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ABSTRACT. We expand the notion of resplendency to theories of the kind
T + pT, where T is a first-order theory and p?T expresses that the type p is
omitted. We investigate two different formulations and prove necessary and
sufficient conditions for countable recursively saturated models of PA.

Some of the results in this paper can be found in one of the author’s doctoral
thesis [3].

1. INTRODUCTION

In the late seventies the notions of recursive saturation and resplendency were
introduced by Barwise and Schlipf [1] and, independently, Ressayre [8], as a useful
saturation notion weaker than full saturation with plenty of models for all theories
of all cardinalities, and many if not all of the pleasant properties of full saturation.
Recursive saturation is particularly helpful in the context of models of arithmetic,
but it has other applications too. For a long time it seemed that there were no
other useful and significantly different variations on the idea of resplendency. This
seemed in part due to the fact that recursive saturation and resplendency are closely
allied with those recursive sets of formulas that are consequence of ¥} sentences.
This logic has very nice properties and there do not seem to be many analogous
logics with similar properties. Then in a paper on the automorphism group of
recursively saturated models of PA [6] the notion of arithmetical saturation was
discovered, and its elegant equivalent (for countable recursively saturated models of
PA) that a model is arithmetically saturated iff there is an automorphism moving all
nondefinable elements. Similar results apply to a wide variety of theories other than
PA, though there was no formulation of resplendency equivalent to arithmetical
saturation in the case of countable models.

If we examine the logical structure of the statement, ‘there is an automorphism
moving all nondefinable elements’ we see that this is a property stating that there
is an expansion adding a function g to the model satisfying certain first-order prop-
erties (that it is an automorphism of the underlying structure) and omitting a type
(realized by some z that is nondefinable and fixed by g). This naturally suggests
the investigation of ‘extended X} sentences’ of the form 3X (T + pt), stating that
there is an expansion satisfying a first-order theory 7" and omitting a type p, and
analogies with recursive saturation and resplendency.

A second example of the same logical structure, again in the context of models
of arithmetic, is that of the theory of an initial segment K of the model, where the
type p(z) omitted is the one saying that = is a nonstandard element in the initial
segment K. (So such K will be the standard cut N.) On its own, this will always
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be satisfied in some expansion, but modifications of this example, as we will see,
are even more powerful than arithmetic saturation. In fact, arithmetic saturation
can be expressed in this form since it is equivalent to that N being strong under
the assumption of recursive saturation.

This paper takes these new ideas and explores them in a general model-theoretic
context. Although the bulk of the paper is model-theoretic, we will necessarily
touch on aspects of proof theory for the fragment of infinitary logic in which one
can say that a type is omitted, computability, and descriptive set theory. The
main notion is that of transplendent models (previously called ‘transcendent’, but
this—we have been told—could potentially be confused with Morley’s notion of
transcendental theory) which is the version of resplendent for such extended X1
sentences. There are many interesting questions left open in this work. Some of
the results in this paper can be found in Engstréom’s doctoral thesis [3].

2. PRELIMINARIES

In this paper we will only consider recursive first-order languages .Z, and re-
cursive language extensions, so if we have theories T' O Ty, in languages .Z O %
respectively then we shall tacitly assume that both languages are recursive and the
set £\ % of new symbols in the larger language together with their arities is also
recursive. Thus, . is what is usually called a recursive extension of 4.

Similarly, all models and all cardinal numbers will be tacitly assumed infinite.

Types p are sets of formulas whose free variables are among some finite tuple of
variables Z. When we want to indicate the variables we denote a type by p(Z). We
make no a priori assumptions on completeness or consistency of types. The .Z,,, .,
sentence

vz \/ (@)
Y(z)Ep(T)
will be denoted by pf, where the universal quantifier binds all free variables in p,
clearly M = pt iff M omits p.
Let us recall the definition of resplendency.

Definition 2.1. Let M be any structure for a language .2,. We say M is resplen-
dent if for all finite or recursive theories T in a language £ extending %, U {a}
for some finite tuple @ € M such that T + Th(M, a) is consistent, then there is an
expansion M T of M such that M+ = T.

