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Abstract Quantum mechanical weak values of projection operators have been used
to answer which-way questions, e.g. to trace which arms in a multiple Mach–Zehnder
setup a particle may have traversed from a given initial to a prescribed final state. I
show that this proceduremight lead to logical inconsistencies in the sense that different
methods used to answer composite questions, like “Has the particle traversed the way
X or the way Y ?”, may result in different answers depending on which methods
are used to find the answer. I illustrate the problem by considering some examples:
the “quantum pigeonhole” framework of Aharonov et al., the three-box problem, and
Hardy’s paradox. To prepare the ground formymain conclusion on the incompatibility
in certain cases of weak values and logic, I study the corresponding situation for
strong/projectivemeasurements. In this case, no logical inconsistencies occur provided
one is always careful in specifying exactly to which ensemble or sample space one
refers. My results cast doubts on the utility of quantum weak values in treating cases
like the examples mentioned.

Keywords Quantum measurement · Weak values · Logic · Quantum pigeonhole
principle · Three-box problem · Hardy’s paradox

1 Introduction

How do you ascribe a property to a quantum mechanical system? In the framework
of standard quantum mechanics (QM) the answer is clear: by establishing (or at least
outlining) an experimental procedure to measure it. As is well-known, to elucidate
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Fig. 1 Schematic illustration of
a Mach–Zehnder interferometer.
The beamsplitters BS1 and BS2
are assumed to be perfect, 50-50
ones. The symbols B (for
‘bright’) or D (for ‘dark’)
denote detectors D
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this answer has been a persistent theme in the conceptual analysis of QM from its very
early days [1].

New aspects of this problem appear when one explicitly considers quantum systems
that are specified not only by the preparation or “preselection”, i.e. the specification
of an initial state |in〉, but also by the specification of a final state by “postselection”
of a state | f 〉. One could then be interested in determining properties of the system
as it evolves from the pre- to the postselected state. These would have to be found
by suitable intermediate measurements on the system. Although phrased in slightly
different terms, this is the view taken in the so called consistent histories approach
to QM; see e.g. [2,3] for reviews and further references.1 It is also the view taken in
the approach by Aharonov and his many collaborators, starting with paper [4] (in the
sequel referred to as ABL) and continuing in the development of the concepts of weak
measurements and weak values [5]; for some reviews see [6–12]. In this paper, I shall
mostly follow this line of thought of Aharonov and collaborators.

As an illustration, consider aMach–Zehnder interferometer (MZI) shown schemat-
ically in Fig. 1. Let the preselected state be the incoming state as in the figure. It is
split into the two arms of the MZI at the first beam splitter. For the postselected state,
choose the state corresponding to the beam particle reaching the detector D. In this
configuration, the probability for particles to end up in detector D is zero. In turn,
this is interpreted as interference involving both arms of the MZI: there is a distinct
correlation effect between the two arms when you make no measurement of which
arm the particles went through. On the other hand, if you try to make a strong, i.e.
projective, measurement to find out through which arm the particle went, you will
end up with particles hitting the detector D: the probability of particles reaching that
detector is now non-zero. In sum, the probability for the particles to hit detector D
gives information on “which-way” properties of the particles.

1 One purpose of the consistent histories approach is to get rid of the so-called measurement problem
resulting in a slightly different viewpoint compared to conventional presentations of QM, and in the use
of a different terminology. However, I hope I do no essential injustice to the consistent histories approach
when I stick to the more conventional viewpoint.
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The fact that you may get different answers depending on the type of measurement
you make on a quantum system is what Feynman [13] – originally for the two-slit
setup – referred to when he said that it “has in it the heart of quantum mechanics” and
that it “is impossible, absolutely impossible, to explain in any classical way.” Griffiths
[2,3] refers to it as the lack of unicity in QM: the properties to be ascribed to a quantum
system depend on the way it is measured.

The purpose of this article is to elucidate this type of reasoning from several different
points of view. For a pre- and postselected quantum system, I consider what strong as
well as weak measurements may reveal of the intermediate state of the system I shall
be specially interested in investigating possible ambiguities when one tries to combine
the result of different measurements.

I have nothing new to contribute regarding strong measurement, i.e. to the original
ABL approach [4] or to the consistent histories approach [2,3]. However, I will discuss
these better known cases to provide background and contrast tomymain results, which
are that logical inconsistencies may arise with regard to weak values as indicating
properties of a quantum system.

In this context, several characteristics of a weak value should be noted.
A basic one is that a weak value does indeed involve an incoming, preselected,

state |in〉 as well as a final, postselected state | f 〉 for the system under investigation
[5–12]. The interest is then focused on what may be said regarding the system at an
intermediate time, i.e. during the period between the pre- and the postselection. The
main new aspect in the weak value approach compared to the original ABL approach
[4] (which involves invoking ordinary projective/strong measurements) is that one
now invokes weak intermediate measurements. As usually presented [5–12], a weak
measurement crucially involves a von Neumann type interaction with a measuring
device, a meter. It is in the limit of the strength of this measuring interaction tending to
zero that a weak value emerges. Among other things, theweakness of themeasurement
implies that when performing a second weak measurement on the system, one may, to
first order in the weak measurement strength, reason as if the first weak measurement
had not been performed. Thus, the quantum state of the system will, to that order,
effectively remain unchanged under the weak measurement interaction. As will be
seen, this will prove pivotal for my arguments in this article.

Still another important feature of a weak value is that it is linearly dependent on
the observable under study. This implies an additivity law: the weak value of a sum
of operators equals the sum of their weak values. This is true irrespective of whether
the operators commute or not. Weak values therefore provide a tool for investigating
also non-compatible observables on one and the same system.

An issue of some contention regardingweak values has been its interpretation: what
property of the system under investigation does a weak value reveal? I particularly
refer to [6,7,10,14,15] and references therein for a presentation of this issue and for
some arguments pro and con various opinions.

In the present article, I shall partly sidestep the issue of interpretation by concen-
trating on weak values of projection operators. Nor shall I be interested in the precise
value of their weak values, only whether they vanish or not. The basic assumption –
followingVaidman [16] – is that a non-vanishing (vanishing) value of a projector weak
value indicates whether the system has intermediately been (respectively not been) in

123



Found Phys (2017) 47:430–452 433

the particular state represented by that projector. A full description of this assumption
is given in Sect. 3.4.1 below.

