
Noname manuscript No.
(will be inserted by the editor)

Cathoristic logic

A modal logic of incompatible propositions

Richard Prideaux Evans · Martin Berger

Received: date / Accepted: date

Keywords Modal logic, Hennessy-Milner logic, transition systems, negation,
exclusion, elementary equivalence, incompatibility semantics, knowledge
representation, philosophy of language.

Richard Prideaux Evans, Imperial College E-mail: richardprideauxevans@imperial.ac.uk ·
Martin Berger, University of Sussex. E-mail: M.F.Berger@sussex.ac.uk.

2 Richard Prideaux Evans, Martin Berger

Abstract Cathoristic logic is a multi-modal logic where negation is replaced
by a novel operator allowing the expression of incompatible sentences. We
present the syntax and semantics of the logic including complete proof rules,
and establish a number of results such as compactness, a semantic characterisa-
tion of elementary equivalence, the existence of a quadratic-time decision pro-
cedure, and Brandom’s incompatibility semantics property. We demonstrate
the usefulness of the logic as a language for knowledge representation.

Cathoristic logic 3

Contents

1 Introduction . 5
1.1 Material incompatibility and negation . 6
1.2 Negation as the minimal incompatible . 8
1.3 Inferences between atomic sentences . 9
1.4 Wittgenstein’s vision of a logic of elementary propositions 10
1.5 Outline . 10

2 Mathematical preliminaries . 12
3 Cathoristic logic . 14

3.1 Syntax . 14
3.2 Semantics . 14

4 Inferences between atomic sentences . 18
4.1 Intra-atomic inferences in cathoristic logic . 18
4.2 Intra-atomic inferences in first-order logic . 20

5 Cathoristic logic as a language for knowledge representation 22
5.1 Representing facts in cathoristic logic . 22
5.2 Simpler postconditions . 24
5.3 Using tantum ! to optimise preconditions . 24

6 Semantics and Decision Procedure . 26
6.1 Semantic characterisation of elementary equivalence 26
6.2 Quotienting models . 28
6.3 The bounded lattice of models . 29
6.4 Computing the least upper bound of the models that satisfy a formula 30
6.5 A decision procedure for cathoristic logic . 36
6.6 Incompatibility semantics . 37

7 Inference Rules . 40
7.1 Example inferences . 41
7.2 !-Left and !-Right . 41
7.3 Characteristic formulae . 41
7.4 Soundness and completeness . 43
7.5 Proofs of Lemmas 8, 9 and 10 . 44

8 Compactness and the standard translation to first-order logic 49
8.1 Translating from cathoristic to first-order logic 49
8.2 Compactness by translation . 51

9 Cathoristic logic and negation . 56
9.1 Syntax and semantics . 56
9.2 Decision procedure . 57

10 Quantified cathoristic logic . 59
11 Related work . 61

11.1 Brandom’s incompatibility semantics . 61
11.2 Peregrin on defining a negation operator . 62
11.3 Peregrin and Turbanti on defining a necessity operator 63
11.4 Linear logic . 63
11.5 Process calculus . 64
11.6 Linguistics . 64

12 Open problems . 65
12.1 Excluded middle . 65
12.2 Understanding the expressive strength of cathoristic logic 65
12.3 Acknowledgements . 69

A Alternative semantics for cathoristic logic . 71
A.1 Pure cathoristic models . 71
A.2 Relationship between pure and cathoristic models 71
A.3 Non-determinism and cathoristic models . 72
A.4 Semantic characterisation of elementary equivalence 73

B Omitted proofs . 76
B.1 Proof of Lemma 5 . 76

4 Richard Prideaux Evans, Martin Berger

B.2 Proof of Lemma 6 . 76
B.3 Proof of Lemma 7 . 77

Cathoristic logic 5

1 Introduction

Natural language is full of incompatible alternatives. If Pierre is the current
king of France, then nobody else can simultaneously fill that role. A tra�c
light can be green, amber or red - but it cannot be more than one colour at a
time. Mutual exclusion is a natural and ubiquitous concept.

First-order logic can represent mutually exclusive alternatives, of course.
To say that Pierre is the only king of France, we can write, following Russell:

king(france, pierre) ^ 8x.(king(france, x) ! x = pierre).

To say that a particular tra�c light, tl, is red - and red is its only colour - we
could write:

colour(tl, red) ^ 8x.colour(tl, x) ! x = red.

In this approach, incompatibility is a derived concept, reduced to a combina-
tion of universal quantification and identity. First-order logic, in other words,
uses relatively complex machinery to express a simple concept:

– Quantification’s complexity comes from the rules governing the distinction
between free and bound variables1.

– Identity’s complexity comes from the infinite collection of axioms required
to formalise the indiscernibility of identicals.

The costs of quantification and identity, such as a larger proof search space,
have to be borne every time one expresses a sentence that excludes others -
even though incompatibility does not, prima facie, appear to have anything to
do with the free/bound variable distinction, or require the full power of the
identity relation.

This paper introduces an alternative approach, where exclusion is expressed
directly, as a first-class concept. Cathoristic logic2 is the simplest logic we could
find in which incompatible statements can be expressed. It is a multi-modal
logic, a variant of Hennessy-Milner logic, that replaces negation with a new
logical primitive

!A

pronounced tantum3
A. Here A is a finite set of alternatives, and !A says that

the alternatives in A exhaust all possibilities. For example:

!{green, amber, red}

states that nothing but green, amber or red is possible. Our logic uses modal-
ities to state facts, for example hamberi expresses that amber is currently the

1 E�cient handling of free/bound variables is an active field of research, e.g. nominal
approaches to logic [23]. The problem was put in focus in recent years with the rising
interest in the computational cost of syntax manipulation in languages with binders.

2 “Cathoristic” comes from the Greek ↵✓o⇢́ı⇣✏i⌫: to impose narrow boundaries. We are
grateful to Tim Whitmarsh for suggesting this word.

3 “Tantum” is Latin for “only”.

6 Richard Prideaux Evans, Martin Berger

case. The power of the logic comes from the conjunction of modalities and
tantum. For example

hamberi ^ !{green, amber, red}

expresses that amber is currently the case and red as well as green are the
only two possible alternatives to amber. Any statement that exceeds what
tantum A allows, like

hbluei ^ !{green, amber, red},

is necessarily false. When the only options are green, amber, or red, then blue
is not permissible. Now to say that Pierre is the only king of France, we write:

hkingihfrancei(hpierrei^!{pierre}).

Crucially, cathoristic logic’s representation involves no universal quantifier and
no identity relation. It is a purely propositional formulation. To say that the
tra�c light is currently red, and red is its only colour, we write:

htlihcolouri(hredi^!{red}).

This is simpler, both in terms of representation length and computational
complexity, than the formulation in first-order logic given on the previous page.
Properties changing over time can be expressed by adding extra modalities
that can be understood as time-stamps. To say that that the tra�c light was
red at time t1 and amber at time t2, we can write:

htlihcolouri(ht1i(hredi^!{red}) ^ ht2i(hamberi^!{amber}))

Change over time can be expressed in first-order logic with bounded quantifi-
cation - but modalities are succinct and avoid introducing bound variables.

Having claimed that incompatibility is a natural logical concept, not easily
expressed in first-order logic4, we will now argue the following:

– Incompatibility is conceptually prior to negation.
– Negation arises as the weakest form of incompatibility.

1.1 Material incompatibility and negation

Every English speaker knows that

“Jack is male” is incompatible with “Jack is female”

But why are these sentences incompatible? The orthodox position is that these
sentences are incompatible because of the following general law:

4 We will precisify this claim in later sections; (1) first-order logic’s representation of
incompatibility is longer in terms of formula length than cathoristic logic’s (see Section
4.2.1); and (2) logic programs in cathoristic logic can be optimised to run significantly faster
than their equivalent in first-order logic (see Section 5.3).

Cathoristic logic 7

If someone is male, then it is not the case that they are female

Recast in first-order logic:

8x.(male(x) ! ¬female(x)).

In other words, according to the orthodox position, the incompatibility be-
tween the two particular sentences depends on a general law involving univer-
sal quantification, implication and negation.

Brandom [6] follows Sellars in proposing an alternative explanation: “Jack
is male” is incompatible with “Jack is female” because “is male” and “is fe-
male” are materially incompatible predicates. They claim we can understand
incompatible predicates even if we do not understand universal quantification
or negation. Material incompatibility is conceptually prior to logical negation.

Imagine, to make this vivid, a primitive people speaking a primordial lan-
guage of atomic sentences5. These people can express sentences that are incom-
patible. But they cannot express that they are incompatible. They recognise
when atomic sentences are incompatible, and see that one sentence entails
another - but their behaviour outreaches their ability to articulate it.

Over time, these people may advance to a more sophisticated language
where incompatibilities are made explicit, using a negation operator - but this
is a later (and optional) development:

[If negation is added to the language], it lets one say that two claims
are materially incompatible:“If a monochromatic patch is red, then it
is not blue.” That is, negation lets one make explicit in the form of
claims - something that can be said and (so) thought - a relation that
otherwise remained implicit in what one practically did, namely treat
two claims as materially incompatible6.

But before making this optional explicating step, our primitive people under-
stand incompatibility without understanding negation. If this picture of our
primordial language is coherent, then material incompatibility is conceptually
independent of logical negation.

Now imagine a modification of our primitive linguistic practice in which no
sentences are ever treated as incompatible. If one person says “Jack is male”
and another says “Jack is female”, nobody counts these claims as conflicting.
The native speakers never disagree, back down, retract their claims, or justify
them. They just say things. Without an understanding of incompatibility, and
the variety of behaviour that it engenders, we submit (following Brandom)
that there is insu�cient richness in the linguistic practice for their sounds to
count as assertions. Without material incompatibility, their sounds are just
barks.

5 In this paper, we define a sentence as atomic if it does not contain another sentence as
a syntactic constituent.

6 [7] pp.47-48

8 Richard Prideaux Evans, Martin Berger

Suppose the reporter’s di↵erential responsive dispositions to call things
red are matched by those of a parrot trained to utter the same noises
under the same stimulation. What practical capacities of the human
distinguish the reporter from the parrot? What, besides the exercise of
regular di↵erential responsive dispositions, must one be able to do, in
order to count as having or grasping concepts? ... To grasp or under-
stand a concept is, according to Sellars, to have practical mastery over
the inferences it is involved in... The parrot does not treat “That’s red”
as incompatible with “That’s green”7.

If this claim is also accepted, then material incompatibility is not just concep-
tually independent of logical negation, but conceptually prior.

1.2 Negation as the minimal incompatible

In [6] and [7], Brandom describes logical negation as a limiting form of material
incompatibility:

Incompatible sentences are Aristotelian contraries. A sentence and its
negation are contradictories. What is the relation between these? Well,
the contradictory is a contrary: any sentence is incompatible with its
negation. What distinguishes the contradictory of a sentence from all
the rest of its contraries? The contradictory is the minimal contrary:
the one that is entailed by all the rest. Thus every contrary of “Plane
figure f is a circle” - for instance “f is a triangle”, “f is an octagon”,
and so on - entails “f is not a circle”.

If someone asserts that it is not the case that Pierre is the (only) King of
France, we have said very little. There are so many di↵erent ways in which it
could be true:

– The King of France might be Jacques
– The King of France might be Louis
– ...
– There may be no King of France at all
– There may be no country denoted by the word “France”

Each of these concrete propositions is incompatible with Pierre being the King
of France. To say “It is not the case that the King of France is Pierre” is just to
claim that one of these indefinitely many concrete possibilities is true. Negation
is just the logically weakest form of incompatibility.

In the rest of this paper, we assume - without further argument - that
material incompatibility is conceptually prior to logical negation. We develop
a simple modal logic to articulate Brandom’s intuition: a language, without
negation, in which we can nevertheless make incompatible claims.

7 [6] pp.88-89, our emphasis.

Cathoristic logic 9

1.3 Inferences between atomic sentences

So far, we have justified the claim that incompatibility is a fundamental logi-
cal concept by arguing that incompatibility is conceptually prior to negation.
Now incompatibility is an inferential relation between atomic sentences. In
this subsection, we shall describe other inferential relations between atomic
sentences - inferential relations that first-order logic cannot articulate (or can
only do so awkwardly), but that cathoristic logic handles naturally.

The atomic sentences of a natural language can be characterised as the
sentences which do not contain any other sentences as constituent parts8.
According to this criterion, the following are atomic:

– Jack is male
– Jack loves Jill

The following is not atomic:

Jack is male and Jill is female

because it contains the complete sentence “Jack is male” as a syntactic con-
stituent. Note that, according to this criterion, the following is atomic, despite
using “and”:

Jack loves Jill and Joan

Here, “Jack loves Jill” is not a syntactic constituent9.
There are many types of inferential relations between atomic sentences of

a natural language. For example:

– “Jack is male” is incompatible with “Jack is female”
– “Jack loves Jill” implies “Jack loves”
– “Jack walks slowly” implies “Jack walks”
– “Jack loves Jill and Joan” implies “Jack loves Jill”
– “Jack is wet and cold” implies “Jack is cold”

The first of these examples involves an incompatibility relation, while the oth-
ers involve entailment relations. A key question this paper seeks to answer is:
what is the simplest logic that can capture these inferential relations between
atomic sentences?

8 Compare Russell [24] p.117: “A sentence is of atomic form when it contains no logical
words and no subordinate sentence”. We use a broader notion of atomicity by focusing solely
on whether or not it contains a subordinate sentence, allowing logical words such as “and”
as long as they are conjoining noun-phrases and not sentences.

9 To see that “Jack loves Jill” is not a constituent of “Jack loves Jill and Joan”, observe
that “and” conjoins constituents of the same syntactic type. But “Jack loves Jill” is a
sentence, while “Joan” is a noun. Hence the correct parsing is “Jack (loves (Jill and Joan))”,
rather than “(Jack loves Jill) and Joan”.

10 Richard Prideaux Evans, Martin Berger

1.4 Wittgenstein’s vision of a logic of elementary propositions

In the Tractatus [34], Wittgenstein claims that the world is a set of atomic
sentences in an idealised logical language. Each atomic sentence was supposed
to be logically independent of every other, so that they could be combined
together in every possible permutation, without worrying about their mutual
compatibility. But already there were doubts and problem cases. He was aware
that certain statements seemed atomic, but did not seem logically independent:

For two colours, e.g., to be at one place in the visual field is impos-
sible, and indeed logically impossible, for it is excluded by the logical
structure of colour. (6.3751)

At the time of writing the Tractatus, he hoped that further analysis would
reveal that these statements were not really atomic.

Later, in the Philosophical Remarks [33], he renounced the thesis of the
logical independence of atomic propositions. In §76, talking about incompatible
colour predicates, he writes:

That makes it look as if a construction might be possible within the
elementary proposition. That is to say, as if there were a construction
in logic which didn’t work by means of truth functions. What’s more, it
also seems that these constructions have an e↵ect on one proposition’s
following logically from another. For, if di↵erent degrees exclude one
another it follows from the presence of one that the other is not present.
In that case, two elementary propositions can contradict one another.

Here, he is clearly imagining a logical language in which there are incompati-
bilities between atomic propositions. In §82:

This is how it is, what I said in the Tractatus doesn’t exhaust the
grammatical rules for ’and’, ’not’, ’or’, etc; there are rules for the truth
functions which also deal with the elementary part of the proposition.
The fact that one measurement is right automatically excludes all oth-
ers.

Wittgenstein does not, unfortunately, show us what this language would look
like. In this paper, we present cathoristic logic as one way of formalising infer-
ences between atomic sentences.

1.5 Outline

The rest of this paper is organised as follows: The next section briefly reca-
pitulates the mathematical background of our work. Section 3 introduces the
syntax and semantics of cathoristic logic with examples. Section 4 discusses
how cathoristic logic can be used to model inferences between atomic sen-
tences. Section 5 describes informally how our logic is useful as a knowledge

Cathoristic logic 11

representation language. Section 6 presents core results of the paper, in par-
ticular a semantic characterisation of elementary equivalence and a decision
procedure with quadratic time-complexity. The decision procedure has been
implemented in Haskell and is available for public use [11] under a liberal open-
source license. This section also shows that Brandom’s incompatibility seman-
tics condition holds for cathoristic logic. Section 7 presents the proof rules for
cathoristic logic and proves completeness. Section 8 provides two translations
from cathoristic logic into first-order logic, and proves compactness using one
of them. Section 9 investigates a variant of cathoristic logic with an additional
negation operator, and provides a decision procedure for this extension that
has an exponential time-complexity. Section 10 extends cathoristic logic with
first-order quantifiers and sketches the translation of first-order formulae into
first-order cathoristic logic. The conclusion surveys related work and lists open
problems. Appendix A outlines a di↵erent approach to giving the semantics of
cathoristic logic, including a characterisation of the corresponding elementary
equivalence. The appendix also discusses the question of non-deterministic
models. The remaining appendices present routine proof of facts used in the
main section.

12 Richard Prideaux Evans, Martin Berger

2 Mathematical preliminaries

This section briefly surveys the mathematical background of our paper. A
fuller account of order-theory can be found in [8]. Labelled transition systems
are explored in [26,16] and bisimulations in [25]. Finally, [10] is one of many
books on first-order logic.

Order-theory. A preorder is a pair (S,v) where S is a set, and v is a binary
relation on S that is reflexive and transitive. Let T ✓ S and x 2 S. We say x

is an upper bound of T provided t v x for all t 2 T . If in addition x v y for
all upper bounds y of T , we say that x is the least upper bound of T . The set
of all least upper bounds of T is denoted

F
T . Lower bounds, greatest lower

bounds and
d
T are defined mutatis mutandis. A partial order is a preorder

v that is also anti-symmetric. A partial order (S,v) is a lattice if every pair
of elements in S has a least upper and a greatest lower bound. A lattice is a
bounded lattice if it has top and bottom elements > and ? such that for all
x 2 S:

x u ? = ? x t ? = x x u > = x x t > = >.

If (S,v) is a preorder, we can turn it into a partial-order by quotienting: let
a ' b i↵ a v b as well as b v a. Clearly ' is an equivalence. Let E be the set of
all '-equivalence classes of S. We get a canonical partial order, denoted v

E

,
on E by setting: [a]' v

E

[b]' whenever a v b. If all relevant upper and lower
bounds exist in (S,v), then (E,v

E

) becomes a bounded lattice by setting

[x]' u [y]' = [x u y]' [x]' t [y]' = [x t y]' ?

E

= [?]' >

E

= [>]'.