The existence of countable resplendent models for any countable theory Tj is
proved by a Henkin type of argument, and this immediately implies the Joint Con-
sistency Theorem. The existence of uncountable resplendent models then follows
from the Joint Consistency Theorem (see for example Kaye [5, Theorem 15.10]). If
we instead consider our extended X} sentences of the form 3X (T+pt) the analogous
version of the Joint Consistency Theorem is false for simple reasons. It is possible
that Th(M)+T1+p1T and Th(M )+ T + po1 are both semantically consistent (i.e.,
have models) and yet T} implies some %-type is realized, but pa1 implies that it
must be omitted. To rescue the situation, we restrict our notion of consistency to
only those extended X} sentences that say nothing about omitting types over the
base language, i.e., they are true even when we move to a more saturated model of
Th(M).
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Definition 2.2. A set 2" C #(N), where 22(N) is the power set of N, is called a
Scott set if it is a boolean algebra closed under relative recursion and such that if
7 is an infinite binary tree coded in 2" (using some fixed coding), then there is an
infinite path through 7 coded in 2.

Definition 2.3. If 2 is a Scott set, a model M is said to be

o % -saturated if for every complete type p(Z,a) over M the type is realized
in M iff it is coded in 2.
o weakly 2 -saturated if it is recursively saturated and % -saturated for some

% OX.

Definition 2.4. Let Ty C T be theories in languages % C &, and let p(Z) be a
type in the language Z of T. T + p1 is 2 -consistent over Ty if there are a model
N E T, which is weakly %2 -saturated and an expansion of N satisfying T + p?.
Furthermore, T + p?1 is fully consistent over Ty if T + pt is 22 (N)-consistent over
To.

Given a model M we say that T+p?T (which may include finitely many parameters
a from M) is fully consistent over M if it is fully consistent over Th(M,a). In other
words, T + p?T is fully consistent over M iff there are an w-saturated model N of
Th(M) and an expansion of N satisfying T + pt.

In many cases, a model M has a distinguished Scott set, the standard system
SSy(M) of the model. Such cases include models of set theory, arithmetic, and
also recursively saturated models of rich theories (see Kaye [5]). In other cases,
although there may not be a unique or distinguished Scott set, there may be some
other appropriate Scott set. We recall the definition of a rich theory:

Definition 2.5. A theory T in a recursive language is rich if there is a recursive
sequence of formulas g (z), £ > 0 such that for any disjoint finite sets X, Y C N

T+ Elm( /\ or(z) A /\ —wk(x)).

keX key

Definition 2.6. Let M be any Zp-structure and 2~ a Scott set. We say that M
is 2 -transplendent if for all T,p(Z) € £ in some language £ O % U {a} (where
a € M is finite) such that T + p? is fully consistent over M there is an expansion
M of (M,a) such that M+ =T + p? and Th(M™, @) + p?1 is fully consistent over
M.

If we remove the condition that Th(M™,a) + p? is fully consistent over M we
get a similar notion, however, it is not known to us if this gives us the same notion
or something weaker. For the proof of Theorem 3.8 to go through we need to define
transplendence as above.

Observe that if M is a countable model satisfying the definition of 2 -transplen-
dence except where we dropped the parameters (so £ 2 %) then M is parameter-
free resplendent and so resplendent. Therefore, any such model is homogeneous
and so by taking automorphic images of expansions of M we can prove that M is
Z -transplendent.

Definition 2.7. We say that a model M is transplendent if it is 2 -transplendent
for some Scott set 2.
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Note that any 2 -transplendent structure is weakly 2 -saturated. Thus, in the
case where M is transplendent and has a well-defined standard system M is Z'-
transplendent iff 2~ C SSy(M).

3. EXISTENCE OF TRANSPLENDENT MODELS

Our first remark is that transplendent models exist. We will below give a charac-
terisation of the transplendent models amongst the countable recursively saturated
models of first-order arithmetic in terms of closure properties of the standard sys-
tem.

We start off by finding a sufficient condition on the standard system for the
existence of expansions omitting a specific type. This result will then be used to
prove that there are many countable transplendent models of any rich theory.

Let M be a countable recursively saturated £y-model of a rich theory and
T,p(Z) € SSy(M) a theory and a type in a language £ O %y(a) where a are
finitely many parameters from M. Suppose also that T+ p? is fully consistent over
M.

We will prove that under certain conditions on SSy (M) there exists an expansion
of M satisfying T'+ pT. The proof is a Henkin construction, but let us formulate it
in the language of model theoretic forcing.

