
Research Article
Hybrid Network-on-Chip: An Application-Aware Framework for
Big Data

Juan Fang , Sitong Liu, Shijian Liu, Yanjin Cheng, and Lu Yu

Faculty of Information Technology, Beijing University of Technology, Beijing 100022, China

Correspondence should be addressed to Juan Fang; fangjuan@bjut.edu.cn

Received 20 April 2018; Accepted 25 June 2018; Published 30 July 2018

Academic Editor: Wei Xiang

Copyright © 2018 Juan Fang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Burst growing IoT and cloud computing demand exascale computing systems with high performance and low power consumption
to process massive amounts of data. Modern system platforms based on fundamental requirements encounter a performance gap in
chasing exponential growth in data speed and amount. To narrow the gap, a heterogamous design gives us a hint. A network-on-
chip (NoC) introduces a packet-switched fabric for on-chip communication and becomes the de facto many-core interconnection
mechanism; it refers to a vital shared resource for multifarious applications which will notably affect system energy efficiency.
Among all the challenges in NoC, unaware application behaviors bring about considerable congestion, which wastes huge
amounts of bandwidth and power consumption on the chip. In this paper, we propose a hybrid NoC framework, combining
buffered and bufferless NoCs, to make the NoC framework aware of applications’ performance demands. An optimized
congestion control scheme is also devised to satisfy the requirement in energy efficiency and the fairness of big data applications.
We use a trace-driven simulator to model big data applications. Compared with the classical buffered NoC, the proposed hybrid
NoC is able to significantly improve the performance of mixed applications by 17% on average and 24% at the most, decrease
the power consumption by 38%, and improve the fairness by 13.3%.

1. Introduction

The Internet of Things (IoT) applications, cognitive com-
puting, and cloud computing have seen tremendous growth
in recent years [1, 2]. IoT applications use smart sensors to
build an Internet of Things [3], which can generate enor-
mous data every hour. In the area of unmanned driving,
the system makes a quick decision on the basis of this con-
tinual data input, and it demands exascale computing sys-
tems to handle these data in a multicore platform [4, 5].
Expected exascale computing systems will have grand capa-
bilities of computation and storage, with many cores on chip
and large memory hierarchies. Such a complexity system
needs great efforts to guarantee performance efficiency and
to minimize power consumption [6, 7]. With the launching
of the Intel Xeon Scalable processor [8] for data centres, the
network-on-chip (NoC) is generally acknowledged as a

“super highway” to increase the bandwidth between on-
chip components, reduce latency when accessing spans of
memory hierarchy, and improve energy efficiency. However,
NoC has suffered severe congestion issues thanks to big data
load, causing a great loss in energy efficiency [9, 10]. Hetero-
geneous NoCs are emerged to tackle the congestion among
laminated applications. Since the congestion is subject to
the application characteristics, NoC topology, router type,
routing algorithm, and congestion control mechanism, we
need a comprehensive heterogeneous NoC framework to
handle the new challenges. In this paper, we propose a novel
hybrid NoC framework that consists of the following:

(1) Hybrid NoCs which combine buffered and bufferless
NoCs where buffered NoC refers to its buffered
router type and bufferless NoC contains bufferless
routers, on account of spectrum characteristics of

Hindawi
Complexity
Volume 2018, Article ID 1040869, 11 pages
https://doi.org/10.1155/2018/1040869

http://orcid.org/0000-0002-4542-8727
https://doi.org/10.1155/2018/1040869

big data applications, to handle nonuniform resource
utilization and large power consumption and supply
high efficiency NoCs

(2) An application-aware (APA) mechanism based on
the apps’ features in real-time, to realize optimal allo-
cation for hybrid NoCs

(3) A congestion optimization algorithm (COA) to mon-
itor the entire system’s congestion mode, react to
severe congestion, and curb the load

The APA algorithm dynamically analyzes the networks’
behavior of all applications and divides the running states
of these applications into two parts, that is, latency sensitive
(LS) and nonlatency sensitive (NLS). The COA determines
the current NoC’s resource utilization and whether it is able
to facilitate the other NoCs. This approach is effective in deal-
ing with serious congestion problems in isolated NoCs under
large and unbalanced loads. Combined with an application-
aware policy, it ensures the application performance and sys-
tem energy efficiency in big data loads and mixed loads.

This paper uses MacSim as the simulation platform,
based on a 64-core chip. Compared to the monobuffered
scheme, APA enhances the system performance by 4.9%
on average (up to 10.4%), reduces latency by an average
of 2.4%, and packet deflection by an average of 4.2%. The
COA scheme has a performance improvement of 17% on
average (up to 24%). Compared to the baseline scheme
without congestion control, it reaps a power saving of more
than 36%.

2. Problem of Mono-NoC

The traditional buffered NoC handles link contention by
using input buffers to store contending flits. It sacrifices a
large amount of chip area and power consumption. A

buffered NoC does not always work well. When the network
load increases, the performance degrades severely. We place
the network under pressure by injecting randomly simu-
lated packets into the NoC. The injection percent repre-
sents the occupation percent of these random packets.
Figure 1 illustrates that as the injection percent increases
from 0% to 36%, most apps from SPEC CPU2006 collapse,
with the virtual channel (VC) usage of these apps going
beyond 50% occupancy in Figure 2. Regardless of the con-
currency of the apps, the buffered NoC processes request
packets with more cycles when the pressure is high. The
buffered network also exhibits a suboptimal performance
under high loads. On the other side, a bufferless NoC elim-
inates the buffers, and flits will be misrouted or dropped if
there are link contentions. When the network load is low,
misrouting is rare and energy efficiency is good. But one flit
may be misrouted for many times at high loads, resulting in
performance degradation.

