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This paper is devoted to develop a nonlocal and time-delayed reaction-diffusion model for HIV infection within host cell-to-cell
viral transmissions. In a bounded spatial domain, we study threshold dynamics in terms of basic reproduction number R0 for
the heterogeneous model. Our results show that if R0 < 1, the infection-free steady state is globally attractive, implying infection
becomes extinct, while if R0 > 1, virus will persist in the host environment.

1. Introduction and Model Derivation

Infectious diseases have been threatening human health;
infectious diseases such as smallpox, cholera, and acquired
immune deficiency syndrome (AIDS) have brought great
disaster to the national economy of a country and people’s
livelihood. In order to control the spread of infectious dis-
eases, researchers have proposed a great deal of mathematical
models to study the evolution behavior of infectious diseases
from different views [1–7]. Mathematical models have been
confirmed to be an effective and valuable approach to
understand the dynamical behavior of infectious diseases
[8–11]. Many diseases are caused by a virus, for example,
human immunodeficiency virus (HIV) can destroy the
immune cells, reduce human immunity, and ultimately lead
to AIDS. A lot of mathematical models have been built to
explain the virus infection process from different views
[12–15]. In recent years, the virus infection dynamical
models incorporating spatial dispersion [16, 17] have
received widely attentions. For example, under spatial
domain equipped with suitable boundary conditions, K.
Wang and W. Wang [18] established the existence of trav-
elling wave solutions via the geometric singular perturba-
tion method and the spatial domain is assumed to be one
dimensional, that is, x, t ∈ −∞,∞ × 0, +∞ . And then,
Brauner et al. [19] extended the works [18] to a two-

dimensional square domain 0, l × 0, l with periodic
boundary conditions by introducing a new parameter λ0
which is the largest eigenvalue of some Sturm-Liouville prob-
lem and taking the heterogeneous reproductive ratio into
account. Recently, Wang et al. [20] noticed that a realistic
domain should be bounded but is typically not a square,
under no-flux boundary condition (homogenous Neumann
boundary condition) in a general bounded domain Ω ⊂ Rn

with smooth boundary ∂Ω, and threshold dynamics of the
model were investigated by appealing to the theory of uni-
form persistence and the comparison theorem. Some further
developments have been performed on the virus infection
dynamical models with diffusion term (see, for example,
Hattaf and Yousfi [21], Wang and Ma [22–24], Lai and
Zou [25], Wang and Xu [26], and Wang et al. [27]).

It is widely known that virus-to-cell transmission and
direct cell-to-cell transmission are two predominant infec-
tion modes in within-host environment (see, for example,
[28, 29]). The virus-to-cell transmission has iterative process:
the binding of virus to a receptor on the surface of CD4 + T
cells, the fusion of virus with host cells and then the release
of genetic materials, the transcription of genetic materials
in an infected cell, the assembling of virus inside the
infected cells, and budding through the membrane of the
infected cells [30]. The cell-to-cell transmission process is
due to that a large number of viruses can be transferred
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from infected cells to uninfected cells through the forma-
tion of virally induced structures termed virological synap-
ses [31]. In order to examine the effects of both diffusion
and spatial heterogeneity, Wang et al. [32] proposed the
following virus infection dynamical model incorporating
cell-to-cell transmission under the homogeneous Neumann
boundary condition:

∂U x, t
∂t

= ξ x − dU x U x, t − β1 x U x, t ω x, t

− β2 x U x, t V x, t ,
∂V x, t

∂t
= β1 x U x, t ω x, t + β2 x U x, t V x, t

− dV x V x, t ,
∂ω x, t

∂t
=DωΔω + k x V x, t − dω x ω x, t

1

In model (1), ξ x is the production rate of newly
produced uninfected cells. dU x , dV x , and dU x repre-
sent the death rates of uninfected cells, infected cells, and
free viruses, respectively. β1 x denotes the transmission
coefficient for virus-to-cell infection. β2 x represents
the transmission coefficient for cell-to-cell infection. k x
denotes the production rate of virus due to the lysis of
infected cells. Dω is the diffusion coefficient and Δ is
Laplacian. For model (1), the virus dynamics are fully
determined by an important parameter which is called
basic reproduction number R0, in the following sense:
if R0 < 1, the infection-free steady state is globally
asymptotically stable, while if R0 > 1, the model is uni-
formly persistent and the infection steady state is globally
asymptotically stable.

