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Introduction

This thesis is a study of the notion of time in modern physics, consisting of two

parts. Part I takes seriously the doctrine that modern physics should be treated as

the primary guide to the nature of time. To this end, it offers an analysis of the

various conceptions of time that emerge in the context of various physical theories

and, furthermore, an analysis of the relation between these conceptions of time and

the more orthodox philosophical views on the nature of time. In Part II I explore

the interpretation of nonrelativistic quantum mechanics in light of the suggestion

that an overly Newtonian conception of time might be contributing to some of

the difficulties that we face in interpreting the quantum mechanical formalism. In

particular, I argue in favour of introducing backwards-in-time causal influences as

part of an alternative conception of time that is consistent with the picture of reality

that arises in the context of the quantum formalism. Moreover, I demonstrate that

this conception of time can already be found in a particular formulation of classical

mechanics. One might see that one of the central themes of Part II originates from a

failure to heed properly the doctrine of Part I: study into the nature of time should be

guided by modern physics and thus we should be careful not to insert a preconceived

Newtonian conception of time unwittingly into our interpretation of the quantum

mechanical formalism. Thus, whereas Part I is intended as a demonstration of

methodology with respect to the study of time, Part II in a sense explores a confusion

that can be seen as arising in the absence of this methodology.

To help clarify the general philosophical outlook that I will adopt here, let me

begin by borrowing a distinction drawn by Wilfrid Sellars (1963, p. 19) between what

he calls the manifest image and the scientific image. Sellars describes the manifest

image as “the correlational and categorical refinement” of our crude perception

of the world into a “framework of sophisticated common sense”; we can think of

the manifest image as our refined intuitive picture of the world. In contrast, the

scientific image of the world is “the image derived from the fruits of postulational

theory construction”. Sellars views the manifest and scientific images as “two whole

ways of seeing the sum of things” and his intention is “to bring them together in

1



2 Introduction

a ‘stereoscopic’ view” of the world. We can employ this distinction for our present

purposes and characterise this thesis as a study of the picture of time found within

the scientific image of the world, as well as an examination of how the manifest

image can be unwittingly subsumed into this scientific image.1

With respect to this viewpoint, this thesis can be seen as embracing the natu-

ralistic metaphysics of Ladyman and Ross (2007, Ch. 1): metaphysical inquiry is

legitimate only when it “can be regarded as. . . [an] attempt to model the structure

of objective reality” and “is motivated exclusively by attempts to unify hypotheses

and theories that are taken seriously by contemporary science”.2 While I adopt the

position that contemporary science should be treated as an authority on the nature

of reality, I stop short of advocating the structural realist program that Ladyman

and Ross have in mind; indeed, I wish to abstain from any commitments concerning

realism or anti-realism. In particular, I do not imagine time to be some objective

feature of reality, independent of our descriptions of the world, such that we un-

derstand various scientific theories to be providing a different representation of this

particular aspect of objective reality. Rather, by ‘reality’ here I simply mean our

scientific image of the world, and thus this thesis is simply a study of how time is

portrayed by some of our modern physical theories. By taking this stance, though,

we do require a precise account of what we actually mean by ‘time’ in the context

of different scientific theories.

To this end, I propose (in Chapter 2) a precise framework for characterising time

that builds upon an analysis due to Rovelli (1995, 2004). According to Rovelli,

the formal structure that we identify as time within a particular physical theory

can be characterised in terms of its attributes ; indeed, there are up to nine distinct

attributes identified by Rovelli that we assign to the temporal structure of our

various contemporary physical theories and folk concepts, including directionality,

uniqueness and globality, amongst others. Rovelli proposes that our contemporary

physical theories can be arranged in a hierarchical structure in which an increase in

the universality of the theory corresponds to a decrease in the possible attributes that

we can assign to the temporal structure of each theory. Thus various conceptions

of time arising from various physical theories will consist of varying collections of

1I leave to one side independent discussion concerning time in the manifest image.
2In contrast, metaphysical inquiry that proceeds without proper regard for science is labelled

(somewhat pejoratively) neo-scholastic metaphysics.
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temporal attributes; it is this notion of time that I will employ here.

At the core of this project is the authority of science as a guide to the nature

of reality. As beings that have evolved as part of this reality, we have many firm

intuitions that equip us to navigate successfully about the world. Modern science

has taught us, however, that the world about which we navigate occupies a very

small proportion of the universe: not only are we unable to venture to the spatial

and temporal extremities of the universe, but our everyday lives are bereft of direct

experience of its very small and very large scale structure. Thus while we might

think that our natural place as inhabitants of this reality renders our intuitions

finely attuned to the essential composition of the universe, we have today reached a

scope of inquiry in modern physics where we are struck with the realisation that this

is patently not the case. In spite of this realisation, many of our intuitions about

the nature of reality are so engrained that we find it unthinkable that they might

be called into question, or we simply fail to notice the presence of these intuitions

dominating our scientific inquiries. This project explores the possibility that our

intuitions concerning the nature of time are just such intuitions.

Let me turn now to a more detailed overview of the thesis. Part I, consisting of

Chapters 1, 2 and 3, works from the premise that our best insight to the nature of

time is attained through a study of the picture of time that emerges from physics.

The physical theories on which I focus in Part I are theories of mechanics. My goal

in Part I is to explore those aspects of the interpretation and formal mathematical

machinery underpinning each physical theory that we usually identify as time and,

through a consideration of the nature of this temporal structure, to examine and

compare the corresponding picture of time within each theory. It is these pictures

of time that I claim should be treated as our primary guide concerning the nature

of time.

I begin in Chapter 1 with the familiar territory of analytical mechanics, including

the Newtonian, Lagrangian and Hamiltonian formulations; commencing here serves

as a clear introduction to the sort of analysis that I employ throughout Part I. The

chapter begins by setting out the Newtonian picture of reality built upon the meta-

physical notion of time as an external parameter ‘generating’ dynamical evolution;

this is the Newtonian picture of time. Significantly, when we consider the geometric

structure of both the Lagrangian and Hamiltonian formulations of mechanics we

find a novel and interesting picture of reality arising. Despite this, the Newtonian
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picture of time is usually thought to be the appropriate conception of time when

considering the nature of dynamical evolution within the context of these formu-

lations. We return to classical mechanics in Chapter 3 to add more to this story

and also return to the discussion of the Lagrangian and Hamiltonian pictures in a

retrocausal context in Chapter 6.

In Chapter 2 our study of the nature of time in physics is extended in two

ways. Firstly, we move here beyond classical mechanics to consider the temporal

structure of relativistic mechanics. Secondly, it is here that I connect this study with

the philosophical literature concerning the nature of time. I introduce what I call

the traditional metaphysical debate between opposing viewpoints on the essential

features of time. At the core of this debate is whether time can be thought to flow

objectively ; that is, whether we imagine time to be static or dynamic. While much

ink has been spilled debating this issue, I wish to address the problem employing the

doctrine that physics should be the primary guide to the nature of time. To this end,

I set out to examine the way in which considerations of the notion of time in both

special and general relativity impinge on the metaphysical debate. In particular, I

outline the constraints imposed by the temporal structure of relativity theory that

the competing views of time comprising the traditional metaphysical debate must

heed to remain within the bounds of a naturalistic metaphysics.

In Chapter 3 we turn our attention to the temporal structure of both a novel

formulation of relational mechanics and the interpretation of quantum gravity that

it motivates.3 Julian Barbour (1994a,b, 1999) develops a Machian formulation of

general relativity that promotes a particular interpretation of canonical quantum

gravity and then makes the claim that both theories are timeless. I introduce both

of Barbour’s theories, building upon the account of classical mechanics of Chapter 1,

and I challenge his claim of timelessness: first, by identifying two different senses of

timelessness that Barbour is using between his two theories; and, second, showing

that we have reason to be suspicious of the claim that his Machian formulation

of general relativity is in fact timeless. I utilise in this analysis my framework for

characterising time from Chapter 2 to define the essential features of time. This

concludes Part I.

3This chapter has developed from my contribution to the collaborative research paper Baron,
Evans and Miller (2010). I thank my coauthors for the opportunity to reproduce some of this work
in my thesis.
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Part II, consisting of Chapters 4, 5 and 6, is an exploration of the interpretational

difficulties that can arise when we fail to take seriously the doctrine of Part I con-

cerning the nature of time. If our best insight into the nature of time is attained from

the picture of time that emerges from a physical theory, then we must show caution

when attempting to interpret the nonrelativistic quantum mechanical formalism in

terms of the conception of time that fits most naturally in Newtonian mechanics;

that is, the Newtonian picture of time. My aim in Part II then is to explore a

ramification of eschewing the Newtonian picture of time through an examination of

retrocausality as a solution to the interpretational difficulties of quantum mechanics.

I argue that the main objections against including retrocausality in our quantum

picture of reality are themselves built upon the Newtonian picture of time, and thus

do not find immediate support from quantum mechanics itself.

We commence Part II in Chapter 4 where I introduce the formalism of nonrel-

ativistic quantum mechanics alongside a somewhat historical dialectic of the devel-

opment of its interpretation. I pay particular attention to the EPR argument and

Bell’s theorem and focus on the issue of nonlocality that arises in this context. I

claim here that nonlocality creates difficulties for the interpretation of the quantum

formalism due to an insistence on maintaining an overly Newtonian conception of

time. I demonstrate that the introduction of retrocausal influences into the quan-

tum picture of reality provides an action-by-contact explanation of this nonlocality

alleviating this particular interpretational difficulty.4

In Chapter 5 I leave to one side the general project of examining the picture of

time that arises from the formalism of physical theory and construct independent

support for retrocausality through a more philosophical analysis. Much of the dis-

taste surrounding the introduction of retrocausality in quantum mechanics stems

from the intuition that causation must proceed from past to future, and that it is

impossible to change the past. I address this challenge in Chapter 5 and demonstrate

why we should not expect the former intuition to be relevant on an atomic scale and

why we can maintain the latter intuition simply because retrocausality is not about

‘changing’ the past. I thus show that retrocausality cannot be ruled out on analytic

grounds. The key to this argument is recognising that we perceive the world from a

4Some might wish to argue that an action-by-contact explanation by definition provides a local
explanation. This depends upon what one means by locality. Discussion of this point can be found
in Chapter 4, in particular §4.7.
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particularly special vantage point: we are agents embedded in spacetime with a par-

ticular temporal perspective and a particular anthropological history. The picture

of reality that arises from these considerations provides support for retrocausality

as a solution to the interpretational difficulties of quantum mechanics.

In Chapter 6, the final chapter, we consider one of the most significant obsta-

cles for retrocausal approaches to quantum mechanics in the form of the objection

levelled at John Cramer’s (1986) transactional interpretation of quantum mechanics

by Tim Maudlin (2002). The transactional interpretation is a retrocausal model

of quantum mechanics and Maudlin has developed an inventive thought experiment

that he takes to pose a problem not only for the transactional interpretation, but also

for retrocausality in general. I embark on an examination of the transactional inter-

pretation to demonstrate that Maudlin’s objection is indeed a problem for Cramer’s

theory but not a problem for retrocausality. The reason that Maudlin’s objection

fails to invalidate retrocausal theories in general is ultimately because his argument

is grounded in the Newtonian picture of time. Recognising this fact renders the

weaknesses of the transactional interpretation more clearly and exposes explicitly

the way in which an overly Newtonian picture of time might be contributing to the

difficulties we face in constructing a coherent interpretation of quantum mechanics.

The thesis concludes with a Summary in which I give an overview of the main

results.



Part I

Physical Theory and the

Metaphysics of Time

7





Chapter 1

The Picture of Time in Classical Mechanics

We begin with an analysis of the picture of time that arises in the context of different

physical theories. As mentioned in the Introduction, this first part of the thesis takes

seriously the doctrine that modern physics should be treated as the primary guide

to the nature of time. The goal here then is to explore the nature of time according

to physics. There are three major parts to this analysis. The first part, which is

the concern of this chapter, is an exploration of time in classical mechanics, which

I characterise through the formal structure of Newtonian mechanics, Lagrangian

mechanics and Hamiltonian mechanics. The aim here is to become better acquainted

with analyses of the formal mathematical structure comprising a physical theory

beginning with some of the more familiar classical physical theories. The second

part, in the next chapter, is an analysis of the picture of time that arises from

the geometrical structure of relativity theory, both the special and general theories.

I also introduce at this point the traditional philosophical issues concerning the

metaphysics of time. The goal of this analysis is to show that the picture of time

that arises in relativity theory provides constraints on the metaphysical possibilities

for time. The third and final part of this examination, in Chapter 3, addresses

the picture of time that arises from both Julian Barbour’s Machian formulation

of general relativity and his interpretation of quantum gravity. These cases are

particularly interesting due to Barbour’s claim that these theories are timeless. I

examine here the extent to which Barbour’s interpretation of general relativity and

quantum gravity can be seen as justifying the conclusion that we should think of

the scientific image of the world as timeless.

9



10 The Picture of Time in Classical Mechanics

1.1 Introduction

The aim of this chapter is to explore what I call the Newtonian picture of time. In

short, we can think of the Newtonian picture of time as the notion that time is an

independent and external parameter that generates dynamical evolution in physical

systems. We begin in §1.2 with an exploration of the picture of time in Newtonian

mechanics. I present an argument that the Newtonian conception of time can be

seen as intimately linked with the mathematical formalism that underpins Newton’s

theory of mechanics: the calculus. We then move beyond Newton’s formulation of

mechanics to consider the tradition of analytical mechanics : a refined mathematical

and geometrical formulation of classical mechanics. We first consider Lagrangian

mechanics in §1.3 and then Hamiltonian mechanics in §1.4. In both cases I introduce

the formal geometric structure of the theory and explore the picture of reality that

arises in the context of each. What we find in each case is that the geometric

structure of each theory provides a novel and interesting picture of reality in contrast

to the Newtonian picture. Despite this, the Newtonian picture of time remains

steadfastly attached to the picture of reality that arises from classical mechanics;

this issue is discussed in §1.5. Let us begin with an introduction to Newtonian

mechanics.

1.2 Time in Newtonian mechanics

In 1687, Isaac Newton (1962) published the first edition of his Philosophiæ Naturalis

Principia Mathematica, in which he sets out, amongst other things, his theory of

gravitation. The theory that is presented in the Principia is built upon Newton’s

famous three laws of motion as well as an adherence to mathematical principles in

describing the motion of bodies through space and time. The resulting dynamical

picture we call Newtonian mechanics and the goal of this section is to explore this

dynamical picture of reality.

The modern geometrical (spacetime) formulation of Newtonian mechanics has

been developed in more recent times to emphasise the similarities and differences

between it and relativistic mechanics. Thus the mathematical formalism relevant to

the temporal structure of Newtonian mechanics in its modern geometrical formu-

lation is not open to interpretation in the same way as the formalism of the other
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physical theories considered in Part I since it is motivated quite explicitly by the

metaphysical notion of time at its core. It would be rather injudicious then to claim

this formulation of Newtonian mechanics as an authority when considering Newto-

nian temporal structure. The mathematical formalism that we do find to underlie

the metaphysical notion of time at the core of the Newtonian picture of reality is

simply the calculus. I present the modern geometrical formulation of Newtonian

mechanics below solely for the purposes of completeness and for comparison with

the formalism introduced in the remainder of this part of the thesis. Before we

consider this formalism, however, let us begin by considering the picture of time at

the heart of Newtonian mechanics.

In the first few pages of the Principia Newton sets out his metaphysical view of

time, space, place and motion, distinguishing between each concept as understood

as “absolute, true, and mathematical” on the one hand, and “relative, apparent,

and common” on the other. Concerning time, Newton famously says the following:

Absolute, true, and mathematical time, of itself, and from its own nature,
flows equably without relation to anything external, and by another name is
called duration: relative, apparent, and common time, is some sensible and
external (whether accurate or unequable) measure of duration by the means
of motion, which is commonly used instead of true time; such as an hour, a
day, a month, a year. (1962, p. 6)

This picture of absolute time has come to be one of the defining features of Newton’s

picture of reality. Although absolute time is often labelled an extraneous metaphys-

ical assumption over and above the fundamentals of Newtonian mechanics (most

notably by Mach (1960)), Arthur (1995) suggests that it is possible to understand

absolute time as an integral element of Newton’s interpretation of the mathematical

formalism which underpins the formulation of his theory: the calculus.

Central to the Newtonian picture is Newton’s theory of gravitation. The the-

ory posits that the gravitational force that one body exerts on another is inversely

proportional to the square of the distance between them. Thus if the dynamical

behaviour of a system is completely determined by the gravitational forces between

a collection of interacting bodies, then the key to determining this behaviour is the

idea that a physical system can be described as a series of instantaneous spatial

configurations embodying these relative distances. This then is the core of the New-

tonian picture: a physical system is comprised of a collection of interacting bodies
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(which can be treated as point particles of corresponding mass) that each have a

definite spatial position at every instant of time. The dynamical behaviour of a New-

tonian physical system is determined by the net force that acts on each body; forces

are responsible for changes in momentum. To describe such dynamical behaviour

requires the attribution of kinematical properties, such as velocity (momentum), to

these interacting bodies, and to achieve this one needs to add to this picture an

account of what it means for such a property to have an instantaneous value. This

story, of course, is what is provided by Newton’s calculus.

A geometrical relationship between a mathematical curve, its tangents and the

area it bounds was well known in the 17th century (Boyer, 1970). It was also known

that the velocity of a body in constant motion can be established mathematically

via a ratio of a body’s displacement to the time taken for the body to undergo

this displacement, which is just the gradient of the straight line representing the

motion of that body over time. Establishing a relationship between an instantaneous

value of velocity on a curve, however, is problematic with respect to the indivisible

quantities underlying the geometrical method. By extending this methodology and

imagining such mathematical curves to be continua comprised of infinitesimals, the

gradient at a point on the curve, and hence the instantaneous value of a kinematical

variable fitting this mathematical description, can be determined theoretically. This

extension to the geometrical method, known as the calculus, is a central feature of

Newton’s description of reality according to mathematical principles.

The conceptual leap involved in developing the calculus, and one which is of most

importance for the present discussion, leads us from the geometrical interpretation

of the mathematical formalism of the calculus to what we will call, following Arthur

(1995), the kinematical interpretation: a mathematical curve is the trace of a moving

point. Adopting this interpretation of the calculus can be seen as an attempt to

find a physical grounding to the mathematically abstract notion of the infinitesimal,

which leads us from the instantaneous to the continuous. If the motion of a body

through space were described mathematically by a curve representing displacement

as a function of time, then there exists a correspondence between, on the one hand,

the mathematical trace of a moving point and, on the other, the motion of a body

through space in a time that we conceive as the trace of a continually moving

instant. Just as we can imagine a constant monotonic parameter as generating

a parametric curve, the kinematical interpretation of the calculus suggests that
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a constant monotonic time (in other words, an equably flowing time), generates

the motion of bodies. This reading of the calculus emphasises that time must be

unidirectional and acts as a parametric function on configurations of bodies.

Consider further that it must be the case that any empirical temporal measure

of the dynamical behaviour of a system is relative to some given local motion that

is putatively taken to be reliably periodic; that is, relative to a clock. Since there is

no way to know whether any “relative time” such as this actually “flows equably”,

we are led to the conclusion that some “absolute”, equably flowing time must be

underlying physical dynamical systems (if we are to take this kinematical interpreta-

tion of the calculus seriously). Arthur’s kinematical interpretation suggests a quite

plausible justification for Newton’s stubborn insistence on the metaphysical notion

of absolute time in the Principia and also in his later works and correspondence.

The Newtonian picture of reality is built upon instantaneous configurations of

bodies in an absolute spatial framework whose dynamical behaviour is determined by

forces that act to change the momentum of these bodies with respect to an equably

flowing and absolute time. This picture compels one to interpret the instantaneous

state of a physical system as being in some sense ‘generated’ by its antecedent state,

and also itself ‘generating’ the subsequent state. Let us call this Newtonian picture

of determination the generative picture. The explicit adherence to mathematical

principles in describing physical systems contributes to the view that reality evolves

mechanistically in time along these lines. This is a crucial element of the Newtonian

picture of tie, and one which will be in our sights for the remainder of this thesis.

For now let us turn our attention to the modern geometrical formulation of

Newtonian mechanics built upon the metaphysical notion of absolute time. As

mentioned above, this formalism is presented here to parallel the remainder of the

analysis of Part I, especially our concern with the four dimensional structure of

relativity theory in Chapter 2.1

1The exposition here mostly follows Friedman (1983) and Rodrigues, de Souza and Bozhkov
(1995). See also Schutz (1980) for a great introduction to the geometry employed throughout the
remainder of this chapter and beyond.
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1.2.1 The spacetime formulation of Newtonian mechanics

Newtonian spacetime can be represented by a differentiable, four dimensional man-

ifold, M4, where each point p ∈ M4 is interpreted as an event in spacetime. We

define on M4 an affine connection, D, with the property that it determines a cur-

vature tensor field that vanishes for all p ∈ M4; we say that Newtonian spacetime

is flat. We define further a one-form field, dt : TM4 → R that is the gradient of a

continuous, differentiable time function2, t : M4 → R; we represent absolute time

by the one-form field dt. A vector up ∈ TpM4 is said to be spacelike just in case

dtp(up) = 0 and timelike just in case dtp(up) 6= 0, whereby it is future directed if

dtp(up) > 0 and past directed if dtp(up) < 0. In this way, dt defines a ‘direction’ to

absolute time in the tangent bundle TM4. The number t(p) represents the time for

each event p ∈ M4 and |t(q) − t(p)| represents the temporal interval between any

two events p, q ∈M4; we say two events are simultaneous if t(p) = t(q).

For each p ∈ M4, the set Sp = {q ∈ M4, t(q) = t(p)} of all events simultaneous

with p defines a three dimensional submanifold ofM4 (the set of all tangent vectors

to this set, TpSp, coincides with the set of all spacelike vectors at p). We can ensure

that each submanifold is a Euclidean (flat) space, E3, by requiring compatibility

between the one-form field, dt, and the affine connection, D: D(dt) = 0. A metric

tensor can be defined on M4 which collapses into the usual Euclidean metric when

restricted to the set of spacelike vectors at p for all p ∈ M4. Thus absolute time

and the affine connection give a unique foliation of the Newtonian spacetime mani-

fold into a continuous class of three dimensional Euclidean submanifolds which we

interpret as the instantaneous spatial configurations at the core of the Newtonian

picture.

Rather than M4, we could have represented the structure presented thus far as

a fiber bundle E3R whose base space is absolute time and whose fibers are three

dimensional spaces. This particular fiber bundle structure emphasises the fact that

there is no natural relation between points of space at different times (points on

different fibers) (Schutz, 1980); we must insert such a relation by hand. We do so

by introducing a vector field V such that dt(V ) = 1 and D(V ) = 0; the curves γ

defined by V (i.e. those γ along which Tγ = V ) are timelike by the former condition

2In fact, dt represents the gradient of a whole set of time functions {t+b} for arbitrary constants
b.
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and are geodesics by the latter. We let these curves determine the trajectories that

define absolute rest, such that two events p, q ∈ M4 occur at the same place in

space if and only if they lie on the same curve γ. This yields a notion of absolute

space in Newtonian spacetime. We interpret any future directed geodesic curve as

a possible spacetime trajectory for a free body in Newtonian mechanics, and any

future directed timelike curve as a possible trajectory for any body in Newtonian

mechanics. The trajectory of every Newtonian body is parametrised by absolute

time.

Newton’s Law of Inertia3 is a consequence of the connection, D: the trajectories

of free bodies satisfy the geodesic equation of motion DTγTγ = 0, which, in an

inertial coordinate system xi, takes the simple form

d2xi
dt2

= 0. (1.1)

Newton’s second law of motion states that the change in a body’s momentum with

respect to time is proportional to the net force acting upon that body; that is,

F =
dp

dt
, (1.2)

where the vector F represents the force acting on the body and p = mẋ represents

the momentum, with m representing the mass of the body and ẋ its instantaneous

velocity. The dynamical behaviour of a physical system of N bodies is thus described

by a system of 3N second-order differential equations and, given the instantaneous

position and velocity of each of these bodies, Newton’s second law comprises a well-

posed initial value problem that provides a unique description of the subsequent

behaviour of the system in question.

The absolute temporal structure of Newtonian spacetime together with Newton’s

Law of Inertia imply that a free body will travel equal distances in equal intervals of

time and, thus, the “equable flow” of absolute time is ensured. It is also apparent

from the definition of dt that absolute time is unidirectional so long as t is mono-

tonic, but whether time flows towards the past or towards the future is a matter

3In Newton’s words:

Every body continues in its state of rest, or of uniform motion in a right line, unless
it is compelled to change that state by forces impressed upon it. (1962, p. 13)
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of definition; Newtonian mechanics is time reversal invariant. In addition, no three

dimensional submanifold E3 ⊂ M4 can be considered special in any sense; all Eu-

clidean ‘slices’ of Newtonian spacetime are considered to be on an equal footing.

These elements contribute to the Newtonian picture of time as an external param-

eter with a constant flow that determines evolution in a generative fashion. Let us

now consider the nature of time in Lagrangian mechanics.

1.3 Time in Lagrangian mechanics

Newtonian mechanics motivates a picture of reality in which the dynamical be-

haviour of a body is governed by the sum total of forces to which it is subject. This

conceptual framework for describing physical systems, however, is limited in practice

since many physical systems are characterised by complicated ‘constraint’ forces that

compromise the tractability of dynamical models4, especially since ‘force’ (as well

as ‘momentum’) is a vectorial quantity (having both magnitude and three dimen-

sional direction). A more general schema for modelling dynamical systems, which

we call Lagrangian mechanics, was developed by Joseph-Louis Lagrange (1853) in

his 1788 work Mécanique Analytique. Lagrange achieves this generality in his system

of mechanics by replacing the vectorial quantities underlying Newtonian mechanics

with scalar quantities relating to the energy of the physical systems in question; this

enables the mathematical formalism describing dynamical behaviour to be indepen-

dent of the coordinate system required for vectorial descriptions.

As calculational tools for determining or predicting the behaviour of dynamical

systems, Newtonian and Lagrangian mechanics yield equivalent empirical results

(despite differing in the simplicity with which the two treatments handle complicated

systems). However, the shift in focus from vectorial force in Newtonian mechanics

to scalar energy in Lagrangian mechanics creates scope for divergent physical inter-

pretations of the formalism of each theory, especially with respect to the picture of

time. The goal of this section is to explore the picture of time that arises from the

formalism of Lagrangian mechanics. Let us begin by motivating Lagrange’s original

formulation of his mechanics.5

4Think of the forces constraining the motion of a bead sliding down a helical wire; we call these
forces kinematical constraints.

5The formalism in this section and the next is taken mostly from Lanczos (1970) and Belot
(2007).
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Consider once again the initial value problem that comprises Newton’s second

law of motion (1.2). We noted above that this law reduces to a set of 3N second-order

differential equations for a system of N bodies in three dimensional space. We can

thus completely describe the motion of these bodies using 6N independent variables,

and we take these in Newtonian mechanics to be the Cartesian position coordinates,

xi, and their first time derivatives, the velocities, ẋi. In Lagrangian mechanics

we move to a description of dynamical behaviour in terms of a set of generalised

coordinates, qi, and their first time derivatives, the generalized velocities, q̇i; we

do so by stipulating general transformation equations that express the Cartesian

coordinates as arbitrary functions of the generalised coordinates. The generalised

coordinates are often chosen to embody any kinematical constraints on the system.

Consider also at this point d’Alembert’s principle: the total virtual work, δW ,

done by an arbitrary virtual displacement of a body in three dimensional space,

δx, which is impelled to move by an impressed force, F, augmented by the inertial

force of that body’s mass, mẍ, is zero (if the virtual displacement is in harmony

with any kinematical constraints). The essence of d’Alembert’s principle is that

the dynamical behaviour of a body can be modelled by a static system in which

there is equilibrium between impressed and inertial forces; the work done by the

inertial forces associated with the motion of a body balances the work done by the

corresponding impressed forces. A sum over bodies gives d’Alembert’s principle for

a many-body system:

δW =
∑
i

(Fi −miẍi) · δxi = 0. (1.3)

D’Alembert’s principle is equivalent to the Newtonian equations of motion. If we

now apply the above transformation equations between the generalised and Carte-

sian coordinates, we can rewrite the virtual displacement δx, impressed force F and

inertial force mẍ in terms of the generalised coordinates. This yields the Newtonian

equations of motion in an arbitrary coordinate system.

Moreover, we can move from the vectorial quantities F and ẍ to the scalar quan-

tities, V , potential energy and, T , kinetic energy so long as we can represent force

as the gradient of a scalar potential energy function, F = −∇V , and by employing

the relation between the sum of inertial forces and the kinetic energy of the system.

When both of these relations are expressed as functions of the generalised coordi-
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nates and substituted into (1.3), we find (after a little rearranging) that a system

of second-order differential equations arises from d’Alembert’s principle as a con-

sistency constraint on the possible dynamical behaviour of a mechanical system.6

These constraint equations, known as the Euler-Lagrange equations, have as their

argument a scalar function L = T − V known as the Lagrangian:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0. (1.4)

As it happens, this derivation of the Euler-Lagrange equations conceals the fact

that the two balancing forces of d’Alembert’s principle, the impressed forces and the

inertial forces, are very different in their nature (Lanczos, 1970, p. 111). The work

done by the impressed forces is a function of the potential energy only, which is a

characteristic of a system as a whole, while the work done by the inertial forces is

a sum over the kinetic energy of each individual body of the system. In this way,

we interpret the Euler-Lagrange equations thus derived as constraint equations that

a system must obey at each moment in time, as opposed to a global constraint on

the dynamical behaviour of the system. There is, however, a more powerful method

for deriving (1.4) that licenses an interpretation of the Euler-Lagrange equations as

just such a global constraint.

We can consider the work done by both the impressed and inertial forces on an

equal footing if we integrate the expression for the work done, (1.3), over a defi-

nite interval of time. This move converts d’Alembert’s principle into a variational

principle of mechanics; this principle is known as Hamilton’s principle. It can be

shown that when we integrate δW between two temporal limits, ta and tb, provided

we completely specify the state of the system at the temporal boundaries, the ex-

pression for the work done simplifies into a variation of a definite integral of the

Lagrangian function from above:∫ tb

ta

δWdt = δ

∫ tb

ta

L dt = 0. (1.5)

It is a general mathematical result in the calculus of variations that the necessary

and sufficient condition for an integral such as this to be stationary is that the Euler-

Lagrange equations, (1.4), be satisfied. Thus we find that we are able to interpret the

6This derivation assumes that there are no dissipative forces at play in the system.
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Euler-Lagrange equations derived from Hamilton’s principle as a global constraint on

the dynamical behaviour of a system. To assist in understanding exactly what this

means for the physical picture of Lagrangian mechanics, let us consider Hamilton’s

principle geometrically.

Consider the 3N dimensional manifold, Q, that is coordinatised by the gener-

alised coordinates qi of a system of N bodies. Each point in Q represents a possible

set of values for the qi, which together specify a configuration of the system; thus we

call Q configuration space. Since the Lagrangian is a function of both the potential

energy, which takes configurations as inputs to give a scalar, V : Q → R, and the

kinetic energy, which takes both the generalised position and velocities as inputs to

give a scalar, T : TQ→ R, the Lagrangian is thus a scalar function on the tangent

bundle TQ, L : TQ→ R. The dynamical behaviour of a physical system can be de-

scribed as a curve γ through configuration space; for some closed interval [a, b] ∈ R,

γ : [a, b] → Q with endpoints γ(a) and γ(b). Each curve is parametrised by time,

t, with γ(a) the configuration of the system at time ta and γ(b) the configuration

of the system at time tb. At each point along the curve γ(p), p ∈ [a, b], there is

a definite value for the Lagrangian L
(
qi(t), q̇i(t)

)
(qi, q̇i ∈ Tγ(p)Q) and thus the La-

grangian function is time integrable along the curve from the endpoints ta and tb.

This integral, i.e. the definite integral of L in (1.5), we call the action.

We can now state Hamilton’s principle in the following way: physically realisable

dynamical behaviour is described by curves in configuration space for which the

action becomes stationary for arbitrary possible variations of the configuration of

the system, provided the initial and final configurations of the system are prescribed.

Thus while there might be many curves between two points in Q, only one path

(given a suitable topology) will be a critical (or extremal) point of the action. The

curves picked out by Hamilton’s principle are just those curves that satisfy the

Euler-Lagrange equations (Belot, 2007, p. 145). Significantly, if the initial and final

configurations of the physical system are not completely specified, we cannot derive

(1.5) and thus Hamilton’s principle fails.

The picture of reality that follows from the formalism of Lagrangian mechanics is

thus rather different from the Newtonian picture we considered above. Rather than a

set of forces that act on the individual bodies of an instantaneous configuration that

affect a change in momentum with respect to time for each body, and thus generate

the dynamics of the system, we have a global principle of critical action that acts on
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the set of curves between two points in the configuration space of the system which

determines dynamical behaviour. Each individual body of the system no longer has

the sort of significance it had in Newtonian mechanics; the physical system is treated

as a whole in Lagrangian mechanics. Moreover, the Lagrangian formalism expands

the extension of “the physical system”: the objects to which Hamilton’s principle

refers are curves in configuration space and these curves, parametrised by time, are

four dimensional ‘stacks’ of the three dimensional configurations (or, equivalently,

the configurations are three dimensional ‘slices’ of four dimensional curves). Since

physically realisable dynamics is defined by a stationary action, and the action

is a property of a four dimensional curve, the dynamical behaviour of a physical

system according to Lagrangian mechanics is determined across a four dimensional

structure. More specifically, both the initial configuration of the system and the

final configuration of the system are equally influential in determining dynamical

behaviour. Given the initial and final configurations, the single scalar function L
determines the entire dynamics of the system.

The differences between the Lagrangian and Newtonian pictures is obscured by

the fact that each formalism yields equivalent results concerning the description of

physical systems (at least in those cases where both are applicable). To emphasise

these differences once more, recall the interpretation of Newtonian mechanics above

in which an instantaneous configuration of a physical system (with specified veloci-

ties) can be thought as in some sense generated by its antecedent state and also as

generating the subsequent state. According to such a view nature can be imagined

as a linear computational machine which takes some instantaneous state of a system

as input and gives the state of the system at the following instant as output. In

contrast, the Lagrangian formalism requires two temporal boundary conditions to

produce a solution; thus the initial data of Lagrangian mechanics would render such

a linear machine underdetermined, with an initial configuration providing only half

the data required. Nature according to the Lagrangian picture of reality is more like

a four dimensional analogue to the three dimensional determination of an electric

field between two charged plates: once the charge distribution of the two plates

is specified, the electric field is determined by these distributions and the laws of
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electrostatics.7

Despite the differing pictures of the dynamical structure underpinning our re-

ality between Lagrangian and Newtonian mechanics, there does not seem to be a

very significant departure in the ordinary interpretation of time in the Lagrangian

schema from the Newtonian picture of time. Time in Lagrangian mechanics (the

parametrisation of the physically realisable trajectories) is imposed as an external,

constant monotonic parameter that generates dynamical evolution. Thus Newton’s

appraisal that “time, of itself, and from its own nature, flows equably” remains

consistent with picture of time in the Lagrangian schema. The most significant dif-

ference, however, when compared to the Newtonian picture of absolute time is that

any such ‘flow’ of Lagrangian time is more naturally thought to be constrained in

a rather interesting and novel way: at two temporal boundaries. We discuss this

further in §1.5; for now, though, let us consider time in Hamiltonian mechanics.

1.4 Time in Hamiltonian mechanics

Although the Lagrangian formulation of Newtonian mechanics greatly simplifies the

mathematical description of physical systems subject to kinematical constraints, the

equations of motion which describe dynamical behaviour, the Euler-Lagrange equa-

tions, remain second-order differential equations. The Irish mathematician William

Rowan Hamilton (1834), in his publication On a General Method in Dynamics, con-

structs an elegant reformulation of the Lagrangian equations of motion as a set of

first-order differential equations. This new schema for describing the dynamical be-

haviour of physical systems we call Hamiltonian mechanics. The goal of this section

is to explore the picture of time that arises from the Hamiltonian formalism.

Consider again the Euler-Lagrange equations (1.4). We are able to eliminate the

second order derivative in the first term of this expression simply by defining a set

of new variables,

pi =
∂L
∂q̇i

. (1.6)

We call pi the generalised momenta (since in Cartesian coordinates ∂L
∂q̇i

= mẋi).

