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Abstract

We consider the extension of a (strict) preference over a set to its
power set. Elements of the power set are non-resolute outcomes. The �-
nal outcome is determined by an �(external) chooser�which is a resolute
choice function. The individual whose preference is under consideration
confronts a set of resolute choice functions which re�ects the possible be-
haviors of the chooser. Every such set naturally induces an extension
axiom (i.e., a rule that determines how an individual with a given prefer-
ence over alternatives is required to rank certain sets). Our model allows
to revisit various extension axioms of the literature. Interestingly, the
Gärdenfors (1976) and Kelly (1977) principles are singled-out as the only
two extension axioms compatible with the non-resolute outcome interpre-
tation.

�This paper is the outcome of a project (# 106K380) supported by the Scienti�c and
Technological Reserach Council of Turkey (TUBITAK). The paper bene�ted from the stay of
Remzi Sanver at the Ecole Polytechnique, Paris. We are grateful to both institutions. We also
thank Fuad Aleskerov and Nick Baigent for very useful discussions as well as Gilbert La¤ond
and Jean Lainé who patiently listened to our �rst informal presentation at Polidor.
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1 Introduction

It is quite typical that collective decision problems are resolved through the
initial choice of a non-resolute set of outcomes which is followed by the �nal
decision of an �external chooser�. This two-stage structure is sometimes an
explicit part of the social choice rule -hence the external chooser truly exists.1

But even without an explicit reference to the �external chooser�, a two-stage
structure is implicit in the nature of the social choice problem. For, the im-
possibility of making a resolute choice under desirable axioms is well-known. In
fact, as one can see in Moulin (1983), every anonymous and neutral social choice
rule must exhibit non-resoluteness, thus leaving the �nal choice to an �external
chooser�- who does not necessarily exist in �esh and bone.
This two-stage nature of collective decision problems raises the question of

extending a preference over a set to its power set. This question is typically
answered through an extension axiom which is a rule that determines how an
individual with a given preference over alternatives is required to rank certain
sets. As Barberà, Bossert and Pattanaik (2004) beautifully survey, there is a
vast literature on extending an order over a set to its power set. To be sure,
this literature contains various interpretations of a set, such as being a list of
mutually incompatible outcomes2 or a list of mutually compatible outcomes3 or
a menu from which the individual whose preference under consideration makes a
choice4 or a collection states5 . All these interpretations have their own axioms.
Our consideration is limited to the �rst intepretation where a set is conceived
as an initial non-resolute re�nement of outcomes from which a �nal choice will
be made.
We propose a model that underlies this conception of a set. We admit a

resolute choice function6 to be an �(external) chooser� who makes the �nal
decision from any non-resolute outcome. Hence a (non-empty) set D of resolute
choice functions is the list of admissible behaviors that choosers may exhibit.
In principle, D can be anything, ranging from a singleton set to the set of all
choice functions. In particular, D may be determined by well-established axioms
of choice theory, such as the weak axiom of revealed preference. After all, any
given D induces an extension axiom in the following natural way: For each
possible ordering � of alternatives, a set X is required to be ranked above a set
Y if and only if the �nal decision made from X is preferred (according to �) to
the �nal decision made from Y , for any chooser belonging to D.
Our model allows to revisit the existing extension axioms of the literature.

Among these, two prevalent ones, namely the Gärdenfors (1976) and Kelly

1Such social choice rules are analyzed by Barberà and Coelho (2004) who call them �rules
of k names�.

2 e.g., Gärdenfors (1976), Barberà (1977), Kelly (1977), Feldman (1979), Duggan and
Schwarz (2000), Barberà, Dutta and Sen (2001), Benoit (2002), Ching and Zhou (2002),
Ozyurt and Sanver (2006).

3 e.g., Barberà, Sonnenschein and Zhou (1991), Ozyurt and Sanver (2007).
4 e.g., Kreps (1979), Dutta and Sen (1996), Dekel et al. (2001), Gul and Pesendorfer (2001).
5 e.g., Lainé et al. (1986), Weymark (1997).
6A resolute choice function assigns to each non-empty set X a single element of X.
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(1977) principles are singled out. For, every �regular� axiom of choice theory
determines a domain of admissible choosers which induces either the Gärdenfors
(1976) or the Kelly (1977) principle.
We set our framework in Section 2 and state our results in Section 3. We

also consider, in Section 4, a probabilistic variant of our model where we allow
randomizations over D. However, our �ndings remain essentially unaltered by
this variation. Section 5 concludes.

