) view-

point which are accepted by the majority of mathematicians. The issue of adjudicating be-

tween the classical and predicative foundations is beyond the scope of this thesis. 

To sum up, the possibility of collecting objects of some type or another into a set requires 

that the classification or definition that specifies the collection be rigid; this in turn depends on 

whether the domain has a precisely delimited boundary. The fact that collections of sets, car-

dinals, ordinals can be iterated indefinitely show that it is impossible to conceive of totalities 

of them, or to conceive of sets of them as formed by selecting items from a previously given 

totality by reference to that totality. The range of correct modes of specification is delimited 

precisely by the vicious-circle principle. 

The preceding considerations furnish one possible way of understanding why Russell was 

led to establish a new hierarchy towards developing, under the guidance of Whitehead, the 

system of their monumental Principia Mathematica (Cambridge, 1910). 

The introduction of types in a logical system amounts to a classification of all its terms in 

such a way that types of composite terms are determined by types of other terms which are 

always less complex than the ones in question. The motivation for introducing type theories 

originally derives from the need to provide a secure foundation of classical mathematics. The 

fact that it is possible to codify the naive set-theoretic principles in a type-free logical system, 
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which incorporate the full comprehension principle and allow unrestricted quantification, 

suggested the idea that higher-order logic is really in the same boat as the naive set theory. So 

it was an imperative to restrict the comprehension principle in higher-order logic. 

The ramified theory of types and orders has two components. The first consists of a strati-

fication of functions resp. sets into types, which restricts the range of admissible arguments 

reps. elements for the functions and sets in question. The second consists of a stratification of 

terms of the same type into orders according to their internal structure, which further restricts 

the range of admissible substituends for the terms in question. Stratification is a partition of 

the relevant hierarchy into mutually disjoint domains, which is brought in order to forestall the 

paradoxes. So, in general, there are two related hierarchical structures; the ramified theory 

combines them to yield a system of a considerable amount of complexity. We begin with the 

simple type hierarchy because it is simpler. 

Types in our sense are also called levels, in view of the fact that functions of one variable 

or several variables lie at the same level irrespective of the number of arguments they take, 

whereas they are said to be of distinct types. The general construction is based on the follow-

ing recursion: where τ1, …, τn are types, (τ1, …, τn) is the type of functions of n variables tak-

ing arguments of types τ1, …, τn respectively. Having said this, we shall restrict ourselves to 

functions of one variable.  With this simplification, the intuitive picture of the hierarchy of 3

types can be described as follows: given nonempty domain D comprising objects of a certain 

specific sort, the members of D, called individuals, are of level 0 and lie at the bottom of the 

hierarchy; properties of individuals resp. sets of individuals are of level 1 and lie at the first 

layer of the hierarchy; properties of properties of individuals resp. sets of sets of individuals 

are said to be of level 2 and lie at the second level; and so on up. This generates an ever in-

creasing hierarchy without a top. 
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The core idea of simple type-theoretic responses to the set-theoretic antinomies is to make 

a type distinction between functions and their arguments in order to forestall the possibility of 

a function having the same level as its arguments; a corresponding distinction between sets 

and their elements forestalls the possibility of a set having the same level as its elements. The 

type distinctions are made the manner indicated in the previous paragraph. In set terms, the 

language of the simple type theory is characterized by the following restriction: where xi
n and 

xj
m are variables ranging over objects of levels n and m respectively, the formula [xi

n ∈ xj
m] is 

well-formed if and only if m = n+1. This avoids the Russell paradox in a very obvious way, 

since the formula [x ∈ x] is not well-formed in the language of simple type theory. 

Even though this construction suffices to forestall the set-theoretic antinomies, it does not 

preclude the vicious circles that occur within each level, which we mentioned above. To avoid 

them, Russell implemented, for each type, a further stratification at the interior of the domain 

of objects of the same type. The basic idea is to make an order distinction between an object 

defined by a condition involving quantification and the objects forming the domain of quan-

tification, so as to forestall the possibility that the definiendum itself does not belong to the 

domain of quantification associated with the definiens. Stratification of objects of the same 

type into orders is also called ramification. It is also common to use the word ‘degree’ in lieu 

of ‘order’ (as in, e.g., FEFERMAN [1964]). In order not to clash with the terminology in the 

foundations of mathematics, we will use the words ‘level’ and ‘degree’ to mean (simple) types 

and orders. Let us restrict attention to items of level 1, that is, properties or sets of individuals. 

Then, the intuitive picture is as follows: objects of level 1 and degree 0 are those which can be 

defined by a condition that does not involve quantification over items of level 1; objects of 

level 1 and degree 1 are those which can be defined by a condition that involves at most quan-

tification over objects of level 1 and degree 0, and so forth. This doubly stratified structure is 
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what is referred to as the ramified hierarchy. In consequence, one gets rid of an unstratified 

higher-order domain and the idea of “arbitrary property”, i.e. a property of an arbitrary order. 

Finally, let us adopt the following notation (similar to Chihara’s) and write Tk
n to denote 

the ramified type of objects of level k and degree n. Now, we can settle the question of what 

the level and degree of any given object are simply by inspecting the structure of its defining 

condition. Let us take a simple example from number theory. Intuitively, it is easy to see that 

both the set of prime numbers and the set of natural (or finite) numbers should be of level 1, 

given the naturals as forming the domain of individuals. What is less obvious is that they are 

of different degrees. So, let us look at their defining conditions to see whether this is indeed 

the case: where x, y, z ranges over individuals, the set of primes is defined as follows: 

(∀x)[x ∈ P ↔ 1 < x ∧ (∀y)((∃z)[z × y = x] → ( y = x ∨ y = 1))]. 

Since the defining condition of P involves at most quantification over individuals, the set P is 

of ramified type T1
0. By contrast, the naturals of degree 1 are now defined as objects that be-

long to every set of type T1
0 that is closed with respect to the successor relation. Where Y0 

ranges over arithmetically definable sets, we write: 

(∀x)[x ∈ N1 ↔ (∀Y0)[0 ∈ Y0 ∧ (∀z)[ z ∈ Y0 → (z+1) ∈ Y0] → x ∈ Y0]. 

As the defining condition of N1 involves at most quantification over sets of type T1
0, the set N1 

itself must be of type of type T1
1. So, N1 turns out be of the same level but higher degree than 

all sets of degree 0. In consequence, the definition of naturals of degree 1 is now predicative. 

To describe the more general construction, start again with the natural numbers as forming 

the bottom of the ramified hierarchy. We call a condition arithmetical if and only if it involves 

at most quantification over the naturals. Then, sets definable by an arithmetical condition, or 

arithmetically definable sets, are of type T1
0. Sets definable by a condition involving quanti-
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fiers ranging over at most arithmetically definable sets will be of T1
1, and so forth. We proceed 

in the same manner to get ever higher degrees at the interior of level 1. Now, define the degree 

of a formula A to be 0 if A expresses an arithmetical condition, and otherwise m+1 where m is 

the maximum of all positive integers such that the set-variable Ym appears bound in A. Then, 

the predicative comprehension schema reads: 

(11) (∃Y 
n)(∀x)[x ∈ Y 

n ↔ A(x)]. 

where A is a formula of degree n and the exponent indicates the degree of sets that the quanti-

fier ranges over. (See FEFERMAN [1964] for further details.) Thus we come to what is called 

the ramified second-order logic. The construction can be iterated into the transfinite in the 

presence of suitable ordinals taken as degrees. To get the ramified third-order logic, one adds 

(ramified) types for properties taking as arguments objects of level 1, or sets having objects of 

level 1 as elements, and so on. Note, however, that we are concerned only with the ramified 

second-order logic in this thesis. 