The mobility of cells in the latent period will result in a
delay term with spatial averaging on the spatial habitat Ω
[33]. To formulate this process with the latency properly,
we introduce an infection age variable a1. The infected cells
can be divided into two epidemiological categories: latently
infected cells (I = I x, t ) and actively infected cells (V =
V x, t ). Let M t, a1, x represent the density of cells with
infection age a1 at time t and habitat x. From the biolog-
ical perspective, we assume that all populations remain
confined to the region Ω for all time and subject to no-
flux boundary condition for M t, a1, x :

D a1, x ∇M t, a1, x · ν = 0, 2

where ν is the outward normal to the smooth boundary ∂Ω.
We adopt the standard model on describing age-structured
population with spatial diffusion [34]. Then

∂M t, a1, x
∂t

+
∂M t, a1, x

∂a1
= ∇ · D a1, x ∇M t, a1, x

− dV x M t, a1, x
3

In (3), ∇M t, a1, x is the gradient of M t, a1, x with
respect to the spatial variable x and ∇ · D a1, x ∇M t, a1, x

represents the divergence of D a1, x ∇M t, a1, x . D a1, x
represents the diffusion rate of cells at age a1 and habitat
x. dV x is the natural death rate which is independent
of the infection age a1. Let τ be the average incubation
period. Then

I x, t =
τ

0
M t, a1, x da1,  x, t =

∞

τ

M t, a1, x da1

4

In order to make the model mathematically tractable yet
without losing the main characteristics, we make some
assumptions for function D a1, x as follows:

D a1, x =
DI x , fort ≥ 0, a1 ∈ 0, τ and x ∈Ω,
DV x , fort ≥ 0, a1 ∈ τ,∞ and x ∈Ω

 

5

Integrating both sides of (3) from 0 to τ and from τ to∞,
it then follows that

∂I x, t
∂t

= ∇ · DI x ∇I x, t − dV x I x, t

−M t, τ, x +M t, 0, x ,
6

and

∂V x, t
∂t

= ∇ · DV x ∇V x, t − dV x V x, t

+M t, τ, x −M t,∞, x
7

For biological reasons, we assume that M t,∞, x = 0
(see, for example, [35]), since the recruitment of newly
infected cells M t, 0, x is divided into two parts: the
contact of uninfected cells and virus and the contact of unin-
fected cells and infected cells. Thus, adopting Beddington-
DeAngelis functional response which was firstly proposed by
[36, 37] leads to the following condition:

M t, 0, x =
β1 x U x, t ω x, t

1 + a1 x ω x, t + b1 x U x, t

+ β2 x U x, t V x, t
1 + a2 x V x, t + b2 x U x, t

,
8

where a1 x and a2 x are the measure of virus interference
during infection and b1 x and b2 x determine how fast
the infection rate approaches its saturation value (see, for
example, [36, 37]).

In the following, we determine M t, τ, x by the method
of characteristics. Let v r, a1, x =M a1 + r, a1, x with r ≥ 0.
For a1 ∈ 0, τ , it then follows that
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∂v r, a1, x
∂a1

=
∂M r, a1, x

∂t
+
∂M r, a1, x

∂a1 t=a1+r

= ∇ · DI x ∇M a1 + r, a1, x
− dV x M a1 + r, a1, x

= ∇ · DI x ∇v r, a1, x
− dV x v r, a1, x ,

v r, 0, x =
β1 x U r, x ω r, x

1 + a1 x ω r, x + b1 x U r, x

+
β2 x U r, x V r, x

1 + a2 x V r, x + b2 x U r, x

9

Regarding r as a parameter and solving the above equa-
tion, we obtain that

v r, a1, x =
Ω

Γ a1, x, y β1 y U y, r ω y, r
1 + a1 y ω y, r + b1 y U y, r

dy

+
Ω

Γ a1, x, y β2 y U y, r ω y, r
1 + a2 y ω y, r + b2 y U y, r

dy,
10

where Γ a1, x, y is the fundamental solution associated
with the partial differential operator ∇ · DI · ∇ − dV · ,
which satisfies Ω Γ a1, x, y dy = 1, ∀x ∈Ω. Γ a1, x, y = Γ
a1, y, x , and Γ a1, x, y > 0 ∀x ∈Ω, x ≠ y (see, [38],
Chapter 1).