An important element inmy argument will be the correspondence rules between the
QMformalism and logic (see, e.g. [2]). In particular, Iwill use the rules that the product
of two commuting projection operators corresponds to the logical operation AND of
a conjunction and that the sum of two such operators, the product of which vanishes,
corresponds to the logical operation OR of a (non-exclusive) disjunction. These rules
are well-established for strong/projective measurements. I argue in Sects. 3.4.3 and
3.4.4 that they apply also to weak values.

Using the aforementioned basic properties of weak values, I will point out that
their use might lead to situations with logical inconsistencies: one line of seemingly
valid arguments lead to the conclusion that the system has been in a particular set
of intermediate states, another line of seemingly equally valid arguments shows the
opposite.

In my presentation, I shall use the concept of (coherent) quantum ensembles. These
are identically prepared copies of the system under investigation, each copy repre-
sented by one and the same state vector in a Hilbert space. A quantum ensemble – in
the sequel often simply called an ensemble – is the sample space onwhich probabilities
are defined. Quantum ensembles result from strong/projective measurements.

I use the ensemble notion as a convenient concept to emphasize the trivial but
important fact that probabilities for a quantum system, and its statistical properties in
general, crucially depend on which ensemble – or sample space – the probabilities
refer to. Missing to note which ensemble a certain probability refers to may lead to
erroneous conclusions. In fact, this is an important concern of the consistent histories
approach [2,3].

In discussing weak values, and also within the ABL framework, some proponents
prefer the so called “two-state-vector formalism” [6]. I will here use a conventional
textbook approach, like in [2]. Needless to say, the two different ways of presenting
a given physical situation are totally equivalent. There is a unique, one-to-one corre-
spondence: any valid statement in one formalism has a corresponding valid statement
in the other.

I will start my presentation in Sect. 2 by discussing a particular example, the three-
qubit system introduced by Aharonov et al. in what I will call their “pigeonhole paper”
[17], see also [18]. I shall not be primarily interested in the problem they set out to
tackle – although I will also comment on that – but use their setting with an eight-
dimensional Hilbert space as a rich enough arena to illustrate my points.

Next, in Sect. 3, I turn to a setting with a more general quantum system and present
my arguments in more detail. I analyze several different cases that might occur when
combining two projectors, either by addition – which, as stated, is taken to correspond
to the logical operator OR – or by multiplication, taken to correspond to the logical
operator AND. Here, I present my main new results.

In the following Sect. 4, I illustrate my findings by applying them to some further
concrete examples; the so-called three-box problem [19] andHardy’s paradox [20,21].

In the final section, I summarize my main results and their consequences.
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2 The Pigeonhole Framework

2.1 The Setup

Consider the setup introduced byAharonov et al. [17]. They study a three-qubit system
with each qubit called a “particle” or, in a more picturesque language, a “pigeon”. The
two basis states for each qubit are denoted |L〉 and |R 〉, symbolizing the left and right
arm of a Mach–Zehnder interferometer (MZI), or, alternatively, the up and down σ z

eigenstates of a spin-1/2 particle. (In the paper [17], these states are described as each
particle/pigeon being in the L respectively the R “box”.) The three-particle system is
prepared – pre-selected – in the direct-product state

|in〉 = | +〉1| + 〉2| + 〉3, (1)

where

|+〉1 = (|L〉1 + |R〉1) /
√
2, (2)

and similarly for particles 2 and 3; in the usual spin formalism, such a |+〉-state is the
spin up eigenstate of the corresponding σx .

The authors are ultimately interested in applying an ABL analysis [4], i.e. in inves-
tigating what can be said about the system at an intermediate time in its evolution from
the preselected state to a final, postselected, state | f 〉, assuming there is nothing but
free time-evolution between the different preparations/measurements.

For the postselected state the authors choose another direct-product state,

| f 〉 = | + i〉1| + i〉2| + i〉3 (3)

where

| + i〉1 = (|L〉1 + i |R〉1)/√2, (4)

with a similar notation for particles 2 and 3; in the usual spin formalism, they are spin
up eigenstates of the corresponding σy .

For the intermediate situation the authors consider different combinations – to be
specified shortly – of projection operators

�L
1 = |L〉11〈L|, (5)

with a similar definition for the other combinations of “boxes” L and R and “particles”
1, 2 and 3; these are projection operators onto the eigenstates of the corresponding
spin operator σz .

A particular question the authors of [17] analyze is whether, at an intermediate time,
any two of the three particles can be in identical MZI arms (or “boxes”). To this end,
the authors investigate correlations between different states of the particles in terms
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of properties of the three-particle system at an intermediate time in its evolution, i.e.
after the preselection but before the postselection.

Let me however here start by being very elementary and treat a fewmore pedestrian
questions before I comment on the approach of [17].

Also, I shall for the time being restrict myself to considering a two-particle system
consisting of the particles 1 and 2 only, not the full three-particle framework.

2.2 No Postselection, Strong Measurement (Two-Particle States)

For this two-particle system, the first questions are what may be said of the system
without at all making any postselection. Questions to be asked will be related to the
(strong) measurement of (combinations of) projection operators like �L

1 = |L〉11〈L|
of Eq. (5), in particular to the combinations

�same
12 = �L

1 �L
2 + �R

1 �R
2 , (6)

and

�
di f f
12 = �L

1 �R
2 + �R

1 �L
2 , (7)

which measure two-particle correlations. In other words, one is interested in whether
the “pigeons” are in the same “boxes”, irrespective of which box, or in different boxes,
again irrespective of which one. Note that these two operators form a commuting and
complete set of projection operators.