Transition systems. Let ⌃ be a set of actions. A labelled transition sys-
tem over ⌃ is a pair (S,!) where S is a set of states and !✓ S ⇥ ⌃ ⇥ S

is the transition relation. We write x

a

�! y to abbreviate (x, a, y) 2!. We let
s, t, w, w

0
, x, y, z, ... range over states, a, a0, b, ... range over actions and L,L

0
, ...

range over labelled transition systems. We usually speak of labelled transition
systems when the set of actions is clear from the context. We say L is determin-
istic if x

a

�! y and x

a

�! z imply that y = z. Otherwise L is non-deterministic.
A labelled transition system is finitely branching if for each state s, the set
{t | s

a

�! t} is finite.

Simulations and bisimulations. Given two labelled transition systems L
i

=
(S

i

,!

i

) over⌃ for i = 1, 2, a simulation from L1 to L2 is a relationR ✓ S1⇥S2

such that whenever (s, s0) 2 R: if s
a

�! s

0 then there exists a transition t

a

�! t

0

with (t, t0) 2 R. We write s �

sim

t whenever (s, t) 2 R for some simulation
R. We say R is a bisimulation between L1 and L2 if both, R and R

�1 are
simulations. Here R

�1 = {(y, x) | (x, y) 2 R}. We say two states s, s

0 are
bisimilar, written s ⇠ s

0 if there is a bisimulation R with (s, s0) 2 R.

First-order logic. A many-sorted first-order signature is specified by the
following data. A non-empty set of sorts, a set function symbols with associated
arities, i.e. non-empty list of sorts #(f) for each function symbol f ; a set

Cathoristic logic 13

of relation symbols with associated arities, i.e. a list of sorts #(R) for each
relation symbol R; a set of constant symbols with associated arity, i.e. a sort
#(c) for each constant symbol c.

Let S be a signature. An S-model M is an object with the following com-
ponents. For each sort � a set U

�

called universe of sort �. The members of
U

�

are called �-elements of M; an element c

M of U
�

for each constant c of
sort �; a function f

M : (U
�1 ⇥ · · ·⇥U

�n) ! U

�

for each function symbol f of
arity (�1, ...,�n,�); a relation R

M
✓ U

�1 ⇥ · · ·⇥U

�n for each relation symbol
R of arity (�1, ...,�n).

Given an infinite set of variables for each sort �, the terms and first-order
formulae for S are given by the following grammar

t ::= x || c || f(t1, ..., tn)

� ::= t = t

0
|| R(t1, ..., tn) || ¬� || � ^ || 8x.A

Here x ranges over variables of all sorts, c over constants, R over n-ary re-
lational symbols and f over n-ary function symbols from S. Other logical
constructs such as disjunction or existential quantification are given by de
Morgan duality, and truth > is an abbreviation for x = x. If S has just a
single sort, we speak of single-sorted first-order logic or just first-order logic.

Given an S-model M, an environment, ranged over by �, is a partial func-
tion from variables to M’s universe. We write x 7! u for the environment that
maps x to u and is undefined for all other variables. Moreover, if �, x 7! u is
the environment that is exactly like �, except that it also maps x to u, assum-
ing that x is not in the domain of �. The interpretation [[t]]M,�

of a term t

w.r.t. M and � is given by the following clauses, assuming that the domain of
� contains all free variables of t:

– [[x]]M,�

= �(x).
– [[c]]M,�

= c

M.
– [[f(t1, ..., tn)]]M,�

= f

M([[t1]]M,�

, ..., [[t
n

]]M,�

).

The satisfaction relation M |=
�

� is given by the following clauses, this time
assuming that the domain of � contains all free variables of �:

– M |=
�

t = t

0 i↵ [[t]]M,�

= [[t0]]M,�

.
– M |=

�

R(t1, ..., tn) i↵ R

M([[t1]]M,�

, ..., [[t
n

]]M,�

).
– M |=

�

¬� i↵ M 6|=
�

�.
– M |=

�

� ^ i↵ M |=
�

� and M |=
�

 .
– M |=

�

8x.� i↵ for all u in the universe of M we have M |=
�,x 7!v

�.

Note that if � and �0 agree on the free variables of t, then [[t]]M,�

= [[t]]M,�

0 .
Likewise M |=

�

� if and only i↵ M |=
�

0
�, provided � and �

0 agree on the
free variables of �.

The theory of a model M, written Th(M), is the set of all formulae made
true by M, i.e. Th(M) = {� | M |= �}. We say two models M and N are
elementary equivalent if Th(M) = Th(N). In first-order logic Th(M) ✓ Th(N)
already implies that M and N are elementary equivalent.

14 Richard Prideaux Evans, Martin Berger

3 Cathoristic logic

In this section we introduce the syntax and semantics of cathoristic logic.

3.1 Syntax

Syntactically, cathoristic logic is a multi-modal logic with one new operator.

Definition 1 Let ⌃ be a non-empty set of actions. Actions are ranged over by
a, a

0
, a1, b, ..., and A ranges over finite subsets of ⌃. The formulae of cathoristic

logic, ranged over by �, , ⇠..., are given by the following grammar.

� ::= > || � ^ || hai� || !A

The first three forms of � are standard from Hennessy-Milner logic [17]: >
is logical truth, ^ is conjunction, and hai� means that the current state can
transition via action a to a new state at which � holds. Tantum A, written
!A, is the key novelty of cathoristic logic. Asserting !A means: in the current
state at most the modalities hai that satisfy a 2 A are permissible.

We assume that hai� binds more tightly than conjunction, so hai� ^ is
short for (hai�) ^ . We often abbreviate hai> to hai. We define falsity ? as
!; ^ hai where a is an arbitrary action in ⌃. Hence, ⌃ must be non-empty.
Note that, in the absence of negation, we cannot readily define disjunction,
implication, or [a] modalities by de Morgan duality.

Convention 1 From now on we assume a fixed set ⌃ of actions, except where
stated otherwise.

3.2 Semantics

The semantics of cathoristic logic is close to Hennessy-Milner logic, but uses
deterministic transition systems augmented with labels on states.

Definition 2 A cathoristic transition system is a triple L = (S,!,�), where
(S,!) is a deterministic labelled transition system over ⌃, and � is a function
from states to sets of actions (not necessarily finite), subject to the following
constraints:

– For all states s 2 S it is the case that {a | 9t s

a

�! t} ✓ �(s). We call this
condition admissibility.

– For all states s 2 S, �(s) is either finite or ⌃. We call this condition well-
sizedness.

The intended interpretation is that �(w) is the set of allowed actions emanating
from w. The � function is the semantic counterpart of the ! operator. The
admissibility restriction is in place because transitions s

a

�! t where a /2

Cathoristic logic 15

�(s) would be saying that an a action is possible at s but at the same time
prohibited at s. Well-sizedness is not a fundamental restriction but rather a
convenient trick. Cathoristic transition systems have two kinds of states:

– States s without restrictions on outgoing transitions. Those are labelled
with �(s) = ⌃.

– States s with restriction on outgoing transitions. Those are labelled by a
finite set �(s) of actions.

Defining � on all states and not just on those with restrictions makes some
definitions and proofs slightly easier.

As with other modal logics, satisfaction of formulae is defined relative to a
particular state in the transition system, giving rise to the following definition.

Definition 3 A cathoristic model, ranged over by M,M0
, ..., is a pair (L, s),

where L is a cathoristic transition system (S,!,�), and s is a state from S.
We call s the start state of the model. An cathoristic model is a tree if the
underlying transition system is a tree whose root is the start state.

Satisfaction of a formula is defined relative to a cathoristic model.

Definition 4 The satisfaction relation M |= � is defined inductively by the
following clauses, where we assume that M = (L, s) and L = (S,!,�).

M |= >

M |= � ^ i↵ M |= � and M |=

M |= hai� i↵ there is transition s

a

�! t such that (L, t) |= �

M |= !A i↵ �(s) ✓ A

The first three clauses are standard. The last clause enforces the intended
meaning of !A: the permissible modalities in the model are at least as con-
strained as required by !A. They may even be more constrained if the inclu-
sion �(s) ✓ A is proper. For infinite sets ⌃ of actions, allowing �(s) to return
arbitrary infinite sets in addition to � does not make a di↵erence because A

is finite by construction, so �(s) ✓ A can never hold anyway for infinite �(s).

⌃

{b, c}
a

;

c

⌃

b

Fig. 1: Example Model.

16 Richard Prideaux Evans, Martin Berger

We continue with concrete examples. The model in Figure 1 satisfies all
the following formulae, amongst others.

hai haihbi hai!{b, c} hai!{b, c, d} hci

hci!; hci!{a} hci!{a, b} hai ^ hci hai(hbi^!{b, c}

Here we assume, as we do with all subsequent figures, that the top state is the
start state. The same model does not satisfy any of the following formulae.

hbi !{a} !{a, c} hai!{b} haihci haihbi!{c}

Figure 2 shows various models of haihbi and Figure 3 shows one model that
does, and one that does not, satisfy the formula !{a, b}. Both models validate
!{a, b, c}.

Cathoristic logic does not have the operators ¬,_, or !. This has the
following two significant consequences. First, every satisfiable formula has a
unique (up to isomorphism) simplest model. In Figure 2, the left model is
the unique simplest model satisfyinghaihbi. We will clarify below that model
simplicity is closely related to the process theoretic concept of similarity, and
use the existence of unique simplest models in our quadratic-time decision
procedure.

⌃

⌃

a

⌃

b

⌃

{a, b, c}

a

⌃

b

{a}

{b}

a

;

b

Fig. 2: Three models of haihbi>

{a}

⌃

a

{a, b, c}

{a}

c

Fig. 3: The model on the left validates !{a, b} while the model on the right
does not.

Cathoristic logic 17

Secondly, cathoristic logic is di↵erent from other logics in that there is an
asymmetry between tautologies and contradictories: logics with conventional
negation have an infinite number of non-trivial tautologies, as well as an in-
finite number of contradictories. In contrast, because cathoristic logic has no
negation or disjunction operator, it is expressively limited in the tautologies
it can express: > and conjunctions of > are its sole tautologies. On the other
hand, the tantum operator enables an infinite number of contradictories to be
expressed. For example:

hai ^ !; hai ^ !{b} hai ^ !{b, c} hbi ^ !;

Next, we present the semantic consequence relation.

Definition 5 We say the formula � semantically implies , written � |= ,
provided for all cathoristic models M if it is the case that M |= � then also
M |= �. We sometimes write |= � as a shorthand for > |= �.

Cathoristic logic shares with other (multi)-modal logics the following implica-
tions:

haihbi |= hai hai(hbi ^ hci) |= haihbi

As cathoristic logic is restricted to deterministic models, it also validates the
following formula:

haihbi ^ haihbi |= hai(hbi ^ hci)

Cathoristic logic also validates all implications in which the set of constraints
is relaxed from left to right. For example:

!{c} |= !{a, b, c} !; |= !{a, b}

18 Richard Prideaux Evans, Martin Berger

4 Inferences between atomic sentences

Cathoristic logic arose in part as an attempt to answer the question: what
is the simplest logic that can capture inferences between atomic sentences of
natural language? In this section, we give examples of such inferences, and
then show how cathoristic logic handles them. We also compare our approach
with attempts at expressing the inferences in first-order logic.

4.1 Intra-atomic inferences in cathoristic logic

Natural language admits many types of inference between atomic sentences.
First, exclusion:

“Jack is male” is incompatible with “Jack is female”.

Second, entailment inferences from dyadic to monadic predicates:

“Jack loves Jill” implies “Jack loves”.

Third, adverbial inferences:

“Jack walks quickly” implies “Jack walks”.

Fourth, inferences from conjunctions of sentences to conjunctions of noun-
phrases (and vice-versa):

“Jack loves Jill” and “Jack loves Joan” together imply that “Jack loves
Jill and Joan”.

Fifth, inferences from conjunctions of sentences to conjunction of predicates10

(and vice-versa):

“Jack is bruised” and “Jack is humiliated” together imply that “Jack
is bruised and humiliated”.

They all can be handled directly and naturally in cathoristic logic, as we shall
now show.

Incompatibility, such as that between “Jack is male” and “Jack is female”,
is translated into cathoristic logic as the pair of incompatible sentences:

hjackihsexi(hmalei^!{male}) hjackihsexi(hfemalei^!{female}).

10 See [28] p.282 for a spirited defence of predicate conjunction against Fregean regimen-
tation.

Cathoristic logic 19

Cathoristic logic handles entailments from dyadic to monadic predicates11.
“Jack loves Jill” is translated into cathoristic logic as:

hjackihlovesihjilli.

The semantics of modalities ensures that this directly entails:

hjackihlovesi.

Similarly, cathoristic logic supports inferences from triadic to dyadic predi-
cates:

“Jack passed the biscuit to Mary” implies “Jack passed the biscuit”.

This can be expressed directly in cathoristic logic as:

hjackihpassedihbiscuitihtoi(hmaryi^!{mary}) |= hjackihpassedihbiscuiti.

Adverbial inferences is captured in cathoristic logic as follows.

hjackihwalksihquicklyi

entails:

hjackihwalksi.

Cathoristic logic directly supports inferences from conjunctions of sentences
to conjunctions of noun-phrases. As our models are deterministic, we have the
general rule that haihbi ^ haihci |= hai(hbi ^ hci) from which it follows that

hjackihlovesihjilli and hjackihlovesihjoani

together imply

hjackihlovesi(hjilli ^ hjoani).

Using the same rule, we can infer that

hjackihbruisedi ^ hjackihhumiliatedi

together imply

hjacki(hbruisedi ^ hhumiliatedi).

11 Although natural languages are full of examples of inferences from dyadic to monadic
predicates, there are certain supposed counterexamples to the general rule that a dyadic
predicate always implies a monadic one. For example, “Jack explodes the device” does not,
on its most natural reading, imply that “Jack explodes”. Our response to cases like this is
to distinguish between two distinct monadic predicates explodes1 and explodes2:

– Xexplodes1 i↵ X is an object that undergoes an explosion
– Xexplodes2 i↵ X is an agent that initiates an explosion

Now “Jack explodes the device” does imply that “Jack explodes2” but does not imply that
“Jack explodes1”. There is no deep problem here - just another case where natural language
overloads the same word in di↵erent situation to have di↵erent meanings.

20 Richard Prideaux Evans, Martin Berger

4.2 Intra-atomic inferences in first-order logic

Next, we look at how these inferences are handled in first-order logic.

4.2.1 Incompatible predicates in first-order logic

How are incompatible predicates represented in first-order logic? Brachman
and Levesque [5] introduce the topic by remarking:

We would consider it quite “obvious” in this domain that if it were
asserted that John were a Man, then we should answer “no” to the
query Woman(John).

They propose adding an extra axiom to express the incompatibility:

8x.(Man(x) ! ¬Woman(x))

This proposal imposes a burden on the knowledge-representer: an extra axiom
must be added for every pair of incompatible predicates. This is burdensome
for large sets of incompatible predicates. For example, suppose there are 50
football teams, and a person can only support one team at a time. We would
need to add

�
50
2

�
axioms, which is unwieldy.

8x.¬(SupportsArsenal(x) ^ SupportsLiverpool(x))
8x.¬(SupportsArsenal(x) ^ SupportsManUtd(x))
8x.¬(SupportsLiverpool(x) ^ SupportsManUtd(x))

...

Or, if we treat the football-teams as objects, and have a two-place Supports

relation between people and teams, we could have:

8xyz.(Supports(x, y) ^ y 6= z ! ¬Supports(x, z)).

If we also assume that each football team is distinct from all others, this
certainly captures the desired uniqueness condition. But it does so by using
relatively complex logical machinery.

4.2.2 Inferences from dyadic to monadic predicates in first-order logic

If we want to capture the inference from “Jack loves Jill“ to “Jack loves” in
first-order logic, we can use a non-logical axiom:

8x.y.(Loves2(x, y) ! Loves1(x))

We would have to add an extra axiom like this for every n-place predicate.
This is cumbersome at best. In cathoristic logic, by contrast, we do not need to
introduce any non-logical machinery to capture these inferences because they
all follow from the general rule that haihbi |= hai.

Cathoristic logic 21

4.2.3 Adverbial inferences in first-order logic

How can we represent verbs in traditional first-order logic so as to support
adverbial inference? Davidson [9] proposes that every n-place action verb be
analysed as an n+1-place predicate, with an additional slot representing an
event. For example, he analyses “I flew my spaceship to the Morning Star” as

9x.(Flew(I,MySpaceship, x) ^ To(x, TheMorningStar))

This implies
9x.F lew(I,MySpaceship, x)

This captures the inference from “I flew my spaceship to the Morning Star”
to “I flew my spaceship”.

First-order logic cannot support logical inferences between atomic sen-
tences. If it is going to support inferences from adverbial sentences, it cannot
treat them as atomic and must instead reinterpret them as logically complex
propositions. The cost of Davidson’s proposal is that a seemingly simple sen-
tence - such as “Jones walks” - turns out, on closer inspection, not to be atomic
at all - but to involve existential quantification:

9x.Walks(Jones, x)

First-order logic can handle such inferences - but only by reinterpreting the
sentences as logically-complex compound propositions.

22 Richard Prideaux Evans, Martin Berger

5 Cathoristic logic as a language for knowledge representation

Cathoristic logic has been used as the representation language for a large,
complex, dynamic multi-agent simulation [13]. This is an industrial-sized ap-
plication, involving tens of thousands of rules and facts12. In this simulation,
the entire world state is stored as a cathoristic model.

We found that cathoristic logic has two distinct advantages as a language
for knowledge representation. First, it is ergonomic: ubiquitous concepts (such
as uniqueness) can be expressed directly. Second, it is e�cient: the tantum
operator allows certain sorts of optimisation that would not otherwise be avail-
able. We shall consider these in turn.

5.1 Representing facts in cathoristic logic

A sentence involving a one-place predicate of the form p(a) is expressed in
cathoristic logic as

haihpi

A sentence involving a many-to-many two-place relation of the form r(a, b) is
expressed in cathoristic logic as

haihrihbi

But a sentence involving a many-to-one two-place relation of the form r(a, b)
is expressed as:

haihri(hbi^!{b})

So, for example, to say that “Jack likes Jill” (where “likes” is, of course, a
many-many relation), we would write:

hjackihlikesihjilli

But to say that “Jack is married to Joan” (where“is-married-to” is a many-one
relation), we would write:

hjackihmarriedi(hjoani^!{joan})

Colloquially, we might say that “Jack is married to Joan - and only Joan”.
Note that the relations are placed in infix position, so that the facts about an
object are “contained” within the object. One reason for this particular way
of structuring the data will be explained below.

Consider the following facts about a gentleman named Brown:

12 The application has thousands of paying users, and available for download on the App
Store for the iPad [12].

Cathoristic logic 23

hbrowni

0

@
hsexi(hmalei^!{male})

^

hfriendsi(hlucyi ^ helizabethi)

1

A

All facts starting with the prefix hbrowni form a sub-tree of the entire database.
And all facts which start with the prefix hbrownihfriendsi form a sub-tree of
that tree. A sub-tree can be treated as an individual via its prefix. A sub-tree
of formulae is the cathoristic logic equivalent of an object in an object-oriented
programming language.