2 Basic Notions

We consider a �nite set of alternativesA where A = 2Anf?g. We let#A � 3 and
write � for the set of complete, transitive and antisymmetric binary relations
over A.7 We write �� for the strict counterpart of � 2 �.8

2.1 Extension Axioms

An extension axiom is a mapping " which assigns to each � 2 � a transitive
binary relation "(�) over A such that x �� y , fxg "(�) fyg 8x; y 2 A. We
interpret (X;Y ) 2 "(�) as the requirement of ranking the set X at least as good
as the set Y when the ranking of alternatives is �. Note that our de�nition of
an extension axiom, perhaps untypically, does not require the antisymmetry of
"(�). Nevertheless, most of the extension axioms we consider turn out to induce
antisymmetric binary relations.
We de�ne below three principal extension axioms that we consider:

� The extension axiom �, used by Kelly (1977) in his analysis of strategy-
proof social choice correspondences, is de�ned for each � 2 � as �(�) =
f(X;Y ) 2 A � AnfXg : x � y 8 x 2 X 8 y 2 Y g. We refer to � as the
Kelly principle.

� The extension axiom 
, used by Gärdenfors (1976) in his analysis of
strategy-proof social choice correspondences, is de�ned for each � 2 �
as 
(�) = f(X;Y ) 2 A�AnfXg : (x �� y 8 x 2 XnY 8 y 2 Y ) and (x ��
y 8 x 2 X 8 y 2 Y nX)g. We refer to 
 as the Gärdenfors principle.

� The extension axiom �, to which we refer as the separability principle,
is de�ned for each � 2 � as �(�) = f(X [ fxg; X [ fyg) : X 2 2A and
x �� y for distinct x; y 2 AnX g.9

7So for any � 2 � and any x; y 2 A, by completeness, we have x � y or y � x. This implies
re�exivity, i.e., x � x 8x 2 A. Note that by antisymmetry, x � y =) not y � x when x and y
are distinct. Finally, transitivity ensures x � y and y � z =) x � z 8x; y; z 2 A.

8So for any � 2 � and any x; y 2 A, we have x �� y whenever x � y holds and y � x fails.
As � is antisymmetric, when x and y are distinct, we have either x �� y or y �� x.

9The separability principle, which is a modi�ed version of the monotonicity axiom of Kannai
and Peleg (1984), is used by Roth and Sotomayor (1990) in their manipulation analysis of
many-to-one matching rules.
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The Gärdenfors principle is stronger than the Kelly principle, i.e., �(�)  

(�) 8� 2 �. On the other hand, the separability principle is logically inde-
pendent of both the Kelly and the Gärdenfors principles. Note that all three
extension axioms induce antisymmetric binary relations.

2.2 Choice Functions

A (resolute) choice function is a mapping C : A ! A such that C(X) 2 X;
8X 2 A. We write C for the set of all choice functions and D � C stands for
any non-empty subclass of choice functions. We consider axiomatic restrictions
over C. The de�nitions below are quoted from Aizerman and Aleskerov (1995):

� A choice function C satis�es theWeak Axiom of Revealed Prefence (WARP)
i¤ C(Y ) 2 X and C(X) 2 Y =) C(X) = C(Y ) 8X;Y 2 A.10
We write CWARP for the set of (resolute) choice functions that satisfy
WARP.11 It is to be noted that, de�ning at each � 2 �, the choice func-
tion C� (X) � x 8x 2 X, 8X 2 A, we have CWARP = fC�g�2�.12

� A choice function C satis�es Concordance i¤C(X) = C(Y ) =) C(X) =
C(X [ Y ) 8X;Y 2 A. We write CCONC for the set of (resolute) choice
functions that satisfy concordance.

� A choice function C satis�es direct Condorcet i¤ x 2
T
y2X

C(fx; yg =)

x 2 C(X) 8X 2 A, 8x 2 A. We write CDC for the set of (resolute) choice
functions that satisfy direct Condorcet.

