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It will be settled out for the open problem of designing an r-order finite-time (F-T) state observer for reaction-diffusion genetic
regulatory networks (RDGRNs) with time-varying delays. By assuming the Dirichlet boundary conditions, aiming to estimate
the mRNA and protein concentrations via available network measurements. Firstly, sufficient F-T stability conditions for the
filtering error system have been investigated via constructing an appropriate Lyapunov–Krasovskii functional (LKF) and using
several integral inequalities and (reciprocally) convex technique simultaneously. These conditions are delay-dependent and
reaction-diffusion-dependent and can be checked by MATLAB toolbox. Furthermore, a method is proposed to design an r
-order F-T state observer, and the explicit expressions of observer gains are given. Finally, a numerical example is presented to
illustrate the effectiveness of the proposed method.

1. Introduction

Recently, due to a great many applications in the real world,
genetic regulatory networks have become one of the hot
topics in many fields. Much significant results (see [1–10]
and the references therein) have been obtained. Usually,
owing to the highly complexity of genetic regulatory net-
works, spatial homogeneity (i.e., the mRNA and protein con-
centrations are independent on their space positions) is
assumed in the process of modelling genetic regulatory net-
works. However, this assumption is sometimes unreasonable,
for example, the concentrations of proteins in ribosomal
gathering are higher than ones of other parts of the cell
in the process of translation. So, bringing the diffusing phe-
nomenon into the models of genetic regulatory networks is
urgent and necessary, which results in RDGRNs. Generally,
the models of genetic regulatory networks are divided into
discrete-time models and continuous-time ones [11]. A
continuous-time model has wide applications in studying

the complex features and the nonlinear behaviors of genetic
regulatory networks. Moreover, due to the slow processes of
transcription and translation, time delays should be consid-
ered in the continuous-time models of RDGRNs. It should
be emphasized that time delays may lead to poor network
performance, even instability. To the best our knowledge,
those works in [12–17] have researched the problem of
stability analysis of delayed RDGRNs. The asymptotic sta-
bility analysis of delayed RDGRNs have been involved in
[13–15] by constructing an appropriate LKF and applying
some inequality techniques. In [16], a sufficient condition
of F-T stability for delayed RDGRNs has been given by
constructing an LKF including quad-slope integrations
and applying the Gronwall inequality and Wirtinger-type
integral inequality. Related research on uncertain stochastic
time-delay RDGRNs and impulsive stochastic time-delay
RDGRNs can be found in [12, 17], respectively.

Generally speaking, with the change of environment, not
all mRNA and protein concentrations are measurable. So, it
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is important and necessary to estimate the mRNA and pro-
tein concentrations. Currently, one of effective approaches
to estimate system states is to design observers based on
the available measurement. As we all know, the problem
of estimating the states of delayed RDGRNs is only studied
in [18, 19], although some scholars have addressed the
diffusion-free case (see [20–22] and the references therein).
A full-order observer based on available measurement has
been designed in [18] by introducing an LKF and employing
several integral inequalities, convex approach and Green’s
second identity. The existence condition and design method
of a full-order F-T observer have been given in [19]. It is
worth emphasizing that all these results are about the full-
order observers, and all approaches proposed in these litera-
tures are not available for designing reduced-order observers.
But, the design of a reduced-order observer is necessary,
since it can be more easily realized than the full-order one
in engineering practise.

The above discussion motivates us to design an r-order
(i.e., reduced-order) F-T state observer for delayed RDGRNs.
By constructing a novel LKF and employing several inte-
gral inequalities and (reciprocally) convex technique to
estimate its derivative, a F-T stability criterion in the form
of linear matrix inequalities (LMIs) is established for the
resulting error system. In addition, we propose a method
for designing an r-order F-T state observer for RDGRNs
with time-varying delays, and the observer gains are
parameterized by the solutions of these LMIs. Further-
more, the method proposed in this paper is explained by
a numerical example.

It is worth emphasizing that the method proposed in this
paper has the following advantages:

(i) The r-order observer is delay-dependent and reac-
tion-diffusion-dependent, which is more practical.

(ii) Compared with the full-order observers, the designed
r-order one can save the cost in the engineering.

(iii) For delayed genetic regulatory networks without
reaction-diffusion items, the method is still keep-
ing available by removing the corresponding parts
of V 1.

(iv) The method can also extend to some other time-
delay models, including Markov jump neural net-
works [23–25] and stochastic delayed systems [26].

Notation 1. For given n × n matrices X and Y , we say X > Y
and X ≥ Y , if X − Y is real symmetric positive definite and
semidefinite, respectively. The n × n identity matrix is
defined by In, and the m × n zero matrix by 0m×n. A

T and
Sym A stand for the transpose matrix of A and the sum
of A and its transpose, respectively. For an arbitrary but fixed
positive integer l, we denote by l the set 1, 2,… , l . Let
Ω = x ∈ℝl xk ≤ Lk, k ∈ l with Li > 0, i = 1, 2,… , l. The
set of all functions f X →ℝn having the continuous second
derivatives is defined by C2 X,ℝn . · and · d represent
the norms on C2 −d, 0 ×Ω,ℝn and are defined by

y t, x =
Ω
yT t, x y t, x dx

1/2
1

and

h t, x d =max sup
−d≤t≤0

h t, x , sup
−d≤t≤0

∂h t, x
∂t

,

max
1≤k≤n

sup
−d≤t≤0

∂h t, x
∂xk

2

The symbol col A1,… , Am refers to AT
1 ⋯ AT

m
T
.