To model change over time, we assert and retract statements from the
database, using a non-monotonic update mechanism. If a fact is inserted into
the database that involves a state-labelling restricting the permissible transi-
tions emanating from that state, then all transitions out of that state that are
incompatible with the restriction are removed. So, for example, if the database
currently contains the fact that the tra�c light is amber, and then we update
the database to assert the tra�c light is red:

htlihcolouri(hredi^!{red})

Now the restriction on the state (that red is the only transition) means that
the previous transition from that state (the transition labelled with amber) is
automatically removed.

The tree-structure of formulae allows us to express the life-time of data in
a natural way. If we wish a piece of data d to exist for just the duration of
a proposition t, then we make t be a sub-expression of d. For example, if we
want the friendships of an agent to exist just as long as the agent, then we
place the relationships inside the agent:

hbrownihfriendsi

Now, when we remove hbrowni all the sub-trees, including the data about who
he is friends with, will be automatically deleted as well.

Another advantage of our representation is that we get a form of automatic
currying which simplifies queries. So if, for example, Brown is married to
Elizabeth, then the database would contain

hbrownihmarriedi(helizabethi^!{elizabeth})

In cathoristic logic, if we want to find out whether Brown is married, we can
query the sub-formula directly - we just ask if

hbrownihmarriedi

In first-order logic, if married is a two-place predicate, then we need to fill in
the extra argument place with a free variable - we would need to find out if
there exists an x such that married(brown, x) - this is more cumbersome to
type and slower to compute.

24 Richard Prideaux Evans, Martin Berger

5.2 Simpler postconditions

In this section, we contrast the representation in action languages based on
first-order logic13, with our cathoristic logic-based representation. Action def-
initions are rendered in typewriter font.

When expressing the pre- and postconditions of an action, planners based
on first-order logic have to explicitly describe the propositions that are removed
when an action is performed:

action move(A, X, Y)

preconditions

at(A, X)

postconditions

add: at(A, Y)

remove: at(A, X)

Here, we need to explicitly state that when A moves from X to Y , A is no
longer at X. It might seem obvious to us that if A is now at Y , he is no longer
at X - but we need to explicitly tell the system this. This is unnecessary,
cumbersome and error-prone. In cathoristic logic, by contrast, the exclusion
operator means we do not need to specify the facts that are no longer true:

action move (A, X, Y)

preconditions

<A><at>(<X> /\ !{X})

postconditions

add: <A><at>(<Y> /\ !{Y})

The tantum operator ! makes it clear that something can only be at one place
at a time, and the non-monotonic update rule described above automatically
removes the old invalid location data.

5.3 Using tantum ! to optimise preconditions

Suppose, for example, we want to find all married couples who are both Welsh.
In Prolog, we might write something like:

welsh_married_couple(X, Y) :-

welsh(X),

welsh(Y),

spouse(X,Y).

Rules like this create a large search-space because we need to find all instances
of welsh(X) and all instances of welsh(Y) and take the cross-product [27]. If
there are n Welsh people, then we will be searching n

2 instances of (X,Y)
substitutions.

13 E.g. STRIPS [14]

Cathoristic logic 25

If we express the rule in cathoristic logic, the compiler is able to use the
extra information expressed in the ! operator to reorder the literals to find the
result significantly faster. Assuming someone can only have a single spouse at
any moment, the rule is expressed in cathoristic logic as:

welsh_married_couple(X, Y) :-

<welsh> <X>,

<welsh> <Y>,

<spouse> <X> (<Y> /\ !{Y}).

Now the compiler is able to reorder these literals to minimise the search-space.
It can see that, once X is instantiated, the following literal can be instantiated
without increasing the search-space:

<spouse> <X> (<Y> /\ !{Y})

The tantum operator can be used by the compiler to see that there is at most
one Y who is the spouse of X. So the compiler reorders the clauses to produce:

welsh_married_couple (X, Y) :-

<welsh> <X>,

<spouse> <X> (<Y> /\ !{Y}),

<welsh> <Y>.

Now it is able to find all results by just searching n instances - a significant
optimisation. In our application, this optimisation has made a significant dif-
ference to the run-time cost of query evaluation.

26 Richard Prideaux Evans, Martin Berger

6 Semantics and Decision Procedure

In this section we provide our key semantic results. We define a partial or-
dering � on models, and show how the partial ordering can be extended into
a bounded lattice. We use the bounded lattice to construct a quadratic-time
decision procedure.

6.1 Semantic characterisation of elementary equivalence

Elementary equivalence induces a notion of model equivalence: two models
are elementarily equivalent exactly when they make the same formulae true.
Elementary equivalence as a concept thus relies on cathoristic logic even for
its definition. We now present an alternative characterisation that is purely
semantic, using the concept of (mutual) simulation from process theory. Apart
from its intrinsic interest, this characterisation will also be crucial for proving
completeness of the proof rules.

We first define a pre-order � on models by extending the notion of sim-
ulation on labelled transition systems to cathoristic models. Then we prove
an alternative characterisation of � in terms of set-inclusion of the theories
induced by models. We then show that two models are elementarily equivalent
exactly when they are related by � and by �

�1.

Definition 6 Let L

i

= (S
i

,!

i

,�

i

) be cathoristic transition systems for i =
1, 2. A relation R ✓ S1 ⇥ S2 is a simulation from L1 to L2, provided:

– R is a simulation on the underlying transition systems.
– Whenever (x, y) 2 R then also �1(x) ◆ �2(y).

IfM
i

= (L
i

, x

i

) are models, we sayR is a simulation from M1 to M2, provided
the following hold.

– R is a simulation from L1 to L2 as cathoristic transition systems.
– (x1, x2) 2 R.

Note that the only di↵erence from the usual definition of simulation is the
additional requirement on the state labelling functions �1 and �2.

Definition 7 The largest simulation fromM1 toM2 is denotedM1 �

sim

M2.
It is easy to see that �

sim

is itself a simulation from M1 to M2, and the union
of all such simulations. If M1 �

sim

M2 we say M2 simulates M1.
We write ' for �

sim

\ �

�1
sim

. We call ' the mutual simulation relation.

We briefly discuss the relationship of ' with bisimilarity, a notion of equal-
ity well-known from process theory and modal logic. For non-deterministic
transition systems ' is a strictly coarser relation than bisimilarity.

Definition 8 We say R is a bisimulation if R is a simulation from M1 to
M2 and R

�1 is a simulation from M2 to M1. By ⇠ we denote the largest
bisimulation, and we say that M1 and M2 are bisimilar whenever M1 ⇠ M2.

Lemma 1 On cathoristic models, ⇠ and ' coincide.

Cathoristic logic 27

Proof: Straightforward from the definitions. ut

Definition 9 Let Th(M) be the theory of M, i.e. the formulae made true by
M, i.e. Th(M) = {� | M |= �}.

We give an alternative characterisation on�

�1
sim

using theories. In what follows,
we will mostly be interested in �

�1
sim

, so we give it its own symbol.

Definition 10 Let � be short for ��1
sim

.

Figure 4 gives some examples of models and how they are related by �.

⌃

{b}
a

⌃

b

⌃

c
⌃

{b, c}

a

⌃

b

⌃

⌃

a

⌃

b

⌃

⌃

a

� � �

Fig. 4: Examples of �

Theorem 1 (Characterisation of elementary equivalence)

1. M0
� M if and only if Th(M) ✓ Th(M0).

2. M0
' M if and only if Th(M) = Th(M0).

Proof: For (1) assume M0
� M and M |= �. We must show M0

|= �. Let
M = (L, w) and M0 = (L0

, w

0). The proof proceeds by induction on �. The
cases for > and ^ are trivial. Assume � = hai and assume (L, w) |= hai .
Then w

a

�! x and (L, x) |= . As M0 simulates M, there is an x

0 such that
(x, x0) 2 R and w

0 a

�! x

0. By the induction hypothesis, (L0
, x

0) |= . Therefore,
by the semantic clause for hi, (L0

, w

0) |= hai . Assume now that � = ! A,
for some finite A ✓ ⌃, and that (L, w) |= ! A. By the semantic clause for !,
�(w) ✓ A. Since (L0

, w

0) � (L, w), by the definition of simulation of cathoristic
transition systems, �(w) ◆ �

0(w0). Therefore, �0(w0) ✓ �(w) ✓ A. Therefore,
by the semantic clause for !, (L0

, w

0) |= ! A.
For the other direction, letM = (L, w) andM0 = (L0

, w

0). Assume Th(M) ✓
Th(M0). We need to show that M0 simulates M. In other words, we need to
produce a relation R ✓ S ⇥ S

0 where S is the state set of L, S0 is the state
set for L

0 and (w,w0) 2 R and R is a simulation from (L, w) to (L0
, w

0).
Define R = {(x, x0) | Th((L, x)) ✓ Th((L0

, x

0))}. Clearly, (w,w0) 2 R, as
Th((L, w)) ✓ Th((L0

, w

0)). To show that R is a simulation, assume x

a

�! y

in L and (x, x0) 2 R. We need to provide a y

0 such that x

0 a

�! y

0 in L

0 and

28 Richard Prideaux Evans, Martin Berger

(y, y0) 2 R. Consider the formula haichar((L, y)). Now x |= haichar((L, y)),
and since (x, x0) 2 R, x0

|= haichar((L, y)). By the semantic clause for hai, if
x

0
|= haichar((L, y)) then there is a y

0 such that y0 |= char((L, y)). We need to
show (y, y0) 2 R, i.e. that y |= � implies y0 |= � for all �. Assume y |= �. Then
by the definition of char(), char((L, y)) |= �. Since y

0
|= char((L, y)), y0 |= �.

So (y, y0) 2 R, as required.
Finally,we need to show that whenever (x, x0) 2 R, then �(x) ◆ �

0(x0).
Assume, first, that �(x) is finite. Then (L, x) |= ! �(x). But as (x, x0) 2 R,
Th((L, x)) ✓ Th((L0

, x

0)), so (L0
, x

0) |= ! �(x). But, by the semantic clause
for !, (L0

, x

0) |= ! �(x) i↵ �

0(x0) ✓ �(x). Therefore �(x) ◆ �

0(x0). If, on the
other hand, �(x) is infinite, then �(x) = ⌃ (because the only infinite state
labelling that we allow is ⌃). Every state labelling is a subset of ⌃, so here
too, �(x) = ⌃ ◆ �

0(x0).
This establishes (1), and (2) is immediate from the definitions.

ut

Theorem 1.1 captures one way in which the model theory of classical and
cathoristic logic di↵er. In classical logic the theory of each model is complete,
and Th(M) ✓ Th(N) already implies that Th(M) = Th(N), i.e. M and N

are elementarily equivalent. Cathoristic logic’s lack of negation changes this
drastically, and gives � the structure of a non-trivial bounded lattice as we
shall demonstrate below.

Theorem 1 has various consequences.

Corollary 1 1. If � has a model then it has a model whose underlying tran-
sition system is a tree, i.e. all states except for the start state have exactly
one predecessor, and the start state has no predecessors.

2. If � has a model then it has a model where every state is reachable from
the start state.

Proof: Both are straightforward because ' is closed under tree-unfolding as
well as under removal of states not reachable from the start state. ut

6.2 Quotienting models

The relation � is not a partial order, only a pre-order. For example

M1 = (({w}, ;, {w 7! ⌃}), w) M2 = (({v}, ;, {v 7! ⌃}), v)

are two distinct models with M1 � M2 and M2 � M1. The di↵erence between
the two models, the name of the unique state, is trivial and not relevant for
the formulae they make true: Th(M1) = Th(M2). As briefly mentioned in the
mathematical preliminaries (Section 2), we obtain a proper partial-order by
simply quotienting models:

M ' M0 i↵ M � M0 and M0
� M

Cathoristic logic 29

and then ordering the '-equivalence classes as follows:

[M]' � [M0]' i↵ M � M0
.

Greatest lower and least upper bounds can also be computed on representa-
tives: G

{[M]' | M 2 S } = [
G

S]'

whenever
F

S exists, and likewise for the greatest lower bound. We also define

[M]' |= � i↵ M |= �.

It is easy to see that these definitions are independent of the chosen represen-
tatives.

In the rest of this text we will usually be sloppy and work with concrete
models instead of '-equivalence classes of models because the quotienting pro-
cess is straightforward and not especially interesting. We can do this because
all relevant subsequent constructions are also representation independent.

6.3 The bounded lattice of models

It turns out that � on ('-equivalence classes of) models is not just a partial
order, but a bounded lattice, except that a bottom element is missing.

Definition 11 We extend the collection of models with a single bottom el-
ement ?, where ? |= � for all �. We also write ? for [?]'. We extend the
relation � and stipulate that ? � M for all models M.

Theorem 2 The collection of (equivalence classes of) models together with
?, and ordered by � is a bounded lattice.

Proof: The topmost element in the lattice is the model (({w}, ;, {w 7! ⌃}), w)
(for some state w): this is the model with no transitions and no transition
restrictions. The bottom element is ?. Below, we shall define two functions
glb and lub, and show that they satisfy the required properties of u and t

respectively. ut

Cathoristic logic is unusual in that every set of models has a unique (up
to isomorphism) least upper bound. Logics with disjunction, negation or im-
plication do not have this property.

Consider propositional logic, for example. Define a model of propositional
logic as a set of atomic formulae that are set to true. Then we have a natural
ordering on propositional logic models:

M M0 i↵ M ◆ M0

Consider all the possible models that satisfy � _ :

{�} { } {�, } {�, , ⇠} · · ·

30 Richard Prideaux Evans, Martin Berger

This set of satisfying models has no least upper bound, since {�} ⇥ { } and
{ } ⇥ {�}. Similarly, the set of models satisfying ¬(¬� ^ ¬) has no least
upper bound.

The fact that cathoristic logic models have unique least upper bounds is
used in proving completeness of our inference rules, and implementing the
quadratic-time decision procedure.

6.4 Computing the least upper bound of the models that satisfy a formula

In our decision procedure, we will see if � |= by constructing the least upper
bound of the models satisfying �, and checking whether it satisfies .

In this section, we define a function simpl(�) that satisfies the following
condition:

simpl(�) =
G

{M|M |= �}

Define simpl(�) as:

simpl(>) = (({v}, ;, {v 7! ⌃}), v)

simpl(!A) = (({v}, ;, {v 7! A}), v)

simpl(�1 ^ �2) = glb(simpl(�1), simpl(�2))

simpl(hai�) = ((S [{w

0
},! [(w0 a

�! w),� [{w

0
7! ⌃}]), w0)

where simpl(�) = ((S,!,�), w)and w

0 is a new state

not appearing in S

⌃

⌃

a

⌃

⌃

b

⌃

⌃

a
⌃

b
u =

Fig. 5: Example of u.

⌃

{b}

a

⌃

b

⌃

⌃

a

⌃

c

⌃

b

?u =

Fig. 6: Example of u.

Cathoristic logic 31

{a, b}

⌃

a

⌃

b

{a, c}

{b, c}

a

⌃

c

⌃

d

{a}

{b, c}

a

⌃

b
⌃

c

⌃

d

u =

Fig. 7: Example of u.

⌃

{c}
a

⌃

b

⌃

d

⌃

⌃

a
{d}

b

⌃

c

⌃

{c}
a

{d}

b

⌃

c

⌃

d

u =

Fig. 8: Example of u.

Note that, by our conventions, simpl(�) really returns a '-equivalence class of
models.

The only complex case is the clause for simpl(�1 ^ �2), which uses the glb

function, defined as follows, where we assume that the sets of states in the two
models are disjoint and are trees. It is easy to see that simpl(·) always returns
tree models.

glb(?,M) = ?

glb(M,?) = ?

glb(M,M0) = merge(L,L0
, {(w,w0)})

where M = (L, w) and M0 = (L0
, w

0)

The merge function returns ? if either of its arguments are ?. Otherwise, it
merges the two transition systems together, given a set of state-identification
pairs (a set of pairs of states from the two transition systems that need to
be identified). The state-identification pairs are used to make sure that the
resulting model is deterministic.

32 Richard Prideaux Evans, Martin Berger

merge(L,L0
, ids) =

8
>>><

>>>:

? if inconsistent(L,L0
, ids)

join(L,L0) if ids = ;

merge(L,L00
, ids

0) else, where L

00 = applyIds(ids,L0)

and ids

0 = getIds(L,L0
, ids)

The inconsistent predicate is true if there is pair of states in the state-identification
set such that the out-transitions of one state is incompatible with the state-
labelling on the other state:

inconsistent(L,L0
, ids)

i↵ 9(w,w0) 2 ids with out(L, w) * �

0(w0) or out(L0
, w

0) * �(w).

Here the out function returns all the actions immediately available from the
given state w.

out(((S,!,�), w)) = {a | 9w

0
.w

a

�! w

0
}

The join function takes the union of the two transition systems.

join((S,!,�), (S0
,!

0
,�

0)) = (S [S

0
,! [!

0
,�

00)

Here �00 takes the constraints arising from both, � and �0 into account:

�

00(s) =
{�(s) \ �0(s) | s 2 S [S

0
}

[{�(s) | s 2 S \ S

0
}

[{�(s) | s 2 S

0
\ S}.

The applyIds function applies all the state-identification pairs as substitutions
to the Labelled Transition System:

applyIds(ids, (S,!,�)) = (S0
,!

0
,�

0)

where

S

0 = S [w/w0
| (w,w0) 2 ids]

!

0 = ! [w/w0
| (w,w0) 2 ids]

�

0 = � [w/w0
| (w,w0) 2 ids]

Here [w/w0
| (w,w0) 2 ids] means the simultaneous substitution of w for w

0

for all pairs (w,w0) in ids. The getIds function returns the set of extra state-
identification pairs that need to be added to respect determinism:

getIds(L,L0
, ids) = {(x, x0) | (w,w0) 2 ids, 9a . w

a

�! x,w

0 a

�! x

0
}

The function simpl(·) has the expected properties, as the next lemma shows.

Lemma 2 simpl(�) |= �.

Cathoristic logic 33

Proof: By induction on �. ut

Lemma 3 glb as defined is the greatest lower bound

We will show that:

– glb(M,M0) � M and glb(M,M0) � M0

– If N � M and N � M0, then N � glb(M,M0)

If M, M0 or glb(M,M0) are equal to ?, then we just apply the rule that
? � m for all models m. So let us assume that consistent(M,M0) and that
glb(M,M0) 6= ?.

Proof: To show glb(M,M0) � M, we need to provide a simulation R from M
to glb(M,M0). If M = ((S,!,�), w), then define R as the identity relation on
the states of S:

R = {(x, x) | x 2 S}

It is straightforward to show that R as defined is a simulation from M to
glb(M,M0). If there is a transition x

a

�! y in M, then by the construction of
merge, there is also a transition x

a

�! y in glb(M,M0). We also need to show
that �M(x) ◆ �

glb(M,M0)(x) for all states x in M. This is immediate from the
construction of merge.

ut

Proof: To show that N � M and N � M0 imply N � glb(M,M0), assume
there is a simulation R from M to N and there is a simulation R

0 from M0 to
N. We need to provide a simulation R⇤ from glb(M,M0) to N.