7A clutch of interesting issues arise at this point concerning the nature of causality and the
four dimensional structure of reality when one looks a little closer at terms such as “generate” and
“determine”. We will meet these issues again in more depth in Part II, particularly Chapter 5.
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With the introduction of this new set of variables, the Euler-Lagrange equations

take on a particularly simple form,

ṗi =
∂L
∂qi

. (1.7)

Thus where we once had n second-order equations (1.4) (corresponding to 3N gen-

eralised coordinates describing an N -body system), we immediately obtain 2n first-

order equations (1.6) and (1.7). Moreover, by introducing the new set of variables

in this way, we are now able to apply a Legendre transformation to the Lagrangian

function using these new variables.8 Doing so defines a new function, H, which we

call the Hamiltonian,

H =
n∑
i=1

piq̇i − L. (1.8)

Just as L = T − V , (1.8) renders H = T + V . Since we are able to solve (1.6) for

the q̇i, we can express the Hamiltonian purely as a function of the qi and pi. The

Legendre transformation then allows us to reexpress (1.6) and (1.7) as a function of

H:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1.9)

These equations are known as Hamilton’s equations, or the canonical equations.

Hamilton’s equations are completely equivalent to (1.6) and (1.7); all we have done

here is define a new set of variables and rewrite the Euler-Lagrange equations of

motion in a novel mathematical form. Nonetheless, since we can express H purely

as a function of the qi and pi, Hamilton’s equations isolate the derivatives with

respect to time to one side of the equations, thus greatly simplifying the problem of

determining dynamical behaviour.

We have seen here that we can derive Hamilton’s equations through a Legendre

transformation of the Euler-Lagrange equations, which themselves arise as a con-

straint of a variational principle (1.5). The duality of the Legendre transformation

suggests, however, that Hamilton’s equations need not be thought a mere reexpres-

sion of the more primitive Euler-Lagrange equations. In fact, Hamilton’s equations

can also be derived themselves as constraint equations of this variational principle.

We can use (1.8) to construct the variational principle (1.5) as a function of the

8We also require that we can rewrite (1.6) to get q̇i(qi, pi).
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Hamiltonian,

δ

∫ tb

ta

[
n∑
i=1

piq̇i −H
(
qi(t), pi(t)

)]
dt = 0; (1.10)

the new action integral we call the canonical integral. It just so happens that the

new variables we have introduced into the Hamiltonian schema pi, while defined as

functions of the qi and q̇i, behave under variation as if they were a second set of

independent variables. This means that we can require of our new variational prin-

ciple over the Hamiltonian function that it assume a stationary value for arbitrary

variations of both the qi and pi. The constraint equations that arise from this new

variational problem are just Hamilton’s equations, since we have twice the number

of independent variables and thus twice the number of differential equations con-

straining the dynamics; but, of course, now these constraint equations are first-order

differential equations. Moreover, the form of the canonical integral makes apparent

that each qk is associated with its own pk, and for this reason the pk can be referred

to as the conjugate momenta.

The introduction of a new set of independent variables is the significant move

that sets apart the Hamiltonian picture of reality; let us consider this picture through

the geometric structure of the Hamiltonian formalism. To begin with, we can char-

acterise the generalised momenta as a geometric object in terms of the Lagrangian

configuration space Q. Since we define pi = ∂L
∂q̇i

, under a change of coordinates on Q,

we find that the momenta transform as a covariant quantity. Thus for each position

q ∈ Q we can represent the momentum of a physical system as a one-form on Q

that lives in the cotangent space, p ∈ T ∗qQ. The cotangent bundle T ∗Q is then the

set of all pairs (q, p) with q ∈ Q and p ∈ T ∗qQ; we define Γ := T ∗Q and call this

the phase space. This space is the arena in which Hamiltonian mechanics describes

dynamics. Like the tangent bundle TQ, the cotangent bundle T ∗Q has dimension 2n

(6N), which in this case corresponds to n position coordinates, qi, and n momentum

coordinates, pi.

The coordinates qi and pi are not unique. While it is the case that we are able

to transform the generalised coordinates that describe a physical system arbitrarily,

it is not the case that any arbitrary coordinates will yield an expression for the

Hamiltonian that renders an action integral in the form of the canonical integral,

and thus it is not the case that any arbitrary coordinates will generate Hamilton’s

equations of motion. It turns out that requiring of any coordinate transformation
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that it preserve the form of the canonical integral (and thus Hamilton’s equations)

is equivalent to requiring the existence of a coordinate independent one-form, θ, on

Γ. Transformations of this sort we call canonical transformations, and we call θ

the canonical one-form. The canonical one-form, as a one-form on Γ, lives in the

cotangent space T ∗(Γ) and is a real valued function on vectors in the tangent bundle

of the phase space; θ : T (Γ) → R. By taking the exterior derivative of the canoni-

cal one-form, we define the canonical two-form, or symplectic form, on Γ, ω = dθ,

which endows phase space with a particular geometric structure known as a sym-

plectic structure; (Γ, ω) defines a symplectic manifold. Thus we find that dynamical

behaviour as described by Hamilton’s equations is encoded in the geometry of the

cotangent bundle of the configuration space Q.

The symplectic form, ω : T (Γ)×T (Γ) → R, can be cast in a role on phase

space similar to the role that a metric plays on a Riemannian manifold: ω provides

an invertible one-to-one mapping between vectors in T (Γ) and one-forms in T ∗(Γ).

This is significant for our current purposes for the following reason. Recall that the

Hamiltonian, H, is a scalar function of the generalised coordinates and momenta;

H : (q, p) ∈ Γ → R. Thus the gradient of this function, dH, is a one-form on Γ

living in T ∗(Γ). The symplectic form ω and the one-form dH then implicitly define

a unique vector field XH on the phase space: ω(XH , ·) = dH.

All we have done here is provide a novel reformulation of the Lagrangian formal-

ism and we find ourselves waist deep in geometric structure. Let us begin to unpack

this geometry with one eye on the Hamiltonian picture of reality we wish to unearth.

Just as we imagine a point in the configuration space Q as representing one possible

three dimensional spatial configuration of a physical system, we likewise imagine a

point in the phase space T ∗Q as representing a possible three dimensional config-

uration with a possible set of momenta associated with each body of the system.

Thus we can think of phase space as a space of possible initial data for a dynamical

problem of Newtonian mechanics. The Hamiltonian function H = T + V can be

thought straightforwardly to provide the total energy of a physical system at one

of these initial data points. The vector field XH generates an R-action, and thus

a flow {Φt}, on the phase space such that, given a point (q0, p0) ∈ Γ, there is a

unique integral curve γ(q0,p0) passing through that point. Since the vector field XH

is determined by the gradient of the Hamiltonian dH (which encodes information

about the energy of a system) and the symplectic geometry derived from ω (which
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embodies Hamilton’s equations of motion) the integral curves of XH describe the

physically realisable trajectories that a physical system can trace through the phase

space; these trajectories are simply the solutions to Hamilton’s equations. Each Φt

implements time evolution of some set of initial data: Φt maps a particular state of a

physical system to the state into which it dynamically evolves after time t. Thus the

triple (Γ, ω,H) completely specifies the dynamical behaviour of a physical system.

The Hamiltonian formulation of mechanics is formally equivalent to both the

Lagrangian and Newtonian formulations (in those cases where each is applicable).

However, the picture of reality that arises from Hamiltonian mechanics differs ever

so slightly from the Lagrangian picture. In both cases, time enters the picture as

the parameter of integration in the variational principle. The significance of the

variational principle in the Lagrangian picture is to isolate those paths through

configuration space that represent physically realisable trajectories for physical sys-

tems. Time in the Lagrangian picture is embodied in the parametrisation of these

paths, and this parametrisation is constrained by the two temporal endpoints. In

comparison, the variational principle in the Hamiltonian picture is responsible for

the symplectic geometry of phase space and it is this geometry that ensures the

integral curves of the Hamiltonian vector field correspond to physically realisable

trajectories. Time in the Hamiltonian picture is again embodied in the parametri-

sation of these curves, although in this case the parametrisation is constrained by

the flow {Φt} generated by XH . While the interpretation of the points (q, p) ∈ Γ

as initial data points for a dynamical problem of Newtonian mechanics suggests a

picture of reality for Hamiltonian mechanics that is similar to the Newtonian picture

of reality, where each instantaneous configuration generates the next in turn, the

fact that temporal evolution is constrained by XH , which is ultimately a function

of the variational principle (1.10), indicates that the Hamiltonian picture of reality

also borrows elements of the Lagrangian picture, where the dynamical behaviour of

a physical system is represented within a four dimensional stack of configurations.9

9There is a formal equivalence between solutions to the variation problem in Lagrangian con-
figuration space and the symplectic geometry (Γ, ω) (Belot, 2007, p. 146). We can construct a
space, S, in which each point corresponds to a particular path in the Lagrangian configuration
space with stationary action. This correspondence can be employed to coordinatise S, and thus
give S a manifold structure with the same dimension as TQ. Moreover, it can be shown that there
exists a symplectic two-form on S and that it follows from this that S paired with this symplectic
two-form is a symplectic geometry isomorphic to (Γ, ω).
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One might ask at this point, however, whether we could dilute this variational

flavour of the Hamiltonian schema by taking Hamilton’s equations as basic. Since

the Legendre transformations are completely symmetric there is no requirement

that we must take the Euler-Lagrange formulation of mechanics as primary; we

have seen above that we can formulate Hamilton’s equations directly without the

Lagrangian equations nor the Legendre transformations. However, I emphasise that

to do so we must produce a new action integral in terms of an extended set of

independent variables and subject it once again to a variational principle (1.10);

Hamilton’s equations become the conditions for a stationary action integral under

arbitrary variations which are once again constrained by initial and final boundary

conditions. Regardless then of how we might construct the geometry of Hamiltonian

phase space, we find that our bedrock consists of a variational principle.

Once again, despite yet another interesting variation of the picture of dynamical

structure underpinning our reality, there is no real departure in the ordinary inter-

pretation of time in the Hamiltonian schema from the Newtonian picture of time.

Time in Hamiltonian mechanics (again, the parametrisation of the physically real-

isable trajectories) is imposed as an external, constant monotonic parameter that

generates dynamical evolution. The flow of this parameter again remains equable,

but in this case the Hamiltonian flow is constrained by the geometry of phase space

which encodes Hamilton’s equations. Let us address these differing pictures of time

in more detail.

1.5 The Newtonian picture of time

The picture of reality that arises from Newtonian mechanics portrays time as an

independent and external parameter that generates dynamical evolution in physical

systems in step with its equable flow. The nature of Newtonian determination

compels us towards a generative picture of reality. The combination of these views

is what I have called the Newtonian picture of time. While this Newtonian picture

is in some sense crucial to understanding the Lagrangian and Hamiltonian pictures

of reality, in another sense there is something a little unnatural about imposing it

on the Lagrangian and Hamiltonian schema. Let us consider first the Lagrangian

schema.

In the Lagrangian schema dynamical behaviour is determined by a variational
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principle containing an action integral constrained at two temporal endpoints. Thus

given the initial and final configuration of a particular physical system, the solution

to the variational problem provides a sequence of configurations through which a

physical system must pass to evolve from the initial to the final state. The temporal

structure of the Lagrangian schema is built upon the action integral: not only does

this integral require stipulation of the time at which the system is in both the initial

and final configurations, we must also impose a constant monotonic parameter of

integration that we identify as time. Thus time in the Lagrangian schema is explicitly

an external parameter with an equable flow. In this sense, the picture of time in the

Lagrangian schema is like Newtonian time.10

However, the nature of the variational problem of Lagrangian mechanics indicates

that the Lagrangian picture is in a sense at odds with the Newtonian picture of

reality as a linear generative computational machine. While it is a brute fact of the

Lagrangian configuration space that it is possible in principle to uniquely specify a

physically realisable trajectory given data consisting of a single configuration with

corresponding velocities (and thus data at a single time), it seems unnatural to

imagine the Lagrangian formalism as suggesting a picture of reality as a ‘black

box’ data processor embodying the dynamical laws of nature that takes the present

time instant as input and delivers the next time instant in sequence. Instead the

Lagrangian conception of determination has a teleological nature: the evolution of

a physical system is determined by fixed boundary conditions at both temporal

endpoints. Taking this Lagrangian picture seriously would jeopardise this element

of the Newtonian picture of time. (In Part II we will connect this Lagrangian picture

with the nature of retrocausality.)

Although we find scope to compose a novel conception of time from the La-

grangian picture, the Newtonian picture of time remains firmly attached to its usual

interpretation. For the most part this is because we can recover the Newtonian pic-

ture from the Lagrangian formalism. Using Hamilton’s principle we can obtain the

Euler-Lagrange equations which under appropriate conditions will yield the Newto-

nian laws of motion. Given these equations we are free to imagine the evolution of

the system as generated by the laws of motion. The significance of the route we must

take to derive these equations (from a variational principle containing an action in-

10In Chapter 3 we will meet a formulation of classical mechanics that is similar to the Lagrangian
schema except it does not require the imposition of an external time with constant flow.
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tegral constrained at two temporal endpoints) appears to be overlooked within the

usual interpretation, perhaps because the Lagrangian formulation of mechanics has

largely been viewed as merely a mathematical trick that simplifies the calculations

in dynamical problems. Thus despite the potential for a novel and interesting con-

ception of time, the standard reading of the Lagrangian formalism appears wedded

to the Newtonian picture of time.

A similar story can be told with respect to the Hamiltonian picture of reality.

The temporal structure of the Hamiltonian schema is built into the geometry of the

phase space. The dynamical behaviour of physical systems is determined by the

vector field XH which, recall, is defined by the gradient of the Hamiltonian dH,

encoding information about the energy, and the symplectic geometry derived from

ω, embodying Hamilton’s equations of motion. XH generates a flow {Φt} and, given

any particular configuration, the flow determines a sequence of configurations that

the system must pass through during its evolution in time; these are simply the

integral curves of XH . The symplectic geometry of phase space ensures a unique

parametrisation of these integral curves and thus the way in which a system evolves

through time is uniquely defined by the geometry of phase space. Given some ini-

tial data for a system then, the Hamiltonian schema is able to determine a unique

dynamical evolution for that system, and thus the Hamiltonian schema seems to a

certain extent commensurate with the generative Newtonian picture of determina-

tion.

It is contestable, however, whether or not this is the most natural interpreta-

tion of the formalism. The Hamiltonian vector field XH is determined, in part,

by the symplectic geometry of phase space, and this geometry encodes Hamilton’s

equations of motion. These equations of motion, like the Euler-Lagrange equations,

are established via a variational principle containing an action integral between two

temporal endpoints. Thus while the geometry of phase space (in particular, the

vector field XH) suggests that the generative picture of reality might naturally arise

from the Hamiltonian schema, the origin of this geometry in a variational principle

suggests a picture more like the Lagrangian picture. We do find, however, that

due to the constant monotonic parameter of integration of the action integral that

we identify as time, the Hamiltonian schema, like the Lagrangian schema, relies on

the Newtonian notion of time as an external and equably flowing parameter. Thus

despite the variational principle on which the temporal structure of Hamiltonian me-
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chanics is built, it is unsurprising that the Newtonian picture of time is standardly

attributed to arise from the Hamiltonian schema.

Thus while we find that there a subtle differences to the pictures of time that

arise in each of Newtonian, Lagrangian and Hamiltonian mechanics, the Newtonian

picture of time remains at the heart of the standard interpretation of all three.

The differences that we find between these three formulations of classical mechanics

are largely related to the ‘spaces’ in which we describe dynamical behaviour: in

the Newtonian case we use a classical spacetime; in the Lagrangian case we use

configuration space; and in the Hamiltonian case we use phase space. While each

space gives us a varying insight into how Newtonian time can be seen to generate

a dynamical reality, we are left with an independent, external, constant monotonic

parameter in each case that generates dynamical evolution. To this extent, then,

the Newtonian picture of time remains steadfastly attached to the picture of reality

that arises from classical mechanics.

It would not be controversial to suggest that the Newtonian picture of time

is at the heart of many of the modern metaphysical theses concerning time. The

beginning of the 20th century, however, was witness to a major development in the

field of mechanics. This development, the advent of relativistic mechanics, changed

the way we think about both space and time. The extent to which the metaphysical

views built upon the Newtonian picture of time survive these changes is the concern

of the next chapter.
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Chapter 2

Relativistic Constraints for a Naturalistic

Metaphysics of Time

In the last chapter we considered the mathematical formalism of three formulations

of pre-relativistic classical mechanics with a view to introducing the formal tempo-

ral structure we find within more familiar classical physical theories. We discovered

there that the Newtonian picture of time that arises from Newtonian mechanics pre-

vails throughout both Lagrangian and Hamiltonian mechanics, despite the charac-

terisation of dynamics varying between these formulations. In this chapter I extend

this examination of temporal structure to relativistic mechanics, but here our focus

broadens from the more mathematical considerations of the last chapter to include

considerations of the orthodox philosophical conceptions of time. While we retain

as our main concern the picture of time that arises in physical theory, the purpose of

this chapter is to address how the picture of time we find in the theory of relativity

comes to bear on the various metaphysical positions in the philosophy of time.

2.1 Introduction

The A-theory of time, stated briefly, proclaims that temporal passage is an objective

feature of reality.1 Implicit in this view is that the temporal instant that embodies

this passage, the present, maintains a privileged status over and above the temporal

instants that have already ‘passed’ (the past) and that are yet to ‘pass’ (the future).

In contrast, the B-theory of time is characterised by its rejection of temporal passage

as a real and objective feature of the world. As such, there is no privileged instant

and all times from the beginning of the universe to the end of the universe are

1Of course, there are various A-theoretic views that can be distinguished; more on this shortly.
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considered to be equally real according to this view. The division between these

opposing temporal theories defines what we will call the traditional metaphysical

debate on the nature of time. It has been suggested that Einstein’s special theory

of relativity seriously compromises the viability of various formulations of the A-

theory of time2; Minkowski’s formulation of the special theory of relativity as a

four dimensional spacetime has been instrumental in creating the perception that

it provides strong evidence for a B-theory of time. On the other hand, much work

has been carried out attempting to show the compatibility of special relativity and

A-theories of time3 with a general sentiment emerging that Minkowski spacetime

is the wrong sort of entity to definitively adjudicate either way on the traditional

debate in the philosophy of time.

This chapter is not an attempt to enter this debate and argue for or against either

the A- or B-theory of time; nor is it a concern of this chapter to attempt to argue the

consistency of either of these temporal models with classical relativity theory. The

purpose of the current analysis is to investigate and outline the constraints, imposed

by the temporal structure of classical physical theory4, that the traditional debate

must heed to remain within the bounds of a naturalistic metaphysics. As one can

infer from the introductory remarks above, the special theory of relativity has been

conspicuously present in the traditional debate and, therefore, this might make one

wonder whether such a project is already fait accompli. There are two reasons to

be cautious of this presumption. To begin with, existing attempts to answer the

question as to why the formal temporal structure of Minkowski spacetime does not

preclude the possibility of objective temporal passage (some of which we will meet

in §2.4) appear to lack a precise characterisation of the picture of time that arises

in special relativity. The initial goal of this chapter is to adopt a formal characteri-

sation of time in special relativity (§2.5) with the resulting picture providing a new

perspective on why the constraints imposed by special relativity on the traditional

debate are not so restrictive as to quash the debate. The second reason is that the

temporal structure of general relativity must be considered also if one is to remain

within the bounds of a naturalistic metaphysics. The ultimate goal of this chapter,

2See, for instance, Rietdijk (1966), Putnam (1967), Maxwell (1985) and Saunders (2002).
3See, for instance, McCall (1976), Hinchliff (1996), Tooley (2000), Zimmerman (2008) and Savitt

(forthcoming).
4Other physical theories, especially quantum theory, may impose further constraints on our

temporal models but these will not be considered here.
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then, is to extend the precise characterisation of time in special relativity to general

relativity which, as we will see, imposes much more restrictive constraints.

2.1.1 Background

The traditional metaphysical debate has its origin in an analysis due to McTaggart

(1908), who is credited with clearly distinguishing two ways in which we differentiate

positions in time (the contents of these positions being events): each position is

either past, present or future; or each position is either earlier than or later than

some other position. The series of positions running from the past to the present,

and then from the present to the future McTaggart labels the A-series. The A-series

is characterised by the position of the present; those positions in time earlier than

the present are in the past and those later than the present are in the future. The

present is in some sense in motion through the A-series as positions in time change

from future to present, then from present to past. The series of positions which

run from earlier to later independently of the present McTaggart labels the B-series.

The B-series is not defined by any position in time labelled as the present. Any

position in time is related to any other position in time by either the ‘earlier than’,

‘later than’ or ‘simultaneous with’ relation irrespective of which position might be

referred to as the present. These relations are defined irrespective of the position of

some present instant and are thus unchanging and objective.

By distinguishing between the ways that we differentiate positions in time, we

can construct two types of temporal models. The A-theory of time is the view that

an adequate description of temporal reality requires either the A-series alone, or

both the A-series and the B-series together. The A-theory is often referred to as

a dynamic view of time. We will characterise dynamic time here as the claim that

we exist in a privileged present that is in some sense ‘flowing’ through successive

instants of time.5 The present is thus conceived as a privileged element of our

reality which demarcates the past from the future in some objective respect. There

are two ways that we can understand this privileged present. We can understand

the present as ontologically privileged, whereby the notion of flow is envisaged as the

existential displacement of the privileged time instant by its successor. Accordingly,

5For a nice illustration of some of the various ways this conception of dynamic time can be
expressed, see Williams (1951).
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each time instant then ‘comes into’ existence as the present instant and then ‘goes

out of’ existence as a new time instant becomes the present. We can alternatively

understand the present as metaphysically privileged, whereby flow is interpreted as

the evolution of some property of ‘presentness’ across consecutive time instants that

are ontologically undifferentiated.6

The second of the temporal models that we can construct, the B-theory of time,

is the view that a complete description of temporal reality can be given by the

B-series. The B-theory is often referred to as a static or block universe model of

time. We will take the block universe model to be characterised by two claims:

every position in the B-series exists (the past, present and future are equally real),

and the A-series is unreal (there is no privileged instant nor any objective flow of

time). One can imagine constructing the block by arranging all the positions of the

B-series as an unchanging temporal map of the universe and then augmenting this

with the spatial dimensions of the universe to create a four dimensional block which

contains all the spatial and temporal relations between events. The block universe

view forges a strong analogy between the static conception of time and our ordinary

conception of space; there is nothing objective about labelling a particular position

in space ‘here’ nor claiming the contents of ‘here’ to be more real than the contents

of ‘there’, just as there is nothing objective about labelling a particular time ‘now’

whose contents can be thought of as any more real than the contents of any other

position within the block. As we will see in §2.2, there exist persuasive arguments

that this is more than just a mere analogy.7

6It can be argued that the metaphysical notion of flow falls afoul of McTaggart’s original analysis
of the A- and B-series of time, since a changing property such as presentness requires a separate
temporal dimension in which to change, which is thought to be undesirable. We will leave this
issue to one side here.

7The distinction here between A- and B- theories of time follows that of Dainton (2001, p. 11).
The A- and B-theories of time can also be characterised as the ‘tensed’ and ‘tenseless’ theories of
time, respectively (as in Le Poidevin (1998), for instance). Under such a construal, the A-theory
takes the properties picked out by terms such as past, present and future (known as ‘tenses’) to be
real, i.e. to be objective properties of reality. On the other hand, the B-theory denies the reality of
tenses. Despite this alternative construal, the core difference between the A- and B-theory remains
whether temporal passage is objective or not, as in the above characterisation, and thus ‘tense’ is
not taken to be a significant notion here.
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2.1.2 Outline of the chapter

This investigation will proceed as follows. I begin in §2.2 by introducing the special

theory of relativity, paying particular attention to the geometric formalism and

temporal structure of Minkowski spacetime. The dual formulation of time in special

relativity as both proper time and coordinate time is also introduced here. As a

brief aside to the main issue, I examine in §2.3 an argument from special relativity

for the equal reality of the past, present and future. I suggest that this is not a

metaphysical constraint that conclusively follows from the formal temporal structure

of Minkowski spacetime. In §2.4 I sketch an argument from the literature, which I

call the proper time argument, to the effect that neither static nor dynamic views of

time are precluded solely by the formal temporal structure of Minkowski spacetime

and briefly examine some possible explanations as to why this might be the case.

I suggest that the proper time argument crucially turns on the dual formulation of

time in special relativity. I set out in §2.5 a precise framework for characterising

time and use this framework to formalise the ambiguity with respect to the dual

formulation of time in special relativity. I employ this formalism to argue for a

more general explanation as to why the temporal structure of Minkowski spacetime

precludes neither metaphysical position in the traditional debate. In §2.6 I extend

the analysis to time in the general theory of relativity and set out the classical

constraints that must be respected by a metaphysical theory of time to remain

within the scope of a naturalistic metaphysics.

2.2 Minkowski spacetime

Einstein (1952) developed the special theory of relativity in a 1905 paper, on the

shoulders of the pioneering work of FitzGerald, Lorentz and Poincaré. He was mo-

tivated in part by the fact that any model of space and time must tell some story

about how information concerning distant spatial and temporal regions is made

available to a spatiotemporally bound observer. He realised that it is light signals

that connect us with distant parts of space and time. Einstein used this insight to

construct a principled theory of space and time that forms an axiomatic basis for de-

riving the Lorentz transformations. In 1908, Minkowski (1952) built upon Einstein’s

special theory of relativity by formally uniting the structure of space and time into

a four dimensional object, which we call spacetime: three dimensions representing
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space and one dimension representing time. The significance of Minkowski’s exten-

sion of Einstein’s theory is that he formulated the theory in a geometric framework.

In this section I introduce the geometric structure of Minkowski spacetime, paying

particular attention to the picture of time that arises therein.8

Minkowski spacetime can be represented by a geometry (M4, ηµν), which consists

of a differentiable, four dimensional manifold, M4, and a flat Lorentzian metric,

ηµν , with signature (1, 3). The manifold is interpreted as representing the set of

spacetime points and the metric can be interpreted as the geometric instructions by

which these spacetime points are connected. Given a particular point p inM4, and

a four-vector dxµ in the tangent space TpM4 at p, we can use the metric to construct

the line element, ds2 = ηµνdx
µdxν , for each spacetime point inM4. The invariance

of ds2 according to the special theory of relativity endows Minkowski spacetime with

a conformal structure: we say that dxµ is a timelike vector if ds2 > 0, a lightlike

vector if ds2 = 0 and a spacelike vector if ds2 < 0. The metric thus determines a

lightcone structure in the tangent space at every point of M4, where the lightlike

vectors define the boundary of the cone, the timelike vectors the inside of the cone

and the spacelike vectors the outside of the cone.

Since we want to be able to use this formalism to model the behaviour of objects

in spacetime, we need to extend these classifications to curves in M4. We say that

a curve is timelike, lightlike or spacelike if its tangent vector field is characterised as

such at every point. We can now interpret timelike curves as the possible spacetime

paths of massive particles and lightlike curves as the possible spacetime paths of

massless particles (i.e. photons); the actual paths of such objects in spacetime are

called worldlines. This then gives us a causal structure to Minkowski spacetime: an

observer situated at any position in spacetime can divide their surrounding spacetime

into a causally contiguous region (the timelike region plus the lightlike boundaries)

and causally separated (spacelike) region (see Figure 2.1). The division of spacetime

in this way is unique to each spacetime point.

We say that a spacetimeM4 is temporally orientable if there exists a continuous

timelike vector field on M4. Minkowski spacetime is temporally orientable. We

can then stipulate a temporal orientation to this vector field, simply by picking a

future direction, and thus define any timelike or lightlike vector at a point ofM4 as

8The exposition here mostly follows Malament (2007).
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time

space

α

β

γ

Figure 2.1: The causal structure of Minkowski spacetime for an observer at the origin:
α is timelike separated from the observer, β lightlike separated and γ spacelike separated.

future directed or past directed with respect to this orientation. As above, a curve

is future directed or past directed with respect to this orientation if its tangent

vector field is characterised as such at every point. Time is then associated with the

parameter employed to parametrise a future directed timelike curve in M4; such a

parametrised curve describes the dynamical behaviour of an object in spacetime (it

is only through such a parametrisation that we can begin to speak of ‘time instants’

in special relativity). There are two natural ways that a curve can be parametrised

according to an arbitrary observer in spacetime: the curve can be parametrised by

the time as measured by a clock moving along the curve in question; or the curve

can be parametrised by the time as measured by a clock at rest in some other frame

of reference. Let us consider these options more formally.

Given a future directed timelike curve, γ, between spacetime points s1 and s2 in

M4 with tangent field dxµ, we can define the elapsed time between s1 and s2, τ ,
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with which to parametrise γ, as the arc length of the curve:

τ = |γ| =
∫ s2

s1

(ηµνdx
µdxν)

1
2 ds. (2.1)

The parametrisation of γ by τ is a ‘natural’ parametrisation since the arc length,

as a function of the invariant line element, is a frame independent quantity. We

thus call τ proper time and associate it with the time that a clock will measure

along its own (not necessarily inertial) worldline. One can also generate a frame

dependent parametrisation of γ: we can employ clocks at rest with respect to some

arbitrary reference frame (proper time along a worldline traced out by an object at

rest with respect to this reference frame) to define the elapsed time, t, with which

to parametrise γ. By employing this method of parametrisation we have, in effect,

stipulated an arbitrary coordinatisation of the manifold, with a time coordinate

coinciding with proper time in some arbitrary reference frame, with which to describe

spacetime dynamics. We thus call t coordinate time and associated it with a global

time measure corresponding to the fourth coordinate of the spacetime manifold (so

long as the reference frame in question is inertial). Since coordinate time is frame

dependent, while proper time is frame independent, the latter is taken to have

direct physical significance, while the former is not. This dual formulation of time,

as proper time and as coordinate time, in Minkowski spacetime will play a crucial

role in the discussion below.9

The formal relationship between proper time and coordinate time is given by

the Lorentz transformations (which are embodied in ηµν) and is dependent upon the

relative velocity of the reference frames from which each time measure is procured.

Time intervals (and the relations between them) as measured for a set of events in

one reference frame vary from those measured in a second frame moving relative

to the first. In addition, the temporal order of events at spacelike separation from

an observer is also frame dependent; observers in motion relative to one another

may record a different temporal order for the very same observed events. It follows

that whether two events are simultaneous or not is again frame dependent. Thus

there is no absolute fact of the matter as to whether two spacelike separated events

9The distinction between proper time and coordinate time as formulations of time in the special
theory of relativity has also been emphasised by Kroes (1985) and Rovelli (1995) and, more recently,
by Savitt (forthcoming).
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stand in either the ‘earlier than’, ‘later than’ or ‘simultaneous with’ relation to

each other; this relation is dependent upon the observer’s state of motion. Due

to this Lorentzian temporal structure, Minkowski spacetime cannot in general be

decomposed into distinctly spatial and temporal elements.10 However, provided

that one has stipulated a particular time coordinate coinciding with an inertial

timelike trajectory, one is able to generate a foliation of the Minkowski manifold

consisting of spacelike slices orthogonal to the trajectory and thus constituting a set

of simultaneous events.

We now turn our attention to the relationship between the temporal structure

of Minkowski spacetime and the traditional metaphysical debate on the nature of

time. It is clear from the characterisation just presented that Minkowski spacetime

conspicuously constitutes a four dimensional object; indeed, I believe that it is this

fact that is at the heart of the conception that Minkowski spacetime actually is

the block universe. Upon closer analysis, however, the argument from the formal

temporal structure of Minkowski spacetime against the dynamic view of time is

not quite so straightforward. As mentioned in the introduction to this chapter,

particular A-theories of time have been defended against claims that Minkowski

spacetime precludes their possibility and, rather than revisit some well trodden

ground, we continue in the following manner.

Firstly, and as a brief aside to the main issue, I examine an argument from special

relativity due to Putnam (1967) and Rietdijk (1966) for the equal reality of the past,

present and future. I suggest in §2.3 that the same cannot be said conclusively of

the temporal structure of Minkowski spacetime, however. We return to our main

concern again in §2.4 where I present an argument (following Dieks (2006) and

Ellis (2007)) that not only illustrates the sort of analysis that one might provide

in support of a dynamic view of time but also starts us in the right direction to

providing in §2.5 a more general argument as to why the formal temporal structure

of Minkowski spacetime alone precludes neither static nor dynamic views of time.

This is all, of course, with a view to describing in §2.6 the constraints prescribed by

the general theory of relativity that must be recognised by a metaphysical theory of

time to fall within the scope of a naturalistic metaphysics.

10In contrast, recall that the ordinary Euclidean metric imposed on a four dimensional manifold
results in a Newtonian spacetime in which space and time can be globally separated as distinct
elements of the manifold.
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2.3 Spacetime and reality

Some dynamic views of time make claims about whether or not some or all of the

events located in the past, present and future are equally real. Putnam (1967), in his

Time and Physical Geometry, presents an argument from special relativity against a

dynamic view of time called presentism; Putnam argues for the equal reality of the

past, present and future, which presentists deny.11 In the preliminary exposition of

the argument below I follow Putnam’s terminology.

Putnam’s project is to examine the claim that all and only things that exist now

are real (which can be taken as a statement of presentism). He begins by making

some assumptions about what it means for something to be real: the property of

‘reality’ is assumed to be parasitic on a coordinate independent, transitive relation

which Putnam labels R. To illustrate this relation as clearly as possible consider

two observers in spacetime, Amy and Ben. If we consider Amy as being in the

present, we can take Putnam to be deeming as real all and only those ‘things’

standing in the R relation to Amy. He makes the further assumption that if this

is the case, and Ben is also real, then all and only those ‘things’ standing in the R

relation to Ben are real. It is clear that Putnam’s relation R and its significance for

reality is intended to capture a conception of pre-relativistic classical simultaneity.

It is the incompatibility between this conception of reality and the structure of

Minkowski spacetime that is the place that Putnam wishes to drive his wedge against

presentism. Let us walk through Putnam’s argument to demonstrate this.

If the relation R were merely the relation of simultaneity in a pre-relativistic

classical spacetime, then the above assumptions about reality would lead one to

accept the claim that all and only things that exist now are real, i.e that the past

and future are not real. However, when we move to Minkowski spacetime things

are not as straightforward. Recall at this point the physical consequences of the

Lorentzian metric, ηµν . If Ben is in motion relative to Amy, the events in spacetime

simultaneous with Ben will not coincide with the events in spacetime simultaneous

with Amy. In fact, some of the events simultaneous with Ben will be in regions of

spacetime Amy considers her future, and some will be in regions of spacetime Amy

considers her past. Thus if we were to conceive of the relation R as the relativistic

11Rietdijk (1966) presents a similar argument, but the clarity of Putnam’s analysis will be
instrumental in what follows below.
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relation of simultaneity (that is, “x is simultaneous with y in the coordinate system

of x” (Putnam, 1967, p. 242)), we would be led to the conclusion that the events

that lie in Amy’s past and future have the same claim to reality as the events

she considers her present. However, according to Putnam we are not at liberty to

conceive of the relation R as the relativistic relation of simultaneity since the former

must be transitive and the latter is not, and it is the transitivity of R that is doing

the work of ensuring that Ben and Amy agree about what is real.12

To overcome this, Putnam stops short of equating the relation R with the rela-

tivistic relation of simultaneity and instead claims that the relation R merely holds

between ‘things’ which are on the same plane of simultaneity. This then, according

to Putnam, coherently ensures the equal reality of the past, present and future:

those events that are simultaneous with Amy stand in the R relation to Amy and

are therefore real; Ben is simultaneous with Amy; those events simultaneous with

Ben (including events in Amy’s past and future) stand in the R relation to Ben

and are therefore also real; thus the past, present and future have equal claim to

reality. The use of the relation R by Putnam now becomes a bit clearer. To run the

argument without the R relation would require one to tie reality directly to simul-

taneity. Since simultaneity is not transitive, one would have to concede that reality

were transitive for the argument to be successful. However, or so one could argue,

reality simply cannot be a two-place relation: something is either real or not - it

cannot be the case that something is real for an observer. Thus Putnam’s solution

is to have the transitive relation R piggyback on simultaneity and reality in turn is

then parasitic on the relation R.

The crucial point to this argument is the nature of simultaneity; it is upon the

back of the relativistic simultaneity relation that both the R relation and reality

ride. Recall, though, what we have already said to be the case in special relativity:

there is no objective fact of the matter as to which events are simultaneous with a

particular spacetime event. This is because observers at the same place in spacetime

might be in relative motion to one another and therefore make different judgments

about the temporal ordering of spacelike separated events.