The rules of conventional QM say that strongly measuring these operators on an
ensemble of systems in a state |in〉 = |+〉1|+〉2 [Eq. (1) but without the third ket],
leads to a split of the preselected quantum ensemble – the one represented by the
state |in〉 – into two new quantum ensembles (let me call them SAME and DIFF)
corresponding to the “collapse” of the |in〉 -state. In detail, the state |in〉, now written
as

|in〉 = 1/2(|L〉1|L〉2 + |R〉1|R〉2 + |L〉1|R〉2 + |R〉1|L〉2), (8)

turns into

|same〉 = 1/
√
2(|L〉1|L〉2 + |R〉1|R〉2), (9)

with probability

prob(same | in) = 〈in | �same
12 | in〉

= 〈in | �L
1 �L

2 | in〉 + 〈in | �R
1 �R

2 | in〉
= prob(L1L2 | in) + prob(R1R2 | in) = 1/2, (10)
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respectively into

|di f f 〉 = 1/
√
2(| L〉1|R〉2 + |R〉1|L〉2), (11)

with probability

prob(di f f | in) = 〈in | �di f f
12 | in〉

= 〈in | �L
1 �R

2 | in〉 + 〈in | �R
1 �L

2 | in〉
= prob(L1R2 | in) + prob(R1L2 | in) = 1/2. (12)

(Here, prob(L1L2 | in) = 〈in | �L
1 �L

2 | in〉 is the probability of finding both particles
in their L-boxes, etc. for the similarly denoted probabilities. Also observe that, even
if as operators, �same

12 �= |same〉〈same| and �
di f f
12 �= |di f f 〉〈di f f |, the matrix

elements exhibited here and below are equal.)
Notice that the correlation probabilities prob(same | in) and prob (diff | in) are the

sums of the two probabilities corresponding to the particles being in definite states: the
probability for a correlated state is the sum of the probabilities for the two ways this
correlation can manifest itself. This corresponds to the fact that the quantum ensemble
SAME is decomposed into two non-overlapping sub-ensembles – the corresponding
Hilbert subspaces are orthogonal – one characterized by the state |L〉1|L〉2, the other
by the orthogonal state |R〉1|R〉2. A similar decomposition applies to the quantum
ensemble DIFF.

Note also my notation for (conditional) probabilities. For example, prob(same | in)
denotes the probability of finding the state |same〉 conditioned on the measurement
being made on the incoming state |in〉. The notation thus entails not only references
to the observable being measured – in the example, the projector �same

12 – but also
reference to the quantum ensemble on which the measurement is performed, in the
example the ensemble IN represented by the state |in〉.

2.3 Postselection, Strong Intermediate Measurement (Two-Particle States)

I am now ready to take up a question considered by Aharonov et al. [17]: what is the
(conditional) probability prob (same | f , in), respectively prob (diff | f , in), for the
intermediate states | same 〉, respectively | diff 〉, given that one also enforces a final
state | f 〉? The answer is contained in the so called ABL formulae, introduced by
Aharonov, Bergmann and Lebowitz [4]. For a given preselected state | in 〉, the ABL
probability prob (same | f , in) and the probability prob ( f | same, in) for the state
| same 〉 to project onto the postselected state | f 〉 are related to each other by Bayes’
rule

prob(same | f, in) × prob( f | in)

= prob( f | same, in) × prob(same | in), (13)
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with a similar relation between prob (diff | f , in) and prob ( f | diff, in). For my
treatment, I find it convenient to consider the probabilities prob ( f | same, in) and
prob ( f | diff, in) instead of the original ABL probabilities prob (same | f , in) and
prob (diff | f , in) . I stress that this is only a matter of convenience and does not in
any way involve matters of principle; statements involving prob ( f | same, in) and
prob ( f | diff, in) can unequivocally be translated into the ABL formalism and vice
versa.

I note that the probabilities prob ( f | same, in) and prob ( f | diff, in) are the
(conditional) probabilities for the state corresponding, respectively, to the quantum
ensembles SAME andDIFF to end up in the state | f 〉. The ordinary rules of QM give

prob( f | same, in) = prob( f | same) × prob(same | in)

= |〈 f | �same
12 | in〉| 2, (14)

with a similar expression for the diff case.
The postselected state is the expression (3) (but without the third particle) and can

be written

| f 〉 = 1/2( |L〉1|L〉2 − |R〉1|R〉2
+ i |L〉1|R〉2 + i |R〉1|L〉2). (15)

It follows that 〈f| same 〉 = 0, so the probability is zero for particles 1 and 2 from the
SAME ensemble to end up in this postselected state | f 〉. In the pigeonized language,
the two pigeons 1 and 2 are not found in the same box.

On the other hand, if one asks for the probability

prob ( f | L1L2, in) = prob( f | L1L2) × prob(L1L2 | in)

= |〈 f | �L
1 �L

2 | in〉| 2 (16)

for the two particles to be together in box L , one finds a non-vanishing value. The
same is true for the corresponding R-case. Thus, there is a non-vanishing probability
for the particles to be together in a definite box, either L or R, despite the fact that
there is zero probability for the particles to be together in any of them, as probed by
�same

12 .
This situation is exactly the same as in the single MZI setup of Fig. 1 described in

the introduction above. In that setup, suppose you postselect on the dark port detector.
With no measurement to probe through which arm the particle went – analogous to
measuring �same

12 in the pigeonhole setup – you have zero probability for finding
particles in that detector. But if you make a which-way (projective) measurement onto
one of the arms of theMZI – analogous to measuring the�L

1 �L
2 or�R

1 �R
2 separately

in the pigeonhole setup – you will find particles in the detector.
Is this perplexing and against common sense? It is up to anyone to decide for

themselves! But this is indeed the Feynman “heart-of-quantum-mechanics”-issue [13].
Is this a logical inconsistency? No, since the two situations measure different things

– they refer to different quantum ensembles – and (strong) measurements strongly
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“disturb” the state under investigation. In the pigeonhole case, when you measure
the correlation �same

12 , you probe the ensemble SAME created by the intermediate
measurement of �same

12 . On the other hand, when you measure �L
1 �L

2 , you probe
another ensemble, namely the one created by the intermediate measurement of �L

1
�L

2 . The two cases refer to different measurements which cannot be realized on the
same ensemble. In fact, the situation illustrates the typical QM feature that it is not
legitimate to assign different properties to a quantum system without being specific
on how the properties are obtained, i.e. measured. In the consistent histories approach
[2,3], this is expressed by the fact that QM does not obey what Griffiths calls the
unicity rule, meaning that there is more than one framework in which one may reason
in a logically consistent fashion. The situation is sometimes, e.g. in [21], referred to
as “contrafactual”. Anyhow, in the case just treated, there is no question of any logical
inconsistency or ambiguity, only a choice of viewpoint or framework corresponding to
the choice of ensemble/sample space. As we will see in Sect. 2.5 below, the situation
is drastically different when one invokes weak intermediate measurement.

2.4 Postselection, Strong Intermediate Measurement (Three-Particle States)

Before I treat theweakmeasurement case, however, letme turn to the full three-particle
setup and examine another issue that the authors of [17] take up: Assuming the full
three-particle preselected and postselected states, (1) respectively (3), can any pair of
the three pigeons be in the same box at an intermediate time?

