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BENJAMIN Eva Modality and Contextuality
in Topos Quantum Theory

Abstract.  Topos quantum theory (TQT) represents a whole new approach to the formal-
ization of non-relativistic quantum theory. It is well known that TQT replaces the ortho-
modular quantum logic of the traditional Hilbert space formalism with a new intuitionistic
logic that arises naturally from the topos theoretic structure of the theory. However, it is
less well known that TQT also has a dual logical structure that is paraconsistent. In this
paper, we investigate the relationship between these two logical structures and study the
implications of this relationship for the definition of modal operators in TQT.
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1. Introduction

Traditionally, quantum logic is a field concerned primarily with the study
of the orthomodular lattice of projection operators onto the Hilbert space
of a quantum system. In this sense, quantum logic can be characterized as
the study of the logical structure of the Hilbert space formalism of quantum
mechanics. However, in recent years, new approaches to the formalization of
quantum mechanics have proliferated, and some of these new formalizations
come with in-built logical structures of their own that are not entirely well
described by the lattice of projections on a Hilbert space.

In this paper, we will be examining some aspects of the logical struc-
ture that arises naturally from the topos-theoretic reformulation of quantum
mechanics. Specifically, we will be concerned with the problem of providing
a precise formal characterization of the relationship between the paracon-
sistent and intuitionistic aspects of this structure. We will subsequently go
on to study the implications of this relationship for the problem of defining
modal operators in TQT.!»2

'T use the name ‘topos quantum theory’ to refer to the topos theoretic approach to
quantum theory developed primarily by Isham and Doéring. In the literature, this is some-
times referred to as the ‘contravariant approach’, in contrast to the ‘covariant approach’
developed, for example, in [6].

2 A quick caveat is needed here. Please note that this paper will be concerned purely
with the algebraic aspects of the logical structure of TQT, as opposed to the topos theoretic
aspects that utilize and emphasize the internal language of the ambient topos.
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In Section 2 we will give a short introductory account of some of the
key concepts and results from the topos theoretic reformulation of quantum
mechanics. In Section 3, we will describe the logical structure that arises
naturally from this reformulation, paying special attention to the fact that
the algebra of propositions associated with a quantum system is not an
orthomodular lattice, but rather a complete bi-Heyting algebra. Section 4
contains the main formal results of the paper, and provides a characteriza-
tion of the relationship between the paraconsistent and intuitionistic aspects
of the logic of TQT. In Section 5, we use these results to show that the most
intuitive way of defining modal operators in TQT trivializes.

2. Topos Quantum Theory

Over the past twenty years, the topos theoretic reformulation of quantum
theory (TQT) has been developed by Isham, Butterfield and Doéring (e.g
[1,2,7]), amongst others.> TQT was originally motivated largely by the
Kochen-Specker theorem, which states the impossibility of simultaneously
assigning classical truth values to all of the projections onto a Hilbert space
(of dimension greater than 2) in a way that respects the functional rela-
tions between those projections. The motivating factor here is that the
Kochen specker theorem tells us (modulo some assumptions about non-
contextuality) that given a quantum system @, there will always exist propo-
sitions* that can be asserted of @) that have no determinate truth value, and
that this fact renders any attempt at understanding quantum mechanics as
describing how @ ‘really is’ impossible. Thus, we read

“Any attempt to construct a realist interpretation of quantum theory
founders on the Kochen—Specker theorem” [7]

Topos quantum theory can, for present purposes, be seen as the project to
provide a new formalism for quantum theory that circumvents the Kochen-
Specker theorem, and so is amenable to a realist interpretation. We will now

3For a thorough book length introduction to TQT, see [3].

4Note that by a ‘proposition that can be asserted of a physical system’ or ‘physical
proposition’, we will always mean a proposition of the form A € A, i.e. the value of the
physical quantity A is in the Borel subset A of the reals. Of course, in quantum theory,
such propositions are in bijective correspondence with the projection operators onto the
Hilbert space of the system in question, by the spectral theorem.
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sketch how this is achieved, working by analogy with classical physics, the
archetypal realist physical theory.

In classical physics, the classical system S being studied is assigned a
phase space P, representing the space of possible states of the system. A
physical quantity A is then formalized as a real-valued function f4 on S,
taking each possible state A of S to the value that S would have for A if its
state were . The proposition A € A (‘the value of A is in the Borel subset
A’) can then be represented by the inverse image of A under f4, i.e. we
represent the proposition A € A with the set of all possible states A of .S
such that f4(\) € A. So the algebra of propositions that can be asserted
of S is just the algebra of all sets fgl(A), for a physical quantity A and a
Borel subset A. This algebra is Boolean and will be denoted ‘Sub(P)’. In
classical physics, possible states of .S and Boolean algebra homomorphisms
from Sub(P) to {0,1} are in bijective correspondence. Specifically, given a
state ¢ € P, define hy, : Sub(P) — {0,1} by hy(f5'(A)) = 1 if and only if
fa(¥) € A, and 0 otherwise.

