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Abstract. We characterize the expressive power of extensions of Dependence
Logic and Independence Logic by monotone generalized quantifiers in terms

of quantifier extensions of existential second-order logic.

1. Introduction

We study extensions of dependence logic D by monotone first-order generalized
quantifiers. Dependence logic [12] extends first-order logic by dependence atomic
formulas

D(t1, . . . , tn)

the meaning of which is that the value of the term tn is functionally determined by
the values of t1, . . . , tn−1. While in first-order logic the order of quantifiers solely
determines the dependence relations between variables, in dependence logic more
general dependencies between variables can be expressed. In fact, dependence logic
is equivalent to existential second-order logic ESO in expressive power. Historically
dependence logic was preceded by partially ordered quantifiers (Henkin quantifiers)
of Henkin [7] and Independence-Friendly (IF) logic of Hintikka and Sandu [8].

The framework of dependence logic, so-called team semantics, has turned out
be very flexible to allow interesting generalizations. For example, the extensions of
dependence logic in terms of intuitionistic implication and linear implication was
introduced in [1]. Also new variants of the dependence atoms was introduced in
[4], [6] and [5], and generalized quantifiers in [4] and [2].

Engström, in [4], considered extensions of D in terms of first-order generalized
quantifiers. The reason for doing so was partly to have a logical framework to
analyze partially ordered generalized quantifier prefixes compositionally. The paper
introduces a general schema to extend dependence logic with first-order generalized
quantifiers. There are also alternative ways of extending dependence logic with
generalized quantifiers, as in [2], where a version of the majority quantifier for
dependence logic is studied. It is shown that dependence logic with that majority
quantifier leads to a new descriptive complexity characterization of the counting
hierarchy.

In this paper we continue the study of the logics D(Q) in the framework devel-
oped in [4]. Our main result shows that the logic D(Q) is equivalent, for sentences,
to ESO(Q), i.e., existential second-order logic extended with Q. We also show
analogous characterizations for extensions of Independence logic I(Q), a variant of
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dependence logic introduced in [6] and independently in [4], by generalized quan-
tifiers. At the end of the paper, we characterize the open formulas of I(Q). For
D(Q), finding a characterization of the open formulas remains open.

2. Preliminaries

2.1. Dependence Logic. In this section we give a brief introduction to depen-
dence logic. For a detailed account see [12].

The syntax of dependence logic extends the syntax of first-order logic with new
atomic formulas, the dependence atoms. There is one dependence atom for each
arity. We write the atom expressing that the term tn is uniquely determined by the
values of the terms t1, . . . , tn−1 as D(t1, . . . , tn).

1 We assume that all formulas of
dependence logic are written in negation normal form, i.e., all negations in formulas
occur in front of atomic formulas. For a vocabulary τ , D[τ ] denotes the set of τ -
formulas of dependence logic.

The set of free variables of a formula is defined as in first-order logic with the
extra clause that all variables in a dependence atom are free. We denote the set of
free variables of a formula φ by FV(φ).

To define a compositional semantics for dependence logic we use sets of as-
signments, called teams instead of single assignments as in first-order logic. An
assignment is a function s : V → M where V is a finite set of variables and M
is the universe under consideration. Given a universe M a team of M is a set of
assignments for some fixed finite set of variables V . If V = ∅ there is only one
assignment, the empty assignment, denoted by ε. Observe that the team of the
empty assignment { ε } is different from the empty team ∅.

Given an assignment s : V → M and a ∈ M let s[a/x] : V ∪ {x } → M be the
assignment:

s[a/x] : y 7→

{
s(y) if y ∈ V \ {x }, and
a if x = y.

Furthermore, let X[M/y] be the team

{ s[a/y] | s ∈ X, a ∈M } ,
and whenever f : X →M , let X[f/y] denote

{ s[f(s)/y] | s ∈ X } .
The domain of a non-empty team X, denoted dom(X), is the set of variables V .
The interpretation of the term t in the model M under the assignment s is denoted
by tM,s.