SinceM t, τ, x = v t − τ, τ, x , ∀t ≥ τ, we get the formula
for M t, τ, x for a1 = τ:

M t, τ, x =
Ω
Γ τ, x, y

β1 y U y, t − τ ω y, t − τ

1 + a1 y ω y, t − τ + b1 y U y, t − τ
dy

+
Ω
Γ τ, x, y

β2 y U y, t − τ V y, t − τ

1 + a2 y V y, t − τ + b2 y U y, t − τ
dy

11

It then follows that

∂I x, t
∂t

= ∇ · DI x ∇I x, t − dV x I x, t

−
Ω

Γ τ, x, y β1 y U y, t − τ ω y, t − τ

1 + a1 y ω y, t − τ + b1 y U y, t − τ
dy

−
Ω

Γ τ, x, y β2 y U y, t − τ V y, t − τ

1 + a2 y V y, t − τ + b2 y U y, t − τ
dy

+
β1 x U x, t ω x, t

1 + a1 x ω x, t + b1 x U x, t

+
β2 x U x, t V x, t

1 + a2 x V x, t + b2 x U x, t
,

12

and

∂V x, t
∂t

= ∇ · DV x ∇V x, t − dV x V x, t

+
Ω

Γ τ, x, y β1 y U y, t − τ ω y, t − τ

1 + a1 y ω y, t − τ + b1 y U y, t − τ
dy

+
Ω

Γ τ, x, y β2 y U y, t − τ V y, t − τ

1 + a2 y V y, t − τ + b y 2U y, t − τ
dy

13

With all these assumptions, the HIV infection dynamics
modeling cell-to-cellwithnonlocal infections canbedescribed
by the following nonlocal and time-delayed reaction-diffusion
equations:

∂U x, t
∂t

= ∇ · DU x ∇U x, t + ξ x − dU x U x, t

−
β1 x U x, t ω x, t

1 + a1 x ω x, t + b1 x U x, t

−
β2 x U x, t V x, t

1 + a2 x V x, t + b2 x U x, t
,

∂I x, t
∂t

= ∇ · DI x ∇I x, t − dV x I x, t

−
Ω

Γ τ, x, y β1 y U y, t − τ ω y, t − τ

1 + a1 y ω y, t − τ + b1 y U y, t − τ
dy

−
Ω

Γ τ, x, y β2 y U y, t − τ V y, t − τ

1 + a2 y V y, t − τ + b2 y U y, t − τ
dy

+
β1 x U x, t ω x, t

1 + a1 x ω x, t + b1 x U x, t

+ β2 x U x, t V x, t
1 + a2 x V x, t + b2 x U x, t

,

∂V x, t
∂t

= ∇ · DV x ∇V x, t − dV x V x, t

+
Ω

Γ τ, x, y β1 y U y, t − τ ω y, t − τ

1 + a1 y ω y, t − τ + b1 y U y, t − τ
dy

+
Ω

Γ τ, x, y β2 y U y, t − τ V y, t − τ

1 + a2 y V y, t − τ + b2 y U y, t − τ
dy,

∂ω x, t
∂t

= ∇ · Dω x ∇ω x, t + k x V x, t − dω x ω x, t

14

Since I x, t is decoupled from other equations for model
(14), we consider the following dynamical model:

∂U x, t
∂t

= ∇ · DU x ∇U x, t + ξ x − dU x U x, t

−
β1 x U x, t ω x, t

1 + a1 x ω x, t + b1 x U x, t

−
β2 x U x, t V x, t

1 + a2 x V x, t + b2 x U x, t
,

∂V x, t
∂t

= ∇ · DV x ∇V x, t − dV x V x, t

+
Ω

Γ τ, x, y β1 y U y, t − τ ω y, t − τ

1 + a1 y ω y, t − τ + b1 y U y, t − τ
dy

+
Ω

Γ τ, x, y β2 y U y, t − τ V y, t − τ

1 + a2 y V y, t − τ + b2 y U y, t − τ
dy,

∂ω x, t
∂t

= ∇ · Dω x ∇ω x, t + k x V x, t − dω x ω x, t ,

15
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for x ∈Ω, t > 0. We consider a closed environment in the
sense that the fluxes for each of these subpopulations are
aero, and hence we propose no-flux condition on the
boundary:

DU x ∇U x, t · ν = DV x ∇V x, t · ν
= Dω x ∇ω x, t · ν
= 0, x ∈ ∂Ω, t > 0,

16

and initial conditions

U x, θ = ϕ1 x, θ ≥ 0,

V x, θ = ϕ2 x, θ ≥ 0,

ω x, θ = ϕ3 x, θ ≥ 0,

 θ ∈ −τ, 0

17

We now briefly outline the plan of this paper. In Sec-
tion 2, we establish basic reproduction number R0. In
Section 3, we study threshold dynamics in terms of basic
reproduction number for the heterogeneous model. At
last, we give discussions and biological implications in
Section 4.