Note that a classical state, as described above, can also be character-
ized as an assignment of a definite real-number value to every physical
quantity associated with the system being described. Thus, an equivalent
statement of the Kochen—Specker theorem is that it is impossible to assign
definite values to all of the physical quantities associated with a quantum
system in a way that preserves the functional relationships between those
quantities.

Now, mathematically, it is well known that the root cause of the Kochen—
Specker theorem is the existence of non-commuting self-adjoint operators
representing incompatible observables (specifically, non-commuting observ-
ables are necessary for the application of the Kochen—Specker theorem).
Thus, if we let B(H) represent the set of all bounded self-adjoint oper-
ators on a fixed Hilbert space H, we know that since B(H) contains non-
commuting operators, the Kochen—Specker theorem will (usually) apply and
it will be impossible to assign definite values to all of the operators in B(H)
in a consistent way. However, if we take any Abelian sub-algebra of V' of
B(H), the Kochen—Specker theorem won’t apply to V since all of V's oper-
ators are mutually commuting. Thus, if we were to consider a quantum
system solely from the perspective of the physical quantities represented by
operators in V', it would be possible to define a state for the system, in the
sense that it would be possible to assign that system definite values for all
of the observables in V' in a satisfactory way.
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To be precise, what we do is consider the set V(H) of all Abelian Von-
Neumann® sub-algebras of B(H). Intuitively, each V' € V(H) represents a
‘classical perspective’ on the quantum system, in the sense that the Kochen-
Specker theorem does not rule out the existence of a state for the system,
seen only from the perspective of V', i.e. we can always, in principle, simul-
taneously assign classical truth-values to all of the projection operators in
V' in a consistent manner. One way to see this is to note that the lattice
P(V) of all projection operators in any Abelian Von-Neumann algebra V'
will always be a Boolean algebra, and so there will exist a Boolean algebra
homomorphism from P(V') into {0,1}.

The existence of states for any V' € V(H) is expressed technically by
the fact that any Abelian Von-Neumann algebra V' comes equipped with
a Gelfand spectrum, which consists of the set of all homomorphisms from
V into the complex numbers, i.e. an element of the Gelfand spectrum of V'
is just a way of assigning complex-number values to all of the observables
in V in a way that respects their functional and ordering relations. By
analogy with classical physics, we can think of the Gelfand spectrum of
each V € V(H) a a kind of ‘local state space’ of the system seen from the
classical perspective represented by V.

The inclusion relation turns V(H) into a partially ordered set. In what
follows, we will treat V (H) as a skeletal category.® All this leads us to the
following definition,

DEFINITION 2.1. The spectral presheaf’” ¥ on V(H) is defined by

Objects: Given V € V(H), the component X, of 3 at V is the Gelfand
spectrum of V.
Arrows: Given i : V' CV, ¥, Xy — Xy
A= Ay

Intuitively, the spectral presheaf takes each classical perspective on the
quantum system to the local state space associated with that classical per-
spective. Also, given a classical perspective V' whose states encode more
information than those of another classical perspective V' (in this case,

5The technical details of Von-Neumann algebras are largely irrelevant for present pur-
poses, and any important technical facts will be noted along the way.

SA category whose objects are just the elements of V(H) and whose arrows are just
the inclusion relations between the elements of V(H), i.e. there exists an arrow i : V' — V
if and only if V' C V.

"By a presheaf on V(H), we will mean a contravariant set-valued functor on V (H).
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V' C V), the spectral presheaf takes a state A for V' and throws away any
information that ‘can’t be seen’ by V' (i.e. it returns the restriction of A
to V).

Now, in topos quantum theory, the spectral presheaf is interpreted as
the state space of the quantum system being described. The idea is that for
each classical perspective V', Xy, is the ‘local state space’ for V, and X is
the result of ‘pasting’ all these local states spaces together into one global
object. One of the most important technical results in TQT is the following,

THEOREM 2.2. (Isham and Butterfield [7]) The Kochen-Specker theorem is
equivalent to the fact that the spectral presheaf on V(H) (for dim(H) > 3)
has no global elements.

3. Topos Quantum Logic

In Section 2, we saw how topos quantum theory provides us with a new
definition of the quantum state space. We will now explore the way in which
this state space carries a natural logical structure that differs significantly
from traditional quantum logic.