This concludes our account of the Russell’s ramified theory of types. It is sketchy but I 

hope adequate for the following discussion. At this point, it is almost obligatory to mention 

the difficulties in the way of developing mathematics in the ramified theory of types. Unfortu-

nately, the most satisfactory attempts to develop classical mathematics in this manner turned 

out be too restrictive. In particular, it turns out that it is hopeless to represent real analysis in 

such a predicatively inspired framework. 

For the sake of completeness, let us consider what happens in the ramified analysis. The 

least upper bound principle says: every set of real numbers that has an upper bound has a 

least upper bound, which is minimal with respect to all upper bounds. Suppose that we model 

the real numbers by Dedekind cuts. One can establish a one-one correspondence between 
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Dedekind cuts and sets of natural numbers, so real numbers will occupy the level 1. However, 

the definition of the least upper bound of a bounded set of reals is impredicative: the least up-

per bound of a bounded set of reals M is that real number α such that any real number that is 

less than α (under the natural ordering of the reals) is not an upper bound of M. In symbols:

(12) (∀x)[x < α ↔ ∃m ∈ M : x < m]. 

If this is to be avoided, the associated domain of real numbers will have to be partitioned into 

degrees, so there will be an “infinituplication” real numbers; consequently, one is not permit-

ted to quantify over arbitrary real numbers, so there will have to be infinitely many least upper 

bound principles. However, Feferman notes, “Russell realized this would be ludicrous for the 

practicing analysts” (see FEFERMAN [1964: 6]). So the ramified analysis is hopeless for the 

formalization of even the most basic parts of classical analysis. In fact, it is highly suspect if it 

is sufficient for the formalization of Peano arithmetic. As shown by J. Myhill, the induction 

principle violates the order distinctions, and the ramified hierarchy of natural numbers of fi-

nite degrees never collapses at any degree whatsoever (see Myhill [1974]). This result partly 

answers the question of whether arithmetic is reducible to logic in the negative.  4

There are (at least) two sorts of attitudes that we may adopt in response to this situation. 

We might think of as the complications introduced by the ramified theory as generating only a 

pragmatic problem, because one does not have anything corresponding to it in actual devel-

opment of classical mathematics. Perhaps, the ramified theory is a philosophical reconstruc-

tion that is not intended for everyday mathematicians. One way to make the theory more fea-

sible for the practicing analyst is to follow Whitehead and Russell and postulate strong axioms 

such as the reducibility principle, which states that, for any property resp. class of any level 
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and any degree there is at least one property resp. class of the same level and degree 0. The 

reducibility principle is symbolized as: 

(13) (∀X 
n)(∃Y 

0)(∀z)[z ∈ X 
n ↔ z ∈ Y 

0]. 

This effects the collapse of the whole hierarchy of degrees within each level. But, it should be 

pointed out that introduction of this axiom lacks sufficient motivation: if we would end up de-

veloping analysis and set theory in a system incorporating the reducibility principle, what was 

the point of introducing the ramified hierarchy in the first place? This is one of the major criti-

cisms raised by L. Chwistek and F. P. Ramsey against the Principia.  On the other hand, many 5

people noted that one of the sources of motivation for ramification was to avoid the semantical 

antinomies mentioned at the beginning, as well as paradoxes related to intensional contexts, 

such as the Epimenides paradox. What difference is there between the simple type theory and 

the ramified type theory + reducibility from the perspective of dealing with the semantical 

antinomies? The above mentioned critics thought that this would reinstate the semantical an-

tinomies within each type. To evaluate this criticism would require a lengthy analysis of the 

semantical antinomies, which is beyond the scope of this thesis. But, J. Myhill persuasively 

argued that this criticism is unfounded, because the equivalence of the simple theory and the 

ramified theory + reducibility does not entail that their extension by the addition of intension-

al and semantical notions such as assertion and denotation will remain equivalent, which in 

fact is not the case (MYHILL [1979]; see also URQUHART [1988, 2001]). This points certainly 

deserves more attention in view of the fact that the Principia system represents the idea that 

logic is universally applicable. 

Another sort of attitude is to stick to the requirement of predicativity, and reject the rest of 

classical theorems that violate these requirements. If we strictly adhere to this view, but wish 
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to avoid the compilations resulting from the ramified hierarchy, there are alternative, and ar-

guably more feasible ways of developing of mathematics on a predicative basis, as illustrated 

by the development of predicative analysis as inaugurated by H. WEYL (1918).  For us, the 6

crucial idea here is to reverse the order of explanation concerning the nature of abstract math-

ematical objects. Taking the natural numbers as given, we can build up analysis and set theory 

on a predicative basis. Instead of explaining the natural numbers by a set-theoretic reduction, 

this move allows us to have a theory of sets of natural numbers, so to speak. Formally, the key 

idea is to restrict the range of acceptable instances of the comprehension axiom schema to 

arithmetical conditions. In view of this, one cannot help but join A. Hazen & J. Davoren in 

asking “What could Russell have done if he had combined his philosophy of logic, including 

certain skepticism about Reducibility, with Brouwer’s (or Weyl’s) personality and willingness 

to advocate trimming mathematics to eliminate the philosophically suspect bits?” [2000: 552]  

 See also CHIHARA [1973] for an excellent discussion of Poincaré’s views.1

 Cf. the remarks by H. Wang and W. Goldfarb on this point (see WANG [1959], GOLDFARB [1989]).2

 A more systematic introduction to the hierarchy of types and orders will not be needed for our dis3 -

cussion, so we shall not bother trying to give a formalization of a full-blown type-theoretic syntax. For 

a more rigorous treatment, see Church’s formulations of the simple and ramified theory (CHURCH 

[1940, 1956, 1976, 1984]). I would also like to mention here those works that I found helpful while 

studying the ramified theory: CHIHARA [1973], COPI [1971], COQUAND [2015], HAZEN [1989], HAZEN 

& DAVOREN [2000], HODES [2015], URQUHART [2001].

 I say partly, because the situation depends on whether or not the system incorporates the axiom of 4

extensionality. For a discussion of this issue, see HAZEN & DAVOREN [2000].

 See COPI [1971] for a discussion and references. This issue received a lot of attention during the last 5

century, so we shall not discuss it any further.

 See also WANG [1959] and FEFERMAN [1964, 2005] for a general statement of this viewpoint.6
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II 

This second part of the thesis presents two versions of the Russell antinomy, neither of which 

is the classic set-theoretic version. In fact we shall not consider the set-theoretic version since 

it is more easily manageable than the versions considered here. We tried to set out the two 

versions of Russell antinomy and Cantor’s theorem in a way that highlights their structural 

similarity. The proof of Cantor’s theorem breaks down in the ramified Principia without re-

ducibility (see WHITEHEAD & RUSSELL [1925: xiv]). So, we hope this might corroborate the 

view that Cantor’s theorem depends on impredicative definitions. 