Assume the states of M and M0 are disjoint. Define:

R⇤ = R [R

0

We need to show that R⇤ as defined is a simulation from glb(M,M0) to N.
Suppose x

a

�! y in glb(M,M0) and that (x, x2) 2 R [R

0. We need to
provide a y2 such that x2

a

�! y2 in N and (y, y2) 2 R [R

0. If x

a

�! y in
glb(M,M0), then, from the definition of merge, either x

a

�! y in M or x
a

�! y in
M0. If the former, and given that R is a simulation from M to N, then there
is a y2 such that (y, y2) 2 R and x2

a

�! y2 in N. But, if (y, y2) 2 R, then also
(y, y2) 2 R [R

0.
Finally, we need to show that if (x, y) 2 R [R

0 then

�

glb(M,M0)(x) ◆ �N(y)

If (x, y) 2 R [R

0 then either (x, y) 2 R or (x, y) 2 R

0. Assume the former.
Given that R is a simulation from M to N, we know that if (x, y) 2 R, then

�M(x) ◆ �N(y)

Let M = ((S,!,�), w). If x 6= w (i.e. x is some state other than the start
state), then, from the definition of merge, �

glb(M,M0)(x) = �M(x). So, given

34 Richard Prideaux Evans, Martin Berger

�M ◆ �N(y), �
glb(M,M0)(x) ◆ �N(y). If, on the other hand, x = w (i.e. x is the

start state of our cathoristic model M), then, from the definition of merge:

�

glb(M,M0)(w) = �M(w) \ �M0(w0)

where w

0 is the start state of M0. In this case, given �M(w) ◆ �N(y) and
�M0(w0) ◆ �N(y), it follows that �M(w) \ �M0(w0) ◆ �N(y) and hence

�

glb(M,M0)(w) ◆ �N(y)

ut

Next, define the least upper bound (lub) of two models as:

lub(M,?) = M

lub(?,M) = M

lub((L, w), (L0
, w

0)) = lub2(L,L
0
, (M>, z), {(w,w

0
, z)})

where M> is the topmost model (W = {z},!= ;,� = {z 7! ⌃}) for some
state z. lub2 takes four parameters: the two cathoristic transition systems L

and L

0, an accumulator representing the constructed result so far, and a list of
state triples (each triple contains one state from each of the two input models
plus the state of the accumulated result) to consider next. It is defined as:

lub2(L,L
0
,M, ;) = M

lub2(L,L
0
, ((W,!,�), y), {(w,w0

, x)} [R) = lub2(L,L
0
, ((W [W

0
,! [!

0
,�

0), y), R0
[R}

where:

{(a
i

, w

i

, w

0
i

) | i = 1...n} = sharedT((L, w), (L0
, w

0))

W

0 = {x

i

| i = 1...n}

!

0 = {(x, a
i

, x

i

) | i = 1...n}

�

0 = �[x 7! �(w) [�(w)0]

R

0 = {(w
i

, w

0
i

, x

i

) | i = 1...n}

Here �[x 7! S] is the state labelling function that is exactly like �, except that
it maps x to S. Moreover, sharedT returns the shared transitions between two
models, and is defined as:

sharedT(((W,!,�), w)((W 0
,!

0
,�

0), w0)) = {(a, x, x0) | w
a

�! x ^ w

0 a

�!

0
x

0
}

If ((S⇤,! ⇤,�⇤), w⇤) = ((S,!,�), w) t ((S0
,!

0
,�

0), w0) then define the set
triples

lub

as the set of triples (x, x0
, x⇤) | x 2 S, x

0
2 S

0
, x⇤ 2 S⇤ that were

used during the construction of lub above. So triples

lub

stores the associations
between states in M, M0 and M tM0.

Cathoristic logic 35

⌃

⌃

a
⌃

b
⌃

⌃

a
⌃

c
⌃

⌃

a

t =

Fig. 9: Example of t

{a}

⌃

a

{b}

⌃

b

{a, b}t =

Fig. 10: Example of t

{a}

⌃

a

{c}

b

{a, b}

{b, c}

a

{d} b
⌃

c

{a, b}

⌃

a

{c, d}

b

t =

Fig. 11: Example of t

Lemma 4 lub as defined is the least upper bound

We will show that:

– M � lub(M,M0) and M0
� lub(M,M0)

– If M � N and M0
� N, then lub(M,M0) � N

If M or M0 are equal to ?, then we just apply the rule that ? � m for all
models m. So let us assume that neither M not M0 are ?.

Proof: To see that M � lub(M,M0), observe that, by construction of lub

above, every transition in lub(M,M0) has a matching transition in M, and
every state label in lub(M,M0) is a superset of the corresponding state label
in M.

36 Richard Prideaux Evans, Martin Berger

To show that M � N and M0
� N together imply lub(M,M0) � N, assume

a simulation R from N to M and a simulation R

0 from N to M0. We need to
produce a simulation relation R⇤ from N to lub(M,M0). Define

R⇤ = {(x, y⇤) | 9y1.9y2.(x, y1) 2 R, (x, y2) 2 R

0
, (y1, y2, y⇤) 2 triples

lub

}

In other words, R⇤ contains the pairs corresponding to the pairs in both R

and R

0. We just need to show that R⇤ as defined is a simulation from N to
lub(M,M0). Assume (x, x⇤) 2 R⇤ and x

a

�! y in N. We need to produce a
y⇤ such that (x⇤, y⇤) 2 R⇤ and x⇤

a

�! y⇤ in lub(M,M0). Given that R is a
simulation from N to M, and that R0 is a simulation from N to M0, we know
that there is a pair of states x1, y1 in M and a pair of states x2, y2 in M0 such
that (x, x1) 2 R and (x, x2) 2 R

0 and x1
a

�! y1 in M and x2
a

�! y2 in M0. Now,
from the construction of lub above, there is a triple (y1, y2, y⇤) 2 triples

lub

.
Now, from the construction of R⇤ above, (x⇤, y⇤) 2 R⇤.

Finally, we need to show that for all states x and y, if (x, y) 2 R⇤,�N(x) ◆
�

lub(M,M0)(y). Given that R is a simulation from N to M, and that R

0 is a
simulation from N to M0, we know that if (x, y1) 2 R, then �N(x) ◆ �M(y1).
Similarly, if (x, y2) 2 R, then �N(x) ◆ �

0
M(y2). Now, from the construction of

lub, �
lub(M,M0)(y⇤) = �M(y1)[�M(y2) for all triples (y1, y2, y⇤) 2 triples

lub

. So
�N(x) ◆ �

lub(M,M0)(y), as required. ut

6.5 A decision procedure for cathoristic logic

We use the semantic constructions above to provide a quadratic-time decision
procedure. The complexity of the decision procedure is an indication that
cathoristic logic is useful as a query language in knowledge representation.

Cathoristic logic’s lack of connectives for negation, disjunction or implica-
tion is the key reason for the e�ciency of the decision procedure. Although
any satisfiable formula has an infinite number of models, we have shown that
the satisfying models form a bounded lattice with a least upper bound. The
simpl() function defined above gives us the least upper bound of all models
satisfying an expression. Using this least upper bound, we can calculate en-
tailment by checking a single model. To decide whether � |= , we use the
following algorithm.

1. Compute simpl(�).
2. Check if simpl(�) |= .

The correctness of this algorithm is given by the follow theorem.

Theorem 3 The following are equivalent:

1. For all cathoristic models M, M |= � implies M |= .
2. simpl(�) |= .

Cathoristic logic 37

Proof: The implication from (1) to (2) is trivial because simpl(�) |= � by
construction.

For the reverse direction, we make use of the following lemma (proved in
the Appendix):

Lemma 5 If M |= � then M � simpl(�).

With Lemma 5 in hand, the proof of Theorem 3 is straightforward. Assume
M |= �. We need to show M |= . Now if M |= � then M � simpl(�) (by
Lemma 5). Further, if M0

|= ⇠ and M � M0 then M |= ⇠ by Theorem 1. So,
substituting for ⇠ and simpl(�) for M0, it follows that M |= . ut

Construction of simpl(�) is quadratic in the size of �, and computing
whether a model satisfies is of order | |⇥ |�|, so computing whether � |=

is quadratic time.

6.6 Incompatibility semantics

One of cathoristic logic’s unusual features is that it satisfies Brandom’s in-
compatibility semantics constraint, even though it has no negation operator.
In this section, we formalise what this means, and prove it.

Define the incompatibility set of � as:

I(�) = { | 8M.M 6|= � ^ }

The reason why Brandom introduces the incompatibility set 14 is that he wants
to use it define semantic content :

Here is a semantic suggestion: represent the propositional content ex-
pressed by a sentence with the set of sentences that express propositions
incompatible with it15.

Now if the propositional content of a claim determines its logical consequences,
and the propositional content is identified with the incompatibility set, then
the incompatibility set must determine the logical consequences. A logic sat-
isfies Brandom’s incompatibility semantics constraint if

� |= i↵ I() ✓ I(�)

Not all logics satisfy this property. Brandom has shown that first-order logic
and the modal logic S5 satisfy the incompatibility semantics property. Hennessy-
Milner logic satisfies it, but Hennessy-Milner logic without negation does not.
Cathoristic logic is the simplest logic we have found that satisfies the property.
To establish the incompatibility semantics constraint for cathoristic logic, we

14 Brandom [7] defines incompatibility slightly di↵erently: he defines the set of sets of
formulae which are incompatible with a set of formulae. But in cathoristic logic, if a set of
formulae is incompatible, then there is an incompatible subset of that set with exactly two
members. So we can work with the simpler definition in the text above.
15 [7] p.123.

38 Richard Prideaux Evans, Martin Berger

need to define a related incompatibility function on models. J (M) is the set
of models that are incompatible with M:

J (M) = {M2 | M uM2 = ?}

We shall make use of two lemmas, proved in Appendix B:

Lemma 6 If � |= then simpl(�) � simpl()

Lemma 7 I() ✓ I(�) implies J (simpl()) ✓ J (simpl(�))

Theorem 4 � |= i↵ I() ✓ I(�)

Proof: Left to right: Assume � |= and ⇠ 2 I(). We need to show ⇠ 2

I(�). By the definition of I, if ⇠ 2 I() then simpl(⇠) u simpl() = ?. If
simpl(⇠) u simpl() = ?, then either

– simpl(⇠) = ?

– simpl() = ?

– Neither simpl(⇠) nor simpl() are ?, but simpl(⇠) u simpl() = ?.

If simpl(⇠) = ?, then simpl(⇠)usimpl(�) = ? and we are done. If simpl() = ?,
then as � |= , by Lemma 6, simpl(�) � simpl(). Now the only model that
is � ? is ? itself, so simpl(�) = ?. Hence simpl(⇠) u simpl(�) = ?, and we
are done. The interesting case is when neither simpl(⇠) nor simpl() are ?,
but simpl(⇠) u simpl() = ?. Then (by the definition of consistent in Section
6.4), either out(simpl(⇠)) * �(simpl()) or out(simpl()) * �(simpl(⇠)). In the
first sub-case, if out(simpl(⇠)) * �(simpl()), then there is some action a such
that ⇠ |= hai> and a /2 �(simpl()). If a /2 �(simpl()) then |=!A where
a /2 A. Now � |= , so � |=!A. In other words, � also entails the A-restriction
that rules out the a transition. So simpl(⇠) u simpl(�) = ? and ⇠ 2 I(�). In
the second sub-case, out(simpl()) * �(simpl(⇠)). Then there is some action a

such that |= hai> and a /2 �(simpl(⇠)). If a /2 �(simpl(⇠)) then ⇠ |=!A where
a /2 A. But if |= hai> and � |= , then � |= hai> and � is also incompatible
with ⇠’s A-restriction. So simpl(⇠) u simpl(�) = ? and ⇠ 2 I(�).

Right to left: assume, for reductio, that M |= � and M 2 . we will show
that I() * I(�). Assume M |= � and M 2 . We will construct another
model M2 such that M2 2 J (simpl()) but M2 /2 J (simpl(�)). This will
entail, via Lemma 7, that I() * I(�).

If M 2 , then there is a formula 0 that does not contain ^ such that
 |=

0 and M 2 0. 0 must be either of the form (i) ha1i...hani> (for n > 0)
or (ii) of the form ha1i...hani !{A} where A ✓ S and n >= 0.

In case (i), there must be an i between 0 and n such that M |= ha1i...haii>

but M 2 ha1i...hai+1i>. We need to construct another model M2 such that
M2u simpl() = ?, but M2u simpl(�) 6= ?. Letting M = ((W,!,�), w), then
M |= ha1i...haii> implies that there is at least one sequence of states of the

form w,w1, ..., wi

such that w
a1
�! w1 ! ...

ai
�! w

i

. Now let M2 be just like M
but with additional transition-restrictions on each w

i

that it not include a
i+1.

Cathoristic logic 39

In other words, �M2(wi

) = �M(w
i

) � {a

i+1} for all w
i

in sequences of the

form w

a1
�! w1 ! ...

ai
�! w

i

. Now M2 u simpl() = ? because of the additional
transition restriction we added to M2, which rules out ha1i...hai+1i>, and a-
fortiori . ButM2usimpl(�) 6= ?, becauseM |= � andM2 � M together imply
M2 |= �. So M2 is indeed the model we were looking for, that is incompatible
with simpl() while being compatible with simpl(�).

In case (ii), M |= ha1i...hani> but M 2 ha1i...hani!A for some A ⇢ S.
We need to produce a model M2 that is incompatible with simpl() but not
with simpl(�). Given that M |= ha1i...hani>, there is a sequence of states

w,w1, ..., wn

such that w
a1
�! w1 ! ...

ai
�! w

n

. Let M2 be the model just like
M except it has an additional transition from each such w

n

with an action
a /2 A. Clearly, M2u simpl(0) = ? because of the additional a-transition, and
given that |=

0, it follows that M2usimpl() = ?. Also, M2usimpl(�) 6= ?,
because M2 � M and M |= �.

ut

40 Richard Prideaux Evans, Martin Berger

7 Inference Rules

�
� ` � Id

�
� ` > >-Right

�
? ` � ?-Left

� ` ` ⇠
� ` ⇠ Trans

� `
� ^ ⇠ ` ^-Left 1

� `
⇠ ^ � ` ^-Left 2

� ` � ` ⇠
� ` ^ ⇠ ^-Right

a /2 A

!A ^ hai� ` ? ?-Right 1

�
hai? ` ? ?-Right 2

� `!A A ✓ A

0

� `!A0 !-Right 1

� `!A � `!B
� `!(A \B)

!-Right 2

� `
hai� ` hai Normal

� ` hai ^ hai⇠
� ` hai(^ ⇠) Det

Fig. 12: Proof rules.

We now present the inference rules for cathoristic logic. There are no axioms.

Definition 12 Judgements are of the following form.

� ` .

We also write ` � as a shorthand for > ` �. Figure 12 presents all proof rules.

Note that � and are single formulae, not sequents. By using single formulae,
we can avoid structural inference rules. The proof rules can be grouped in two
parts: standard rules and rules unique to cathoristic logic. Standard rules are
[Id], [>-Right], [?-Left], [Trans], [^-Left 1], [^-Left 2] and [^-Right].
They hardly need explanation as they are variants of familiar rules for propo-
sitional logic, see e.g. [30,32]. We now explain the rules that give cathoristic
logic its distinctive properties.

The rule [?-Right 1] captures the core exclusion property of the tantum
!: for example if A = {male, female} then horangei� is incompatible with !A.
Thus !A ^ horangei� must be false.

The rule [?-Right 2] expresses that falsity is ‘global’ and cannot be sup-
pressed by the modalities. For example horangei? is false, simply because ?

is already false.
[Normal] enables us to prefix an inference with a may-modality. This rule

can also be stated in the the following more general form:

�1 ^ ... ^ �

n

`

hai�1 ^ ... ^ hai�

n

` hai

Normal-Multi

But it is not necessary because [Normal-Multi] is derivable from [Normal]
as we show in the examples below.

Cathoristic logic 41

7.1 Example inferences

We prove that we can use � ^ ` ⇠ to derive hai� ^ hai ` hai⇠:

� ^ ` ⇠

Normal

hai(� ^) ` hai⇠

hai� ^ hai ` hai� ^ hai

Det

hai� ^ hai ` hai(� ^)
Trans

hai� ^ hai ` hai⇠

Figure 13 demonstrates how to infer hai!{b, c}^hai!{c, d} ` hai!{c} and hai!{b}^
haihci> ` hdi>.

7.2 !-Left and !-Right

The rules [!-Right 1, !-Right 2] jointly express how the subset relation ✓

on sets of actions relates to provability. Why don’t we need a corresponding
rule !-Left for strengthening ! on the left hand side?

�^ !A ` A

0
✓ A

�^ !A0
`

!-Left

The reason is that [!-Left] can be derived as follows.

�^ !A0
` �^ !A0

A

0
✓ A

!-Right 1

�^ !A0
` �^ !A �^ !A `

Trans

�^ !A0
`

Readers familiar with object-oriented programming will recognise [!-Left] as
contravariant and [!-Right 1] as covariant subtyping. Honda [18] develops a
full theory of subtyping based on similar ideas. All three rules embody the intu-
ition that whenever A ✓ A

0 then asserting that !A0 is as strong as, or a stronger
statement than !A. [!-Left] simply states that we can always strengthen our
premise, while [!-right 1] allows us to weaken the conclusion.

7.3 Characteristic formulae

In order to prove completeness, below, we need the notion of a characteristic
formula of a model. The function simpl(·) takes a formula as argument and
returns the least upper bound of the satisfying models. Characteristic formulae
go the other way: given a model M, char(M) is the logically weakest formula
that describes that model.

42 Richard Prideaux Evans, Martin Berger

!{
b
,
c}

`
!{
b
,
c}

^
L
e
f
t
1

!{
b
,
c}^

!{
c
,
d}

`
!{
b
,
c}

!{
c
,
d}

`
!{
c
,
d}

^
L
e
f
t
2

!{
b
,
c}^

!{
c
,
d}

`
!{
c
,
d}

!
R
i
g
h
t
2

!{
b
,
c}^

!{
c
,
d}

`
!{
c}

N
o
r
m
a
l

h
ai(!{

b
,
c}^

!{
c
,
d}

)
`
h
ai!{

c}
h
ai!{

b
,
c}

^
h
ai!{

c
,
d}

`
h
ai!{

b
,
c}

^
h
ai!{

c
,
d}

D
e
t

h
ai!{

b
,
c}

^
h
ai!{

c
,
d}

`
h
ai(!{

b
,
c}^

!{
c
,
d}

)
T
r
a
n
s

h
ai!{

b
,
c}

^
h
ai!{

c
,
d}

`
h
ai!{

c}

!{
b}

^
h
ci>

`
?