To investigate different apps’ performances under big
data loads, we explore the VC and link usage of two apps, that
is, aster and wrf, which differ significantly in collapse time.
Figure 2 illustrates that the link usage of both does increase
after reaching 45%, while the VC usage increases evidently.
This is because most of the request packets are stored in
routers, waiting for a valid output entry. The apps have
varying collapse times. For example, namd, when the injec-
tion rate is less than 29%, has no significant decline in sys-
tem performance, while wrf collapses when the injection
rate is 29%. This is why the network status affects the per-
formances of the apps as well as the entire system. If this
situation occurs on a mono-NoC, the interference among
apps would cause some applications not able to deliver
their best performances. Applications like wrf are sensitive
available network resources.

The proposed hybrid NoC is able to be aware of the appli-
cation and enhance the energy performance in a fine-grained

0

0.2

0.4

0.6

0.8

1

1.2

Original 7 14 21 29 36

N
or

m
al

iz
ed

 IP
C

Injection percent of background (%)

astar
bwaves
bzip2
cactusADM
dealII

gcc
GemsFDTD
gobmk
gromacs
h264ref

hmmer
lbm
libquantum
mcf
namd

omnetpp
perlbench
sjeng
sphinx3
wrf

Figure 1: Instructions per cycle (IPC) status with a simulated network pressure.

2 Complexity

way; the hardware architecture of the hybrid NoC will be
explained in Section 4.1. Firstly, we explore that the more
suitable packets should be sent to the hybrid NoC and
try to classify them in real time. Then we introduce an
application-aware mechanism in Section 4.3 and exploit the
traffic condition in an effort to balance the load of hybrid
NoCs, which will be explained in Section 4.4.

3. Literature Review

With the ever increasing popularity of augmented reality
[11, 12] and virtual reality technologies, the design require-
ments for complex systems with big data are increasing
[13]. The one-size-fits-all design approach for the NoC is
suboptimal when the network load is heavy, making it dif-
ficult to balance between system performance and energy
efficiency. Hence, the heterogeneous NoC is emerged to
improve energy efficiency. Bokhari et al. [14] present a
multimode interconnected architecture to fit requirements
for different operational scenarios. Kanoun et al. [15] pres-
ent a multicore NoC for streaming applications, in which
the cores operate as pipeline stages at the classifiers or the
feature-extraction level for streaming applications. Rama-
krishna et al. [16], Beneventi et al. [17], and Isaac et al. [18]
present congestion control mechanisms for the subsequent
big load. Mishra et al. [19, 20] present a heterogeneous
hierarchical NoC model for diverse types of applications
to achieve performance isolation and QoS guarantees.
Unfortunately, these state-of-the-art works assume that
the applications possess the same network behavior from
the start to end, which is not always true, especially for
the large array of emerging applications. Besides, they are
based on advanced evaluation of applications and thus
are not suitable for streaming in the big data era. At last,
flow unbalance on different NoCs is not considered. Based
upon the above background on the existing work in the
literature, this paper proposes a general purpose method
for classification, which gives insight into the unbalance
situation in real time.

4. Hybrid NoC Design

A hybrid NoC adds a low-power bufferless NoC to a buffered
NoC; the architecture of which is illustrated in Figure 3 and
consists of two main mechanisms: (1) an application classifi-
cation mechanism that decides which application is more
suitable for either the buffered NoC or bufferless NoC and
an injection algorithm for flow control scheme and choosing
the NoC layer for flits dynamically, and (2) a dynamical
control mechanism that can migrate severe congestion
and balance the load. Firstly, we introduce the structure of
the hybrid NoC.

4.1. Architecture of Hybrid NoC. The hybrid NoC is based on
two NoCs with a 2Dmesh topology. The elements are located
on the same chip, shown in Figure 3. The communication
between two networks is implemented by adding bidirec-
tional links. Two routers located at the same coordinate of
the mesh structure share the same processing element (PE),
ensuring that the requests from the PE are sent to both NoCs.
The network interface (NI) of the hybrid NoC is shown in
Figure 4. The traditional single-structure NI uses a miss sta-
tus handling register (MSHR) to store the status of ongoing
requests and injects the requests to the NoC directly. In the
hybrid NoC, the application-aware mechanism acquires the
information of NC_ratio from the MSHR. Several registers
need to be preserved, two of which are used to store the cur-
rent total network episodes and the episodes’ count. The two
remaining registers are used to store the current total length
of the computing episode, and the episode count of the net-
work episodes occurred. In addition, we also need an extra
tag to record the NC_ratio status of the last episode. Until
the next cycle, NC_ratio will be overwritten by a new value;
otherwise, the router will always refer to the old value of
NC_ratio to classify and forward flits.