The greater portion of this section deals with the proposition-theoretic version of the Rus-

sell antinomy. The reason is partly because there is an ongoing controversy about whether it is 

a genuine antinomy at all. For example, in his correspondence with Russell, the great Frege 

dismissed the antinomy on the basis of his Sinn-Bedeutung distinction (see Frege [1980]; al-

though see Klement [2001]). We believe it is a genuine antinomy, but we mention alternative 

“ways out” by relaxing the criterion for identity of equivalent propositions. We have been at 

pains not merely to translate into our notation some existing formulation of the antinomy, but 

to present it in an original way that makes the connection with the classic set-theoretic version 

perfectly plain. So this might lend some insight into the question whether it is a genuine an-

tinomy or not. However, it should be stressed that the virtues of our analysis of the antinomy 

(if any) are not to be sought in technical aspects.  Rather, they consist in the fact that the 1

analysis makes clear the significance of making order-distinctions among propositions similar 

to type-distinctions among properties and sets. 

The two versions of the Russell antinomy that we shall consider read as follows. 
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Theorem 1. Where U is the set of all objects, ∣U∣ < ∣S(U)∣ both holds and fails to hold. 

Proof. Any subset of U is an object; so S(U) = V ⊆ U holds, whence ∣S(U) ∣ = ∣V∣ ≤ ∣U∣ holds. 

In conjunction with Cantor’s theorem this yields the contradiction. Note that a variant proof 

proceeds from the fact that both U ∈ V and V ∈ U hold (cf. GANDY [1977]). 

Theorem 2. Where H is the set of all propositions, ∣H∣ < ∣S(H)∣ both holds and fails to hold. 

Proof. Any set of propositions is an object; so S(H) ⊆ U holds, whence ∣S(H)∣ ≤ ∣U∣ holds. 

But, there is a natural correspondence U ⟶ H that maps any object x to the proposition that 

x = x holds, and no two distinct objects to the same proposition. So ∣U∣ ≤ ∣H∣ holds; by chain-

ing them, we get: ∣S(H)∣ ≤ ∣U∣ ≤ ∣H∣. Once again, this contradicts Cantor’s theorem. 

Both paradoxes were noted in Russell’s Principles of Mathematics [1903: §348, §500]. 

These “theorems” directly ensued from considerations about cardinalities. Here the contradic-

tions are not due to an abuse of definition, but they are genuine paradoxes of which, or so we 

contend, there is no solution except to reject Cantor’s theorem (cf. BEHMANN [1937]). We at 

once remark that rejection of impredicative definitions should not entail a rejection of Can-

tor’s Diagonal Lemma (see the preliminary section). This is because the diagonal argument 

does not presuppose the totality of subsets of a given set. 

To derive the Russell antinomy of the set of all objects (theorem 1), the easiest way is to 

effectively specify a 1-1 correspondence φ : U ⟶ V = S(U), as follows: if x ∈ U is a class, 

let φ : x ↦ x ; otherwise, let φ : x ↦ {x}. Notice that to each element of U corresponds exactly 

one element of V, and each element of V is the correspondent of exactly one element of U. 

Hence, U ~ V holds. Finally, observe that V satisfies the pre-requisites for Cantor’s Diagonal 

Lemma. Hence, there must be a subset of U that fails to be an element of V. But, V is the set 

of all classes, whence the contradiction. 
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To derive the Russell antinomy of the set of all propositions (theorem 2), the second diag-

onal is more helpful. We specify an effective 1-1 correspondence π : S(H) ⟶ H, in the fol-

lowing way: if M ⊆ H is nonempty, let π : M ↦ ⋀M; and π : ∅ ↦ ⋀H, where for each set of 

propositions M, ⋀M is the logical product (i.e. possibly infinite conjunction) of all proposi-

tions in M. Note that, for each p ∈ H, ⋀{p} = p. Also, we assume that for each M, N ⊆ H, 

⋀M = ⋀N implies M = N. We shall take up the question of whether this assumption is plau-

sible later on. Granted these assumptions, we see that to each subset of H corresponds exactly 

one member of H, and any member of H is the correspondent of exactly one subset of H. 

Hence, H ~ S(H) holds. So, once again, we see that S(H), being a collection of subsets of H, 

satisfies the conditions for Cantor’s Diagonal Lemma, so there must be a subset of H that fails 

to be an element of S(H); but this is impossible since S(H) is the set of all subsets of H. 

In the remainder of this section, we consider how to construct a hierarchy of propositions 

to give the desired solution of the proposition-theoretic versions of the Russell antinomy. We 

follow the lead of Russell in doing so, who noted that “the vicious-circle principle is not itself 

the solution of vicious-circle paradoxes, but merely the result which a theory must yield if it is 

to afford a solution of them.” (RUSSELL [1906a: 205]) Note that a closely related antinomy 

was rediscovered by the J. Myhill within the context of Church’s intensional logics. (see 

CHURCH [1951], MYHILL [1958], KLEMENT [2014]).  2

Consider propositions of the form every member of M is so-and-so, where M is a set of 

objects of some kind. If m is an element of M, there is a sense in which such a proposition is 

(indirectly) ‘about’ m among other things. For example, the proposition that every ostrich is 

bipedal is about this or that ostrich, and so on. What Russell’s paradox of propositions sug-

gests is that this way of construing the relation of a generalized proposition to the items in the 

domain of quantification yields a contradiction when extended to cases in which the domain 
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of quantification comprise propositions; i.e. where propositions turn out be about other propo-

sitions, an idea that is comparable to the idea of sets being elements of others sets. Of course, 

this is so unless otherwise the type of propositions itself is stratified into orders, and the do-

main of quantification is restricted appropriately. Here, then, is the naive idea which we will 

have to reject: we can explicate the idea that a proposition p is about some other proposition q, 

as follows: where p and q are propositions, p is about q if and only if, for some set S, p is the 

logical product of S and q is a member of S. 

Let H be the set of all propositions; write [ p @ q] to mean p is about q. We define, 

[ p @ q]  ≡  ∃S ⊆ H : p = ⋀S ∧ q ∈ S. 

This idea could be formalized in other ways, say, by using quantification over the type of 

propositions instead of using the infinitary conjunction operation. The crucial point is that the 

definition appeals to impredicative quantification over sets of propositions. But, the common 

moves that allow to resolve the set-theoretic paradox do not seem equally helpful in this con-

text. For example, it turns out that even higher-order plural quantification leads to some ver-

sion of the antinomy; see UZQUIANO [2015] for a discussion and further references. 

Now, precisely the expressive power that allowed us to define the relation @ leads to a 

contradiction. To see this, divide propositions into two mutually disjoint sets according as 

they are about themselves or not. Generalized propositions to the effect that all propositions 

fulfill such-and-such a condition will be of two kinds, according as those that fulfill the condi-

tion which they predicate of all propositions, and those that fail to fulfill. One sees that “ordi-

nary” sets of propositions which can be specified by a description such as ‘the set of all 

propositions of the form ...’ fail to contain their own products as elements, so the correspond-

ing logical products will fail to be about themselves. But, the proposition that all propositions 

are true would be the product of a set of which it is a member, so it would be about itself. 
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Let R be the set of all and only those propositions which are not about themselves, that is: 

R = {p ∈ H ∣ ¬[ p @ p]} 

Let r = ⋀R. So, r is about all and only those propositions which are not about themselves. 