Remark 2.1 As one can see in Aizerman and Aleskerov (1995), we have CWARP

 CCONC  CDC  C:
10For resolute choice functions, the version of WARP we use and the de�nition given by

Aizerman and Aleskerov (1995) are equivalent.
11A variety of conditions which di¤er from WARP over the class of choice correspondences

turn out to be equivalent to WARP over the class of resolute choice functions. Among these,
we have
(i) postulate 4 of Cherno¤ (1954) (called axiom C2 by Arrow (1959), condition alpha by

Sen (1974), upper semi-�delity by Sertel and van der Bellen (1979), heredity by Aizerman and
Aleskerov (1995));
(ii) the independence of irrelevant alternatives condition of Nash (1950) (called postulate

5 � by Cherno¤ (1954), axiom 2 by Sen (1974), outcast by Aizerman and Aleskerov (1995)
and absorbance by Sertel and van der Bellen (1979));
(iii) postulate 6 of Cherno¤ (1954) (called axiom C4 by Arrow (1959) and constancy by

Aizerman and Aleskerov (1995));
(iv) The inverse Condorcet condition of Aizerman and Aleskerov (1995).
12What we note follows from many results of the literature, e.g., Theorem 2.10 of Aizerman

and Aleskerov (1995).
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3 Inducing Extension Axioms through Choice
Functions

Any non-empty D � C induces an extension axiom "D as follows: At each � 2 �;
for all distinct X;Y 2 A, we have (X;Y ) 2 "D(�) () C(X) � C(Y ) 8C 2 D.
We interpret D as the set of possible �behaviors� of the external chooser. So
an individual with preference � has to view X at least as good as Y if and
only if under any possible �behavior�of the external chooser, the �nal decision
made from X is at least as good as (according to �) the �nal decision made
from Y . Note that "D(�) is antisymmetric if and only if D satis�es the following
richness condition: Given any distinct X;Y 2 A, there exists C 2 D such that
C(X) 6= C(Y ).
Observe that given any two domains D1, D2 of resolute choice functions,

D1 � D2 =) "D2(�) � "D1(�) 8� 2 � follows for the de�nition of "D. This
observation conjoined with Remark 2.1 leads to the following proposition:

Proposition 3.1 "C(�) � "CDC

(�) � "CCONC

(�) � "CWARP

(�) 8� 2 �.

Although the set inclusions stated by Remark 2.1 are proper, those an-
nounced by Proposition 3.1 need not be so, as we show soon.
We �rst establish the equivalence between the Kelly principle and the ex-

tension axiom induced by allowing all logically possible choice functions.

Theorem 3.1 "C(�) = �(�) 8� 2 �.

Proof. Take any � 2 �. To see "C(�) � �(�), pick any (X;Y ) 2 "C(�): So,
C(X) � C(Y ) 8C 2 C. Now, consider a choice function C0 with x � C0(X)
8x 2 X and C0(Y ) � y 8y 2 Y . Clearly, C0 2 C. Thus, C0(X) � C0(Y ) which,
by the choice of C0, implies x � y 8x 2 X, 8y 2 Y , hence establishing (X;Y )
2 �(�). To see �(�) � "C(�), pick any (X;Y ) 2 �(�). Let xo 2 X be such that x
� xo 8x 2 X and y0 2 Y be such that y0 � y 8y 2 Y . As (X;Y ) 2 �(�), we have
x0 � y0. Now, take any C 2 C. By the choice of x0 and y0, we have C(X) � x0
and y0 � C(Y ) which implies C(X) � C(Y ), establishing (X;Y ) 2 "C(�).

Remark 3.1 The antisymmetry of "C can be deduced from the antisymmetry
of � as well as from the richness of C.

Remark 3.2 For any D, we have �(�) � "D(�) 8� 2 �. In other words,
the Kelly principle is the weakest extension axiom that can be conceived in our
environment.

We now show that restricting the set of admissible choice functions to those
which satisfy the concordance axiom does not induce an extension axiom stronger
than the Kelly principle.