N
o
r
m
a
l

h
ai(!{

b}
^
h
ci>

)
`
h
ai?

h
ai!{

b}
^
h
aih

ci>
`
h
ai!{

b}
^
h
aih

ci>
D
e
t

h
ai!{

b}
^
h
aih

ci>
`
h
ai(!{

b}
^
h
ci>

)
T
r
a
n
s

h
ai!{

b}
^
h
aih

ci>
`
h
ai?

h
ai?

`
?

T
r
a
n
s

h
ai!{

b}
^
h
aih

ci>
`
?

?
`
h
di>

T
r
a
n
s

h
ai!{

b}
^
h
aih

ci>
`
h
di>

F
ig.

13:
D
erivation

s
of

h
a
i!
{
b
,
c
}
^
h
a
i!
{
c
,
d
}
`
h
a
i!
{
c
}
(top

)
an

d
h
a
i!
{
b
}
^
h
a
i
h
c
i
>

`
h
d
i
>

(b
ottom

).

Cathoristic logic 43

Definition 13 Let M be a cathoristic model that is a tree.

char(?) = hai>^!; for some fixed action a 2 ⌃

char(M, w) = bang(M, w) ^
^

w

a
�!w

0

haichar(M, w

0)

Note that ? requires a particular action a 2 ⌃. This is why we required, in
Section 3.1, that ⌃ is non-empty.

The functions bang(·) on models are given by the following clauses.

bang((S,!,�), w) =

(
> if �(w) = ⌃

! �(w) otherwise

Note that char(M) is finite if M contains no cycles and if �(x) is either ⌃
or finite for all states x. We state without proof that simpl(·) and char(·) are
inverses of each other (for tree models M) in that:

– simpl(char(M)) ' M.
– |= char(simpl(�)) i↵ |= �.

7.4 Soundness and completeness

Theorem 5 The rules in Figure 12 are sound and complete:

1. (Soundness) � ` implies � |= .
2. (Completeness) � |= implies � ` .

Soundness is immediate from the definitions. To prove completeness we will
show that � |= implies there is a derivation of � ` . Our proof will make
use of two key facts (proved in Sections 7.5.1 and 7.5.2 below):

Lemma 8 If M |= � then char(M) ` �.

Lemma 9 For all formulae �, we can derive � ` char(simpl(�)).

Lemma 8 states that, if � is satisfied by a model, then there is a proof that the
characteristic formula describing that model entails �. In Lemma 9, simpl(�)
is the simplest model satisfying �, and char(M) is the simplest formula de-
scribing m, so char(simpl(�)) is a simplified form of �. This lemma states that
cathoristic logic has the inferential capacity to transform any proposition into
its simplified form.

With these two lemmas in hand, the proof of completeness is straight-
forward. Assume � |= . Then all models which satisfy � also satisfy . In
particular, simpl(�) |= . Then char(simpl(�)) ` by Lemma 8. But we also
have, by Lemma 9, � ` char(simpl(�)). So by transitivity, we have � ` .

44 Richard Prideaux Evans, Martin Berger

7.5 Proofs of Lemmas 8, 9 and 10

7.5.1 Proof of Lemma 8

If M |= � then char(M) ` �.
We proceed by induction on �.

Case � is >. Then we can prove char(M) ` � immediately using axiom [>
Right.

Case � is ^

0. By the induction hypothesis, char(M) ` and char(M) `

0. The proof of char(M) ` ^

0 follows immediately using [^ Right.
Case � is hai . If M |= hai , then either M = ? or M is a model of the

form (L, w).
Subcase M = ?. In this case, char(M) = char(?) = ?. (Recall, that we

are overloading ? to mean both the model at the bottom of our lattice and a
formula (such as hai>^!;) which is always false). In this case, char(?) ` hai

using [? Left.
Subcase m is a model of the form (L, w). Given M |= hai , and that M is

a model of the form (L, w), we know that:

(L, w) |= hai

From the satisfaction clause for hai, it follows that:

9w

0 such that w
a

�! w

0 and (L, w0) |=

By the induction hypothesis:

char((L, w0)) `

Now by [Normal]:

haichar((L, w0)) ` hai

Using repeated application of [^ Left], we can show:

char((L, w)) ` haichar((L, w0))

Finally, using [Trans], we derive:

char((L, w)) ` hai

Case � is ! . If (L, w) |=!A, then �(w) ✓ A. Then char((L, w)) =! �(w)^�.
Now we can prove ! �(w)^� `!A using [! Right 1] and repeated applications
of [^ Left].

7.5.2 Proof of Lemma 9

Now we prove Lemma 9: for all formulae �, we can derive � ` char(simpl(�)).

Cathoristic logic 45

Proof: Induction on �.
Case � is >. Then we can prove > ` > using either [> Right] or [Id].
Case � is ^

0. By the induction hypothesis, ` char(simpl()) and 0
`

char(simpl(0)). Using [^ Left] and [^ Right], we can show:

 ^

0
` char(simpl()) ^ char(simpl(0))

In order to continue the proof, we need the following lemma, proven in the
next subsection.

Lemma 10 For all cathoristic models M and M2 that are trees, char(M) ^
char(M2) ` char(M uM2).

From Lemma 10 (substituting simpl() forM and simpl(0) forM2, and noting
that simpl() always produces acyclic models), it follows that:

char(simpl()) ^ char(simpl(0)) ` char(simpl(^

0))

Our desired result follows using [Trans].
Case � is hai . By the induction hypothesis, ` char(simpl()). Now there

are two sub-cases to consider, depending on whether or not char(simpl()) =
?.

Subcase char(simpl()) = ?. In this case, char(simpl(hai)) also equals ?.
By the induction hypothesis:

 ` ?

By [Normal]:
hai ` hai?

By [? Right 2]:
hai? ` ?

The desired proof that:
hai ` ?

follows by [Trans].
Subcase char(simpl()) 6= ?. By the induction hypothesis, ` char(simpl()).

So, by [Normal]:
hai ` haichar(simpl())

The desired conclusion follows from noting that:

haichar(simpl()) = char(simpl(hai))

Case � is !A. If � is !A, then char(simpl(�)) is !A ^ >. We can prove !A `

!A ^ > using [^ Right], [> Right] and [Id]. ut

7.5.3 Proof of Lemma 10

We can now finish the proof of Lemma 9 by giving the missing proof of Lemma
10.

46 Richard Prideaux Evans, Martin Berger

Proof: There are two cases to consider, depending on whether or not (M u

M2) = ?.
Case (M uM2) = ?. If (M uM2) = ?, there are three possibilities:

– M = ?

– M2 = ?

– Neither M nor M2 are ?, but together they are incompatible.

If either M or M2 is ?, then the proof is a simple application of [Id] followed
by [^ Left].

Next, let us consider the case where neither M nor M2 are ?, but together
they are incompatible. Let M = (L, w1) and M0 = (L0

, w

0
1). If M uM2 = ?,

then there is a finite sequence of actions a1, ..., an�1 such that both M and
M0 satisfy ha1i...han�1i>, but they disagree about the state-labelling on the
final state of this chain. In other words, there is a b-transition from the final
state in M which is ruled-out by the �0 state-labelling in M0. So there is a set
of states w1, ..., w

0
1, ... and a finite set X of actions such that:

– w1
a1
�! w2

a2
�! ...

an�1
���! w

n

.
– w

0
1

a1
�! w

0
2

a2
�! ...

an�1
���! w

0
n

.

– w

n

b

�! w

n+1.
– �

0(w0
n

) = X with b /2 X.

Now it is easy to show, using [^ Left], that

char(M) ` ha1i...han�1ihbi>

char(M0) ` ha1i...han�1i!X

Now using [^ Left] and [^ Right]:

char(M) ^ char(M0) ` ha1i...han�1ihbi>^ ` ha1i...han�1i!X

Now using [Det]:

char(M) ^ char(M0) ` ha1i...han�1i(hbi>^!X)

Now, using [? Right 1]:
hbi>^!X ` ?

Using n� 1 applications of [? Right 2]:

ha1i...han�1i(hbi>^!X) ` ?

Finally, using [Trans], we derive:

char(M) ^ char(M0) ` ?

Case (M uM2) 6= ?. From the construction of merge, if M and M0 are acyclic,
thenMuM0 is also acyclic. IfMuM0 is acyclic, then char(MuM0) is equivalent
to a set � of sentences of one of two forms:

ha1i...hani> ha1i...hani!X

Cathoristic logic 47

⌃

{c, d}
a

⌃

b

⌃

c

Fig. 14: Example of u

For example, if M uM0 is as in Figure 14, then

char(M uM0) = hai(!{c, d} ^ hci>) ^ hbi>

This is equivalent to the set � of sentences:

haihci> hbi> hai!{c, d}

Now using [^ Right] and [Det] we can show that

^

�2�
� ` char(M uM0)

We know that for all � 2 �

M uM0
|= �

We just need to show that:

char(M) ^ char(M0) ` �

Take any � 2 � of the form ha1i...hani!X for some finite X ✓ ⌃. (The case
where � is of the form ha1i...hani> is very similar, but simpler). If MuM0

|=
ha1i...hani!X then either:

1. M |= ha1i...hani!X but M0 2 ha1i...hani>

2. M0
|= ha1i...hani!X but M 2 ha1i...hani>

3. M |= ha1i...hani!X1 and M0
|= ha1i...hani!X2 and X1 \X2 ✓ X

In the first two cases, showing char(M) ^ char(M0) ` � is just a matter of
repeated application of [^ Left] and [^ Right]. In the third case, let M =
(L, w1) and M0 = (L0

, w

0
1). If M |= ha1i...hani!X1 and M0

|= ha1i...hani!X2

then there exists sequences w1, ..., wn+1 and w

0
1, ..., w

0
n+1 of states such that

– w1
a1
�! ...

an
��! w

n+1.
– w

0
1

a1
�! ...

an
��! w

0
n+1.

– �(w
n+1) ✓ X1.

– �

0(w0
n+1) ✓ X2.

48 Richard Prideaux Evans, Martin Berger

Now from the definition of char():

char((L, w
n1)) `!X1 char((L0

, w

0
n1
)) `!X2

Now using [!Right 2]:

char((L, w
n1)) ^ char((L0

, w

0
n1
)) `!(X1 \X2)

Using [!Right 1]:

char((L, w
n1)) ^ char((L0

, w

0
n1
)) `!X

Using n applications of [Normal]:

ha1i...hani(char((L, wn1)) ^ char((L0
, w

0
n1
))) ` ha1i...hani!X

Finally, using n applications of [Det]:

char((L, w1)) ^ char((L0
, w

0
1)) ` ha1i...hani(char((L, wn1)) ^ char((L0

, w

0
n1
)))

So, by [Trans]

char(M) ^ char(M0) ` ha1i...hani!X

ut

Cathoristic logic 49

8 Compactness and the standard translation to first-order logic

This section studies two embeddings of cathoristic logic into first-order logic.
The second embedding is used to prove that cathoristic logic satisfies com-
pactness.

8.1 Translating from cathoristic to first-order logic

The study of how a logic embeds into other logics is interesting in parts be-
cause it casts a new light on the logic that is the target of the embedding.
A good example is the standard translation of modal into first-order logic.
The translation produces various fragments: the finite variable fragments, the
fragment closed under bisimulation, guarded fragments. These fragments have
been investigated deeply, and found to have unusual properties not shared by
the whole of first-order logic. Translations also enable us to push techniques,
constructions and results between logics. In this section, we translate catho-
ristic logic into first-order logic.

Definition 14 The first-order signature S has a nullary predicate >, a family
of unary predicates Restrict

A

(·), one for each finite subset A ✓ ⌃, and a family
of binary predicates Arrow

a

(x, y), one for each action a 2 ⌃.

The intended interpretation is as follows.

– The universe is composed of states.
– The predicate > is true everywhere.
– For each finite A ✓ ⌃ and each state s, Restrict

A

(s) is true if �(x) ✓ A.
– A set of two-place predicates Arrow

a

(x, y), one for each a 2 ⌃, where x

and y range over states. Arrow
a

(x, y) is true if x
a

�! y.

If ⌃ is infinite, then Restrict

A

(·) and Arrow

a

(·, ·) are infinite families of rela-
tions.

Definition 15 Choose two fixed variables x, y, let a range over actions in ⌃,
and A over finite subsets of ⌃. Then the restricted fragment of first-order logic
that is the target of our translation is given by the following grammar, where
w, z range over x, y.

� ::= > | Arrow

a

(w, z) | Restrict
A

(z) | � ^ | 9x.�

This fragment has no negation, disjunction, implication, or universal quantifi-
cation.

Definition 16 The translations [[�]]
x

and [[�]]
y

of cathoristic formula � are
given relative to a state, denoted by either x or y.

50 Richard Prideaux Evans, Martin Berger

[[>]]
x

= > [[>]]
y

= >

[[� ^]]
x

= [[�]]
x

^ [[]]
x

[[� ^]]
y

= [[�]]
y

^ [[]]
y

[[hai�]]
x

= 9y.(Arrow
a

(x, y) ^ [[�]]
y

) [[hai�]]
y

= 9x.(Arrow
a

(y, x) ^ [[�]]
x

)
[[!A]]

x

= Restrict

A

(x) [[!A]]
y

= Restrict

A

(y)

The translations on the left and right are identical, except for switching x and
y. Here is an example translation.

[[hai>^!{a}]]
x

= 9y.(Arrow
a

(x, y) ^ >) ^ Restrict{a}(x)

We now establish the correctness of the encoding. The key issue is that not
every first-order model of our first-order signature corresponds to a cathoristic
model because determinism, well-sizedness and admissibility are not enforced
by our signature alone. In other words, models may contain ‘junk’. We deal
with this problem following ideas from modal logic [4]: we add a translation
[[L]] for cathoristic transition systems, and then prove the following theorem.

Theorem 6 (correspondence theorem) Let � be a cathoristic logic for-
mula and M = (L, s) a cathoristic model.

M |= � i↵ [[L]] |=
x 7!s

[[�]]
x

.

And likewise for [[�]]
y

.

The definition of [[L]] is simple.

Definition 17 Let L = (S,!,�) be a cathoristic transition system. Clearly
L gives rise to an S-model [[L]] as follows.

– The universe is the set S of states.
– The relation symbols are interpreted as follows.

– >

[[L]] always holds.

– Restrict

[[L]]
A

= {s 2 S | �(s) ✓ A}.

– Arrow

[[L]]
a

= {(s, t) 2 S ⇥ S | s

a

�! t}.

We are now ready to prove Theorem 6.

Proof: By induction on the structure of �. The cases > and �1^�2 are straight-
forward. The case hai is handled as follows.

[[L]] |=
x 7!s

[[hai]]
x

i↵ [[L]] |=
x 7!s

9y.(Arrow
a

(x, y) ^ [[]]
y

)

i↵ exists t 2 S.[[L]] |=
x 7!s,y 7!t

Arrow

a

(x, y) ^ [[]]
y

i↵ exists t 2 S.[[L]] |=
x 7!s,y 7!t

Arrow

a

(x, y) and [[L]] |=
x 7!s,y 7!t

[[]]
y

i↵ exists t 2 S.s

a

�! t and [[L]] |=
x 7!s,y 7!t

[[]]
y

i↵ exists t 2 S.s

a

�! t and [[L]] |=
y 7!t

[[]]
y

(as x is not free in)

i↵ exists t 2 S.s

a

�! t and M |=

i↵ M |= hai

Cathoristic logic 51

Finally, if � is !A the derivation comes straight from the definitions.

[[L]] |=
x 7!s

[[!A]]
x

i↵ [[L]] |=
x 7!s

Restrict

A

(x)

i↵ �(s) ✓ A

i↵ M |= !A.

ut

8.2 Compactness by translation

First-order logic satisfies compactness: a set S of sentences has a model exactly
when every finite subset of S does. What about cathoristic logic?

We can prove compactness of modal logics using the standard translation
from modal to first-order logic [4]: we start from a set of modal formula such
that each finite subset has a model. We translate the modal formulae and
models to first-order logic, getting a set of first-order formulae such that each
finite subset has a first-order model. By compactness of first-order logic, we
obtain a first-order model of the translated modal formulae. Then we translate
that first-order model back to modal logic, obtaining a model for the original
modal formulae, as required. The last step proceeds without a hitch because
the modal and the first-order notions of model are identical, save for details
of presentation.

Unfortunately we cannot do the same with the translation from cathoristic
logic to first-order logic presented in the previous section. The problem are the
first-order models termed ‘junk’ above. The target language of the translation
is not expressive enough to have formulae that can guarantee such constraints.
As we have no reason to believe that the first-order model whose existence is
guaranteed by compactness isn’t ‘junk’, we cannot prove compactness with the
translation. We solve this problem with a second translation, this time into a
more expressive first-order fragment where we can constrain first-order models
easily using formulae. The fragment we use now lives in two-sorted first-order
logic (which can easily be reduced to first-order logic [10]).

Definition 18 The two-sorted first-order signature S

0 is given as follows.

– S

0 has two sorts, states and actions.
– The action constants are given by ⌃. There are no state constants.
– S

0 has a nullary predicate >.
– A binary predicate Allow(·, ·). The intended meaning of Allow(x, a) is that

at the state denoted by x we are allowed to do the action a.
– A ternary predicate Arrow(·, ·, ·) where Arrow(x, a, y) means that there is a

transition from the state denoted by x to the state denoted by y, and that
transition is labelled a.

So S

0 is a relational signature, i.e. has no function symbols.

52 Richard Prideaux Evans, Martin Berger

Definition 19 The encoding hh�ii

x

of cathoristic logic formulae is given by
the following clauses.

hh>ii

x

= >

hh� ^ ii

x

= hh�ii

x

^ hh ii

x

hhhai�ii

x

= 9

st

y.(Arrow(x, a, y) ^ hh�ii

y

)

hh!Aii

x

= 8

act

a.(Allow(x, a) ! a 2 A)

Here we use 9

st to indicate that this existential quantifier ranges over the
sort of states, and 8

act for the universal quantifier ranging over actions. The
expression a 2 A is a shorthand for the first-order formula

a = a1 _ a = a2 _ · · · _ a = a

n

assuming that A = {a1, ..., an}. Since by definition, A is always a finite set, this
is well-defined. The translation could be restricted to a two-variable fragment.
Moreover, the standard reduction from many-sorted to one-sorted first-order
logic does not increase the number of variables used (although predicates are
added, one per sort). We will not consider this matter further here.

We also translate cathoristic transition systems hhLii.

Definition 20 Let L = (S,!,�) be a cathoristic transition system. L gives
rise to an S

0-model hhLii as follows.