Paradox results when we ask whether or not [r ∈ R] holds. If the answer is “yes”, ¬[r @ r] 

holds and hence, familiar logical rules lead to the conclusion that [r ∉ R] holds. If the answer 

is “no”, then by the law of excluded middle, [r @ r] must hold, whence [r ∈ R] holds. So from 

each horn of the dilemma its contradictory follows. Such is the Russell paradox of the propo-

sitions which are not about themselves. The parallel with the paradox of sets which are not 

members of themselves should be clear. 

We can resolve this antinomy without difficulty by constructing a hierarchy of proposi-

tions in the style of RUSSELL [1908]. At the bottom of this construction lie propositions which 

are not about propositions —the ones about ostriches will be among these; these are first-or-

der propositions. Then, second-order propositions are those that are about (@) first-order 

propositions. And so on up. In general, propositions of order n+1 are those that are about 

propositions of order n. The orders are mutually exclusive, i.e. a set of propositions M may 

comprise only propositions of a certain determinate order k, and the conjunction ⋀M of those 

propositions of order k must be a proposition of order k+1. The essential restriction imposed 

in this setting the following: where pi
n and pj

m are variables ranging over propositions of or-

ders n and m, respectively, the formula [pi
n @ pj

m] is well-formed if and only if m = n+1. In 

consequence, the formula [ p @ p] is not even well-formed. If we indicate the orders by adding 

indices, it appears that the condition [pi
n @ pi

n] violates the order distinctions, since n ≠ n+1. 

So, the condition defining the Russell set R is “meaningless”, and the set R is indefinable.  
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We “proved” two versions of the Russell antinomy based on a simple comparison between 

two cardinalities. While they indicated the paradoxical state of affairs, they did not reveal the 

fact that the underlying constructions essentially appeal to impredicative definitions. When 

analyzed into logical terms, the Russell-Myhill antinomy is seen to make an essential appeal 

to an impredicative definition. The solution was to restrict the rules of definition so as to avoid 

the way to defining the Russell set R. 

Now, ramification is certainly not the only way to meet the minimal restrictions to resolve 

the Russell-Myhill antinomy. Another way is Quine’s New Foundations (see QUINE [1938]).  3

This route too was indicated by Russell in that marvelous 1905 paper. No doubt, there are oth-

er ways still. Recent research shows that even Russell’s type-free substitutional theory proves 

free from the contradiction.  The common core of these various solutions seems to be to reject 4

Cantor’s theorem, so there is evidence to the fact that Cantor’s theorem is problematic from 

various viewpoints. The problem, I think, lies in the illegitimate assumption of the totality of 

subsets of an arbitrarily given set in the proof of Cantor’s theorem. At this point, I must leave 

this issue to experts to consider. 

The basic observation about the behavior of the function π is that it is a type-reducing 

function. Now, the definition of the Russell set R is impredicative. If we countenance impred-

icative definitions, as in the simple type theory, R would be a definable set. For, consider what 

would happen in a type structure, where sets are stratified into types in the usual manner and 

propositions are admitted as forming a type at the bottom of the hierarchy —with sets of 

propositions at the first level, sets of sets of propositions at the second level, and so forth. Giv-

en a set of propositions M of type 1, the associated logical product ⋀M would be of type 0, 

and hence it would not have been impossible in general for ⋀M be a member of M. If so, then 

consulting to the definition of @, we see the formulas in which the symbol @ is flanked by 
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two occurrences of one and the same propositional variable would have been well-formed. 

This is why the set R would have been definable in a simply typed theory, where propositions 

form a type in their own right. If these observations are correct, it seems that this antinomy 

could not be avoided in simple type theory, where propositions form a type in their own right. 

(However, this is not the case for the extensional fragment of the simple type theory where 

equivalent propositions are counted as identical; see below.) So, unlike in the case of the set-

theoretic version of the Russell antinomy, there seems to be no violation of simple type-theory 

involved in the way of specifying the relevant Russell set.  5

Similarly, in the framework of Zermelo-Fraenkel set theory, the derivation appeals only to 

the separation axiom. The reason is that the mode of specification of the Russell set does not 

violate the restriction involved in the separation axiom (see UZQUIANO [2015] for details).  

What remains to be argued is whether the relation p = ⋀S defines a 1-1 correspondence 

between the set of propositions and its powerset. If it does, the paradox results from a simple 

application of the Lemma, as we have seen. The question is whether it is plausible to assume: 

(14) ∀X, Y ⊆ H : ∀p ∈ H : ⋀X = ⋀Y → X = Y. 

The meaning of this axiom is clear: two sets of propositions X and Y are identical if the propo-

sition that each member of X is a true proposition is identical to the proposition that each 

member of Y is a true proposition. In short, two sets of propositions X and Y are identical if 

they have the same logical product. It turns out that this assumption implicit in Russell’s ar-

gument in Appendix B is not uncontentious, and at least one logician dismissed the antinomy 

in question because this assumption seemed implausible (see HODES [2015]). 

What reasons do we have for maintaining the axiom (14)? Russell’s justification for this 

claim primarily comes from his underlying concept of propositions as structured complexes. 
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Every proposition is represented as the value of a propositional function, and two values of 

one and the same function differ only insofar as it is applied to different arguments. Assuming 

(14), then, amounts to the claim that the identity conditions of conjunctions depend upon and 

determined by the identity conditions of their conjuncts. On this view, the identity conditions 

for propositions is much more fine-grained than logical equivalence.  6

It is essential for an axiomatic derivation of the paradox in a deductive system, it is true, 

that the system does not include an axiom to the effect that equivalent propositions are in gen-

eral identical, in which case the paradox disappears. So if the law [(p ≡ q) → (p = q)] is added 

to the system of CHURCH [1940] the paradox disappears. The axiom of identity of equivalent 

propositions is standardly included in simple type-theories. The system of CHURCH [1940] 

does not include this axiom, but the modern presentations of the theory often (explicitly or 

implicitly) restrict the type of propositions to the set {T, F} so as to be able to consider its 

successive power-sets; —where T, F can be taken as standard propositions representing the 

truth-values, of which a variety of choices of representatives are available (see HENKIN 

[1956]). So, if we start off with a domain {T, F}, the consecutive iteration of powerset opera-

tion countably many times will never result in an infinite set. Therefore, this antinomy cannot 

be derived in a type theory with an axiom ensuring the identity of equivalent propositions. 