Definition 3.1. Given a countable Z)-model M

e a notion of forcing in £ counsists of a set of (forcing) conditions which are
sets of sentences in the language £ (M) consistent with Th(M, a)aenr,

e a forcing property is a property of conditions,

e a forcing property P is dense if for all conditions S there is a condition
S’ D S satisfying P.

e a filter F is a set of conditions such that if S’ C S are conditions and S € F
then S’ € F and for any S7, Sy € F there is a condition S D S; U Ss in F.

e a filter F' meets a property P if there is S € F satisfying P.

e the condition S satisfies the witness property for ¢(x), denoted W), if
either =3zp(x) € S or there is a € M such that ¢(a) € S.

e the condition S satisfies the completeness property for ¢, denoted C, if
either ¢ € S or ~p € S.

Theorem 3.2. (a) Given a notion of forcing for M and countably many dense
properties there is a filter meeting all given properties. (b) Furthermore, if the filter
meets the witness and the completeness properties for every formula then there is
an expansion of M satisfying all conditions in the filter.

Proof. (a) By using the denseness we can choose a sequence Sp C S; C ... of
conditions such that S; satisfies the ¢th property. Let F' be the set of conditions S
such that there is S; D S. (b) It is easy to see that the .Zy-reduct of the canonical
model of the union of F' is isomorphic to M. O

Returning to the existence of transplendent models we let the forcing conditions
be finite sets S of sentences in the language £ (M) such that T+ S + pt is fully
consistent over M.

For m,b € M define the following (countably many) properties of forcing condi-
tions S.

e Pp:m=meSs.
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e P;: For some v(z) € p(Z) we have —)(b) € S.

Lemma 3.3. (1) P,,, C, and P, are all dense.

(2) Also, given the extra condition on SSy(M) that for any formula 1(c) in the
language £ (b, ) (where ¢ is a new constant symbol and b € M are parameters) such
that T+1(c)+p? is fully consistent over M there is a complete theory S. € SSy(M)
in the language £ (b, c) such that 1(c) € S. and T+ S.+ pt is fully consistent over
M, then W) is dense for o(z) in Z(b).

Proof. P,,: Given a condition S with parameters b we have that 7 + S + pt is fully
consistent over Th(M,a,b). Clearly it is also fully consistent over Th(M, a, b, m)
and thus S +m = m is a condition.

Cyp: We may assume that all the parameters of ¢ already occur in . Thus either
T+S+¢+plorT+ S+ ¢+ ptis fully consistent over M and either S + ¢ or
S + - is a condition.

P;: We may again assume that all the parameters b already occur in S. Since
T + S + pt is fully consistent over M we have that T + S + —)(b) + p?t is fully
consistent over M for some ¢ (Z) € p(Z).

W (z): As above we may assume that all the parameters of ¢(z) occur in S and
that either Jxp(x) or =Jzp(x) is in S. We need to prove that if Jxp(z) € S then
S + p(m) is a condition for some m € M.

It should be obvious that T'+ S + ¢(c) + p? is fully consistent over M, where c is
a new constant symbol. By the assumption on SSy(M) there is a complete theory
S, including S + ¢(c) such that T + S. + pt is fully consistent over M.

Let b be all parameters occuring in S. Either ¢(d) € S, for some parameter
d € b, in this case S + ¢(d) is a condition. Otherwise ¢ # d € S, for every d € b.
Let g(z) = {¢(z) | ¥(c) € Se,1b € Z(b) } be the restriction of S, to the language
Z(b). Tt is clear that g(x) is a coded type over M and so is realized by, say,
m € M. Clearly m # d for any parameter d in the language of S, so if S.[m/c] is
S. with the constant replaced by the parameter m then T + S.[m/c] + pt is fully
consistent over Th(M,b) and since Th(M,b,m) = q(m) C S.[m/c] it should be
clear that T + S.[m/c] + pt is fully consistent over Th(M,b, m) and thus over M,
ie., S+ ¢(m) is a condition. O

Given that for any forcing condition S there is a completion S, € SSy(M) of
S such that T + S. 4+ pt is fully consistent over M let F be a filter meeting all
countably many dense properties W (., Cy, Po, Py and M * the canonical model of
the union of the filter. It is easy to see that M = T'+p? and that the % (a) reduct
of M is (isomorphic to) (M,a). Thus there is an expansion of (M, a) satisfying
T + pt.

Definition 3.4. A Scott set 2 is closed if for any Ty, T,p € Z such that T + pt
is fully consistent over Ty there is a completion T, € Z" of T such that T, + p? is
fully consistent over Tj.

Combining the results above with this definition we get the following.