The authors of [17] answer this question in the negative. They argue, on symmetry
grounds, that if pigeons 1 and 2 are in different boxes, so must pigeons 2 and 3 as well
as pigeons 1 and 3. No two pigeons, the authors claim, could be in the same box, thus
violating what the authors call the “pigeonhole principle”.

However, this argument and its conclusion are fallacious [22]. To find out, for
example, whether pigeons 1 and 2 are together in some box with also pigeons 2 and 3
together in some box, onemust interrogate the systemwhether –with a slight alteration
of the earlier notation – the probability prob ( f | same12 AND same23, in) vanishes
or not. The established correspondence rule that the logical AND corresponds to a
product of (commuting projection) operators means that one should intermediately
measure �same

12 �same
23 . This projector product can be written

�same
12 �same

23 = �L
1 �L

2 �L
3 + �R

1 �R
2 �R

3 = �
same,
123 (17)

which also defines the three-particle correlation operator �same
123 . It implies an inter-

mediate ensemble described by the state 1/
√
2 (| L〉1 |L〉2 |L〉3 + |R〉1|R〉2|R〉3). This

state does project onto the postselected state | f 〉 of Eq. (4). So even quantum pigeons
may thrive together [22] and there is no violation of any pigeonhole principle as stated
in [17].

This situation, that two projection operators by themselves give zero probability
(the two non-disjoint ensembles each never ends up in the postselected state) but that
their product has a non-zero probability (the intersection of the two subensembles does
end up in the postselected state) is again an example of the perplexing non-classical
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behavior of QM. But as above the perplexity is in the eye of the beholder. There
is no question of a logical inconsistence for the very same reason as previously: it
requires different measurements to establish the probability for each of the projection
operators as well as for their product – i.e., different ensembles are involved – and
such measurements are non-compatible.

2.5 Postselection, Weak Intermediate Measurement and Weak Values

As Aharonov, Albert and Vaidman [5] originally showed – and as has later been
exploited by many authors in many different ways [6–12] – reducing the strength
of the intermediate measurement interaction between the system and the measuring
device (here called the “meter’) has astonishing and fruitful implications. In particular,
in theweakmeasurement limit, the change of themean value 〈Q〉 of themeter’s pointer
variable Q and of the mean value 〈P〉 of the meter’s conjugate momentum are directly
proportional to, respectively, the real and the imaginary part of the weak value

f (A)weak = 〈 f |A|in〉/〈 f |in〉 (18)

of the studied observable A. One should also note – and this will subsequently become
important– that, to lowest order in the weak measurement strength, the preselected
state | in〉 is not influenced by the weak measurement interaction: when performing
a second weak measurement immediately after a first one, one may, to first order in
the weak measurement strength, reason as if the first weak measurement had not been
performed. In other words, to that order, the initially preselected quantum ensemble
remains the same and is not influenced by the weak measurement.2

The weak value of any observable is therefore a measureable quantity. However,
what meaning it has, in other words how to interpret it – what property of the system
under investigation does it reveal? – is a matter of some contention [6,7,10,14,15].
In this section, I assume that a non-vanishing weak value of a projection operator in
the pigeonhole framework means that the pigeon(s) has (have) intermediately been
in the corresponding state/box, while a vanishing such value means that the pigeons
have not occupied that state. This assumption is discussed in more detail in Sect. 3.4.1
below.

Now to some examples. First, consider the two-particle case with only particles
1 and 2 present, and look at f (�

same
12 )weak . It vanishes. With the assumption just

introduced regarding the meaning of such a weak value, this implies that the pigeons
1 and 2 do not occupy the same boxes, neither L nor R. This is the same conclusion
as was reached for the strong measurement. This is not surprising, since the matrix
element in the numerator of the definition of theweak value –Eq. (18)with the operator
A a projection operator – also enters (absolute squared) in the probability (14) of the
strong measurement treatment of Sect. 2.3.

2 In their paper [17], the authors make no explicit use of weak values, and only refer to weakmeasurements
in the section entitled “Nature of Quantum Interaction: A First Experiment”.
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A new feature appears when one expresses this weak value in terms of its parts,

f (�
same
12 )weak = f (�

L
1 �L

2 + �R
1 �R

2 )weak

= f (�
L
1 �L

2 )weak + f (�R
1 �R

2 )weak, (19)

and notices that the two terms individually do not vanish,

f (�
L
1 �L

2 )weak = i/2 = − f (�
R
1 �R

2 )weak . (20)

At face value, there seems to be a logical puzzle here: there is a signal in the meter for
the 1–2 pair to be in the L-boxes, as well as a signal for the pair to be in the R-boxes,
but no signal for the particles to be in the same boxes irrespective of which!

Notice the difference in this case to the situation with a strong intermediate mea-
surement treated in Sect. 2.3. In the weak measurements case, one may perform the
different (weak) measurements – of �same

12 , of �L
1 �L

2 and of �R
1 �R

2 – in sequence
one after the other, and on different meters, without disturbing the system (to lowest
order in the weak measurement interaction). (In fact, the weak measurements need
not even be performed after each other on the same exemplar of the system; the fact
that the initial ensemble remains intact under the weak measurement implies that one
may use a new exemplar of the system for each measurement.) In other words, the
three measurements can be performed on one and the same quantum ensemble. Since
these three measurements lead to different conclusions, there is certainly a logical
conundrum: which property of the two-particle system does the weak values really
represent, the total absence of correlations or the presence of separate L1L2 and R1R2
relations? I will present a more thorough analysis of this conundrum in Sect. 3.4.3
below.

Finally for this section, let me, for the three-particle case, check the joint pair
projection operator�same

12 �same
23 . One easily finds that its weak value is non-vanishing.

Again, this is no surprise since the matrix element that enters here is the same as in
the strong measurement approach. So also on the weak measurement procedure, the
pigeonhole principle is upheld.

3 A More General Treatment

3.1 The Framework

Consider now a more general quantum system S represented in a Hilbert space HS

in which the (normalized) states |a〉, |b〉, |c〉, … represent different channels available
to the system. The system could be a composite system, like the multiparticle system
used in the pigeonhole framework of Sect. 2. By a “channel” I mean a configuration
of the system which allows measurement of the projection operator onto the state
representing that configuration, i.e. �a = |a〉〈a | for the channel a represented by the
state |a〉, �b = |b〉〈b | for the channel b represented by the state |b〉, etc. Examples of
channels in this sense are an arm of an MZI, a combination of arms for a system of
several MZIs, a particular three-particle state of the pigeonhole framework of Sect. 2,
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or any of the three boxes in the so called three-box problem [19] to be considered in
Sect. 4.1.