4.2. Architecture of the Router. Firstly, to enable flit switching
between the NoCs, the routing algorithm of a buffered router
changes to flit-by-flit routing, instead of worm-hole routing.
This implies that each flit should have a control segment to

0

0.1

0.2

0.3

0.4

0.5

s1 s2 s3 s4 s5 s6

Li
nk

 u
sa

ge

Injection

astar
wrf

0

0.02

0.04

0.06

0.08

0.1

0.12

19 25 32 40 42

V
C

us
ag

e

Link usage

astar
wrf

Figure 2: VC usage and link usage with simulated packet injection.

3Complexity

carry the destination information and the sequence num-
ber for reassembly. The subnetworks implement switching
throughmultiple sets of routers. One set of routers consists of
one buffered router and one bufferless router, so the hybrid
NoC can be regarded as 64 sets of routers and other links.
Both the buffered and bufferless routers need one more bidi-
rectional link to support flit switching within one set of
routers. Secondly, we need to add several registers to the net-
work interface. Four counters are responsible for recording
the network episode status, while one register counts the
workload status. Figure 4 shows the original NI used in tradi-
tional buffered NoC, whereas Figure 5 depicts the modified
NI of the hybrid NoC.

4.3. Application Classification Mechanism.When an applica-
tion is running, the process switches between the network
stage and the computing stage. The network stage refers to
that at least one of the on-chip network request packet is
being processed or waiting to be processed. The request
packet is sent to a shared cache after the loss occurred by
the private cache and a DRAM. The computing stage is when
there are no requests being processed from the network cache
or memory. In the network stage, there are multiple out-
standing requests from the application of the network in
order to implement MLP (memory level parallelism) [3]. If
the network stage is longer, the processor will wait for pro-
cessing the L2 requests and memory requests from the

NoC, which means it pauses. At this point, the processor
throughput would be low. Moreover, the overall performance
could be affected by a lot of request packages, since there
could be a number of data packages in the network stage.
For the computing stage with a longer period, most of the
time the processor is in operation. Due to the very short time
for the NoC to obtain data, if those data can be returned
quickly, the processor can maximize the advantages of
instruction level and memory level parallelism to deliver a
better performance. Conversely, if the network performance
of these loads decreases, the pause time will be extended to
the processor, and then the overall performance of the system
is affected. Consequently, it is crucial to classify the applica-
tions according their sensitivity to network latency.

Figure 6 illustrates an example of two applications with
different network characteristics. Application A contains a
long network stage and a relatively short period of the com-
puting stage, while application B has a long period. If these
two types of applications run in the same network, using
the traditional survival time (age) of data packets to priori-
tize, the higher age data packets will have a high priority.
Imagine a situation in which, as shown in Figure 7, a packet

P +
L1

Buffered
router

Buffered
NoC

Connection
link

Bufferless
NoC

Bufferless
router

Figure 3: Hybrid NoC architecture.

MSHRs Buffered NoC

Local network interface

P + L1

Figure 4: Network interface of the buffered NoC.
MSHRs

Buffered NoC

Local network interface
for hybrid NOC

P + L1 Buffered NoC

xn
w

Injection algorithm

N/C computing
Workload
computing

Figure 5: Network interface of the hybrid NoC.

4 Complexity

from application A injects a packet a1 into the network, and
then app B also sends request b to that network. Due to the
longer period of the network time of app A, there could be
other request packets in the router waiting to be injected.
When a1 and b are in the same port for competition, as a1’s
age is older than b, priority will be given to a1 to use the port.
At this point, B will be deflected.

Once a1 gets the port, it may arrive at the destination fas-
ter. However, since app A has a longer network stage, it may
have lots of request packages not being returned. App A still
cannot get into the computing stage. A single request a1 has
an insignificant effect on its performance, so this application
will be classified as nonlatency sensitive. App B has a shorter
network stage, which means the latency of a single request
package could have larger effect on the overall performance
because it could prevent the processor from waiting. Thus
this application will be classified as latency sensitive. There-
fore, as shown in Figure 7, when in competition with a1, if
b’ takes priority over a1, then the data of application B can
be returned as soon as possible, which helps avoid a perfor-
mance penalty since app B is latency sensitive.

4.4. Application-Aware Classification Mechanism. The net-
work characteristics of the application have a certain locality
and phases [21]. Locality refers to local cache access. The
application with a large number of shared storage access
in the current episode possibly continues to share the stor-
age access in the next procedure. Therefore, we use the net-
work characteristics of the previous episode to predict the
network characteristics of the current period. The phase
refers to the access feature of application. In other words,
at different stages, the characteristics of the application vary,
so we take the form of periodic updated parameters. We
define NC_ratio (as (1)) to reflect the network feature of
different applications in several stages.

Network stage Computing stageApp A

Time

App B

Figure 6: The explanation of the network episode and computing episode.

a1
a2

b

Compete

Time

Network stage Compu..

Deflecting

(a) A way of deflecting

Compete Deflecting

a1

b’

a2

(b) The second way of deflecting

Figure 7: The effect of deflection from different applications.

NC ratio = AVG network length
AVG compute length , 1

AVG networklength = network length total
timesepisode

, 2

5Complexity

D
ea

1I
I

na
m

d
as

ta
r

h2
64

re
f

pe
r1

be
nc

h
lib

qu
an

tu
m

hm
m

er
xa

la
nc

bm
k

gr
om

ac
s

go
bm

k
sje

ng
bz

ip
2

lb
m w
rf

sp
hi

nx
3

G
em

sF
D

TD
om

ne
tp

p
bw

av
es

ca
ct

us
A

D
M gc

c

1 0 2 2 3
6

1 2 3
2 1 1

9
6

8

17

6
4

21

5

0

5

10

15

20

25

N
C_

ra
tio

SPEC CPU2006

Figure 8: Average NC_ratio of SPEC CPU2006.