The satisfaction relation for dependence logic M, X � φ is now defined as follows.
Below, the notationM, s � φ refers to the ordinary satisfaction relation of first-order
logic.

(1) For first-order atomic or negated atomic formulas ψ: M, X � ψ iff ∀s ∈ X :
M, s � ψ.

(2) M, X � D(t1, . . . , tn+1) iff ∀s, s′ ∈ X
∧

1≤i≤n t
M,s
i = tM,s′

i → tM,s
n+1 = tM,s′

n+1

(3) M, X � ¬D(t1, . . . , tn+1) iff X = ∅
(4) M, X � φ ∧ ψ iff M, X � φ and M, X � ψ
(5) M, X � φ ∨ ψ iff ∃Y, Z s.t. X = Y ∪ Z, and both M, Y � φ and M, Z � ψ

1The dependence atom is denoted by =(t1, . . . , tn) in the original exposition [12].
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(6) M, X � ∃yφ iff ∃f : X →M, such that M, X[f/y] � φ
(7) M, X � ∀yφ iff M, X[M/y] � φ.
We define M � σ for a sentence σ to hold if M, { ε } � σ.
Let us make some easy remarks. First, every formula is satisfied by the empty

team. Second, satisfaction is preserved under taking subteams:

Proposition 2.1. If M, X � φ and Y ⊆ X then M, Y � φ.
And thirdly, the satisfaction relation is invariant of the values of the non-free

variables of the formula:

Proposition 2.2. M, X � φ iff M, Y � φ where Y = { s � FV(φ) | s ∈ X }.

The satisfaction relation for first-order formulas reduces to ordinary satisfaction
in the following way.

Proposition 2.3. For first-order formulas φ and teams X, M, X � φ iff for all
s ∈ X : M, s � φ.

By formalizing the satisfaction relation of dependence logic in existential second
order logic we get the following upper bound on the expressive power of dependence
logic. For a team X with domain {x1, . . . , xk }, let rel(X) be the k-ary relation
{ 〈s(x1), . . . , s(xk)〉 | s ∈ X }.

Proposition 2.4. Let τ be a vocabulary and φ a D[τ ]-formula with free variables
x1, . . . , xk. Then there is a τ ∪ {R }-sentence ψ of ESO, in which R appears only
negatively, such that for all models M and teams X with domain {x1, . . . , xk }:

M, X � φ ⇐⇒ (M, rel(X)) � ψ.
For sentences the proposition gives that D ≤ ESO and in [12] the converse

inequality was shown, hence D ≡ ESO. In [9] the following theorem was shown,
which together with Proposition 2.4 characterizes open τ -formulas of dependence
logic as the R-negative (downwards closed) fragment of ESO[τ ∪ {R }].

Theorem 2.5. Let τ be a signature and R a k-ary relation symbol such that R /∈ τ .
Then for every τ ∪ {R }-sentence ψ of ESO, in which R appears only negatively,
there is a τ -formula φ of D with free variables x1, . . . , xk such that, for all M and
X with domain {x1, . . . , xk }:

M, X � φ ⇐⇒ (M, rel(X)) � ψ ∨ ∀ȳ¬R(ȳ).

2.2. Independence logic. Independence logic was introduced in [6] and indepen-
dently in [4] as a variant of dependence logic in which the dependence atoms are
replaced by independence atoms x̄ ⊥z̄ ȳ.

2 The semantics of these atoms are defined
by:

M,X � ȳ ⊥x̄ z̄ iff

∀s, s′∈X
(
s(x̄) = s′(x̄) → ∃s0∈X

(
s0(x̄, ȳ) = s(x̄, ȳ) ∧ s0(z̄) = s′(z̄)

))
.

The dependence atoms can easily be expressed using the independence atoms,
implying that independence logic contains dependence logic, in fact this contain-
ment is proper, as seen from the lack of downwards closure.