The different cases I treat will require different assumptions regarding the orthog-
onality of the projection operators �a, �b, etc., that is whether their product �a�b

vanishes or not. I will also explicitly state whenever I assume that they form a complete
set, i.e., that their sum �a+ �b + �c+ · · · equals the unit operator in HS .

I now go through the different cases equivalent to those treated in the pigeonhole
framework of Sect. 2.

3.2 No Postselection, Strong Measurement

Letmefirst assume that all the projection operators are orthogonal and form a complete
set; in particular, I assume non-degeneracy among the states. This means that a single
strongmeasurement of a projection operator will result in projection of the preselected
state | in〉 onto the subspace of HS spanned by one of the states |a〉, |b〉, |c〉, . . . . .
For a large number of identical measurements on the same preselected state |in〉 this
corresponds to a subdivision of the initial quantum ensemble IN (the one represented
by the preselected state |in〉) into disjoint subensembles likeENSa for | a〉,ENSb for |b〉,
etc.; they corresponds to orthogonal, one-dimensional subspaces of the total Hilbert
space HS . The probability prob (a | in) for the system to end up in the subensemble
ENSa is given by the usual expression

prob(a|in) = 〈in | �a | in〉. (21)

In this case, there are additivity laws of the type

prob(a OR b | in) = 〈in | �a + �b | in〉
= 〈in|�a |inrlangle + 〈in|�b|in〉
= prob(a | in) + prob(b | in). (22)

In a similar fashion, one may discuss the product of two projectors. Since this requires
some further specifications (and since nothing particularly interesting appears under
the assumptions made here), I defer the product case to Sect. 3.3.2 .

3.3 Postselection, Strong Intermediate Measurement

This is the ABL framework [4], the principles of which were presented in some detail
in Sect. 2.3.

3.3.1 Measuring the Sum of Two Projectors

To start with, let me as in Sect. 3.2 assume all the projection operators to be orthogonal
and to form a complete set.
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Then, one could, for example, ask for the probability prob (f | a, in) for states from
the subensemble ENSa to end up in a postselected state | f 〉. The usual rules give

prob( f | a, in) = prob( f | a) × prob(a | in)

= |〈 f | �a | in〈| 2. (23)

There is no simple additivity rule for the union of subensembles, like ENSa and ENSb.
This follows from the fact that

prob( f | a OR b, in) = |〈 f |�a + �b|in〉|2 (24)

is not simply related to the two subensemble probabilities prob (f | a, in) and
prob (f | b, in). In particular, for 〈 f | �a | in 〉 and 〈 f | �b | in 〉 non-vanishing
but 〈 f | �a + �b | in 〉 equal to zero – as for the pigeonhole case in Sect. 2.3– this is
the Feynman “heart-of-QM”–phenomena mentioned above. Again, it is up to anyone
to decide whether this is perplexing or not. But it is no logical inconsistency, since it
requires three different strong – and therefore projecting – measurements to arrive at
the three probabilities under study. To phrase it differently: in QM the two separately
defined subensembles ENSa and ENSb may behave differently upon postselection
compared to the coherently joined subensemble ENS(aORb).

3.3.2 Measuring the Product of Two Projectors

Let me next consider the product of two projection operators. To get an interesting
case, these two projectors should be commuting (so that their product is a projector,
too) and non-orthogonal (if theywere orthogonal, their productwould trivially vanish).
That the projectors commute means that that there is a degeneracy among the channel
states in the Hilbert space HS . Assume for simplicity that this degeneracy is two-fold.
The states I shall be interested can then be characterized by a double label and may
be written | a1, b1〉, | a1, b2〉, | a2, b1〉, | a2, b2〉, etc. Let me focus on the projector
product�a1�b1 . In the ensemble language, the degeneracy means that there is overlap
between the subensembles ENSa1 (lying in the Hilbert subspace spanned by | a1, b1〉
and | a1, b2〉) and ENSb1 (lying in the Hilbert subspace spanned by | a1, b1〉 and
| a2, b1〉) .

One may then ask for the probability prob (f | a1AND b1, in) of finding the system
in the intersection of ENSa1 with ENSb1 when it its postselected in the state | f 〉. By
the correspondence rule – that a logical AND conjunction corresponds to a product of
the operators involve – one finds

prob ( f | a1 AND b1, in) = |〈 f | �a1 �b1 | in〉|2. (25)

As above, this has no simple relation to the subensemble probabilities prob (f| a1, in)
and prob (f| b1, in), and might lead to some bafflement. It could, for instance, happen
that both prob (f| a1, in) and prob (f | b1, in) are zero but that prob (f | a1AND b1, in)
is non-zero; the pigeonhole setup with �a1 = �same

12 and �b1 = �same
23 furnishes an
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example. It could also happen that both prob (f | a1, in) and prob (f | b1, in) are non-
zero but that prob (f | a1 AND b1, in) equals zero, a concrete example of which will be
given forHardy’s paradox setup [20,21] in Sect. 4.2 below. These aremore examples of
typical quantum behavior for which no classical explanation is available. As above, it
might be perplexing and against common sense, but it constitutes no logical incon-sis-
tency. This is guaranteed by the incompatibility of the required strong measurements,
i.e. by the intermediate measurements being performed on different ensembles.

3.4 Postselection, Weak Intermediate Measurement and Weak Values

3.4.1 The Vaidman “Past-of-a-Quantum-Particle” Criterion

The first question to face is what kind of property a weak value represents.
For strong, projective measurements, one may base one’s reasoning on established,

conventional QM rules, expressed in terms of probabilities, for the connection between
themathematical formalism and experimentally accessible entities. However, forweak
values there are no such commonly accepted rules. A weak value, formally being a
normalized transition amplitude, is certainly not a probability in any conventional
meaning of the probability concept.3 Neither is it an eigenvalue of any (Hermitian)
operator, nor in general a (conventional) expectation value.