The first question that we need to ask is how we should go about rep-
resenting a proposition of the form A € A, given our new definition of the
quantum state space. Recall that in classical physics, a proposition corre-
sponds to a special kind of subset of the system’s phase space (a measurable
subset). So, extending the analogy with classical physics, we want to repre-
sent a proposition as a special kind of sub-object of the spectral presheaf.
How do we go about doing this? The natural thing to do would be to go
to each V € V(H) and find the part of V’s Gelfand spectrum that makes
the projection operator P corresponding to the proposition in question true.
However, this will not work since there will generally be some V € V(H)
such that P ¢ V| and so the elements of V’s Gelfand spectrum won’t be
defined on P. So, we do the next best thing, i.e. we go to each V € V(H)
and find V’s best approzimation to P. Specifically, we define

DEFINITION 3.1. The outer daseinisation of a projection operator P for a
classical perspective V' € V(H) is defined to be the projection operator given
by

6°(Pyv = N\{Q € PV)|Q > P}

where P(V) is the set of all projection operators in V.

The idea is that the outer daseinisation of P at V is the strongest propo-
sition that can be asserted from the perspective of V' and is implied by P.
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For example, it might be that P asserts that the momentum of the system
is in a particular range, and V' is a classical perspective from which we can’t
know the momentum to the degree of accuracy asserted by P (maybe V
allows to talk about position to a relatively high degree of accuracy), and
so the outer daseinisation of P at V is the most precise approximation that
we can make to the momentum of the system without going beyond what
we can know from the perspective represented by V.

Returning to the analogy with classical physics, if we think of 6°(P)y as
a ‘local proposition’, then, as in classical physics, we can identify this local
proposition with the part of V’s local state space that makes it true.

DEFINITION 3.2. Let V € V(H), P € P(H) (where P(H) is the lattice of
all projection operators on H). Then define

Sse(pyy = {A € Zy[M°(P)v) = 1}

i.e. S50(p), is the set of all V's possible states that make V’s approximation
to P true.

We are now in a position to represent any quantum proposition as a
sub-object of the spectral presheaf.

DEFINITION 3.3. Let P € P(H). Then we define P’s outer daseinisation
presheaf 0°(P) on V(H) by

Objects: Given V € V(H), the component 0°(P),, of 0°(P) at V' is given
by 5O(P)V = S(go(p)v

Arrows: Given i : V! C V', §°(P). : Sso(pyy — Sso(py,,

— v/ v

/\ — )\’V/

Note that this is well defined since if A € Sso(py, , then A(6°(P)y) = 1,
and since V/ C V', we have

(P = NQ € PMIQ = P} < \[Q € PV)IQ 2 P} = 5°(P)yv-

i.e. (50(P)V < 5O(P)V/.

So, since A is a homomorphism and A(6°(P)y) = 1, we have that
A(0°(P)y+) = 1, proving that the presheaf is well defined.

Note that we refer to the general fact that 6°(P)y < 6°(P)y for V! C V
as ‘coarse graining’.

Thus, in analogy with classical physics, we represent a proposition as a
collection of subsets of local state spaces, one for each V € V(H). Specif-
ically, for V' € V(H), we choose the subset of V’s local state space that
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makes V'’s approximation to the proposition true. The following definition
will be useful,

DEFINITION 3.4. A sub-object (sub-presheaf) S of the spectral presheaf ¥
is a presheaf on V(H) such that (i) VV € V(H)(S, C X,) (ii) Given
i: V' C V, ivlyv(ﬁv) - ﬁvl

Now, it should be noted that for any P € P(H) and for any V € V(H),
the set Sso(p),, € Xy is always a clopen subset of V’s Gelfand spectrum
Yy (where X, is given the weak *-topology). Together with Def 3.4, this
motivates the following definition,

DEFINITION 3.5. A clopen sub-object S of the spectral presheaf is a subob-
ject S of ¥ such that VV € V(H) Sy is a clopen subset of X,

Thus, in topos quantum theory, we represent propositions as clopen sub-
objects of the spectral presheaf. Note that for each V € V(H), the set
cl(Xy,) of clopen subsets of V’s Gelfand spectrum is in bijective correspon-
dence with the set P(V') of all projection operators in V' (by Gelfand dual-
ity). Thus, any clopen subobject S of the spectral presheaf defines a ‘local
proposition” Ps,, € P(V) for each classical perspective V. It is easily seen
that coarse graining will apply to these local propositions. For, if V/ C V
then ; ,  (Sy) € Sy. So, given A € Xy, such that A(Ps, ) = 1, we have
that A\ € Sy and hence Ay € Sy, which implies A|y/(Ps,,) = 1, ie.
A(Ps,,,) = 1. This proves that Ps, < Ps,,.