2In [4] multivalued dependence atoms were introduced, denoted by [z̄�x̄|ȳ]. The semantics
are very similar to the independence atoms.
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On the other hand the analogue of Proposition 2.4 holds for independence logic,
if the restriction of R appearing only negatively is removed. Galliani, in [5], showed
that the also the analogue of Theorem 2.5 holds with the same modification, i.e.,
the open τ -formulas of independence logic corresponds exactly to τ∪{R }-sentences
of ESO.

2.3. D(Q). The notion of a generalized quantifier goes back to Mostowski [11] and
Lindström [10]. In a recent paper [4] Engström introduced semantics for generalized
quantifiers in the framework of dependence logic. We will review the definitions
here.

Let Q be a quantifier of type 〈k〉, meaning that Q is a class of τ -structures,
where the signature τ has a single k-ary relational symbol. Also, assume that Q
is monotone increasing, i.e., for every M and every A ⊆ B ⊆ Mk, if A ∈ QM

then also B ∈ QM . An assignment s satisfies a formula Qx̄φ in the structure M,
written M, s � Qxφ, if the set { ā ∈Mk | M, s[ā/x̄] � φ } is in QM , where QM =
{R ⊆Mk | (M,R) ∈ Q }.

In the context of teams we say that a team X satisfies a formula Qx̄φ,

(1) M, X � Qx̄φ, if there exists F : X → QM such that M, X[F/x̄] � φ,
where X[F/x̄] = { s[ā/x̄] | ā ∈ F (s) }. Note that this definition works well only
with monotone (increasing) quantifiers, see [4] for details.

Let D(Q) be dependence logic extended with the generalized quantifier Q with
semantics as defined in (1).

The following easy proposition suggests that we indeed have the right truth
condition for monotone quantifiers:

Proposition 2.6. (i) D(Q) is downwards closed.
(ii) D(Q) is local, in the sense that M, X � φ iff M, (X � FV(φ)) � φ.
(iii) Viewing ∃ and ∀ as generalized quantifiers of type 〈1〉, the truth conditions in

(1) are equivalent to the truth conditions of dependence logic.
(iv) For FO(Q)-formulas φ and teams X, M, X � φ iff for all s ∈ X : M, s � φ.
(v) For every D(Q) formula φ we have M, ∅ � φ.

The proofs of (i), (ii), (iv), and (v) are easy inductions on the construction of φ,
and (iii) is proved by using (i).

2.4. ESO(Q). We denote by ESO the existential fragment of second-order logic.
The extension, ESO(Q), of ESO by a generalized quantifier Q is defined as follows.

Definition 2.7. The formulas of ESO(Q) are built up recursively from atomic and
negated atomic formulas with conjuction, disjunction, first-order existential and
universal quantification, Q quantification, and second-order existential relational
and functional quantification.

A quantifier Q is definable in ESO if Q is the class of models of some ESO-
sentence φ, i.e.,

Q = Mod(φ).

Note that if for every M , ∅ ∈ QM and M /∈ QM then we can use Q to simulate
the classical negation, and thus full second-order logic is contained in ESO(Q).
However, if we restrict to monotone (increasing) quantifiers we get the following
result as in first-order logic:
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Proposition 2.8. Let Q be a monotone quantifier. Then Q is definable in ESO
iff ESO(Q) ≡ ESO.

Proof. Since the model classQ is trivially axiomatizable in ESO(Q), non-definability
of Q in ESO implies that ESO(Q) > ESO. Assume then that Q is definable in ESO
and let {R } be the vocabulary of Q, where R is k-ary. By the assumption, there
is φ ∈ ESO such that Mod(φ) = Q. The idea is now to use the sentence φ as a
uniform definition of Q using substitution. The problem is that there might be
negative occurrences of R in φ. By using the monotonicity of Q, this problem can
be avoided. Define ψ as follows:

∃P (φ(P/R) ∧ ∀x̄(P (x̄) → R(x̄))).