2. Problem Formulation

Consider the following delayed RDGRN [15]:

∂m t, x
∂t

= 〠
l

k=1
Dk

∂2m t, x
∂x2k

− Am t, x

+Wg p t − κ t , x + q,

∂p t, x
∂t

= 〠
l

k=1
D∗
k
∂2p t, x

∂x2k
− Cp t, x

+ Bm t − ρ t , x ,

3

where

A = diag a1, a2,… , an ,

B = diag b1, b2,… , bn ,

C = diag c1, c2,… , cn ,

W = wij ∈ℝn×n,

q = col q1, q2,… , qn ,

m t, x = col m1 t, x ,… ,mn t, x ,

g p t, x = col g1 p1 t, x , g2 p2 t, x ,… , gn pn t, x ,

p t, x = col p1 t, x , p2 t, x ,… , pn t, x ,
4

x = col x1, x2,… , xl ∈Ω ⊂ℝl, mi t, x , and pi t, x
stand for the concentrations of mRNAs and proteins, respec-
tively; ai, ci, and bi are the rate constants; Dk > 0 and D∗

k > 0
denote the diagonal diffusion rate matrices; W represents
the coupling matrix with elements defined as in [15]; gj

s→ sH/1 + sH is the Hill function, qi is the sum of dimension-
less transcriptional rates which repress gene i, κ t and ρ t
are delays subject to

0 ≤ ρ t ≤ ρ, ρ t ≤ μρ,

0 ≤ κ t ≤ κ, κ t ≤ μκ,
5

where ρ, κ, μρ, and μκ are nonnegative real numbers.
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The expression of gi indicates that

0 ≤
gi y − gi z

y − z
≤ ξi, y, z ∈ℝ, y ≠ z 6

for some common scalar ξi > 0.
Assume that m∗ x , p∗ x is the unique equilibrium

solution of (3). Set

m t, x , p t, x = m t, x −m∗ x , p t, x − p∗ x 7

Then the delayed RDGRN (3) turns into

∂m t, x
∂t

= 〠
l

k=1
Dk

∂2m t, x
∂x2k

− Am t, x +Wf p t − κ t , x ,

∂p t, x
∂t

= 〠
l

k=1
D∗

k
∂2p t, x

∂x2k
− Cp t, x + Bm t − ρ t , x ,

8

where

f p s, x = col f1 p1 s, x ,… , f n pn s, x ,

f i pi s, x = gi pi s, x + p∗i − gi p
∗
i , i ∈ n

9

Next, it is assumed that the initial conditions and the
Dirichlet boundary conditions of (8) are as follows:

m t, x = ψ t, x , p t, x = ψ∗ t, x , x ∈Ω, t ∈ −d, 0 ,

m t, x = 0, p t, x = 0, x ∈ ∂Ω, t ∈ −d, +∞ ,
10

where d =max κ, ρ , and ψ t, x and ψ∗ t, x are func-
tions in C2 −d, 0 ×Ω,ℝn . Furthermore, let the network
outputs be

zp t, x =Npp t, x , zm t, x =Nmm t, x 11

with the full-row-rank constant matrices Nm and Np.
Here, zm t, x and zp t, x represent the expression levels
of mRNAs and proteins at time t, respectively.

This paper aims at designing an r-order F-T state
observer for the delayed RDGRN (8), which is described as:

∂m̂ t, x
∂t

= Âm̂ t, x + M̂mzm t, x ,

∂p̂ t, x
∂t

= −Ĉp̂ t, x + M̂pzp t, x ,

m̂ t, x = ψ t, x , p̂ t, x = ψ
∗ t, x , x ∈Ω, t ∈ −d, 0 ,

m̂ t, x = 0, p̂ t, x = 0, x ∈ ∂Ω, t ∈ −d, +∞
12

Here, m̂ t, x and p̂ t, x are the r-order observer states,
and Â, Ĉ, M̂m, and M̂p are the observer gains.

Remark 1. Clearly, when r = n the observer (12) is of full-
order. So, our method is also available to establish full-
order observers for the delayed RDGRN (8).

Define the augmented vectors

em t, x =
m t, x

m̂ t, x
,

ep t, x =
p t, x

p̂ t, x

13

According to (8), (11), and (12), one can obtain the
resulting error system as follows:

∂em t, x
∂t

= 〠
l

k=1
Dk

∂2em t, x
∂x2k

− Aem t, x

+Wf p t − κ t , x , x ∈Ω, t ∈ −d, +∞ ,

∂ep t, x
∂t

= 〠
l

k=1
D∗
k

∂2ep t, x
∂x2k

− Cep t, x

+ Bm t − ρ t , x , x ∈Ω, t ∈ −d, +∞ ,

em t, x = ψ t, x , ep t, x = ψ∗ t, x , x ∈Ω, t ∈ −d, 0 ,

em t, x = 0, ep t, x = 0, x ∈ ∂Ω, t ∈ −d, +∞ ,
14

where

Dk = diag Dk, 0 ,

W = col W, 0 ,

D∗
k = diag D∗

k , 0 ,

B = col B, 0 ,

A =
A 0

−M̂mNm −Â
,

C =
C 0

−M̂pNp −Ĉ
,

ψ t, x = col ψ t, x , ψ t, x ,

ψ∗ t, x = col ψ∗ t, x , ψ∗ t, x

15

Definition 1 (see [12]). The trivial solution of system (14) is
called F-T stable with respect to positive scalars c1, c2, and
T , if

ψ t, x 2
d + ψ∗ t, x 2

d ≤ c1⇒ em t, x 2 + ep t, x 2

≤ c2, ∀t ∈ 0, T
16
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We say that system (14) is F-T stable with respect to positive
scalars c1, c2, and T , if so, it is its trivial solution.
To achieve our aim, one requires to seek r-order observer
gains Â, Ĉ, M̂m, and M̂p such that system (14) is F-T stable
with respect to positive scalars c1, c2, and T .

3. Preliminaries

The following two lemmas are needed to design an r-order F-
T state observer.

Lemma 1 (Jensen’s inequality) [27]. For given scalars a < b,
an integral function χ a, b →ℝn and a matrix MT =M >
0, there holds the following inequality:

b3 − a3

6

a

b

0

θ

0

λ

χT s Mχ s dsdλdθ

≥
a

b

0

θ

0

λ

χT s dsdλdθM
a

b

0

θ

0

λ

χ s dsdλdθ
17

Lemma 2 (Wirtinger-type integral inequalities) [28]. For
given scalars a < b, a function χ a, b →ℝn which is deriva-
tive and a matrix MT =M > 0, there hold the following
inequalities

b − a
b

a
χT s Mχ s ds ≥ ΘT

5ΘT
6 M ΘT

5ΘT
6

T ,

b

a

b

b
χT s Mχ s dsdα ≥ ΘT

3ΘT
4 M ΘT

3ΘT
4

T,

b − a
b

a
χT s Mχ s ds ≥ ΘT

0ΘT
1ΘT

2 M̂ ΘT
0ΘT

1ΘT
2

T,

18

where

M = diag M, 3M ,

M = diag 2M, 4M ,

M̂ = diag M, 3M, 5M ,

Θ0 = χ b − χ a ,

Θ1 = χ b + χ a − 2 b − a −1
b

a
χ s ds,

Θ2 =Θ0 +
6

b − a

b

a
χ s ds −

12
b − a 2

b

a

b

a
χ s dsdα,

Θ3 = χ b − b − a −1
b

a
χ s ds,Θ5 =

b

a
χ s ds,

Θ4 = χ b +
2

b − a

b

a
χ s ds −

6
b − a 2

b

a

b

a
χ s dsdα,

Θ6 =
b

a
χ s ds − 2 b − a −1

b

a

b

a
χ s dsdα

19

4. Design Method of Observer

In this section, a method to design an r-order F-T state
observer for the delayed RDGRN (8) is proposed, that is,
determine the observer gains Â, Ĉ, M̂m, and M̂p such that
the error system (14) is F-T stable. For this end, we define