0
5

10
15
20
25
30

Energy efficiency

D
ea

1I
I

na
m

d

as
ta

r

h2
64

re
f

pe
r1

be
nc

h

lib
qu

an
tu

m

hm
m

er

xa
la

nc
bm

k

gr
om

ac
s

go
bm

k

sje
ng

bz
ip

2

lb
mw
rf

sp
hi

nx
3

G
em

sF
D

TD
om

ne
tp

p

bw
av

es

ca
ct

us
A

D
M gc

c
m

cf

BL effeciency
B effeciency

Figure 9: Energy efficiency of applications in the buffered (B) and
bufferless (BL) networks.

network length total

= 〠
timesepisode

1
cyclenetworkend i − cyclenetwork start i ,

3

AVG compute length

= heartbeat − network length total
timesepisode

4

In (1), NC_ratio refers to the ratio of the average length of
the network stages (AVG (network_length), as in (2), it refers
to the average length of the computing stages (AVG (com-
pute_length), and as in (3) and (4), it refers the measure-
ment period (heartbeat). The timesepisode refers to the
number of measurement cycles of the alternative episode.
The start and end of each measurement cycle is not neces-
sarily a complete beginning or ending of the episode, so we
set the measurement cycle longer than the average cycle of
the alternative episode.

The result in Figure 8 use heartbeats of 10,000 cycles to
investigate NC_ratio. If the multicore processor requires a
network cycle twice as long as the computing time or less,
and if the two cycles of the network application are delayed,
the next computing stage will be delayed. We give these
requests a higher priority as they are latency sensitive. If mul-
ticore requires a network cycle of 10 times longer than the
computing cycles, a large amount of data is needed in the
computing stage, and overlapping requests in the network
are large, plus some of the requested delay, requests can be
sent after the deferred compensation. The overall network
latency is almost constant, thus classifying this application
as nonlatency sensitive. Here, we take NC_ratio = 2 as the
cut-off point for the two types of requests. The request can
be divided into two classes, that is, latency-sensitive (NC_ra-
tio≤ 2) and nonlatency-sensitive applications (NC_ratio> 2).
The average NC_ratio values of DealII, namd, AStar, h264ref,
HMMer, xalancmbk, gobmk, sjent, and bzip2 show that these
applications are latency sensitive.

4.5. Application-Aware Mechanism in the Hybrid NoC. To
further verify the energy efficiency of latency-sensitive and
nonlatency-sensitive requests in both NoCs, we tested the
SPEC CPU2006 benchmarks based upon 64 threads. Energy
efficiency refers to the throughput per unit of power. The
higher the energy efficiency is, the longer the power can last.
To identify the differences in energy efficiency between the
buffered and bufferless NoCs, we test the energy efficiency
of B and BL with 21 benchmarks. Figure 9 shows that the
apps running on BL like dealII, namd, h264ref, and hmmer
are more energy efficient than running on B. Besides the
lower power consumption on BL, the performance of these
apps on BL is not significantly affected by nonbuffer routing.
Therefore, the energy efficiency of aforementioned apps is
significantly higher in the bufferless NoC than in its buffered
counterpart. We affirm this type of loads has a lower require-
ment in bandwidth, so it will be in a good play in the buffer-
less NoC since it has lower bandwidth as the property.

The result is consistent with the application type divided
by NC_ratio. This is because NC_ratio’s results reflect the

memory and network resource characteristics of the request.
For requests with a lower requirement in network resources,
the buffered NoC increases power consumption instead of
improving performance. For requests with a higher require-
ment in network resources, especially large bandwidth
requirements, adding more buffers would achieve the same
effect as increasing the bandwidth of the network. Which
improves the performance greatly, although the power con-
sumption also increases, this can be seen in Figure 9 where
the curves are very close. Therefore, in the hybrid NoC,
NC_ratio can be used as an “application-network” classifica-
tion parameter.

During an application’s lifespan, it alternates between
two episodes, namely, the network episode and the com-
puting episode. The network episode is a period when the
application has at least one packet in the network, whereas
the computing episode is a period, in which there are no
outstanding requests in the MSHR. Figure 8 illustrates that
NC_ratio ranges from 0 to 21 except mcf, which is an
application that has one cycle of the computing episode
and 245 cycles of the network episode on average. The
apps that have NC_ratio less than one means that the net-
work episode cycles are shorter than the computing epi-
sode cycles during the lifespan on average. When the
network episodes are twice as long as the computing epi-
sodes, it will gain a better performance in BL than B, since
the flits in BL will be processed due to nonbuffer and

6 Complexity

misrouting in BL. Here, we set two inequalities for division:
NC_ratio>α indicates network intensive and NC_ratio≤α
indicates computing intensive.

Parameter α can be configured in advance. In this paper,
we set α to two cycles, so that computing-intensive applica-
tions can be distinguished from network-intensive applica-
tions. A computing-intensive application means the app
will perform better, if available computing resources increase.
By contrast, a network-intensive application means the app
requires a large number of network operations on-chip, and
the performance is greatly affected by the contenting traffic.
The bufferless NoC provides a limited but loose network sit-
uation for computing-intensive applications (Pseudocode 1).