So we can think of S as a kind of ‘global proposition’ whose local compo-
nents get more general as we lose information by moving to smaller classical
perspectives. Note that it will not generally hold that S = 6°(P) for some
P € P(H). The outer daseinisation presheaves are only a special subclass
of the clopen sub-objects of the spectral presheaf. By interpreting the set
Sube(X) of all clopen sub-objects of the spectral presheaf as the set of all
physical propositions that can be made about the quantum system, we are
obtaining a logical structure that is strictly richer than that of traditional
quantum logic. However, it should be noted that the problem of providing
a physical interpretation for these new physical propositions that don’t cor-
respond to projection operators is a significant one that has not yet been
addressed in the literature.

The natural question to ask now is “what is the algebraic structure of
Sube(X) 77 To answer this, we begin by defining a lattice structure on
Sube(X) in the following way,

Given S, T € suby(X) : S<T - VW eV(H): S, CTy)
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We define the meet and join operations component-wise,

For any family (S,);cr, for any V € V(H),

( A si> - int (ﬂ Sw) , (\/ Sy = ds(|J SW>

icl il icl icl

where int and cls are the topological interior and closure operations, respec-
tively, which are required in order to ensure that the lattice is complete (since
the arbitrary of intersection of clopen sets is not necessarily open, and the
arbitrary union of clopen sets is not necessarily closed.)

PROPOSITION 3.6. (Isham and Déring [2]) The operations defined above turn
Subei(X) into a complete distributive lattice.

The top and bottom elements, 1 and 0, of Sub.;(X) are just the presheaves
that give 3y, and () respectively, VV € V(H).

Thus, the logic that is obtained directly from the topos theoretic formu-
lation of quantum mechanics is distributive, unlike the traditional quantum
logic that arises from the Hilbert space formalism, which is only orthomod-
ular. Distributivity allows us to define a canonical implication connective =
on Sub.(X) with the identifying property

RAS<T < R<(S=T).
So that
S=1T=\/{R € Suby(Z)|RNS < T}

Of course, = turns Sub.(X) into a complete Heyting algebra. So the logic
that arises naturally from the topos theoretic formalization of quantum the-
ory is intuitionistic. The intuitionsitic negation is obtained in the standard
way, by defining
S=58=0
This implies that =S is the largest element of Sub.(X) such that
-SAS=0.
So — has all the usual important properties of an intuitionistic negation
operation, i.e.
S < T implies =T < =S
-S> 8
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However, it is also possible to define another algebraic structure on the
lattice Sub.;(X), dual to the Heyting algebraic structure defined above. First,
we need the following definitions,

DEFINITION 3.7. A co-Heyting algebra is a distributive lattice L with top and
bottom elements (1 and 0) that is equipped with a binary operation (called
the ‘co-Heyting supplement operation’) < such that for any A, B,C € L

(A=B)<C+— A<BVC
Given a co-Heyting algebra L, it is possible to define a corresponding
co-Heyting negation operation ~ by setting
~A=1«<A
It is easy to see that ~ A has the defining property of being the small-
est element of L such that A V ~ A = 1. Generally, ~ has the following
important properties,
A< Bimplies ~B<~ A
~~ A< A
~ANA>O

Crucially, while the Heyting negation satisfies the law of non contradic-
tion but generally violates the law of excluded middle, the co-Heyting nega-
tion satisfies excluded middle but generally violates non-contradiction. Thus,
while Heyting algebras are naturally used to provide algebraic semantics for
intuitionistic logics, co-Heyting algebras are naturally used to provide the
algebraic semantics for various kinds of paraconsistent logic. Now, returning
to the task at hand, it is possible to show (for details see [1]) that as well as
being a complete Heyting algebra, Sub.(X) is also a complete co-Heyting
algebra.

Specifically, we can define the operation < on Sub.(X) by

(8 = 1) = \{R € Subu(L)|S < TV R}
The connective < has the identifying property
S<=T)<R-S<TVR
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This proves that < is a co-Heyting supplement operation and hence that
Sube(X) is a complete co-Heyting algebra. Thus, we can define a co-Heyting
negation ~ by

~S=E<«=5)
So ~ S is the least element of Sub.(X) such that
~SvS=%
Thus, we have

THEOREM 3.8. (Déring [1]) Sub.(X), equipped with the Heyting implication
and co-Heyting supplement defined above, is both a complete Heyting algebra
and a complete co-Heyting algebra, i.e. it is a complete bi-Heyting algebra.