Theorem 3.5. If M is a countable recursively saturated model of a rich theory
such that SSy(M) is closed then M is transplendent.

Proof. Given T and p as in the definition of transplendency, start by replacing T’
with a complete T" € SSy(M) such that 7"+ p? is fully consistent over M. Then do
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the construction of M T above. We know that 7" = Th(M ™, a) and so Th(M™,a)
is fully consistent over M. ([

These models do indeed exist as the following easy proposition shows.

Proposition 3.6. Any infinite set 2y C P2(N) can be extended to a closed Scott
set 22O 2o of the same cardinality as 2.

Proof. Let F(Ty,T,p) be a (consistent) completion of T" such that F(T, T, p) + pt
is fully consistent over Ty if T + pT is. Let 2 be the closure of Z; under the
operation F'. O

Corollary 3.7. Any countable model of a rich theory has an elementary extension
which is transplendent.

We are now ready to characterise, in terms of their standard systems, the recur-
sively saturated countable models of PA that are transplendent.

Theorem 3.8. Let M = PA be a countable recursively saturated model then M is
transplendent iff SSy(M) is closed.

Proof. One direction if just Theorem 3.5. For the other suppose T, p(z) € SSy(M)
such that T + p1 is fully consistent over M and let T" be the extension of T with
every instance of the scheme

© (C)l‘w‘l 75 0
where ¢ is a sentence in the language of T and p(Z), and ¢ is a new constant
symbol. It is not hard to see that T’ + p?1 is fully consistent over M and so there
is an expansion M T of M satisfying 7" + pt.

Then we have that Th(M™) + pt is fully consistent over M and clearly the
same is true for Th(M’) + pt where M’ is the reduct of M forgetting about
the constant ¢. Furthermore, Th(M') € SSy(M’) = SSy(M) and so there is a
completion Th(M') € SSy(M) of T such that Th(M') + p? is fully consistent over
M. Thus SSy(M) is closed. O

4. THE STANDARD PREDICATE

As mentioned in the introduction, we have two key examples for applying the
idea of transplendence. One of them is the theory, Tx—n: {K(n)|n € N} + pt,
where p(z) is { K(x) Ax > n|n € N}, considered over models of arithmetic.

Working in a model of arithmetic the only predicate satisfying Tx—_y is the
standard cut. On its own, this is not very interesting as all models of arithmetic
have such an expansion, but we can add other first-order properties to Tx—n to get
more interesting expansions. One example is the property that K is strong which
is first order:

Vedd(—K (d) AVz(K (z) = (K((c)s) ¢ (¢)e > d)))

Let us first look at some notions from the theory of second-order arithmetic.
We will use vg,v1,... as first-order variables, Vj, V1,... as second-order variables,
x,Y, 2, ... as meta-variables ranging over first-order variables and X,Y, Z, ... over
second-order variables. Any set 2" C Z(N) can be regarded as a second order
model of arithmetic by letting the first-order part be the standard model of first-
order arithmetic and the domain of the second-order quantifiers be 2.

Definition 4.1. If 2" C % C #(N) then
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o 2 <z1 # if for all 3} formulas ¥(X) and all A € 27, 2" |= ¥(A) iff
7 = U(A).

. %%@ifﬁ”<zi % holds for all k € N.

o 7 isa fB,-model if < 2(N).

Given a term ¢, let ¢’ be like ¢ except that all first-order variables v; are replaced
by ve; (this substitution is made simultaneously for all variables). Define the K-
translate, O, of any second-order arithmetic formula © so the following hold (for
simplicity we assume the logical symbols are only the symbols V, - and 3):

(t=r
(Vi =

/ !
ist =1,

f Kis (Vvo(vo eV € VJ))K

)"
V;)
(t € V;)X is (vaiy1)e #0,
(U V) K is UK v Ok
(=) E s =@k,
(Fo; U)K
FV)*

is Jug; (K (ve;) A UK, and
is E"Ugi_;,_l\IfK,

where t and r are terms. Please remember that (), = z is a first-order formula in
Z 4 saying that the yth element coded by x is z. Observe that if vy, ... vi,, Vjy, ..., V},
are the free variables of © then vy;, ... v2;, and vaj, 41, -..,V25+1 are the free vari-
ables of ©. We will assume that the free variables are listed in this order.

Definition 4.2. If a € M |= PA then sety(a) ={n €N (a), #0}.