As it happens, the set of events that we might class as simultaneous with any

12As pointed out by an anonymous referee, the above quoted relativistic relation of simultaneity
is not a single relation that fails to be transitive but is in fact an equivalence class of such relations,
the utilisation of any two of which enable an argument such as this one of Putnam’s.
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particular observer can only be classed as such by convention, as Einstein notoriously

noted. Since all the events that are spacelike separated from a particular observer are

epistemically inaccessible to that observer, we must stipulate by convention which

set of events are to be the ones which constitute a plane of simultaneity; any such

choice would be consistent with the local phenomenology of that observer. Because

of this, any way one chooses to relate the reality of spacelike separated events to an

observer must come prepackaged with metaphysical assumptions about the reality

of the various parts of spacetime. This jeopardises the cogency of Putnam’s result;

let us see how explicitly.

When Putnam refers to the events in spacetime simultaneous with Ben, for

instance, it has not been explicitly stated what this might mean. It might be implicit

here that this is the set of events on a spacelike hypersurface orthogonal to Ben’s

worldline. Likewise, it has not been explicitly stated what is meant by the events

Amy considers to be her future and past. One would expect that the events Amy

considers to be in her future are those events in her future lightcone, and the events

Amy considers to be in her past are those in her past lightcone. However, that Amy

can label events at spacelike separation from her as past or future would suggest

that Putnam has something more in mind, perhaps events in the past or future of a

spacelike hypersurface orthogonal to Amy’s worldline. By being explicit about what

is meant in Putnam’s discourse, it no longer seems at all clear how the relation R,

which ‘merely’ holds between ‘things’ that are on the same plane of simultaneity,

can achieve all that it is claimed to achieve according to Putnam.

With respect to the conventionality of simultaneity, Malament (1977) presents an

argument that the standard simultaneity relation (namely, the convention utilised

in Putnam’s argument) is uniquely definable from the geometry of Minkowski space-

time. If we imagine a single worldline γ through (M4, ηµν), and two points p and q

on γ, the intersection of the past lightcone of the later point and the future lightcone

of the earlier point will define uniquely a spacelike hypersurface that coincides with

a notion of four dimensional orthogonality commensurate with Einstein’s convention

for simultaneity. Thus it appears as though the conformal structure of Minkowski

spacetime eliminates the need for a convention. In response to this, Brown (2005,

§6.3.1) suggests that there is something not quite right with this argument. Mala-

ment’s treatment of simultaneity assumes that the geometric structure of Minkowski

spacetime is dissociated from the spatiotemporal objects it describes. The argument
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employs the conformal structure of Minkowski spacetime and just a single world-

line, γ, but, and this is the point that Brown makes, it is not entirely clear that a

spacetime consisting of a single worldline has such a conformal structure. Without

delving into Brown’s constructive project too deeply, he maintains that the geome-

try we attribute to spacetime is merely a convenient representation of physical laws

governing the behaviour of matter and therefore is not the causal explanation of

this behaviour. Thus the geometric structure of a spacetime comprised of a single

worldline is not necessarily that of Minkowski spacetime. To make matters worse,

Janis (1983) argues that the addition of any extra content to Malament’s spacetime

would compromise the uniqueness, and thus the non-conventionality, of any subse-

quent simultaneity relation. At the very least we should be wary of Putnam’s use

of this simultaneity relation.

Dickson (1998, §8.1.2) (following Stein (1968)) offers an alternative appraisal

of Putnam’s argument. According to Dickson, Putnam’s conclusion, that the past,

present and future are equally real, is framed in language that simply does not make

sense in a relativistic context; the relativity of simultaneity ensures that the notions

of absolute past, present and future are nonapplicable here. In Dickson’s words:

Putnam considers the doctrine that all and only those events that are now
are real. He concludes, on the basis of special relativity, that this doctrine is
false, and takes himself to have shown thereby that ‘the future’ is real. This
form of argument is apparently not very compelling. (Dickson, 1998, p. 170)

Yet another suggestion that has been made in response to Putnam’s argument,

due to Sklar (1977, p. 277), is that we can simply bite the bullet and take reality

to be a transitive relation. Thus, along with the relativity of simultaneity, special

relativity would suggest that reality is relative also. The essence of the argument is

that the theory of relativity is counterintuitive to begin with, so why not the reality

relation as well? The relativity of reality would suggest that Amy could claim a set

of spacetime events as real, and Ben could claim a different set of spacetime events

as real and there would be no fact of the matter about which observation (if either)

was an accurate representation of the world. Although, such a fragmented ontology

may be undesirable for other reasons.

A complete analysis of the cogency of Putnam’s argument will not be a con-

cern of this project; indeed, there are metaphysical arguments that can be made

in defence of Putnam. What I hope to have suggested here, however, is that the
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issue concerning whether the equal reality of the past, present and future follows

straightforwardly as a constraint on the metaphysical nature of time from the formal

temporal structure of Minkowski spacetime is more contentious than Putnam would

have us believe.

2.4 Objective temporal passage

The most pressing concern for an A-theorist when presented with Minkowski space-

time is the question of how to endow the manifold with an objective temporal pas-

sage. Since temporal passage invariably involves change, for Minkowski spacetime

to include temporal passage as an objective element something within the manifold

would have to undergo some sort of ‘change’. The most obvious candidate for this

“something” is an objective ‘now’: a hyperplane of simultaneity within spacetime

which privileges a particular time instant and which embodies the passage of time.

The problem at this point for the A-theorist is that no such hyperplane of simul-

taneity is privileged as such; due to the relativity of simultaneity, many hyperplanes

of simultaneity can be specified depending on the relative motion of the observer

and none of these can claim any special status as being a privileged time instant.

Thus, it seems as if there is no scope for an objective ‘now’ and thus no scope for

objective temporal passage.

Not all is lost for the dynamic view of time though. While this argument does

provide some important restrictions on the form that an objective temporal pas-

sage can take, it does not show that objective temporal passage is incompatible

with the formal temporal structure of Minkowski spacetime. There is no objective

hyperplane of simultaneity in Minkowski spacetime and thus no objective global

‘now’.13 However, a global ‘now’ is not the only candidate for the basis of tem-

poral passage. While an integral element of the special theory of relativity is that

there is no absolute fact of the matter about global temporal orderings, there are

some facets of Minkowski spacetime that are absolute. Recall (Figure 2.1) that the

conformal structure of Minkowski spacetime separates the manifold into timelike

separated events (inside the light cone) and spacelike separated events (outside the

light cone). Observers at the same position in spacetime but in motion relative to

one another will define their hyperplane of simultaneity and their local direction of

13Unless, of course, one adds some extra structure.
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time skewed with respect to one another, but the conformal structure of Minkowski

spacetime is inherent in the geometry; they will agree on which regions of spacetime

are timelike separated and which regions of spacetime are spacelike separated.

We encountered the claim above that according to relativity theory there is no

objective fact of the matter as to whether two spacelike separated events stand in

either the ‘earlier than’, ‘later than’ or ‘simultaneous with’ relation to each other.

In contrast, the causal structure of Minkowski spacetime permits that for future

directed timelike curves there is an objective fact of the matter as to which events

are past and which events are future. This temporal ordering of events is only

local (i.e. applicable to a single point on a worldline) since observers with varied

relative motions will disagree on the ordering of spacelike separated events. One

can then imagine any single spacetime point on a future directed worldline as a

candidate for an objective local ‘now’. Minkowski spacetime would then contain

many such local objective ‘nows’, each associated with a single worldline. The formal

geometric structure of Minkowski spacetime then does not preclude the possibility of

an objective local ‘now’ (though it certainly does limit the scope of such a ‘now’) and

therefore does not preclude out of hand this particular form of objective temporal

passage. Let us call this argument the proper time argument.

It is far from obvious that the metaphysical notion of dynamic time that arises

from the proper time argument is indeed a viable metaphysical position. The A-

theorist who wishes to develop such a view requires an explanation of exactly how

consistency can be maintained between the dynamic local nows, and moreover, in

such a way that we might recover something resembling our normal experience of

spatiotemporal events. I contend, however, that if the resulting picture of time is apt

to be rejected as unfavourable, this would evidently not be as a result of the formal

geometric structure of Minkowski spacetime. These issues aside, it is interesting to

ask then why, as a result of the proper time argument, we find ourselves unable to

undermine either static or dynamic views of time with solely the temporal structure

of Minkowski spacetime. Let us briefly consider two possible explanations.

Dieks (1991) makes the suggestion that it is the universality of physical theories

that prevents them from including specific metaphysical commitments concerning

the flow of time. According to Dieks, physical theories are concerned with the task

of giving descriptions of universal laws, valid at all times and places and this can

only be achieved if all times and places are treated on an equal footing; there are no
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times or places to which the laws of physics must be anchored. This is the source

of the purely relational nature of physical laws. An absolute and global difference

between past and future, for instance, simply does not and cannot exist in a physical

theory. The specific properties of events are disregarded in physical theories and only

what is common to all processes of a particular kind is retained. As Dieks puts it,

“the laws of physics by themselves cannot reveal what time it is” (1991, p. 258).

Thus according to this view, the ‘now’ of experience may indeed reflect something

objectively real but we should not expect it to play a role in our physical theories,

including Minkowski spacetime, and thus our physical theories should not be able

to provide evidence for any particular metaphysical view of time.14

Another possible explanation as to why the formal temporal structure of Minkowski

spacetime might not preclude either static or dynamic views concerns the underde-

termination of metaphysics by physics. One could argue that we should never expect

conclusive determination of the metaphysics of our best physical theories, in the same

way that we do not expect complete determination of our physical theories from ob-

servation. This does not, however, seem to provide the explanation we are looking

for. The claim against which the proper time argument is levelled is that formal

geometric structure of Minkowski spacetime precludes the possibility of a dynamic

view of time. Therefore, just in the same way that it is possible for an observation

to falsify a physical theory, so it is possible that a physical theory falsify one or

more of our metaphysical beliefs. So although we should not expect any particular

physical theory to provide definitive evidence for any particular metaphysical view,

it seems reasonable to expect that a physical theory might eliminate the possibility

of a certain metaphysical thesis.15

The more compelling explanation, which has already been alluded to in the

previous section, is that the proper time argument turns on the ambiguity we find

in the picture of time that arises in the special theory of relativity. We saw two ways

in which time is formulated in special relativity: the first is as a time measure along

14This sentiment is echoed by McCall (2001, p. 144): “Although not endorsing time flow, modern
physics does not rule it out as a logical impossibility. Its attitude is empirical rather than logical;
time flow may exist, but (i) there is no hard experimental evidence for it, and (ii) it plays no role
in physical theory.” Zimmerman (2008, p. 220) also makes a similar point.

15A lengthy discussion of this issue has played out in the literature with respect to the metaphys-
ical underdetermination of quantum field theory; see van Fraassen (1991), French (1998, 1989),
Ladyman (1998) and French and Ladyman (2003).
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an individual worldline, proper time; and the second is as a time measure associated

with a coordinatisation of the manifold, coordinate time. Due to the conformal

structure of Minkowski spacetime, there are restrictions on how a particular manifold

can be foliated. However, given these restrictions there still remains an infinite

number of ways to coordinatise the manifold. Thus we are not left any option for

stipulating a global objective ‘now’. Although objective temporal passage cannot

correspond consistently with some objective time coordinate of the manifold, we are

able to imagine that objective temporal passage corresponds with the incremental

evolution along an object’s worldline, or the proper time in some reference frame

(namely, the reference frame that contains the object in question). This variable

characterisation of time in the special theory of relativity thus gives us a good clue

as to why an argument can be made against the possibility of dynamic time in

Minkowski spacetime, in the first place, and why Minkowski spacetime does not

formally preclude either metaphysical position in the traditional debate, thereafter.

Having said this, however, it is not obvious that the opposing views of the tra-

ditional debate emerge from these considerations unscathed, either. For instance,

it might seem that relying on the local proper time along a worldline to locate

objective temporal passage indeed results in quite a significant modification of the

metaphysical position that the A-theorist originally intended. Thus depending upon

which features of dynamic time the A-theorist thinks essential, the possibility arises

that the metaphysical theory resulting from the above considerations does not do

justice to dynamic time. We must keep in mind at this point, however, that reject-

ing the logical space circumscribed by the proper time argument, i.e. rejecting the

authority of contemporary physical theory, is tantamount to rejecting a naturalistic

metaphysics.

The discussion of this section has conspicuously lacked the formal machinery

with which we introduced the geometry of special relativity in §2.2. Let us turn

then to the promised formal characterisation of the temporal structure of Minkowski

spacetime; doing so will serve to illustrate precisely why the proper time argument

functions as it does.
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2.5 Characterising time

In both his (1995) and his (2004), Rovelli sets about characterising the various roles

that the concept of time plays in different scientific theories (recall the discussion

from the Introduction).16 The terminological project associated with this analysis

is complicated by the multitude of features that are attributed to the concept of

time in natural language. Not often are the entirety of these features found bundled

together in the formal structure we identify as time in a physical theory. I will adapt

Rovelli’s formalism here to provide a more precise grounding to the explanation

above with respect to the temporal structure of Minkowski spacetime. Let us begin

by considering time as it is often characterised, as a variable t which parametrises

the real line R.

The real line can be described by the following structure: a manifold, M1,

consisting of a set of objects (which in this case is simply all the real numbers)

with a one dimensional topology and a differential structure; an ordering, <, which

sequences the members of the set within the topological structure; a metric, g,

which ensures that the distance between any two members of the set is meaningfully

measurable; and an origin, ϕ, which fixes a preferred member of the set. Let us

represent this as R : {M1, <, g, ϕ} (Rovelli, 1995, p. 83). It is clear to see that this

structure maps into the features we ordinarily associate with the notion of time; the

set of objects represent the instants of time, the ordering represents the sequential

structure of the instants, the metric represents a measure of temporal duration

and the preferred fixed time instant is the present. We should note, however, that

this short list of attributes represented by the real line is not a consequence of

any particular physical theory. If we consider the picture of time in Newtonian

mechanics, for instance, recall from §1.2 that there is no preferred fixed point in

the theory that is necessarily labelled as the present. This is not to say that the

characterisation of time as the real line is incompatible with Newtonian time; on the

contrary, time characterised by the real line is quite consistent with the temporal

structure of Newtonian theory. Let us represent the structure of Newtonian time

as N : {M1, <, g} and represent that it is consistent with a richer structure by

N : {M1, <, g | ϕ}.
16As well as Rovelli, the different features of time have also been discussed with respect to the

special theory of relativity by Kroes (1985) and with respect to both special and general relativity
by Callender (2006).
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As was introduced in §2.2, the characterisation of time in special relativity is

not so straightforward. We saw that the dynamical behaviour of objects in space-

time is described by future directed timelike curves in a four dimensional geometry,

(M4, ηµν), and that the notion of time is associated with the parametrisation of

such curves. The significant feature of time in special relativity that sets it apart

from Newtonian time is that, for all p in M4, a whole family of future directed

timelike curves through p provide a multitude of candidate structures with which

time might be identified; the conformal structure of the Minkowski geometry simply

does not permit a unique global one dimensional time to be defined in terms of the

geometric structure of M4. In other words, it is not possible to define, in terms of

the geometric structure of spacetime, a global ordering of all the spacetime points

in M4; we can only define a partial ordering on the set of spacetime points, <′.17

There are, however, two avenues open to us for reinstating a total ordering to a set

of spacetime points in M4 which correspond to characterising time as coordinate

time and proper time, respectively. Let us consider coordinate time first.

While the structure of Minkowski spacetime may not permit a unique global one

dimensional time to be directly definable from the geometric structure of M4, we

are at liberty to impose such a structure on the set of all spacetime points. We can

simply choose an arbitrary reference frame and take the time as measured by clocks

at rest in that frame to provide a unique foliation of the manifold. Of course, a global

time measure of this sort is just coordinate time and the unique foliation ofM4 into

hyperplanes of simultaneity does indeed yield a one dimensional set of time instants

(the global hyperplanes),M1, with a total ordering, <. A caveat arises at this point,

however, when one considers that there is an uncountably infinite number of ways

that one can choose such a coordinatisation of the manifold. For every inertial future

directed timelike curve through some p ∈ M4 there is a corresponding foliation of

the manifold. Thus there is an infinite number of ways that one might measure

the temporal duration between any particular pair of events, corresponding to an

17A total order on a set S is defined by a binary relation (≤) with the following properties:

(i) ∀x ∈ S, x ≤ x,

(ii) ∀x, y ∈ S, x ≤ y & y ≤ x ⇒ x = y,

(iii) ∀x, y, z ∈ S, x ≤ y & y ≤ z ⇒ x ≤ z, and

(iv) ∀x, y ∈ S, x ≤ y or y ≤ x.

A partial order on a set is a binary relation that satisfies (i)-(iii) but not (iv).
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infinite number of reference frames, and thus any such measurement in an arbitrary

coordinate system is physically meaningless. The characterisation of time in the

special theory of relativity as coordinate time thus lacks global metricity (i.e. a

unique global measure of time). Thus for any reference frame F , we can represent

coordinate time in special relativity as CS(F ) : {M1, <}F .

A second methodology that we can adopt to find a total ordering of a set of

spacetime points inM4 is to restrict ourselves to a subset of points in the manifold.

Rather than search for a unique global one dimensional time, we can instead make

use of the linear structure of a single future directed timelike curve to provide a local

measure of time. Of course, a time measure of this sort is just proper time and the

local parametrisation of such a curve yields a one dimensional set of time instants,

M1, with a total ordering, <. Since proper time is an invariant time measure, the

associated parametrisation of a particular worldline is observer independent and

thus is a physically meaningful time measure (of temporal durations along the curve

only), i.e. proper time is locally metrical. Thus for any timelike curve γ, we can

represent proper time in special relativity as PS(γ) : {M1, <, ηµν}γ. In addition,

since proper time is only defined locally, fixing a preferred time instant amounts

to privileging merely a single spacetime point rather than some global hyperplane.

Thus a preferred fixed time instant is consistent with the structure of proper time,

PS(γ) : {M1, <, ηµν | ϕ}γ.
As a final element to analysing the proper time argument, let us attempt an

equally precise construal of dynamic time. We are taking the dynamic view of time

here as the claim that we exist in a privileged present that is in some sense ‘flowing’

through successive instants of time. Let us consider which of the above attributes

might best fit with this notion of time. Dynamic time is certainly linear, has a well

defined order (directed towards the future) and fixes a preferred time instant (the

present). Inherent in the idea of ‘flow’ is a notion of continuity that is meaningful

only when there exists a measure across the flowing time instants, i.e. dynamic time

requires a definite metric. Thus it seems as though dynamic time can be construed

as having the structure of the real line as above, D = R : {M1, <, g, ϕ} (which is

hardly a surprise). Let us now reconsider the proper time argument in light of these

considerations.

The charge was made against the A-theorist that there can be no objective tem-

poral passage in Minkowski spacetime because there is no scope for an objective
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hyperplane of simultaneity. This amounts to a claim that not only is there no pre-

ferred time instant in special relativity, but a preferred time instant is incompatible

with the temporal structure of special relativity. It is clear that this argument aims

to characterise time in special relativity as coordinate time and, in light of the above

analysis, CS(F ) 6= D; not only is CS(F ) incompatible with a preferred time instant,

CS(F ) is incompatible with any global and physically meaningful definition of a met-

ric. If the structure of coordinate time were the only formulation of time in special

relativity then, to stay within the bounds of a naturalistic metaphysics, dynamic

time as we have presented it here would need to be reconsidered as a metaphysical

position.

However, we know that time can be construed in special relativity in terms of

the structure PS(γ) : {M1, <, ηµν | ϕ}γ. By formalising the temporal structure of

both Minkowski spacetime and the dynamic view of time in this way, we can see

immediately that PS(γ) is completely consistent with D : {M1, <, g, ϕ} (given that

ηµν and g are both ‘flat’ metrics). Thus the dynamic view of time is not precluded

by the formal temporal structure of Minkowski spacetime. This is then the more

compelling explanation as to why the proper time argument functions as it does: the

picture of proper time that arises in special relativity ensures that the dynamic view

of time is compatible with the temporal structure of Minkowski spacetime due to

the correspondence between the characterisations of time that each of them yield.

The constraints imposed by the temporal structure of Minkowski spacetime on a

naturalistic metaphysics are thus not so restrictive as to force an A-theorist into a

major rethink of her position (or a B-theorist, either, for that matter).

This result is the first of the goals I set out at the beginning of this chapter: the

precise characterisation of the features of time in special relativity illustrates more

clearly why the formal constraints imposed by special relativity on the traditional

debate are not so restrictive as to quash the debate. In the next section I wish to

address the prime goal of this chapter: to show that the general theory of relativity

provides much sterner restrictions on a naturalistic metaphysics of time. The ar-

gument which leads us to these restrictions hinges on an additional feature of time

that we find within general relativity but not within special relativity.
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2.6 The traditional debate constrained

Our description in §2.2 of the dynamical behaviour of objects in spacetime according

to the special theory of relativity is in terms of curves through M4; insofar as this

is the case, we are treating spatiotemporal objects as point particles. To provide

a more general description of dynamical behaviour in spacetime, we can extend

our formalism with the addition of matter fields. A matter field is represented by a

smooth tensor field, Tµν , onM4 and is assumed to satisfy field equations relating Tµν

and the metric. A crucial element to recovering the correspondence between future

directed timelike curves on M4 and worldlines of massive particles in spacetime

in the special theory of relativity is the latent assumption that the background

spacetime structure, (M4, ηµν), remains fixed independently of the Tµν that live on

M4.18 We will call time independent when the metric defining time is independent

of the matter and energy distribution in the manifold and retain the notation ηµν

for an independent metric. It is the fact that Tµν is independent of the background

spacetime in special relativity that allows us to describe the dynamical behaviour of

matter in spacetime in terms of evolution in a time parameter with metric properties

(proper time). In contrast when a dependency exists between Tµν and the metric the

evolution of the system defines proper time and not vice versa. General relativity

is characterised by such a dependency and we denote the dependent metric gµν .

The geometric structure of general relativity is much the same as the structure

we introduced in §2.2 for special relativity: we have a geometry (M4, gµν) and we

define proper time as before (2.1). The dependency between Tµν and gµν is given by

the Einstein field equations,

Gµν(gµν) = 8πTµν , (2.2)

that define an explicit relation between the matter/energy content of spacetime,

represented by the stress-energy tensor Tµν , and the curvature of the spacetime

manifold, represented by the Einstein tensor Gµν (which is a function of the metric,

gµν). Due to this relation, the metric, of which proper time is a function, is a

dynamical entity that is at each point in spacetime directly dependent upon the

18Malament (2007, p. 242). We can think of an independent Tµν in the special theory of relativity
as representing “test particles” in spacetime.
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matter/energy density at that point.19

The picture of time that arises in general relativity holds similarities with the

picture that arises in special relativity; although there are some important differ-

ences. Coordinate time can be thought of as an arbitrary foliation of the manifold,

each which gives a unique slicing of four dimensional spacetime into a sequence of

three dimensional configurations. The linear substructure determined by the folia-

tion yields a total ordering of the slices. However, since the metric is a pointwise

function of the matter/energy density of spacetime, it is no longer a flat metric as is

the case in special relativity. There is thus no unique notion of parallel transport in

curved spacetime and hence there is on way to compare velocities at different points

in the manifold unambiguously. Moreover, the parametrisation of the time slices

defined by coordinate time in general relativity can be arbitrarily rescaled, which

forbids any notion of meaningfully measuring time intervals between pairs of events.

This compounds the arbitrariness of such a coordinatisation of the manifold as a

temporal measure and so destroys any notion of metricity. Thus for any reference

frame F , we represent coordinate time in general relativity as CG(F ) : {M1, <}.
Again, coordinate time is merely an imposition of an arbitrary variable determining

time evolution, and because general relativity is foliation invariant, coordinate time

has no physical significance.

Proper time in general relativity, on the other hand, is defined exactly as in spe-

cial relativity (2.1), except that in general relativity it is determined by a dependent

metric, gµν , as above. The local parametrisation of a general relativistic worldline

in terms of proper time again yields a one dimensional set of time instants, M1,

with a total ordering, <. Thus for any timelike curve γ, we represent proper time

in general relativity with the structure PG(γ) : {M1, <, gµν}γ.
If we now consider the structure of dynamic time, D, we can see immediately that

similar arguments to those above could be constructed claiming dynamic time to be

inconsistent with the structure of general relativity if time were characterised simply

by CG(F ): coordinate time in general relativity has no physically meaningful metric

properties. We know, however, not to be persuaded by such argumentation. The

case for the consistency of dynamic time with proper time in general relativity, on

the other hand, is not so clear cut. We can compare proper time in special relativity,

19More accurately, there is a mutual dependency between the stress-energy tensor and the metric
at each point of the manifold.
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PS(γ) : {M1, <, ηµν}γ, to proper time in general relativity, PG(γ) : {M1, <, gµν}γ,
and see that the only difference between the two is the dependency of the metric. The

proper time argument of §2.4 demonstrated that the possibility of locally privileging

a temporal instant in a special relativistic spacetime with an independent metric is

not prohibited by the formal temporal structure therein. Whether the same can be

said for a general relativistic spacetime with a metric that is a pointwise function

of the four dimensional matter/energy distribution remains to be shown. Exploring

this possibility will lead us to the constraints that classical physics imposes on the

traditional metaphysical debate.

For dynamic time to be consistent with a physical theory there must be a charac-

terisation of time therein that allows us to privilege a present moment that flows ob-

jectively. Recall (§2.1.1) that flow can be construed in two different ways depending

upon whether we understand the privileged present ontologically or metaphysically.

In the special theory of relativity proper time is determined by a fixed background

metric structure. The rate of flow of time along a worldline, being determined by

the metric, is then not a function of any part of spacetime but the immediate local

neighbourhood of the ‘privileged’ instant on the worldline in question; the local flow

is determined locally. In this respect, special relativity formally precludes neither

an ontologically privileged present nor a metaphysically privileged present, since

the flow of time along a worldline does not force us to make an ontological commit-

ment to any part of spacetime but the fixed background structure at a particular

spacetime point.

Turning our attention to general relativity, there are two considerations that

seem to pull us in opposing directions. The first consideration is that the proper

time between two spacetime points on a worldline in general relativity is, just as in

special relativity, determined by the metric on the spacetime segment between them,

and this is related locally (i.e. pointwise) to Tµν via the Einstein field equations. In

addition, since it is a principle of general relativity that, for any point of spacetime,

we can find a coordinate system in which the metric locally takes the form of the

Minkowski metric, there does not appear to be any grounds for a difference between

the local properties of time from special relativity to general relativity.

A second consideration, however, suggests that there is something global about

the ontology of general relativity. Westman and Sonego (2009) argue that in a

generally invariant theory like general relativity, it is untenable to endow a coor-
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dinatisation of the manifold, xµ, with operational significance (i.e. as referring to

readings on rulers and clocks) since this leads to the underdetermination of Ein-

stein’s field equations. Rather, the xµ must be interpreted merely as mathematical

parameters.20 This amounts to the claim that M4 cannot represent something em-

pirically accessible in general relativity. What is empirically accessible, according

to Westman and Sonego (2009), is the coincident values of different measurable

physical quantities (field values) that motivate a refined notion of an event, which

they label a “point-coincidence”. The set of all point-coincidences, which possesses

a natural manifold structure, denoted E , turns out to be a natural representation of

the totality of physical events (i.e. spacetime). In such a representation M4 plays

no empirical role and only the mutual relationships of the configurations of various

fields are physically relevant. Thus, the suggestion is that general relativity must

be interpreted as having a kind of relational ontology.

It is hard, then, to envisage an ontologically privileged present in a general

relativistic spacetime given the portent here that general relativity is predicated

upon a coordinate invariant notion of ontology. The exclusivity of the reality of

a locally defined present time instant (as required by an ontologically privileged

present) seems to be compromised by the relational nature of the ontology of general

relativity. Thus one might struggle to justify a metaphysical theory of classical time,

which remains within the scope of a naturalistic metaphysics, and interprets flow in

terms of the existential displacement of a privileged time instant by its successor.

To remain within these constraints, the traditional debate must proceed in the

following manner: if one wanted to maintain that there is an objectively flowing

privileged time instant, then one must understand this instant to be metaphysically

privileged, whereby flow is interpreted as the evolution of the property ‘presentness’

across consecutive time instants that are ontologically undifferentiated.

What is far from obvious is whether this picture yields a nontrivial metaphysical

theory of time; for instance, in what meaningful sense is this conception of the

present ‘privileged’ or ‘objective’, especially if we are simply positing a preferred

temporal instant with this property to allow us to maintain that we occupy an A-

theoretic reality? Whether or not there remains logical space for an A-theory of time

within these constraints depends upon the way in which the A-theorist wishes to

20As Westman and Sonego (2009, p. 1594) point out, this does not mean that charts on a
manifold are arbitrary; rather, the manifold points themselves lack operational significance.
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refine the notion of the privileged present.21 As an integral element to any ensuing

analysis here, I wish to point out in a sceptical spirit that the dynamic view of time

seems to be beset by the imprecise and obscure nature of notions such as ‘privileged’,

‘objective’ and ‘flow’ and it is not entirely clear that these terms are conducive to

rigorous definition in this context.22 The implication, then, is that the A-theorist

who respects naturalistic metaphysics owes us an account of the dynamic view of

time that avoids the triviality of merely stipulating a spacetime point as objectively

metaphysically distinguished.

There is a further caveat that jeopardises the viability of a dynamic view of

time.23 Even if we consider that each individual worldline in spacetime is a vehicle

of objective flow, to ensure that every such worldline yields a totally ordered linear

subset of the manifold we require the existence of a spacelike hypersurface Σ ⊂M4

with the property that every inextendible timelike curve inM4 intersects Σ exactly

once. We call Σ a Cauchy surface and note that it follows from this condition

that Σ is a three dimensional spacelike submanifold of M4. A geometry (M4, gµν)

that admits the existence of a Cauchy surface is said to be globally hyperbolic. If

(M4, gµν) is globally hyperbolic thenM4 is diffeomorphic to a manifold of the form

Σ × R (where we take Σ here to represent a diffeomorphism equivalence class of

three dimensional Cauchy surfaces) (Geroch, 1970). Thus a necessary condition for

the possibility of dynamic time is the requirement that our reality be represented

by a manifold M4 that can be foliated by Cauchy surfaces.24 A problem arises

here for the dynamic view of time since only a subset of the solutions to Einstein’s

field equations (2.2) have this property; Gödel’s (1949) infamous and eponymous

spacetime solution, which contains closed timelike curves, is just one example of a

solution to the field equations that is not globally hyperbolic.25

21Zimmerman (forthcoming) sets out a comprehensive defence of an A-theory of time that fits
explicitly within these constraints.

22Though see Price (forthcoming) for a recent (and not very sympathetic) analysis of flow.
23The formalism here follows Belot (2007)
24Of course, one could argue that a total ordering of temporal instants is not essential to the

dynamic view of time, i.e. dynamic time might be better characterised by the structure D′ :
(M1, <′, g, ϕ), with a partial ordering <′. Global hyperbolicity would not be a necessary condition
for the possibility of a dynamic time represented by D′.

25On the other hand, just because a physical theory admits the possibility of a solution to
the field equations of a particular sort does not imply that this solution is necessarily physically
realisable: think of the case of a pendulum with negative length. More to the point, there are as
yet no solutions to the field equations that have been used to make physical predictions that are
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There is, however, a potential reprieve for the A-theorist in this case. The set of

spacetime solutions to Einstein’s field equations that can be foliated into spacelike

hypersurfaces have taken on considerable significance over the last half a century.26

The restriction to globally hyperbolic spacetime solutions is required for the Hamil-

tonian formulation of general relativity and this in turn is integral to using canonical

quantisation techniques to develop a quantum theory of gravity. Thus, it may turn

out that a successful quantum theory of gravity provides independent evidence that

our spacetime is indeed globally hyperbolic, thus admitting the existence of Cauchy

surfaces. This would ensure that each individual worldline in spacetime consisted of

a totally ordered linear subset of the manifold, which would rekindle the possibility

that each worldline is a vehicle of objective flow.

The catch, however, is that this reprieve is only plausible if it is possible to find

a physical basis for fixing a preferred foliation of the spacetime manifold, which is a

difficult task to say the least for a foliation invariant theory such as general relativity.

A suggestion has been made in recent times, however, that the so-called constant

mean curvature (CMC) foliation approach provides just this: a unique foliation for a

reasonably large subset of spacetime solutions, which are determined by constraining

the possible ways that Σ is permitted to be embedded inM4.27 This is achieved by

expressing the content of the Einstein field equations in terms of the Hamiltonian

constraint equations that we obtain when the canonical variables are the 3-metric

and extrinsic curvature of Σ. We can then define a subset of the spacetime solutions

by the condition that the mean of the extrinsic curvature is constant across Σ.

As it happens, parametrising the hypersurfaces of a spacetime by constant mean

curvature leads to a unique foliation of the spacetime. The A-theorists hopes for a

potential reprieve, then, are pinned to whether or not a physical basis for privileging

CMC foliation can be found.

To conclude this chapter I wish to briefly remark on two significant issues that

foreshadow the A-theorists program in connection to the privileged foliation issue.

On the bright side for the A-theorist, Belot (2007) argues that the CMC foliation

approach may be an instrumental ingredient in solving the problem of time in general

relativity. However, he also concedes that the approach “violates the spirit of general

not globally hyperbolic. Such argumentation may alleviate the worry an A-theorist might have
with Gödel-type universes in the first place.

26See Dirac (1958), Bergmann (1961) and Arnowitt, Deser and Misner (1962).
27See Wüthrich (2010).
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relativity” in that it reinstates a privileged distinction between time and space (2007,

p. 219). On the not so bright side for the A-theorist, Wüthrich (2010) sets out a

rather comprehensive and convincing argument against the possibility of using the

CMC approach to support a particular A-theory of time: presentism. Thus while it

seems that the A-theorist may find supporting physical structure in the Hamiltonian

formulation of general relativity, there are significant obstacles still to be overcome.



Chapter 3

Timelessness in Machian Gravity

We have thus far considered the picture of time that arises from pre-relativistic

classical mechanics and from both the special and general theories of relativity.

In this final chapter of Part I we consider the picture of time that arises from

Julian Barbour’s Machian formulation of general relativity and his interpretation of

quantum gravity. Barbour’s views are of particular interest in the current context

due to his claim that they are timeless theories.1

3.1 Introduction

Barbour (1994a,b, 1999) claims that both his Machian formulation of general rela-

tivity and his interpretation of canonical quantum gravity are timeless. Although

Barbour’s views have been scrutinised to some extent by the theoretical physics

community, they seem to have been somewhat overlooked by the philosophical com-

munity.2 The purpose of this chapter is to examine the extent to which the picture

of reality arising from Barbour’s Machian formulation of general relativity and his

interpretation of canonical quantum gravity is timeless. To this end, I explore Bar-

bour’s work with a view to differentiating two senses of timelessness from the two

parts of his project. I argue that we have reason to be suspect about Barbour’s

claim of timelessness with respect to his Machian formulation of general relativity

but that he is on much firmer ground with respect to his interpretation of quantum

gravity.

1Part of this chapter consists of my contribution to the collaborative research paper Baron,
Evans and Miller (2010). Any other material included here from this paper is referenced accord-
ingly. I thank my coauthors for the opportunity to reproduce some of this work.

2Some notable exceptions include Butterfield (2002), Healey (2002), Ismael (2002), Rickles
(2006) and Rickles (2008).
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This chapter proceeds as follows. In §3.2 we revisit the narrative from Chap-

ter 1 and introduce the Jacobian formulation of classical mechanics. I then motivate

the two major parts of Barbour’s project. The first part consists of an argument

that classical general relativity can be formulated in a Machian, and thus in some

sense timeless, fashion. I present this in §3.3. The key to this argument is the

claim that general relativity is an implementation of a dynamical theory that can

be formulated in terms of a Jacobian geodesic principle on the space of all possible

relative configurations. In the second part of his project, Barbour examines a theory

of quantum gravity constructed via the quantisation of this formulation of general

relativity, his interpretation of which is itself also timeless. I present this in §3.4.

The key to this second part is the proposal that the Wheeler-DeWitt equation, the

timeless dynamical law of canonical quantum gravity, can be interpreted as a proba-

bility distribution, defined in terms of the relative configurations, that concentrates

the quantum mechanical probability on ‘time capsules’. In §3.5 I spell out the two

differing senses of timelessness that we find in the two parts of Barbour’s project in

terms of the formal characterisation of the features of time that was introduced in

the last chapter (§2.5).