By the monotonicity of Q, the sentence ψ also defines Q and it only has one positive
occurrence of R. We can now compositionally translate formulas of ESO(Q) into
the logic ESO, the clause for Q being the only non-trivial one:

Qx̄θ  ψ(θ/R),

where ψ(θ/R) arises by substituting the unique subformula R(x̄) of ψ by θ(x̄). �

The next example shows that it is easy to find monotone quantifiers which are
not ESO-definable.

Example 1. Let S ⊆ N. Then the following quantifiers of type 〈1〉 are monotone:

Q1 = { (M,X) : |M | finite, and ∅ 6= X ⊆M }
QS = { (M,X) : |M | ∈ S and X =M } ∪ { (M,X) : |M | /∈ S and X 6= ∅ }

By, compactness of ESO, Q1 is not definable in ESO. Furthermore, for only
countably many S, the quantifier QS is ESO-definable.

3. The equivalence of D(Q) and ESO(Q)

In this section we consider monotone increasing quantifiers Q satisfying two non-
triviality assumptions: (M, ∅) /∈ Q and (M,Mk) ∈ Q for all M . We show that, for
sentences, the logics D(Q) and ESO(Q) are equivalent.

3.1. A normal form for ESO(Q).

Definition 3.1. A formula of ESO(Q) is in normal form if it is of the form
∃f1 . . . ∃fk φ and φ is a FO(Q)-sentence in prenex normal form without existen-
tial quantifiers.

Thus an ESO(Q) formula is in normal form if it can be written as:

∃f1 · · · fnQ′
1x1 · · ·Q′

mxmψ,

where Q′
i ∈ {Q,∀ } and ψ is a quantifier-free formula. In order to show that every

formula of ESO(Q) can be transformed into this normal form, we need the following
lemma.

Lemma 3.2. Then the following equivalences hold

• Qx̄(ψ ∨ φ) ≡ Qx̄ψ ∨ φ,
• Qx̄(ψ ∧ φ) ≡ Qx̄ψ ∧ φ,

where the variables x̄ do not appear free in φ.
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Proposition 3.3. Every sentence of ESO(Q) can be written in the normal form
of Definition 3.1.

Proof. The claim is proved using induction on φ. The proof is analogous to the
corresponding proof for ESO (see e.g., Lemma 6.12 in [12]). The cases of conjunction
and disjunction are proved using Lemma 3.2. The case corresponding to Q is
analogous to the case of the universal quantifier using the observation that a formula
of the formQx̄∃fφ is equivalent to ∃gQx̄ψ, where ψ arises from φ by replacing terms
f(t1, . . . , tk) by g(x̄, t1, . . . , tk). �
3.2. The main result. We will first show a compositional translation mapping
formulas of D(Q) into sentences of ESO(Q). This is analogous to the translation
from D into ESO of Proposition 2.4.

Proposition 3.4. Let τ be a vocabulary and φ a D(Q)[τ ]-formula with free variables
x1, . . . , xk. Then there is a τ ∪ {R }-sentence ψ of ESO(Q), in which R appears
only negatively, such that for all models M and teams X with domain {x1, . . . , xk }:

M, X � φ ⇐⇒ (M, rel(X)) � ψ(R).
Proof. The claim is proved using induction on φ. It suffices to define a translation
for Qȳ θ(x̄, ȳ), since the other cases are translated analogously to Proposition 2.4:

Qȳ θ  ∃P
(
θ∗(P ) ∧ ∀x̄(R(x̄) → Qȳ P (x̄, ȳ))

)
,

where θ∗ is the translation for θ given by the induction assumption. �
Next we show that, for sentences, Proposition 3.4 can be reversed, and thus the

following holds.

Theorem 3.5. ESO(Q) ≡ D(Q).