E1 = col In+r , 0 17n+3r × n+r ,

E2 = col 0 n+r ×n, In, 0 16n+3r ×n ,

E3 = col 0 2n+r ×n, In, 0 15n+3r ×n ,

E4 = col 0 3n+r × n+r , In+r , 0 14n+2r × n+r ,

E4+i = col 0 in+3n+2r ×n, In, 0 14n−in+2r ×n , i ∈ 4 ,

E9 = col 0 8n+2r × n+r , In+r , 0 9n+r × n+r ,

E10 = col 0 9n+3r × n+r , In+r , 08n× n+r ,

E10+i = col 0 9n+in+4r ×n, In, 0 8−i n×n , i ∈ 8 ,

Π1 = E3 − E2E3 + E2 − 2E11E3 − E2 + 6E11 − 12E12 ,

Π2 = E1K
T − E3E1K

T + E3 − 2E13E1K
T

− E3 + 6E13 − 12E14 ,

Π3 = E6 − E5E6 + E5 − 2E15E6 − E5 + 6E15 − 12E16 ,

Π4 = E4K
T − E6E4K

T + E6 − 2E17E4K
T

− E6 + 6E17 − 12E18 ,

Π5 = E11E11 − 2E12 ,

Π6 = E13E13 − 2E14 ,

Π7 = E15E15 − 2E16 ,

Π8 = E17E17 − 2E18 ,

Υ1 = E1K
T − E13E1K

T + 2E13 − 6E14 ,

Υ2 = E3 − E11E3 + 2E11 − 6E12 ,

Υ3 = E4K
T − E17E4K

T + 2E17 − 6E18 ,

Υ4 = E6 − E15E6 + 2E15 − 6E16 ,

Ψ1 =Ψ11 +Ψ12,

Ψ11 = Sym −
π2

4
E1U1DLE

T
1 − E9U1E

T
9

−
π2

4
E4U2D

∗
LE

T
4 − E10U2E

T
10 + E9U1WET

8

+ E4U2BE
T
3 + E10U2BE

T
3 + E1U1WET

8 ,
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Ψ12 = Sym −E1

U11A 0

−MmNm −Am

ET
1

− E4

U21C 0

−MpNp −Cp

ET
4

− E1

ATU11 −NT
mM

T
m

0 −AT
m

ET
9

− E4

CTU21 −NT
pM

T
p

0 −CT
p

ET
10 ,

Ψ2 = E1K
T V1 + V2 KET

1 − E2V2E
T
2

+ μρ − 1 E3V1E
T
3 + E4K

T V3 +V4 KET
4

− E5V4E
T
5 + μκ − 1 E6V3E

T
6 ,

Ψ3 = μκ − 1 E8V5E
T
8 + E7V5E

T
7 ,

Ψ4 ρ, κ =Ψ40 +Ψ41 +Ψ42 +Ψ43 ρ +Ψ44 κ ,

Ψ40 = ρ2 E9K
TW1KE

T
9 + E1K

TW3KE
T
1

+ κ2 E10K
TW2KET

10 + E4K
TW4KE

T
4 ,

Ψ41 = − Π1 Π2

Ŵ1 Ĥ1

Ĥ
T
1 Ŵ1

Π1 Π2
T,

Ψ42 = − Π3 Π4

Ŵ2 Ĥ2

Ĥ
T
2 Ŵ2

Π3 Π4
T,

Ψ43 ρ = ρ ρ − ρ Π5 W3ΠT
5 − ρ ρΠ6 W3ΠT

6 ,

Ψ44 κ = −κ κ − κ Π7 W4ΠT
7 − κκΠ8W4ΠT

8 ,

Ψ5 ρ, κ =Ψ50 +Ψ51 ρ +Ψ52 κ ,

Ψ50 =
ρ2

2
E9K

TX1KE
T
9 +

κ2

2
E10K

TX2KE
T
10,

Ψ51 ρ = −Υ1X1ΥT
1 − Υ2X1ΥT

2 −
ρ − ρ

ρ
Π2X̂1ΠT

2 ,

Ψ52 κ = −Υ3X2ΥT
3 − Υ4X2ΥT

4 −
κ − κ

κ
Π4X̂2ΠT

4 ,

Ψ6 ρ, κ =Ψ60 +Ψ61 ρ +Ψ62 κ − ρ − ρ Υ1Y1ΥT
1

− κ − κ Υ3Y2ΥT
3 ,

Ψ60 =
ρ3

6
E9K

TY1KE
T
9 +

κ3

6
E10K

TY2KE
T
10,

Ψ61 ρ = −
3
2
ρ E1K

T − 2E14 Y1 E1K
T − 2E14

T

−
3
2

ρ − ρ E3 − 2E12 Y1 E3 − 2E12
T,

Ψ62 κ = −
3
2
κ E4K

T − 2E18 Y2 E4K
T − 2E18

T

−
3
2

κ − κ E6 − 2E16 Y2 E6 − 2E16
T,

Ψ01 = −2E7Z1E
T
7 + E4K

TK Z1E
T
7 + E7 Z1KKE

T
4 ,

Ψ02 = −2E8Z2E
T
8 + E6KZ2E

T
8 + E8Z2KE

T
6 ,

Xi = diag 2Xi, 4Xi ,

Ŵi = diag Wi, 3Wi, 5Wi ,

X̂i = diag Xi, 3Xi, 5Xi ,

Yi = diag 2Yi, 4Yi i = 1, 2,

Wj = diag Wj, 3Wj , j = 3, 4,

U = diag U1,U2 ,

Uk = diag Uk1,Uk2 , k = 1, 2,

λ11 = λmax U1 + ρλmax V1 + ρλmax V2

+
1
6
ρ3max X1 + 〠

l

k=1
λmax U1 λmax Dk

+
1
2
ρ3max W1+W3 +

1
24

ρ4λmax Y1 ,

λ12 = λmax U2 + κ λmax V3 + κλmax V4

+ κ λmax V5 λmax KTK +
1
6
κ3λmax X2

+ 〠
l

k=1
λmax U2 λmax D∗

k

+
1
2
κ3 λmax W2 +W4 +

1
24

κ4λmax Y2 ,

η t, x = col em t, x ,m t − ρ, x ,m t − ρ t , x ,

ep t, x , p t − κ, x , p t − κ t , x ,

f p t, x , f p t − κ t , x ,