Theorem 3.2 "C
CONC

(�) = �(�) 8� 2 �.
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Proof. Take any � 2 �. The inclusion �(�) � "CCONC

(�) follows from Remark
3.2. To see "C

CONC

(�) � �(�), pick some (X;Y ) =2 �(�). So, 9y 2 Y and
9x 2 Xnfyg such that y �� x. First, consider the �rst case where y =2 X. Pick
some � 2 � with y � x � z 8z 2 An fx; yg. Note that C� 2 CWARP ( CCONC .
As y =2 X, we have C� (X) = x and C� (Y ) = y, thus C� (X) � C� (Y ) fails,
establishing (X;Y ) =2 "CCONC

(�) . Next, consider the case where x =2 Y . Pick
some � 2 � with x � y � z 8z 2 An fx; yg. Note that C� 2 CCONC . As x =2 Y ,
we have C� (Y ) = y and C� (X) = x, thus C� (X) � C� (Y ) fails, establishing
(X;Y ) =2 "CCONC

(�). Finally, consider the case where y 2 X and x 2 Y . Pick
some � 2 � with z � x � y 8z 2 An fx; yg. Consider the choice function C
de�ned as C(X) = x, C(Y ) = y and C(Z) = C� (Z) 8Z 2 An fX;Y g. Note
that C(X) � C(Y ) fails. So we complete the proof by showing C 2 CCONC . To
see this, take any distinct S; T 2 A with C (S) = C (T ). Note that S; T 2 fX;Y g
cannot hold, by construction of C. Now, consider the following three exhaustive
cases:
Case 1: X 2 fS; Tg, say S = X without loss of generality. So C (T ) = x,

which implies T 2 ffx; yg; fxgg which in turn implies S [ T = S, establishing
C (S [ T ) = C (S).
Case 2: Y 2 fS; Tg, say S = Y without loss of generality. So C (T ) =

y, which implies T = fyg, which in turn implies S [ T = S, establishing
C (S [ T ) = C (S).
Case 3: X;Y =2 fS; Tg. Let z = C (S) = C(T ). So z � s 8s 2 S and

z � t 8t 2 T , thus z � u 8u 2 S [ T , implying z = C(S [ T ).
Therefore, C 2 CCONC , hence (X;Y ) =2 "CCONC

(�) .

Remark 3.3 The antisymmetry of "C
CONC

follows from the antisymmetry of �
as well as from the richness of CCONC .

The following result is a corollary to Theorem 3.1 and Theorem 3.2.

Theorem 3.3 Given any D � CCONC we have "D(�) = �(�) 8� 2 �.

Note that Theorem 3.3 covers the particular case where D = CDC . Our next
result shows that by further restricting the set of admissible choice functions
through WARP, we fall into the Gärdenfors principle.13

Theorem 3.4 "C
WARP

(�) = 
(�) 8� 2 �.

Proof. Take any � 2 �. To see "CWARP

(�) � 
(�), pick some (X;Y ) =2 
 (�). So
9y 2 Y , 9x 2 XnY with y �� x or 9y 2 Y nX, 9x 2 X with y �� x. In the

13Sanver and Zwicker (2007) consider various monotonicity and manipulability properties
of irresolute social choice rules. Among other things, they show that certain monotonicity
conditions turn out to be equivalent, independent of whether the irresolute social choice rule
is re�ned through a total order or preferences over alternatives are extended over sets through
the Gärdenfors principle. In fact, it is the result announced by Theorem 3.4 which underlies
this equivalence.
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former case, pick some � 2 � with x � y � z 8z 2 An fx; yg, thus C� (X) = x
and C� (Y ) = y, implying the failure of C� (X) � C� (Y ) while C� 2 CWARP ,
hence establishing (X;Y ) =2 "C

WARP

(�). In the latter case, pick some � 2
� with y � x � z 8z 2 An fx; yg, thus C� (X) = x and C� (Y ) = y, implying
the faliure of C� (X) � C� (Y ) while C� 2 CWARP , hence establishing (X;Y ) =2
"C