Theorem 3.8 raises some interesting question about the nature of the
logic that has been obtained. One important question concerns the physical
interpretation of the two new negations, and the relationship between them.
Specifically, it would be interesting to know when, if ever, the two negations
coincide, and whether the subset of Sub.(X) on which the two negations
agree corresponds to any physically significant property. This is the question
to which we will turn in the following section.

4. Complemented Subobjects

DEFINITION 4.1. Given a complete bi-Heyting algebra B, equipped with
intuitionistic and paraconsistent negations — and ~, we call an element
b € B ‘complemented’ if and only if b =~ b.

Intuitively, the complemented elements of a bi-Heyting algebra give us
information about where the paraconsistent and intuitionistic logical struc-
tures ‘agree’. Following this intuition, we will now attempt to provide a
characterization of complemented elements of Sub.;(X).

PROPOSITION 4.2. (Déring [1]) Let S € Sube(X). Then, for any V € V(H),
the projection operators P-g . and P.g,, corresponding to =S and ~ S at
V' are given by

Pg,=T—= \/ Ps,,.Pus, = \/ (°(T—Ps,))
V'emy VEMy

where my represents the set of all minimal Abelian Von Neumann subal-
gebras of V., My represents the set of all maximal Abelian Von Neumann
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superalgebras of V. and T denotes the top element of P(H), i.e. the unit
operator (we also let L represent the bottom element of P(H), i.e. the zero
operator).

So the proposition that =S corresponds to at V' is not the complement
of the proposition that S corresponds to at V. Rather, it is the complement
of the disjunction of all of S’s coarse grainings of the proposition that S
corresponds to at V. Thus, P-g, , does not just say that Ps , is false. It also
says that there any way of generalizing Ps , to a less informative classical
perspective is also false. On the other hand, the proposition that corresponds
to ~ S at V can be interpreted as saying, from the classical perspective
represented by V', that at least one of the ‘precisifications’ or ‘fine grainings’
of the proposition that S corresponds to at V' is false.

DEFINITION 4.3. A clopen subobject S of ¥ is uniform if and only if VV/, V' €
V(H), if V' C V, then Py, = Ps_ .

PROPOSITION 4.4. A clopen subobject S of ¥ is complemented if and only
if it is uniform.

PROOF. Suppose that S is complemented. Then, we have
DOV eVENT = \/ Ps,, = \/ (T~ Ps,),
Viemy VEMV

Fix V € V(H), and let V € My . Then, by coarse graining,

Ps, < Ps, < Ps,, for any V' € my. So, conversely

T—-Ps,>T~-Ps, >T—Ps,,
This proves

(i) (T =Ps,)v 2T —Ps, > T —Ps,

Note that, since V and V'’ were arbitrary, (i) holds for any V € My and
any V' € my. Conversely, the left hand side of (*) is just Ay, T —
Ps.,,. So, by (*), we know that for any V' € my and for any V' € My,
the following holds,
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(i) T—Ps, >06°(T —Ps,)v
Combining (i) and (ii), we have
(iii) (VV € V(H))(VV' € my)(VV € My) T — Pg,, = 6°(T — Ps_)v

Now, suppose that we can find V,V' € V(H), V' C V, such that Ps , #
Pg ,. Then we have T — Ps,, # T — Ps . Thus, we can find V,,, € my and
Vi € My satisfying V,,, C V' CV C Vi such that

6O(T_P§VM)VZT_P§VM ZT—PEV?&T—Pg‘/,ZT—PﬁVm

But this contradicts (iii). So there can’t be V.V’ € V(H) such that
V'CVand Sy # Sy/. So S is uniform.

Conversely, let S be uniform. Then, of course, for any V € V(H),V' €
mv,VN S Mv, T_Pﬁv/ = T_Pﬁv = T_Pﬁvw- So

\/ ¢(T-Ps,.)y= \/ T-Ps,.=T-Py,=T- \/ Ps,
V~eMy V~eMy Viemy

But this proves that for any V € V(H), P-s, = P.s,,. So S is comple-
mented. This completes the proof.

Proposition 4.4 tells us that the two negations on Sub.(X) coincide on
a subobject S if and only if S is constant in the sense that S corresponds
to the same local proposition for any pair of classical perspectives that are
related by inclusion. In this sense, complemented subobjects are precisely
those subobjects that ‘don’t need to approximate’.

LEMMA 4.5. If S € Suby(X) is complemented, then VV € V(H) (Ps, =T
or Ps, = 1).