3.2 The Jacobian formulation of classical mechanics

Our point of departure in this current chapter is the point at which we arrived at

the end of Chapter 1. Recall that we examined in Chapter 1 the dynamical picture

of reality that arises in pre-relativistic mechanics, including both the Lagrangian

and Hamiltonian pictures. We begin in this chapter with yet another formulation

of classical mechanics, based on the action principle developed by German mathe-

matician Carl Jacobi, which provides a novel perspective on the nature of time in

classical physics. It is from this Jacobian theory that Barbour develops his Machian

formulation of mechanics, and thus his Machian formulation of general relativity.

Let us commence here by returning to Lagrangian mechanics.3

To begin with, recall that we are able to characterise Hamiltonian dynamics com-

pletely using the geometric structure of the Hamiltonian phase space, Γ; Hamilton’s

equations equip Γ with a symplectic structure through the symplectic two-form,

ω. The Lagrangian configuration space, Q, likewise has a characteristic geometric

3The exposition here once again follows Lanczos (1970).
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structure; the kinetic energy, T , can be used to define a line element, ds2, on Q

which endows Q with a Riemannian structure. In curvilinear coordinates the ki-

netic energy becomes T = 1
2
aikdqidqk, with the aik functions of the qi. If we define

the line element ds2 = 2Tdt2 = aikdqidqk, we see that the aik play the role of a

Riemannian metric tensor on Q.

With this in mind, consider once again the Lagrangian function, L, of Lagrangian

mechanics. For a conservative mechanical system (i.e. for a system in which the

total energy is constant, T + V = E) whose Lagrangian is not explicitly a function

of time, we can consider the time t to be a dependent variable that, along with all

the qi, is a function of some independent parameter τ . In such a case the action

integral of Lagrangian mechanics (1.5) becomes (where derivatives with respect to

τ are denoted by a prime):

A =

∫ τa

τb

L
(
qi,
q′i
t′

)
t′dτ. (3.1)

Since we find here that L is a function of t′, but not t, we can employ a general

reduction procedure to eliminate t as a variable and thus reduce the mechanical

problem by one degree of freedom. Using the expression for the kinetic energy in

terms of our new independent variable, τ , along with the relation T = E − V , we

can derive an expression for t′:

t′ =
1√

2(E − V )

ds

dτ
. (3.2)

The general reduction procedure then prescribes that the reduced action integral

becomes,

Ar =

∫ τa

τb

√
2(E − V )ds. (3.3)

The physically realisable dynamical trajectories through Q are then those paths for

which the reduced action Ar becomes stationary; this variational principle, δAr = 0,

is called Jacobi’s principle and provides another formally equivalent formulation

(under appropriate conditions) of classical mechanics.

The reduced action integral Ar is not a function of the time t, but rather an

arbitrary independent parameter τ , which we can simply take to be one of the qi de-



62 Timelessness in Machian Gravity

scribing the physical system.4 To this extent, the dynamical picture that arises from

this Jacobian formulation of classical mechanics differs from both the Lagrangian

and Hamiltonian pictures. Jacobi’s principle determines the motion of a physical

system through the configuration space without requiring external specification of

how this motion is described with respect to time. The dynamical behaviour of the

system with respect to time can be determined by integrating (3.2) to find t as a

function of τ , but this is not a part of the Jacobian variational problem, rather it

is merely an expression of the conservation of energy constraint. Whereas in the

Lagrangian picture we determine dynamical behaviour by completely specifying the

configuration of a physical system at some definite initial and final time, in the Ja-

cobian picture we instead completely specify the initial and final configurations of

the system and then the dynamical behaviour through time is defined by the energy

constraint. In this way, the conception of time that we find in Jacobi’s formulation

of classical mechanics, while maintaining the Newtonian notion of a constant mono-

tonic time parameter, eliminates the external imposition of this parameter; time is

defined internally in the configuration space.

Another significant feature of the Jacobian formulation of classical mechanics

is that it enables explicit use of the Riemannian structure of configuration space

to solve dynamical problems. Jacobi’s principle does not merely select those paths

characterised by a critical action, it determines the shortest path through Q between

two definite end points according to the Riemannian metric; Jacobi’s principle is thus

a geodesic principle on Q.

It is this conception of time and dynamics for physical systems that is the starting

point of Barbour’s theory (1994a). The physical system that we will be concerned

with here is the universe itself and hence we consider Q to be its corresponding

configuration space. We assume that the energy of this system is both fixed and

conserved, and thus we can use Jacobi’s principle to determine a unique trajectory

through this configuration space; the entire trajectory we take to represent the

universe. Consequently, we can dispense with absolute time in the Newtonian sense

and rely on the Jacobian picture to define a unique time for the universe, for which

Barbour adopts the term ephemeris time.

4The ds factor of the reduced action integral does not correspond to the differential of an
independent variable; it is merely the line element of Q.
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3.3 Machian dynamics

If we consider the task of determining the dynamical behaviour of the universe to be

an n-body problem, the configuration space of the universe, Q, has 3n dimensions.

One can move from Q to the relative configuration space of the universe, Q0, which

has 3n−6 dimensions, by factoring out the six frame variables that specify the centre-

of-mass coordinates and the orientation of the system; thereby one can remove any

absolute frame from the description of the universe. The description of a system

as a Jacobian theory in relative configuration space is called by Barbour Machian,

after the Austrian physicist and philosopher Ernst Mach. By removing any notion

of absolute frame from Q0, we are no longer able to utilise the frame dependent

notion of energy to define the line element ds2. Thus constructing a Jacobian theory

of dynamics on the relative configuration space requires that we formulate a new

definition of distance between points in Q0. Such a definition of distance would give

us, of course, a metric on Q0 and we could then exploit the Riemannian structure

of the space to determine the dynamical behaviour of the system. Barbour achieves

this in the following way (1994a, p. 2862).

Imagine two configurations φ1, φ2 ∈ Q0, with φ1 described by some coordinate

system qi and φ2 described relative to φ1, qi + δqi; the δqi represent some arbitrary

distance measure between φ1 and φ2. By varying the coordinate system used to

describe the two configurations we vary the measure of distance between them. We

can then construct a variational principle over this distance measure, the minimum

of which represents the intrinsic difference between the two points φ1 and φ2, quan-

tified by a Pythagorean least-squares fit. Following Barbour, let us call this process

best matching : we can think of this process as like placing two relative configura-

tions on top of each other and then supposing them moved relative to each other

until the intrinsic difference is least (this is the essence of the Machian formulation).

The intrinsic difference can then be used to define a line element, ds0, on Q0, and

thus a new action integral resembling (3.3) that leads to a variational principle just

like Jacobi’s principle, except now we have a Machian line element. Such a princi-

ple determines geodesic paths through Q0 that represent physically realisable four

dimensional sequences of three dimensional relative configurations of the universe.

This Machian formulation of mechanics recovers Newtonian mechanics under

appropriate conditions:
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absolute space and time are recovered as operational concepts from the rel-
ative configurations by ‘placing’ the configurations on top of each other in
the best-matching positions (horizontal stacking, which gives the positions
in the Newtonian [centre-of-mass] system) and ‘spacing them apart’ (vertical
stacking) in accordance with their ephemeris time differences. Thus, time and
frame are obtained from a timeless and frameless ‘heap’ of relative configura-
tions, in which all that is concrete resides. (1994a, p. 2863)

Thus far we have only considered pre-relativistic classical mechanics where points

in Q0 correspond to instantaneous relative configurations of n bodies in Euclidean

space. The extension towards relativistic mechanics is achieved by considering points

in the relative configuration space to correspond to 3-geometries, which are equiv-

alence classes of Riemannian 3-metrics related by the action of the three dimen-

sional diffeomorphism group.5 The notion of best matching is extended to these

3-geometries in such a way so as to define a metric on this space. Such a metric

then allows the formation of an action integral with which we can construct a Ja-

cobian principle, the stationary points of which describe physically realisable four

dimensional trajectories as sequences of 3-geometries. Following Barbour (who fol-

lows Wheeler) we call this new relative configuration space superspace and we call

the metric defining the distance between 3-geometries in superspace the dynamical

supermetric (as opposed to the ordinary 3-metric within each 3-geometry); the rel-

ativistic Machian theory of mechanics we call Machian geometrodynamics. Given

a sequence of 3-geometries, we can construct a four dimensional space where the

instructions for layering the three dimensional hypersurfaces (3-geometries) are con-

tained in the dynamical supermetric. We can introduce a local analogue of ephemeris

time at each point on a particular hypersurface that can be used to determine the

‘temporal distance’ between that layer and the next (at the particular point in ques-

tion).

Barbour claims that general relativity is just such a relativistic Machian theory

of mechanics.6 Since general relativity is in fact foliation invariant (recall §2.6),

we find that Machian geometrodynamics has a further remarkable property. If we

take a sequence of 3-geometries from a geodesic in superspace and construct a four

5The three dimensional diffeomorphism group is the group of all bijective maps (diffeomor-
phisms) of a 3-metric to itself. Those 3-metrics related by diffeomorphisms are elements of the
same equivalence class.

6Barbour’s Machian formulation of general relativity is not without its technical problems; see
Pooley (2001).
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dimensional metric space as above, we implicitly specify a distinct foliation of this

four dimensional space; namely, the foliation determined by the 3-geometries used

to construct it. If we then arbitrarily foliate this four dimensional space into a new

sequence of 3-geometries we find that this new sequence is also a geodesic through

superspace. This means that any

two 3-geometries in superspace will not be connected by a unique geodesic
but rather a whole sheaf of geodesics corresponding to all possible different
ways of foliating a given spacetime. (1994a, p. 2869)

Thus combining a sequence of 3-geometries from superspace amounts to constructing

a four dimensional ‘spacetime’. If this constructed spacetime is in fact Lorentzian,

and the 3-geometries of the sequence are all spacelike hypersurfaces, then the gener-

alised ephemeris time introduced to determine temporal distance turns out simply

to be local proper time.

Barbour claims that general relativity is not only timeless, in the sense that it

can be construed as a Jacobian geodesic principle on a configuration space, it is also

frameless, in the Machian sense that the configurations alone contain all the requisite

information to determine any ‘temporal evolution’ between them. Time obviously

is not present in any individual three dimensional relative configuration and only

through the Machian principle on the relative configuration space can any semblance

of time as an ordering of the instants along a geodesic be reconstructed. Due to this

formulation, Barbour contends that the fundamental property of general relativity

is that it is a frameless and timeless theory of the relationships of 3-geometries and

superspace is the arena in which we should fundamentally describe reality. We will

consider this claim of timelessness in more depth below. Firstly, though, let us

turn to the second part of Barbour’s project, his timeless interpretation of canonical

quantum gravity.

3.4 Canonical quantum gravity

General relativity constructed as a classical Hamiltonian theory on state space is

called canonical gravity.7. A general method for quantising a classical Hamiltonian

7The pioneering work of casting general relativity into canonical form was carried out by
Bergmann (1949, 1961), Pirani and Schild (1950), Dirac (1958), Peres (1962), DeWitt (1962)
and Arnowitt, Deser and Misner (1962)



66 Timelessness in Machian Gravity

theory, a technique which has come to be known as canonical quantisation, was set

out by Dirac (1964) in a series of lectures delivered in Canada in the 1950s and later

published in his Lectures on Quantum Mechanics. A detailed account of this process

would be too large a digression at this point but, following Pullin (2003), I provide

here a sketch of Dirac’s method.

Recall once again Hamilton’s equations (1.9). In deriving these equations (§1.4)

we assume that the classical variables, the qi and pi, are independent of one another.

In contrast, when there exist certain relations between these variables, which we call

constraints, the equations of motion that we derive are similar in form to Hamilton’s

equations but contain extra terms. It so happens that, since the classical variables

are known to form a Poisson algebra, we can incorporate these extra terms neatly

if we rewrite the constrained Hamiltonian equations of motion using the Poisson

bracket relations. We then quantise this theory by making our dynamical variables

operators acting on a space of wavefunctions and satisfying commutation relations

corresponding to the Poisson bracket relations, and then promote the constraints to

operators, which serves to restrict the class of possible wavefunctions.

Barbour’s Jacobian theory can be transformed into a Hamiltonian theory by

defining the canonical momenta in the standard way (1.6). When we do so, we find

that there indeed exists a constraint between the qi and pi and that the resulting

equations of motion can be written in terms of the Poisson bracket relations.8 We

can then follow Dirac’s constrained Hamiltonian quantisation procedure to quantise

the theory. It so happens that when we subject the Hamiltonian formulation of

the pre-relativistic Jacobian theory to this procedure the dynamical equation that

results is the time-independent Schrödinger equation of nonrelativistic quantum me-

chanics (we will meet the orthodox formulation of quantum mechanics in Chapter 4).

Applied to Machian geometrodynamics, this recipe produces the Wheeler-DeWitt

equation9: a constraint equation of the form ĤΨ = 0, where Ψ is a complex-valued

functional of 3-geometries (i.e. the points of superspace) (Butterfield and Isham,

1999, p. 149). When the canonical formulation of general relativity is subject to

such canonical quantisation techniques, the theory of quantum gravity obtained is

referred to as canonical quantum gravity.

The goal of this section then is to introduce the picture of reality that Barbour

8Gryb (2010) contains a clear and concise presentation of this process.
9This was first carried out by Peres (1962).
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envisages as arising from his interpretation of canonical quantum gravity (1994b). As

a preamble to his interpretation Barbour emphasises that both general relativity (in

his Machian formulation) and quantum theory can be characterised as a theory on

relative configuration space: the Schrödinger wavefunction of any system is defined

over all its possible configurations, and thus instead of describing a unique classical

history in the configuration space of the system, the quantum wavefunction explores

all configurations. This leads Barbour to suggest that the Wheeler-DeWitt equation

can be interpreted as describing a static wavefunction Ψ on superspace.

On this view, the notion of a Hilbert space representing the state space of some

subsystem of the universe is simply redundant; Barbour proposes to treat the uni-

verse as a single holistic quantum system. In any one configuration, no distinction

is possible between quantum system and measurement device: all are simply part

of a particular configuration of the universe. The sole role of the wavefunction, as

in Born’s probability interpretation (§4.3), is to say how likely the actualising of a

given configuration is. These probabilities are not, however, time dependent nor are

they conditioned on prior knowledge and tied to measurement setups; they are given

once and for all for the possible configurations that the universe could be in. It is

in this sense that Barbour’s interpretation of canonical quantum gravity is timeless.

In trying to motivate an intuitive picture of his model, Barbour contrasts two

ways that we might imagine such a universe (1994b, p. 2881). On the one hand,

from an external viewpoint, we can imagine the set of all relative configurations

of superspace to exist as a heap of possibilities.10 We can then divide superspace

into infinitesimal hypercubes, take the value of Ψ in each hypercube, calculate ΨΨ∗

and place a number proportional to ΨΨ∗ of identical copies of a representative

configuration of that hypercube into a second heap called the heap of actualities.11

We may now suppose that drawing one configuration at random from the heap of

actualities actualises that configuration. Thus, a probable configuration is more

likely to be actualised than one that is improbable.

On the other hand, from an internal viewpoint, we have it that our direct expe-

rience, including that of motion, is correlated only with configurations of our brains.

10Barbour emphasises that this is called a ‘heap’ because each point in the relative configuration
space has, unlike an ordinary manifold, an individual existence outside the space, i.e. a three
dimensional configuration.

11In what way we are to imagine this heap of actualities is unclear. I abstain from exploring this
issue.
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“Our seeing motion at some instant is correlated with a single configuration of our

brain that contains, so to speak, several stills of a movie that we are aware of at once

and interpret as motion” (1994b, p. 2883). The connection between the internal and

external views is that while some “divine mathematician” actualises (by random se-

lection) one particular configuration of the universe, it seems to us as though we are

inside part of that configuration and have direct awareness of that part as an expe-

rienced instant. The problem in orthodox quantum theory concerning the reality of

the unactualised possibilities is compounded in Barbour’s quantum gravity

since one even has to ask whether events of which we have vivid memories
are actually experienced. This is because everything we experience in any in-
stant, including the memories themselves, must be coded in our instantaneous
brain configuration. Records of apparent past events are in fact details in the
present configuration. And all the timeless theory tells us is that each such
configuration has a certain probability. (1994b, p. 2883)

Thus while we have direct evidence that the present configuration is actualised,

we are epistemically locked in this configuration and therefore have no warrant for

believing that any other instant is actually experienced. Barbour’s quantum gravity

“does seem to come perilously close to solipsism of the instant” (1994b, p. 2883).

The most significant element of Barbour’s interpretation of quantum gravity is

the notion of a time capsule. A time capsule is a static configuration of part or all of

the universe containing structures which suggest they are mutually consistent records

of processes that took place in a past in accordance with certain laws. Time capsules

as a bare possibility exist, and it is the existence of such special configurations that

Barbour claims allow us to recover the appearance of time from a timeless picture

of reality. However, the set of all time capsules has negligible measure amongst

the set of all possible configurations, thus Barbour’s proposal is conditional upon

his suggestion that the solution to the Wheeler-DeWitt equation concentrates the

quantum probability distribution on time capsules, thereby making it probable that

we would find ourselves in a three dimensional configuration that contained evidence

of having been created by a dynamical process.12

12Barbour argues that this suggestion can be supported by extending the Mott (1929) formalism
for α-particle scattering. While this is certainly integral the cogency of Barbour’s view, I leave this
issue to one side in the present discussion and take for granted the claim that the Wheeler-DeWitt
equation concentrates the quantum probability distribution on time capsules.
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One advantage of Barbour’s interpretation of canonical quantum gravity comes

in the form of a possible explanation for two notoriously unexplained (and related)

problems of cosmology: namely, the directionality of time and the improbable initial

conditions of the universe. Both might be explained if it turns out that the solution

to the Wheeler-DeWitt equation picks out as probable configurations on superspace

that carry with them records of having evolved from a low entropy past. Interest-

ingly, Barbour suggests that the topological structure of superspace might play a

significant role in any such explanation. If we consider a three dimensional relative

configuration space describing the relative configurations of a system of three point

particles free to move in three spatial dimensions, we find that actual configura-

tions of this system can only be found in a portion of the positive octant of the

configuration space. By analogy with this case Barbour surmises that superspace

must have a similarly asymmetric structure. Therefore, since spacetime and initial

conditions are irrelevant in superspace, and only a static balance between relative

configurations can be called upon to account for the arrow of time, the question of

time’s directionality and the improbable initial conditions of the universe boil down

to the question of what sort of configurations attract large values of the quantum

mechanical probability. The structure of superspace then “cannot but give rise to

an intricate and inherently asymmetric topography” (Barbour, 1994b, p. 2893) for

the potential of the quantum wave equation.

Furthermore, it is apparent that there is a natural origin of superspace which

represents the configuration in which everything sits upon everything else. It is

not lost on Barbour that our current standard cosmological models suggest that

the universe has emerged from a tightly compressed state of very high density at a

finite time in the past. A timeless interpretation of this fact in terms of superspace

is that the Big Bang is not in the past but it is merely a special configuration

in superspace. Furthermore, due to the characteristic structure of superspace, any

particular configuration is a finite distance from an absolute frontier to one side (the

origin) while there is no frontier to the other side.

For, at least in principle, the absolute frontier... could have the effect of con-
centrating the wavefunction of the universe on configurations that seem to
contain records... of configurations that lie between the recording configura-
tions and the absolute frontier but none of configurations that lie ‘beyond’
the recording configurations. (1994b, p. 2893)
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Barbour sums up the moral of the second part of his project in the following way:

“Time is not a framework in which the configurations of the world evolve. Time

exists only so far as concrete configurations express it in their structure” (1994b,

p. 2885). Let us now turn our attention to Barbour’s claim that both his Machian

formulation of general relativity and his interpretation of canonical quantum gravity

are timeless.

3.5 From timeless physical theory to timelessness

We have thus far familiarised ourselves with the details of the two parts of Barbour’s

project: both his Machian formulation of general relativity and his interpretation

of quantum gravity. We see that Barbour’s claim of timelessness (that the scientific

image derived from his theories is timeless) is motivated by the fact that, according

to his theories, superspace is the fundamental arena with which we describe the

universe, and superspace is comprised of three dimensional relative configurations.

I refrain here from challenging the technical details of Barbour’s theories and pose a

challenge of a different sort: given the picture of reality that arises from Barbour’s

theories, to what extent is Barbour warranted in drawing his conclusion that this

picture is timeless? The problematic issue in this respect, as Baron et al. (2010)

make clear, is that Barbour is missing a crucial piece of the puzzle in his argument

from ‘timeless’ physical theories to timelessness; Barbour fails to provide a charac-

terisation of the essential features of time. Without this characterisation, it is not

clear exactly which features of time must be absent from a physical theory to render

the picture of reality arising from it ‘timeless’. The goal of this section then is to

explore Barbour’s claim of timelessness in light of a potential characterisation of the

essential features of time.

Before we embark on this exploration I introduce here some terminology that

will help us distinguish the different senses of timelessness in Barbour’s work. The

core of Barbour’s claim of timelessness is that the fundamental elements of our de-

scription of reality, both in his classical theory and his quantum theory, are three

dimensional relative configurations, i.e. ‘frozen’ configurations which lack a tempo-

ral dimension. However, there is a significant difference between the timelessness

of Barbour’s Machian formulation of general relativity and the timelessness of his

interpretation of canonical quantum gravity. In the former sense, the timelessness of
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the relative configurations is supplemented by a Machian reconstruction of temporal

structure; using only the data present within the set of relative configurations we can

determine geodesics through Q0 which correspond to physically realisable trajecto-

ries, and we can define a temporal metric from these trajectories. As Butterfield

(2002, p. 15) remarks, the Machian formulation of general relativity “will deserve to

be called ‘timeless’, in that there is no time metric in Q0; rather... the time metric

is definable from the dynamics”. Thus while the theory is timeless in the sense that

a time dimension is absent from the fundamental elements of the theory, a temporal

metric of sorts can be reconstructed from these timeless elements. Let us call this

Machian timelessness.

The same cannot be said of the latter sense of timelessness. The timelessness

of Barbour’s interpretation of canonical quantum gravity is again manifested in

the absence of a time dimension in the fundamental elements of the theory but,

in contrast to Machian timelessness, this is then compounded by the remaining

structure of the theory: there exists a time independent (static) quantum probability

distribution (QPD) across the relative configuration space that is concentrated upon

time capsules, i.e. special three dimensional configurations that merely appear as

though they have been created from a dynamical process. Thus in quantising the

Machian formulation of general relativity to yield Barbour’s particular interpretation

of quantum gravity we lose an element of Machian temporal reconstruction and gain

an account of temporal appearances in the form of time capsules. Let us call this

sense of timelessness QPD timelessness. Barbour does not provide a clear statement

distinguishing these two senses of timelessness. Indeed, Butterfield (2002, p. 3)

again, “the book [The End of Time] gives the misleading impression that Barbour’s

various views are closely connected one with another”. The distinction between

these two senses of timelessness will become more clear through our consideration

of the essential features of time.

The characterisation of the essential features of time that we consider here is

one that we have encountered previously (in both the Introduction and in §2.5):

Rovelli’s analysis of the different notions of time in physical theory. Recall that

Rovelli (1995, 2004) identifies up to nine distinct attributes that we assign to the

temporal structure of our various contemporary physical theories and folk concepts,

including directionality, uniqueness and globality, amongst others. Rovelli proposes

that our contemporary physical theories can be arranged in a hierarchical structure
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in which an increase in the universality of the theory corresponds to a decrease in

the possible attributes that we can assign to the temporal structure of the theory. In

§2.6 we adapted Rovelli’s characterisation and formalised these features with respect

to relativity theory and concluded that the structure of (proper) time in orthodox

general relativity (one of our most universal physical theories) can be represented by

the set {M1, <, gµν}; that is, we find time in general relativity to be represented by

a (local) ordered, linear and metric substructure of the four dimensional spacetime

manifold. In this respect, according to Rovelli, the two possible attributes that we

find to characterise the temporal structure of general relativity are linearity (‘time’

can be used to refer to a one dimensional substructure of ordered temporal instants)

and metricity (‘time’ can be used to refer to the meaningful measure of distance

between any two time instants).

Using this as a characterisation of the essential features of time in general rela-

tivity, we can attempt to interpret Barbour’s claim of timelessness as a denial that

there is some linear and metric substructure within his theories that can be referred

to as time. This provides then a straightforward formula for evaluating Barbour’s

claim that both his Machian formulation of general relativity and his interpretation

of quantum gravity entail a timeless picture of reality: for both of Barbour’s theories

we consider the extent to which linearity and metricity can be extrapolated from

the picture of reality that arises.

In Barbour’s Machian formulation of general relativity and his interpretation

of canonical quantum gravity the fundamental elements of the theory are three

dimensional relative configurations. If we consider a single relative configuration in

isolation, there is no one dimensional substructure therein to identify as time and no

way to meaningfully measure the temporal distance from this configuration to any

other. Thus in both Barbour’s classical and quantum theories, when we consider

a single instant in the relative configuration space, we notice (quite trivially) that

there is no fundamental linear or metric structure that we might identify as time.

However, an integral part of Barbour’s Machian formulation of general relativity

is the specific and detailed Machian algorithm that enables one to define an intrinsic

measure of distance between any two points in superspace; this measure is just the

dynamical supermetric. The supermetric, through Jacobi’s principle, establishes the

geodesics of superspace, which yield sequences of 3-geometries that correspond to the

four dimensional ‘spacetime’ solutions of Einstein’s field equations. As mentioned
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before, if the constructed spacetime turns out to be Lorentzian and the 3-geometries

are all spacelike hypersurfaces of this spacetime, then the ephemeris time of the Ja-

cobian geodesics is simply the proper time of orthodox general relativity, and thus

has the structure {M1, <, gµν}. We see then that a linear and metric substructure

that we refer to as time emerges explicitly from the Machian formulation of general

relativity.13 Thus when it comes to Barbour’s Machian formulation of general rela-

tivity, linearity and metricity are not entirely absent from the theory. The relevant

features exist, it is just that they emerge out of the three dimensional relative config-

urations of superspace via the Machian best-matching algorithm. Thus it becomes

apparent that talk of time is not misplaced in Barbour’s Machian general relativity;

there is temporal structure, it is just not found in the fundamental components of

the theory.

Given that the superspace of Barbour’s formulation of general relativity explicitly

yields a temporal parameter that corresponds directly with that of orthodox general

relativity, we have reason to be suspicious of Barbour’s claim, with respect to his

Machian formulation of general relativity, that the corresponding picture of reality

that arises is timeless. There seems to be an uneasy tension between Barbour’s

claim of timelessness motivated by the absence of a temporal dimension in the

fundamental elements of configuration space and his own statement that his theory

contains explicit structure which he is happy to employ as a definition of time

(see fn. 13). It appears at the very least that Barbour’s claim that his Machian

formulation of general relativity is timeless is slightly overstated.14

As a brief aside, a parallel argument can be constructed from more orthodox

metaphysical considerations in support of this conclusion that a timeless picture of

reality does not follow from the Machian timelessness of Barbour’s general relativ-

ity (Baron et al., 2010). Consider once again McTaggart’s distinction between the A-

and B-series and the subsequent temporal models that embody this distinction: the

A- and B-theories of time (§2.1.1). These temporal models come prepackaged with

13Without these two conditions, ephemeris time does not correspond to proper time but to a
measure of the four dimensional interval orthogonal to the hypersurfaces of the foliation given
by the sequence of 3-geometries in question. Regardless of any correspondence to proper time,
however, we still find a linear and metric substructure to arise. Moreover, we find Barbour himself
stating: “This is what I propose to call time” (1994b, p. 2877).

14Of course, one option available to Barbour is to claim that being one of the fundamental posits
in our best physical theory is essential to the nature of time. See Baron et al. (2010) for a discussion
of this point.
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a supposition about the essential features of time; in short, the A-theory supposes

the A-series to be essential and the B-theory supposes the B-series to be essential.

We might then characterise Barbour’s claim of timelessness as a claim that the pic-

ture of reality arising from his theories is without one or the other of these essential

features of time. If we put to one side the uninteresting case of reading Barbour as

denying the reality of the A-series15, we might characterise Barbour as claiming the

following: it is essential to time that there is a B-series, and since there is no such

series, then there is no time. Denying the existence of the B-series, recall, is denying

the existence of the temporal relations ‘earlier than’, ‘later than’ and ‘simultaneous

with’.

If we now consider the Machian algorithm for reconstructing four dimensional

‘spacetime’ solutions from the three dimensional relative configurations of super-

space, we see quite clearly that this algorithm yields an explicit reconstruction of a

temporal ordering via the foliation provided by the sequence of 3-geometries. This

temporal ordering, of course, is simply a B-series of temporal instants. Thus if we

read Barbour’s claim of timelessness as a denial of the existence of the B-series, we

see that Machian timelessness does not entail a timeless picture of reality. There is

a close correspondence between this argument and the argument above; one might

argue that they are merely terminological variants of each other. In both analyses

we find that in Barbour’s Machian formulation of general relativity certain essential

features of time remain as integral parts of the theory: a linear and metric temporal

structure, on the one hand, and a B-series, on the other. Put like this, however, it

should now be clear why there is a close correspondence between these two argu-

ments: the temporal structure that the B-series provides just is a linear and metric

temporal structure, and vice versa.16

Consider now QPD timelessness and Barbour’s interpretation of canonical quan-

tum gravity: the task of extrapolating linearity and metricity from the picture of

reality that arises here is much more difficult. The fundamental constituents of the

theory are still three dimensional relative configurations in superspace. However,

whereas Barbour used the geometry of superspace to recover orthodox general rela-

15Since in most cases even the A-theorist would agree that even if there is no A-series then there
is still a B-series and this is enough for there to be time.

16Likewise, the temporal structure that the A-series provides might also be characterised in
terms of Rovelli’s attributes: linearity, metricity, globality, externality, uniqueness, directionality
and presentness.
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tivity (and thus ‘time’, in a sense) in his Machian formulation of general relativity,

the explanation provided for our experience of time in his interpretation of canonical

quantum gravity is the ‘time capsule’; the appearance of the present configuration

having evolved in time is merely an illusion brought about by the mutually consis-

tent records we find in each time capsule. Thus there is no need to specify some

algorithm for defining a meaningful measure of distance between the relative con-

figurations of superspace, and there is no need to construct a linear ordering from

the “heap” of three dimensional instants. Not only is it the case then that there is

no linear or metric structure in the theory, such structure is not recoverable from

superspace in any sense. At best, there is the mere illusion of linear and metric

structure via the time capsules.17

We see then that the QPD timelessness at the heart of Barbour’s interpretation

of quantum gravity does entail that certain features of time that we might take to

be essential (namely, linearity and metricity) are indeed absent from the theory.

Barbour is then on much firmer ground when he claims that the picture of reality

that arises from his interpretation of canonical quantum gravity is timeless.18 Con-

sequently, this exacerbates the tension that is problematic with respect to Machian

timelessness: without the more solid claim concerning QPD timelessness, Barbour

may have been able to argue that Machian timelessness (as I have characterised

it here) is simply what he meant all along by timelessness. In the present case,

however, this would render his claim of QPD timelessness rather understated, since

we have much more reason to believe that the picture of reality that arises in this

context really is timeless.

Thus while we have reason to be suspect of Barbour’s justification that the pic-

ture of reality arising from his Machian formulation of general relativity is timeless,

he is much more justified in claiming a timeless picture of reality to arise from his

interpretation of canonical quantum gravity.

17For an interesting discussion of structure that might be associated with the set of time capsules
see Healey (2002).

18In terms of the aforementioned terminological variant we can characterise the absence of any
linear and metric structure between points of superspace as a set of time instants that are not
related by the temporal relations ‘earlier than’, ‘later than’ or ‘simultaneous with’. Baron et al.
(2010) liken Barbour’s position here to McTaggart’s position that all that exists is a C-series of time
instants that contains no temporal ordering whatsoever. Both Barbour and McTaggart conclude
that there is no time.
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? ? ?

This draws Part I to a close. The intention here has been to demonstrate what

an analysis of the nature of time amounts to when we take seriously the doctrine

that modern physics should be treated as the primary guide to the nature of time.

The conclusions that we have reached are unsurprisingly counterintuitive; modern

spacetime physics no longer has the intuitive appeal of the Newtonian picture. In

fact, even within the scope of analytical mechanics we find a novel and interesting

picture of reality arising from a Lagrangian picture of teleological determination.

We have also seen that relativity theory provides constraints on the metaphysical

possibilities for time and we have become familiar with the nature of time within a

Machian formulation of general relativity as well as an interpretation of canonical

quantum gravity. We shift our attention now away from spacetime physics and

toward another of the pillars of modern physical theory: quantum mechanics.



Part II

Quantum Theory and the

Newtonian Picture of Time
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Chapter 4

Quantum Mechanics, EPR and Escaping Bell’s

Theorem

We have thus far examined the picture of time that arises in various physical theories

and we have considered the way in which this picture impinges upon metaphysical

considerations concerning the nature of time. One of the morals of Part I was

that metaphysical considerations concerning the nature of time must respect the

constraints and limitations imposed by the picture of time that arises in physics; we

should treat physical theory as an authority and primary guide in this respect. In

Part II we turn our attention to a different sort of physical theory and a different sort

of metaphysical consideration and address a confusion that can be seen as arising in

the absence of the methodology in Part I. Specifically, study into the nature of time

should be guided by modern physics and thus we should be careful not to insert any

preconceived Newtonian conception of time unwittingly into our interpretation of

the formalism of physical theory.

Our central concern for the remainder of this thesis will be the interpretation of

the mathematical formalism of nonrelativistic quantum mechanics. We can think

of the task of providing an interpretation of quantum mechanics as commensurate

with the task of investigating the picture of reality that arises from the quantum

formalism. However, we face a problem building such a picture of reality from the

quantum formalism: the theory of quantum mechanics is in certain crucial respects

different from any theory of classical mechanics that precedes it and thus much

of the Newtonian picture of reality must give way to a new picture. The task

of deciding exactly which of our Newtonian intuitions, if any, is worth keeping is

notoriously difficult since it is the case that a complete quantum picture of reality is

underdetermined by the formalism. Moreover, some of these Newtonian intuitions

79
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are so engrained in the way we think about the world that often a quantum picture of

reality is unwittingly built atop a whole raft of preconceived Newtonian metaphysics.

The goal of this second part of the thesis then is to explore the interpretation

of nonrelativistic quantum mechanics in light of the contention that a Newtonian

conception of time besets the orthodox quantum picture. In particular, I argue

in favour of introducing backwards-in-time causal influences as part of an alterna-

tive conception of time that is consistent with the quantum picture of reality. The

argument proceeds as follows. In this chapter I introduce the formal structure of

quantum mechanics and the accompanying interpretational debate. I aim to show

that retrocausality (backwards-in-time causality) can be instrumental in alleviating

the interpretational difficulties posed by Bell’s theorem. I provide in the next chap-

ter an analysis of the metaphysical possibilities that our current scientific theories

allow to mount an independent argument in favour of retrocausality; namely, that

retrocausality cannot be ruled out as a metaphysical position on analytic grounds.

In Chapter 6 I consider Maudlin’s argument against retrocausality, motivated by his

critique of the transactional interpretation of quantum mechanics, which I claim is

a clear exemplar of the misapplication of a preconceived Newtonian conception of

time. Let us begin, however, with the theory of quantum mechanics.

4.1 Introduction

One of the great achievements of 20th century physics is the development of the

theory of quantum mechanics. One could argue, however, that it is a minor embar-

rassment that there is no universally accepted interpretation of quantum theory that

provides a coherent quantum picture of reality, despite the many attempts to do so.

As mentioned above, any attempt to provide this picture must abandon at least

some of the Newtonian picture of reality. The goal of this chapter is to motivate the

introduction of retrocausality as one such attempt to provide this coherent picture.

This chapter follows a somewhat historical narrative, which serves two purposes: the

first is to explain how the proposal of retrocausality fits in to the debate about the

interpretation of quantum mechanics; and the second is to do this in a way which

portrays retrocausality as the ‘lesser-of-two-evils’ resolution to the interpretational

difficulties that arise in this debate.