∂em t, x

∂t
,

∂ep t, x
∂t

,
1

ρ − ρ t

t−ρ t

t−ρ
m s, x ds,

1
ρ − ρ t 2

t−ρ t

t−ρ

t−ρ t

α

m s, x dsdα,
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1
ρ t

t

t−ρ t
m s, x ds,

1
ρ2 t

t

t−ρ t

t

α

m s, x dsdα,

1
κ − κ t

t−κ t

t−κ
p s, x ds,

1
κ − κ t 2

t−κ t

t−κ

t−κ t

α

p s, x dsdα,

1
κ t

t

t−κ t
p s, x ds,

1
κ2 t

t

t−κ t

t

α
p s, x dsdα ,

DL = 〠
l

k=1

Dk

L2k
,

D∗
L = 〠

l

k=1

D∗
k

L2k
,

K = I 0 ,
20

where Lk,Dk, and D∗
k are the same with previous ones.

Now we can provide an approach to design an r-order
F-T state observer for the delayed RDGRN (8).

Theorem 1. For given scalars ρ, κ, μρ , and μκ satisfying (5)
and positive constants T , c1, c2, and α, system (14) is F-T stable
with respect to c1, c2 , and T, if there exist matrices 0 <VT

i =
Vi ∈ℝn×n i ∈ 5 , 0 <WT

j =Wj ∈ℝn×n j ∈ 4 , 0 < XT
k =

Xk ∈ℝn×n, and 0 < YT
k = Yk ∈ℝn×n, diagonal matrices 0 <

Uk ∈ℝ n+r × n+r and 0 < Zk ∈ℝn×n, and matrices Ĥk ∈
ℝ3n×3n k ∈ 2 , Am ∈ℝr×r , Cp ∈ℝr×r ,Mm, andMp of appro-
priate dimensions, such that the following inequalities are fea-
sible for ρ ∈ 0, ρ and κ∈{0,κ}:

Ŵk Ĥk

Ĥ
T
k Ŵk

≥ 0, k ∈ 2 , 21

Ψ ρ, κ ≔ 〠
3

i=1
Ψi + 〠

6

i=4
Ψi ρ, κ + 〠

2

i=1
Ψ0i

− αE1U1E
T
1 − αE4U2E

T
4 < 0,

22

c1e
αT λ11 + λ12 − c2λmin U ≤ 0, 23

where K = diag ξ1, ξ2,… , ξn > 0, and A, B, C, and W are
defined previously.

In addition, based on a feasible solution of (21), (22), and
(23), an r-order F-T state observer can be represented by (12)
with the following gains:

Â M̂m

Ĉ M̂p

= diag U12,U22
−1

Am Mm

Cp Mp

24

Proof 1. Choose the following LKF functional:

V t, em, ep = 〠
6

i=1
V i t, em, ep , 25

where

V 1 t, em, ep =
Ω
eTm t, x U1em t, x dx

+
Ω
eTp t, x U2ep t, x dx

+ 〠
l

k=1 Ω

∂eTm t, x
∂xk

U1Dk
∂em t, x

∂xk
dx

+ 〠
l

k=1 Ω

∂eTp t, x
∂xk

U2D
∗
k

∂ep t, x
∂xk

dx,

V 2 t, em, ep =
Ω

t

t−ρ t
eTm s, x KTV1Kem s, x dsdx

+
Ω

t

t−ρ
eTm s, x KTV2Kem s, x dsdx

+
Ω

t

t−κ t
eTp s, x KTV3Kep s, x dsdx

+
Ω

t

t−κ
eTp s, x KTV4Kep s, x dsdx,

V 3 t, em, ep =
Ω

t

t−κ t
f T p s, x V5 f p s, x dsdx,

V 4 t, em, ep = ρ
Ω

0

−ρ

t

t+θ

∂eTm s, x
∂s

KTW1K

∂em s, x
∂s

dsdθdx + κ
Ω

0

−κ

t

t+θ
∂eTp s, x

∂s
KTW2K

∂ep s, x
∂s

dsdθdx

+ ρ
Ω

0

−ρ

t

t+θ
eTm s, x KTW3Kem s, x dsdθdx

+ κ
Ω

0

−κ

t

t+θ
eTp s, x KTW4Kep s, x dsdθdx,

V 5 t, em, ep =
Ω

0

−ρ

0

s

t

t+θ

∂eTm u, x
∂u

KTX1K

∂em u, x
∂u

dudθdsdx +
Ω

0

−κ

0

s

t

t+θ

∂eTp u, x
∂u

KTX2K
∂ep u, x

∂u
dudθdsdx,
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V 6 t, em, ep =
Ω

0

−ρ

0

s

0

α

t

t+θ

∂eTm u, x
∂u

KTY1K

∂em u, x
∂u

dudθdαdsdx +
Ω

0

−κ

0

s

0

α

t

t+θ

∂eTp u, x
∂u

KTY2K
∂ep u, x

∂u
dudθdαdsdx

26

Then, calculating the derivatives of V i t, em, ep i ∈ 6
along on the solution of system (14), one can obtain that