2. Basic Reproduction Number

Let X≔ C Ω,ℝ3 be the Banach space with the

supremum norm ∥·∥X by ϕ X = supx∈Ω∣ϕ x ∣ = supx∈Ω

ϕ21 x + ϕ22 x + ϕ23 x , ϕ = ϕ1, ϕ2, ϕ3
T, where ∣ · ∣

denotes the Euclidean norm in ℝ3 and T denotes the
transpose of the vector, and X+ ≔ C Ω,ℝ3

+ . We easily
get that X+ is a closed cone of X.

Define ℂ = C −τ, 0 ,X with the norm ϕ = supθ∈ −τ,0
ϕ θ X and ℂ+ = C −τ, 0 ,X+ , then ℂ,ℂ+ is an
ordered Banach space. For any given continuous function
u −τ, σ →X for σ > 0, define ut ∈ℂ+ by ut θ = u t + θ ,
θ ∈ −τ, 0 . Let ℤ≔ℂ Ω,ℝ and ℤ+ ≔ℂ Ω,ℝ+ . Suppose
that M1 t , M2 t , and M3 t are the strongly continu-
ous semigroups associated with ∇ · DU · ∇ − dU · , ∇ ·
DV · ∇ − dV · , and ∇ · Dω · ∇ − dω · subject to homo-
geneous Neumann boundary conditions, respectively,
that is,

ℳi t ϕ x =
Ω
Γi x, y, t ϕ y dy, 18

for any ϕ ∈ℤ, t ≥ 0, andMi 0 ϕ = ϕ, i = 1, 2, 3. Γ1, Γ2, and Γ3
are the Green functions associated with ∇ · DU · ∇ − dU · ,
∇ · DV · ∇ − dV · , and ∇ · Dω · ∇ − dω · , respectively,
subject to homogenous Neumann boundary conditions.
According to Section 7.1 and Corollary 7.2.3 in [39], it
follows that Mi t : ℤ→ℤ, i = 1, 2, 3 is strongly positive
and compact for each t > 0. We can also obtain that K t =
M1 t ,M2 t ,M3 t : X→X, t ≥ 0, is a strongly continu-
ous semigroup. Let Ai D Ai →ℤ be the generator of M1
t ,M2 t ,M3 t , respectively i = 1, 2, 3 . Then, we get that

K t : X→X is a semigroup generated by the operator A =
A1,A2,A3 defined on D A =D A1 ×D A2 ×D A3 .

In view of Lemma 2.2 in [35], model (15) exists a
unique infection-free steady state E0 = Û x , 0, 0 Lineariz-
ing model (15) at the infection-free steady state E0, we get the
following linearized system:

∂v1
∂t

= ∇ · DU x ∇v1 x, t − dU x v1 x, t

−
β1 x Û x

1 + b1 x Û x
v3 x, t −

β2 x Û x

1 + b2 x Û x
v2 x, t ,

∂v2
∂t

= ∇ · DV x ∇v2 x, t

+
Ω
Γ τ, x, y

β1 y Û y

1 + b1 y Û y
v3 t − τ, y dy

+
Ω
Γ τ, x, y

β2 y Û y

1 + b2 y Û y
v2 t − τ, y dy

− dV x v2 x, t ,
∂v3
∂t

= ∇ · Dω x ∇v3 x, t + k x v2 x, t − dω x v3 x, t ,

19

satisfying the following boundary conditions

DU x ∇v1 x, t ⋅ ν = DV x ∇v2 x, t ⋅ ν
= Dω x ∇v3 x, t ⋅ ν = 0, ∀x ∈ ∂Ω, t > 0

20

We consider the following model:

∂v1
∂t

= ∇ · DU x ∇v1 x, t − dU x v1 x, t

−
β1 x Û x

1 + b1 x Û x
v3 x, t −

β2 x Û x

1 + b2 x Û x
v2 x, t ,

∂v2
∂t

= ∇ · DV x ∇v2 x, t

+
Ω
Γ τ, x, y

β1 y Û y

1 + b1 y Û y
v3 t, y dy

+
Ω
Γ τ, x, y

β2 y Û y

1 + b2 y Û y
v2 t, y dy

− dV x v2 x, t ,
∂v3
∂t

= ∇ · Dω x ∇v3 x, t + k x v2 x, t − dω x v3 x, t

21

Substituting v2 x, t = eλtφ1 x and v3 x, t = eλtφ2 x
into v2 and v3 of model (21) which is called the infec-
tious compartments results in the following eigenvalue
problem:
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λφ1 x = ∇ ⋅ DV x ∇φ1 x

+
Ω
Γ τ, x, y

β1 y Û y

1 + b1 y Û y
φ2 y dy

+
Ω
Γ τ, x, y

β2 y Û y

1 + b2 y Û y
φ1 y dy

− dV x φ1 x ,λφ2 x = ∇ ⋅ Dω x ∇φ2 x

+ k x φ1 x − dω x φ2 x ,

Dv x ∇φ1 x ⋅ ν = Dω x ∇φ2 x ⋅ ν = 0,

∀x ∈ ∂Ω, t > 0, φ = φ1, φ2 ∈ℤ ×ℤ
22

By the similar argument to Theorem 7.6.1 in [39], it then
follows that eigenvalue problem (22) has a principal eigen-
value λ0 Û x with a positive eigenfunction.

We further consider the nonlocal eigenvalue problem
associated with

λφ1 x = ∇ ⋅ DV x ∇φ1 x

+ e−λτ
Ω
Γ τ, x, y

β1 y Û y

1 + b1 y Û y
φ2 y dy

+ e−λτ
Ω
Γ τ, x, y β2 y Û y

1 + b2 y Û y
φ1 y dy

− dV x φ1 x ,

λφ2 x = ∇ ⋅ Dω x ∇φ2 x + k x φ1 x

− dω x φ2 x ,

Dv x ∇φ1 x ⋅ ν = Dω x ∇φ2 x ⋅ ν = 0,

∀x ∈ ∂Ω, t > 0, φ = φ1, φ2 ∈ℤ ×ℤ
23

From Theorem 2.2 in [40], we get some useful informa-
tion eigenvalue problem (23).

Lemma 2.1. The eigenvalue problem (23) has a principal
eigenvalue λ0 Û x with a strictly positive eigenfunction,
and for any τ ≥ 0, λ0 Û x has the same sign as λ0 Û x .

We adopt the same ideas as in [41–44] to define basic
reproduction number of model (15). For this purpose, we
define the positive linear operator as follows:

ℋ φ x = ℋ1 φ x ,ℋ2 φ x , ∀ϕ = φ1, φ2 ∈ℤ ×ℤ, x ∈Ω,
24

where

ℋ1 φ x =
Ω
Γ τ, x, y

β1 y Û y

1 + b1 y Û y
φ2 y dy

+
Ω
Γ τ, x, y

β2 y Û y

1 + b2 y Û y
φ1 y dy,

ℋ2 φ x = k x φ1 x

25

In order to compute basic reproduction number ℛ0,
we assume that both infected cells and virus are near the
infection-free steady state E0 and introduce initial infected
cells and virus at time t = 0, where the distribution of ini-
tial infected cells and virus is described by φ1 x , φ2 x .
From model (15) and as time evolves, those distributions
can reach

ℳ t φ x = ℳ2 t φ1 x , ℳ3 t φ2 x , 26

at time t. Thus, the total distribution of new infected cells is

+∞

0
ℋ1 ℳt φ dt x =

+∞

τ

ℋ1 ℳ t − τ φ dt x

=
+∞

0 Ω
Γ τ, x, y

β1 y Û y

1 + b1 y Û y

ℳ3 t φ2 y dyd

+
+∞

0 Ω
Γ τ, x, y

β2 y Û y

1 + b2 y Û y

ℳ2 t φ1 y dydt

27

Similarly, the total distribution of new virus can be
described as

+∞

0
ℋ2 ℳ t φ dt x =

+∞

0
k x ℳ2 t φ1 x dt

28

It then follows that

ℒ φ =
+∞

0
ℋ ℳ t φ dt =ℋ

+∞

0
ℳ t φ dt, 29

where ℒ is the next infection operator (see, for example,
[41–44]). It maps the initial distribution of infected cells
and virus to the total distribution of new infected cells and
virus produced during the infection period.