4.6. Congestion Optimization Algorithm.Network congestion
is a phenomenon that multiple packets contend for some
ports of the router. In a hybrid NoC, packets are divided into
two subnetworks according to the apps’ network property; it
causes disproportion when there is a capacity gap between
two subnetworks. In this part, we present a congestion opti-
mization mechanism to optimize network congestion based
on our proposed hybrid NoC, which monitors the resource
utilization of the subnetwork and reschedules the network

load between the two subnetworks. In this strategy, we need
to measure the load of the local network properly, and
packets would be transferred to a subnetwork, only if it has
extra network resources.

The bufferless NoC is usually of low load. As a result, only
the load is relatively low; the bufferless NoC is capable of
helping the buffered subnetwork to address capacity issues.
When multiple types of flits are in the bufferless subnetwork,
the packet priority strategy is an optimized choice. Com-
pared with the bufferless NoC, the buffered subnetwork has
a good tolerance of heavy loads. Therefore, when there is seri-
ous starvation in the bufferless NoC, many packets wait to be
sent by the socket ports in use. Traditional solutions throttle
flow, passively waiting for free ports to improve throughput.
In this paper, we take the advantages of multiple networks
and propose to use the buffered NoC to relieve the starvation
pressure of the bufferless NoC. Meanwhile, the bufferless
NoC will help the buffered NoC to relieve the power pressure.
The cost of transition is one cycle.

4.6.1. Some Note Points. The buffered routing algorithm is
improved. Most buffered NoCs adopt worm-hole routing,
which splits a packet into several flits, one of which is

Firstly, an application classification mechanism is used to inject flits to subnetworks. The flits injected into the bufferless NoC are
termed f litbl, while the flits injected into the buffered NoC are dubbed f litb.
Compute the local contention state of two subnets. The average starvation ratios σ, δwithin t cycles of the bufferless and buffered NoCs
can be achieved by and, respectively, where i is the router id.

σ = 1
t
〠
t

Δt=0
starved i ∈ 0, 1 ,  δ = σ ,

starved i = f litsstarved
f litsthroughput

Rate the contention state in step 2, reflected in Table 1.
Every t cycles, retest:

If statebl = Heavy, stateb = Heavy, f litbl i ⊂ t, t + Δt → Buf fered to (b), otherwise do step 5.
In each cycle, check the buffered router i + 1 corresponding to router i with statebl = Heavy. If VC i + 1 = full, flit transmits to
the buffered subnet. Otherwise, flit maintains in the current subnet, waiting for another cycle and redo (b) until Δt ends.
Parallelly execute with (a). If stateb = Heavy, Statebl = Light, check stateb the bufferless router corresponding to router i, if it
is free for receiving the flit from the buffered router Bone i = empty, f litb i ⊂ t, t + Δt → Buf ferless, to (d). Otherwise, do
step 6.
Within each cycle, check the bufferless router corresponding to router j + 1 with stateb = Heavy, if it is free for receiving the flit
from buffered router. Bone j = empty. If yes, inject the flit to port 5, else go to next cycle and redo (d) until Δt ends.

f litbl that were injected into bufferless subnet f litbl, continually transmit in this net, f litbl i ⊂ t, t + Δt → Buf ferless.
f litb that were injected into buffered subnet, continually transmit in this net, f litb i ⊂ t, t + Δt → Buf fered.

Algorithm 1: The COA.

Initialization: NC_ratio = 0, per NI in router; BL = 1, B = 0;
if NC_ratio≤ 0,

flit inject layer = cycles % 2;
else/∗ the first NC_ratio is calculated after heartbeat cycles (1000), and then flushed every

heartbeat. Heartbeat can be set dynamically ∗/
if NC_ratio≤ α, flit inject layer = BL;
else

flit inject layer = B;

Pseudocode 1

7Complexity

regarded as the head flit and carries the destination node
information. At the arbitration stage, once the head flit
receives a pass permit, the flit from same packet will be trans-
mitted in sequence. The bufferless NoC adopts flit-by-flit
routing with each flit carrying the destination information.
In order to transmit the flits between two nets, both of them
adopt flit-by-flit routing. For the buffered NoC, flit-by-flit
routing may cause an older flit to wait much longer to receive
a pass permit in a channel. This is because in the buffered
channel, each flit has a timestamp for arbitration, and general
arbitrators choose the winner based on the top flit in each
channel. The older and rear flits passively sleep and seriously
affect the packet latency. Therefore, the arbitration program
in the buffered NoC should consider the ages of all the flits
in one channel.

The out-degree is equal to the in-degree in the buffer-
less NoC to ensure hot-potato routing. Thus, to enable
the recept of flits from the buffered NoC, we add an
exclusive buffer to temporarily store the packets from
the buffered NoC and distribute them as soon as there
is a free output port.