Proof. Let φ be a ESO(Q)-sentence. We show that there is a logically equivalent
sentence ψ ∈ D(Q). By Proposition 3.3 we may assume that φ is of the form:

(2) ∃f1 · · · fnQ′
1x1 · · ·Q′

mxmψ,

where Q′
i ∈ {∀, Q } and ψ is quantifier free. Before translating this sentence into

D(Q), we apply certain reductions to it. We transform the quantifier-free part ψ
of φ to satisfy the condition that for each of the function symbols fi there is a
unique tuple x̄i of pairwise distinct variables such that all occurrences of fi in ψ
are of the form fi(x̄

i). In order to achieve this, we might have to introduce new
existentially quantified functions and also universal first-order quantifiers (as in the
proof of Theorem 3.3 in [3]), but the quantifier structure of the sentence (2) does
not change. We will now assume that the sentence (2) has this property.

We will next show how the sentence (2) can be translated into D(Q). We claim
that the following sentence of D(Q) is a correct translation for (2):

(3) Q′
1x1 · · ·Q′

mxm∃y1 · · · ∃yn
( ∧
1≤j≤n

D(x̄i, yi) ∧ θ
)
,

where θ is obtained from ψ by replacing all occurrences of the term fi(x̄
i) by yi.

Let us show that the sentences (2) and (3) are logically equivalent. Let M be
a structure and let f1, . . . , fn interpret the function symbols fi. We first show the
following auxiliary result: for all teams X with domain {x1, . . . , xm } the following
equivalence holds:

(4) (M, f̄), X � ψ ⇐⇒ M, X∗ � θ,
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where X∗ = X(g1/y1) · · · (gn/yn), and the functions gi are defined as follows:

gi(s) = fi(s(x̄
i)),

and where s(x̄i) is the tuple obtained by pointwise application of s. Since ψ and θ
are first-order, by Proposition 2.3, (4) follows from the fact that for each s ∈ X∗ it
holds that

(5) (M, f̄), si � ψ ⇐⇒ M, s � θ,
where s′ = s � {x1, . . . , xm }. The claim is proved using induction on the structure
of the quantifier-free formula ψ.

Let us then show that φ (see (2)) and sentence (3) are logically equivalent.
Suppose that M � φ. Then there are f1, . . . , fn such that

(6) (M, f̄) � Q′
1x1 · · ·Q′

mxmψ.

Now, by (6), there is a team X arising by evaluating the quantifiers Q′
i such that

(7) (M, f̄), X � ψ.
By (4), and the way the functions gi are defined, we get that

M, X∗ �
∧

1≤j≤n

D(x̄i, yi) ∧ θ,

and that

(8) M, X � ∃y1 · · · ∃yn
( ∧
1≤j≤n

D(x̄i, yi) ∧ θ
)
.

Finally, (8) implies that

M � Q′
1x1 · · ·Q′

mxm∃y1 · · · ∃yn(
∧

1≤j≤n

D(x̄i, yi) ∧ θ).

The converse implication is proved by reversing the steps above. Note that there is
some freedom when choosing the functions f1, . . . , fn, since it is enough to satisfy
the equivalence in (4). �

We remark that the theorem also holds for quantifiers satisfying only the assump-
tions that for allM , (M, ∅) /∈ Q. This is achieved by a small trick: Let φ ∈ ESO(Q)
be a sentence. SupposeM is such that (M,Mk) ∈ Q then the sentence (3), denoted
φ∗ in the following, is equivalent to φ on structures over M . However, if M is such
that (M,Mk) /∈ Q, then Q is trivially false in structures over M and hence φ is
equivalent to φ0 ∈ ESO, acquired by replacing subformulas headed by Q with ⊥,
in structures over M .

It is easy to show, by induction on φ, that

(9) φ0 ⇒ φ.

Let φ∗0 ∈ D be a sentence equivalent to φ0. Let θ be the following D(Q) sentence:

(Qx̄> ∧ φ∗) ∨ φ∗0.