I begin in §4.2 by introducing the core principles of the mechanistic worldview
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of classical mechanics, which shares much in common with the Newtonian picture

of reality. I introduce in §4.3 the fundamental formalism of quantum mechanics

alongside the interpretational problems that this creates for the mechanistic world-

view. I then introduce the Copenhagen interpretation in §4.4, which can be seen

as the first interpretation of quantum mechanics to become an orthodoxy. Follow-

ing this in §4.5 I present the details of an argument set out by Einstein, Podolsky

and Rosen (EPR) against the Copenhagen interpretation. This analysis leads us to

Bell’s theorem in §4.6 and it is at this point that the hypothesis of retrocausality

can be employed as a way of escaping Bell’s result. I finish the chapter in §4.7 by

providing a sketch of a retrocausal description of the strange correlations we find

in the sorts of quantum systems at the heart of Bell’s analysis. Our narrative must

begin somewhere, however, so let us begin with classical physics at the turn of the

20th century.

4.2 Classical physics

Physics prior to the 20th century was driven by a mechanistic worldview; recall the

picture of reality that we found to arise from classical mechanics (Chapter 1). This

view is borne out of the development of Newtonian physics in the 17th century and

grew throughout the reformulation of classical mechanics in the 18th and 19th cen-

turies as well as the theory of relativity at the beginning of the 20th century. The

success of analytical mathematics in describing physical systems was instrumental in

engendering a belief in the scientific community of this era that there are strict nat-

ural laws that govern the universe as a whole and that these laws can be formalised

into mathematical systems. The mathematical formalism describing physical sys-

tems thus motivates a rigorous picture of reality according to classical mechanics.

Among the various elements that characterise the mechanistic worldview, two in

particular warrant our close attention and will be continually within our sights for

much of Part II: the generative picture of determination and the principle of locality.

Let us begin with the generative picture of determination.

Recall that in classical mechanics the dynamical behaviour of a physical system

is described by differential equations ((1.4), for instance). One feature of this New-

tonian schema is that the complete specification of the state of a physical system

at some time determines, through the differential equations governing the dynamics
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of the system, all past and future states of the system. If one then accepts the

mechanistic doctrine that the universe as a whole can in principle be described in

terms of formal mathematical systems, then this feature of physical systems should

extend to the universe as a whole. That is, if one could specify the exact state of

the universe at any one time and the dynamical laws governing the universe, then

one could establish the state of the universe at all past and future times. This is the

generative picture of determination (recall §1.2).1 This picture captures the image

of the universe as a clockwork machine which invariably and eternally operates as a

function of the inner cogs and gears of the machine. Within such a picture of reality

the only limitation set on predicting the future with certainty would be our capacity

to measure and then process such enormous data sets such as the exact state of the

universe at any moment in time.

We should note here that, depending on our particular views about causality, this

picture of determination might render our causal concept redundant. If the state

of the universe at any one time were enough to determine the state of the universe

for all times given the dynamical laws of the universe then any mechanistic account

of causality consistent with this would merely be a restatement of this very fact;

the state of the universe at any time would be by definition caused by its state at

some given time slice. This identification of mechanistic causation and determinism

can be seen as one of the central pillars of the mechanistic worldview. (In the next

chapter, §5.2.2, I introduce an account of causality that strikes a balance between

a deterministic view of the universe and our intuitive notion of causality. We will

return to this issue at various times throughout Part II.) Let us now consider the

principle of locality.

Since the principle of locality is to play a crucial role in the motivation and

analysis of retrocausality, it will serve us well at this point to spend some time

getting clear on what we mean by ‘local’. We will mostly be concerned here with

the principle of locality as it is understood with respect to the theory of relativity.

However, to get a feel for what it is in the world that the principle of locality is

attempting to capture I wish to begin with an account of locality as it might be

characterised from within the mechanistic worldview.

Recall that in classical mechanics we represent the dynamical behaviour of a

1We could also refer to this as the Laplacian picture of determination, after the French mathe-
matician Pierre Simon Laplace (Earman, 1986).
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physical system in a state space, where each point of the space represents some

possible combination of values for the generalised coordinates we use to describe

the system. Recall also that a history of a physical system is represented by a path

through this state space determined by the dynamical laws of the system, with each

point along the curve representing the state of the system at some particular moment

in time through its history. Due to the nature of the differential equations which

describe these paths through state space, the values of the generalised coordinates

describing the system evolve along the path (through time) in a continuous man-

ner; it is simply not possible according to the mathematical formalism that there

be discontinuous jumps in the values of the generalised coordinates characterising a

physical system from one time to the next. In other words, the mathematical formal-

ism of classical mechanics forbids matter and energy to be spontaneously destroyed

at one spacetime location only to be created again at another distant spacetime

location.

In very general terms, the continuity of the dynamical behaviour of a physical

system according to classical mechanics can be seen as capturing the everyday intu-

ition that the behaviours of the physical systems we observe are causally connected

in a particular way. It is not the case that we experience the sorts of uncaused

behaviours that discontinuous state space jumps would imply of the classical world

(such as matter appearing from nothing or moving objects suddenly stopping with-

out any external forces). In a rudimentary sense, then, one is left with the impression

that the causal structure of the four dimensional spatiotemporal manifold we inhabit

(represented by a path through state space) is local in the sense that the behaviour

of some physical system is influenced only by the events in its immediate spatial

and temporal vicinity. While we are thus far only considering theories of classical

mechanics, this is the sort of intuition about the nature of reality that we would like

to capture with the principle of locality - a kind of action-by-contact.2

The principle of locality was formalised and extended with the introduction of the

special theory of relativity, which is a theory about the connectedness of space and

2Of course, we find at least one notable, perfectly good classical theory that is itself nonlocal
in this action-by-contact sense: Newtonian gravity. Although there was in fact never a successful
theory of gravity as part of the mechanistic worldview that failed to violate this notion of action-by-
contact, Newton’s own displeasure with the action-at-a-distance of his theory of gravity suggests
this notion is not unimportant to the conceptual foundation of classical physics.
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time themselves (recall §2.2).3 Einstein’s characterisation of his theory states that

it is light signals that provide this connection between separated parts of spacetime

and this accordingly places an upper bound on the spatiotemporal distance between

causally connected, or local, events. Thus given a particular spacetime location,

there is a precise account according to relativity theory of which other spacetime

locations are causally connected (and are therefore local) and which spacetime loca-

tions are not causally connected (and are therefore nonlocal).4 Recall from Chapter 2

that the former class of spacetime locations are said to be timelike separated from

the given location and the latter are said to be spacelike separated. The principle

of locality, then, is in essence a principle concerning the causal connectedness of the

spacetime manifold by which physical systems are constrained.

The generative picture of determination and the principle of locality grew from

the conceptual framework of the mechanistic worldview. However, physics in the

20th century was fundamentally to challenge this worldview. The continuing de-

velopment of thermodynamics and electromagnetism towards the end of the 19th

century led to the construction of the theory of quantum mechanics. Through-

out the development of quantum theory, it became apparent that these elements of

the Newtonian picture do not seem to provide a good picture of the behaviour of

quantum systems. Quantum mechanics had thus laid a very real challenge to the

picture of reality that arises from classical mechanics. Before we can address the

consequences of this challenge for the ensuing quantum picture, we must address in

much more detail the challenge itself. Let us turn our attention to the foundations

of quantum mechanics.

4.3 The theory of quantum mechanics

The theory of quantum mechanics is an elegant mathematical model which is used

to describe physical processes that occur on an atomic scale. At its inception it

was also a unique case amongst scientific theories. The reason for this is that the

mathematical formalism of the theory is rather abstract and thus does not lend

3More specifically, special relativity is a theory about the connectedness of the measurements
of space and time carried out by inertial observers using rulers and clocks.

4The local/nonlocal distinction should not be confused with local/global distinction. The for-
mer concerns timelike as opposed to spacelike separation and the latter concerns the immediate
neighbourhood of a point in a space as opposed to the entire space.
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itself to the sort of natural interpretation that is familiar in classical mechanics.

This is not to say that the abstract mathematical formalism is somehow detached

from physical reality. On the contrary, the need for a new theory of mechanics

at the atomic scale over and above classical mechanics was due to the inability of

classical mechanics to account for a multitude of atomic phenomena. The theory

of quantum mechanics slowly replaced classical mechanics through a series of steps

in response to experimental developments in the early part of the 20th century.

In fact, it took roughly a generation from the time the first quantum phenomena

were observed, around the turn of the 20th century, to the time an encompassing

empirically adequate theory was developed in the 1920s.

At first, two such theories were developed: Schrödinger’s (1926) wave mechan-

ics and Heisenberg’s (1925) matrix mechanics. Each appeared to account for the

observed phenomena equally well but each emphasised different aspects of the phe-

nomena as being the integral element of the description. This discrepancy underpins

the interpretational debate in quantum mechanics. Soon after the development of

these competing theories of quantum mechanics, Dirac (1930) and von Neumann

(1932) were able to show that the two formulations were mathematically equiva-

lent and by the early 1930s the theory of quantum mechanics had grown into a

sophisticated piece of mathematical machinery. Unfortunately this did not provide

a definitive solution to the interpretational discrepancy; more on this shortly.5

Before we can begin to come to grips with these interpretational difficulties, it

will be useful to familiarise ourselves with the basic mathematical machinery which

forms the core of the theory of quantum mechanics.6 I will by no means give a

mathematically complete account of the formalism but I do hope to provide here

enough structure on which we can start to hang a physical interpretation. Moreover,

as I mentioned above, this mathematical formalism is quite abstract. While it can

5Of course, this was not the end of the development of quantum mechanics, either. In making
quantum mechanics consistent with the special theory of relativity, the theory of quantum electro-
dynamics was created, which until recently was the most successful physical theory yet developed
(along with the standard model of particle physics, of which it is a part; success here is measured
in terms of empirical adequacy). I will not focus on these later incarnations of the theory of quan-
tum mechanics here; while I will at certain points make reference to theories such as quantum
electrodynamics and the like, the focus here will be on the quantum picture of time that arises
from considerations of nonlocality in nonrelativistic quantum mechanics.

6To get a flavour of the interpretation of quantum mechanics in a historical context, the expo-
sition here mostly follows Bohm (1952b).
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indeed be instructive to present the formalism with one eye on the experimental

developments which guided its creation, for brevity I will not pursue such a heuristic

presentation here.

To begin with, we represent the state of a quantum system with a wavefunction,

ψ, that is the solution to the Schrödinger equation (a linear wave equation describing

the time evolution of a quantum system). The wavefunction is not taken to specify

the exact values of all the degrees of freedom of the physical system it represents, like

one would expect in classical mechanics, but rather it contains information about

the probable outcome of various measurements that can be made on the system.

Since the Schrödinger equation describes the evolution of the wavefunction, and

since the wavefunction contains only probabilistic information about the quantum

system, we can liken the evolution of the wavefunction to the evolution of a wave

packet in classical mechanics. In an evolving classical wave packet there is a spread

of values for the frequencies and velocities of the constituent waves of the packet. By

the same token, in an evolving quantum mechanical wavefunction there is a spread

in the certainty to which values for the position and momentum of the quantum

system can be measured. In fact, in quantum mechanics there is a reciprocity in

this spread in certainty which holds between conjugate pairs such as position and

momentum. Heisenberg’s indeterminacy relation quantifies this reciprocity. One is

thus unable to measure simultaneously and to arbitrary accuracy determinate values

for particular pairs of properties in a quantum system.

Information about the outcome of a measurement is calculated in quantum me-

chanics through the introduction of an operator for each physically observable prop-

erty of the quantum system. Thus, given a wavefunction representing a quantum

system and an operator representing an observable property of that system, we can

calculate what the expected (i.e. most probable) outcome of an experiment would

be if we were to measure the value of the corresponding property of the quantum sys-

tem. Since this information is probabilistic, the actual measurements of the system

would only result in this calculated outcome on average.

In contrast, it is possible to have a quantum system in such a state so as to yield

the same predictable outcome for some measured observable property on every such

measurement. The wavefunction representation of such a system is part of a special

class of wavefunctions for each operator of this sort. Consider a quantum system
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represented by ψ with an observable property A corresponding to an operator A such

that any possible measurement of property A yields a stable and predictable value,

a, for this property. Due to the special nature of the relationship between ψ, A and

a, there is a simplified method for calculating this outcome: we simply operate on

the wavefunction ψ with the operator A, given by Aψ, to yield the result aψ, i.e.

Aψ = aψ. For any A, ψ and a obeying this relation, ψ is said to be an eigenstate (or

eigenfunction) of A with eigenvalue a. Thus for any operator there exists a class of

wavefunctions that are eigenstates of the operator with corresponding eigenvalues.

We should note here that the operators have no physical significance unless they are

acting on an eigenfunction in this manner; that is, we do not ascribe to a system a

definite value of the observable corresponding to an operator A unless the system

can be represented by an eigenstate of A.

Both the set of all wavefunctions and the set of all operators respectively have

particular mathematical properties. The set of all wavefunctions form a state space

called a Hilbert space such that a linear combination of any wavefunctions from

the space will result in a wavefunction that is also in the space. The operators,

which act on the elements of the vector space, form a nonabelian algebra; that is,

pairs of operators in general do not commute, i.e. for any two operators A and B,

AB 6= BA. A pair of physical properties with corresponding operators, A and B,

are said to be conjugate variables if the operators satisfy the canonical commutation

relations : AB−BA = ih̄I. The noncommutativity of such operators is contained in

Heisenberg’s indeterminacy relation: conjugate variables cannot have determinate

values simultaneously.

Since we have it that any operator defines a class of wavefunctions that are its

eigenstates, and that the set of all wavefunctions forms a Hilbert space, this leads

us to the result that any arbitrary wavefunction can be written as a linear combina-

tion of eigenstates of some operator. Thus, given a wavefunction representation of

the state of a quantum system and an operator corresponding to some observable

property of that system, the wavefunction representation can be expanded in terms

of the eigenstates of that operator. As we will see in more detail in the next section,

the square of the coefficient of each of the terms of this linear combination can be

interpreted as the probability of finding as the value of the observable property the

eigenvalue associated with that eigenstate (this is known as the Born rule). For

instance, if our quantum system is represented by ψ and the observable property we
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are interested in corresponds to the operator A, then we can write the expansion of

the wavefunction as

ψ =
∑
a

Paψa, (4.1)

where the ψa are the eigenstates of A, each Pa is a projection onto the eigenspace

corresponding to the eigenvalue a of ψa and the square of the modulus of each pro-

jection, |Pa|2, is the probability of finding the corresponding measurement outcome

to be a.

For it to be the case that a measurement outcome, say value a of property A, is

actualised, the state of our quantum system must be represented by an eigenstate of

the corresponding operator A, say ψa. Thus according to the formalism, if a quantum

system is initially represented by a wavefunction ψ that is not an eigenstate of the

operator A, then after we observe the physical property A to be a, the quantum

system must subsequently be represented by the eigenstate ψa. The formalism then

seems to be telling us that a measurement on a quantum system alters the state of

the system in a rather peculiar way: before we observe a quantum system there may

be no definite value for a particular property, but when we make a measurement on

that system we change the state of the system into one which has a definite value

for the property we are measuring.

What I have attempted to present here is the bare fundamentals of the math-

ematical formalism of the theory of quantum mechanics. The formalism contains

within it a very basic formula for mapping the behaviour of physical quantum sys-

tems onto the intuitive elements of our Newtonian picture of reality. However, as

one can see already, the formalism also contains features which make for a rather

counterintuitive picture of the behaviour of these quantum systems. The fundamen-

tally probabilistic nature of quantum mechanics, the simultaneous indeterminacy of

particular pairs of properties and the unusual change of state of measured systems

combine to create a strange picture indeed. It is these strange features of quan-

tum mechanics that are the source of the interpretational difficulties of the theory.

Much effort was expended in the late 1920s in an attempt to develop an ortho-

doxy of interpretation that would alleviate these difficulties, and we will see over

the course of this chapter the problems that still linger. Before we embark on this

orthodoxy, however, I wish to say a few brief words about what we should expect

an interpretation of quantum mechanics to achieve.
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I should make it clear from the outset that the power of quantum mechanics

is found in the fact that the formalism is very good at predicting the results of

experiments. Of course, the formalism is only able to give probabilistic predictions

about the behaviour of quantum systems, but these predictions do in fact agree with

the statistical data that quantum experiments yield. Thus it is not unreasonable

that we accept the theory of quantum mechanics as a good guide to constructing a

quantum picture of reality.

I began this section with a claim that the abstract nature of the mathematical

formalism of quantum mechanics does not lend itself to the sort of natural inter-

pretation that is familiar in classical mechanics. Now that we are better acquainted

with this formalism we can be more precise about this claim. The attractiveness

of the Newtonian picture of reality is that there is a natural map from the math-

ematical formalism of classical mechanics onto our intuitive picture of reality, or

the ‘manifest image’. For instance, we intuit that the world around us is composed

of discernible individuals with determinate properties (position, momentum, etc.)

and the mathematical formalism of classical mechanics represents this in an obvious

manner. In contrast, there is nothing in the mathematical formalism of quantum

mechanics that naturally suggests a physical picture of this sort. On the contrary,

even with the limited formalism introduced above we can already see that the phys-

ical picture suggested at face value by the formalism is definitely not one composed

of discernible individuals with determinate properties.

The initial interpretational debate loosely delineated itself along the lines of the

following dichotomy: on the one hand, one simply takes the formalism at face value

and then reads off the picture of reality that is suggested by the theory; on the

other hand, one attempts to maintain some semblance of the Newtonian picture of

reality and interpret the formalism of quantum mechanics accordingly. As it happens

though, the former program has been guilty of unwittingly adopting many of the

Newtonian intuitions also and, significantly for our present purposes, this includes

the Newtonian picture of time. Thus it becomes apparent that the interpretational

debate is a dispute over which of the Newtonian intuitions should be maintained,

and of which we should dispose. What I ultimately wish to argue here is that we

have no good reason to hold onto the Newtonian picture of time in the context of

nonrelativistic quantum mechanics.

The very fact that there are multiple avenues open to the interpreter of quantum
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mechanics is suggestive of an important feature of the sort of analysis in which we

are engaging here. To a certain extent, a picture of reality derived from physical the-

ory is underdetermined by the physical (observable and empirical) structures of that

theory (recall the brief discussion of §2.4). For this reason, an analysis of the relative

merits of differing interpretations of quantum mechanics will inevitably involve an

examination of the package of metaphysical assumptions that each interpretation

brings to the table (we will address this in more depth in the next chapter). These

issues will become clearer as we continue to build our understanding of the inter-

pretational debate in quantum mechanics. We now consider the interpretation of

quantum mechanics that developed into somewhat of an orthodoxy: the Copenhagen

interpretation.

4.4 The fifth Solvay conference, 1927

The fifth Solvay conference of 1927 was the setting for the beginning of the de-

bate over the interpretation of quantum mechanics. In attendance were almost all

of the contributors to the new quantum theory: Bohr, Heisenberg, Born, Pauli,

Schrödinger, Dirac, de Broglie, Planck and Einstein among others. As it happened

(Bacciagaluppi and Valentini, 2009), there was in fact no clear agreement concerning

how the various quantum phenomena should be understood. However, through the

ensuing decades the fifth Solvay conference came to be accepted as the place where

an orthodox interpretation did emerge and this came to be known as the Copenhagen

interpretation.7 Even though there are many (sometimes contradictory) positions

that are often said to fall under the rubric of the Copenhagen interpretation, there

is a clutch of core principles that can be taken to characterise the interpretation.

Of the two general programs for interpreting quantum mechanics outlined above,

the Copenhagen interpretation takes the mathematical formalism of quantum me-

chanics at face value and thus postulates no extra or no fewer entities than the

mathematical description provides. Let us consider what this entails.

According to the Copenhagen interpretation the state of a quantum system is

completely described by its wavefunction representation ψ; there is nothing more

concerning the state of a quantum system that could possibly be represented. How-

7In this context, Howard (2004) argues that the idea of a single orthodox Copenhagen interpre-
tation is a myth invented by Heisenberg in the 1950s.
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ever, despite this strict correspondence between the wavefunction and the state of

the quantum system, the wavefunction is not supposed to provide a pictorial repre-

sentation of its corresponding quantum system; it is not meant to represent a new

kind of reality. The means by which the information contained in the wavefunction

description produces a picture of reality is via the Born rule. Recall that, given an

operator corresponding to an observable property of the system, the wavefunction

decomposes into a linear combination of eigenstates with probability amplitudes as

coefficients (4.1). The Born rule states that the square of the probability amplitude

for each eigenstate represents the probability of finding the value of the observable

property to be the corresponding eigenvalue. So while the wavefunction does not di-

rectly represent anything real, the Born rule provides the instructions for mapping

the information provided by the wavefunction description into a physical picture

representing the state of the quantum system.

Recall further the ramification which the Born rule has for wavefunction de-

scriptions which are not eigenfunctions of the given operator: after operating on the

original wavefunction ψ with an operator A, the resulting wavefunction must be an

eigenstate of the operator, ψa. Thus according to the Copenhagen interpretation,

before the measurement of the observable property A the state of the system is rep-

resented by ψ (which encodes all the probabilistic information about the possible

results of the measurement), while after the measurement the state of the system is

represented by Paψ = ψa yielding the value a for the measurement with probability

|Pa|2. It is thus clear that due to the Born rule one major consequence of the Copen-

hagen interpretation is that it places considerable significance in the description of a

quantum system on the act of observing or measuring that system. The wavefunc-

tion is said to ‘collapse’ on measurement from the original state to an eigenstate

of the measurement operator. Significantly for our purposes in this chapter, this

collapse is asymmetric in the sense that probabilistic information about the states

that are not actualised is lost from the wavefunction description. Due to this loss

of information, wavefunction collapse looks very different in one temporal direction

than in the other: the Copenhagen interpretation of quantum mechanics is thus not

time symmetric.

The final element of the Copenhagen interpretation of quantum mechanics is

Bohr’s principle of complementarity. The principle of complementarity can be seen

as growing out of an attempt to provide an account of how to picture the state of
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a quantum system before any particular measurement is made. Imagine a quantum

system represented by a wavefunction ψ that has two observable properties, A and

B. The quantum system has certain propensities to collapse into one or other of the

eigenstates of the operator A with a definite eigenvalue upon measurement of the

observable property A. Likewise, the same quantum system has certain propensities

to collapse into one or other of the eigenstates of the operator B with a definite

(but possibly different) eigenvalue upon measurement of the observable property B.

This is the case even when the observable properties A and B are forbidden by the

quantum formalism to have simultaneously determinate values, i.e. the operators

A and B do not commute. Thus the attained eigenvalues for observables A and B

respectively cannot be representative of any definite properties of the system simul-

taneously. In such a case the physical properties are said to be complementary. The

principle of complementarity then states that neither a description of the quantum

system in terms of the properties associated with the measurement of observable

A nor its description in terms the properties associated with the measurement of

observable B are complete descriptions of the quantum system, but between them

they form a complete, complementary description (Hughes, 1989, p. 228).

The combination of these ideas about the wavefunction description and the phys-

ical significance of the quantum formalism forms the core of the Copenhagen inter-

pretation. The resulting quantum picture of reality is far removed from the picture

of reality that arises from classical mechanics. According to the Copenhagen inter-

pretation, it simply does not make any sense to talk about particular properties of

a quantum system without reference to a particular physical situation. A quantum

system might have one set of properties according to its wavefunction description

with respect to some experimental setup and a different set of properties with re-

spect to some other experimental setup. Since our only exposure to such a quantum

system is through one or another experimental setup we must remain agnostic about

the properties of the quantum system in the absence of a physical measurement. In

such a situation we simply cannot ascribe any reality whatsoever to the physical

properties of the quantum system. Although this is in some sense already embod-

ied in Heisenberg’s indeterminacy relation, the principle of complementarity implies

that this indeterminacy not just a peculiarity of the measurement process but is

an intrinsic feature of our interaction and description of reality. The principle of

complementarity is then an epistemological principle about the conditions under
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which we can have knowledge of a quantum system. By interpreting the wave-

function in these “epistemic” terms, wavefunction collapse is not thought to be a

physical process in the Copenhagen interpretation and thus potential problems con-

cerning nonlocal influence across a spatiotemporally bound wavefunction are avoided

(though as we will see below, the Copenhagen interpretation, and indeed quantum

mechanics itself, runs afoul of nonlocality elsewhere).

As mentioned above, this interpretation of quantum mechanics was not sup-

ported unequivocally at the fifth Solvay conference in 1927. The issue at the heart

of this unrest over the Copenhagen interpretation was the lack of a definite reality

ascribed to a quantum system. The main proponent of this view was Einstein who

considered a physical theory that merely yielded information about probabilities an

incomplete theory. In a sense Einstein believed a physical theory should be about

physical reality and physical reality must have definite properties. In the present

context this viewpoint can be thought of as exemplifying the second of the two

general programs to which I had alluded above: namely that one could attempt to

maintain some semblance of the intuitive worldview suggested by classical mechan-

ics and interpret the formalism of quantum mechanics accordingly. Let us turn our

attention to the argument against the Copenhagen interpretation.

4.5 The EPR argument

Einstein, Podolsky and Rosen (1935) (EPR) devised a thought experiment to chal-

lenge the physical picture of the Copenhagen interpretation. EPR were concerned

that the Copenhagen interpretation did not provide a reasonable account of the

physical reality of quantum systems. The project of the EPR paper can then be

seen as the following: if one assumes a suitable criterion for the reality of a physical

system, one can show using the quantum formalism that quantum mechanics is in

fact an incomplete description of this reality. The argument is underwritten by the

further assumption that every element of physical reality must have a counterpart

in a complete physical theory. Before we consider the details of the EPR paper let

us review in a little more depth the mathematical formalism behind the principle of

complementarity.

Consider a quantum state represented by ψ and two operators A and B that

are incompatible, i.e. there is no state ψ that is an eigenstate of both A and
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B. Recall that the operation of A on ψ will result in an eigenstate of A with a

corresponding eigenvalue a, Aψ = aψa. If ψ = ψa then the eigenvalue a will arise

with certainty, but if this is not the case then a will arise with some probability

less than one. By the same token, Bψ = bψb and the eigenvalue b will arise with

certainty if ψ = ψb but not otherwise. Since there is no eigenstate of A which is also

an eigenstate of B (A and B are incompatible), the operation Bψa then cannot yield

an eigenvalue b with certainty. Therefore, knowledge of the value of the physically

observable property A precludes knowledge of the value of the physically observable

property B. Moreover, since ψa is not an eigenstate of B, attempting to obtain

knowledge of the physically observable property B will inexorably alter the state

of the system, collapsing it to say ψb, precluding any opportunity to establish with

certainty the value of the observable property A thereafter. We are then left with the

following disjunction: either the values of the observable properties corresponding

to incompatible operators cannot exist simultaneously, or they can but they merely

fail to be accounted for explicitly in the quantum mechanical description of such

systems. It is this feature of quantum mechanics that is at the centre of the EPR

argument.

EPR begin their challenge by stating the criterion of reality as follows: “[i]f,

without in any way disturbing a system, we can predict with certainty (i.e. with

probability equal to unity) the value of a physical quantity, then there exists an

element of physical reality corresponding to this physical quantity” (Einstein et al.,

1935, p. 777). So according to the criterion of reality, we can say that if the state of

a quantum system is represented by a wavefunction ψ that is an eigenstate of some

operator A corresponding to an observable property A, then there is an element of

physical reality corresponding to the physical quantity a which is an eigenvalue of

the operation of Aψ.

Consider now the behaviour of two quantum systems, L and R, described by the

wavefunctions ψL and ψR, which are permitted to interact and are then subsequently

separated, after which time it is assumed that any further interaction between the

separated parts is not possible. Given appropriate interaction conditions, we can

produce here what is called an entangled system: the state of the combined quantum

system is treated as a single state ψL&R evolving in accordance with the Schrödinger

equation. Given such a system in an entangled state, we are always able to find

some pair of observables, A and B, with corresponding operators, A and B, such
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that operating with A on the wavefunction representing the system allows us to make

a definite prediction concerning the operation of B on that same wavefunction; this is

known as the spectral decomposition theorem (Hughes, 1989). For entangled states

whose spectral decomposition is not unique, we are further able to find multiple

such pairs of operators that are pairwise incompatible: that is, two pairs A1 and B1,

A2 and B2 such that A1 is incompatible with A2 and B1 is incompatible with B2.

Now consider ψL&R to be just such an entangled state, with two observable prop-

erties of system L corresponding to incompatible operators A1 and A2 that allow

us to make definite predictions concerning the operation of B1 and B2 respectively

on system R. If we make an observation of the property A1 of system L, obtaining

the physical quantity a1, we represent the resultant state as the collapsed wavefunc-

tion Pa1ψL&R. Since our original state has a non-unique spectral decomposition,

knowledge of the physical quantity a1 allows a definite prediction of the value of

the observable property B1 of system R. Making the further reasonable assump-

tion that the principle of locality is not violated by this process, we can conclude

that knowledge of this property of system R can be obtained without disturbing that

system. In a similar fashion, if we make an observation of property A2 of system

L, obtaining the physical quantity a2 (with the resultant state Pa2ψL&R), we can

then make a definite prediction of the value of the observable property B2 of system

R, again without disturbing that system. Due to the criterion of reality both of

the observable quantities of system R, relating to properties B1 and B2, must then

be elements of reality. Since B1 and B2 are incompatible operators, there are thus

observable properties corresponding to incompatible operators which have simulta-

neous reality. When we submit this result to the disjunction above, we conclude that

quantum mechanics is therefore not a complete description of quantum systems.

So what does all this mean for the interpretation of quantum mechanics? The

Copenhagen interpretation which, recall, takes the quantum formalism to be a com-

plete description of quantum systems, must reject the simultaneous reality of ob-

servable properties corresponding to incompatible operators and thus must reject

the criterion of reality. The description of an observation of one of two entangled

quantum systems would look very different according to the Copenhagen interpre-

tation. The observable properties of the distant system would have no reality before

the observation of the near system. The entangled systems would thus appear to

remain connected after being separated in space, maintaining some direct influence
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from one system to the other. Thus according to the Copenhagen interpretation,

spatially separated elements of entangled systems appear to influence each other

nonlocally. Moreover, the epistemic interpretation of the wavefunction, which, as

we saw above, is able to avoid the nonlocality associated with wavefunction collapse

by remaining agnostic about the reality of the quantum state, cannot be utilised

to account for the nonlocal influence between entangled systems so long as this

wavefunction description is taken to be complete.

In contrast, the EPR argument implicitly assumes that the principle of locality

holds for all physical systems, even quantum ones. EPR claim that no “reasonable

definition of reality could be expected to permit” the reality of the distant observable

properties being dependent upon the observation on the near system. This is crucial

to the EPR position and has been at the centre of the debate about how to interpret

quantum phenomena. Furthermore, the criterion of reality suggests that we should

expect observable properties of physical systems to be definite valued. In this way,

the EPR position can be seen as an attempt to maintain these principles of the

mechanistic worldview.

The EPR conclusion that quantum mechanics is an incomplete description of

quantum systems also raises some interesting issues. If the wavefunction is not

truly representative of the quantum state, what would a complete description be

and how would it relate to the wavefunction description? One suggestion as to how

to complete the wavefunction description is to insert the values of the physically

observable properties of quantum systems, which are elements of reality according

to EPR, into the quantum description as variables that are ‘hidden’ from within the

quantum formalism. Such a proposal is called a hidden variable model of quantum

mechanics. This puts a new spin on the Copenhagen interpretation of the wavefunc-

tion. The wavefunction remains representative of the possible knowledge one can

gain about the state of a quantum system, but this knowledge is of a real quantum

state and is epistemically limited to that part of the system that is not ‘hidden’.

We have considered here two different ways of interpreting the mathematical

formalism of quantum mechanics. On the one hand we have the Copenhagen inter-

pretation which ascribes no physical reality to the properties of a quantum system in

the absence of a particular physical situation and which must permit nonlocal influ-

ences to account for the phenomena suggested by the formalism. On the other hand

we have the hidden variable interpretation suggested by the EPR argument in which
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the wavefunction description of a quantum system is an incomplete description but

which maintains adherence to the principle of locality. During the time at which the

debate between these two interpretations was still young, the experimental support

for quantum theory was not rich enough to be able to shed much light on which

interpretation might be the correct one. As is often the case in the philosophy of

physics, the debate had to be argued on the grounds of scientific virtue and appeals

to intuitive physical pictures. This situation was remedied in the 1960s through the

work of John Bell.

4.6 Bell’s theorem

Bell’s (2004) seminal paper of 1964 grounds the thought experiment at the centre

of the EPR argument in a physical quantum system. Whereas the EPR argument

was concerned with the general mathematical formalism describing some entangled

quantum system, Bell analyses the EPR argument in terms of a specific quantum

system first recognised to be relevant to the EPR argument by Bohm and Aharonov

(1957). I shall refer to this quantum system as the EPRB experiment. Bell takes the

conclusion of the EPR paper seriously and formulates its central assumption, that

“the result of a measurement on one system be unaffected by operations on a distant

system with which it has interacted in the past” (Bell, 2004, p. 14), mathematically.

What Bell then shows in his work is that no theory containing this assumption

that makes predictions concerning quantum phenomena can be compatible with

the statistical predictions of quantum mechanics. Thus, Bell’s work establishes

an experimental basis on which the conclusions of the EPR analysis of quantum

mechanics can in fact be tested. In this section we will encounter the details of the

EPRB experiment and Bell’s theorem. Rather than pursue an exposition of Bell’s

formulation of his theorem, I shall instead characterise this theorem in terms of a

more intuitive analysis due to Wigner (1970).

Let us begin by considering two particles in an entangled state called the spin

singlet state. The spin singlet state can be thought of as the state of two particles

whose spins must sum to zero, i.e. they have equal and opposite spin. For spin 1
2

particles this is achieved when one particle has spin +1
2

(spin ‘up’, abbreviated by +)

and the other has spin −1
2

(spin ‘down’, abbreviated by −). If the wave function is

given by ψ, the exact representation of the spin singlet state in quantum mechanics
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is the linear combination,

ψ =
1√
2

(|+,−〉 − |−,+〉), (4.2)

where the two terms of the expression represent a quantum state with spin up/spin

down and spin down/spin up respectively for the two particles. The factor at the

front is a normalisation factor.

Before continuing, a few general words about spin are in order. Spin is a binary

property of a quantum particle which is defined in terms of a particular direction in

three dimensional space. An intuitive way to imagine the connection between spin

and direction is to imagine the axis of rotation of a rotating spherical particle. A

particle which is rotating anticlockwise about the positive x direction will have spin

up along the x axis. In terms of the quantum formalism, the process of observing the

spin of a particle along the x-axis is represented by a spin operator Sx operating on

the wavefunction ψ representing the quantum state. There are three such operators

corresponding to the three spatial dimensions, Sx, Sy and Sz. As it turns out,

these three operators are mutually incompatible operators. This is a large part of

the reason why observations of spin values for quantum particles feature heavily as

grounds for testing the EPR argument.

Wigner’s account of Bell’s theorem involves two spin 1
2

particles produced in a

spin singlet state; let the particles be denoted L and R as above. The two parti-

cles are then separated to distances such that measurements carried out on L are

spacelike separated from measurements carried out on R, and such that no fur-

ther interaction between L and R is possible. The system is then subject to two

different measurements: a measurement of the spin component of particle L and a

measurement of the spin component of particle R along any of three different spatial

directions, ω1, ω2 and ω3. There are nine possible ways to make these measurements,

each yielding four possible results: both particles spin up, both spin down, one up

and one down and vice versa. Since an appropriate measurement on one particle

yields certainty about the properties of the other, and adopting the EPR criterion of

reality, the results of all possible measurements must be elements of physical reality.

These elements are then the hidden variables of the spin singlet state. Paramount

to this analysis is the explicit use of an assumption of the EPR argument that the

spin state of particle L is independent of the outcome of the measurement made
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on particle R and vice versa. This can be seen as a restatement of our principle of

locality in that any dependence would have to be mediated in a spatiotemporally

contiguous way. Furthermore, it is assumed that the hidden variables are indepen-

dent of which measurement is actually performed on either of the two particles. Let

us call this assumption the principle of independence.