5. Methodology

We evaluate the proposed hybrid NoC using MacSim, which
is a trace-driven, cycle-level, heterogeneous architecture
simulator. MacSim models a detailed pipeline, a memory
system that includes caches, NoC, and memory controllers.
It also enables multithreading processing. We model an
8× 8 processor system based on the mesh topology, with
8× 8 buffered routers and 8× 8 bufferless routers. Table 2
summarizes the key parameters of our simulated system.
The hybrid parameters are as follows: hybrid uses 6 VCs with
5-flit deep buffers for the buffered NoC. We run 1 million
cycles for each experiment. Table 3 shows the proportion

changes with mixed loads, which is used to verify whether
the COA is useful for unbalanced loads.

6. Evaluation and Discussions

In this section, we evaluate the performance, power, scalabil-
ity, and fairness of the buffered and hybrid NoCs. We mix 21
benchmarks and run three copies of each benchmark. The
system tests 64 threads with one thread per core.

6.1. Analysis on the Performance and Power Consumption.
Figure 10 shows the results of the performance and power
on the buffered NoC, hybrid NoC, and hybrid NoC with
the COA algorithm. The overall performance of the hybrid
COA system is improved by 17% compared to that of the
buffered NoC, and the highest is 24%. The performance of
the hybrid NoC is improved by 7% compared to the baseline
buffered NoC, while this improvement is limited. For exam-
ple, the performance decreases for W4 and W5 loads. The
reason for this is that the mixed composition of latency-
sensitive and nonlatency-sensitive packets causes a severe
imbalance, which is evident in the subnetworks. The single
network, which is a symmetrical structure, automatically
adapts to different nodes with varying loads and eventually
forms centre and diagonal position traffic characteristics. A
heterogeneous network in isolation is easy to form an unbal-
anced network load, leading to performance degradation.
Therefore, the provision of a subnet traffic and congestion
optimization mechanism is imperative.

Figure 11 depicts the deflection rates of the bufferless net-
work before and after employing the COA policy. With the
COA policy, deflection is significantly improved by an aver-
age of 10%. This is because the COA strategy is based on

Table 1: Partition of congestion degree in hybrid NoCs.

Bufferless NoC Buffered NoC

Light σ < αbl δ < αb

Moderate αbl ≤ σ ≤ βbl αb ≤ δ ≤ βb

Heavy σ > βbl, starved δ > βb, starved

Table 2: System parameters.

Buffered NoC/bufferless NoC

Topology 2D mesh, 8× 8 size
Routing algorithm X-Y routing, flit-by-flit

Routing latency 2 cycles

Core

Out-of-order, 16 MSHR,
128 instruction windows size

L1 I-cache and D-cache: 32KB, 64 B
line-size, 2-way, LRU, 2-cycle latency

L1 cache Private

L2 cache
Per-block interleaving shared,

distributed, 64 B line-size, perfect

Table 3: Mixed nonlatency-sensitive and latency-sensitive loads.

64 threads 128 threads

W1 50 : 14 100 : 28

W2 40 : 24 80 : 48

W3 30 : 34 60 : 68

W4 20 : 44 40 : 88

W5 10 : 54 20 : 108

0

0.5

1

1.5

W1 W2 W3 W4 W5

N
or

m
al

iz
ed

 ip
c

Mixed workloads

Buffered
Hybrid

Figure 10: Normalized IPC of hybrid load with 64 threads.

8 Complexity

the optimization of starvation. The bufferless subnetwork
does not need to be queued for processing requests when
the network congested, so that extra request packets have
opportunities to be sent to the buffered NoC for the network
to reach. This helps save the bandwidth of the inherent buf-
ferless NoC. Therefore, the deflection of the bufferless net-
work has also been improved correspondingly.

Figure 12 shows the port competition of a single buffered
NoC and the buffered subnetwork in the hybrid NoC. The
hybrid NoC reduces the competition on the single buffered
NoC, and the port competition is reduced by an average of
12%. Hybrid COA is more prominent, reduced by an average
of 21%. Meanwhile, COA is more remarkable when the load
is highly unbalanced in W4 and W5.

Figure 13 compares the hybrid and buffered NoCs in
the sense of power consumption. Compared to the net-
work with a buffer, power saving of the hybrid NoC is
more than 36%. Hybrid NoC combines a buffered network
with a bufferless network so as to take advantages of both
networks to improve the system performance. Meanwhile,
the power consumption is lower than the simpler buffered
NoC.

6.2. Analysis on Scalability. This section uses the 128 threads,
two threads per core for scalability testing. Figure 14 shows
the experimental results of IPC in system throughput. In
the W1 and W2 mixed mode, the hybrid scheme without
COA can improve by 6% on average. This is because the
hybrid NoC liberates the latency-sensitive load in the mixed
load. When this part has a smooth network environment,
the performance improvement is obvious and separate net-
works would reduce the number of requests running on the
original network. These two aspects contribute to the perfor-
mance improvements. And in the W3, W4, and W5 mixed
proportion, the bufferless subnetwork has increased the
number of data packages, and compared to the buffered sub-
network, the bufferless counterpart is more likely to incur
excessive link usage, which deteriorates the performance of
latency-sensitive applications. This is a phenomenon consis-
tent with Figure 10, so the COA was proposed. Hybrid COA
has an average performance increase of 21%, as opposed to
the buffered one.