PRrROOF. Let S be complemented. Then, by the previous proposition, it is
uniform. So, given V' C V € V(H), Ps, = Ps . Now, let V € V(H)
be such that P(V) contains two elements, P and @, satisfying P # @,
P+ T-Q,Q # T — P. Then, V has minimal Abelian subalgebras Vp
and Vi, where Vp is the minimal Abelian subalgebra generated by P (and
similarly for Q). Then P(Vp)NP(Vy) = {T, L}. Now, since S is uniform, we
have Pﬁvp = Pﬁv = P§VQ . So P@V € P(Vp)ﬁP(VQ) = {T, J_}. So ng =1
or Ps, = T.If P(V) does not contain any elements like P and @ above,
then V' is the minimal Abelian subalgebra generated by some P € P(H). But
then V will be contained in some maximal superalgebra V' which contains
some other projection Q € P(V) satisfying P Q, P# T —-Q,Q # T —P.
So the minimal Abelian algebra Vg generated by @ is a subalgebra of V.
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So, since S is uniform, Ps, = Ps, = P§VQ. Again this proves that either
PgV:J_Ol“PEV:T. |

So, if S is complemented, then at any given classical perspective V', the
physical proposition to which S corresponds will be either a contradiction
or a tautology. S will never correspond to a physically significant and non-
trivial proposition. We are now ready to prove the key theorem that makes
the relationship between the Heyting and co-Heyting negations of Sub.;(X)
clear.

THEOREM 4.6. The only complemented elements of Suby(X) are the top
and bottom elements 1 = 0°(T) and 0 = 6°(L), respectively.

PROOF. Let S € Sub.(X) be complemented. Then, by lemma 4.5, we know
that for any V' € V(H), either Ps, = T or Ps,, = L. Now, suppose towards
contradiction that there exist V' and V’ such that Ps, = T and Ps , = L.
Then, let V7 be a minimal subalgebra of V', generated by a single projection
P, and the identity, and let V5 be a minimal subalgebra of V' generated by
a single projection P, and the identity. Then, since S is complemented, it is
also uniform, which guarantees that Ps, =T and Ps, = L. |

Now, if P, and P, commute, then the algebra W generated by P, P»
and the identity is a joint super-algebra of Vi and V;, which means that
Ps, = 1 and Ps, = T, by uniformity of S, which is a contradiction. So
P and P, do not commute.

Since P; and P> do not commute, find a non-zero P3 that is orthogonal to
both of them. Let V3 be generated by P;, P; and T. Then, since V; C V3, we
have PS = T. Let V be the algebra generated by P; and T. Then V; C V3.
SO PS = T Let V5 be generated by P, P3 and T. Then this V4 C V5, so
PSV = T But V5, C V3, so Pg = 1. Contradiction. So there cannot exist
V, V' such that Ps, =T and PS v = L. So either VV € V(H)(Ps, = T)
or VV € V(H)(Ps,, = 1), i.e. eltherﬁ—lorﬁ—g

Theorem 4.6 provides a definite characterization of the relationship
between the paraconsistent and intuitionistic aspects of the logic of TQT.
In particular, we now know that these two aspects ‘only agree at the limits’.
In the following section, we will study the implications of this result for the
definition of modal operators on Sub.(X).

5. Modal Operators in TQT

In [8], it was shown that any complete bi-Heyting algebra comes equipped
with a canonical modal structure that is obtained through the iteration of
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the Heyting and co-Heyting negations of the algebra. We will now give a brief
overview of this modal structure. First, we need the following definitions,

DEFINITION 5.1. An interior operator [J on a complete lattice L with an
implication connective — is an operator satisfying

() (Vo€ D)0z <z
(i) O1 =1

(iii) (Vz,y € L) Oz — y) = (O — Oy).
(iv) (Vo € L)00x = O

(v) If 2 < y then Oz < Oy

DEFINITION 5.2. A closure operator { on a complete lattice L with an
implication connective — is an operator satisfying

(i) (Vo€ L)0z >

(ii) 00 =0

(iii) (Vz,y € L) O(z — y) = (Oz — Qy).
(iv) (Vo € L)0Oz = Oz

(v) If 2 < y then Oz < Oy

Of course, the notions of ‘interior’ and ‘closure’ operators, as defined
above, are the lattice-theoretic translations of the necessity and possibility
operators of modal logic (54 in particular). So, in order to study modal
notions in the context of TQT, we will attempt to find a canonical procedure
for defining interior and closure operators on Suby(X). First, we need to
see how all complete bi-Heyting algebras come equipped with canonically
defined interior and closure operators.

Fix a complete bi-Heyting algebra B with Heyting negation — and co-
Heyting negation ~. Then, we can make the following inductive definition,
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DEFINITION 5.3. We define the operators OJ,,, ¢,, : B — B (n € N) by
Lo = 0o =idp
Dn+1 = Dna <>n+1 = _‘Qn

So O, and ¢, are essentially the operations of iterating = ~ and ~ = n
times, respectively. Now, we obtain the desired modal operators by taking
the limit over n, i.e.