Lemma 4.3. For any M = PA, any second-order arithmetic formula ©(Z, X) and
any n € N, a € M we have

(M,N) = 0X(n,a) iff
SSy(M) = O(n, setar(ag), - . . ysetar(ap—1)).

Proof. The proof is by induction on the construction of ©. First assume © to be
atomic. There are three cases.
e Oist=r for some terms ¢ and r. Clearly M = ¢(7) = r(n) if N = t/(7) =
r'(7).
e Oist eV, we have (M,N) = (t € V;)X(n,d) iff (M,N) | K(t(n)) A
(d)t(ﬁ) # 0 iff t(n) € setpr(d).
e O is X =Y. This case reduces to the other cases.
If © is not atomic, it is composite; there are three cases here as well.

e O is =¥ or Uy V W¥y. This is obvious from the definition (since the K-
translate and —/V commutes ).

e Ois v,V (v;, 9, X), then (M,N) = Jvg; (K (v2;) AVF) (7, d) iff thereis n € N
such that (M,N) = ¥ (n,n,d) iff there is n € N such that SSy(M) =
¥(n,n, D) iff SSy(M) |= Jv; ¥ (n, vs, D), where D are the sets coded by the
elements d.

e ©is IV;¥(z,X,Y). We have

(M,N) |= Jugi 119" (7, d)
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iff there is e € M such that
(M,N) = ¥ (71, e,d)
iff there is E € SSy(M) such that
SSy(M) = ¥(n, E, D)
iff
SSy(M) = 3V;¥(n, D).
By induction the lemma holds for any second-order arithmetic formula ©. ]

Theorem 4.4 (Engstrom [3]). If M = PA is transplendent then SSy(M) is a
B, -model.

Proof. Let W(A), where A € SSy(M), be a second-order sentence true in 2 (N).
Let a; € M code A;. By taking N to be an w-saturated model of Th(M,a) we have
(N,N) |= U¥(a) since by the lemma above this is equivalent to SSy(N) | W(A)
and SSy(N) = 2(N). Therefore Tx—y + ¥¥(a) is fully consistent over M and so
by the transplendence of M there is an expansion of M satisfying Tr—y + ¥ (a).
There could only be one such expansion and so we have

(M, N) = UX (a).
By using the lemma once again we see that
SSy(M) |= U (A)
and thus SSy(M) is a f,-model. O

Since not every arithmetically closed Scott set is a [3,, model we have the follow-
ing.
Corollary 4.5. There are countable arithmetically saturated models of PA that are
not transplendent.
Given A C N let the second-order theory of A be
Th*(A) = {¥(X) | 2(N) | ¥(4)}.

Theorem 4.6 (Engstrom [3]). If M |= PA is transplendent and A € SSy(M) then
Th*(A) € SSy(M).

Proof. Assume A € SSy(M) is coded by a € M. Let T + pt be
Tx-n+{(c)rox)" # 0 +> ©%(a) | O(X) second-order formula} .

If N is an w-saturated model of Th(M) and b € N codes the set Th?(A) then
(V,N,0) =T + pt

since

P(N) £ 6(4) iff (N,N,a) =% (a)

for all second-order ©(X). By the transplendence of M there is d € M such that

(M,N,d) =T+ pt.

Thus, d codes the theory of the second-order model (SSy(M), A) which is elemen-
tary equivalent to (#2(N), A) since SSy(M) is a ,-model. O
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Under certain set theoretic assumptions, Theorem 4.6 generalises Theorem 4.4
since then, by some well-known basis theorems (see Hinman [4], Corollary V.2.7
and Corollary V.3.6), the set AL# is a basis for itself for every A C N.! Thus we
have the following.

Proposition 4.7. If V=L or PD (Projective Determinacy) hold then any Scott set
closed under the operation A — Th*(A) is a f,,-model.

To us it seems to be a difficult question to identify in terms of recursion theory
or descriptive set theory necessary and sufficient conditions on a Scott set to be
closed, in the sense of Definition 3.4. The following question is open.

Question 4.8. Is a 3,-model which is closed under the operation
A Th?(A)

closed in the sense of Definition 3.47

5. SUBTRANSPLENDENCE

Resplendency is strictly stronger than recursive saturation, which a recursively
saturated wi-like model of PA shows. However, it is easy to find a resplendency
like property which is equivalent to recursive saturation:

Definition 5.1. Let M be any Zp-structure and 2 a Scott set. We say that M
is 2 -subresplendent if for all T € 2" in a language .2 O % U {a} (where a € M
is finite) such that 7'+ Th(M,a) is consistent there are an elementary submodel
@ € N of M and an expansion Nt of N satisfying T. A model is subresplendent if
it is 2 -subresplendent for some Scott set Z .