The spin singlet state dictates that along any particular direction the spin state

of the two particles must be anti-correlated: that is, if one particle has spin up along

a certain direction, the other must have spin down along the same direction and vice

versa. Thus, if particle L was measured to have spin up in the ω2 direction, and

particle R was measured to have spin up in the ω3 direction, then the spin singlet

state determines that particle L has spin down in the ω3 direction and particle R

has spin down in the ω2 direction. This restricts the space of possibilities for the

measurement results and allows us to construct the possible combinations of spin

states that the particles can have. There are eight such hidden states. Let the spin

states of the two particles be characterised by the ordered tuple (σ1, σ2, σ3; τ1, τ2, τ3)

where σ and τ represent the spin, + or −, of particles L and R respectively along

directions ω1, ω2 and ω3. Using this notation, we can represent the eight possible

combinations of spin values for the two particles, labelled as hidden variable states:

λ1 : (+,+,+;−,−,−) λ5 : (−,+,+; +,−,−)

λ2 : (+,+,−;−,−,+) λ6 : (−,+,−; +,−,+)

λ3 : (+,−,+;−,+,−) λ7 : (−,−,+; +,+,−)

λ4 : (+,−,−;−,+,+) λ8 : (−,−,−; +,+,+)

Each ordered tuple can be thought of as a particular state of the system which has

a certain probability of occurring. We already have enough information to construct

some properties of these probabilities. Firstly, the sum of all the probabilities must

be one. In addition, any particular spin result for any particular direction occurs

exactly half the time, i.e. in four hidden variable states. For example, spin down for

particle L along direction ω2 occurs in states λ3, λ4, λ7 and λ8. Thus, the probability

of any one particular spin result for either particle is one half. Furthermore, due

to the anti-correlation properties of the spin singlet state that we have already

encountered, the probability for the particles having alternate spins along the same

direction is one and that for aligned spins is zero.
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So far the properties of these probabilities are in agreement with quantum me-

chanics. To this degree, Wigner’s model is a good model of quantum systems (insofar

as quantum mechanics is a good model for quantum systems). However, it is pos-

sible to use the hidden states to create an inequality relating these probabilities

through which the predictions of the Wigner model and those of quantum mechan-

ics diverge. This divergence arises for measurements of different spin directions on

each particle. Consider the following: inspection of the hidden states reveals that

the probability of measuring L as spin up in the ω1 direction and R as spin up in

the ω3 direction is the sum of the probabilities of only two of the possible eight

spin combinations, P (λ2) +P (λ4). Likewise, the probability of finding L as spin up

in the ω2 direction and R as spin up in the ω3 direction is P (λ2) + P (λ6) and the

probability of finding L as spin up in the ω1 direction and R as spin up in the ω2

direction is P (λ3) + P (λ4). If we accept that probabilities must always be positive,

we can then create the following trivial inequality:

P (λ2) + P (λ4) ≤ P (λ2) + P (λ6) + P (λ3) + P (λ4). (4.3)

This all seems rather straightforward. However, according to quantum mechan-

ics, the probability of finding spin up for two entangled particles along two different

directions of measurement ωi and ωk is given by 1
2

sin2 1
2
θik where θik is the angle

between the directions. Substituting this into (4.3) yields

1

2
sin2 1

2
θ31 ≤

1

2
sin2 1

2
θ23 +

1

2
sin2 1

2
θ12. (4.4)

It is not immediately clear that this inequality holds. We can explore the behaviour

of this inequality by setting θ12 = θ23 = 1
2
θ31. Substituting these values into (4.4)

gives
1

2
sin2 1

2
θ31 =

1

2
· 4 sin2 1

2
θ12 · cos2 1

2
θ12 ≤ sin2 1

2
θ12.

Solving for θ12,

cos2 1
2
θ12 ≤

1

2
,

θ12 ≥
π

2
.

Using the above relation between the angles, one can see that (4.4) is violated when-
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ever θ31 < π. That (4.4) can be violated at all should raise some eyebrows; (4.3) is

trivially constructed and (4.4) is derived therefrom. The problems occur when we

consider measurements of different directions for each particle and obtain results of

aligned spin. Let us consider what exactly the predictions are for both the Wigner

model here and orthodox quantum mechanics in these cases.

By inspecting the set of hidden states, it can be shown that the probability of

measuring aligned spins along different directions for each particle is 1
3
. If each of

the eight hidden states is just as likely as any other to be actual, of the nine possible

measurement setting combinations ((σi; τk) for i, k = 1, 2, 3), λ1 and λ8 have zero

possibilities with aligned spins in different directions and λ2, λ3, λ4, λ5, λ6 and λ7

have four possibilities each. Thus 6×4
8×9

= 1
3
. The predictions of quantum mechanics,

however, are vastly different. We have seen as such in (4.4): the probability for

measuring aligned spins along any directions of measurement ωi and ωk is given by
1
2

sin2 1
2
θik where θik is the angle between the directions. Hence, quantum mechanics

predicts a particular type of correlation between the two particles in the EPRB

experiment: the probabilities of the outcomes of measurements on particle L are

dependent upon the measurement settings employed to measure particle R, and

vice versa. In other words, the probabilities of the outcomes of measurements on

particles L and R cannot be factorised into a product of independent probabilities;

this is often referred to as a violation of the factorisability condition.8 Bell’s theorem

can then be stated in the following terms: no theory that satisfies the factorisability

condition can reproduce the predictions of quantum mechanics.

The significance of this result should not be underestimated. Recall the origin of

this analysis: there existed a disagreement as to how the mathematical formalism of

quantum mechanics should best be interpreted. On the one hand, the Copenhagen

interpretation took the formalism at face value which resulted in a picture of reality

in which quantum mechanics violated the principle of locality. On the other hand,

when the principle of locality was maintained as an assumption, the conclusion

that was drawn was that quantum mechanics was not a complete description of

atomic systems. With the introduction of Bell’s theorem, we now have a formula for

testing which of these positions is closer to a description of quantum systems. If one

were to carry out an EPRB experiment in which the angle between the measurement

directions ω3 and ω1 was less than π and the measurement direction ω2 was such that

8See, for instance, Butterfield (1992).
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it bisected the other two directions, then one would be able to collect experimental

results that would confirm at most one of these two descriptions of quantum systems.

Let me build the suspense some more. If the probability of measuring aligned

spins along different directions for each particle of an EPRB experiment turned out

to be 1
3
, this would provide quite damaging evidence against quantum mechanics

being a complete theory. Physicists would then have to go back to the drawing board

to develop a supplementary theory describing the behaviour of atomic systems, some

of the more intuitive principles of the mechanistic worldview would be salvaged and

the Newtonian picture of reality would be reinvigorated. If, however, the probability

of measuring aligned spins along different directions for each particle of an EPRB

experiment turned out to be dependent upon the angle between the measurement

settings of the apparatus in the way predicted above, quantum mechanics would be

vindicated and Wigner’s toy model would be falsified. This is no mere formality

though; Bell’s theorem implies that if quantum systems actually behaved according

to these statistics then no theory satisfying the factorisability condition could provide

an empirically adequate description. It would then be the case that the result of a

measurement of one system would be affected by operations on a distant system with

which it has interacted in the past; the principle of locality itself would be shown

to be a misguided principle about the nature of our reality. Either way, something

profound about the picture we have of reality is to be discovered from the EPRB

experiment.

A series of experiments were in fact carried out by Aspect, Delibard and Roger

(1982a) and Aspect, Grangier and Roger (1982b) which confirmed the predictions

of quantum mechanics: the probability of measuring aligned spins along suitably

chosen different directions for each particle of an EPRB experiment is dependent

on the angle between the measurement settings of the apparatus in exactly the way

predicted by quantum mechanics. The two particles (or photons, as was actually

the case in the experiments) of the EPRB experiment really are correlated in this

way and hence the factorisability condition is violated by actual quantum systems.

The significance of this result is that it shows that causal influences do in fact

extend across spacelike separated spatiotemporal distances; the principle of locality

is unconditionally violated by the theory of quantum mechanics! With this result

many physicists merely accepted the lessons of the Copenhagen interpretation of

quantum mechanics: one cannot talk of a determinate reality for a physical system
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before an observation has been made and one must accept that the universe permits

nonlocal influences between quantum systems, and thus that there is a fundamental

incompatibility between quantum mechanics and the theory of relativity. This is

not, however, the exclusive moral that can be drawn from this result.

4.7 EPRB and retrocausality

While the Aspect et al. experiments amount to strong evidence that nonlocal in-

fluences are something that cannot be avoided in quantum theory9, this does not

necessarily imply that quantum mechanics is incompatible with the theory of rela-

tivity. The crucial point to note is that the theory of relativity is not incompatible

with nonlocality per se but rather with a violation of what I will label here action-

at-a-distance: that is, some sort of causal influence that has propagated without

spatiotemporal contiguity. We can set this opposed to action-by-contact which we

can think of as causal influence that propagates along timelike curves. What I will

set out here is a scheme by which we can strictly maintain action-by-contact, as it

were, and still explain the nonlocal character of quantum mechanics.

One issue which I have deliberately skirted around till this point is the generality

of Bell’s ‘general’ analysis of the hidden variable scheme. Recall that we explicitly

assumed two principles concerning the hidden variable states: the spin state of par-

ticle L is probabilistically independent of the outcome of the measurement made on

particle R and vice versa; and the hidden variables are probabilistically indepen-

dent of which measurement is actually performed on either particle L or particle

R. We have called these the principle of locality and the principle of independence

respectively. Bell obeys these principles in his general analysis of the hidden variable

scheme, but it may be the case that a hidden variable model not encompassed by

Bell’s analysis could be constructed, by violating one or both of these principles,

which could recover the predictions of quantum mechanics despite Bell’s theorem.

One option available to us would be to construct a hidden variable model that ex-

plicitly violated the principle of locality. A model such as this had in fact been

developed well before Bell’s theorem by Bohm (1952a). Our intention here, how-

ever, is to recapture the notion of action-by-contact rather than explicitly jettison

9Although, see Christian (2007) for an apparently exact, locally causal model of the EPRB
correlations.
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the principle of locality. Thus let us then pursue the other option available to us,

which is to violate the principle of independence.

The principle of independence asserts that the hidden variable state of a quantum

system is independent of the type of measurement that is to be performed on that

system. A violation of this principle would imply that the hidden variable state of

the system depends directly upon the future measurement settings. Rudimentarily

this amounts to the following claim: if we perform the EPRB experiment on some

pair of particles in some hidden state λi and measure, say, ω2 on particle L, then

had we made a different measurement, say ω1 on particle L, then the hidden state

of the particles would also have been different, say λk. Notice the counterfactual

nature of this claim; if we were to adopt a counterfactual theory of causality (more

on this §5.2.2), we would then be at liberty to say that the measurement settings

of the EPRB apparatus causally influence the hidden variable state of the quantum

system. Since the hidden variable state of the two particles temporally precedes the

eventual measurement, we say that this relationship is retrocausal. Thus postulating

a violation of the principle of independence to circumvent Bell’s analysis of hidden

variable models of quantum mechanics is akin to hypothesising retrocausal influences

in quantum systems.

To see that this will help us explain the strange correlations of EPRB type exper-

iments, consider the causal relationship between the setting of the device measuring

particle L and the hidden variable state of the two particle system: the spin state

of the distant particle R is trivially dependent on the hidden variable state; as a

consequence, particle R is in turn dependent on the setting of the device measuring

particle L; and this, of course, is just the nonlocal correlation between the particles

predicted by quantum mechanics. Thus we should be able to recapture the predic-

tions of quantum mechanics despite the lessons of Bell’s theorem by giving up the

principle of independence. Let us look at the mechanics of this possibility in more

detail.

If the setting on the left hand side of the experiment is ω1 and the setting on the

right hand side of the experiment is ω3, then the pair of particles will have a hidden

variable state which reflects this situation, i.e. the hidden variable state will contain

a measurement outcome for direction ω1 on the left and ω3 on the right. Let us

represent such a hidden state as (σ1; τ3) where the index represents the direction of

measurement and both σ and τ can take values of + or − as before. More generally,
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we can represent all the hidden variable states, λj, by the pair (σi; τk), where i and

k can take the values 1, 2 and 3 corresponding to the measurement directions ω1,

ω2 and ω3, and j enumerates all the possible combinations of hidden variable states

(there are in fact 30 such states considering that the spins of the particles cannot

be correlated along the same direction of measurement).

One important feature of such a retrocausal account of the EPRB experiment is

that given the hidden variable state corresponding to a future pair of measurements

along two particular directions, the remaining spin states for the other directions

of measurement simply do not play a part in forming the hidden variable state for

the entangled pair. If the measurement apparatus is set to measure the spin of the

particle along direction ω3 on the left and ω2 on the right, no spin state corresponding

to ω1 and ω2 on the left, nor ω1 and ω3 on the right need partake in the formation of

the hidden variable state. No longer must we attribute simultaneous reality to all the

possible states of the system corresponding to all the possible future measurements

we could make. Only the actual future measurements of the system are accounted for

in the hidden variable state. Moreover, there is no loss of probabilistic information

associated with the measurement process as in the Copenhagen interpretation and

thus there is a certain temporal symmetry in the evolution of quantum systems.

This feature also avoids a potential problem of the Bell formalism that the hidden

variable probabilities are probabilities over incompatible observables.

The correlations predicted by quantum mechanics are rather specific. For any

measurement settings ωi and ωk, the probability of finding correlated spins is given

by sin2 1
2
θik and the probability of finding anti-correlated spins is given by cos2 1

2
θik,

where θik is the angle between the directions. The hidden variable states (σi; τk),

unlike the Wigner hidden variable states λ1 through λ8, are not naturally attributed

equal probability and thus it is a simple task to ascribe to these states the exact

probabilities predicted by quantum mechanics.

The important feature of this physical picture of a retrocausal EPRB experiment

is that even though particles L and R influence each other across a spacelike separa-

tion, this influence is mediated by two timelike worldlines: one from the preparation

of the system to the measurement of particle L; and the other from the preparation

of the system to the measurement of particle R. Thus the nonlocal influence is ex-

plained by two causally contiguous worldlines that ‘zigzag’ backwards and forwards

in time. Even though no spatiotemporally contiguous process could ordinarily me-
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diate this influence, now that we have postulated retrocausal influences in quantum

systems we are able to provide a description of this nonlocal process that does main-

tain spatiotemporal contiguity, and is thus an action-by-contact process. There may

be a nonlocal causal influence, but there is no action-at-a-distance.

4.8 The lesser-of-two-evils

The hypothesis of retrocausal processes in quantum mechanics is not a new idea:

Costa de Beauregard (1953) first floated the idea of retrocausality with EPR type sit-

uations in mind.10 However, it has not been a very popular idea. One surmises that

the major reason for this is that the positing of backwards-in-time causal influence

does not fit particularly well with the Newtonian picture of reality; in particular, the

generative picture of determination, which is a defining element of the Newtonian

picture of time. This seems a rather peculiar argument when one considers that the

most popular alternative to retrocausality, reading Bell’s theorem as confirming the

existence of nonlocal causal influences in quantum systems, does not fit particularly

well with the relativistic picture of a causally contiguous (i.e. local) spacetime.11

(This peculiarity is compounded when one also considers that both the Lagrangian

picture of determination, where the initial and final states of a system equally de-

termine dynamical behaviour, and general relativity, where solutions to the Einstein

field equations are equivalence classes of diffeomorphism invariant four dimensional

spacetimes, obviously defy this Newtonian schema; but more on this in §6.8 after

we have a better grasp on the nature of causality.) If both of these responses to

Bell’s theorem are bound to jettison certain elements of the Newtonian picture and

maintain certain others, how are we to decide which is ‘less evil’ with respect to the

task of procuring a coherent picture of reality?

We are already in a position to look favourably on retrocausality in light of

the fact that the part of the Newtonian picture with which it conflicts, generative

determination, arises largely in the context of 18th century metaphysics, while the

part of the Newtonian picture with which nonlocality conflicts is a central tenet of

10See also Argaman (2008), Costa de Beauregard (1976, 1977), Cramer (1980, 1986), Hokkyo
(1988), Miller (1996, 1997), Price (1984, 1994, 1996, 1997, 2001, 2008, 2010), Rietdijk (1978),
Sutherland (1983, 1998, 2008) and Wharton (2007, 2010).

11The many-worlds interpretation is another popular alternative that purports to provide a local
interpretation of quantum mechanics.
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relativity theory. Granted, we should not discard what has thus far been an integral

part of our picture of reality simply because we might think it passé; but by the same

token we should not discard a potential solution to the interpretational difficulties of

quantum theory simply because it challenges our Newtonian conception of reality.

There are further question marks that need to be addressed, however, before a

significant challenge can be mounted against this old guard (such as the apparent

paradoxes that could arise in a retrocausal context). The task remains then to

construct a retrocausal conception of reality with which to mount this challenge, and

this is the aim of the next chapter: I examine the physical possibility of retrocausality

in a reality such as ours.
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Chapter 5

Retrocausality at No Extra Cost

We have seen how the proposal of retrocausality is able to alleviate some of the inter-

pretational difficulties posed by Bell’s theorem: by permitting retrocausal influences

in quantum mechanics, the strange correlations of the EPRB experiment can be ac-

counted for in an action-by-contact manner. The main element of the Newtonian

picture of reality that conflicts with this proposal is the generative picture of deter-

mination, or the Newtonian picture of time. Maudlin (2002) provides a particularly

clear expression of this conflict when he argues that retrocausality is fundamentally

at odds with the “metaphysical picture of the past generating the future” and thus

cannot be entertained as a metaphysical possibility in a reality such as ours. We will

return to assess the plausibility of Maudlin’s argument in Chapter 6. In this chap-

ter, however, I build an independent case in favour of retrocausality as a physical

possibility as a counterbalance to Maudlin’s picture.

5.1 Introduction

The metaphysics of retrocausality is often broached in the philosophical literature in

and around discussions of time travel and causal paradoxes and there seems to be a

general sentiment that there is nothing manifestly self-contradictory about the idea,

strange though it may seem at first. The purpose of this chapter is to develop these

metaphysical considerations into a carefully considered picture that coheres with

the possibility of retrocausality and that is not precluded by our current physical

theories.

The picture developed in this chapter is a conglomeration of developed ideas col-

lected together from various contexts. The goal here is to combine these ideas into

a single coherent picture which will assist us in forestalling some perceived meta-

109
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physical problems with retrocausality. I begin by setting out in §5.2 two relatively

uncontroversial positions that will serve as a solid conceptual foundation upon which

to develop our retrocausal picture: the block universe model of time in §5.2.1 and

the interventionist account of causation in §5.2.2. There are then two metaphysical

intuitions that must be dismantled. The first is our ordinary asymmetric causal

intuition: in §5.3.1 I describe an argument from temporal symmetry against the

plausibility of extending our asymmetric causal intuitions to the microscopic realm.

The second is our ordinary intuition about epistemic access to the past: in §5.3.2

I present an argument that clears a logical space for retrocausality at the expense

of our intuition that our past is necessarily epistemically accessible independent of

our own future actions. The claim here is that quantum mechanics is a theory that

occupies this logical space. This then clears the way to build a symmetric picture

of causation: in §5.4 we sequester a model of agent deliberation that permits us to

strike a harmony between our causal intuitions, such as free will and unidirectional

causation, and the picture derived from spacetime physics that future events are

fixed within a deterministic and causally symmetric framework.

One way to imagine the choice between the competing interpretational schema

of the last chapter is in terms of ideological economy.1 According to Quine (1951),

the ideas that can be expressed in a theory comprise the ideology of the theory.

The ideological economy of a theory is then a measure of the economy of primitive

undefined statements employed to reproduce this ideology; fewer primitive state-

ments imply a more economical ideology. One argument that is often made against

retrocausality is that introducing retrocausal influences into the quantum mechani-

cal ideology is less economical than rejecting local hidden variables. The goal of this

chapter is to show that introducing retrocausality incurs no economical cost because

the ingredients required to build a retrocausal quantum picture of reality are given

to us for free by the metaphysical structure of our existing physical theories and the

epistemological structure of our experiences.

1This terminology is derived from Quine’s (1951) distinction between the ontology and the
ideology of a theory.
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5.2 Foundations

5.2.1 The block universe model of time

Before introducing the account of causation that we will utilise throughout this

examination, let me say a brief word about the metaphysical position I will be

taking with regards to time. I adopt here a temporal model popular among many

physicists and philosophers: the block universe model of time (recall §2.1.1). Rather

than modelling reality as a three dimensional space evolving under the passage of

time, reality is envisaged according to this view as a four dimensional block of which

time is a mere passive ingredient. The safety in adopting this stance on time is the

compatibility we gain with contemporary theories of spacetime; this was discussed

in depth in Chapter 2. There is a definite advantage for adopting such a temporal

model. The power of the block universe model, if considered in the right way, is

that it wears its spatiotemporal consistency constraints on its sleeve, so to say. We

are about to embark on an analysis of models of physical systems that extend across

both space and time, and considering these as four dimensional static systems will

be especially beneficial to evaluating their spatiotemporal consistency. Hopefully

we will soon see that both the account of causation introduced below and the block

universe model of time are naturally suited to describing the sorts of physical systems

and processes under consideration in the remainder of this thesis.

5.2.2 The interventionist account of causation

The account of causation that I adopt is the interventionist account of causation,

as introduced and defended by Woodward (2003). The essential ingredient in this

account is the notion of manipulability or control : according to this account, we say

that C is a cause of E just in case there is some possible intervention that can be

carried out on C that will change E in some way or other, holding fixed all other

properties of the system containing C and E. Woodward’s account is explicitly

counterfactual in the sense that there need be only some possible intervention that

can be made on C to bring about a change in E. The advantage of this account is

that it can be employed to provide causal explanations without requiring that there

exists a complete description of some spatiotemporal process connecting C and E;

we will use this feature explicitly below. To understand this account of causation
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more clearly, let us consider an illustrative example.

Imagine the ignition system of a car. It seems that we would want to say that

the turning of the key in the ignition (event K) is the cause of the starting of the

car’s engine (event E). According to the interventionist account we can say that

K is indeed the cause of E since it is possible to carry out an intervention on K,

by not turning the key say, that will change E in some way or other, in this case

the engine would simply not start, provided all the other elements contributing to

the system were held fixed. We can in fact claim a causal connection here without

explicitly spelling out the mechanism by which the turning of the key brought about

the starting of the engine. However, this does not mean that we cannot spell out

such a mechanism if we wished.

Consider the mechanical chain of events connecting the turning of the key to the

starting of the engine: turning the key (event K) completes the circuit between the

car’s battery and the starter motor (event C) which then starts the starter motor

spinning (event S); the spinning starter motor then turns over the drive shaft of the

engine (event D) which starts the pistons drawing in and then combusting the fuel

(event P ); the combusting fuel powers the engine to start running (event E). We

have a chain of events, K → C → S → D → P → E, with a mechanical account

of how each event brings about the next. However, the content of any causal claim

about any two of these events according to the interventionist account of causation

is not that there exists a mechanical connection between the events. The key to the

interventionist account is to imagine that each of these events is a handle or variable

that can be manipulated and controlled. Accordingly, what makes each event the

cause of the next is the fact that there exists a functional dependency between the

variables; that is, some possible intervention on a particular variable will (over a

range of conditions) bring about a consistent change in the values of the variables

further down the chain. If we were to intervene on the above system by replacing

the battery with an old or faulty battery, the starter motor would fail to spin, thus

changing the value of the variable associated with event S (on or off, say) from what

it would have been had we not made the intervention.

The chain of events may be more complex than the example above; events might

have multiple causes or multiple effects. We can extend our example by imagining

that event K, the turning of the key, also completes the circuit between the car

battery and the dashboard, lighting up all the instruments inside the cabin (event
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I). We could also imagine that for the drive shaft to turn over (event D), the car’s

gearbox must be disengaged (event G). We can establish which correlations are

causal by imagining possible interventions of these new variables while holding the

rest of our variables fixed. If we sever the connection between the car battery and

the dashboard, the battery would still connect to the starter motor bringing about

the ignition of the car’s engine. Thus, the dashboard lighting up is not a cause of the

car’s engine starting, even though these events are very often correlated. However,

if we engage the gearbox with the drive shaft and attempt to start the car, we find

that the car stalls. Whether the gearbox is engaged or not, i.e. whether the variable

associated with event G is one value or another, has a functional relationship to

whether the car starts or not and is thus a cause of event E.

It is the adoption of this account of causation that permits us to talk about

retrocausal influences in the EPRB experiment. We characterised the violation

of independence in §4.7 as implying that the hidden variable state of some pair of

particles prior to some measurement would have been different had the measurement

been different. This counterfactual relationship qualifies as a causal relationship

according to the interventionist account of causation.

There is one further issue which arises from this account of causation that will

be crucial to our characterisation of retrocausality later in this chapter. It will be

beneficial for our purposes here to view the interventionist account of causation as

a kind of genealogical account of how we, as agents, come to acquire the concept of

causation in cases where we have no possibility of intervening in the world around

us. To begin demonstrating how this might be the case, consider the way we might

employ causal concepts to describe a situation in which it is impossible for us as

humans to intervene on the system. The gravitational pull of the moon is responsible

for the ebb and flow of the tides, and we would want to say that the moon causes

the tides’ ebb and flow. Even though it is implausible for us to actually manipulate

and control this system, we can attribute our causal intuitions in this sort of case

to an ability to extend our causal intuitions from cases in which we can manipulate

and control. Through our knowledge of the gravitational interaction between the

moon and the tides, we can predict with confidence what the effect of some imagined

(but perhaps physically impossible) intervention would be if we could in fact bring it

about. It is this sort of knowledge which we usually gain by physical intervention and

experimentation that allows us to make claims about the causal relations that exist
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within a system. Thus, it seems reasonable that we extend these causal notions to

cases in which we do not in fact have the requisite ability to manipulate and control.

I mention this feature of the interventionist account here to highlight the fact

that a consequence of this view is that our role as agents in the world can be seen

as at the root of our concept of causation. We will take this idea up again below

where we will be in a position to expand on it in more depth. For now I simply

wish tentatively to broach the outcome of this genealogical sketch that a being who

interacted with the world differently to us as an agent would have a very different

concept of causation to the one that we have.

With these metaphysical foundations in mind, let us now move on to dismantling

two of our ordinary temporal intuitions.

5.3 Dismantling intuitions

5.3.1 Macroscopic intuitions, microscopic symmetry

A familiar intuition, indeed one that seems almost trivial, is that the properties

of interacting systems are independent before they interact. This is built upon

the observation of many instances where this apparent principle holds true. In

macroscopic systems we take this principle for granted. However, Price (1996, 1997)

asks the question whether we are justified in extrapolating this familiar macroscopic

principle to considerations of microscopic systems. Let us consider Price’s analysis.

Firstly, it seems that the origin of this principle is related to the asymmetry

of thermodynamics. When systems evolve from states of disequilibrium (lower en-

tropy) to states of equilibrium (higher entropy) it is because the initial conditions

are special; namely, the initial conditions are low entropy. Thus, if we were to con-

sider a macroscopic system evolving in the reverse temporal direction, it would look

strange because it would appear that highly correlated incoming influences were

converging from disparate regions of space (imagine a pile of rubble ‘un-collapsing’

into a building) and these would be associated with a decrease in entropy. In such

a case the violation of the principle that physical processes are uncorrelated before

they interact would be a direct product of the violation of the second law of thermo-

dynamics. Looking forwards in time again we can see that the temporal asymmetry

which manifests itself in the correlations between outgoing influences is a result of
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special (low entropy) initial conditions and not a result of an inherent asymmetry

within the laws of physics.

It appears to be assumed that this principle of outgoing correlations but incom-

ing independence holds in the microscopic case just like in the macroscopic case.

However, explaining this temporal asymmetry of microscopic systems in terms of

boundary conditions simply does not work. The boundary conditions explanation

is based upon the temporal asymmetry of entropy change. In a microscopic system,

such as that of two particles which come together, interact and then separate, there

is no entropy gradient of the sort we find in the macroscopic case to indicate a tem-

poral orientation to the interaction. The temporal reverse of the interaction would

look much the same as in the ordinary temporal direction; this is a function of the

temporal symmetry of the dynamical laws of the system. Thus, there seems to be

no reason to assume that outgoing correlations exist in one direction and not in the

other. Furthermore, unlike in the macroscopic case, there is no observed asymme-

try in microscopic systems that needs to be explained. We simply do not observe

the independence of incoming particles nor the correlation of outgoing particles, yet

we still assume that this principle holds for microscopic systems despite its incom-

patibility with the temporally symmetric nature of the dynamical laws of physical

systems.

Therefore we are left with a dichotomy between two physical principles at the

microscopic level: temporal symmetry in the dynamical laws of physical systems on

the one hand and, on the other hand, the asymmetry of the independence of micro-

scopic systems prior to interacting with each other. As such, one could make quite

a persuasive argument against the independence of microscopic systems prior to

interaction purely on symmetry grounds. Moreover, with no existing observational

evidence in favour of the independence of incoming particles or the correlation of

outgoing particles, it seems that such a principle may not deserve the status it

currently enjoys in considerations of microscopic systems. If this principle is then

abandoned, one is led to the conclusion that temporally symmetric causation in

microscopic systems cannot be ruled out on analytic grounds. Thus if we take these

considerations seriously then the nature of the physics in this case does not preclude

a picture of reality that coheres with the possibility of retrocausal influences.
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5.3.2 The bilking argument

In our normal conception of causation, causes precede their effects. A causally sym-

metric viewpoint opens up the possibility that effects can precede their causes. This,

however, immediately creates some potential conceptual difficulties. To demonstrate

these difficulties, let us imagine a pair of events which we believe to be causally con-

nected: a cause, C, and an effect, E. Let us further imagine that this connection

is retrocausal; E occurs earlier in time than C. On first appearances it would then

seem possible to devise an experiment which could confirm whether our belief in

the causal connection is correct or not. Namely, once we had observed that E had

occurred, we could then set about ensuring that C does not occur, thereby breaking

any retrocausal connection that could have existed between them. If we were suc-

cessful in doing this, then we would have bilked the effect of its cause. This is the

bilking argument.

The bilking argument seems to drive one towards the claim that any belief an

agent might hold in the positive correlation between event C and event E is simply

false. If this were the case then the agent would have to give up any belief in

retrocausal influences between C and E. Dummett (1964) disputes that giving up

this belief is the only solution to the bilking argument. In exploring the terms under

which a belief in retrocausation can be maintained, Dummett suggests that what

the bilking argument actually shows is that a set of three conditions concerning the

two events, and the agent’s relationship to them, is incoherent. In any incoherent

set of conditions, all three conditions cannot hold simultaneously. Thus, depending

on which of these three conditions fails to hold, there may be scope for an agent to

maintain a belief that the later cause retrocausally influences the earlier event. To

motivate these conditions, let us consider Dummett’s own example.

Dummett imagines a tribe to exist with the custom of sending young men on a

lion hunt to prove their bravery. The men travel for two days, hunt for two days

and spend two days on their return journey. Observers travel with the young men

and report back to the chief of the tribe whether the men acquitted themselves

with bravery or not. While the young men are away, the chief performs dances

intended to cause the young men to act bravely. Significantly, he performs these

dances for the whole six days, i.e. for two days during which the events that the

dancing is supposed to influence have already taken place. The chief notices that on
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occasions when he dances, he subsequently learns that the young men had hunted

bravely and, on occasions when he does not dance, he subsequently learns that the

young men had hunted in a cowardly fashion. The chief thus observes there to be a

positive correlation between his dancing and the young men’s bravery and therefore

maintains a belief in retrocausation.

Imagine further that we are to convince the chief that this practice of his were

absurd. We arrange that the observers who had accompanied the hunt return early

and report to the chief whether or not the young men had acted bravely. We then

set a bilking challenge to the chief to dance if and only if the young men had not

acted bravely. There are two possible outcomes of this challenge. If the chief accepts

this challenge and dances then he must concede that his dancing does not ensure

the bravery of the young men. Alternatively, imagine that the chief accepts the

challenge and then discovers he is inexplicably unable to dance, i.e. his limbs will

simply not move. Then the chief would have to admit that dancing is not an action

which is within his power to perform. If this were to occur, however, it would then

be fair to say that it is not the chief’s dancing that causes the young men to be

brave, rather it is the young men’s bravery that makes possible his dancing. Thus,

regardless of whether the chief dances or not, it seems that the chief must give up

his belief in retrocausality.

It appears then that there are two incompatible conditions here concerning the

chief’s dancing: (i) there is a positive correlation between the chiefs dancing and the

bravery of the young men; and (ii) dancing is within the power of the chief to per-

form. If the first condition is to hold, then the second condition must fail, and vice

versa, as we have just seen. Dummett, however, suggests that an implicit third con-

dition can be violated which allows both of these conditions to hold simultaneously

and thus allows the chief to maintain his belief in retrocausality. To see this, let us

first consider an agent who believes a certain action is effective in bringing about a

subsequent event. Such an agent would believe the action to be the cause of the later

effect. Dummett recognises that there is a connection between the foreknowledge

the agent possesses about the subsequent event and the intention the agent has to

perform the action. The agent only knows an event to occur in the future because

they intend to bring it about by performing a certain action: the agent possesses

knowledge in intention. This is in contrast to knowledge of the past which we can

possess in more forms than merely in intention.
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Let us then return to our example and imagine for the sake of argument that

there is a parallel between the knowledge that the chief can possess concerning the

bravery of the young men and the case of foreknowledge described here, i.e. the chief

only knows that the young men are brave due to his intention to dance. This would

then make our bilking challenge inconclusive. Since we can no longer arrange that

the observers report the behaviour of the young men to the chief, we can no longer

force the occurrence of a negative correlation. If we further rule out that there are

no inexplicable incidents when the chief is unable to dance, then we are left with the

original situation whereby the chief merely observes a positive correlation between

his dancing and the young men’s bravery and the chief can thus maintain his belief

in retrocausation. To arrive at this result we have had to jettison the following

condition: (iii) the chief has epistemic access to the behaviour of the young men

independently of his intention to dance. These three conditions form a set which is

shown to be inconsistent by the bilking argument.

Let us state these conditions in the more general terms we encountered at the

beginning of this section.

(i) There exists a positive correlation between an event C and an event E.

(ii) Event C is within the power of an agent to perform.

(iii) The agent has epistemic access to the occurrence of event E independently of

any intention to bring it about.

An interesting point to notice at this stage is that these conditions do not specify

in which order events C and E occur. If we consider why it is not the case that

it is possible to bilk future effects of their causes, this is because condition (iii)

fails to hold for future events. If knowledge about future events could be obtained

independently of an agent’s intention to perform certain actions, then it would be

possible to bilk those future events of their causes; this would amount, in a way,

to changing the events we already know to occur in the future. Since this sort of

foreknowledge is not possible, we can consistently believe our actions to bring about

the future. Conversely, if it were the case that some past event was known only

through our intention to perform a certain action, then it would be consistent to

believe our actions to bring about the past.
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The conditions under which it is possible to maintain a belief in retrocausation

are especially relevant to quantum mechanics. In fact, once we make a suitable

specification of how condition (iii) can be violated, we find that there exists a strong

symmetry between the conditions which need to hold to justify a belief in bringing

about the past and what we find to be the case in quantum mechanics. Following the

prescription of Price (1996, p. 174), let us not suppose that a violation of condition

(iii) entails that the relevant agent has no epistemic access to the relevant past

events independently of any intention to bring them about, rather let us suppose

that the means by which knowledge of these past events is gathered breaks the

claimed correlation between the agent’s action and those past events. We can state

our new condition as follows:

(iv) The agent can gain epistemic access to the occurrence of event E independently

of any intention to bring it about and without altering event E from what it

would have been had no epistemic access been gained.

In the dancing chief example a violation of this condition would entail that every

time the chief attempted to discover the behaviour of the young men he subsequently

affected their behaviour to be different from what it would have been had he not

attempted his discovery. In those cases where the chief makes no attempt to discover

the behaviour of the young men, we are back to our original violation of condition

(iii).

The nature of this weakened violation of condition (iii) should look familiar;

it is just the sort of condition we would expect to hold if the system in question

were a quantum system. To be more explicit, let me take us on a brief detour

and construct an example of a simple quantum system to see that this is the case.

Imagine a quantum system is prepared to be in a state ψ at time t0 and at time t1 the

system is to be measured. In the orthodox interpretation of quantum mechanics the

wavefunction representing the system evolves according to the Schrödinger equation

from t0 until the time of measurement at t1 wherein the wavefunction collapses to

one or other of the eigenstates of the operator associated with the measurement.