Now, assume that (M,Mk) ∈ Q, then θ is equivalent, over M , to φ∗∨φ∗0. By using
the fact that φ is equivalent to φ∗ we can see that whenever φ∗0 is true φ∗ is also true
and thus θ is equivalent, again over M , to φ. On the other hand if (M,Mk) /∈ Q
then θ is equivalent, over M , to φ0 which in turn is equivalent to φ.



8 FREDRIK ENGSTRÖM AND JUHA KONTINEN

If we assume Q only to be monotone (i.e., it may be trivial on some universes), we
can, by a similar trick as above and using the obvious generalization of Proposition
3.3 to ESO(Q1, . . . , Qk), prove that

ESO(Q,Qd) ≤ D(Q,Qd),

where Qd is the dual of Q, i.e, Qd = { (M,Ac) | (M,A) /∈ Q }. This in turn gives
us that for any monotone Q:

ESO(Q,Qd) ≡ D(Q,Qd).

The logic D(Q,Qd) might be considered more natural than D(Q) since FO(Q) ≤
D(Q,Qd).

In [6] it is shown that I ≡ ESO, and hence analogously to Proposition 3.4 it
follows that I(Q) ≤ ESO(Q). On the other hand, since D(Q) ≤ I(Q) Theorem 3.5
implies the following.

Theorem 3.6. I(Q) ≡ ESO(Q).

4. Characterizing the open formulas

In this section we note that Theorem 3.5 can be generalized to open formulas.
We assume that the generalized quantifiers are monotone and satisfy the same
non-triviality conditions as in the previous section.

Theorem 4.1. Let τ be a signature and R a k-ary relation symbol such that R /∈ τ .
Then for every τ ∪{R }-sentence ψ of ESO(Q) there is a τ -formula φ of I(Q) with
free variables z̄ = z1, . . . , zk such that, for all M and X with domain { z̄ }:

(10) M, X � φ ⇐⇒ (M, rel(X)) � ψ ∨ ∀ȳ¬R(ȳ).

Proof. The proof follows the proof of Theorem 3.5 closely with some additional
tweaks. First we translate the formula φ into the form

(11) ∃f1 · · · fnQ′
1x1 · · ·Q′

mxm
(
∀w̄

(
R(w̄) ↔ f1(w̄) = f2(w̄)

)
∧ ψ

)
,

where Q′
i ∈ {∀, Q } and ψ is a quantifier free formula with no occurrence of R and

such that all occurrences of fi is of the form fi(x̄
i). This is done by using the

techniques of Proposition 3.3 and Theorem 6.1 in [5].
Instead of translating the formula (11) into (3) we need to assure that the sets

chosen by the quantifier prefix Q′
1x1 . . . Q

′
mxm are chosen uniformly and not de-

pending on the assignments in the team X. In I(Q) we can do this by adding
independence atoms in the following way:

(12) Q′
1x1 · · ·Q′

mxm∃y1 · · · ∃yn
( ∧
1≤l≤m

xl⊥{ x1,...,xl−1 }z̄ ∧
∧

1≤i≤n

yi⊥x̄iyi) ∧ θ
)
.

Here θ corresponds to the quantifier free formula in the proof of Theorem 6.1 in [5].
Observe that y⊥x̄y. is equivalent to the dependence atom D(x̄, y).

The rest of the proof goes through as in Theorem 3.6. �

The same proof cannot prove that ESO(Q) ≤ D(Q). This, and the closely related
question of whatever we can express slashed and backslashed quantifiers in D(Q)
remains open.
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5. Conclusion

Our results show that the correspondence between dependence logic and inde-
pendence logic on one hand and ESO on the other is robust in the sense that adding
generalized quantifiers will not break the correspondences.

As discussed in section 3, even if we drop the non-triviality conditions, we can
prove that for any monotone Q:

ESO(Q,Qd) ≡ D(Q,Qd).

The dual is used only to express that ¬Qx⊥, which is equivalent to Qdx>. We leave
the question of whether ESO(Q) ≤ D(Q) open for arbitrary monotone quantifiers.
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