So one of the possible routes to dispense with the proposition-theoretic antinomy is to 

identify logically equivalent propositions. Under the assumption that logically equivalent 

propositions are identical, we will have, for any given set M, ⋀M = ⋀(M ∪ ⋀M) since they 

are logically equivalent. The problem disappears since any given proposition p would have to 

be coordinated with at least two distinct sets of propositions M and N such that p is an element 

of one but not the other. Yet if you are someone like Russell, you would never think of identi-

fying propositions just because they are equivalent. For, as Russell told us, 
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such an escape is, in reality, impracticable, for it is quite self-evident that equivalent propo-

sitional functions are often not identical. Who will maintain, for example, that “x is an even 

prime other than 2” is identical with “x is one of Charles II’s wise deeds or foolish 

sayings”? Yet these are equivalent, if a well-known epitaph is to be credited. [1903, §500]

The dual to Russell’s view is just to blame the paradox on the intensionality pertaining to 

the notion of propositional identity. How fine-grained should be the relation of identity of 

equivalent propositions? An alternative to the conception of propositions as structured com-

plexes is the modal conception of propositions, where propositions can be conceived of as sets 

of possible worlds. On this view, necessarily equivalent propositions are identical. Someone 

who favors such a coarse-grained criterion of the identity of equivalent propositions would 

probably consider this to be a satisfactory response to the Russell-Myhill antinomy. But, it 

seems to me that the moves that allow us to identify equivalent propositions have only a limit-

ed range of interest, for necessarily equivalent propositions are clearly not always identical. 

For this and other reasons, I do not share the view that this move affords a satisfactory resolu-

tion of the Russell-Myhill antinomy. Nonetheless, this antinomy will no doubt have as many 

variations in various different contexts as the set-theoretic Russell antinomy. One such variant 

in the context of possible-worlds semantics was pointed out by KAPLAN [1995]. So there is a 

structurally analogous paradox that threatens the modal conception of propositions after all.  7

Thus we are driven to adopt one of the two courses to solve the Russell-Myhill antinomy: 

(i) to restrict the comprehension principle so as to block the definition of the relevant set R; or 

(ii) to weaken the condition for identity of propositions so as to reject (14). It was the second 

course that we favored in this thesis, because it accounts for the central nerve of the problem. 

In conclusion, we note that the solution to the Russell antinomy based on a rejection of 

Cantor’s theorem stands in contradiction to Zermelo’s solution to the Russell antinomy, which 
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made the Cantor theorem the basis for the subsequent development of axiomatic set theory. It 

also undermines the contention expressed by Ramsey and Hilbert-Ackermann, which we cited 

in the first part of the thesis, that the semantic antinomies are irrelevant to the foundations of 

mathematics. The close similarity of two versions of the Russell antinomy leaves no doubt 

that they must have the same solution. In this respect, I believe that Russell, Poincaré, Brouw-

er and Weyl were right after all. Each of these thinkers pointed out that we are dealing with 

essentially the same set of problems. Weyl opened up his discussion of the vicious circles in 

the foundations of mathematics in Das Kontinuum precisely by reference to the illustrative 

Nelson-Grelling antinomy (see WEYL [1918]). 

 In particular, I acknowledge some uneasiness about the fact that the hierarchy of propositions we 1

consider does not fit into the structure of levels and degrees considered in the first part of the thesis in 

any obvious way. I hope to develop a more unified line of response to this paradox elsewhere.

 I take inspiration and encouragement from the responses of the Russell antinomy of propositions by 2

A. Cantini and S. Walsh (see CANTINI [2004], WALSH [2016]). Each of these authors respond to the 

Russell-Myhill antinomy in settings quite different from Russell’s theory of types. Cantini offers two 

responses to the paradox: the first is a type-free theory of propositions and truth based on a combinato-

ry algebra taken as the ground structure (cf. also ACZEL [1980] in this connection); the second is based 

on Quine’s New Foundations. The set theory NF is exceptional in that it invalidates Cantor’s theorem 

without imposing predicative restrictions; see QUINE [1937]. Walsh responds to the antinomy in the 

framework of Church’s intensional logics and proves the consistency of a predicative fragment of 

Church’s intensional logic by using Gödel’s universe of constructible sets.

 See OKSANEN [1999], CANTINI [2004].3

 See PELHAM & URQUHART [1994], LANDINI [1998], CANTINI [2004].4
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 For an axiomatic derivation of the Russell-Myhill antinomy in a simple type-theoretic framework, 5

see CHURCH [1984]. Church formulates the relevant comprehension axioms for functional and proposi-

tional variables using a propositional identity connective taken as a primitive idea; I do not know 

whether the derivation would go through by appeal only to the second-order definition of Leibniz iden-

tity if instead the relevant comprehension principle were handled by using propositional abstracts.

 The conception of propositions as structured complexes is also defended by M. Dummett in connec6 -

tion with the Myhill antinomy (see DUMMETT [2007: 125]). See also DEMOPOULOS & CLARK [2005].

 Note that D. Kaplan too suggests ramification in response to his paradox. For an interesting discus7 -

sion of this paradox, see BACON &  HAWTHORNE & UZQUIANO [2016].
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III 

In this third part of the thesis, we shall attempt to justify the vicious-circle principle as a 

natural by-product of the semantic interpretation of the ramified second-order logic. The key 

to achieve the goal of coming up with an adequate interpretation of the first layer of ramified 

hierarchy is to switch to a non-standard way of stating the truth conditions for the second-

order quantifiers in terms of substitution.  Substitutional interpretation of the second-order 1

quantifiers is a natural way to explain the predicative restrictions brought by the vicious-circle 

principle. The explanation is simply that an assignment of truth conditions to sentences of a 

set-theoretic language that express propositions about sets of numbers presuppose a prior 

assignment of truth conditions to sentences of a number-theoretic language. 

We shall do so by a simple example that illustrates how the substitution interpretation of 

the second-order quantifiers can be used to extend the truth definition for an antecedently 

given subsystem to give a truth definition for a weak second order system. One obtains a 

substitutional model of ramified second order logic in a well-motivated manner. For the 

purposes of this illustration, we shall take this subsystem to be the elementary number theory 

(the first-order quantification theory plus identity, the Peano axioms, and the recursive 

equations for addition and multiplication). So let us assume the following to be given: 

1. the totality of natural numbers forming the fundamental domain D0,  

2. the language L0 of elementary number theory interpreted in a standard way, 

3. with each formula A(x) of L0 (with or without parameters) containing the variable x free 

an associated closed term {x ∣ A(x)} called an set-abstract,  

4. a substitution class C comprising abstracts specifiable by arithmetical predicates of L0. 
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Next, we build upon L0 a modest set-theoretic language L containing a term t of L0 

(variable or constant) and an infinite sequence of newly introduced variables X1, X2, X3, … 

which are not contained in L0. The formulas of L are defined recursively as follows. 

- Atomic L-formulas: 

t ∈ {x ∣ F(x)}    where F is a predicate of L0, 

t ∈ X      where X is a member of the sequence X1, X2, X3, …, 

{x ∣ F(x)} = {x ∣ G(x)} where F, G are predicates of L0, 

X = {x ∣ F(x)}   where F is a predicate of L0. 

- The class of L-formulas is the smallest class comprising atomic L-formulas that is 

closed with respect to rules of forming connective combinations and generalizations. 

So we want to contrast two ways of interpreting this set-theoretic syntax. 

In classical second order logic, it makes sense to think of the second-order variables as 

ranging over arbitrary (possibly infinite) sets of numbers, and hence second-order 

quantifications as involving reference to the set of all possible sets of numbers. From a 

predicative standpoint, the concept of the totality of sets of numbers is not acceptable, so it 

makes more sense to take the variables range over those sets of numbers that can be specified 

by arithmetical conditions expressible in the language L0. 