– The sort of states is interpreted by the set S.
– The sort of actions is interpreted by the set ⌃.
– For each constant a 2 ⌃, ahhLii is a itself.
– The relation symbols are interpreted as follows.

– >

hhLii always holds.
– Allow

hhLii(s, a) holds whenever a 2 �(s).
– Arrow

hhLii(s, a, t) holds whenever s
a

�! t.

Theorem 7 (correspondence theorem) Let � be a cathoristic logic for-
mula and M = (L, s) a cathoristic model.

M |= � i↵ hhLii |=
x 7!s

hh�ii

x

.

Proof: The proof proceeds by induction on the structure of � and is similar
to that of Theorem 7. The case for the may modality proceeds as follows.

M |= hai� i↵ exists state t with s

a

�! t and (L, t) |= �

i↵ exists state t with s

a

�! t and hhLii |=
y 7!t

hh�ii

y

by (IH)

i↵ hhLii |=
x 7!s

9

st

y.(Arrow(x, a, y) ^ hh�ii

y

)

i↵ hhLii |=
x 7!s

hhhai�ii

x

Cathoristic logic 53

Finally !A.

M |=!A i↵ �(s) ✓ A

i↵ for all a 2 ⌃.a 2 A

i↵ hhLii |=
x 7!s

8

act

a.(Allow(x, a) ! a 2 A)

i↵ hhLii |=
x 7!s

hh!Aii

x

ut

We use the following steps in our compactness proof.

1. Choose a set � of cathoristic logic formulae such that each finite subset � 0

of � has a cathoristic model (L, s).
2. The translation gives a set hh� ii = {hh�ii | � 2 �} of first-order formulae

such that each finite subset has a first-order model hhLii.
3. By compactness of (two-sorted) first-order logic, we can find a first-order

model M of hh� ii.
4. Convert M into a cathoristic transition system M

] such that (M]

, s) |= � .

The problematic step is (4) - for how would we know that the first-order
model M can be converted back to a cathoristic transition system? What if it
contains ‘junk’ in the sense described above? We solve this by adding formulae
to hh� ii that preserve finite satisfiability but force the first-order models to be
convertible to cathoristic models. To ensure admissibility we use this formula.

�

admis

= 8

st

s.8

act

a.8

st

t.(Arrow(s, a, t) ! Allow(s, a))

The formula �
det

ensures model determinism.

�

det

= 8

st

s.8

act

a.8

st

t.8

st

t

0
.((Arrow(s, a, t) ^ Arrow(s, a, t0)) ! t = t

0)

Lemma 11 If L is a cathoristic transition system then hhLii |= �

admis

^�

det

.

Proof: Straightforward from the definitions. ut

We can now add, without changing satisfiability, �
admis

^ �

det

to any set
of first-order formulae that has a model that is the translation of a cathoristic
model.

We also need to deal with well-sizedness in first-order models, because
nothing discussed so far prevents models whose state labels are infinite sets
without being ⌃. Moreover, a model may interpret the set of actions with a
proper superset of ⌃. This also prevents conversion to cathoristic models. We
solve these problems by simply removing all actions that are not in ⌃ and
all transitions involving such actions. We map all infinite state labels to ⌃.
It is easy to see that this does not change satisfiability of (translations of)
cathoristic formulae.

54 Richard Prideaux Evans, Martin Berger

Definition 21 Let L = (S,!,�) be a cathoristic transition system and X

a set, containing actions. The restriction of L to X, written L \ X is the
cathoristic model (S,!0

,�

0) where !

0= {(s, a, t) 2! | a /2 X}, and for all
states s we set:

�

0(s) =

(
�(s) \X whenever �(s) 6= ⌃

⌃ otherwise

Lemma 12 Let � be a cathoristic logic formula and X be a set such that no
action occurring in � is in X. Then:

(L, s) |= � i↵ (L \X, s) |= �.

Proof: By straightforward induction on the structure of �, using the fact that
by assumption X only contains actions not occurring in �. ut

Definition 22 Let M be a first-order model for the signature S

0. We con-
struct a cathoristic transition system M

] = (S,!,�).

– The actions ⌃ are given by the M interpretation of actions.
– The states S are given by the M interpretation of states.
– The reduction relation s

a

�! t holds exactly when Arrow

M(s, a, t).
– The function � is given by the following clause:

�(s) =

(
X whenever X = {a | Allow

M(s, a)} is finite

⌃ otherwise

Lemma 13 If M be a first-order model for S

0 such that M |= �

admis

^ �

det

.
Then M

] is an cathoristic transition system with actions ⌃.

Proof: Immediate from the definitions. ut

Theorem 8 (correspondence theorem) Let M be a first-order model for
the signature S

0 such that M |= �

admis

^�

det

. Then we have for all cathoristic
logic formulae � with actions from ⌃:

M |=
x 7!s

hh�ii

x

i↵ (M]

\X, s) |= �.

Here X is the set of all elements in the universe of M interpreting actions that
are not in ⌃.

Proof: The proof proceeds by induction on the structure of �. ut

Definition 23 Let � be a set of cathoristic formulae, and M a cathoristic
model. We write M |= T provided M |= � for all � 2 T . We say � is satisfiable
provided M |= T .

Theorem 9 (Compactness of cathoristic logic) A set � of cathoristic
logic formulae is satisfiable i↵ each finite subset of � is satisfiable.

Cathoristic logic 55

Proof: For the non-trivial direction, let � be a set of cathoristic logic formulae
such that any finite subset has a cathoristic model. Define

hh� ii = {hh�ii | � 2 �} �

⇤ = hh� ii [{�

admis

^ �

det

}

which both are sets of first-order formulae. Clearly each finite subset � 0 of � ⇤

has a first-order model. Why? First consider the subset � 0
CL

of � 0 which is
given as follows.

�

0
CL

= {� 2 � | hh�ii 2 �

0
}

Since � 0
CL

is finite, by assumption there is a cathoristic model

(L, s) |= �

0
CL

which means we can apply Theorem 8 to get

hhLii |=
x 7!s

hh�

0
CL

ii,

By construction � 0
\ hh�

0
CL

ii ✓ {�

admis

^ �

det

}, so all we have to show for � 0

to have a model is that

hhLii |=
x 7!s

{�

admis

} [{�

a

| a 2 ⌃},

but that is a direct consequence of Lemma 11. That means each finite subset
of � ⇤ has a model and by appealing to compactness of first-order many-sorted
logic (which is an immediate consequence of compactness of one-sorted first-
order logic [10]), we know there must be a first-order model M of � ⇤, i.e.

M |= �

⇤
.

Since M |= �

admis

^ �

det

we can apply Theorem 8 that also

(M]

\X, s) |= �

where X is the set of all actions in M

] that are not in ⌃. Hence � is satisfiable.
ut

56 Richard Prideaux Evans, Martin Berger

9 Cathoristic logic and negation

We have presented cathoristic logic as a language that can express incompat-
ible claims without negation. In this section, we briefly consider cathoristic
logic enriched with negation.

9.1 Syntax and semantics

Definition 24 Given a set ⌃ of actions, the formulae of cathoristic logic with
negation are given by the following grammar.

� ::= ... | ¬�

We can now define disjunction � _ and implication � ! by de Morgan
duality: � _ is short for ¬(¬� ^ ¬), and �! abbreviates ¬� _ .

The semantics of cathoristic logic with negation is just that of plain catho-
ristic logic except for the obvious clause for negation.

M |= ¬� i↵ M 2 �

Negation is a core operation of classical logic, and its absence makes catho-
ristic logic unusual. In order to understand cathoristic logic better, we now
investigate how negation can be seen as a definable abbreviation in cathoristic
logic with disjunction. The key idea is to use the fact that

¬hai�

can be false in two ways: either there is no a-labelled action at the current
state - or there is, but � is false. Both arms of this disjunction can be expressed
in cathoristic logic, the former as !⌃ \ {a}, the latter as hai¬�. Hence, we can
see ¬hai� as a shorthand for

!(⌃ \ {a}) _ hai¬�

Negation still occurs in this term, but prefixing a formula of lower complexity.
This leaves the question of negating the tantum. That’s easy: when ¬!A,

then clearly the current state can do an action a /2 A. In other words
_

a2⌃
hai>

When ⌃ is infinite, then so is the disjunction.
Note that both the negation of the modality and the negation of the tantum

involve the set ⌃ of actions. So far, we have defined negation with respect
to the whole (possibly infinite) set ⌃. For technical reasons, we generalise
negation and define it with respect to a finite subset S ✓ ⌃. We use this
finitely-restricted version of negation in the decision procedure below.

Richard Evans

Cathoristic logic 57

Definition 25 The function ¬

S

(�) removes negation from � relative to a
finite subset S ✓ ⌃:

¬

S

(>) = ? ¬

S

(?) = >

¬

S

(� ^) = ¬

S

(�) _ ¬

S

() ¬

S

(� _) = ¬

S

(�) ^ ¬

S

()

¬

S

(hai�) = !(S � {a}) _ hai¬

S

(�) ¬

S

(!A) =
_

a2S�A

hai>

9.2 Decision procedure

We can use the fact that cathoristic logic has a quadratic-time decision proce-
dure to build a super-polynomial time decision procedure for cathoristic logic
with negation. Given � |= , let S = actions(�) [actions() [{a}, where a

is a fresh action. The function actions(·) returns all actions occurring in a for-
mula, e.g. actions(hai�) = {a} [actions(�) and actions(!A) = A. The decision
procedure executes the following steps.

1. Inductively translate away all negations in � using ¬

S

(�) as defined above.
Let the result be �0.

2. Reduce �0 to disjunctive normal form by repeated application of the rewrite
rules:

� ^ (_ ⇠) ; (� ^) _ (� ^ ⇠) (� _) ^ ⇠ ; (� ^ ⇠) _ (^ ⇠).

3. Let the resulting disjuncts be �1, ...,�n. Note that

� |= i↵ �

i

|= for all i = 1, ..., n.

For each disjunct �
i

do the following.
– Notice that �

i

|= if and only if all S-extensions (defined below) of
simpl(�

i

) satisfy . So, to check whether �
i

|= , we enumerate the
S-extensions of simpl(�

i

) (there are a finite number of such extensions
- the exact number is exponential in the size of simpl(�

i

)) and check
for each such S-extension M whether M |= , using the algorithm of
Section 6.5.

Here is the definition of S-extension.

Definition 26 Given an cathoristic transition system L = (W,!,�), and a
set S of actions, then (W 0

,!

0
,�

0) is a S-extension of L if it is a valid cathoristic
transition system (recall Definition 2) and for all (x, a, y) 2!0, either:

– (x, a, y) 2 !, or;
– x 2 W, a 2 S, a 2 �(x), and y is a new state not appearing elsewhere in

W or W 0.

58 Richard Prideaux Evans, Martin Berger

The state-labelling �0 is:

�

0(x) = �(x) if x 2 W

�

0(x) = ⌃ if x /2 W

In other words, M0 is an extension of an annotated model M, if all its tran-
sitions are either from M or involve states of M transitioning via elements of
S to new states not appearing in M or M0. The number of extensions grows
quickly. If the model M has n states, then the number of possible extensions
is:

(2|S|)n

But recall that we are computing these extensions in order to verify . So we
can make a significant optimisation by restricting the height of each tree to
| |. We state, without proof, that this optimisation preserves correctness. A
Haskell implementation of the decision procedure is available [11].

Cathoristic logic 59

10 Quantified cathoristic logic

So far, we have presented cathoristic logic as a propositional modal logic. This
section sketches quantified cathoristic logic, primarily to demonstrate that this
extension works smoothly.

Definition 27 Let ⌃ be a non-empty set of actions, ranged over by a, a

0
, ...

as before. Given a set V of variables, with x, x

0
, y, y

0
, ... ranging over V, the

terms, ranged over by t, t

0
, ... and formulae of quantified cathoristic logic are

given by the following grammar:

t ::= x || a

� ::= > || � ^ || hti� || !A || 9x.� || 8x.�

Now A ranges over finite subsets of terms. The free variables of a �, denoted
fv(�) is given as expected, e.g. fv(hti�) = fv(t)[fv(�) and fv(!A) =

S
t2A

fv(t)
where fv(a) = ; and fv(x) = {x}.

Definition 28 The semantics of quantified cathoristic logic is constructed
along conventional lines. An environment is a map � : V ! ⌃ with finite
domain. We write �, x : a for the environment that is just like �, except it also
maps x to a, implicitly assuming that x is not in �’s domain. The denotation
[[t]]

�

of a term t under an environment � is given as follows:

[[a]]
�

= a [[x]]
�

= �(x)

where we assume that fv(t) is a subset of the domain of �.
The satisfaction relation M |=

�

� is defined whenever fv(�) is a subset
of �’s domain. It is given by the following clauses, where we assume that
M = (L, s) and L = (S,!,�).

M |=
�

>

M |=
�

� ^ i↵ M |=
�

� and M |=
�

M |=
�

hti� i↵ there is transition s

[[t]]�
�! s

0 such that (L, s0) |=
�

�

M |=
�

!A i↵ �(s) ✓ {[[t]] | t 2 A}

M |=
�

8x.� i↵ for all a 2 ⌃ we have M |=
�,x:a �

M |=
�

9x.� i↵ there exists a 2 ⌃ such that M |=
�,x:a �

In quantified cathoristic logic, we can say that there is exactly one king of
France, and he is bald, as:

9x.(hkingihfrancei!{x} ^ hxihbaldi)

Expressing this in first-order logic is more cumbersome:

9x.(king(france, x) ^ bald(x) ^ 8y.(king(france, y) ! y = x))

The first-order logic version uses an extra universal quantifier, and also requires
the identity relation with concomitant axioms.

60 Richard Prideaux Evans, Martin Berger

To say that every person has exactly one sex, which is either male or female,
we can write in quantified cathoristic logic:

8x.(hxihpersoni ! hxihsexi!{male, female} ^ 9y.hxihsexi(hyi^!{y}))

This is more elegant than the equivalent in first-order logic:

8x.(person(x) ! 9y.

0

BBBB@

sex(x, y)
^

(y = male _ y = female)
^

8z.sex(x, z) ! y = z

1

CCCCA
)

To say that every tra�c light is coloured either green, amber or red, we can
write in quantified cathoristic logic:

8x.(hxihlighti ! hxihcolouri!{green, amber, red} ^ 9y.hxihcolouri(hyi^!{y}))

Again, this is less verbose than the equivalent in first-order logic:

8x.(light(x) ! 9y.

0

BBBB@

colour(x, y)
^

(y = green _ y = amber _ y = red)
^

8z.colour(x, z) ! y = z

1

CCCCA
)

Cathoristic logic 61

11 Related work

This section surveys cathoristic logic’s intellectual background, and related
approaches.

11.1 Brandom’s incompatibility semantics

In [7], Chapter 5, Appendix I, Brandom developed a new type of semantics,
incompatibility semantics, that takes material incompatibility - rather than
truth-assignment - as the semantically primitive notion.

Incompatibility semantics applies to any language, L, given as a set of
sentences. Given a predicate Inc(X) which is true of sets X ✓ L that are
incompatible, he defines an incompatibility function I from subsets of L to
sets of subsets of L:

X 2 I(Y) i↵ Inc(X [Y).

We assume that I satisfies the monotonicity requirement (Brandom calls it
“Persistence”):

If X 2 I(Y) and X ✓ X

0 then X

0
2 I(Y).

Now Brandom defines entailment in terms of the incompatibility function.
Given a set X ✓ L and an individual sentence � 2 L:

X |= � i↵ I({�}) ✓ I(X).

Now, given material incompatibility (as captured by the I function) and en-
tailment, he introduces logical negation as a derived concept via the rule:

{¬�} 2 I(X) i↵ X |= �.

Brandom goes on to show that the ¬ operator, as defined, satisfies the laws of
classical negation. He also introduces a modal operator, again defined in terms
of material incompatibility, and shows that this operator satisfies the laws of
S5.

Cathoristic logic was inspired by Brandom’s vision that material incom-
patibility is conceptually prior to logical negation: in other words, it is possible
for a community of language users to make incompatible claims, even if that
language has no explicit logical operators such as negation. The language users
of this simple language may go on to introduce logical operators, in order to
make certain inferential properties explicit - but this is an optional further
development. The language before that addition was already in order as it is.

The approach taken in this paper takes Brandom’s original insight in a
di↵erent direction. While Brandom defines an unusual (non truth-conditional)
semantics that applies to any language, we have defined an unusual logic with a
standard (truth-conditional) semantics, and then shown that this logic satisfies
the Brandomian connection between incompatibility and entailment.

62 Richard Prideaux Evans, Martin Berger

11.2 Peregrin on defining a negation operator

Peregrin [22] investigates the structural rules that any logic must satisfy if it
is to connect incompatibility (Inc) and entailment (|=) via the Brandomian
incompatibility semantics constraint:

X |= � i↵ I({�}) ✓ I(X).

The general structural rules are:

(?) If Inc(X) and X ✓ Y then Inc(Y).

(|= 1) �, X |= �.

(|= 2) If X,� |= and Y |= � then X,Y |= .

(? |= 2) If X |= � for all �, then Inc(X).

(|= ?2) If Inc(Y [{�}) implies Inc(Y [X) for all Y, then X |= �.

Peregrin shows that if a logic satisfied the above laws, then incompatibility and
entailment are mutually interdefinable, and the logic satisfies the Brandomian
incompatibility semantics constraint.

Next, Peregrin gives a pair of laws for defining negation in terms of Inc and
|=16:

(¬1) Inc({�,¬�}).

(¬2) If Inc(X,�) then X |= ¬�.

These laws characterise intuitionistic negation as the minimal incompatible17.
Now, in [7], Brandom defines negation slightly di↵erently. He uses the rule:

(¬B) Inc(X,¬�) i↵ X |= �.

Using this stronger rule, we can infer the classical law of double-negation:
¬¬� |= �. Peregrin establishes that Brandom’s rule for negation entail (¬1)
and (¬2) above, but not conversely: Brandom’s rule is stronger than Peregrin’s
minimal laws (¬1) and (¬2).

Peregrin concludes that the Brandomian constraint between incompatibil-
ity and entailment is satisfied by many di↵erent logics. Brandom happened to
choose a particular rule for negation that led to classical logic, but the gen-
eral connection between incompatibility and entailment is satisfied by many
di↵erent logics, including intuitionistic logic. This paper supports Peregrin’s
conclusion: we have shown that cathoristic logic also satisfies the Brandomian
constraint.

16 The converse of (¬2) follows from (¬1) and the general structural laws above.
17

 is the minimal incompatible of � i↵ for all ⇠, if Inc({�} [{⇠}) then ⇠ |= .

Cathoristic logic 63

11.3 Peregrin and Turbanti on defining a necessity operator

In [7], Brandom gives a rule for defining necessity in terms of incompatibility
and entailment:

X 2 I({2�}) i↵ Inc(X) _ 9Y. Y /2 I(X) ^ Y 2 �.