A clue to what seems to be an uncontroversial interpretation is based on the obser-
vation by Vaidman [16] that a non-vanishing (vanishing) weak value of a projection
operator can be interpreted as the presence (respectively non-presence) of the system
in the channel corresponding to that projection operator.4 This is due to the fact that in
the definition of a weak value of an operator A, one assumes the canonical momentum
operator of a meter to be coupled to Ain the usual von Neumann way. The triggering
of the meter – in the sense that at least one of the mean values 〈Q〉 and 〈P〉 of the
meter pointer variable Q and its canonical momentum P is shifted away from their
non-measurement values – will then disclose a non-vanishing weak value in the limit
of weak measurement interaction (see Sect. 2.5 above). The argument is now that
the measurement of the projection operator �a can trigger the meter in the sense of
having 〈Q〉 or 〈P〉 deviating from its non-measurement value – i.e. showing a nonzero
weak value f (�a)weak – if and only if the system before postselection has a non-zero
probability of having been in the intermediate channel a corresponding to �a , i.e. if
and only if there is a non-zero overlap of the a-channel intermediate state with the
postselected one.

A further argument supporting such a point of view is that the nominator of the
expression for the weak value of a projection operator, say

3 This is not to say that there have not been attempts to enlarge the concept of a probability to , e.g.,
complex values and to fit complex weak values into such a scheme [23]. This is however well outside
conventional theory, and I do not subscribe to such a view here.
4 Some further properties of aweak value of a projector need to be fulfilled, e.g. itmust be a “representative”
weak value as treated in [24–26]. I assume that this is the case for the weak values of the projection operators
considered here.

123



444 Found Phys (2017) 47:430–452

f (�a)weak = 〈 f | �a | in〉/〈 f | in〉, (26)

equals thematrix elements that enters absolute squared in the probability prob (f | a, in)
of Eq. (23) in Sect. 3.3.

These arguments lead to the basic assumption made here regarding the interpreta-
tion of a weak value of a channel projection operator: its non-vanishing (vanishing)
unambiguously signifies the intermediate presence (respectively absence) of the sys-
tem in that channel. I will refer to this as a “property” of the system: a non-vanishing
weak value f (�a)weak is taken to be synonymous to the property that “the system,
preselected in the state | in〉 and postselected in the state | f 〉, has (intermediately) been
in channel a”, sometimes even shortened into “the system is (or was or has been) in
channel a”. Similarly, if f (�a)weak = 0, the system does not have that property. The
triggering (or not) of a channel meter thus reveals whether the system is, intermedi-
ately between the pre- and postselection, described by a state which at postselection
has (or has not) a non-zero amplitude for that channel state.

In sum: a signal (respectively no signal) in a channel weak measurement meter
– signifying a non-vanishing (respectively a vanishing) weak value of the channel
projector – is operationally interpreted as the presence (respectively absence) of the
system in that channel in between the pre- and postselection.

3.4.2 Sequence of Weak Measurements

A further crucial characteristic of weak values is that the weakness of themeasurement
implies that, when performing a second weak measurement immediately after a first
one, onemay, to first order in theweakmeasurement strength, reason as if the firstweak
measurement had not been performed. In the ensemble language, this means that, to
that order, one may reason as if a weak measurement effectively leaves the incoming,
preselected ensemble IN intact. In otherwords, aweak intermediatemeasurement does
not cause the IN ensemble to be split into subensembles as a strongmeasurement does.
Consequently, one may perform several weak measurements (with different meters),
none of them changing the original preselected ensemble. In particular, this applies
to successive measurements of channel projection operators. Thus, each of their weak
values reveals a property of the system.5

I have now prepared the ground for discussing whether a set of weak values of
channel projection operators gives a consistent picture of the properties – presence or
absence in the different channels – of the system under investigation.

3.4.3 Weakly Measuring the Sum of Two Projectors

Let me first assume that the system’s channel states are non-degenerate. Consider two
channel projection operators, �a and �b. They are then orthogonal so that �a�b =
0. Then �a+ �b is also a projector. It is clear from what is said in Sect. 3.4.1 that
this projector tests whether the system has the property of being in the channel a

5 If none of them produces a “non-representative” weak value; c. f. footnote 4.
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OR in the channel b, where OR stands for the logical operation of (non-exclusive)
disjunction: a meter weakly measuring �a+ �b tests whether the system has a non-
vanishing postselected amplitude for a state in the union of ENSa and ENSb. This is
also in agreement with the conventional correspondence rule between logic and the
QM formalism, viz., that sum of operators corresponds to the (non-exclusive) logical
operation OR (see, e.g.,[2]).

Now, think of independently weakly measuring all three projectors �a, �b and
�a+ �b on the preselected ensemble IN and postselecting on the same final state | f 〉.
The following different situations may occur:

I. All three weak values, f (�a)weak , f (�b)weak and f (�a +�b)weak , vanish. This
is perfectly consistent: the system is neither in the a-channel, nor in the b-channel.

II. All three weak values are non-zero. This is again consistent with the system now
being in both the a-channel and in the b−channel.

III. The two weak values f (�a)weak and f (�b)weak are non-zero but of opposite
signs, so that f (�a+ �b)weak = 0. The interpretation would be that the system is
in both of the channels a and bseparately, but cannot be found in either of them,
unless, that is, that channel is specified!

Case III here is the real conundrum. It is, of course, due to complete destructive inter-
ference between the states in the union ofENSa andENSb, states that are independently
probed by the separate measurement of f (�a)weak and f (�b)weak ; the pigeonhole
setup discussed in Sect. 2 above furnishes an example. In contrast to the case of a
strong measurement, this is now a real logical puzzle: the whole procedure is for-
mulated in a direct, operational manner using meter readings. The measurements are
made without disturbance, on one and the same quantum ensemble. It means that an
unequivocal conclusion regarding a property of the system, i.e. whether it has been –
or has not been – in channel a or in channel b, cannot be reached. I see no solution to
this dilemma, which is a real logical inconsistency.

3.4.4 Weakly Measuring the Product of Two Projectors

Let me next consider the same case as in Sect. 3.3.2 with two projectors, �a1 and
�b1 , being non-orthogonal (their product �a1 �b1does not vanish) and commuting
(to ensure that their product is a projector, too). From the arguments in Sects. 3.4.1
and 3.4.2, it follows that this projector tests whether the postselected system has
intermediately been in a state in the intersection of ENSa and ENSb, i.e., whether the
system has been in both the a1-channel AND in the b1-channel with AND denoting the
usual logical operation of conjunction. This interpretation of a product of projectors
as representing the logical operation AND is in accordance with the conventional
correspondence rules between logic and QM (see, e.g. [2]).