Let us now imagine that we are an agent who believes in a retrocausal influ-

ence from the measurement at t1 on the state of the system after preparation at

t0. To begin with, we cannot be subscribers to the Copenhagen interpretation be-

cause this belief is incompatible with the belief that the wavefunction description
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is a complete description of the quantum state. Due to the asymmetric nature of

the measurement process and the Born rule, there is simply no correlation at all

between the wavefunction after t0 and the measurement at t1. To make a claim

that there is a correlation between the state of the quantum system after t0 and the

measurement at t1, we cannot take the wavefunction to be a complete representation

of the quantum system. Thus we must subscribe to a hidden variable account of

quantum mechanics and interpret the wavefunction epistemically, as representative

of the possible knowledge an observer can gain about the system. In doing so, we

can stipulate through our subsequent quantum model that the state of the system

after t0 is positively correlated to the measurement at t1, i.e. that condition (i)

holds. Furthermore, we will assume here that we have the power to perform any

measurement we like at t1, i.e. condition (ii) holds. Let us now consider whether

condition (iv) can also hold; that is, whether it is possible to bilk our experiment.

Imagine how a bilking argument against our belief in a retrocausal influence

might run. A potential bilker will have to somehow observe the state of the quantum

system at some time t0 < t < t1 and then challenge us to carry out a measurement

which is incompatible with this observation. What the bilker will find, however, is a

wavefunction description of the system that suggests the system is in an eigenstate

of the operator corresponding to the observation that is made at t. Moreover, we

know that through this process some probabilistic information about the system

will have been lost and thus this wavefunction representation will not be indicative

of the state of the system between t0 and t. Thus the wavefunction description of

the state of the system after the bilker’s observation will not be what it would have

been had the bilker not made that observation; condition (iv) will consequently

be violated. Therefore, the very nature of quantum mechanics ensures that any

retrocausal effects cannot possibly be bilked of their causes because condition (iv)

is perennially violated. Furthermore, we can stipulate further that the intervening

observation of the system by the bilker establishes a new correlation between this

observation at t and the state of the system between t0 and t (and with the confidence

that this correlation cannot be bilked either).

Thus if we came to the table with a hypothesis about retrocausality in quantum

mechanics then we could show that on a certain interpretation of the wavefunction

formalism that this particular metaphysical argument against retrocausality does

not run. In fact, according to Dummett’s analysis of the bilking argument quantum
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mechanics has exactly the sort of dynamics we would expect of a retrocausal physical

theory; the counterintuitive nature of backwards-in-time causality can hardly be seen

as a disadvantage here. We see again that contemporary physics does not preclude

a metaphysical picture that allows the possibility of retrocausal influences.

5.4 Keeping up appearances

I hope that it is beginning to become clear the sort of limitations that constrain the

form of a picture of reality that allows the possibility of retrocausal influences. We

are now in a position to use these constraints, along with the causal and spatiotem-

poral structures we have taken to be most reasonable, to build a picture of what

retrocausality actually involves. At the centre of this discussion will be the role that

we play as agents as we interact with, and participate in, the world.

Let us start first and foremost with two conceptions of influence that are com-

monly conflated when talking about the future: the view that we change events and

the view that we affect events. Consider a claim like the following: by deciding to

catch the bus, I changed my day from one in which I was late for work, to one in

which I was early. Regardless of one’s model of time, there is an inconsistency in

thinking that we change events through our actions. For an event to ‘change’, the

event must have been a particular way in the first place. If we were partial to a

dynamic view of time in which the future were unreal, it would make no sense to

think of a future event as being any particular way before it is actual; there is simply

no event that is my tardiness which can be changed before I am in fact late. How-

ever, we have explicitly signalled our intention to employ the block universe model

of time and in such a model we can speak of future events as being real and thus

it might be possible for an event, one might say, to be a particular way ab initio.

We might say that my tardiness was an event and that this event changed into my

punctuality. But we must be careful here, because if a future event is real, it is in

some sense already out there in the four dimensional block. If we change it at some

point prior to it being a present event for us, we are left with the rather strange

question: why was it as it was before we changed it? Why did the four dimensional

block contain an event which was my tardiness, which then changed at some point

into my punctuality? With respect to the block universe view this question does

not make any sense.
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Before we confuse matters further, let us take stock and see if we can clarify the

above claim. We might do this by saying something like the following: when we say

that we change a future event, we mean that we change it from being something

that it could have been, say my tardiness, to something that it now actually is, say

my punctuality. Expressing what we mean by change in counterfactual terms lets us

sidestep the problems we encountered with the reality of the events under question.

However, the notion we have ended up with by doing so has a significant causal ring

to it (recall our characterisation of causation in terms of interventions); this is in

fact just what we mean when we use the word ‘affect’. I affect my day to be a day in

which I am early for work, rather than a day in which I am late. I play a particular

role in bringing about the future event and it is wrong to think that I change it from

something that it already was. As long as we commit ourselves to the block universe

view in which all events in the past, present and future are equally real, then we

must think of influence in the ‘affect’ sense. Furthermore, we can now see that this

argument is as much relevant to past events as it is relevant to future events. Under

no circumstances does it make sense to change the past in any way, since one cannot

change something that is already an actual event. Retrocausality is then not about

changing the past, rather retrocausality is about affecting the past: playing a role

in bringing about a past event.

This analysis is beginning to push us into a position about determinism and the

nature of the block universe that may seem highly undesirable; namely, that we

have no freedom in choosing our own actions. If we cannot change the future in just

the same way that we cannot change the past, and if affectation is merely bringing

about an event that in some sense already exists, then it would seem that we are

mere spectators of our reality in a rather uninteresting sense. Fortunately, we are

not pushed into this position by adopting typically block universe notions as above.

Moreover, coming to grips with why this is the case will tie together many of the

issues with which we have so far dealt and it will give us our first glimpse at the

metaphysical picture of reality that allows for retrocausal influences.

The solution to this seeming incompatibility between the conception of reality as

a block universe and our ability as agents to control and manipulate our surroundings

lies in thinking of causation as a perspectival notion. According to Price (2007),

evidence suggests that causation is indeed a perspectival notion; we have already

been introduced to the idea when we were considering the interventionist account
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of causation above. The tentative outcome that I flagged of what we called a kind

of genealogical account of causation in terms of intervention was that a being who

interacted with the world differently to how we interact with the world as agents (i.e.

has a different perspective of the world) would have a different concept of causation

to the one that we have. Let us consider how we can use this to help us find some

sort of compatibility between the block universe view and our causal intuitions.

The essential point to solving this problem is to realise that considering the block

universe ‘from the outside’ is availing oneself of a very different perspective of the

world to the one which we have while we are inhabiting some spatiotemporal region.

The important difference between the two viewpoints is that there is a discrepancy

between the parts of the spacetime block that are epistemically accessible from each

perspective. The spatiotemporally constrained perspective by which we are bound

permits us only limited epistemic accessibility to other spatiotemporal regions. This

is significant because it is as spatiotemporally bound agents that we have evolved and

it seems reasonable to suggest that we are in possession of a concept of causation

that reflects this very fact. Once we imagine ourselves to be omniscient beings

that have epistemic access to the whole spatiotemporal block, as we have done in

the above analysis of change and affect, it should not come as a surprise that our

causal intuitions get confused when we attempt to consider how a spatiotemporally

bound agent can deliberate about whether or not to affect a particular event that

is already determined from our imagined omniscient perspective. The solution that

I am pushing towards here is that it is because we do not know which events are

determined to occur that we can deliberate, and therefore be causal agents, at all.

To reach this conclusion we sequester one final model of the relationship between

deliberation and epistemic accessibility, and the role this plays in our concept of

causation.

Price (2007, p. 20) sets out “an abstract characterisation of the structural, or

functional architecture, of deliberation” with a view to separating out the intrinsic

features of deliberation itself from those aspects of deliberation that are a function

of our perspective as spatiotemporally bound agents. To begin with, a deliberator

must be deliberating over whether to bring about some particular occurrence out

of a range of possible occurrences. Following Price, we will call the set of events

of which this range consists the options that the deliberator is considering. The

set options can be thought of as consisting of two subsets: all those occurrences
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over which the deliberator has immediate control, the direct options, and all

those occurrences that can be brought about indirectly via the direct options,

the indirect options. All other events that are not under consideration during

the deliberation we will call the fixtures. An integral subset of the fixtures is

the set of events that the deliberator already knows, or are in principle knowable, at

the time of deliberation which we will call the knowables. The knowables must

be a subset of the fixtures since if these events are knowable to the deliberator

at the time of deliberation, then they cannot be under consideration to be brought

about and thus cannot be part of the set options. For this reason, all the events in

options must fall into the set we will call unknowables. Thus a deliberator makes

two dichotomous distinctions: the distinction between fixtures and options; and

the distinction between knowables and unknowables. The set knowables is

a subset of fixtures and the set options is a subset of unknowables. Let us

now consider how spatiotemporally bound deliberators such as ourselves might map

these distinctions onto the past and the future.

Considering the future first, we are going to want to say that much of the future

belongs to the set fixtures. This is largely due to the finite nature of deliberation:

since we do not deliberate about bringing about the whole future all at once, there

are then many future occurrences that we take as part of the fixed background

during the deliberative process. It also seems as given that the set direct options

must also be comprised of future events. We can attribute this to the fact that

we are temporally constrained agents of a particular sort; the set direct options

consists of our immediate actions and we simply cannot deliberate about whether

to bring about our past actions, only our future actions. Further to this, we might

want to say that the set indirect options also is comprised exclusively of future

events, but this would be so only if we were committed to classifying all past events

as belonging to the set fixtures. Ordinarily, this is exactly how we consider past

events: as fixed. This is for the most part a function of the fact that we consider

the past as knowable in principle, and as we have seen above, the set knowables

is a subset of the set fixtures. But is it the case that our spatiotemporally bound

perspective commits us to the past being fixed?

If such a commitment is indeed a function of the fact that we consider the

past as knowable in principle, then it would seem that the possibility of the past

being unknowable in principle would purge us of this commitment. Recall that
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this is exactly the condition we found to be suitable to avoid the bilking argument

in the above analysis of Dummett: an agent is immune to having a belief in a

particular retrocausal correlation bilked if the past effect in question is epistemically

inaccessible to the agent at the time of the causal action. In the language of our

current analysis, if some past event belongs to the set unknowables then it does not

necessarily belong to the set fixtures, and an agent may then believe it to belong

to the set indirect options. As we noted above, the very nature of quantum

mechanics ensures that it is immune to the bilking argument. Thus, in the right

circumstances, there is information about the past of some quantum systems that is

epistemically inaccessible in principle! If this is the case then it is a live possibility

that the set indirect options contains some events which are past; or rather, the

architecture of deliberation does not rule out the possibility of bringing about the

past on analytic grounds.

This schematic of where retrocausality fits in to the structure of deliberation

highlights an important feature of a metaphysical picture that allows retrocausal

influences: that agents within such a reality will always deliberate towards the

future, i.e. the set direct options will always be comprised of future events.

Thus retrocausality is not deliberation towards the past, or in other words, it is not

our normally directed causation in the reverse temporal direction.

The way that any particular agent divides the set of all events into fixtures

and options, knowable and unknowable and past and future will depend

completely upon the agents spatiotemporal perspective. For spatiotemporally con-

strained agents such as ourselves, there is a specific recipe for how these distinctions

are made which is a function of the way we have evolved from within the spacetime

block. If we imagine ourselves as omniscient beings who are observing the events

in the spacetime block ‘from the outside’, there will be no past or future (though

there may be past and future directions along the temporal axis of the block) and

all the events will be in the set knowable and thus in the set fixtures. This is

how we can imagine the spacetime block to be entirely determined without having

this intuition be in conflict with our usual sense of free choice in the deliberative

process; these are vastly different perspectives and causality is perspectival. It is the

extent of our ignorance, of both the future and of the complete set of prior causes

of our actions, that creates the illusion, so to speak, of free choice. This is where we

then strike a harmony between our causal intuitions, such as deliberation, and the
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intuition that future events are fixed within a deterministic framework. The crucial

element is to realise that we, as spatiotemporally bound agents, are constrained in

our epistemic access to the events in spacetime. We will meet this picture again

explicitly in §6.8.1 in the context of retrocausal quantum mechanics.

5.5 A retrocausal picture

This then is the package of metaphysical ideas that combine to give a picture that is

consistent with the possibility of retrocausality. We begin with two uncontroversial

metaphysical foundations in the block universe model of time and the intervention-

ist account of causation. We then remove two potential obstacles originating in our

ordinary temporal intuitions: we realise that we have no evidence to suggest our

macroscopic asymmetric causal intuitions can be extrapolated to the microscopic

realm and we realise that we do not necessarily have epistemic access to the past

independent of our own future actions. With these obstacles gone, the emerging

picture of a temporally and causally symmetric reality viewed from an epistemi-

cally limited vantage point concords well with the possibility of retrocausality. A

significant aspect of this assembly of ideas is that none of the included elements

are precluded by current physical theory. Indeed, if anything, these elements are

supported by the structure of at least one of our best physical theories: quantum

mechanics.

Before we move on, however, let us recall the sentiment of the Maudlin quote

with which we began this chapter. While Maudlin is clearly correct in noticing that

retrocausality is fundamentally at odds with the metaphysical picture of the past

generating the future, this by no means renders retrocausality metaphysically un-

tenable. Given the right mix of some reasonable metaphysical and epistemological

ingredients, an alternative picture of reality arises that is consistent with the pos-

sibility of retrocausality. Moreover, the economical cost of these ingredients cannot

outweigh the interpretational problems associated with the rejection of local hidden

variables, simply for the fact that we were given all these ingredients for free by

the metaphysical structure of our existing physical theories and the epistemological

structure of our experiences. We turn now to the task of defending retrocausality

against Maudlin’s challenge.



Chapter 6

Causal Symmetry and the Transactional

Interpretation of Quantum Mechanics

So far we have examined retrocausality as a solution to the interpretational prob-

lems for quantum mechanics raised by Bell’s theorem and as a metaphysical possi-

bility within contemporary physics. However, one of the most significant obstacles

for retrocausal approaches to quantum mechanics is the objection levelled at John

Cramer’s (1986) transactional interpretation of quantum mechanics by Tim Maudlin

(2002), who claims that his objection poses a problem for “any theory in which both

backwards and forwards influences conspire to shape events”. This chapter is an ex-

amination of Maudlin’s objection to retrocausality.

6.1 Introduction

The examination proceeds as follows. I begin in §6.2 with an introduction to Wheeler

and Feynman’s (1945) attempted time symmetric formulation of classical electro-

dynamics, from which the transactional interpretation of quantum mechanics origi-

nates. I then introduce in §6.3 Cramer’s extension of the Wheeler-Feynman formal-

ism to a retrocausal transaction mechanism for modelling quantum processes. §6.4

sets out the details of the transactional interpretation and I briefly mention there

some of the advantages Cramer’s theory has over the Copenhagen interpretation of

quantum mechanics: most notably that the retrocausal structure allows a ‘zigzag’

causal explanation of the nonlocality associated with Bell-type quantum systems. In

§6.5 I set out the details of Maudlin’s inventive thought experiment that constitutes

his objection to Cramer’s theory. I examine in §6.6 some replies that have been

made in response to Maudlin’s objection defending the transactional interpretation.
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In §6.7 I offer my own analysis of Maudlin’s experiment according to the transac-

tional interpretation with a view to showing that, despite the putative defences con-

sidered, there is still a problem to be overcome. What is lacking in Cramer’s theory

is a causal structure that can constrain uniquely the behaviour of a quantum system

and this is exactly the problem that Maudlin’s experiment emphasises. I diverge

from Maudlin, however, in the justification for why the transactional interpretation

suffers this shortcoming. I claim in §6.8 that it is the failure of the transactional in-

terpretation to ensure causal symmetry that is impeding such unique determination

of behaviour. In contrast, Maudlin attributes this shortcoming to retrocausality it-

self and emphasises an apparently fundamental incongruence between retrocausality

and his own “metaphysical picture of the past generating the future”. I present an

argument that it is Maudlin’s assumption about the appropriateness of this meta-

physical picture that is problematic here, and not retrocausality.

6.2 The Wheeler-Feynman absorber theory of radiation

Our narrative begins with a problem of classical electrodynamics: an accelerating

electron emits electromagnetic radiation, and through this process the acceleration

of the electron is damped. Various attempts were initially made to account for this

phenomenon in terms of the classical theory of electrodynamics but largely these

lacked either empirical adequacy or a coherent physical interpretation. Wheeler and

Feynman (1945) set out to remedy this situation by reinterpreting Dirac’s (1938)

theory of radiating electrons. I will make no attempt here to give an analysis of this

problem, nor of its ensuing evolution. What is important for our purposes is the

nature of the interpretation that Wheeler and Feynman proffer as a resolution, for

it is this interpretation that is the motivation for the transactional interpretation of

quantum mechanics.

The core of Wheeler and Feynman’s absorber theory of radiation is a suggestion

that the process of electromagnetic radiation should be thought of as an interaction

between a source and an absorber rather than as an independent elementary pro-

cess.1 Wheeler and Feynman imagine an accelerated point charge located within an

1Such an idea was suggested, for instance, by Tetrode (1922) and also by Lewis (1926):

[A]n atom never emits light except to another atom, and. . . it is as absurd to think
of light emitted by one atom regardless of the existence of a receiving atom as it
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absorbing system and consider the nature of the electromagnetic field associated with

the acceleration. An electromagnetic disturbance initially travels outwards from the

source and perturbs each particle of the absorber. The particles of the absorber

then generate together a subsequent field. According to the Wheeler-Feynman view,

this new field is comprised of half the sum of the retarded (forwards-in-time) and

advanced (backwards-in-time) solutions to Maxwell’s equations. The sum of the ad-

vanced effects of all the particles of the absorber then yields an advanced incoming

field that is present at the source simultaneous with the moment of emission. The

claim is that this advanced field exerts a finite force on the source which has exactly

the required magnitude and direction to account for the observed energy transferred

from source to absorber; this is Dirac’s radiative damping field. In addition, when

this advanced field is combined with the equivalent half-retarded, half-advanced field

of the source, the total observed disturbance is the full retarded field known from

experience to be emitted by accelerated point charges.

The crucial point to note about the Wheeler-Feynman scheme is that due to

the advanced field of the absorber, the radiative damping field is present at the

source at exactly the time of the initial acceleration. Quite simply, if a retarded

electromagnetic disturbance propagates for a time t before meeting the absorber then

the absorber will be a distance ct from the source. The advanced field propagates

with the same speed c across the same distance and thus will arrive at the source

exactly time t before the absorber field is generated, i.e. at the time of the initial

acceleration. If we think of this four dimensionally (in block universe terms) it is

clear to see that the advanced field does not simply propagate the same distance as

the source field, it propagates across the very same spacetime points as the initial

disturbance.2 It is this idea of time symmetric radiation that is at the core of the

transactional interpretation of quantum mechanics.

would be to think of an atom absorbing light without the existence of light to be
absorbed. I propose to eliminate the idea of mere emission of light and substitute the
idea of transmission, or a process of exchange of energy between two definite atoms
or molecules. (Lewis, 1926, p. 24)

2According to Price (1991), the fact that the retarded and advanced waves cross the same
spacetime indicates that they are in fact one and the same electromagnetic disturbance.
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6.3 The quantum handshake

Cramer’s (1986) transactional interpretation is a retrocausal model of quantum

mechanics that extends the Wheeler-Feynman formalism beyond electrodynamics.

Cramer suggests that the description of the emission and absorption of electro-

magnetic radiation in the Wheeler-Feynman scheme can be adopted to describe

the microscopic exchange of a single quantum of energy, momentum, etc., between

and within quantum systems. This time symmetric interpretation of the quantum

mechanical formalism not only provides an action-by-contact explanation of the non-

locality found in the EPRB experiment but also constitutes an attempt to alleviate

some of the interpretational problems of the Copenhagen interpretation in general.

Before we address how this is achieved, let us consider the transaction mechanism

at the core of the transactional interpretation.

Imagine a quantum emitter such as a vibrating electron or atom in an excited

state. According to Cramer, when a single quantum is to be emitted (a photon,

in these cases) the source produces a radiative field. Analogously to the Wheeler-

Feynman description, this field propagates outwards in all directions of four dimen-

sional spacetime, i.e. in all three spatial dimensions and both forwards (retarded

field) and backwards (advanced field) in the temporal dimension. When this field

encounters an absorber, a new field is generated that likewise propagates in all di-

rections of four dimensional spacetime. The retarded field produced by the absorber

exactly cancels the incident retarded field produced by the emitter for all times after

the absorption of the photon. The advanced field produced by the absorber propa-

gates backwards in time across the same spacetime interval as the incident wave to

be present at the emitter at the instant of emission. The advanced field produced

by the absorber exactly cancels the advanced field produced by the emitter and thus

there is neither a net field present after the time of absorption nor before the initial

emission; only between the emitter and the absorber is there a radiative field.

Cramer describes the field that travels from the source to the absorber as an

“offer” wave and the field that returns from the absorber to the emitter as a “con-

firmation” wave. The transaction is completed with a “handshake”: the offer and

confirmation waves combine to form a four dimensional standing wave between emit-

ter and absorber. The conditions at the emitter and absorber at the time of emission

and absorption respectively are the boundary conditions that determine whether or
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not a transaction can take place and, if so, the probability of that transaction oc-

curring. The amplitude of the confirmation wave which is produced by the absorber

is proportional to the local amplitude of the incident wave that stimulated it and

this, in turn, is dependent on the attenuation it received as it propagated from the

source. It is the boundary conditions at both ends of the transaction that define

when a transaction can be completed. A cycle of offer and confirmation waves “re-

peats until the response of the emitter and absorber is sufficient to satisfy all of

the quantum boundary conditions. . . at which point the transaction is completed”

(1986, p. 662). Many confirmation waves from potential absorbers may converge

on the emitter at the time of emission but the quantum boundary conditions can

usually only permit a single transaction to form. Any observer who witnesses this

process would perceive only the completed transaction, which would be interpreted

as the passage of a particle (e.g. a photon) between emitter and absorber.

There are in fact two complementary descriptions of the transaction process

lurking side by side here: on the one hand there is a description of the physical

process, consisting of the passage of a particle between emitter and absorber, that

a temporally bound experimenter would observe; and on the other hand there is a

description of a dynamical process of offer and confirmation waves that is instru-

mental in establishing the transaction. This latter process clearly cannot occur in

an ordinary time sequence, not least because our temporally bound observer by con-

struction cannot detect any offer or confirmation waves. Cramer suggests that the

‘dynamical process’ be understood as occurring in a “pseudotime” sequence:

The account of an emitter-absorber transaction presented here employs the
semantic device of describing a process extending across a lightlike or a time-
like interval of space-time as if it occurred in a time sequence external to the
process. The reader is reminded that this is only a pedagogical convention for
the purposes of description. The process is atemporal and the only observ-
ables come from the superposition of all “steps” to form the final transaction.
(1986, p. 661, fn. 14)

These steps are of course the cyclically repeated exchange of offer and confirma-

tion waves which continue “until the net exchange of energy and other conserved

quantities satisfies the quantum boundary conditions of the system” (Cramer, 1986,

p. 662). There is a strong sense here that any process described as occurring in

pseudotime is not a process at all but, as Cramer reminds, merely a “pedagogi-
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cal convention for the purposes of description”. The role that pseudotime plays in

Cramer’s theory will be of major concern for us in this analysis and we will see in

§6.7 that the ontological status of Cramer’s posited pseudotemporal sequence is far

from transparent. For now, however, let us consider how this transaction mechanism

underpins Cramer’s transactional interpretation of quantum mechanics.

6.4 The transactional interpretation

Cramer utilises the principled framework of the Copenhagen interpretation to char-

acterise his transactional interpretation. Recall that the Copenhagen interpretation

can be characterised in terms of a clutch of core principles, including Heisenberg’s

indeterminacy relation, the Born rule, Bohr’s principle of complementarity and the

epistemic reading of the wavefunction. The purpose of these principled elements

is to provide a physical picture of quantum systems given the formalism of quan-

tum mechanics; Cramer likewise constructs the transactional interpretation from

principles to serve this end.

To begin with, the statistical interpretation of the formalism embodied in the

Born rule remains unchanged from the Copenhagen interpretation. This is a con-

sequence of the fact that during the transaction process the confirmation wave tra-

verses the very same spacetime as the offer wave, only in reverse: the amplitude

of the advanced component of the confirmation wave arriving back at the emitter

is proportional to the time reverse (or complex conjugate) of the amplitude of the

initial offer wave evaluated at the absorber. Thus, the total amplitude of the con-

firmation wave is just the absolute square of the initial offer wave (evaluated at the

absorber), which yields the Born rule. Since the Born rule arises as a product of

the transaction mechanism, there is no special significance attached to the role of

the observer in the act of measurement. The ‘collapse of the wave function’ is inter-

preted as the completion of the transaction. Thus both the indeterminacy relation

and the principle of complementarity are no longer fundamentally related to the

process of observation but rather dissolve into a single feature of the transaction

mechanism: in satisfying the boundary conditions, the transaction can project out

and localise only one of a pair of conjugate variables.

According to Cramer, the biggest bifurcation between the Copenhagen and trans-

actional interpretations is centred around the physical significance of the wavefunc-
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tion. As a function of the principle of complementarity, the completeness of the

quantum formalism and the need to avert worries about the nonlocality of the col-

lapse process, the wavefunction according to the Copenhagen interpretation can be

thought of as simply “a mathematical description of the state of observer knowl-

edge” (Cramer, 1988, p. 228).3 In contrast, the transactional interpretation takes

the wavefunction to be a real physical wave with spatial extent.4 The wavefunc-

tion of the quantum mechanical formalism is identical with the initial offer wave

of the transaction mechanism and the collapsed wavefunction is identical with the

completed transaction. Quantum particles are thus not to be thought of as repre-

sented by the wavefunction but rather by the completed transaction, of which the

wavefunction is only the initial phase. As Cramer explains:

The transaction may involve a single emitter and absorber or multiple emitters
and absorbers, but it is only complete when appropriate boundary conditions
are satisfied at all loci of emission and absorption. Particles transferred have
no separate identity independent from the satisfaction of these boundary con-
ditions. (1986, p. 666)

Though there is much formal overlap between particular elements of the Copenhagen

and transactional interpretations, Cramer points out that giving objective reality to

the wavefunction “colors all the other elements of the interpretation” leading to a

vastly different physical picture of the quantum world. Let us consider this physical

picture with a concrete example.

Consider a radioactive source, S, sitting between two absorbers, A and B, con-

strained to emit a single β-particle either to the left or to the right (Figure 6.1).

According to the transactional interpretation, the process of β-particle emission can

be described in terms of offer and confirmation waves, the initial offer wave being

the wavefunction of the quantum mechanical formalism. The wavefunction “is a real

3Cramer’s reading of the Copenhagen interpretation in this respect is somewhat contentious.
The “knowledge interpretation” of the wavefunction is claimed to be an integral element of the
Copenhagen interpretation by Heisenberg (1955) but this may be in conflict with the way Bohr
envisaged the wavefunction. See Howard (2004) for an excellent discussion of this issue.

4Recent work by Kastner (2010) and Kastner and Cramer (2010) suggests a potentially improved
reading of the transactional interpretation where the wavefunction is considered as “residing in a
‘higher’ or external ontological realm corresponding to the Hilbert space of all quantum systems
involved”. This is an interesting and potentially fruitful avenue for avoiding the problems I outline
below concerning Cramer’s realistic interpretation. I unfortunately do not take account of this
improved reading here.
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time

B : (xB, t0) S : (x0, t0) A : (xA, t0)

(xB, t1) (xA, t1)

ψo(x, t)

ψcA(x, t)ψcB (x, t)

Figure 6.1: Offer and confirmation waves in the transactional interpretation

physical wave generated by the emitter, and travels through space to the final ab-

sorber as well as to many other spacetime loci and many other potential absorbers”

(1986, p. 667). Thus at the time of emission, t0, an offer wave is produced which

propagates towards each absorber as well as forwards and backwards in time. Upon

being stimulated by this offer wave at time t1, the absorbers A and B each produce

a confirmation wave that propagates backwards in time (among other directions)

to the radioactive source; the amplitude of each confirmation wave evaluated at the

source is proportional to the modulus squared of the amplitude of the offer wave

evaluated at the respective absorber (i.e. |ψci(x0, t0)| ∝ |ψo(xi, t1)|2 for i = A,B).

These confirmation waves provide the emitter, so to speak, with a Born probability

measure over which the likelihood of each particular transaction occurring can be

quantified. In the same way that the absorber responds to the initial offer wave, the

emitter responds to this subsequent confirmation wave and this cycle continues.

Let us say that the transaction is completed between the radioactive source and

absorber A, i.e. a four dimensional standing wave emerges between S at t0 and

A at t1. The components of the wavefunction which permeate the spatiotemporal

regions that are not between S at t0 and A at t1 do not “disappear”. Rather these

components “are only virtual in the sense that they transfer no energy or momentum

and participate in no transaction”. Moreover, “the emergence of this transaction

does not occur at any particular location in space or at some particular instant in

time, but rather forms along the entire four-vector that connects the emission locus
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with the absorption locus” (1986, p. 667). This four dimensional standing wave

is then interpreted as the emission of a β-particle to the left by S at t0 and the

subsequent absorption of this β-particle by A at t1.

The transactional interpretation of the quantum formalism allows the resolu-

tion of some of the most worrying aspects of the Copenhagen interpretation. Since

we do not require the disappearance of the initial wavefunction upon completion

of the transaction, the transactional interpretation alleviates the need to resort

to an epistemic interpretation of the wavefunction, which Cramer (1988, p. 228)

finds “intellectually unappealing”, to account for the nonlocality associated with

wavefunction collapse.5 In addition, the transactional interpretation subverts the

dilemma at the core of the EPR argument (§4.5) by permitting the simultaneous

reality of incompatible operators: the wavefunction, according to the transactional

interpretation,

brings to each potential absorber the full range of possible outcomes, and all
have “simultaneous reality” in the EPR sense. The absorber interacts so as to
cause one of these outcomes to emerge in the transaction, so that the collapsed
[wavefunction] manifests only one of these outcomes. (1986, p. 668).

Most importantly, however, the transactional interpretation employs both retarded

and advanced waves, and in doing so admits the possibility of providing a ‘zigzag’

explanation of the nonlocality associated with the EPRB experiment. The boundary

conditions that influence the formation of a completed transaction include both

those at the emitter as well as the future absorbers. It is this feature that makes the

transactional interpretation a retrocausal model of quantum mechanics. Moreover, it

is this feature that enables the combination of two or more local influences to yield

a nonlocal influence, which allows an action-by-contact description of the EPRB

experiment.

While it at least appears as though the transactional interpretation goes some

way to resolving the interpretational issues of the Copenhagen interpretation, it is

in fact not without its own points of contention.

5See fn. 3.
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6.5 Maudlin’s objection

Maudlin (2002) outlines a selection of problems that arise in Cramer’s theory as

a result of the pseudotemporal account of the transaction mechanism: processes

important to the completion of a transaction take place in pseudotime only (rather

than in real time) and thus cannot be said to have taken place at all. Since a

temporally bound observer can only ever perceive a completed transaction, i.e. a

collapsed wavefunction, the uncollapsed wavefunction never actually exists. Since

the initial offer wave is identical to the wavefunction of the quantum formalism,

any ensuing exchange of advanced and retarded waves required to provide the quan-

tum mechanical probabilities, according to Maudlin, also do not exist. Moreover,

Cramer’s exposition of the transaction mechanism seems to suggest that the stimu-

lation of sequential offer and confirmation waves occurs deterministically, leaving a

gaping hole in any explanation the transactional interpretation might provide of the

stochastic nature of quantum mechanics. Although these problems are significant,

Maudlin admits that they may indeed be peculiar to Cramer’s theory. Having said

this, Maudlin also sets out a more general objection to retrocausal models of quan-

tum mechanics which he claims to pose a problem for “any theory in which both

backwards and forwards influences conspire to shape events” (2002, p. 201).

Maudlin’s main objection to the transactional interpretation hinges upon the

fact that the transaction process depends crucially on the fixity of the absorbers

“just sitting out there in the future, waiting to absorb” (2002, p. 199); one cannot

presume that present events are unable to influence the future disposition of the

absorbers. Let us consider Maudlin’s own thought experiment designed to illustrate

this objection. Consider again our radioactive source constrained to emit a β-particle

either to the left or to the right. To the right sits absorber A at a distance of 1 unit.

Absorber B is also located to the right but at a distance of 2 units and is built on

pivots so that it can be swung around to the left on command (Figure 6.2(i)). A

β-particle emitted at time t0 to the right will be absorbed by absorber A at time t1.

If after time t1 the β-particle is not detected at absorber A, absorber B is quickly

swung around to the left to detect the β-particle after time 2t1 (Figure 6.2(ii)).

According to the transactional interpretation, since there are two possible out-

comes (detection at absorber A or detection at absorber B), there will be two confir-

mation waves sent back from the future, one for each absorber. Furthermore, since
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S A B
β

(i)

S AB
β

(ii)

Figure 6.2: Maudlin’s thought experiment

it is equally probable that the β-particle be detected at either absorber, the ampli-

tudes of these confirmation waves should be equal. However, a confirmation wave

from absorber B can only be sent back to the emitter if absorber B is located on the

left. For this to be the case, absorber A must not have detected the β-particle and

thus the outcome of the experiment must already have been decided. The incidence

of a confirmation wave from absorber B at the emitter ensures that the β-particle is

to be sent to the left, even though the amplitude of this wave implies a probability

of a half of this being the case. As Maudlin states so succinctly, “Cramer’s theory

collapses”.

It is clear to see that this challenge to retrocausality must be considered seriously

if a proposed retrocausal mechanism is to be successful. The key challenge from

Maudlin is that any retrocausal mechanism must ensure that the future behaviour

of the system transpires consistently with the spatiotemporal structure dictated by

any potential future causes: “stochastic outcomes at a particular point in time may

influence the future, but that future itself is supposed to play a role in producing

the outcomes” (2002, p. 197). In the transactional interpretation the existence of

the confirmation wave itself presupposes some determined future state of the system

with retrocausal influence. However, with standard (i.e. forwards-in-time) stochastic

causal influences affecting the future from the present, a determined future may not

necessarily be guaranteed in every such case, as shown by Maudlin’s experiment.

Before we go on to examine this objection in more detail, let us first consider some

responses that have been put forward in defence of Cramer’s theory.
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6.6 Cramer defended

I wish to examine here three specific defences of the transactional interpretation

due to Berkovitz (2002), Kastner (2006) and Marchildon (2006). A review of these

defences will not only provide a good exercise in exploring the details of the trans-

actional interpretation, but will assist us in getting to the source of the issues high-

lighted by Maudlin’s challenge.

Maudlin’s objection has been formulated by Berkovitz (2002) in terms of the

varying conceptualisations of the probabilities involved in the experiment. More

specifically, Berkovitz believes that the deviation between the long-run frequencies

of measurement outcomes and their objective probabilities is at the core of the

objection. Berkovitz defends the transactional interpretation by showing that causal

loops of the type found in Maudlin’s experiment need not obey the assumptions

about probabilities that are common in linear causal situations. To illustrate this

claim about causal loops, Berkovitz considers a simple coin toss.

Let the event P be the tossing of a fair coin, and let this be an indeterministic

cause of event Q, the coin landing ‘heads’. Let event R be the perception of the

coin landing ‘heads’ deterministically caused by event Q. Since the coin is fair, the

long-run frequency of event Q with respect to event P is 1
2
. However, if one considers

the long-run frequency of event Q with respect to both P and R, then this frequency

is 1; every time event P occurs with event R, Q must have occurred. The probabil-

ity of event Q with respect to P and R is called by Berkovitz a biased probability.

Berkovitz argues that within causal loops of the type found in Maudlin’s experi-

ment the probabilities are always biased. Thus one should not expect the long-run

frequencies to correspond with any unbiased probabilities; there is no inconsistency

in a deviation between these quantities.

This example can be translated in a straightforward manner to the language

of Maudlin’s experiment. Event P is the radioactive β-decay, event Q (indeter-

ministically caused by P) is the emission of the β-particle to the left and event R

(deterministically caused by Q) is the detection of the β-particle on the left. Recall

that an integral element of Maudlin’s objection is that the existence of the confir-

mation wave on the left ensures event Q, but the information contained within the

confirmation wave itself suggests event Q has a probability of only 1
2
. With respect

to only event P, event Q has a long-run frequency of 1
2
, but with respect to both
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P and R this biased probability is 1. It is not inconsistent for these quantities to

deviate, therefore Berkovitz claims Cramer’s theory is not inconsistent.