The following theorem is easily proved by the ordinary argument that recursive
saturation implies resplendency for countable models.

Theorem 5.2. A model of a rich theory is subresplendent iff it is recursively sat-
urated.

Thus, for countable models subresplendency and resplendency coincide. In the
case where we also omit a type the situation is quite different, the notion of sub-
transplendence will be strictly weaker than transplendence even for countable mod-
els.

Definition 5.3. Let M be any Zp-structure and 2 a Scott set. We say that
M is 2 -subtransplendent if for all T,p(Z) € £ in some language .£ O % U {a}
(where @ € M is finite) such that there is a model of T + pt 4+ Th(M, a) there are
an elementary submodel @ € N of M and an expansion N of N such that N* =
T + pt. We say that a model M is subtransplendent if it is 2 -subtransplendent
for some Scott set 2.

Observe that in this definition we only demand that T'+ pt + Th(M,a) is con-
sistent, not that it is fully consistent.

In the case of rich theories, we characterise those recursively saturated models
(in any cardinality) which are subtransplendent in terms of their standard system.

1AIIC‘A denotes both the collection of sets of natural numbers definable in #(N) by an Ai—
formula 6(z, A), and the collection of subsets of 52(N) definable in 2 (N) by a A} -formula 6(X, A).
The set Acl,gf‘ is the union of all A}C’A. If A is a collection of sets of natural numbers and T" a
collection of subsets of 22(N) then A is a basis for I if for any v € I we have vy N A # (.
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Definition 5.4. A Scott set £ is a 8-model if Z° <5, 2(N). We say that M is
[B-saturated if there is a f-model 2" such that M is 2 -saturated.

The following theorem is proved by a construction not very different from the
one in the case of transplendent models. However there is a difference in that
the properties need not be monotonic and that there may be uncountably many
properties that need to be satisfied.

Theorem 5.5. Fvery (3-saturated model is subtransplendent.

Proof. Let M be a (-saturated model and Z  a (-model such that M is Z-
saturated. Let £, a, T and p(Z) be as in the definition of subtransplendence.

The forcing conditions S € £ we use in the argument are complete theories in
languages £ (b), where b € M is finite such that Th(M,a,b) + S + pt is consistent.
Such forcing conditions exists as the following lemma shows.

Lemma 5.6. If Sy € 2 is a set of Z(b, c)-formulas, where b€ M is finite and c
is a (new) constant symbol, such that So + Th(M,b) + pt is consistent then there
is a completion S € X of Sy consistent with Th(M,b) + p?.

Proof. For a complete theory T' to say that T + p?T is consistent is equivalent to
say that p(Z) is not isolated in T'. Therefore, letting 6(X, Sy, p) be the first-order
formula expressing that X is a completion of Sy such that p(x) is not isolated in
X. Tt is easy to see that Z(N) E IXO(X, Sp,p) and so, since 2" is a S-model,
Z E=3IXO(X, S, p)- |

The following properties of forcing conditions S will be used:
o P If 3z (x,b) € S then there is m € M such that ¢(m,b) € S.

Here b € M and p(x,7) is an Z-formula.

Observe that these properties are not monotonic, i.e., it might happen that
S C S and S satisfies a property P, (2.5 but S’ don’t. However, they are dense in
the sense that if S is a condition and P, ) a property then there is a condition
S’ D S satisfying the property. To see this let S be a condition and assume
Jwp(z,b) € S. By the lemma there is a completion S’ of S + ¢(c,b) coded in 2.
Let q(x) be the restriction of S’[x/c] to the language .%(@,b). It should be clear
that ¢(z) is a coded type over M and so is realized, say by m € M. It is easy to see
that S’[m/c] is a condition since Th(M, a,b,m) C S’'[m/c]. Thus S’ is a condition
including S which satisfies P, 7).

To construct a complete theory meeting all properties we enumerate all Z-
formulas as @y (z,y) in such a way that every formula occur an infinite number of
times in the enumeration. Start with some forcing consition Sy and build a count-
able chain of conditions Sy C Sk41: Let Bk, k < n, be a finite enumeration of all
sequences of parameters occurring in So. Find Sy satisfying P, 5,), S2 satisfying
P, (2,p,): and so on. When S;,41 is found start over with a new enumeration of all
finite sequences of parameters occurring in S, 1: by, k < n’ and start satisfying
properties P, 5, Py, (2,5,) and so on.