WARP

(�).
To see 
(�) � "C

WARP

(�), pick any (X;Y ) 2 
(�). So we have (x
�� y 8x 2 XnY , 8y 2 Y ) and (x �� y 8x 2 X, 8y 2 Y nX)g. In particu-
lar, C(XnY ) �� C(Y ) 8C 2 C wheneverXnY 6= ; and C(X) �� C(Y nX) 8C 2 C
whenever Y nX 6= ;. Note thatX and Y are distinct, thusXnY and Y nX cannot
be both empty. Let, without loss of generality, XnY 6= ;. Take any C 2 CWARP .
First, consider the case where C(X) 2 XnY . Since XnY � X and C 2
CWARP , we have C(X) = C(XnY ). Thus, C(X) �� C(Y ). Now, consider the
case where C(X) =2 XnY . So C(X) 2 X \ Y . Since X \ Y � X and
C 2 CWARP , we have C(X) = C(X \ Y ). If C(Y ) 2 X \ Y then C(Y ) =
C(X\Y ) follows by C 2 CWARP , establishing C(X) �� C(Y ). If C(Y ) =2 X\Y ,
then C(Y ) 2 Y nX, and we get C(Y ) = C(Y nX) by C 2 CWARP , implying
C(X) �� C(Y ). Thus (X;Y ) 2 "CWARP

(�) and 
(�) � "C
WARP

(�).

Remark 3.4 The antisymmetry of "C
WARP

can be deduced from the antisym-
metry of 
 as well as from the richness of CWARP .

We summarize below our �ndings upto now.

Corollary 3.1 �(�) = "C(�) = "C
DC

(�) = "C
CONC

(�)  "CWARP

(�) = 
(�) 8� 2
�.

Remark that a rich variety of choice axioms14 single out the Kelly and Gär-
denfors principles. As an interesting observation, the separability principle has
not been induced by any of the choice axioms we considered. In fact, as we
show below, there exists no class of admissible choice functions that induces the
separability principle. Before proving this, we state a lemma.

Lemma 3.1 Let D � C ensure �(�) � "D(�) 8� 2 �. Given any C 2 D and
any X;Y 2 A with #X = #Y = 2 and #(X \ Y ) = 1, we have C(X) =
X \ Y =) C(Y ) = X \ Y .

Proof. Let D be as in the statement of the lemma. Take any C 2 D. Let
X = fx; yg and Y = fx; zg for some distinct x; y; z 2 A. Take any � 2
� with y �� z �� x. Suppose C (X) = x and C (Y ) = z. So C (X) � C (Y ) fails,
hence (X;Y ) =2 "D(�) while (X;Y ) 2 � (�) ; contradicting the choice of D.

Theorem 3.5 @D � C which ensures �(�) � "D(�) 8� 2 �.
14Recall the remark made by Footnote 11
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Proof. Let, for a contradiction, D � C ensure �(�) � "D(�) 8� 2 �. Take
any C 2 D and any distinct x; y; z 2 A. Let, without loss of generality,
C(fx; yg) = x. By Lemma 3.1, we have C (fx; zg) = x and C(fy; zg) = z.
However, again by Lemma 3.1, C (fx; zg) = x implies C(fy; zgg = y, giving the
desired contradiction.
The impossibility announced by Theorem 3.5 prevails for any variant of

Kannai and Peleg (1984) monotonicity which is stronger than separability.
We close the section by a remark regarding the strenghts of the extension

axioms that are conceivable in our environment. As noted by Remark 3.2, the
Kelly principle is the weakest among all conceivable extension axioms. On the
other hand, although the Gärdenfors principle is the strongest extension axiom
we encountered, we cannot claim it to be the strongest among all conceivable
extension axioms. For, although WARP is a fairly demanding condition, the set
of admissible choice functions can be further reduced. In fact, at the extreme,
D can be assumed to contain only one choice function. Actually, the strongest
conceivable extension axioms will be those which are induced by singleton sets
of admissible choice functions. In fact, any D = fCg with C 2 C induces a
complete and transitive binary relation "D(�) = f(X;Y ) 2 A � A : C(X) �
C(Y )g at each � 2 �.15 Nevertheless, as we note below, it is not possible to
speak about �the strongest�extension axiom.

Proposition 3.2 Given any D = fCg and D0 = fC 0g with distinct C;C 0 2 C,
both "D(�) � "D0

(�) and "D
0
(�) � "D(�) fail at every � 2 �.