∂
∂t
V 1 t, em, ep = 2

Ω
eTm t, x U1 −Aem t, x

+Wf p t − κ t , x

+ 〠
l

k=1
Dk

∂2em t, x
∂x2k

dx + 2
Ω
eTp t, x U2

−Cep t, x + Bm t − ρ t , x

+ 〠
l

k=1
D∗

k

∂2ep t, x
∂x2k

dx + 2〠
l

k=1 Ω

∂eTm t, x
∂xk

U1Dk
∂
∂xk

∂em t, x
∂t

dx

+ 2〠
l

k=1 Ω

∂eTp t, x
∂xk

U2D
∗
k

∂
∂xk

∂ep t, x
∂t

dx,

27

∂
∂t
V 2 t, em, ep =

Ω
eTm t, x KT V1 +V2 Kem t, x dx

− 1 − ρ t
Ω
mT t − ρ t , x V1m

t − ρ t , x dx −
Ω
mT t − ρ, x V2m

t − ρ, x dx +
Ω
eTp t, x KT

V3 + V4 Kep t, x dx − 1 − κ t
Ω
pT

t − κ t , x V3p t − κ t , x dx

−
Ω
pT t − κ, x V4p t − κ, x dx

≤
Ω
ηT t, x Ψ2η t, x dx,

28

∂
∂t

V 3 t, em, ep =
Ω
f T p t, x V5 f p t, x dx

− 1 − κ t
Ω
f T p t − κ t , x V5 f

p t − κ t , x dx

≤
Ω
ηT t, x Ψ3η t, x dx,

29

∂
∂t

V 4 t, em, ep

= −ρ
Ω

t

t−ρ

∂eTm s, x
∂s

KTW1K
∂em s, x

∂s
dsdx

+ ρ2

Ω

∂eTm t, x
∂t

KTW1K
∂em t, x

∂t
dx

− κ
Ω

t

t−κ

∂eTp s, x
∂s

KTW2K
∂ep s, x

∂s
dsdx

+ κ2

Ω

∂eTp t, x
∂t

KTW2K
∂ep t, x

∂t
dx

− ρ
Ω

t

t−ρ
eTm s, x KTW3Kem s, x dsdx

+ ρ2

Ω
eTm t, x KTW3Kem t, x dx

− κ
Ω

t

t−κ
eTp s, x KTW4Kep s, x dsdx

+ κ2

Ω
eTp t, x KTW4Kep t, x dx,

30

∂
∂t
V 5 t, em, ep

=
ρ2

2 Ω

∂eTm t, x
∂t

KTX1K
∂em t, x

∂t
dx

−
Ω

0

−ρ

t

t+s

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudsdx

+
κ2
2 Ω

∂eTp t, x
∂t

KTX2K
∂ep t, x

∂t
dx

−
Ω

0

−κ

t

t+s

∂eTp u, x
∂u

KTX2K
∂ep u, x

∂u
dudsdx,

31

∂
∂t

V 6 t, em, ep

=
ρ3

6 Ω

∂eTm t, x
∂t

KTY1K
∂em t, x

∂t
dx

−
Ω

0

−ρ

0

α

t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdαdx

+
κ3

6 Ω

∂eTp t, x
∂t

KTY2K
∂ep t, x

∂t
dx

−
Ω

0

−κ

0

α

t

t+s

∂eTp u, x
∂u

KTY2K
∂ep u, x

∂u
dudsdαdx

32

7Complexity



Firstly, it follows from Green formula that

2
Ω
eTm t, x U1 〠

l

k=1
Dk

∂2em t, x
∂x2k

dx

= 2〠
l

k=1 Ω

∂
∂xk

eTm t, x U1Dk
∂em t, x

∂xk
dx

− 2〠
l

k=1 Ω

∂eTm t, x
∂xk

U1Dk
∂em t, x

∂xk
dx

33

Using Dirichlet boundary conditions, one can derive that

2
Ω
eTm t, x U1 〠

l

k=1
Dk

∂2em t, x
∂x2k

dx

= −2〠
l

k=1 Ω

∂eTm t, x
∂xk

U1Dk
∂em t, x

∂xk
dx

34

This, together with the so-called Wirtinger’s inequality
[29], implies that

2
Ω
eTm t, x U1 〠

l

k=1
Dk

∂2em t, x
∂x2k

dx

≤ −
π2
2 Ω

eTm t, x U1DLem t, x dx

35

In a similar way,

2
Ω
eTp t, x U2 〠

l

k=1
D∗
k

∂2ep t, x
∂x2k

dx

≤ −
π2
2 Ω

eTp t, x U2D
∗
Lep t, x dx

36

From (14) we get

2
Ω

∂eTm t, x
∂t

U1 −
∂em t, x

∂t
+ 〠

l

k=1
Dk

∂2em t, x
∂x2k

− Aem t, x +Wf p t − κ t , x dx = 0

37

and

2
Ω

∂eTp t, x
∂t

U2 −
∂ep t, x

∂t
+ 〠

l

k=1
D∗
k

∂2ep t, x
∂x2k

− Cep t, x + Bm t − ρ t , x dx = 0

38

By means of Dirichlet boundary conditions, Green for-
mula and [15], Lemma 4, it yields that

2
Ω

∂eTm t, x
∂t

U1 〠
l

k=1
Dk

∂2em t, x
∂x2k

dx

= 2
Ω
eTm t, x U1 〠

l

k=1

∂
∂xk

Dk
∂
∂xk

∂em t, x
∂t

dx

= −2〠
l

k=1 Ω

∂eTm t, x
∂xk

U1Dk
∂
∂xk

∂eTm t, x
∂t

dx

39

Similarly,

2
Ω

∂eTp t, x
∂t

U2 〠
l

k=1
D∗
k

∂2ep t, x
∂x2k

dx

= −2〠
l

k=1 Ω

∂eTp t, x
∂xk

U2D
∗
k

∂
∂xk

∂ep t, x
∂t

dx

40

Combining (27) and (35), (36), (37), (38), (39), and (40),
we get

∂
∂t
V 1 t, em, ep ≤ 2

Ω
eTm t, x U1 −Aem t, x −

π2

4
DLem t, x

+Wf p t − κ t , x dx + 2
Ω
eTp t, x U2

−Cep t, x −
π2

4
D∗

Lep t, x

+ Bm t − ρ t , x dx + 2
Ω

∂eTm t, x
∂t

U1

−
∂em t, x

∂t
− Aem t, x

+Wf p t − κ t , x dx + 2
Ω

∂eTp t, x
∂t

U2 −
∂ep t, x

∂t
− Cep t, x

+ Bm t − ρ t , x dx

=
Ω
ηT t, x Ψ1η t, x dx

41

Secondly, in view of (21), the reciprocally convex
technique [30] and Lemma 2, it follows that