Figure 15 shows a deflection rate of 128 threads in the
bufferless sub-NoC. The average decrease in the deflection
rate is 11%, and port contention rate is 7%. For latency-
sensitive application loads, the port contention rate is more
pronounced. Figure 16 gives a comparison of power con-
sumption under 128 threads, with an average savings of

0

0.5

1

1.5

N
or

m
al

iz
ed

 d
efl

ec
tio

n

W1 W2 W3 W4 W5
Mixed workloads

Hybrid
Hybrid COP

Figure 11: Normalized deflection rate of the hybrid loads with 64
threads.

0

0.5

1

1.5

N
or

m
al

iz
ed

 p
or

t
co

m
pe

tit
io

n

W1 W2 W3 W4 W5
Mixed workloads

Buffered
Hybrid

Figure 12: Normalized port competition rate of hybrid loads in 64
threads.

W1 W2 W3 W4 W5
Mixed workloads

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 p
ow

er

Buffered
Hybrid
Hybrid COP

Figure 13: Normalized energy of the hybrid loads with 64 threads.

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 ip
c

W1 W2 W3 W4 W5
Mixed workloads

Buffered
Hybrid

Figure 14: Normalized IPC of hybrid loads with 128 threads.

9Complexity

38%. The effect is the same as the power consumption under
the 64 threads.

6.3. Analysis on Fairness. This section presents simulation
results under big data loads. The processor is of a single
thread and two threads per core for the purpose of perfor-
mance comparison, as shown in Figures 17 and 18. On the
mixed network structures, the overall system performance
increases by 13.3% on average, with nonlatency-sensitive
applications up by 4.63% and latency-sensitive applications

performance up by 30.6% on average. The performances
of these two types of applications have been improved. If
we exclude the latency-sensitive applications, the perfor-
mance of the nonlatency-sensitive applications has not been
improved significantly. This is because the bandwidth occu-
pied by the latency-sensitive applications is smaller and the
nonlatency network is still dominated by its load. The 128
thread results show that the improvement of the whole
system performance is up by 7.65%, nonlatency-sensitive
applications up by 4.12% on average, and latency-sensitive
applications up by 14.7% on average.

7. Conclusion

An on-chip network is an important shared resource for
exascale multicore systems which are used in the IoT applica-
tions, cognitive computing, and cloud computing. The
proper use of it will lead to significantly improved energy effi-
ciency. Due to the chip area and power consumption limit,
the NoC has issues related to energy efficiency and average
performance. A mono-NoC is designed for common multi-
core loads, while with the increasing requirements for
resources and application characteristics, the severe interfer-
ence between applications limits the system performance.

To prepare the mono-NoC for big data loads, hybrid
NoCs based on the application-aware design are very helpful
in improving the quality of service and energy efficiency
under massive mixed loading of applications. This paper first
proposed a hybrid NoC with a dedicated bufferless NoC and
a buffered NoC, as well as an application-aware mechanism
to help choose optimal efficient NoC. We proposed a new
metric NC_ratio to evaluate the big data load. We examined
both the 64-thread and 128-thread systems, and our pro-
posed mechanism shows significant improvements in system
performance. Secondly, we proposed a new congestion opti-
mization algorithm for hybrid NoCs. It is implemented by
monitoring the congestion status of different NoCs and
redistributing the packets in the congesting nodes. Simula-
tion results were presented to show that with the proposed
two methods, the energy efficiency of the entire system can
be significantly improved.

0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 d
efl

ec
tio

n

W1 W2 W3 W4 W5
Mixed workloads

Hybrid
Hybrid COP

Figure 15: Normalized deflection rate of hybrid loads with 128
threads.

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 p
ow

er

W1 W2 W3 W4 W5
Mixed workloads

Buffered
Hybrid
Hybrid COP

Figure 16: Normalized energy of hybrid loads with 128 threads.

0

0.5

1

1.5

2

xa
la

nc
bm

k
go

bm
k

h2
64

re
f

na
m

d
hm

m
er

as
ta

r
de

al
II

om
ne

tp
p

sp
hi

nx
3

bz
ip

2
w

rf
lib

qu
an

tu
m

lb
m

G
em

sF
D

TD gc
c

m
cf

gr
om

ac
s

bw
av

es
ca

ct
us

A
D

M
sje

ng
pe

rlb
en

ch A
vg

N
or

m
al

iz
ed

 IP
C

Buffered
Hybrid

Figure 17: Normalized IPC of 64 threads with one thread per core.

0

0.5

1

1.5

go
bm

k
na

m
d

xa
la

nc
bm

k
om

ne
tp

p
bz

ip
2

lib
qu

an
tu

m
gr

om
ac

s
hm

m
er

de
al

II
sje

ng
as

ta
r

m
cf

sp
hi

nx
3

ca
ct

us
A

D
M gc

c
w

rf
bw

av
es

pe
rlb

en
ch lb
m

h2
64

re
f

G
em

sF
D

TD A
vg

N
or

m
al

iz
ed

 IP
C

Buffered
Hybrid

Figure 18: Normalized IPC of 128 threads with two threads per
core.

10 Complexity

Data Availability

The (simulation data, integer, and floating) data used to sup-
port the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported in part by the National Natural Sci-
ence Foundation of China (Grant no. 61202076), along with
other government sponsors. The authors would like to thank
the reviewers for their efforts and for providing helpful sug-
gestions that have led to several important improvements
in our work. The authors would also like to thank all the staff
and students in our laboratory for the helpful discussions.