By [41–44], we define the spectral radius ofℒ as the basic
reproduction number of model (15), namely,

ℛ0 = r ℒ 30

In view of the general results developed in [42], we have
the following observation.

Lemma 2.2. ℛ0 − 1 has the same sign as λ0 Û x .
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3. Threshold Dynamics in a Bounded
Spatial Domain

In this section, we study threshold dynamics in terms of ℛ0
for model (15), assuming a bounded spatial domain Ω ⊂ℝn.
We assume that all the parameters ξ x , β x , a x , b x ,
dU x , dV x , dω x , and k x are spatially dependent.
Assume these functions arepositive, continuous, andbounded
in the domainΩ. Let

ξ =max
x∈Ω

ξ x > 0,

β =max
x∈Ω

β x > 0,

k =max
x∈Ω

k x > 0,

a =min
x∈Ω

a x > 0,

b =min
x∈Ω

b x > 0,

dU =min
x∈Ω

dU x > 0,

dV =min
x∈Ω

dV x > 0,

dω =min
x∈Ω

dω x > 0

31

For any ϕ = ϕ1, ϕ2, ϕ3 ∈ℂ+ and x ∈Ω, we define
ℱ = ℱ1,ℱ2,ℱ3 : ℂ+ →X by

ℱ1 ϕ x = ξ x −
β1 x ϕ1 0, x ϕ3 0, x

1 + a1 x ϕ3 0, x + b1 x ϕ1 0, x

−
β2 x ϕ1 0, x ϕ2 0, x

1 + a2 x ϕ2 0, x + b2 x ϕ1 0, x
,

ℱ2 ϕ x =
Ω
Γ τ, x, y

β1 y ϕ1 −τ, y ϕ3 −τ, y
1 + a1 x ϕ3 −τ, y + b1 x ϕ1 −τ, y

dy

+
Ω
Γ τ, x, y

β2 y ϕ1 −τ, y ϕ2 −τ, y
1 + a2 x ϕ2 −τ, y + b2 x ϕ1 −τ, y

dy,

ℱ3 ϕ x = k x ϕ2 0, x

32

Obviously, ℱ is locally Lipschitz. Then, model (15)
can be rewritten as the following abstract functional differ-
ential equation:

du
dt

=Au +ℱ ut , t > 0,

u0 = ϕ ∈ℂ+,
33

where u = U , V , ω .

Lemma 3.1. For any given ϕ ∈ℂ+, there exists a unique mild
solution u t, ·, ϕ of model (15) defined on its maximal
interval of existence 0, tϕ with u0 = ϕ, where tϕ ≤∞. Fur-
ther, u t, ·, ϕ ∈ℂ+, ∀t ∈ 0, tϕ , and u t, ·, ϕ are a classical
solution of model (15), ∀t > τ.

Proof 1. For any ϕ = ϕ1, ϕ2, ϕ3 ∈ℂ+ and for sufficiently
small k ′ ≥ 0, we obtain that

Thus, ϕ + k ′ℱ ϕ x ∈ℂ+. This implies that lim
k ′→0+

1/ k ′

dist ϕ + k ′ℱ ϕ x ,ℂ+ = 0, for all ϕ ∈ℂ+ From Corollary
4 in [45] (see, also [46], Corollary 8.1.3), we obtain the con-
clusion stated in Lemma 3.1. The proof is completed.

We are now in the position to study the well-posedness of
model (15) in the sense of the following theorem.

Theorem 3.1. For any ϕ = ϕ1, ϕ2, ϕ3 ∈ℂ+, model (15) has a
unique solution u t, ·, ϕ on 0,∞ with u0 = ϕ. Moreover, the
solution semiflow Φ t = u t, ·, ϕ : ℂ+ →ℂ+ has a compact
global attractor for t ≥ 0.