−ρ
Ω

t

t−ρ

∂eTm s, x
∂s

KTW1K
∂em s, x

∂s
dsdx

= −ρ
Ω

t

t−ρ t

∂eTm s, x
∂s

KTW1K
∂em s, x

∂s
dsdx

− ρ
Ω

t−ρ t

t−ρ

∂eTm s, x
∂s

KTW1K
∂em s, x

∂s
dsdx

≤ −
Ω
ηT t, x Ψ41η t, x dx

42
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Similarly,

−κ
Ω

t

t−κ

∂eTp s, x
∂s

KTW2K
∂ep s, x

∂s
dsdx

≤ −
Ω
ηT t, x Ψ42η t, x dx

43

Again using Lemma 2, one can obtain

−ρ
Ω

t

t−ρ
eTm s, x KTW3Kem s, x dsdx

= −ρ
Ω

t

t−ρ t
eTm s, x KTW3Kem s, x dsdx

− ρ
Ω

t−ρ t

t−ρ
eTm s, x KTW3Kem s, x dsdx

≤ −ρρ t
Ω
ηT t, x Π6W3ΠT

6η t, x dx

− ρ ρ − ρ t
Ω
ηT t, x Π5W3ΠT

5η t, x dx

=
Ω
ηT t, x Ψ43 ρ t η t, x dx

44

and

−κ
Ω

t

t−ρ
eTp s, x KTW4Kep s, x dsdx

≤ −κκ t
Ω
ηT t, x Π8W4ΠT

8η t, x dx

− κ κ − κ t
Ω
ηT t, x Π7W4ΠT

7η t, x dx

=
Ω
ηT t, x Ψ44 κ t η t, x dx

45

The combination of (30) and (42), (43), (44), and
(45) gives

∂
∂t

V 4 t, em, ep ≤
Ω
ηT t, x Ψ4 ρ t , κ t η t, x dx

46

Thirdly, it is clear that

−
Ω

0

−ρ

t

t+s

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudsdx

= −
Ω

−ρ t

−ρ

t−ρ t

t+s

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudsdx

−
Ω

0

−ρ t

t

t+s

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudsdx

− ρ − ρ t
Ω

t

t−ρ t

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudx

47

It follows from Lemma 2 that

−
Ω

0

−ρ t

t

t+s

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudsdx

≤ −
Ω
ηT t, x Υ1X1ΥT

1η t, x dx,

−
Ω

−ρ t

−ρ

t−ρ t

t+s

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudsdx

≤ −
Ω
ηT t, x Υ2X1ΥT

2η t, x dx

48

and

− ρ − ρ t
Ω

t

t−ρ t

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudx

≤ −
Ω
ηT t, x

ρ − ρ t
ρ

Π2X̂1ΠT
2η t, x dx

49

By (47), it implies that

−
Ω

0

−ρ

t

t+s

∂eTm u, x
∂u

KTX1K
∂em u, x

∂u
dudsdx

≤
Ω
ηT t, x Ψ51 ρ t η t, x dx

50

Similarly,

−
Ω

0

−κ

t

t+s

∂eTp u, x
∂u

KTX2K
∂ep u, x

∂u
dudsdx

≤
Ω
ηT t, x Ψ52 κ t η t, x dx

51

Combining (31), (50), and (51), we have

∂
∂t

V 5 t, em, ep ≤
Ω
ηT t, x Ψ5 ρ t , κ t η t, x dx 52

Fourthly, it is obvious that

−
Ω

0

−ρ

0

α

t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdαdx

≤ −
Ω

0

−ρ t

0

α

t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdαdx

−
Ω

−ρ t

−ρ

−ρ t

α

t−ρ t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdαdx

− ρ − ρ t
Ω

0

−ρ t

t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdx

53
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By Lemmas 1 and 2, one can obtain

−
Ω

−ρ t

−ρ

−ρ t

α

t−ρ t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdαdx

−
Ω

0

−ρ t

0

α

t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdαdx

≤
Ω
ηT t, x Ψ61 ρ t η t, x dx

54

and

− ρ − ρ t
Ω

0

−ρ t

t

t+s

∂eTm u, x
∂u

KTY1K
∂em u, x

∂u
dudsdx

≤ −
Ω
ηT t, x ρ − ρ t Υ1Y1ΥT

1η t, x dx,

55

respectively. Similarly,

−
Ω

0

−κ t

0

α

t

t+s

∂eTp u, x
∂u

KTY2K
∂ep u, x

∂u
dudsdαdx

−
Ω

−κ t

−κ

−κ t

α

t−κ t

t+s

∂eTp u, x
∂u

KTY2K
∂ep u, x

∂u
dudsdαdx

≤
Ω
ηT t, x Ψ62 κ t η t, x dx

56

and

− κ − κ t
Ω

0

−κ t

t

t+s

∂eTp u, x
∂u

KTY2K
∂ep u, x

∂u
dudsdx

≤ −
Ω
ηT t, x κ − κ t Υ3Y2ΥT

3η t, x dx

57

By (32) and (53), (54), (55), (56), and (57), it is
obtained that

∂
∂t
V 6 t, em, ep ≤

Ω
ηT t, x Ψ6 ρ t , κ t η t, x dx

58

Finally, from (6) and the relationship between f i and gi, it
is clear to say that f 0 = 0 and

f z − Kz TZi f z ≤ 0, ∀z ∈ℝn, i = 1, 2, 59

that is, for given diagonal matrices Z1 > 0 and Z2 > 0, we get

ηT t, x Ψ0iη t, x ≥ 0, i = 1, 2 60

The combination of (22), (28), (29), (41), (46), (52), (39),
and (60) yields

∂
∂t
V t, em, ep = 〠

6

i=1

∂
∂t

V i t, em, ep

≤ α
Ω
eTm t, x U1em t, x + eTp t, x U2ep t, x dx

+
Ω
ηT t, x Ψ ρ t , κ t η t, x dx

≤
Ω
ηT t, x Ψ ρ t , κ t η t, x dx + αV t, em, ep

61

Since Ψ ρ t , κ t depends affinely upon ρ t and κ t ,
one can derive from (22) that Ψ ρ t , κ t < 0 for any 0 ≤ κ
t ≤ κ and 0 ≤ ρ t ≤ ρ. Utilizing (61), we can get

∂
∂t
V t, em, ep ≤ αV t, em, ep 62

For any t ∈ 0, T , integrating the two sides of (62) from 0
to t, we derive

V t, em, ep ≤V 0, em 0, x , ep 0, x +
t

0
αV s, em, ep ds

63

By means of the so-called Gronwall inequality, one
can obtain

V T , em, ep ≤ eαTV 0, em 0, x , ep 0, x 64

According to the expression of V t, em, ep , it appar-
ently will come

V 0, em 0, x , ep 0, x

≤ λ11 + λ12 ψ t, x 2
d + ψ∗ t, x 2

d

65

Combination of (64) and (65) derives

V T , em, ep ≤ eαT λ11 + λ12 ψ t, x 2
d+ ψ∗ t,x 2

d

66

In addition, when t ∈ 0, T , one can easily derive that

V T , em, ep ≥ λmin U em t, x 2 + ep t, x 2 , 67

where λmin U is the minimum eigenvalue of diag U1,
U2 . It can be seen from (66) and (67) that

em t, x 2 + ep t, x 2

≤
eαT λ11 + λ12 ψ t, x 2

d + ψ∗ t, x 2
d

λmin U

68
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By Definition 1 and (23), under Dirichlet boundary
conditions, system (14) is F-T stable with respect to c1,
c2, and T . The proof is completed.