In this case, it might be interesting to find out what different independent weak
measurements of the three projectors�a1 ,�b1 and�a1�b1 have to say about the sys-
tem, again assuming the same postselected state | f 〉 for all three cases. The following
situations are those that may occur:
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(i) All three weak values, f (�a1)weak , f (�b1)weak and f (�a1�b1)weak , vanish.
The system is neither in the a1-channel nor in the b1-channel, nor in both the
a1-channel AND the b1-channel. This is perfectly consistent.

(ii) All three weak values are non-zero. One may unequivocally conclude that the
system has been in both the a1-channel AND the b1-channel, so again no incon-
sistency.

(iii) Next, suppose f (�a1)weak �= 0 and f (�b1)weak �= 0 while f (�a1�b1)weak

= 0 (remember: I only assume �a1�b1 �= 0 as an operator). Then, from
f (�a1 �b1)weak = 0, one concludes that the system cannot have been both in
the a1-channel AND in the b1-channel, i.e. it would, with ordinary logic, NOT be
in the a1-channel OR NOT be in the b1-channel, in contradiction to the assump-
tion f (�a1)weak �= 0 and f (�b1)weak �= 0. This is patently an inconsistency.
(An example of this situation is exhibited in Hardy’s paradox as treated below in
Sect. 4.2.)

(iv) The next case is f (�a1)weak = 0 and f (�b1)weak = 0 while f (�a1�b1)weak �=
0. So the system is neither in the channel a1 (since f (�a1)weak = 0) nor in the
channel b1 (since f (�b1)weak = 0) but (since f (�a1�b1)weak �= 0) in both the
a1-channel AND the b1-channel. This is also an inconsistency. (In fact, this is the
�a1 = �same

12 and �b1 = �same
23 pigeonhole case of Sect. 2.5.)

(v) Suppose next that f (�a1)weak �= 0 and f (�b1)weak = 0 while f (�a1�b1)weak

= 0. The interpretation is that the system has been in the a1-channel but not in
the b1-channel and therefore not jointly in the a1-and b1-channel, consistent with
f (�a1�b1)weak = 0, so no inconsistency.

(vi) A final case is f (�a1)weak �= 0 and f (�b1)weak = 0 while f (�a1�b1)weak �=
0. The interpretation is that the system is in the a1-channel but not in the in the
b1-channel, but somehow succeeding to be in both the a1-channel AND in the
b1-channel, which is against normal logic. (A concrete example of this situation
is the pigeonhole framework with �a1 = �L

1 �L
2 and �b1= �same

23 implying
�a1�b1 = �L

1 �L
2 �L

3 ).

In conclusion, there are several situations – the cases (iii), (iv) and (vi) – where there
are inconsistencies if one, at an operational level – readings of independent meters
– apply ordinary logical rules combined with basic properties of weak values. The
implication is that it is unclear which weak value to rely on when ascribing properties
of intermediate presence or absence in a certain channel of the system under study, a
logically very worrying situation.

4 Some Further Examples

4.1 The Three-Box Problem

Consider a one-particle system in which the particle could be in any of three “boxes”
A, B or C , represented by states | A〉, | B〉 and | C〉 in a three-dimensional Hilbert
space [6,17–19]. The boxes correspond to what I call channels. Let the preselected
state be
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| in〉 = (| A〉 + |〉, B〉 + |C〉)/√3 (27)

and the postselected state be

| f 〉 = (| A〉 + |〉 − |C〉)/√3. (28)

One is interested in findingwhich intermediate channel the particlemay have occupied,
i.e. properties of the projectors �A = | A〉〈 A |, �B = | B〉〉B | and �C= | C〉〈 C |.

Let me first calculate the relevant strong measurement probabilities prob ( f | A, in),
etc. One finds

prob( f | A, in) = |〈 f | �A | in〉| 2 = 1/9 = prob( f |vB, in)

= prob( f |C, in), (29)

which is nothing astonishing whatsoever.
[Remark. The situation becomes seemingly more dramatic if one instead considers

the ABL probabilities proper. One has

prob(A | f, in)

= prob( f | A, in)/{prob( f | A, in) + prob( f v| NOT A, in)} = 1, (30)

and similarly

prob (B | f, in) = 1, (31)

while

prob(C | f, in) = 1/5. (32)

This seem to imply that the probability of finding the particle in box A OR in box B
would equal 2, a blatant inconsistency. However, the logical order is restored when one
realizes that different (strong) measurements with different intermediate subensem-
bles, i.e., different sample spaces, are involved.]

Consider next the sum of the projectors. One finds

prob( f | A OR B, in) = |〈 f | �A +�B | in〈| 2 = 4/9, (33)

while

prob( f | A OR C, in) = |〈 f | | �A + �C | in〉| 2 = 0. (34)

The interpretation of the second equality is that there is no particle in either of the A-
OR the C-boxes despite the fact that both separate probabilities, prob ( f | A, in) and
prob ( f | C, in), are non-zero, implying that the particle could be in any specific one. A
perplexing situation, maybe, but nothing but the Feynman “heart-of-QM” phenomena
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[13] and certainly no logical inconsistency, since different strong measurements with
different subensembles/sample spaces are involved.

It is worse for the weak values. Indeed, one easily finds f (�A)weak and f (�C )weak

both to be non-zero, a fact that is interpreted as the possible presence of the particle
in one of the boxes A OR C. But testing this on �A+�C gives a vanishing f (�A +
�C )weak , so no particle in either of the boxes! Phrased differently, one gets different
results depending on the method used to answer the question “Has the particle been
in the A- OR the C-boxes?” This is a logical inconsistency inherent in the weak value
approach.

4.2 Hardy’s Paradox

Hardy [20] (see also [21]) considered a two-qubit setup consisting of two Mach–
Zehnder interferometers (MZIs), one traversed by an electron, the other by a positron.
One arm of the positron’s MZI intersects one arm of the electron’s MZI so that annihi-
lation occurs in that intersection. The setup is illustrated in Fig. 2, which also contains
the notation I will use. I will be very brief and refer to, e.g. [15–21] for more details.