Let S be the complete theory Ug>0Sk. We claim that Sy, satisfies every (po-
tentially uncountably many) properties: Let P, be a property, we may assume
that all parameters in the sequence b occur in Sy, and that 3zp(x,b) € S.. There
are k and n such that such that 3zg(z,b) € Sy and ¢(x,7) is ¢y, (2, 7). Thus there
is a k' such that ¢(m,b) € Sy for some m € M and therefore p(m,b) € S.
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Let NT be the canonical model of S,,. It is straight forward to check that N T
satisfies T+ p?1 and that the £ reduct of N7 is elementary embedded in (M, a). O

Corollary 5.7. If M |= PA is transplendent then it is subtransplendent.
We have a converse to Theorem 5.5:
Theorem 5.8. If M = PA is subtransplendent then it is B-saturated.

Proof. Let 0(X, A) be an arithmetic first-order formula with set-parameters A from
SSy(M), such that ()N | 3X60(X,A). We will find B € SSy(M) such that
2(N) =0(B,A).

Let T+pt be 320K (2, a) + T —n, where a codes A in M. To see that Th(M, a)+
T + p?T is consistent, take a model N of Th(M,a) such that N is S-saturated, then
(N,N) = Th(M,a) + T + pt.

By the assumption that M is subtranscendent there are an elementary submodel
@ € N and an expansion NT of N such that N* =T + p1.

Thus, if b € N* is such that N* = ©%(b,a) then 2(N) = O(sety+(b), A) and
since N is elementary embedded in M the set B = sety+(b) is in SSy(M). This
completes the proof. O

Corollary 5.9. A model of PA is subtransplendent iff it is [3-saturated.

From these results we get a characterisation of S models in terms of closure
under completions of theories.

Corollary 5.10. A Scott set X is a S-model iff for every T,p(z) € X such that
T + pT is consistent there is a completion T € 2 of T such that T¢ + pt is
consistent.

Proof. Assume that 2" is a S-model, and that T, p(Z) € 2 are such that T + p?
is consistent. Let (X, T, p) be a first-order arithmetic formula expressing

“X is a complete theory A p(Z) is not isolated in X AT C X”.

Since there is X € 22(N) satisfying 0(X, T, p) and 2 is a S-model, there is T € 2
such that 22(N) | 6(T¢, T, p). By the omitting types theorem T+ pt is consistent.

For the other direction let 2  be such and M an % -saturated model of PA.
The proof of Theorem 5.5 goes through since it uses only that 2 is closed under
such completions and no other properties of S-models, thus M is subtransplendent.
Theorem 5.8 then says that SSy(M) = 2 is a S-model. O

In the proof it is easy to observe that it is enough to assume that p(z) is the
type
{K(z)Axz>n|neN}.

Let us formulate this as a Corollary:

Corollary 5.11. A Scott set Z is a S-model iff for every T € 2 in the language
ZLa(K,c) such that T+ Tk = is consistent there is a completion T € Z of T such
that T¢ + Tx—N is consistent.
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6. THE STANDARD PREDICATE, REVISITED

Let £} be the language of arithmetic with an extra predicate K whose intended
interpretation is the standard predicate N and with all Skolem functions in the
language of £4 added. The set of all Z} formulas whose only quantifiers are of
the form 3r€K or Vz€K are denoted AY. ¥ is the the set of formulas of the form
Jzp(z, y) where o is AY. It should be noted that if ©(X) is a A} (or ¥1) formula
in second-order arithmetic then ©%(z), as defined above, is a A} (or XY) formula.

Please observe that if M < *M then (M,N) <an ("M, N).

In [9] Stuart Smith proved the following two theorems which might be helpful
for the reader to bear in mind:

Theorem 6.1 ([9, Theorem 0.3]). Let M be a countable model of PA and A C M
which is not parametrically definable in M then there is M < N such that no
B C N satisfies (M, A) A (N, B).

Theorem 6.2 ([9, Theorem 3.13]). If M <epqg N then (M,N) < (N,N).

The first theorem implies that there is no countable model M such that for any
M < N there is A C N satisfying (M,N) < (N, A).

Definition 6.3. M is X)-closed if whenever M < *M then (M, N) <oy ("M,N).