References

[1] E. B. Sifah, Q. Xia, O. B. O. Agyekum et al., “Chain-based big
data access control infrastructure,” The Journal of Supercom-
puting, pp. 1–20, 2018.

[2] T. Stepanova, A. Pechenkin, and D. Lavrova, “Ontology-based
big data approach to automated penetration testing of large-
scale heterogeneous systems,” in SIN '15 Proceedings of the
8th International Conference on Security of Information and
Networks, pp. 142–149, Sochi, Russia, September 2015.

[3] W. Xiang, G. Wang, M. Pickering, and Y. Zhang, “Big video
data for light-field-based 3D telemedicine,” IEEE Network,
vol. 30, no. 3, pp. 30–38, 2016.

[4] N. Tanabe, S. Tomimori, M. Takata, and K. Joe, “Character of
graph analysis workloads and recommended solutions on
future parallel system,” in Algorithms and Architectures for
Parallel Processing. ICA3PP 2013, J. Kołodziej, B. Martino,
D. Talia, and K. Xiong, Eds., vol. 8285 of Lecture Notes in
Computer Science, pp. 402–415, Springer, Cham, 2013.

[5] J. Vetter and S. Mittal, “Opportunities for nonvolatile memory
systems in extreme-scale high-performance computing,” Com-
puting in Science & Engineering, vol. 17, no. 2, pp. 73–82, 2015.

[6] T. Agerwala, “Exascale computing: the challenges and oppor-
tunities in the next decade,” in HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance Computer
Architecture, p. 1, Bangalore, India, January 2010.

[7] A. Borghesi, M. Bartolini, M. Lombardi, M. Milano, and
L. Benini, “Predictive modeling for job power consumption
in HPC systems,” in High Performance Computing: 31st Inter-
national Conference, ISC High Performance 2016, J. Kunkel, P.
Balaji, and J. Dongarra, Eds., vol. 9697 of Lecture Notes in
Computer Science, pp. 181–199, Springer, Frankfurt, Ger-
many, 2016.

[8] A. Kumar, Intel’s New Mesh Architecture: The ‘Superhighway’
of the Data Center, IT Peer Network, 2017.

[9] B. Chemli, A. Zitouni, A. Coelho, and R. Velazco, “Design of
efficient pipelined router architecture for 3D network on chip,”
International Journal of Advanced Computer Science and
Applications, vol. 8, no. 7, pp. 188–194, 2017.

[10] Z. Qian, P. Bogdan, C. Tsui, and R. Marculescu, “Performance
evaluation of NoC-based multicore systems: from traffic anal-
ysis to NoC latency modeling,” ACM Transactions on Design

Automation of Electronic Systems, vol. 21, no. 3, pp. 1–38,
2016.

[11] M. Hamidia, N. Zenati-Henda, H. Belghit, and M. Belhocine,
“Markerless tracking using interest window for augmented
reality applications,” in 2014 International Conference on Mul-
timedia Computing and Systems (ICMCS), pp. 20–25, Marra-
kesh, Morocco, April 2014.

[12] P. P. Valentini, “Natural interface for interactive virtual assem-
bly in augmented reality using leap motion controller,” Inter-
national Journal on Interactive Design and Manufacturing
(IJIDeM), pp. 1–9, 2018.

[13] T. Xu, W. Xiang, Q. Guo, and L. Mo, “Mining cloud 3D video
data for interactive video services,” Mobile Networks and
Applications, vol. 20, no. 3, pp. 320–327, 2015.

[14] H. Bokhari, H. Javaid, M. Shafique, J. Henkel, and
S. Parameswaran, “Supernet: multimode interconnect archi-
tecture for manycore chips,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6, San Francisco,
CA, USA, June 2015.

[15] K. Kanoun, M. Ruggiero, D. Atienza, and M. Schaar, “Low
power and scalable many-core architecture for big-data stream
computing,” in 2014 IEEE Computer Society Annual Sympo-
sium on VLSI, pp. 468–473, Tampa, FL, USA, July 2014.

[16] M. Ramakrishna, P. V. Gratz, and A. Sprintson, “GCA: global
congestion awareness for load balance in networks-on-chip,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 7, pp. 2022–2035, 2013.

[17] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Con-
tinuous learning of HPC infrastructure models using big data
analytics and in-memory processing tools,” in Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE),
2017, pp. 1038–1043, Lausanne, Switzerland, March 2017.

[18] E. Isaac, M. R. Babu, and J. Jose, “Impact of deflection history
based priority on adaptive deflection router for mesh NoCs,”
Electronic Government, vol. 13, no. 4, pp. 391–407, 2017.

[19] A. K. Mishra, O. Mutlu, and C. R. Das, “A heterogeneous
multiple network-on-chip design: an application-aware
approach,” in 2013 50th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), pp. 1–10, Austin, TX, USA, May 2013.

[20] A. K. Mishra, N. Vijaykrishnan, and C. R. Das, “A case for het-
erogeneous on-chip interconnects for CMPs,” in 2011 38th
Annual International Symposium on Computer Architecture
(ISCA), pp. 389–400, San Jose, CA, USA, June 2011.

[21] K. K. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu,
“HAT: heterogeneous adaptive throttling for on-chip net-
works,” in 2012 IEEE 24th International Symposium on
Computer Architecture and High Performance Computing,
pp. 9–18, New York, NY, USA, October 2012.

11Complexity

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