Berkovitz does not consider Cramer’s pseudotemporal account of the transac-

tion mechanism significant, preferring to think of the cycle of offer and confirmation

waves in terms of causal connections which are part of a four dimensional block

universe. While Berkovitz has claimed to show the legitimacy of the causal loop

in Maudlin’s experiment, by overlooking Cramer’s pseudotemporal account of the

transaction mechanism Berkovitz has neglected to address exactly how the pseu-

dotemporal account can be consistent with the four dimensional block universe.

Berkovitz returns to the transactional interpretation in his (2008) where he recog-

nises that the pseudotemporal account of the transaction mechanism jeopardises the

explanatory value of the theory. However, the ontological nature of the transaction

mechanism is once again left to one side in his analysis.

Kastner (2006) has expanded on Berkovitz’ approach with a view to eliminating

pseudotime from the transactional interpretation. Kastner begins by noting that

in the transactional interpretation a complete set of absorbers is not necessary; it

is possible for no confirmation wave to be received from the left of the radioactive

source in Maudlin’s experiment. Kastner differentiates between the initial states of

the radioactive source in the two situations where (i) a confirmation wave is received

from both the right and the left absorbers (absorbers A and B respectively), and

(ii) a confirmation wave is received from only the right absorber (absorber A only).

It is clear that if a confirmation wave is received from both the left and right then

it is the case that the β-particle will be emitted to the left. Recall that Maudlin

claims this to be inconsistent with the information contained in the confirmation

wave from the left.

In a similar fashion to the analysis of Berkovitz, Kastner emphasises the disparity

of probabilities as the heart of Maudlin’s objection to the transactional interpreta-

tion. However, given the initial state, according to Kastner, this disparity can be

explained. The probability of emission to the left in the case where a confirmation

wave is received from both the left and the right is 1
2

according to the information

contained in each confirmation wave. However, the probability of this being the ini-

tial state of the emitter is also 1
2

since there are two equally probable initial states.

Thus, using the standard probabilistic expression, the probability of emission to the
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left given the initial state is

P (L& ψ)

P (ψ)
=

1
2
1
2

= 1,

where L is emission to the left and ψ is the initial state.

These two initial states of Maudlin’s experiment can be imagined, according to

Kastner, as belonging to two distinct worlds, which share only the offer and confir-

mation waves between the emitter and absorber A in common. Kastner proposes

that the incipient transaction corresponding to the offer and confirmation waves

between the emitter and absorber A can be thought of as an unstable bifurcation

line between the two worlds. The success or failure of this transaction determines

which world the system “enters”. Suppose the incipient transaction between the

emitter and absorber A fails. If this is the case, absorber A does not detect the

β-particle and absorber B is swung around to the left where it is now able to emit

a confirmation wave. What would otherwise have been a null outcome becomes a

realised transaction.

Kastner points out that this account must “abandon the idea that there is cyclic

‘echoing’ between absorber B and the emitter if such echoing is taken as reflective of

an uncertainty in outcome” (2006, p. 14). The failure of the bifurcating transaction,

i.e. that between the emitter and absorber A, makes the outcome of emission to the

left certain. Moreover, the information contained in the confirmation wave received

from absorber B indicates a probability of a half of this being the case. This is not

inconsistent due to the above analysis and, in fact, shows that each confirmation

wave reflects the probability structure across both possible worlds, demonstrating

the holistic structure of quantum mechanics.

Marchildon (2006) proposes another defence of the transactional interpretation

against Maudlin’s objection. He begins by supposing another absorber, say C, is

situated on the left of the radioactive source in Maudlin’s thought experiment at a

distance larger than that of absorber B from the source. If this is the case, then the

emitter will receive a confirmation wave from absorber C on the left and Maudlin’s

experiment will proceed as usual. Marchildon then proposes removing absorber C

and considering the absorption properties of the long distance boundary conditions.

If it is postulated that the universe is a perfect absorber of all radiation then the
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presence of absorber C is irrelevant; a confirmation wave from the left will always

be received by the radioactive source at the time of emission and it will encode the

correct probabilistic information. This enables the transactional interpretation to

remain consistent in Maudlin’s experiment. On the assumption that the universe

is a perfect absorber, the transactional interpretation correctly predicts that the

β-particle will be emitted to the left half of the time. It remains the case, however,

that the transaction is completed with absorber B only if it is situated on the

left. According to Marchildon, “although the confirmation wave coming from the

left originates from the remote absorber just as often as it originates from B, the

transaction is never completed with the remote absorber” (2006, p. 12).

Although there is a varied focus to each of these defences of Cramer, it is clear

that the problematic element of the transactional interpretation is the causal struc-

ture of the pseudotemporal account of the transaction mechanism. In the next

section I offer an analysis of Maudlin’s experiment according to this pseudotempo-

ral account from the perspective of the block universe model. In doing so I hope to

show why Maudlin’s experiment still poses a problem for Cramer’s theory despite

these defences. The underlying problem is that Cramer’s theory fails to provide a

sufficient causal structure to constrain uniquely the behaviour of the system. While

I think Maudlin has successfully isolated this shortcoming, in §6.8 I challenge his

justification for why this is the case in the transactional interpretation.

6.7 Maudlin’s experiment in four dimensions

The central claim with which Berkovitz and Kastner are concerned is the disparity

between the probability of emission to the left as determined by the amplitude of the

confirmation wave from the left absorber and the expected probability given that a

confirmation wave arrives from the left. Above I characterised Maudlin’s objection

in a different manner: Maudlin’s key challenge is that any retrocausal mechanism

must ensure that the future behaviour of the system transpires consistently with the

spatiotemporal structure dictated by any potential future causes. An instructive way

to analyse the causal structure of Maudlin’s experiment is four dimensionally.

Consider once again Maudlin’s experimental setup and let us imagine a β-particle

emission to the right (i.e. towards absorber A) according to the transactional inter-

pretation. Figure 6.3 represents that part of the transaction process that occurs in
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(pseudo)time

S A B

(xA, t1) (xB, t1)

(xA, 2t1)(x′B, 2t1)

ψo(x, t)
ψcA(x, t)

ψcB (x, t)

Figure 6.3: Maudlin’s thought experiment according to the transactional interpretation

pseudotime (a sort of ‘space-pseudotime’ diagram). An offer wave is emitted from

the radioactive source at time t0. If we initially ignore the conditional nature of

the event structure of the experiment, we can imagine this offer wave stimulating

two confirmation waves from absorbers A and B, each confirmation wave originat-

ing from the respective potential absorber positions in spacetime. The particular

transaction process we are considering determines that a four dimensional standing

wave emerge between absorber A at time t1 and the source S at time t0, which is

interpreted as the emission of a β-particle at S and the absorption of this particle

at A. The passage of the β-particle, whose four-vector emerges atemporally over the

entire locus of the transaction, is a process of spacetime while the transaction mech-

anism itself is a process of pseudotime. If we now consider the conditional nature of

the event structure in time, due to the absorption event at absorber A, absorber B

will remain on the right. Curiously the four dimensional ‘space-pseudotime’ block

contains an event structure (i.e. absorber B swinging to the left) which the four

dimensional spacetime block does not. Both absorber A and absorber B vie in

pseudotime to participate in the completed transaction but, once the transaction

emerges for one absorber only, the standing wave that is formed is a standing wave

in spacetime. We should acknowledge at this point that Cramer attempts to allevi-
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ate such a worry by suggesting pseudotime to be “a pedagogical convention for the

purposes of description” (see §6.3).

However, this worry is nonetheless compounded by Cramer’s insistence that the

initial offer wave, identical to the wavefunction of the quantum formalism, is a

real wave that propagates through space. Recall that the components of this offer

wave that do not participate in any eventual transaction are described by Cramer

as “virtual” in that they transfer no energy or momentum. What Cramer fails

to account for is the fact that these virtual components do contribute something

quite important to the transaction mechanism: a putative causal structure. The

role that is played by those components of the wavefunction that are not emitted

in the direction of the eventual absorber is to stimulate virtual confirmation waves

which in turn provide the emitter with the relevant Born probability measure over

all future possibilities. This potential causal influence, however, originates from

a ‘space-pseudotime’ event structure that is not necessarily representative of the

event structure in the future of the quantum system; the probability measure is

constrained by objects that may not physically be there! There is then something

very strange in claiming that the virtual cycles of offer and confirmation waves play

a causal role in constraining the event structure of spacetime. There seems to be

a mismatch between the causal structure dictated by the initial conditions and the

causal structure dictated by the actual evolution of the system which turns on the

obscure ontological status of the pseudotemporal process.

Maudlin’s objection is a potent one; the pseudotemporal account of the trans-

action mechanism in the transactional interpretation resists straightforward clar-

ification. This somewhat complicates the defences examined in the last section,

particularly those of Berkovitz and Marchildon. Berkovitz does consider the cycle

of offer and confirmation waves between emitters and absorbers in the context of

a four dimensional block universe (2002, p. 242), but does so without considering

the reality of these entities within the spacetime block. By playing an important

role in the transaction mechanism, the offer and confirmation waves have causal

significance in Berkovitz’ causal loops. However, it is this causal significance that is

called into question by Maudlin’s objection rather than the consistency of the causal

loops.

In contrast, Marchildon eschews any causal significance of the pseudotemporal

offer and confirmation waves by assuming the universe to be a perfect absorber; there
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will always be some confirmation wave returning to the source at the time of emission

from every direction, which can play the role of providing the Born probability

measure. However, this does not do justice to the pseudotemporal account of the

transaction mechanism. Recall that “the emergence of [the completed] transaction

does not occur at any particular location in space or at some particular instant

in time, but rather forms along the entire four-vector that connects the emission

locus with the absorption locus”. Thus the emergence of the completed transaction

just is the emission of the β-particle, the passage of the β-particle from emitter to

absorber and then the absorption of the β-particle, all together. The emergence of

the transaction is not the emission event. Therefore the perfectly absorbing universe

cannot stand in for absorber B on the left because spacetime only contains completed

transactions and completed transactions are, by construction, complete four-vector

particle trajectories.

Perhaps Kastner is on the right track by attempting to eliminate pseudotime from

the interpretation by eliminating the dependence of the transaction mechanism on

the position of all the possible absorbers. The resulting view of bifurcating worlds,

however, is metaphysically rather strange. Indeed, in some sense there may be a

correspondence between Kastner’s portrayal of bifurcating worlds and the above

adoption of ‘space-pseudotime’ diagrams. There certainly seems to be a need to

account for a multitude of event structures precipitated by the pseudotemporal

account of the transaction mechanism. I intimated above that this counterfactual

feature of the transaction mechanism is at odds with Cramer’s insistence on a real

wavefunction. One might argue, if one was that way inclined metaphysically, that

these facets of the interpretation can be made coherent by allowing for bifurcating

worlds such as Kastner’s.

Unless one were that way inclined, however, Maudlin’s objection remains dam-

aging. I do not, though, consequently follow Maudlin in thinking that “any theory

in which both backwards and forwards influences conspire to shape events will face

this same challenge”. Recall that the selection of problems introduced in §6.5 that

Maudlin thought peculiar to Cramer’s theory arose as a result of the pseudotempo-

ral account of the transaction mechanism. These problems are intimately linked, I

think: the pseudotime heuristic and the reality of the wavefunction are difficult to

reconcile. As we have just seen, however, a more significant worry is the undercon-

strained nature of the behaviour of the system. Maudlin believes this to be endemic
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to retrocausal theories in general. I contend that it is the lack of causal symmetry

in Cramer’s theory that is to blame here.

6.8 Causal symmetry

The pseudotemporal account of the transaction mechanism that Cramer provides,

while retrocausal in the sense that it contains both retarded and advanced influences,

is not time symmetric. The initial offer wave always precedes (pseudotemporally)

the other processes of the transaction and thus the initial conditions of a quantum

system described by the transactional interpretation have primacy over any other

boundary condition in constraining the dynamics. This is instrumental in rendering

the pseudotemporal account of the transaction mechanism problematic. The vary-

ing event structures associated with different possible outcomes of a single stochastic

event that we encountered above would not arise if the transaction mechanism en-

dowed both the retarded and advanced elements of the transaction with equivalent

causal significance. To do so would amount to constraining the transaction mecha-

nism from both temporal ends and this, in turn, would be enough to constrain the

event structure uniquely in spacetime.

Indeed, Maudlin suggests something along these lines as the key to a successful

retrocausal theory:

If the course of present events depend on the future and the shape of the
future is in part determined by the present then there must be some structure
which guarantees the existence of a coherent mutual adjustment of all the free
variables. (2002, p. 201)

Thus due to the causal asymmetry of the pseudotemporal account of the transaction

mechanism, the retarded and advanced elements of Cramer’s theory demonstrably do

not have a structure which guarantees the existence of a coherent mutual adjustment

of all the free variables.

Maudlin realises that this failure to provide a coherent mutual adjustment of

free variables is indeed the cardinal problem of the transactional interpretation, but

suggests that the reason for this is simply because it is retrocausal. According to

Maudlin, in theories without retrocausation (which Maudlin, following Bell, calls

‘local’ theories),
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solutions to the field equations at a point are constrained only by the values
of quantities in one light cone (either past or future) of a point. Thus in
a deterministic theory, specifying data along a hyperplane of simultaneity
suffices to fix a unique solution at all times, past and future of the plane.
Further, the solutions can be generated sequentially: the solution at t = 0 can
be continued to a solution at t = 1 without having had to solve for any value
at times beyond t = 1. Thus the physical state at one time generates states
at all succeeding times in turn. . .

[In a stochastic theory] fixing the physical state in the back light cone of a
point may not determine the physical state there, but it does determine a
unique probability measure over the possible states such that events at space-
like separation are statistically independent of one another. . . The present mo-
ment makes all of its random choices independently and then generates the
probabilities for the immediate future, and so on. (2002, p. 201)

He continues,

Any theory with both backwards and forwards causation cannot have such a
structure. Data along a single hypersurface do not suffice to fix the immediate
future since that in turn may be affected by its own future. The metaphysical
picture of the past generating the future must be abandoned, and along with
it the mathematical tractability of local theories. (2002, p. 201)

Maudlin’s argument against retrocausality can thus be construed as follows:

(i) retrocausal theories must have a structure which guarantees the coherent mu-

tual adjustment of free variables;

(ii) local theories are mathematically tractable and fit a metaphysical picture of

the past generating the future because solutions to the field equations require

only data along a single hypersurface;

(iii) data along a single hypersurface are not sufficient for a retrocausal theory to

guarantee the coherent mutual adjustment of free variables;

(iv) therefore, retrocausal theories must abandon both the metaphysical picture of

the past generating the future and with it mathematical tractability.

There are multiple reasons to be wary of this argument, which we will address

here in turn. As a starting point, let us consider the claim that retrocausal theo-

ries must have a structure which guarantees the coherent mutual adjustment of free
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variables and that, because of this, retrocausal theories will be underdetermined by

the data along a single hypersurface. Insofar as this is the case, the transactional

interpretation can be seen as an attempt to achieve the former but with a failed

mechanism for remedying the latter. The failure of the transactional interpretation

to achieve this, however, is not because it is a retrocausal theory, rather, as indi-

cated above, it is because it lacks causal symmetry in its pseudotemporal account

of the fundamental quantum causal mechanism. I made the suggestion above that

temporal symmetry could be achieved by the transactional interpretation if both

initial and final boundary constraints were employed. It should now be clear that

if such constraints were present in the formalism of a retrocausal theory then this

would also debase any underdetermination claim; an increase in the available data

would suffice to determine uniquely the behaviour of the system. It is not the case

that such a retrocausal theory would, despite Maudlin’s declaration to the contrary,

elicit the abandonment of mathematical tractability; we will explore this further

in just a moment. A related concern, however, is that it is not entirely clear that

Maudlin’s underdetermination claim should worry us in the first place.

6.8.1 Causality and determination

Consider Maudlin’s reasoning that, in a retrocausal setting, data along a single

hypersurface do not suffice to fix the immediate future since that in turn may be

affected by its own future. If such a feature of retrocausal theories cannot guarantee

the coherent mutual adjustment of free variables, then by symmetry so should the

temporal reverse of this reasoning fail to guarantee the coherent mutual adjustment

of free variables in ordinary forwards-in-time causal cases, i.e. data along a single

hypersurface should not suffice to fix the immediate past since that in turn may be

affected by its own past.6 This is clearly not correct. In a deterministic theory, data

along a single hypersurface are sufficient to determine a unique solution to the field

equations and thus determine the behaviour of the system at all times, past and

future. Thus the data at some time t0 determine not only the data at t−1 but also

the data at t−2, which is normally thought to have a causal influence on the data

at t−1 (see Figure 6.4(i)). We see quite clearly here that the data at t−2 is not an

independent condition of the sort that could stymie the coherent mutual adjustment

6See also Evans, Price and Wharton (forthcoming) for the same point.
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t0

t−1

t−2

(i)

t2

t1

t0

(ii)

Figure 6.4: Determination and causation in (i) ordinary forwards-in-time causal theories
and (ii) retrocausal theories. The black arrows indicate determination and the dashed
arrows indicate what we would like to think of as causal influences in those cases.

of free variables. By the same token the data at t0 determine not only the data at

t1 but also the data at t2, which in a retrocausal setting can be thought to have a

causal influence on the data at t1 (see Figure 6.4(ii)). We can now see just as clearly

that the data at t2 is likewise not an independent condition of the sort that Maudlin

claims renders retrocausal theories underdetermined.

It appears as though Maudlin’s mistaken underdetermination claim emerges from

a manifest tension between the temporal asymmetry of his “metaphysical picture

of the past generating the future” and the temporal symmetry of determination in

which “data along a hyperplane of simultaneity suffices to fix a unique solution at all

times, past and future of the plane”. The tension stems from the distinctly causal

notion of “generation” in Maudlin’s metaphysical picture in contrast to the “fixity”

of a unique solution in his characterisation of determinism. We can alleviate this ten-

sion with the sort of carefully constructed picture of reality we developed in the last

chapter (§5.4).7 Recall that causality can be characterised as a perspectival notion

that builds upon an interventionist account of causation. Such a characterisation of

causality permits us then to strike a harmony between our causal intuitions, such

as deliberation, and the intuition that future events are fixed within a deterministic

framework by realising that we, as spatiotemporally bound agents, are constrained

in our epistemic access to the events in spacetime. With such a picture in mind,

we are able to attribute both t−2 and t2 with causal significance insofar as we are

ignorant of the complete data at t−1 and t1 respectively and also at t0. If we then

utilise this surrogate picture of reality to reconcile causality and determinism we can

7See also Price and Weslake (2010) for an exposition of a similar sort of picture.
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see by the above reasoning that Maudlin’s argument for underdetermination loses a

large part of its authority.

6.8.2 A tractable alternative

The details of this surrogate picture also arise in the context of another of Maudlin’s

claims. Let us for argument’s sake grant that the underdetermination problem of

retrocausal theories must be remedied and return to Maudlin’s argument that do-

ing so renders these theories mathematically intractable. Consider the Schrödinger

equation, the wave equation of nonrelativistic quantum mechanics: it is an example

of an equation that requires only data along a single hypersurface to fix a unique

solution. This is because it is first-order in time. If we consider the Klein-Gordon

equation, which is second-order in time, we see that it requires twice the initial data

to determine a solution. Ordinarily solutions to this classical scalar field equation

are found by imposing two independent initial boundary conditions: the solution

to the field equations at some particular time as well as the first time derivative

of this solution. According to Wharton (2010), the Klein-Gordon equation has re-

sisted interpretation as a relativistic quantum mechanical wave equation partly due

to this increase in required initial data. Wharton makes the suggestion that a time

symmetric approach to quantum mechanics can provide a natural resolution to this

interpretational obstacle. Rather than imposing two independent initial boundary

conditions on solutions to the Klein-Gordon equation, one can impose two bound-

ary conditions at two different times. This can be interpreted as supplying the field

equations with data along two different instantaneous hypersurfaces or, likewise, as

determining the behaviour of any system described by the Klein-Gordon equation

with initial and final constraints. This causal symmetry, of course, is just the sug-

gestion made above for overcoming Maudlin’s underdetermination claim targeting

retrocausal theories.8

Within Wharton’s time symmetric scheme the full solution to the field equations

cannot be known before any final constraint becomes epistemically accessible. The

initial and final boundary conditions can be pictured as representative of consecutive

external measurements on some quantum system. Without knowledge of the later

8As well as Wharton (2010), see also Sutherland (2008) for an example of a retrocausal theory
with a symmetric causal structure.
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measurement to be performed on the system one cannot solve the field equations

and thus one cannot know the exact state of the system between the measurements.

What one can know before the later measurement, however, is some best approxi-

mation to the full solution based on the initial data and it seems reasonable to think

this would be the ordinary wavefunction of the Schrödinger equation. This then

yields a ‘hidden variable’ theory of sorts where the wavefunction of the quantum

formalism is interpreted as representing an observer’s knowledge of the system and

the full solution to the Klein-Gordon equation is interpreted as representing the ac-

tual state of the system, hidden from the observer. Upon measuring the system the

observer gains knowledge of the final constraint and can retrodict the intervening

state based on the now attainable full solution to the Klein-Gordon equation. This

careful attention to the epistemic limitations of the spatiotemporally bound observer

is just the same principle that buttresses our surrogate picture from Chapter 5.

Moreover, such a retrocausal scheme for modelling quantum processes seems

by no means ‘mathematically intractable’; on the contrary, not only do we have a

straightforward algorithm for calculating the properties of any particular quantum

system but we also have a clear metaphysical prescription, whose limitations reflect

our limitations as spatiotemporally bound observers, for representing this system.

We have seen that the metaphysical picture that Maudlin ties to mathematical

tractability, that of the past generating the future, is abandoned trivially within any

retrocausal scheme but this evidently does not imply that we must also abandon

mathematical tractability. Indeed, by emphasising this traditionalist metaphysical

picture of reality, it seems as though what Maudlin has in mind when he says

‘mathematical tractability’ is something commensurate with a particular form of

initial value problem. Retrocausal theories of quantum mechanics aside, if we look

toward some of our more established physical theories we see that there is little

justification for this characterisation of mathematical tractability.

6.8.3 Classical tractability

In the first place, the representation of the dynamical behaviour of classical phys-

ical systems according to analytical mechanics certainly does not preclude all but

an initial value metaphysics. Granted, the Hamiltonian formulation of dynamics

appears to provide good support for this metaphysical picture: the dynamical arena
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of Hamiltonian mechanics, phase space, is a space of possible initial values with

a geometric structure that allows the determination of a unique dynamical path

given any single point in the space (recall Chapter 1). However, when one considers

how this geometric structure is derived from the formalism of analytical mechanics,

one finds that this Hamiltonian picture is merely (as Lanczos (1970) points out)

a “remarkable simplification” of a deeper dynamical picture. The geometric struc-

ture of phase space is encoded in Hamilton’s equations of motion and, according to

Lanczos, there are two ways that these equations can be derived. The first way is

to decompose the second-order Euler-Lagrange equations of motion (1.4) into two

first-order equations that can be transformed into Hamilton’s equations by applica-

tion of a Legendre transformation (1.9). The Euler-Lagrange equations themselves

are attained by way of the variational principle: the equations of motion are the

necessary and sufficient conditions for the action integral to remain stationary un-

der arbitrary variations of the configuration of the system given the initial and final

configurations of the system. Thus it would seem that the Hamiltonian formulation

might indeed be built upon temporally symmetric boundary conditions.

The second way of deriving Hamilton’s equations of motion, however, observes

that since the Legendre transformations are completely symmetric there is no re-

quirement that we must take the Euler-Lagrange formulation of mechanics as pri-

mary. As such, one can formulate Hamilton’s equations directly without the La-

grangian equations nor the Legendre transformations (Lanczos, 1970, p. 169); recall

§1.4. However, to do so one must produce a new action integral in terms of an

extended set of independent variables and subject it once again to a variational

principle (1.10); Hamilton’s equations become the conditions for a stationary ac-

tion integral under arbitrary variations which are again constrained by initial and

final boundary conditions. Regardless then of how one constructs the geometry of

Hamiltonian phase space, the fundamental element of analytical mechanics remains

the specification of initial and final boundary conditions as part of the variational

principle. Thus it appears as unlikely that one might find justification for Maudlin’s

characterisation of ‘mathematical tractability’ in analytical mechanics.

The case of general relativity is not so clear cut. On the one hand, it is more

than reasonable to take the central lesson of general relativity to be that the funda-

mental ontological unit of our reality is a four dimensional solution to Einstein’s field

equations; solutions are clearly not obtained in Maudlin’s ‘mathematically tractable’
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way.9 On the other hand, though, considerable effort has been spent over the last

half a century attempting to cast general relativity in a form that explicitly sepa-

rates out a single temporal dimension from three spatial dimensions10, which would

appear the best hope for a justification of Maudlin’s metaphysical picture: as long

as a spacetime is globally hyperbolic, a solution can be generated from data on

any Cauchy surface. However, a new difficulty arises herein: due to the foliation

invariance of such formulations of general relativity there exists a troublesome in-

determinacy problem. Not only does specification of a single 3-geometry (of which

a phase space point is comprised when combined with the relevant canonically con-

jugate momentum variable) fail to determine uniquely a dynamical path but, as

Pooley (2001) points out, “the specification of an initial sequence of 3-geometries

is not sufficient to allow us to predict which continuation of the sequence will be

actualized” (emphasis added). This indeterminacy may not be as pernicious as it

first appears, since it is a function of gauge freedom, and thus every actualised

sequence represents the same spacetime sliced in different ways. However, at the

level of hypersurfaces, data along a single hypersurface is insufficient to determine

a unique continuation in its immediate future.11 It is up for grabs then whether or

not general relativity fits Maudlin’s characterisation of ‘mathematical tractability’.

6.9 Cramer’s missing structure and Maudlin’s misdirected metaphysics

Maudlin’s inventive thought experiment exposes a deep problem within Cramer’s

theory: the causal structure of the transaction mechanism cannot constrain uniquely

and consistently the behaviour of particular quantum systems. I claim that what

the transactional interpretation is missing is a causally symmetric account of the

transaction mechanism: that is, both initial and final boundary constraints with

equal causal significance influencing the dynamics of the system. Such a causally

symmetric mechanism would serve to ensure the coherent mutual adjustment of

all the relevant free variables. In contrast, Maudlin attributes this shortcoming of

the transactional interpretation to the inability of a retrocausal theory to supply

a structure that could achieve such mutual adjustment of variables. Moreover,

9See Brown (2005, §9.2.2) for a discussion of this point.
10See, for instance, Dirac (1958), Bergmann (1961), Arnowitt et al. (1962) and Barbour (1994a).
11This is related to the thin and thick sandwich problems; see Baierlein, Sharp and Wheeler

(1962) and Wheeler (1964).
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Maudlin claims that the inability of retrocausal theories to achieve this is due to

a fundamental incongruence between retrocausality and his “metaphysical picture

of the past generating the future”. This picture underpins his underdetermination

challenge to retrocausal theories and his notion of mathematical tractability.

I hope to have shown that we have good reason to be wary of Maudlin’s meta-

physical picture and its connection to mathematical tractability. Firstly, Maudlin’s

underdetermination challenge to retrocausality can be subverted if one is care-

ful to spell out the metaphysical difference between causality and determination;

Maudlin’s picture evidently does not achieve this. Secondly, we saw an example of a

retrocausal theory of quantum mechanics that does not encounter any problems with

mathematical tractability, despite not adhering to the edict of Maudlin’s picture.

Thirdly, it seems unlikely that analytical mechanics, and possibly general relativity,

can be used to support an initial value metaphysics, despite being arguably the best

place to begin looking for mathematical tractability in physical theories. At the very

least we can conclude from this that Maudlin’s picture cannot be used as strongly

as he may have liked as an objection against retrocausality.

The transactional interpretation, and Maudlin’s critique, does show us something

important: for retrocausality to be taken seriously in contemporary physics, it must

be supported by a coherent picture of reality and, above all, this picture would do

well to be causally symmetric.
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Summary

Overview

I set out at the beginning of this thesis to explore how time is portrayed within our

modern physical theories. This exploration has not produced a linear narrative; on

the contrary, the manner in which we have traversed a network of overlapping ideas

in mathematics, physics and philosophy demonstrates just how centrally a holistic

study of time fits within the discipline of philosophy of physics. I adopted from

the outset a clear statement of methodology in which modern science is treated as

the authority on, and primary guide to, the nature of time and any metaphysical

inquiry is considered legitimate only when motivated exclusively by contemporary

science. Rather than acting to the detriment of philosophical investigation, these

clear guidelines have enabled a precise and rich discussion of the issues that we face

in the philosophy of time.

Part I was a demonstration of this methodology: of what an analysis of time

amounts to when we take seriously the doctrine that modern physics should be

treated as the primary guide to the nature of time. Chapter 1 showed how the

Newtonian picture of time arises from Newtonian mechanics and, despite the novel

and interesting pictures of reality that emerge in the context of both Lagrangian and

Hamiltonian mechanics, the Newtonian picture of time remains a fixture of classical

mechanics. In Chapter 2 I outlined the constraints that relativity theory imposes

on the traditional metaphysical debate concerning the nature of time, if this debate

is to remain motivated exclusively by contemporary science. I then considered in

Chapter 3 a claim of Barbour’s that a timeless picture of reality arises in the context

of his Machian formulation of general relativity and his interpretation of canonical

quantum gravity. An interesting theme of the analysis of Part I is the range of

different pictures of time that we find arising in the context of each new physical

theory.

In Part II I explored a confusion that can be seen as arising due to the absence
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of the methodology of Part I within the interpretation of nonrelativistic quantum

mechanics: study into the nature of time should be guided by modern physics and

thus we should be careful not to insert a preconceived Newtonian conception of

time unwittingly into our interpretation of the quantum mechanical formalism. To

this end, in Chapter 4 I introduced the hypothesis of retrocausality in quantum me-

chanics as a solution to the interpretational difficulties derived from Bell’s theorem

with a view to demonstrating that an overly Newtonian conception of time might

be contributing to these difficulties. Chapter 5 stands as an independent defence of

retrocausality by way of the development of a coherent picture of reality that cannot

be precluded by contemporary physics on analytic grounds; in other words, the pic-

ture respects the authority of contemporary science. I employ this picture to argue

in Chapter 6 that Maudlin’s objection to Cramer’s transactional interpretation of

quantum mechanics is misguided by his insistence on an overly Newtonian concep-

tion of time; my essential claim is that Maudlin has overstated his own picture of

reality.

A take-home message

I have emphasised that latent assumptions based on our intuitions about the nature

of time are creating difficulties for scientific progress. Compounding the problematic

nature of this issue is the close correspondence between the Newtonian picture of

time and many of our intuitions about the nature of time; one could see this cor-

respondence as responsible for providing a misleading justification for maintaining

these intuitions. Indeed, the difficulties associated with nonlocality and action-at-a-

distance in quantum mechanics find their root in the generative picture of Newtonian

time. As far as this is problematic, nonrelativistic quantum mechanics is calling out

for a fresh conceptualisation of time that is consistent with the picture of reality

that arises in the context of the quantum formalism.

The picture of reality that arises from the philosophical considerations of retro-

causality in quantum mechanics provides one such solution, and we have seen in

Chapter 5 an independent argument for why this solution is not ruled out as a pos-

sibility on analytic grounds. What is really quite significant here, and the major

result for which this work provides evidence, is that this notion of time can already

be found in a particular formulation of classical mechanics: namely, the conceptual
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schema of Lagrangian mechanics. The essential feature of this Lagrangian concep-

tual schema is that it is more naturally interpreted as supporting a teleological pic-

ture of determination (as opposed to the generative picture of Newtonian time): the

determination of dynamical behaviour requires both initial and final boundary con-

ditions. What I have demonstrated (especially through the considerations of §6.8)

is that it is exactly this teleological determination that underpins an understanding

of retrocausality as a physical phenomenon.
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Costa de Beauregard, O. (1953). Méchanique Quantique. Comptes Rendus de

l’Académie des Sciences T236: 1632–1634.

——— (1976). Time Symmetry and Interpretation of Quantum Mechanics. Found.

Phys. 6: 539–559. doi:10.1007/BF00715107.

——— (1977). Time symmetry and the Einstein paradox. Il Nuovo Cimento 42:

41–63. doi:10.1007/BF02906749.

Cramer, J. G. (1980). Generalized absorber theory and the Einstein-Podolsky-Rosen

paradox. Phys. Rev. D 22: 362–676. doi:10.1103/PhysRevD.22.362.

——— (1986). The transactional interpretation of quantum mechanics. Rev. Mod.

Phys. 58: 647–687. doi:10.1103/RevModPhys.58.647.

——— (1988). An Overview of the Transactional Interpretation of Quantum Me-

chanics. Int. J. Theor. Phys. 27: 227–236. doi:10.1007/BF00670751.

Dainton, B. (2001). Time and Space. Acumen Publishing Limited, Chesham.

DeWitt, B. S. (1962). The quantization of geometry. In L. Witten (ed.), Gravita-

tion: An Introduction to Current Research, John Wiley & Sons Inc., New York,

chapter 8, pp. 266–381.

http://dx.doi.org/10.1093/bjps/53.2.289
http://arxiv.org/abs/gr-qc/9901024v1
http://arxiv.org/abs/0707.1333v2
http://dx.doi.org/10.1007/BF00715107
http://dx.doi.org/10.1007/BF02906749
http://dx.doi.org/10.1103/PhysRevD.22.362
http://dx.doi.org/10.1103/RevModPhys.58.647
http://dx.doi.org/10.1007/BF00670751


162 BIBLIOGRAPHY

Dickson, W. M. (1998). Quantum chance and non-locality. Cambridge University

Press, Cambridge.

Dieks, D. (1991). Time in special relativity and its philosophical significance. Eur.

J. Phil. 12: 253–259. doi:10.1088/0143-0807/12/6/002.

——— (2006). Becoming, relativity and locality. In D. Dieks (ed.), The Ontology of

Spacetime, Elsevier, Amsterdam, pp. 157–176. doi:10.1016/S1871-1774(06)01008-

4.

Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford University

Press, London.

——— (1938). Classical Theory of Radiating Electrons. Proc. R. Soc. A 167:

148–169.

——— (1958). The Theory of Gravitation in Hamiltonian Form. Proc. R. Soc. A

246: 333–343. doi:10.1098/rspa.1958.0142.

——— (1964). Lectures on Quantum Mechanics. Yeshiva University, New York.

Dummett, M. (1964). Bringing About the Past. The Philosophical Review 73(3):

338–359.

Earman, J. (1986). A Primer on Determinism. D. Reidel Publishing Company,

Dordrecht.

Einstein, A. (1952). On the Electrodynamics of Moving Bodies. In The Principle of

Relativity. Trans. Perrett, W. and Jeffery, G. B., Dover Publications, New York,

chapter 3, pp. 35–65.

Einstein, A., Podolsky, B. and Rosen, N. (1935). Can Quantum-Mechanical De-

scription of Physical Reality Be Considered Complete? Phys. Rev. 47: 777–780.

doi:10.1103/PhysRev.47.777.

Ellis, G. F. R. (2007). Physics in the Real Universe: Time and Spacetime. In

V. Petkov (ed.), Relativity and the Dimensionality of the World, Springer, Nether-

lands, volume 153, pp. 49–79. doi:10.1007/978-1-4020-6318-3 4.

http://dx.doi.org/10.1088/0143-0807/12/6/002
http://dx.doi.org/10.1016/S1871-1774(06)01008-4
http://dx.doi.org/10.1016/S1871-1774(06)01008-4
http://dx.doi.org/10.1098/rspa.1958.0142
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1007/978-1-4020-6318-3_4


BIBLIOGRAPHY 163

Evans, P. W., Price, H. and Wharton, K. B. (forthcoming). New Slant on the

EPR-Bell Experiment. Brit. J. Phil. Sci. arXiv:1001.5057v3 [quant-ph].

French, S. (1989). Identity and Individuality in Classical and Quantum Physics. Aus-

traliasian Journal of Philosophy 67: 432–446. doi:10.1080/00048408912343951.

——— (1998). On The Withering Away of Physical Objects. In E. Castellani

(ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics,

Princeton University Press, Princeton, chapter 6, pp. 93–113.

French, S. and Ladyman, J. (2003). Remodelling Structural Realism: Quan-

tum Physics and the Metaphysics of Structure. Synthese 136: 31–56.

doi:10.1023/A:1024156116636.

Friedman, M. (1983). Foundations of Space-Time Theories. Princeton University

Press, New Jersey.

Geroch, R. (1970). Domain of Dependence. J. Math. Phys. 11: 437–449.

doi:10.1063/1.1665157.
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