Proposition 6.4. If M is X\-closed then SSy(M) is a B-model.

Proof. Let A € SSy(M) be coded by @ € M and #(N) = O(A), where O(A) is
a X} sentence. Let M < *M be such that SSy(*M) = ©(A). By Lemma 4.3
(*M,N) = 6% (a) and so (M,N) = 6% (a) since ©%(a) is ¥)'. Again by using the
same lemma we get that SSy(M) = ©(A). O

Proposition 6.5. If M is subtransplendent then M is X -closed.

Proof. Assume M < *M and (*M,N) |= ¢(a), where ¢(7) is ¥} and @ € M. The
theory Th(M,a) + ¢(a) + Tk=n is consistent and so since M is subtransplendent
there is an elementary submodel @ € N < M such that (N,N) = ¢(a@). Since
(N,N) <an (M, N) this is also true in (M,N). O

Combining these two propositions with Theorem 5.5 we get the following.

Corollary 6.6. The following are equivalent:

(1) M is subtransplendent.
(2) M is recursively saturated and XY -closed.
(3) M is B-saturated.

Next, we will try to apply these ideas to transplendence. We need a notion
stronger than Y}'-closed. The first naive try might be: If M < *M then (M,N) <
(*M,N), but this is a to strong requriement which Smith’s result above shows.
Therefore we use the following definition.

Definition 6.7. M is N-correct if whenever M < *M and *M is w-saturated then
(M,N) < (*M,N).

This makes sense since we have the following.

Proposition 6.8. If M = N, SSy(M) = SSy(N) and both are recursively saturated
then (M,N) = (N,N).
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Proof. I = {(a,b) | (M,a) = (N,b)} is a back-and-forth system between (M, N)
and (N, N). 0

Proposition 6.9. Any transplendent model of PA is N-correct.

Proof. Given w-saturated *M such that M < *M and *M = ¢(@), a € M and ¢ a
ZA(K) formula. Clearly Th(M, a)+ ¢(a) + Tk—n is fully consistent over M. Thus
by the transplendence of M there is an expansion of M satisfying this theory, i.e.,
(M,N) = ¢(a). This proves that (M,N) < (*M,N). O

However, we do not know if N-correctness, which really is a form of transplen-
dency for a single fixed type being omitted and finite theories in the language
Za(K) (with parameters), by itself is enough to prove transplendency.

Question 6.10. Are all N-correct recursively saturated countable models of PA
transplendent?

7. SATISFACTION CLASSES, AN APPLICATION

Recently Albert Visser gave a new proof of the conservativity of PA + “there
exists a full satisfaction class” over PA. We will give a very short outline of that
proof below.

Theorem 7.1 ([7]). PA + 7S is a full satisfaction class” is conservative over PA.

Proof. Let M |= PA, we will build a chain of elementary extensions of M such that
the limit of this chain has a full satisfaction class. Let My = M, %4 = Za(Mo)
and M;11 be a model of

T; = The, (M;,a)aens, +{ Sy | v € M; }

in the language

LiU{S, | pe M, “pisan £, formula” },
where the S, s are unary predicates and 5‘¢ is the Tarski condition for ¢, e.g.,

Sy 18 Vo (Syyyr (z) < Sy (x) V Sy (7)), and

Savip 18 Y (Sav,e(x) < FySe(xly/i))-
%11 is then

LaA(Mig1) U{S, | o € My = “pis an £, formula” } .

By compactness the theory T; is consistent, so such an M;,; exists. In the limit
M' = UM, we define

S={{p,a) | M |5 Sy(a) }.
It can be checked that S is a satisfaction class for the .Z4 reduct of M'. O

Ali Enayat then observed that this proof allows us to construct models of PA
with a satisfaction class S satisfying ¢; € S iff i € N, where ¢y if 0 = 0 and €;41 is
€; V €;. By observing that we in fact can construct w-saturated such models we see
that over any countable model of PA the theory

“S is a full satisfaction class” + Va(S(e) <+ K(z)) + Tk=n

is fully consistent over M. Thus we have the following:
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Corollary 7.2. Any transplendent model of PA has a full satisfaction class S such
that N is definable in (M, S).

This idea can be somewhat extended: If Sy is a set of pairs of formulas (in the
sense of a model M) and elements a € M such that Sy is definable in (M,N) and
the set of finite approximations of Sy is consistent.? Then there is a full satisfaction
class S on M extending Sp.
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