In other words, X is incompatible with 2� if X is compatible with something
that does not entail �.

The trouble is, as Peregrin and Turbanti point out, if � is not tautological,
then every set X ✓ L is incompatible with 2�. To show this, take any set
X ✓ L. If Inc(X), then X 2 I(2�) by definition. If, on the other hand,
¬Inc(X), then let Y = ;. Now ¬Inc(X [Y) as Y = ;, and Y 2 � as � is not
tautological. Hence X 2 I(2�) for all X ✓ L. Brandom’s rule, then, is only
capable of specifying a very specific form of necessity: logical necessity.

In [22] and [31], Peregrin and Turbanti describe alternative ways of defining
necessity. These alternative rule sets can be used to characterise modal logics
other than S5. For example, Turbanti defines the accessibility relation between
worlds in terms of a compossibility relation, and then argues that the S4 axiom
of transitivity fails because compossibility is not transitive.

We draw two conclusions from this work. The first is, once again, that a
commitment to connecting incompatibility and entailment via the Brandomian
constraint:

X |= � i↵ I({�}) ✓ I(X)

does not commit us to any particular logical system. There are a variety of
logics that can satisfy this constraint. Second, questions about the structure
of the accessibility relation in Kripke semantics - questions that can seem
hopelessly abstract and di�cult to answer - can be re-cast in terms of concrete
questions about the incompatibility relation. Incompatibility semantics can
shed light on possible-world semantics [31].

11.4 Linear logic

Linear logic [15] is a refinement of first-order logic and was introduced by
J.-Y. Girard and brings the symmetries of classical logic to constructive logic.

Linear logic splits conjunction into additive and multiplicative parts. The
former, additive conjunction A&B, is especially interesting in the context of
cathoristic logic. In the terminology of process calculus it can be interpreted
as an external choice operation [1]. (‘External’, because the choice is o↵ered
to the environment). This interpretation has been influential in the study of
types for process calculus, e.g. [19,20,29]. Implicitly, additive conjunction gives
an explicit upper bound on how many di↵erent options the environment can
choose from. For example A&B&C has three options (assuming that none of
A,B,C can be decomposed into further additive conjunctions). With this in
mind, and simplifying a great deal, a key di↵erence between !A and additive

64 Richard Prideaux Evans, Martin Berger

conjunction A&B is that the individual actions in !A have no continuation,
while they do with A&B: the tantum !{l, r} says that the only permitted
actions are l and r. What happens at later states is not constrained by !A. In
contrast, A&B says not only that at this point the only permissible options
are A and B, but also that if we choose A, then A holds ‘for ever’, and likewise
for choosing B. To be sure, the alternatives in A&B may themselves contain
further additive conjunctions, and in this way express how exclusion changes
’over time’.

In summary, cathoristic logic and linear logic o↵er operators that restrict
the permissible options. How are they related? Linear logic has an explicit lin-
ear negation (·)? which, unlike classical negation, is constructive. In contrast,
cathoristic logic defines a restricted form of negation using !A. Can these two
perspectives be fruitfully reconciled?

11.5 Process calculus

Process calculi are models of concurrent computation. They are based on the
idea of message passing between actors running in parallel. Labelled transi-
tion systems are often used as models for process calculi, and many concepts
used in the development of cathoristic logic - for example, bisimulations and
Hennessy-Milner logic - originated in process theory (although some, such as
bisimulation, evolved independently in other contexts).

Process calculi typically feature a construct called sum, that is an explicit
description of mutually exclusive option:

X

i2I

P

i

That is a process that can internally choose, or be chosen externally by the
environment to evolve into the process P

i

for each i. Once the choice is made,
all other options disappear. Sums also relate closely to linear logic’s additive
conjunction. Is this conceptual proximity a coincidence or indicative of deeper
common structure?

11.6 Linguistics

Linguists have also investigated how mutually exclusive alternatives are ex-
pressed, often in the context of antonymy [2,3,21], but, to the best of our
knowledge have not proposed formal theories of linguistic exclusion.

Cathoristic logic 65

12 Open problems

In this paper, we have introduced cathoristic logic and established key meta-
logical properties. However, many questions are left open.

12.1 Excluded middle

One area we would like to investigate further is what happens to the law of
excluded middle in cathoristic logic. The logical law of excluded middle states
that either a proposition or its negation must be true. In cathoristic logic

|= � _ ¬

S

(�)

does not hold in general. (The negation operator ¬
S

(·) was defined in Section
9.) For example, let � be hai> and S = ⌃ = {a, b}. Then

� _ ¬

S

� = hai> _ !{b} _ hai?

Now this will not in general be valid - it will be false for example in the model
(({x}, ;, {(x,⌃)}), x), the model having just the start state (labelled ⌃) and
no transitions. Restricting S to be a proper subset of ⌃ = {a, b} is also not
enough. For example with S = {a} we have

hai> _ ¬

S

(hai>) = hai> _ !; _ hai?

This formula cannot hold in any cathoristic model which contains a b-labelled
transition, but no a-transition from the start state.

Is it possible to identify classes of models that nevertheless verify excluded
middle? The answer to this question appears to depend on the chosen notion
of semantic model.

12.2 Understanding the expressive strength of cathoristic logic

12.2.1 Comparing cathoristic logic and Hennessy-Milner logic

Section 8.1 investigated the relationship between cathoristic logic and first-
order logic. Now we compare cathoristic logic with a logic that is much closer
in spirit: Hennessy-Milner logic [17], a multi-modal logic designed to reason
about process calculi. Indeed, the present shape of cathoristic logic owes much
to Hennessy-Milner logic. We contrast both by translation from the former into
the latter. This will reveal, more clearly than the translation into first-order
logic, the novelty of cathoristic logic.

Definition 29 Assume a set ⌃ of symbols, with s ranging over ⌃, the for-
mulae of Hennessy-Milner logic are given by the following grammar:

� ::= > |

V
i2I

�

i

| hsi� | ¬�

66 Richard Prideaux Evans, Martin Berger

The index set I in the conjunction can be infinite, and needs to be so for
applications in process theory.

Definition 30 Models of Hennessy-Milner logic are simply pairs (L, s) where
L = (S,!) is a labelled transition system over ⌃, and s 2 S. The satisfaction
relation (L, s) |= � is given by the following inductive clauses.

(L, s) |= >

(L, s) |=
V

i2I

�

i

i↵ for all i 2 I : (L, s) |= �

i

(L, s) |= hai� i↵ there is a s

a

�! s

0 such that (l, s0) |= �

(L, s) |= ¬� i↵ (L, s) 2 �

There are two di↵erences between cathoristic logic and Hennessy-Milner logic
- one syntactic, the other semantic.

– Syntactically, cathoristic logic has the tantum operator (!) instead of logical
negation (¬).

– Semantically, cathoristic models are deterministic, while (typically) models
of Hennessy-Milner logic are non-deterministic (although the semantics
makes perfect sense for deterministic transition systems, too). Moreover,
models of Hennessy-Milner logic lack state labels.

Definition 31 We translate formulae of cathoristic logic into Hennessy-Milner
logic using the function [[·]]:

[[>]] = >

[[�1 ^ �2]] = [[�1]] ^ [[�2]]

[[hai�]] = hai[[�]]

[[!A]] =
^

a2⌃\A

¬hai>

If ⌃ is an infinite set, then the translation of a !-formula will be an infinitary
conjunction. If ⌃ is finite, then the size of the Hennessy-Milner logic formula
will be of the order of n · |⌃| larger than the original cathoristic formula, where
n is the number of tantum operators occurring in the cathoristic formula). In
both logics we use the number of logical operators as a measure of size.

We can also translate cathoristic models by forgetting state-labelling:

[[((S,!,�), s)]] = ((S,!), s)

We continue with an obvious consequence of the translation.

Theorem 10 Let M be a (deterministic or non-deterministic) cathoristic
model. Then M |= � implies [[M]] |= [[�]].

Cathoristic logic 67

Proof: Straightforward by induction on �. ut

However, note that the following natural extension is not true under the trans-
lation above:

If � |= then [[�]] |= [[]]

To see this, consider an entailment which relies on determinism, such as

haihbi ^ haihci |= hai(hbi ^ hci)

The first entailment is valid in cathoristic logic because of the restriction to
deterministic models, but not in Hennessy-Milner logic, where it is invalidated
by any model with two outgoing a transitions, one of which satisfies hbi and
one of which satisfies hci.

We can restore the desired connection between cathoristic implication and
Hennessy-Milner logic implication in two ways. First we can restrict our at-
tention to deterministic models of Hennessy-Milner logic. The second solution
is to add a determinism constraint to our translation. Given a set � of catho-
ristic formulae, closed under sub formulae, that contains actions from the set
A ✓ ⌃, let the determinism constraint for � be:

^

a2A,�2�, 2�
¬ (hai� ^ hai ^ ¬hai(� ^))

If we add this sentence as part of our translation [[·]], we do get the desired
result that

If � |= then [[�]] |= [[]]

12.2.2 Comparing cathoristic logic with Hennessy-Milner logic and
propositional logic

Consider the following six languages:

Language Description
PL[^] Propositional logic without negation
Hennessy-Milner logic[^] Hennessy-Milner logic without negation
CL[^, !] Cathoristic logic
PL [^,¬] Full propositional logic
HML [^,¬] Full Hennessy-Milner logic
CL [^, !,¬] Cathoristic logic with negation

The top three languages are simple. In each case: there is no facility for ex-
pressing disjunction, every formula that is satisfiable has a simplest satisfying
model, and there is a simple quadratic-time decision procedure But there are
two ways in which CL[^, !] is more expressive. Firstly, CL[^, !], unlike HML[^],
is expressive enough to be able to distinguish between any two models that
are not bisimilar, cf. Theorem 11. The second way in which CL[^, !] is sig-
nificantly more expressive than both PL[^] and HML[^] is in its ability to
express incompatibility. No two formulae of PL[^] or HML[^] are incompati-
ble18 with each other. But many pairs of formulae of CL[^, !] are incompatible.

18 The notion of incompatibility applies to all logics: two formulae are incompatible if there
is no model which satisfies both.

68 Richard Prideaux Evans, Martin Berger

PL[^]

PL [^,¬]

HML[^]

HML [^,¬]

CL[^, !]

CL [^, !,¬]

✓ ✓

✓ ✓

✓ ✓ ✓

Fig. 15: Conjectured relationships of expressivity between logics. Here L1 ✓ L2

means that the logic L2 is more expressive than L1. We leave the precise
meaning of logical expressivity open.

(For example: hai> and !;). Because CL[^, !] is expressive enough to be able
to make incompatible claims, it satisfies Brandom’s incompatibility semantics
constraint. CL[^, !] is the only logic (we are aware of) with a quadratic-time
decision procedure that is expressive enough to respect this constraint.

The bottom three language can all be decided in super-polynomial time. We
claim that Hennessy-Milner logic is more expressive than PL, and CL[^, !,¬]
is more expressive than full Hennessy-Milner logic. To see that full Hennessy-
Milner logic is more expressive than full propositional logic, fix a propositional
logic with the nullary operator > plus an infinite number of propositional
atoms P(i,j), indexed by i and j. Now translate each formula of Hennessy-
Milner logic via the rules:

[[>]] = > [[� ^]] = [[�]] ^ [[]]

[[¬�]] = ¬[[�]] [[ha
i

i�

j

]] = P(i,j)

We claim Hennessy-Milner logic is more expressive because there are formulae
� and of Hennessy-Milner logic such that

� |=HML but [[�]] 2PL [[]]

For example, let � = haihbi> and = hai>. Clearly, � |=HML . But [[�]] =
P(i,j) and [[]] = P(i0,j0) for some i, j, i

0
, j

0, and there are no entailments in
propositional logic between arbitrary propositional atoms.

We close by stating that CL[^, !,¬] is more expressive than full Hennessy-
Milner logic. As mentioned above, the formula !A of cathoristic logic can be
translated into Hennessy-Milner logic as:

^

a2⌃�A

¬hai>

But if ⌃ is infinite, then this is an infinitary disjunction. Cathoristic logic can
express the same proposition in a finite sentence.

Cathoristic logic 69

12.3 Acknowledgements

We thank Tom Smith and Giacomo Turbanti for their thoughtful comments.

70 Richard Prideaux Evans, Martin Berger

References

1. S. Abramsky. Computational interpretations of linear logic. TCS, 111, 1993.
2. K. Allan, editor. Concise Encyclopedia of Semantics. Elsevier, 2009.
3. M. Arono↵ and J. Rees-Miller, editors. The Handbook of Linguistics. Wiley-Blackwell,

2003.
4. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,

2001.
5. R. Brachman and H. Levesque. Knowledge Representation and Reasoning. Morgan

Kaufmann, 2004.
6. R. Brandom. Making It Explicit. Harvard University Press, 1998.
7. R. Brandom. Between Saying and Doing. Oxford University Press, 2008.
8. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, Cambridge, 1990.
9. D. Davidson. Essays on Actions and Events. Oxford University Press, 1980.

10. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2001.
11. R. Evans. Haskell implementation of cathoristic logic. Available for download from

https://github.com/RichardEvans/cathoristic-logic, 2014.
12. R. Evans and E. Short. Versu. http://www.versu.com, available at https://itunes.

apple.com/us/app/blood-laurels/id882505676?mt=8.
13. R. Evans and E. Short. Versu - a simulationist storytelling system. IEEE Transactions

on Computational Intelligence and AI in Games, 2014.
14. R. Fikes and N. Nilsson. Strips: a new approach to the application of theorem proving

to problem solving. Artificial Intelligence, 2, 1971.
15. J.-Y. Girard. Linear logic. TCS, 50, 1987.
16. M. Hennessy. Algebraic theory of processes. MIT Press series in the foundations of

computing. MIT Press, 1988.
17. M. Hennessy and R. Milner. Algebraic Laws for Non-Determinism and Concurrency.

JACM, 32(1), 1985.
18. K. Honda. A Theory of Types for the ⇡-Calculus. Available at: http://www.dcs.qmul.

ac.uk/

~

kohei/logics, March 2001.
19. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines

for structured communication-based programming. In Proc. ESOP, volume 1381 of
LNCS, pages 22–138, 1998.

20. K. Honda and N. Yoshida. A uniform type structure for secure information flow. SIG-
PLAN Not., 37:81–92, January 2002.

21. A. O’Kee↵e and M. McCarthy, editors. The Routledge Handbook of Corpus Linguistics.
Routledge, 2010.

22. J. Peregrin. Logic as based on incompatibility. Available from http://philpapers.org/

rec/PERLAB-2, 2010.
23. A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 2013.
24. B. Russell. An Inquiry into Meaning and Truth. Norton and Co, 1940.
25. D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University

Press, 2012.
26. V. Sassone, M. Nielsen, and G. Winskel. Models for Concurrency: Towards a Classifi-

cation. TCS, 170(1-2):297–348, 1996.
27. D. Smith and M. Genesereth. Ordering conjunctive queries. Artificial Intelligence, 26,

1985.
28. F. Sommers. The Logic of Natural Language. Clarendon Press, 1982.
29. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing

System. In Proc. PARLE, volume 817 of LNCS, pages 398–413, 1994.
30. H. Troelstra, A. S. and Schwichtenberg. Basic proof theory (2nd ed.). Cambridge

University Press, 2000.
31. G. Turbanti. Modality in Brandom’s Incompatibility Semantics. In Proceedings of the

Amsterdam Graduate Conference - Truth, Meaning, and Normativity, 2011.
32. D. van Dalen. Logic and Structure. Springer Verlag, 2004.
33. L. Wittgenstein. Philosophische Bemerkungen. Suhrkamp Verlag, 1981. Edited by

R. Rhees.
34. L. Wittgenstein. Tractatus logico-philosophicus: Logisch-philosophische Abhandlung.

Suhrkamp Verlag, 2003. Originally published: 1921.

https://github.com/RichardEvans/cathoristic-logic
http://www.versu.com
https://itunes.apple.com/us/app/blood-laurels/id882505676?mt=8
https://itunes.apple.com/us/app/blood-laurels/id882505676?mt=8
http://www.dcs.qmul.ac.uk/~kohei/logics
http://www.dcs.qmul.ac.uk/~kohei/logics
http://philpapers.org/rec/PERLAB-2
http://philpapers.org/rec/PERLAB-2

Cathoristic logic 71

A Alternative semantics for cathoristic logic

We use state-labelled transition systems as models for cathoristic logic. The purpose of the
labels on states is to express constraints, if any, on outgoing actions. This concern is reflected
in the semantics of !A.

((S,!,�), s) |= !A i↵ �(s) ✓ A

There is an alternative, and in some sense even simpler approach to giving semantics to
!A which does not require state-labelling: we simply check if all actions of all outgoing
transitions at the current state are in A. As the semantics of other formula requires state-
labelling in its satisfaction condition, this means we can use plain labelled transition systems
(together with a current state) as models. This gives rise to a subtly di↵erent theory that
we now explore, albeit not in depth.

A.1 Pure cathoristic models

Definition 32 By a pure cathoristic model, ranged over by P,P0
, ..., we mean a pair (L, s)

where L = (S,!) is a deterministic labelled transition system and s 2 S a state.

Adapting the satisfaction relation to pure cathoristic models is straightforward.

Definition 33 Using pure cathoristic models, the satisfaction relation is defined induc-
tively by the following clauses, where we assume that M = (L, s) and L = (S,!).

M |= >
M |= � ^ i↵ M |= � and M |=

M |= hai� i↵ there is a s

a�! t such that (L, t) |= �

M |= A i↵ {a | 9t.s a�! t} ✓ A

Note that all but the last clause are unchanged from Definition 4.
In this interpretation, !A restricts the out-degree of the current state s, i.e. it constraints

the ’width’ of the graph. It is easy to see that all rules in Figure 12 are sound with respect
to the new semantics. The key advantage pure cathoristic models have is their simplicity:
they are unadorned labelled transition systems, the key model of concurrency theory [26].
The connection with concurrency theory is even stronger than that, because, as we show
below (Theorem 11), the elementary equivalence on (finitely branching) pure cathoristic
models is bisimilarity, one of the more widely used notions of process equivalence. This
characterisation even holds if we remove the determinacy restriction in Definition 32.

A.2 Relationship between pure and cathoristic models

The obvious way of converting an cathoristic model into a pure cathoristic model is by
forgetting about the state-labelling:

((S,!,�), s) 7! ((S,!), s)

Let this function be forget(·). For going the other way, we have two obvious choices:

– ((S,!), s) 7! ((S,!,�), s) where �(t) = ⌃ for all states t. Call this map max(·).
– ((S,!), s) 7! ((S,!,�), s) where �(t) = {a | 9t0.t a�! t

0} for all states t. Call this map
min(·).