Proof. Take any D = fCg and D0 = fC 0g with distinct C;C 0 2 C. So, there ex-
ists X 2 A such that C(X) 6= C 0(X). Note that #X � 2. Take any � 2 �. Con-
sider the �rst case where C 0(X) �� C(X). Note that (fC (X)g ; X) 2 "D(�) but
(fC (X)g ; X) =2 "D0

(�). Moreover (X; fC 0 (X)g) 2 "D0
(�) but (X; fC 0 (X)g) =2

"D(�). Hence, neither "D(�) � "D
0
(�) nor "D

0
(�) � "D(�) holds. Now, con-

sider the case where C(X) �� C 0(X). Note that (X; fC (X)g) 2 "D(�) but
(X; fC (X)g) =2 "D0

(�). Moreover (fC 0 (X)g ; X) 2 "D0
(�) but (fC 0 (X)g ; X) =2

"D(�). Hence, neither "D(�) � "D0
(�) nor "D

0
(�) � "D(�) holds.

As a case of particular interest, we have D = fCg for C 2 CWARP . Let
��(X) 2 X denote the best element of X 2 A at � 2 �, i.e., ��(X) � x
8x 2 X. The leximax extension is the extension axiom �+ de�ned for each
� 2 � as �+(�) = f(X;Y ) 2 A � AnfXg : ��(X) � ��(Y )g. Similarly, let
!�(X) 2 X satisfy x � !�(X) 8x 2 X. The leximin extension is the extension
axiom �� de�ned for each � 2 � as ��(�) = f(X;Y ) 2 A � AnfXg : !�(X) �
!�(Y )g.16

Proposition 3.3 Given any D and any � 2 �;we have
(i) "D(�) = �+(�) if and only if D = fC�g.

15Remark that no D = fCg is rich hence the corresponding complete preorder "D(�) is not
antisymmetric.
16Pattanaik and Peleg (1984), Bossert (1995), Campbell and Kelly (2002), Kaymak and

Sanver (2003), Dogan and Sanver (2007) explore lexicographic extensions under a variety of
de�nitions.
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(ii) "D(�) = ��(�) if and only if D = fC�g for � 2 � with x � y () y �
x 8x; y 2 A.

Proof. Take any D and any � 2 �:
We prove (i). To establish the �if�part, letD = fC�g. To see "D(�) � �+(�),

take some (X;Y ) 2 "D(�). So C� (X) � C� (Y ). Moreover, by the de�nition
of C�, we have C� (X) = ��(X) and C� (X) = ��(Y ), thus, ��(X) � ��(X),
showing (X;Y ) 2 �+(�). To see �+(�) � "D(�), pick some (X;Y ) 2 �+(�). So
��(X) � ��(Y ), thus C� (X) � C� (Y ), showing (X;Y ) 2 "D(�). To establish
the �only if� part, assume "D(�) = �+(�) and suppose 9C 2 D with C 6=
C�. So, C(X) 6= C�(X) for some X 2 A. Check that (X; fC�(X)g) 2 �+(�)
but (X; fC�(X)g) =2 "D(�), contradicting "D(�) = �+(�).
We prove (ii). To establish the �if�part, let D = fC�g for � 2 � with x �

y () y � x 8x; y 2 A. To see "D(�) � ��(�), take some (X;Y ) 2 "D(�). So
C� (X) � C� (Y ). Moreover, by the choice of � , we have C� (X) = !�(X) and
C� (Y ) = !�(Y ), thus !�(X) � !�(Y ), showing (X;Y ) 2 ��(�). To see ��(�)
� "D(�), pick some (X;Y ) 2 ��(�). So !�(X) � !�(Y ), thus C� (X) � C� (Y ),
showing (X;Y ) 2 "D(�). To establish the �only if� part, assume "D(�) =
��(�) and suppose 9C 2 D with C 6= C� . So, C(X) 6= C� (X) for some X 2
A. Check that (fC� (X)g; X) 2 ��(�) but (fC� (X)g; X) =2 "D(�), contradicting
"D(�) = ��(�).
So at a given � the leximax ordering �+(�) is induced if and only if D = fC�g.

Similarly, at a given � the leximin ordering ��(�) is induced if and only if D
= fC�g such that � is the opposite ranking of �. As a corollary which we state
below, there exist no D which induces leximax (or leximin) orderings at every
�.