Using the approach of the set-theoretic model theory of second-order number theory, it is 

natural to define truth for L via Tarski’s notion of satisfaction of a formula by an assignment 

of values to its constituent variables. To implement this idea requires that we specify a new 

domain D comprising subsets of D0 as the range of the second-order quantifiers. A model of 

second order number theory is defined as a structure of the form ⟨D0, D, I⟩, where the number 

variables x, y, z, … range over D0, the set variables X, Y, Z, … range over D, and all the 
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axioms of second-order number theory holds when ∈ receives its usual meaning; I is the 

interpretation function such that I(0) is the initial object of the domain D0, I(s), I(+) and I(×) 

are the standard operations on D0. If the new domain D is chosen to be the set of all subsets of 

D0, one obtains the intended model of second-order number theory, which is unique up to 

isomorphism (thanks to the categoricity of full second-order logic). Otherwise, we have a 

general model in L, which is the usual way of interpreting second-order number theory.  2

The satisfaction condition for the existential quantifier reads: where A is a formula of L 

containing a distinguished free variable X, and s is an assignment of values from D to 

variables (i.e. a sequence of sets of numbers), then s satisfies (∃X)A in ⟨D0, D, I⟩ if and only if 

there is at least one sequence s' differing from s at most in what it assigns to the variable X 

such that s' satisfies A in ⟨D0, D, I⟩. 

And, the truth condition for the existential quantifier reads: where A is a formula of L 

containing a distinguished free variable X, (∃X)A is true in ⟨D0, D, I⟩ if and only if (∃X)A is 

satisfied in ⟨D0, D, I⟩ by all assignments of values from D to variables. 

So, the truth condition for an existential generalization (∃X)A in L is given by the fact that 

(∃X)A is satisfied by all assignments of values from D to variables. Now, an assignment of 

values to variables involves reference to sets to no less a degree than the interpretations of 

constants. Under the satisfaction interpretation , then, we are treating variables as names of 3

arbitrary sets of natural numbers in order to interpret truth-values of second-order statements; 

so a standardly interpreted generalization involves reference to the totality of sets of natural 

numbers. Since we want to avoid that, we cannot interpret the set quantifiers in this way. 

Fortunately, a formal truth definition for the language L can be given in a less inflationary way 

that does without reference to sets, via the substitution interpretation of the set quantifiers. 
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Under the substitution interpretation, open formulas of L are assigned no semantic value. 

This allows us to define the notion of truth without appealing to the notion of satisfaction, 

which is the major difference from the satisfaction interpretation (cf. KRIPKE [1976: 330]). So 

in explaining the meaning of the substitutional quantifiers we appeal to nothing except the 

idea of “true in L” and the syntactic idea of substitution. The quantified variables are not 

assumed as ranging over a domain of sets of numbers. Instead, they are associated with the 

substitution class C comprising abstracts that may be substituted within the scope of the 

quantifier to yield a closed substitution instance of the quantified formula. 

Accordingly, the truth condition for the existential quantifier reads: where A is a formula 

of L with a distinguished free variable X, (∃X)A is true in L if and only if there is an abstract θ 

from C such that the closed substitution instance A(θ / X) is true in L. 

However, interpreting quantification substitutionally does not prevent the truth condition 

of a quantification in L from reintroducing reference to sets via the truth conditions of its 

closed substitution instances in L0. For, when we unwind the contribution that the connectives 

and the quantifiers make so as to determine the truth conditions of L-statements, we would 

reach to atomic L-statements. Let A be an atomic statement of the form ‘t ∈ {x ∣ —x…}’. 

Under the substitution interpretation, A is true just when there is a numeral which could be 

substituted for t in A to get a true sentence. If we were to construe the result of substitution as 

making the claim that a certain number fulfills the condition that t ∈ {x ∣ —x…} holds, and 

explicate this in accordance with the satisfaction interpretation, A would be true just when the 

number in question stands in the membership relation to the set of all x such that —x… holds. 

So this would have reintroduced reference to the set-membership relation and to sets all the 

way up, in which case the difference between the standard and the substitution interpretations 

would not have been significant whatsoever. 
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What other way is there to interpret these atomic statements without assigning denotations 

to sets? Recall that Russell’s theory of denoting was designed to explain the semantic value of 

a denoting phrase relative to the context in which it figures, as the contribution which it makes 

to determining the truth or falsity of that context. Since the closed abstracts form a species of 

denoting phrases, the key idea of Russell’s no-class theory was to apply this analysis to yield 

an interpretation of statements involving the set-membership primitive without reference to 

sets. Because, however, Russell’s no-class theory is far from modern standards, we shall adopt 

and adapt W. V. Quine’s treatment in his book Set Theory and its Logic (Harvard, 1963), who 

developed Russell’s idea of eliminating reference to sets within the range of first-order 

validities by the theory of virtual classes. Quine raised certain doubts concerning the 

possibility of extending the theory of virtual classes to incorporate set quantifiers, but we shall 

see that the substitution interpretation of the quantifiers allows us to solve that problem.  4

The problem that Quine tackled was roughly the following: can we state set-membership 

claims in a first-order language without the set-membership primitive? The solution which 

suggested itself was to rewrite all statements of the form ‘t ∈ {x ∣ —x…}’ by those of the form 

‘—t…’. On this approach, the symbol ∈ does not stand for the set-membership relation; it is 

just an auxiliary symbol that plays no semantic role. Considered as a translation scheme from 

a weak fragment of a set-theoretic language into a first-order language, this commutes with 

each of the boolean operations (see QUINE [1963: 18]). In this manner, we can recover any 

boolean combination by a first-order formula containing the connectives and the quantifiers. 

So we adopt Quine’s theory of virtual classes as a manual for translating atomic statements of 

L into corresponding statements of L0.  
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This allows us to reduce the truth conditions of atomic statements in L to the truth 

conditions of arithmetical statements of L0 as follows: Where F, G are predicates of L0, 

- t ∈ {x ∣ F(x)} is true in L if and only if F(t) is true in L0. 

- {x ∣ F(x)} = {x ∣ G(x)} is true in L if and only if (∀x)[F(x) ↔ G(x)] is true in L0. 

So, the interpretation of the statements of L0 induces the interpretation of atomic statements of 

L without having to assign a denotation to their constituent expressions at all. As we can 

interpret atomic set-membership claims in L, we can also interpret their generalizations by 

simulating quantification over sets of natural numbers by substitutional quantification over 

arithmetical conditions expressible in L0. Truth conditions for generalizations involving the 

set-membership primitive are explained in terms of the availability of abstracts satisfying 

formulas of L0. The abstracts in L have the status of incomplete symbols, which are explained 

only in context, in the same way as descriptions are explained in Russell’s theory of denoting. 