Following the proof of Theorem 1, one can easily derive
the following conclusion which gives a method to design an
r-order observer for the delayed RDGRN (8).

Corollary 1. For given scalars ρ, κ, μρ, and μκ subject to (5),
system (14) is asymptotically stable under Dirichlet boundary
conditions, if there are matrices 0 < VT

i =Vi ∈ℝn×n i ∈ 5 ,
0 <WT

j =Wj ∈ℝn×n j ∈ 4 , 0 < XT
k = Xk ∈ℝn×n, and 0 <

YT
k = Yk ∈ℝn×n, diagonal matrices 0 <Uk ∈ℝ n+r × n+r and

0 < Zk ∈ℝn×n, and matrices Ĥk ∈ℝ3n×3n k ∈ 2 , Am ∈
ℝr×r, Cp ∈ℝr×r ,Mm, andMp of appropriate dimensions, such
that LMIs (21) and (22) with α = 0 are feasible for ρ ∈ 0, ρ
and κ ∈ 0, κ . In addition, the desired r-order state observer
is described by (12) and (24).

Since inequality (23) is not an LMI, the Toolbox YALMIP
of MATLAB is not applicable. Now we will do the following
transformation:

Theorem 2. For given scalars ρ, κ, μρ, and μκ satisfying (5)
and positive constants T , c1, c2, and α, system (14) is F-T
stable with respect to c1, c2, and T under Dirichlet bound-
ary conditions, if there are real numbers λvi > 0 i ∈ 5 ,
λwj > 0 j ∈ 4 , λxk > 0, λyk > 0, λuk > 0 k ∈ 2 , and λu
> 0, matrices 0 <VT

i =Vi ∈ℝn×n i ∈ 5 , 0 <WT
j =Wj ∈

ℝn×n, j ∈ 4 , 0 < XT
k = Xk ∈ℝn×n, and 0 < YT

k = Yk ∈ℝn×n,
diagonal matrices 0 <Uk ∈ℝ n+r × n+r and 0 < Zk ∈ℝn×n,
and matrices Ĥk ∈ℝ3n×3n k ∈ 2 , Am ∈ℝr×r, Cp ∈ℝr×r,
Mm, and Mp of appropriate dimensions, such that LMIs
(21), (22) and the following (69), (70), (71), (72), (73), (74),
and (75) are feasible for ρ ∈ 0, ρ and κ ∈ 0, κ :

0 ≤Vi ≤ λviI, i ∈ 5 , 69

0 ≤Wj ≤ λwjI, j ∈ 4 , 70

0 ≤Uk ≤ λukI, k ∈ 2 , 71

0 ≤ Xk ≤ λxkI, k ∈ 2 , 72

0 ≤ Yk ≤ λykI, k ∈ 2 , 73

λuI ≤U , 74

c1eαT λu1 + ρλv1 + ρλv2 +
1
6
ρ3λx1 +

1
2
ρ3 λw1 + λw3

+ λu1 〠
l

k=1
λmax Dk + λu2 + κλv3 + κλv4 +

1
24

ρ4λy1

+ κλv5λmax KTK +
1
6
κ3λx2 +

1
2
κ3 λw2 + λw4

+
1
24

κ4λy2 + λu2 〠
l

k=1
λmax D∗

k ≤ c2λu

75

In addition, the desired r-order F-T state observer is
described by (12) and (24).

Proof 2. It follows from (69), (70), (71) and (72) that

n1 ≔ c1eαT λmax U1 + ρλmax V1 + ρλmax V2

+
1
6
ρ3λmax X1 + 〠

l

k=1
λmax U1 λmax Dk

+
1
2
ρ3λmax W1 +

1
2
ρ3λmax W3 +

1
24

ρ4λmax Y1

≤ c1eαT λu1 + ρλv1 + ρλv2 +
1
6
ρ3λx1 +

1
2
ρ3λw1

+
1
2
ρ3λw3 +

1
24

ρ4λy1 + λu1 〠
l

k=1
λmax Dk

76

and

n2 ≔ c1eαT λmax U2 + κλmax V3 + κλmax V4

+ κλmax V5 λmax KTK +
1
2
κ3λmax W4

+
1
6
κ3λmax X2 + 〠

l

k=1
λmax U2 λmax D∗

k

+
1
2
κ3λmax W2 +

1
24

κ4λmax Y2

≤ c1eαT λu2 + κλv3 + κλv4 + κλv5λmax KTK

+
1
6
κ3λx2 +

1
2
κ3λw2 +

1
2
κ3λw4 +

1
24

κ4λy2

+ λu2 〠
l

k=1
λmax D∗

k

77

This, together with (74) and (75), implies that

n1 + n2 ≤ λuc2 ≤ c2λmin U , 78

which shows that (23) holds. By Theorem 1, we complete
the proof.

Finally, we make several remarks on the method pro-
posed in this paper.

Remark 2. Different from [18, 19], this paper gives an r
-order F-T state observer (12) for the delayed RDGRN
(8). It should be mentioned that, compared with the full-
order observer, the reduced-order one is more practical.
Particularly, a reduced-order observer can save the cost in
the engineering applications.
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Remark 3. In the proof of Theorem 1, we employ the so-
called Wirtinger’s inequality to obtain the equalities (18,
19), which claims the necessity of Dirichlet boundary condi-
tions. However, by employing the technique used in [14, 15],
one can deal with the cases of Robin boundary conditions
and Neumann boundary conditions, which will make the
LMI conditions corresponding to ones in Theorems 1 and 2
more conservative.