Lemma 14 Let M be an cathoristic model, and P a pure cathoristic model.

1. M |= � implies forget(M) |= �. The reverse implication does not hold.
2. max(P) |= � implies P |= �. The reverse implication does not hold.
3. min(P) |= � if and only if P |= �.

72 Richard Prideaux Evans, Martin Berger

Proof: The implication in (1) is immediate by induction on �. A counterexample for
the reverse implication is given by the formula � =!{a} and the cathoristic model M =

({s, t}, s a�! t,�), s) where �(s) = {a, b, c}: clearly forget(M) |= �, but M 6|= �.
The implication in (2) is immediate by induction on �. To construct a counterexample for

the reverse implication, assume that ⌃ is a strict superset of {a} a. The formula � =!{a} and

the pure cathoristic model P = ({s, t}, s a�! t), s) satisfy P |= �, but clearly max(P) 6|= �.
Finally, (3) is also straightforward by induction on �.

ut

A.3 Non-determinism and cathoristic models

Both, cathoristic models and pure cathoristic models must be deterministic. That is im-
portant for the incompatibility semantics. However, formally, the definition of satisfaction
makes sense for non-deterministic models as well, pure or otherwise. Such models are im-
portant in the theory of concurrent processes. Many of the theorems of the precious section
either hold directly, or with small modifications for non-deterministic models. The rules of
inference in Figure 12 are sound except for [Determinism] which cannot hold in properly
non-deterministic models. With this omission, they are also complete. Elementary equiva-
lence on non-deterministic cathoristic models also coincides with mutual simulation, while
elementary equivalence on non-deterministic pure cathoristic models is bisimilarity. The
proofs of both facts follow those of Theorems 1 and 11, respectively. Compactness by trans-
lation can be shown following the proof in Section 8, except that the constraint �det is
unnecessary.

We have experimented with a version of cathoristic logic in which the models are non-
deterministic labelled-transition systems. Although non-determinism makes some of the
constructions simpler, non-deterministic cathoristic logic is unable to express incompatibil-
ity properly. Consider, for example, the claim that Jack is married19 to Jill In standard
deterministic cathoristic logic this would be rendered as:

hjackihmarriedi(hjilli^!{jill})

There are three levels at which this claim can be denied. First, we can claim that Jack is
married to someone else - Joan, say:

hjackihmarriedi(hjoani^!{joan})

Second, we can claim that Jack is unmarried (specifically, that being unmarried is Jack’s
only property):

hjacki!{unmarried}

Third, we can claim that Jack does not exist at all. Bob and Jill, for example, are the only
people in our domain:

!{bob, jill}

Now we can assert the same sentences in non-deterministic cathoristic logic, but they
are no longer incompatible with our original sentence. In non-deterministic cathoristic logic,
the following sentences are compatible (as long as there are two separate transitions labelled
with married, or two separate transitions labelled with jack):

hjackihmarriedi(hjilli^!{jill}) hjackihmarriedi(hjoani^!{joan})

19 We assume, in this discussion, that married is a many-to-one predicate. We assume that
polygamy is one person attempting to marry two people (but failing to marry the second).

Cathoristic logic 73

Similarly, the following sentences are fully compatible as long as there are two separate
transitions labelled with jack:

hjackihmarriedi hjacki!{unmarried}

Relatedly, non-deterministic cathoristic logic does not satisfy Brandom’s incompatibility
semantics property:

� |= i↵ I() ✓ I(�)

To take a simple counter-example, haihbi implies hai, but not conversely. But in non-
deterministic cathoristic logic, the set of sentences incompatible with haihbi is identical
with the set of sentences incompatible with hai.

A.4 Semantic characterisation of elementary equivalence

In Section 6.1 we presented a semantic analysis of elementary equivalence, culminating in
Theorem 1 which showed that elementary equivalence coincides with ', the relation of mu-
tual simulation of models. We shall now carry out a similar analysis for pure cathoristic mod-
els, and show that elementary equivalence coincides with bisimilarity, an important concept
in process theory and modal logics [25]. Bisimilarity is strictly finer on non-deterministic
transition systems than ', and more sensitive to branching structure. In the rest of this
section, we allow non-deterministic pure models, because the characterisation is more inter-
esting that in the deterministic case.

Definition 34 A pure cathoristic model (L, s) is finitely branching if its underlying tran-
sition system L is finitely branching.

Definition 35 A binary relation R is a bisimulation between pure cathoristic models Pi =
(Li), si) for i = 1, 2 provided (1)R is a bisimulation between L1 and L2, and (2) (s1, s2) 2 R.
We say P1 and P2 are bisimilar, written P1 ⇠ P2 if there is a bisimulation between P1

and P2.

Definition 36 The theory of P, written Th(P), is the set {� | P |= �}.

Theorem 11 Let P and P0 be two finitely branching pure cathoristic models. Then: P ⇠ P0

if and only if Th(P) = Th(P0).

Proof: Let P = (L, w) and P0 = (L0
, w

0) be finitely branching, where L = (W,!) and
(W 0

,!0). We first show the left to right direction, so assume that P ⇠ P0.
The proof is by induction on formulae. The only case which di↵ers from the standard

Hennessy-Milner theorem is the case for !A, so this is the only case we shall consider. Assume
w ⇠ w

0 and w |=!A. We need to show w

0 |=!A. From the semantic clause for !, w |=!A implies
�(w) ✓ A. If w ⇠ w

0, then �(w) = �

0(w0). Therefore �0(w0) ✓ A, and hence w

0 |=!A.
The proof for the other direction is more involved. For states x 2 W and x

0 2 W , we
write

x ⌘ x

0 i↵ Th((L, x)) = Th((L0
, x

0)).

We define the bisimilarity relation:

Z = {(x, x0) 2 W ⇥W 0 | x ⌘ x

0}

To prove w ⇠ w

0, we need to show:

– (w,w

0) 2 Z. This is immediate from the definition of Z.
– The relation Z respects the transition-restrictions: if (x, x0) 2 Z then �(x) = �

0(x0)

– The forth condition: if (x, x0) 2 Z and x

a�! y, then there exists a y

0 such that x

0 a�! y

0

and (y, y0) 2 Z.

74 Richard Prideaux Evans, Martin Berger

– The back condition: if (x, x0) 2 Z and x

0 a�! y

0, then there exists a y such that x

a�! y

and (y, y0) 2 Z.

To show that (x, x0) 2 Z implies �(x) = �

0(x0), we will argue by contraposition. Assume
�(x) 6= �

0(x0). Then either �0(x0) * �(x) or �(x) * �

0(x0). If �0(x0) * �(x), then x

0 2!�(x).
But x |=!�(x), so x and x

0 satisfy di↵erent sets of propositions and are not equivalent.
Similarly, if �(x) * �

0(x0) then x 2!�0(x0). But x

0 |=!�0(x0), so again x and x

0 satisfy
di↵erent sets of propositions and are not equivalent.

We will show the forth condition in detail. The back condition is very similar. To show

the forth condition, assume that x

a�! y and that (x, x0) 2 Z (i.e. x ⌘ x

0). We need to show

that 9y0 such that x

0 a�! y

0 and (y, y0) 2 Z (i.e. y ⌘ y

0).

Consider the set of y

0
i such that x

0 a�! y

0
i. Since x

a�! y, x |= hai>, and as x ⌘ x

0,
x

0 |= hai>, so we know this set is non-empty. Further, since (W 0
,!0) is finitely-branching,

there is only a finite set of such y

0
i, so we can list them y

0
1, ..., y

0
n, where n >= 1.

Now, in the Hennessy-Milner theorem for Hennessy-Milner logic, the proof proceeds as
follows: assume, for reductio, that of the y

0
1, ..., y

0
n, there is no y

0
i such that y ⌘ y

0
i. Then,

by the definition of ⌘, there must be formulae �1, ...,�n such that for all i in 1 to n:

y

0
i |= �i and y 2 �i

Now consider the formula:
[a](�1 _ ... _ �n)

As each y

0
i |= �i, x0 |= [a](�1 _ ... _ �n), but x does not satisfy this formula, as each �i is

not satisfied at y. Since there is a formula which x and x

0 do not agree on, x and x

0 are not
equivalent, contradicting our initial assumption.

But this proof cannot be used in cathoristic logic because it relies on a formula [a](�1 _
... _ �n) which cannot be expressed in cathoristic logic: Cathoristic logic does not include
the box operator or disjunction, so this formula is ruled out on two accounts. But we can
massage it into a form which is more amenable to cathoristic logic’s expressive resources:

[a](�1 _ ... _ �n) = ¬hai¬(�1 _ ... _ �n)
= ¬hai(¬�1 ^ ... ^ ¬�n)

Further, if the original formula [a](�1 _ ..._ �n) is true in x

0 but not in x, then its negation
will be true in x but not in x

0. So we have the following formula, true in x but not in x

0:

hai(¬�1 ^ ... ^ ¬�n)

The reason for massaging the formula in this way is so we can express it in cathoristic
logic (which does not have the box operator or disjunction). At this moment, the revised
formula is still outside cathoristic logic because it uses negation. But we are almost there: the
remaining negation is in innermost scope, and innermost scope negation can be simulated
in cathoristic logic by the ! operator.

We are assuming, for reductio, that of the y

0
1, ..., y

0
n, there is no y

0
i such that y ⌘ y

0
i.

But in cathoristic logic without negation, we cannot assume that each y

0
i has a formula �i

which is satisfied by y

0
i but not by y - it might instead be the other way round: �i may

be satisfied by y but not by y

0
i. So, without loss of generality, assume that y

0
1, ..., y

0
m fail

to satisfy formulae �1, ...,�m which y does satisfy, and that y

0
m+1, ..., y

0
n satisfy formulae

�m+1, ...,�n which y does not:

y |= �i and y

0
i 2 �i i = 1 to m

y 2 �j and y

0
j |= �j j = m+ 1 to n

The formula we will use to distinguish between x and x

0 is:

hai(
m̂

i=1

�i ^
n̂

j=m+1

neg(y,�j))

Cathoristic logic 75

Here, neg is a meta-language function that, given a state y and a formula �j , returns a
formula that is true in y but incompatible with �j . We will show that, since y 2 �j , it is
always possible to construct neg(y,�j) using the ! operator.

Consider the possible forms of �j :

– >: this case cannot occur since all models satisfy >.
– �1 ^ �2: we know y

0
j |= �1 ^ �2 and y 2 �1 ^ �2. There are three possibilities:

1. y 2 �1 and y |= �2. In this case, neg(y,�1 ^ �2) = neg(y,�1) ^ �2.
2. y |= �1 and y 2 �2. In this case, neg(y,�1 ^ �2) = �1 ^ neg(y,�2).
3. y 2 �1 and y 2 �2. In this case, neg(y,�1 ^ �2) = neg(y,�1) ^ neg(y,�2).

– !A: if y 2!A and y

0
j |=!A, then there is an action a 2 ⌃ �A such that y

a�! z for some z

but there is no such z such that y

0
j

a�! z. In this case, let neg(y,�j) = hai>.

– hai�. There are two possibilities:
1. y |= hai>. In this case, neg(y, hai�) =

V

y
a�!z

haineg(z,�).

2. y 2 hai>. In this case, neg(y, hai�) =!{b | 9z.y b�! z}. This set of bs is finite since
we are assuming the transition system is finitely-branching.

ut

y

z1

a
z2

a

w1

b

w2

c

y

0
j

z

0

a

w

0
1

b
w

0
2

c

Fig. 16: Worked example of neg. Note that the transition system on the left is non-

deterministic.

We continue with a worked example of neg. Consider y and y

0
j as in Figure 16. One formula

that is true in y

0
j but not in y is

hai(hbi> ^ hci>)

Now:

neg(y, hai(hbi> ^ hci>))

=
^

y
a�!z

haineg(z, hbi> ^ hci>)

= haineg(z1, hbi> ^ hci>) ^ haineg(z2, hbi> ^ hci>)

= hai(hbi> ^ neg(z1, hci>)) ^ haineg(z2, hbi> ^ hci>)

= hai(hbi> ^ neg(z1, hci>)) ^ hai(neg(z2, hbi>) ^ hci>)

= hai(hbi>^!{b}) ^ hai(neg(z2, hbi>) ^ hci>)

= hai(hbi>^!{b}) ^ hai(!{c} ^ hci>)

The resulting formula is true in y but not in y

0
j .

76 Richard Prideaux Evans, Martin Berger

B Omitted proofs

B.1 Proof of Lemma 5

If M |= � then M � simpl(�).

Proof: We shall show Th(simpl(�)) ✓ Th(M). The desired result will then follow by apply-
ing Theorem 1. We shall show that

If M |= � then Th(simpl(�)) ✓ Th(M)

by induction on �. In all the cases below, let simpl(�) = (L, w) and let M = (L0
, w

0). The
case where � = > is trivial. Next, assume � = hai . We know M |= hai and need to show

that Th(simpl(hai)) ✓ Th(M). Since (L0
, w

0) |= hai , there is an x

0 such that w0 a�! x

0 and
(L0

, x

0) |= . Now from the definition of simpl(), simpl(hai) is a model combining simpl()

with a new state w not appearing in simpl() with an arrow w

a�! x (where x is the start
state in simpl()), and �(w) = ⌃. Consider any sentence ⇠ such that simpl(hai) |= ⇠. Given
the construction of simpl(hai), ⇠ must be a conjunction of > and formulae of the form
hai⌧ . In the first case, (L0

, x

0) satisfies >; in the second case, (L0
, x

0) |= ⌧ by the induction
hypothesis and hence (L0

, w

0) |= hai⌧ .
Next, consider the case where � =!A, for some finite set A ⇢ ⌃. From the definition of

simpl(), simpl(!A) is a model with one state s, no transitions, with �(s) = A. Now the only
formulae that are true in simpl(!A) are conjunctions of > and !B, for supersets B ◆ A. If
M |=!A then by the semantic clause for !, �0(w0) ✓ A, hence M models all the formulae that
are true in simpl(!A).

Finally, consider the case where � = 1^ 2. Assume M |= 1 and M |= 2. We assume,
by the induction hypothesis that Th(simpl(1)) ✓ Th(M) and Th(simpl(2)) ✓ Th(M). We
need to show that Th(simpl(1 ^ 2)) ✓ Th(M). By the definition of simpl(), simpl(1 ^
 2) = simpl(1) u simpl(2). If simpl(1) and simpl(2) are inconsistent (see the definition
of inconsistent in Section 6.4) then M = ?. In this case, Th(simpl(1)^ simpl(2)) ✓ Th(?).
If, on the other hand, simpl(1) and simpl(2) are not inconsistent, we shall show that
Th(simpl(1 ^ 2)) ✓ Th(M) by reductio. Assume a formula ⇠ such that simpl(1 ^ 2) |=
⇠ but M 2 ⇠. Now ⇠ 6= > because all models satisfy >. ⇠ cannot be of the form hai⌧
because, by the construction of merge (see Section 6.4), all transitions in simpl(1 ^ 2) are
transitions from simpl(1) or simpl(2) and we know from the inductive hypothesis that
Th(simpl(1)) ✓ Th(M) and Th(simpl(2)) ✓ Th(M). ⇠ cannot be !A for some A ⇢ ⌃,
because, from the construction of merge, all state-labellings in simpl(1 ^ 2) are no more
specific than the corresponding state-labellings in simpl(1) and simpl(2), and we know
from the inductive hypothesis that Th(simpl(1)) ✓ Th(M) and Th(simpl(2)) ✓ Th(M).
Finally, ⇠ cannot be ⇠1^xi2 because the same argument applies to xi1 and xi2 individually.
We have exhausted the possible forms of ⇠, so conclude that there is no formula ⇠ such that
simpl(1 ^ 2) |= ⇠ but M 2 ⇠. Hence Th(simpl(1 ^ 2)) ✓ Th(M). ut

B.2 Proof of Lemma 6

If � |= then simpl(�) � simpl()

Proof: By Theorem 1, simpl(�) � simpl() i↵ Th(simpl()) ✓ Th(simpl(�)). Assume � |= ,
and assume ⇠ 2 Th(simpl()). We must show ⇠ 2 Th(simpl(�)). Now simpl() is constructed
so that:

simpl() =
G

{M | M |= }

So ⇠ 2 Th(simpl()) i↵ for all models M, M |= implies M |= ⇠. We must show that M |= �

implies M |= ⇠ for all models M. Assume M |= �. Then since � |= , M |= . But since
⇠ 2 Th(simpl()), M |= ⇠ also.

ut

Cathoristic logic 77

B.3 Proof of Lemma 7

If I() ✓ I(�) then J (simpl()) ✓ J (simpl(�))

Proof: Assume I() ✓ I(�) and M u simpl() = ?. We need to show M u simpl(�) =
?. If I() ✓ I(�) then for all formulae ⇠, if simpl(⇠) u simpl() = ? then simpl(⇠) u
simpl(�) = ?. Let ⇠ be char(M). Given that M u simpl() = ? and simpl(char(M)) � M,
simpl(char(M)) u simpl() = ?. Then as I() ✓ I(�), simpl(char(M)) u simpl(�) = ?. Now
as M � simpl(char(M)), M u simpl(�) = ?.

ut

	Introduction
	Material incompatibility and negation
	Negation as the minimal incompatible
	Inferences between atomic sentences
	Wittgenstein's vision of a logic of elementary propositions
	Outline

	Mathematical preliminaries
	Cathoristic logic
	Syntax
	Semantics

	Inferences between atomic sentences
	Intra-atomic inferences in cathoristic logic
	Intra-atomic inferences in first-order logic

	Cathoristic logic as a language for knowledge representation
	Representing facts in cathoristic logic
	Simpler postconditions
	Using tantum ! to optimise preconditions

	Semantics and Decision Procedure
	Semantic characterisation of elementary equivalence
	Quotienting models
	The bounded lattice of models
	Computing the least upper bound of the models that satisfy a formula
	A decision procedure for cathoristic logic
	Incompatibility semantics

	Inference Rules
	Example inferences
	!-Left and !-Right
	Characteristic formulae
	Soundness and completeness
	Proofs of Lemmas 8, 9 and 10

	Compactness and the standard translation to first-order logic
	Translating from cathoristic to first-order logic
	Compactness by translation

	Cathoristic logic and negation
	Syntax and semantics
	Decision procedure

	Quantified cathoristic logic
	Related work
	Brandom's incompatibility semantics
	Peregrin on defining a negation operator
	Peregrin and Turbanti on defining a necessity operator
	Linear logic
	Process calculus
	Linguistics

	Open problems
	Excluded middle
	Understanding the expressive strength of cathoristic logic
	Acknowledgements

	Alternative semantics for cathoristic logic
	Pure cathoristic models
	Relationship between pure and cathoristic models
	Non-determinism and cathoristic models
	Semantic characterisation of elementary equivalence

	Omitted proofs
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