By contrast, Quine’s theory of virtual classes would not allow to generalize set-

membership claims. The reason for this is simply that in this theory the quantifiers are 

interpreted a la Tarski, where the truth condition a generalization involves reference to all 

possible values of the bound variable at once. So the satisfaction interpretation seems to block 

any reasonable way to specify a translation scheme for second-order quantification without 

reference to sets. For this reason, Quine’s theory of virtual classes could not have 

accommodated sentences containing second-order quantifiers. As such, there would have been 

no way to state in this theory the truth conditions of generalizations in L. So what makes the 

substitution interpretation of the quantifiers a viable choice is that it makes possible to extend 

this translation scheme to higher order languages containing various set quantifiers. Now let 

us see how we can get around this problem by interpreting the set quantifiers substitutionally. 
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The basic observation about the substitution interpretation of the quantifiers is that, unlike 

the satisfaction interpretation of the quantifiers, this move makes a existential (resp. universal) 

generalization truth conditionally equivalent to the possibly infinite disjunction (resp. 

disjunction) of its closed substitution instances (see KRIPKE [1976: 335]). So, in the case of 

our language L, when its second-order quantifiers are substitutionally interpreted, the truth 

condition of an existential (resp. universal) generalization in L is the same as the truth 

condition of the corresponding disjunction (resp. conjunction) of its closed substitution 

instances in L0 each of which expresses an arithmetical condition. (Recall that this means that 

each of the conjuncts involves at most first-order quantification over the natural numbers D0.) 

Since we are considering only definable sets specified by conditions expressible in L0, there 

are no more instances of a quantified L-formula than there are predicates in L0. But the 

number of predicates in L0 is countably infinite; hence a quantified L-formula should have at 

most a countable infinity of instances. So to ascertain the truth of a generalization in L, it is 

sufficient to ascertain the truth of at most a countable infinity of substitution instances in L0. 

This suggests the idea of a mixed theory that combines the satisfaction and the 

substitution interpretations. On this approach, a substitutional model of L is just a structure in 

the sense of the model theory of first-order number theory (where it is crucial that, for each 

element of the structure, the language has a closed term naming it). The substitution 

interpretation of the set quantifiers reduces the truth condition for an existential resp. universal 

generalization reduces to the truth condition for the (possibly) infinite disjunction resp. 

conjunction of its closed substitution instances. When we get to the bottom of this 

construction, we have a disjunction resp. conjunction whose atomic disjuncts resp. conjuncts 

involve at most first-order quantification over D0, which will be interpreted in Tarski’s way. 
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The satisfaction condition for the existential quantifier now reads: where A is an formula 

of L containing a distinguished free variable X, and s is an assignment of values from D0 to 

variables (i.e. a sequence of natural numbers), s satisfies (∃X)A in ⟨D0, I⟩ if and only if, for 

some abstract θ from C, there is a sequence s' differing from s at most in what it assigns to the 

bound variables of A (if any) such that s' satisfies A(θ / X) in ⟨D0, I⟩. 

And, the truth condition for the existential quantifier reads: where A is a formula of L 

containing a distinguished free variable X, (∃X)A is true in ⟨D0, I⟩ if and only if (∃X)A is 

satisfied in ⟨D0, I⟩ by all assignments of values from D0 to variables. 

Clearly, the construction outlined so far hinges on the possibility of treating existential 

(resp. universal) generalizations as infinite disjunctions (resp. conjunctions). The language L0 

allows the formation only of finite disjunctions and conjunctions, however. This generates a 

residual problem concerning the interpretation of statements about infinite subsets of D0. 

Technically, this outcome can be avoided without any difficulty.   For there are logical systems 5

such as the infinitary logic L(ω1, ω) that allows the formation of countably infinite 

conjunctions and disjunctions.  So we could equip the language L0 with an infinitary logic 6

L(ω1, ω), where we allow quantification with respect to L0 in the standard way, but allow 

countably infinite disjunctions and disjunctions. Call the extended language L(ω1, ω)[L0]. The 

idea is then to translate substitutionally interpreted existential (resp. universal) generalizations 

in L into countably infinite disjunctions (resp. conjunctions) in L(ω1, ω)[L0]. 

Definition. The class of L(ω1, ω)[L0]-formulas is the smallest class containing all L0-formulas 

that is closed under operations of forming countably infinite conjunctions and disjunctions; 

thus: if A1, A2, … are formulas of L(ω1, ω)[L0] then so are ⋀n < ω An and ⋁n < ω An. 
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Let us consider an explicit translation scheme […]* from L to the language L(ω1, ω)[L0]. 

- For atomic L-statements: 

[t ∈ {x ∣ F(x)}]* = F(t)       where F is a predicate of L0, 

[{x ∣ F(x)} = {x ∣ G(x)}]* = (∀x)[F(x) ↔ G(x)] where F, G are predicates of L0. 

- For quantified L-statements: 

[(∃X)A]* = ⋁n < ω [A(θn / X)]*  where θ0, θ1, θ2, … is an enumeration of C, 

[(∀X)A]* = ⋀n < ω [A(θn / X)]*  where θ0, θ1, θ2, … is an enumeration of C. 

From a logical viewpoint, this construction represents an interpretation of the ramified 

second-order logic. The fact that the truth conditions of L-statements can be given in terms of 

the truth conditions of L0-statements shows that the semantics of the weak second-order 

language L can be generated from the semantics of the language L0 of first-order number 

theory. We can generate the whole of the ramified type structure by iterating this construction 

both over orders and over types. In fact, it can be iterated into the transfinite in the presence of 

suitable ordinals (see Chihara [1973], Hazen [1989]). The point was to explain the motivation 

for the doubly stratified structure of Russell’s theory of types. I think that this construction 

does it in a satisfactory way. 

We saw one reason why we cannot mix up types and orders by a purely semantical 

criterion. The stratification of the syntax of an extended language is explained in terms of the 

fact that its semantics can be generated out of the underlying ground language. In this manner, 

we construct a whole hierarchy of languages such that, at each layer of the hierarchy, the 

requirement of predicativity is met by the semantics of that language. We see that the basic 

requirement of predicativity for recursive definability is that the definiens be less complex 

than the definiendum.  So we get an explanation of the vicious-circle principle as a by-product 7
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of the substitution interpretation of the quantifiers. The explanation is that an assignment of 

truth conditions to sentences of L presupposes a prior assignment of truth conditions to 

sentences of L0. This is a way of simulating set-existence, and reflects the idea that existence 

conditions for sets are parasitic upon prior identity conditions for predicatively definable sets. 

It was this idea that was difficult to make sense of in the original picture that Russell offered. 

To conclude this part, I should like to mention some issues concerning the basic objects 

we started off with, namely, the natural numbers. The motivation for predicativity is tied to 

questions from the ontology of mathematics: what is out there from the perspective of the 

mathematician? What is indispensable for mathematical practice? What are the ontological 

commitments of mathematical theories? What sorts of objects lie within the range of the 

quantified variables of the sentences expressing mathematical propositions? Admittedly, our 

attitude towards the natural numbers was much less critical than it was to sets of naturals. This 

is clear from the fact that we posited the totality of naturals as forming the fundamental 

domain D0, and explained quantification in the ground language L0 by the satisfaction 

interpretation. The presupposition was that the natural numbers are ‘out there’ so to speak. 

This presupposition is repugnant to many philosophers and it is even explicitly rejected by 

some mathematicians in predicative foundations, namely, the so called “strict” predicativists.  