DEFINITION 5.4. We define the operators [1,) : B — B by

a = /\ O,a
neN
Oa=\/ Ona
neN

for all a € B.

It is possible to show that [J and ¢, as defined above, satisfy the defining
features of interior and closure operators, respectively. Specifically, we have

PRrROPOSITION 5.5. (Reyes and Zolfaghari [8]) The operators O and & satisfy
the following properties®

(i) O and O are order preserving
(ii) Ha < a < Qa (VYa € B)
(iii) O0a = Oa and O0Qa = Qa (Va € B).

PRrROPOSITION 5.6. (Reyes and Zolfaghari [8]) Let a € B. Then UOa is the
greatest complemented x € B such that x < a and Qa is the least comple-
mented x € B such that © > a.

Combined with Theorem 4.6, Proposition 5.6 immediately implies that
this way of defining modal operators will trivialize for the bi-Heyting algebra
Sube(X) (the image of the [J and ¢ operators will just be {0, 1}). However,
there may yet be a way around this triviality. Specifically, rather than con-
sidering the usual case where we build the spectral presheaf over the poset
of Abelian subalgebras of the set of B(H) of all bounded operators on the
Hilbert space H, let’s suppose that we begin with a Von Neumann alge-
bra W with a non-trivial center, C'(W), and let V(W) represent the poset
of all Abelian Von-Neumann subalgebras of W. Then, as before, we can

8We have not included condition (iii) from Def 4.1/Def 4.2 since we are using both the
Heyting and co-Heyting algebraic structure of B, and so have not chosen a single privileged
implication connective.
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build the spectral presheaf over V(W) and Sub.;(X) will still be a complete
bi-Heyting algebra, and we obtain the following characterization of comple-
mented clopen-subobjects,

THEOREM 5.7. Let S € Suby(X). Then S is complemented if and only if
there exists some P € C(W) such that VV € V(H), Ps, = P.

PRrOOF. First, let P € C(W) be such that VV' € V(W)(P = Ps,, ). Then,
using the formulae for the Heyting and bi-Heyting negations, we obtain

Pg,=T— \/ Ps, =T-P
Viemy

Pus, = \/ 0°(T—Ps,)y=T-P
VeMy
for arbitrary V' € V(W), which proves that S is complemented, as desired.
Conversely, suppose that S is complemented. It is easily checked that the
proof of proposition 5.3 also applies in the new generalized setting. In partic-
ular, we can conclude that S is uniform. We then apply the same argument
used in the proof of lemma 5.4 to show that Ps, € C(W) will always hold.
Finally, we use the argument from the proof of theorem 5.5 to complete the
proof. [

Theorem 5.7 gives us a new perspective on the philosophical significance
of Theorem 4.6. Specifically, it tells us that the only reason that the modal
structure of Sub.(X) is generally trivial is that B(H) generally has a trivial
center. In the special cases where we build our spectral presheaf over an
algebra with a non-trivial center, we obtain a non-trivial modal structure
that encodes all the information about when the Heyting and co-Heyting
negations coincide.

6. Modality and Contextuality in TQT and Hilbert Space

What Theorem 5.7 tells us is that the complemented clopen subobjects
are precisely those that correspond to physical propositions that are not
effected by quantum contextuality, i.e. they have the same meaning in every
classical perspective, and can always be meaningfully asserted, regardless of
the measurement context. Thus, the modal operators act by taking a clopen
subobject to its best non-contextual approximations. Essentially, the modal
operators in TQT can be thought of as ‘contextuality annihilators’ that
serve to replace physical propositions with their best possible non-contextual
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substitutes. At this point, it will be useful to provide a quick overview of
some relevant results concerning the definition of modal operators on the
orthomodular projection lattices of traditional quantum logic.

The problem of defining interior and closure operators on an orthomodu-
lar lattice P(H) of projection operators on a Hilbert space H was thoroughly
studied by Herman and Piziak [5]. They managed to prove the following
important result,

THEOREM 6.1. (Herman and Piziak [5]) Let L be an orthomodular lattice.
Then the following objects are all in bijective correspondence,

(i) Interior operators on L
(ii) Closure operators on L

(iii) Strong implication connectives on L

Where ‘strong implications’ are lattice theoretic implication connectives
on L satisfying some intuitive properties. For example, the Sasaki hook is
an instance of a strong implication connective on an orthomodular lattice.