Theorem 3.6 There exists no D such that
(i) "D(�) = �+(�) 8� 2 �
or
(ii) "D(�) = ��(�) 8� 2 �.

4 A Probabilistic Variant of the Model

We now consider a probabilistic variant of our model by allowing randomizations
over the set of admissible choice functions D. A prior over D is a mapping
� : D ! (0; 1] such that

P
C2D

�(C) = 1. We write �D for some arbitrary

(non-empty) set of priors over D. Let U� stand for the set of all (real-valued)
utility functions over A that represent � 2 �.17 Any D and �D induce an
extension axiom "�D as follows: At each � 2 �; for all distinct X;Y 2 A, we
have (X;Y ) 2 "�D (�) ()

P
C2D

�(C)u(C(X)) �
P
C2D

�(C)u(C(Y )) 8u 2 U�,

8� 2 �D.
17A utility function u over A represents � 2 � i¤ u(x) � u(y), x � y 8x; y 2 A.
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Theorem 4.1 Given any D and �D, we have "D (�) � "�D (�) 8� 2 �.

Proof. Take any � 2 � and any (X;Y ) =2 "�D (�). So there exists u 2 U�
and � 2 �D such that

P
C2D

�(C):u(C(Y )) >
P
C2D

�(C):u(C(X)). Since �(C) > 0

for each C 2 D, the inequality holds only if there exists C 0 2 D with u (C 0 (Y )) >
u (C 0 (X)), hence C 0 (Y ) �� C 0 (X), establishing (X;Y ) =2 "D (�).
Whether the set inclusion announced by Theorem 4.1 is proper or not de-

pends on the richness of the set of admissible priors �D. For example, as we
show below, when �D allows all priors over D, Theorem 4.1 holds as an equality.

Theorem 4.2 Take any D and let �D be the set of all priors over D. We have
"D (�) = "�D (�) 8� 2 �.

Proof. Take any � 2 �. The inclusion "D (�) � "�D (�) is already established
by Theorem 4.1. To see "�D (�) � "D (�), pick some (X;Y ) 2 "�D . Take any
C 2 D and consider some prior �� 2 �D with �� (C 0) = " 8C 0 2 DnfCg and
�� (C) = 1 � (#D � 1):" where " 2 (0; 1

#D�1 ). As (X;Y ) 2 "�D (�), we have
(1�(#D�1):"):u (C (X))+

P
C02DnfCg

":u(C 0(X)) � (1�(#D�1):"):u (C (Y ))+P
C02DnfCg

":u(C 0(Y )). Picking " arbitrarily small, we get u (C(X)) � u (C(Y )),

hence C (X) � C (Y ), establishing (X;Y ) 2 "D(�).
Nevertheless, there are restricted choices of�D which render the set inclusion

of Theorem 4.1 proper. To see this, let D = CWARP and �D =
�
�
	
where

� (C) = 1
#D 8C 2 D. Take any distinct x, y, z 2 A and any � 2 � with x� y� z.

Note that (fx; yg ; fx; zg) 2 "�D (�) since u(x)+u(y)
2 � u(x)+u(z)

2 8u 2 U� while
(fx; yg ; fx; zg) =2 "D (�).

5 Conclusion

As Barberà et al. (2004) eloquently survey, the literature on extending an order
over a set to its power set admits a plethora of extension axioms. Nevertheless,
the appropriateness of an extension axiom depends on how elements of the power
set are interpreted. We propose a model which incorporates the �non-resolute
outcome�interpretation. We show that among the plethora of extension axioms
of literature, two of them �namely the Gärdenfors (1976) and Kelly (1977)
principles� arise as the appropriate ones. This observation does not necessarily
exclude the use of extension axioms based on �expected utility consistency�,
as these are essentially equivalent to either the Gärdenfors (1976) or the Kelly
(1977) principle, depending on the precise meaning attributed to �expected
utility consistency�.18 On the other hand, Theorem 3.5 sets an obstacle in using
the separability principle when sets are conceived as non-resolute outcomes.19

18One can see Can et al. (2007) for a detailed exploration of this matter.
19To be sure, this does not criticize Roth and Sotomayor (1990) who use separability in

their manipulation analysis of many-to-one matching rules, as their environments conceives
sets as lists of mutually compatible outcomes.
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