Assuming the naturals as given seem problematic in at least respects. The first is that such 

an ontological commitment to the natural numbers is incompatible with the causal constraints 

on human knowledge. In general, the incompatibility between the ontological commitments of 

mathematical practice and the causal constraints on the knowledge of mathematical truths, is 

known as Benacerraf’s problem. The substitution interpretation of the quantifiers is of no help 

to avoid ontological commitment to the integers, since at the level of the ground language all 

one can hope to do is to reduce quantification over integers to quantification over canonical 
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names for those numbers. Yet Gödel showed us how to enumerate formulas and sequences of 

formulas with the help of integers. So, we can coordinate with each set of formulas and every 

relation between formulas a set of naturals and a relation between naturals. For this and other 

reasons, a reduction to quantification over formal expressions would not have brought an 

ontological freedom if the relevant language is the very language of number theory itself. 

The second objection comes from observations about predicative mathematics itself. 

Russell and Poincaré saw the source of the logical antinomies precisely in impredicative 

definitions, whereas C. Parsons, building on M. Dummett’s suggestion, argued that the 

concept of a natural number is impredicative independently of irrespective of the fact that it is 

characterized by the Dedekind-Frege-Russell definition. As Parsons claims, this makes it 

implausible to think that the vicious-circle paradoxes arise whenever predicative restrictions 

are violated (see PARSONS [1992]). While I do not think that this observation indicates a lack 

of robustness to the solution to the antinomies in accordance with the vicious-circle principle, 

it indicates that impredicative definitions do not always lead to vicious circles.

I share both kinds of uneasiness. But, there is a qualitative difference between the sort of 

commitments we have tried to eliminate here and the sort of commitment to the integers, so 

that these worries do not directly undermine the theses put forward in this thesis, or so I hope. 

But, they are certainly not the kinds of problems that we can pass over in silence. 

 The substitution interpretation of the ramified theory is explored by PARSONS [1971a, 1971b, 1974], 1

CHIHARA [1973], HAZEN [1989], HAZEN & DAVOREN [2000] and HODES [2015], and my presentation 

owes much to what I learned from these texts. As a general introduction to the substitution interpreta-

tion of the quantifiers, the papers DUNN & BELNAP [1968], MARCUS [1962, 1972], KRIPKE [1976] and 

UZQUIANO [2014] were also helpful.

 See LEIVANT [1994] and SHAPIRO [2005] for further details.2
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 In the literature, the Tarskian approach is often called referential, or objectual, interpretation of the 3

quantifiers, but I call it the satisfaction interpretation, as this name suggests more clearly the difference 

between two techniques of interpreting quantification. It is the notion of satisfaction that is lacking in 

the substitution interpretation of the quantifiers after all.

 The idea was suggested by C. Parsons (PARSONS [1971a], [1971b]). See also (QUINE [1973: 140]).4

 Philosophically, it is not clear if this is in conformity with Russell’s ideas. So it might be incorrect to  5

to interpret Russell’s way of explaining quantifiers as infinite conjunctions. Experts on Russell claimed 

that “it is (on Russell’s view) a crucial property of universal quantification that it allows us to express 

infinitely many facts by finite means.” (see PELHAM & URQUHART [1994: 308]).

 From a meta-theoretic perspective, there are strong parallels between predicative logics and infinitary 6

logics with countable languages with finite blocks of quantifiers; each of which are different than the 

usual first-order quantification theory (e.g. in the infinitary logic L(ω1, ω)[L0], completeness holds for 

but compactness fails; only the non-constructive version of the Löwenheim-Skølem theorem holds). 

Likewise, the infinitary logics with uncountable languages agree in various meta-theoretic properties 

with full second-order logics. A concise but excellent introduction to these ideas can be found in BELL 

[2016]; for a more elaborate treatment of infinitary logic, see KEISLER [1971]. Two inaugurating pa-

pers SCOTT & TARSKI [1958] and TARSKI [1958] should also be mentioned in this connection.

 This predicativity requirement was pointed out by C. Parsons and R.B. Marcus; S. Kripke imposed a 7

similar requirement for the construction of a hierarchy of languages; imposing predicative require-

ments for a substitutional set theory goes back to V. W. Quine (see PARSONS [1971b], MARCUS [1972], 

QUINE [1973], KRIPKE [1976]). The fact that the ramified Principia Mathematica (2nd edition) admits a 

substitution interpretation was hinted by GÖDEL [1944] and MARCUS [1962]. This fact is formally 

proved by A. Hazen & J. Davoren (see HAZEN & DAVOREN [2000]).
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CONCLUSION 

We considered Russell’s theory of types from several angles, according to which the basic 

requirement of predicativity is given by the vicious-circle principle. We discussed the relative 

advantages and disadvantages of this theory. Our discussion was not wholly impartial; part of 

the reason for this is that we were very influenced by the essential ideas guiding its principles; 

another is that while its disadvantages are widely recognized, some of its features that we 

discussed do not seem to have received the attention they deserve. 

The two main goals of the thesis was to understand the notions of type and order and to 

justify the vicious-circle principle on this basis. In conclusion I shall make some suggestions 

concerning the vicious-circle principle. 

The attempt to “deduce” the type-distinctions from the vicious-circle principle had the 

disastrous effect that it led one to thinking of it as a logical principle. This conception faced an 

insurmountable difficulty because, when treated as a logical principle concerning the objects 

of thought (propositions, classes, relations) that one typically deals with in logic, the vicious-

circle principle itself violates the type-distinctions, which it was supposed to entail. 

Similar considerations were raised long ago by the likes of F. Kaufmann and H. Behmann. 

Kaufmann pointed out, “the vicious-circle principle can no more be regarded as a restriction 

on legitimate thinking than for instance the principle of contradiction; if nevertheless one 

regards it as a norm, it can be taken be only as a norm for the structure of a logical 

unobjectionable symbolism (language)” (KAUFMANN [1978: 160]). And Behmann noted, “the 

very essence of the problem of paradoxes is no more nor less than the problem how to state 

and to apply symbolic definitions correctly, more generally, how to decide whether a given 

expression can be symbolically substituted in a given expression” (BEHMANN [1937: 220]) 
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We have tried to show that the substitution interpretation of the quantifiers provide a setting in 

which it is possible to frame a criterion that determines whether a set of objects is or is not 

predicative. Given this insight it is crucial for the Russellian to reconsider the meaning and the 

role of types and orders, and to discard the limitations involved in Russell’s original theory. 

We gave an interpretation of ramified type theory based on substitutional quantification, 

where we employed the method of hierarchy of languages. In this framework we explained the 

vicious-circle principle as the requirement that the possible substituends for a variable in the 

relevant language may not involve that very variable itself. The interpretation of the ramified 

type structure made it plain that the requirements of predicativity are met at each layer of the 

hierarchy, since it is impossible to find in this setting impredicatively defined sets. So this 

whole picture seems to cohere very well with the predicative concept of set, according to 

which the existence condition for sets are logically parasitic upon the identity conditions on 

predicatively definable sets. 

Perhaps most importantly, we reiterate the well-known fact that Russell was led into the 

ramified theory quite unwillingly, even though he saw the possibility of making type / order 

distinctions as early as in the Principles of Mathematics. We believe that these distinctions are 

quite natural. The point I wish to raise is that the type / order distinctions can be motivated 

independently of the paradoxes. It is unfortunate that the ramified theory of types has often 

been regarded as violent to mathematical thought. We hope that its limitations will be 

overcome by future work, not simply discarding the type / order distinctions, as it were they 

are fictitious notions to which no theoretical role can be attached, but considering alternative, 

more manageable, ways of formally implementing these distinctions. 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