This setup contains one complication compared to the previous examples I have
investigated: there is now a non-trivial evolution of the system due to the effect of the
different beamsplitters. This has to be duly taken into account.

p

Dp

Bp

Be

DeNp

Ip

Ip

Np

Ne

Ne
Ie

Ie

e
annihilation

BSe1

BSe2BSp1

BSp2

Fig. 2 Schematic illustration of the experimental setup for Hardy’s paradox [15,20,21]. An electron (e)
and a positron (p) each enters its own Mach–Zehnder interferometer with 50-50 beamsplitters (BS). The
particles are each detected at the respective B (for ‘bright’) or D (for ‘dark’) detectors. They are free to
move in the non-interacting arms (N ) but annihilate as illustrated in the interaction arms (I ). The paradox is
that a pair appears in the D-ports, indicating that the particles went through the I -arms, even if they should
then have annihilated
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As preselected state one chooses the state of the two-particle system just after the
annihilation, duly evolved. It can be written in different forms6:

|in〉 = {|Np〉|Ne〉 + i |Ip〉|Ne〉 + |Np〉i |Ie〉}/
√
3

= {(−|Dp〉 + i |Bp〉)|De〉 + i |Dp〉|Be〉 − 3|Bp〉|Be〉}/
√
12

= {−i
√
2 |Ip〉|De〉 + i |Dp〉|Be〉 − 3|Bp〉|Be〉}/

√
12

= {−i
√
2 |Dp〉|Ie〉 + i ||Bp〉De〉 − 3 |Bp〉|Be〉}/

√
12 (35)

Hardy’s paradox originates in the observation that the detector arm state | De〉 solely
occurs together with the positron arm state | Ip〉, indicating that a signal in the detector
De means that the positron has been in the Ip – arm. It is similar for Ie with respect
to Dp . From a joint signal in both Dp and Deone would then expect the particles to
have taken the Ip − Ie way, in which case they would have annihilated and would not
have been able to reach any detector, creating the paradox.

Let me analyze this situation in the same way as the other examples. Firstly, one
specifies the postselected state to be | f 〉 = | Dp〉 | De〉. Then one calculates the matrix
elements that enter into the appropriate probabilities and in the relevant weak values.
One finds – now with the simplified notation Î p = | Ip〉〈Ip | etc. for the projectors –
that 〈 f | Î p | in 〉 �= 0 and 〈 f | Îe | in 〉 �= 0 but that7 〈 f | Î p Îe | in〉 = 0. This means that
Hardy’s paradox is an example of case (iii) of Sect. 3.4.4. As there, the result may be
judged perplexing, but there is no logical inconsistency as long as one sticks to strong
measurements and their probabilities. But contradictions do occur when one employs
weak values, since then only one quantum ensemble is involved.

In [21], the authors analyzed the situation by considering weak values for all pairs
of projection operators. They found

f (̂Np ⊗ ̂Ie)weak = 1 = f (̂Ne ⊗ ̂Ip)weak (36)

and

f (̂Np ⊗ ̂Ie)weak = −1 (37)

implying

f (̂Np ⊗ ̂Ie + ̂Np ⊗ ̂Ne)weak = f (̂Np ⊗ {̂Ie + ̂Ne})weak

= f (̂Np)weak = 0 (38)

Again, this entails a logical inconsistency: there is a signal for particle pairs in the
Np − Ie arms as well as in the Np − Ne arms but no signal for particles in the Np − Ie

6 In order to comply with the notation in [15,20,21], I have changed arm symbols from L and R in Fig. 1
to I (for “interacting”) and N (for “non-interacting”) in Fig. 2 and in the text.
7 For clarity, I insert a direct product sign, , between any two projection operators here and in the remaining
formulae of the present section.Also, a one-particle projectionoperator should read as a two-particle operator
with an identity operator for the other particle implied.
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OR the Np −Ne arms. The answer to the question “Which way did the particles take?”
thus depends on the scheme employed to answer it. Neither scheme has preference
over the other since they all refer to one and the same ensemble/sample space.

The argument may also be twisted to show the original paradox. To this end, note
that, analogously to Eq. (38), one has

0 = f (̂Ne ⊗ ̂Ip + ̂Ne ⊗ ̂Np})weak = f (̂Ne ⊗ {̂Ip + ̂Np})weak

= f (̂Ne)weak (39)

Thus, there is no signal for particles in the Ne- or in the Np-channel, only in the Ie-
or in the Ip-channel, where the particles are supposed to have annihilated.

5 Summary and Conclusions

A fundamental issue in quantum mechanics (QM) is to understand what its formalism
has to say about natural phenomena that are amenable to experimental inquires. The
idea of studying systems that are both pre- and postselected [4] has introduced some
novelty into this discourse, in particular when it is coupled to the idea of a weak
measurement [5], resulting in the concept of a weak value.

While the conceptual and logical consequences of the conventional QM approach
have been thoroughly discussed since QMwas developed, not the least by the quantum
founding fathers themselves [1], a similar analysis has largely been lacking concerning
weak values. This article gives my contribution to such a discussion.

Accepting the rules and postulates of conventional QM, all evidence shows that it
does not contain logical inconsistencies. Yes, there are some conceived paradoxes, like
in the double-slit setup, or in Hardy’s intriguing nested Mach–Zehnder arrangement
with electrons and positrons. But these are no logical inconsistencies. They “only”
constitute deviations from what would be expected from a notion of common sense,
essentially based on ideas grounded in classical mechanics.

For weak values of projection operators, this “peaceful coexistence” between the
QM formalism and logic seems to be broken. As I have shown in this article, there
are cases for which different, seemingly logically inviolable lines of arguments lead
to contradictory conclusions. For example, there are quantum systems which, from
one line of arguments, seem to have occupied either of two states but which, from
another line of arguments, have occupied none of them. I invoked nothing else but the
appropriate, well-established QM rules. The culprit, therefore, sits in the weak value.

I basedmy argument on several important features of the weak value of a projection
operator. One feature is that this weak value, following Vaidman [16], via the signal
it gives in the meter measuring it, may be used as an indicator of how the system has
evolved from the pre- to the postselected state: the vanishing or not a projector weak
value has a direct operational meaning in terms of meter readings. Another, for my
argument equally important feature is that – contrary to what is the case for a usual
strong/projective measurement – different weak measurements can be performed one
after the other on the same preselected system state without, to lowest order in the
weak measurement strength, “collapsing” the state of the system. This means that you
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may pose a series of different which-way questions to the system without disturbing
it. For example, one may ask whether the system has separately taken either this or
that way as well as ask if it has taken either of these ways. As I have shown, there are
situations of this kind in which one gets logically contradictory answers.

I have no solution to this conundrum. Certainly, weak values have a role to play as
an experimental tool; see [27] for a recent example. But their use in investigating what
is perceived as paradoxical situations inQM– the three box problem,Hardy’s paradox,
etc. – must be strongly questioned. Indeed, one would tread a logical quagmire if one
draws conclusions regarding the properties of such quantum system fromweak values.
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