Remark 4. For delayed genetic regulatory networks without
reaction-diffusion items, the method proposed in Theorems
1 and 2 is still keeping available by removing the correspond-
ing parts of V 1 t, em, ep .

Remark 5. For delayed genetic regulatory networks without
reaction-diffusion items, Zhang et al. [22] proposed a method
to design full- and reduced-order state observers. It should be
pointed that this method cannot be applied to delayed
RDGRNs, since the equivalent decompositions of output
matrices are required.

Remark 6. Several techniques used in this paper may be avail-
able for some other time-delay models:

(1) Wirtinger-type integral inequality, instead of Jensen’s
inequality, is applied to estimate some integral items
in the derivative of LKFs;

(2) The convex technique and reciprocally convex tech-
nique are organically combined;

(3) The coefficients, 1/ρ t and 1/ρ − ρ t , are intro-
duced into the augmented vector η t, x .

5. An Illustrative Example

In this section, we will give a numerical example to verify the
availability of the proposed method to design the r-order F-T
state observer.

Example 1. Consider the delayed RDGRN (8), where l =
L1 = 1, f i x = x2/1 + x2, i ∈ 3 , D1 = 0 1I3, D∗

1 = 0 2I3,and

A = diag 0 2,1 1,1 2 ,

C = diag 0 3,0 7,1 3 ,

B = diag 1 0,0 4,0 7 ,

W =

0 0 −0 5

−0 5 0 0

0 −0 5 0

,

Nm =
0 5 −0 6 0

0 3 0 8 −0 2
,

Np =
0 7 −0 25 0 3

0 4 0 2 −0 3
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In order to save space, we only design the 1-order F-T
state observer. Let μρ = μκ = 1 5, ρ = κ = 1, c1 = 1 2, c2 = 5,
α = 0 002, and T = 10. The LMIs in Theorem 2 is solved by
means of the MATLAB’s toolbox. The solution matrices are
listed as follows:

U1 = diag 0 0024,0 0023,0 0023,0 0023 ,

U2 = diag 0 0021,0 0022,0 0022,0 0022 ,

V1 = 10−4 ∗

0 1045 0 0025 0 0006

0 0025 0 4262 0 0008

0 0006 0 0008 0 3188

,

V2 = 10−3 ∗

0 8349 0 0014 −0 0001

0 0014 0 6863 0 0001

−0 0001 0 0001 0 7273

,

V3 = 10−4 ∗

0 2375 0 0007 0 0177

0 0007 0 3705 0 0004

0 0177 0 0004 0 2184

,

V4 = 10−3 ∗

0 2459 0 0004 −0 0026

0 0004 0 3530 0 0001

−0 0026 0 0001 0 3982

,

V5 = 10−3 ∗

0 0724 0 0001 0 0044

0 0001 0 1008 0 0001

0 0044 0 0001 0 0504

,

W1 = 10−3 ∗

0 4365 −0 0003 −0 0010

−0 0003 0 0602 −0 0002

−0 0010 −0 0002 0 0979

,

W2 = 10−3 ∗

0 0650 −0 0000 −0 0001

−0 0000 0 0676 −0 0000

−0 0001 −0 0000 0 1329

,

W3 =

0 0019 0 0000 −0 0000

0 0000 0 0013 −0 0000

−0 0000 −0 0000 0 0017

,

W4 = 10−3 ∗

0 3859 0 0007 −0 0657

0 0007 0 7248 0 0003

−0 0657 0 0003 0 8332

,

X1 = 10−4 ∗

0 1836 −0 0002 −0 0002

−0 0002 0 2028 0 0000

−0 0002 0 0000 0 1890

,
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X2 = 10−4 ∗

0 2099 −0 0000 0 0037

−0 0000 0 2086 −0 0000

0 0037 −0 0000 0 1899

,

Y1 = 10−3 ∗

0 5525 0 0028 −0 0085

0 0028 0 2215 −0 0002

−0 0085 −0 0002 0 2354

,

Y2 = 10−3 ∗

0 1749 0 0000 0 0291

0 0000 0 2371 −0 0003

0 0291 −0 0003 0 2511

,

Z1 = diag 0 0012,0 0083,0 0083 ,

Z2 = diag 0 0007,0 0010,0 0015 ,

λv1 = 1 0785e − 004,

λv2 = 8 6624e − 004,

λv3 = 1 0586e − 004,

λv4 = 4 3530e − 004,

λv3 = 1 0586e − 004,

λv4 = 4 3530e − 004,

λv5 = 2 5342e − 004,

λw1 = 4 9465e − 004,

λw2 = 2 4219e − 004,

λw3 = 0 0019,

λw4 = 9 0637e − 004,

λx1 = 4 8617e − 004,

λx2 = 4 8702e − 004,

λu1 = 0 0024,

λu2 = 0 0022,

λy1 = 0 0020,

λy2 = 0 0019,

λu = 0 0021,

Am = −0 0037,

Mm = 0 0008 − 0 0011 ,

Cp = −0036,

Mp = 0 0016 − 0 0024
80

Furthermore, we can obtain the corresponding observer
gains as follows:

Â = −1 6087,

M̂m = 0 3478 − 0 4783 ,

Ĉ = −1 6364,

M̂p = 0 7273 − 1 0909

81

When the initial function ψ t = 0 20 20 2 T and ψ∗ t
= 0 20 20 2 T for t ∈ −1, 0 , the state responses of RDGRN
(8), 1-order observer (12), and error system (14) are pre-
sented in Figures 1–6. From which, it is seen that our
approach is effective.

6. Conclusions

The design problem of r-order F-T state observer of
RDGRNs with time-varying delays has been researched
under Dirichlet boundary conditions. Utilizing available
measurement outputs, we proposed a method to design
r-order F-T observer which can be used to estimate the
mRNA and protein concentrations. Sufficient F-T stability
conditions for error system have been investigated by con-
structing an appropriate LKF and employing several integral
inequalities and (reciprocally) convex technique. Thereby,
the concrete expression of r-order F-T state observer is given.
A numerical example is presented to illustrate the validity of
the proposed method. It is worth emphasizing that the
reduced-order observer problem of delayed RDGRNs is
studied at the first time.

In literature, the problem of full-order state estimation
for complex systems have been addressed (see, for exam-
ple, [23–25]). However, all approaches proposed in these
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Figure 1: The real trajectories of mRNA concentration ( m t, x 2).
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literature are not available for designing reduced-order
observers. Therefore, extending the method presented in this
paper to the other system models will be left for future work.
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