This theorem raises a significant problem for formalizing modal notions in
the context of traditional quantum logic. Specifically, it tells us that there
are just as many ways to formalize quantum necessity and possibility as
there are ways to formalize the notion of implication in quantum logic. But
it is well know that there is very little consensus in the literature concerning
the choice of quantum implication connectives. Thus, it seems that, in the
context of traditional quantum logic, the problem of finding a philosophi-
cally and technically adequate formalization of modality can only be solved
simultaneously with the much more deeply entrenched and hotly contested
issue of choosing a privileged implication connective.

In the literature, the problem of choosing a single formalization of possi-
bility and necessity in the context of traditional quantum logic has largely
been ignored. However, in recent years, there has been one significant
attempt to address the issue, due to De Ronde, Freytes and Domenech [4].

Specifically, they identify a particular choice of closure operator as being
physically and philosophically important. In particular, they choose to define
the closure operator ¢ on the orthomodular projection lattice P(H) in the
following way,

Or = N{z € Z(P(H))|z < 2}

where Z(P(H)) is the center of P(H), i.e. the set of all elements of P(H)
which commute with all other elements. It is well known that the center of
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P(H) will be a complete Boolean algebra, and so Ox € Z(P(H)) will always
hold.

Philosophically, the justification of this choice of closure operator is jus-
tified by the idea that in quantum contexts, modal notions should be used
to mitigate the philosophically problematic consequences of quantum con-
textuality. The key idea is that the Kochen Specker theorem tells us that
we cannot simultaneously talk about all the propositions represented by ele-
ments of P(H), but we may at least be able to talk about whether or not
those propositions are possible (possibly true). Thus, we read

...one may predicate truth or falsity of all possibilities at the same time,
i.e., possibilities allow an interpretation in a Boolean algebra. [4]

The hope is that we may be able to avoid quantum contextuality by
‘modalising’ our discourse about quantum systems, and prefixing our phys-
ical propositions with modal operators. Given this motivation, it is very
natural to formalize modal propositions as elements of the center of P(H),
since the central elements are exactly those elements that correspond to
propositions which are immune to the effects of contextuality, i.e. they are
the propositions that can always be meaningfully asserted from any mea-
surement context.

Now, it seems that this approach to defining modal operators in Hilbert
space quantum theory has exactly the same kind of philosophical interpre-
tation as that which has been given to the modal operators we defined
for TQT. In both cases, modal operators serve to eliminate the contextual
aspects of the propositions on which they act. What Theorem 4.6 tells us
is that it is not generally possible to do this in a non-trivial way in TQT,
i.e. the physical propositions of TQT are inherently contextual in a way
that is not the case for the propositions of the Hilbert space formalism.
But this should not come as a surprise, given the centrality of the notion
of quantum-contextuality in the philosophical motivation for TQT. Indeed,
the representation of physical propositions in TQT makes explicit use of
variation over measurement contexts, whereas the Hilbert space formalism
simply represents physical propositions as individual projection operators,
with no reference to varying classical perspectives. So the apparent triviality
of the modal structure of TQT is philosophically significant. It is sympto-
matic of the inherently contextual nature of the physical propositions of
the formalism. We can roughly summarize the situation with the slogan ‘in
TQT, modality = contextuality’.
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It turns out that formalizing modal notions in TQT is a much neater
and philosophically less contentious task than it is in the context of the
Hilbert space formalism. The reason for this is that in TQT, the logical
structure of the formalism provides us with a canonical modal structure
that is completely determined by the interplay between the Heyting and
co-Heyting algebraic structures of the lattice of physical propositions. As
we have seen, the Hilbert space formalism has no such canonical structure.
The reason for this is that unlike TQT, the Hilbert space formalism does not
provide us with an obvious choice of implication connective, and, as we have
seen, this means that the modal structure is not canonically determined. In
this sense, modality is philosophically much simpler in TQT than it is in the
Hilbert space formalism, where there are as many choices of modal structure
as there are choices of implication connective.

However, it is interesting that in both cases, modality appears to have
a natural connection to quantum contextuality. Specifically, the formaliza-
tion of modality advocated by De Ronde, Freytes and Domenech, like the
formalization of modality in TQT, can also be seen as the formalization of
operators that serve to destroy the contextual elements of the propositions
on which they act. This suggests that the connection between modality and
quantum contextuality might be more then just a side effect of the way
in which quantum theory is formalized. It might actually be a deep and
important feature of the theory.

Finally, it should be noted that the definition of modal operators in TQT
provides an example of how the bi-Heyting algebraic structure of Sub.(X)
can be philosophically and technically significant. Thus far, the literature
has tended to focus entirely on the Heyting algebraic/intuitionistic aspect of
TQT’s logical structure. The author believes that the bi-Heyting algebraic
structure discovered by Doring warrants further investigation.
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