Proof 2. It is easy to see that model (15) defines a semiflow
Φ t ≔ ut · : ℂ+ →ℂ+ by

ϕ + kℱ ϕ x =

ϕ1 + k ′ξ x −
k ′β1 x ϕ1 0, x ϕ3 0, x

1 + a1 x ϕ3 0, x + b1 x ϕ1 0, x
−

k ′β2 x ϕ1 0, x ϕ2 0, x
1 + a2 x ϕ2 0, x + b2 x ϕ1 0, x

ϕ2 +
Ω

Γ τ, x, y k ′β1 y ϕ1 −τ, y ϕ3 −τ, y
1 + a1 y ϕ3 −τ, y + b1 y ϕ1 −τ, y

dy +
Ω

Γ τ, x, y k ′β2 y ϕ1 −τ, y ϕ2 −τ, y
1 + a2 y ϕ2 −τ, y + b2 y ϕ1 −τ, y

dy

ϕ3 + k ′k x ϕ2 0, x

≥

1 −
k ′β1
a1

−
k ′β2
a2

ϕ1

ϕ2

ϕ3

≥

0

0

0

34

6 Complexity



Φ t ϕ θ, x = u t + θ, x, ϕ , ∀θ ∈ −τ, 0 , x ∈Ω, t > 0
35

For any fixed ϕ = ϕ1, ϕ2, ϕ3 ∈ℂ+ →ℂ+, from the first
equation of model (15), we obtain that

∂U x, t
∂t

≤ ∇ · DU x ∇U x, t + ξ − dUU x, t 36

From the comparison principle, we easily get that there
exists t1 ϕ > 0 such that U x, t ≤ 2ξ/dU ≕ℬ1 for t > t1.
From the second equation of model (15), we have that

∂V x, t
∂t

≤ ∇ · DV x ∇V x, t +
β1ℬ1
a1

+
β2ℬ1
a2

− dVV x, t

37

There exists t2 ϕ > 0 such that V x, t ≤ 2β1ℬ1/a1dV +
2β2ℬ1/a2dV ≕ℬ2 for t > t2. From the third equation
of model (15), we get

∂ω x, t
∂t

≤ ∇ · Dω x ∇ω x, t + kℬ2 − dωω x, t 38

There also exists t3 ϕ > 0 such that ω x, t ≤ 2kℬ2/
dω ≕ℬ3 for t > t3.

Consequently, the existence of solutions u t, ·, ϕ of
model (15) claimed in Lemma 3.1 is indeed global (i.e.,
tϕ =∞). The solution semiflow Φ t : ℂ+ →ℂ+ is point
dissipative. Moreover, by Theorem 2.2.6 in [46], we have
that Φ t : ℂ+ →ℂ+ is compact for any t > τ. Thus, from
Theorem 3.4.8 in [47], we know that Φ t : ℂ+ →ℂ+ has
a compact global attractor in ℂ+ for t ≥ 0. We complete
the proof.

The following results will play an important role in estab-
lishing uniform persistence of model (15).

Lemma 3.2. Let u t, ·, ϕ be the solution of model (15) with
u 0, ·, ϕ = ϕ ∈ℂ+, then we have the following:

(i) If there exists some t0 > 0 such that V t0, ·, ϕ ≢0 and
ω t0, ·, ϕ ≢0, then

V t, ·, ϕ > 0,

ω t, ·, ϕ > 0,
39

for all t > t0, x ∈Ω.
(ii) It holds that U t, ·, ϕ > 0 for any t > 0, x ∈Ω, and

lim inf
t→∞

U t, ·, ϕ ≥
ξ

dU + β1/a1 + β2/a2
, 40

uniformly for x ∈Ω.

Proof 3. From the second and third equations of model (15),
it follows that

∂V x, t
∂t

≥ ∇ · DV x ∇V x, t − dV x V x, t ,

∂ω x, t
∂t

≥ ∇ · Dω x ∇ω x, t − dω x ω x, t ,
41

with the following boundary conditions

∂V x, t
∂ν

=
∂ω x, t

∂ν
= 0, x ∈ ∂Ω 42

If V t0, ·, ϕ ≢0 and ω t0, ·, ϕ ≢0 for some t0 ≥ 0, it follows
from the strong maximum principle (see, for example,
[48] p. 172, Theorem 4) and the Hopf boundary lemma
(see, for example, [48] p. 170, Theorem 3) that V t, ·, ϕ > 0,
M t, ·, ϕ > 0, andω t, ·, ϕ > 0 for t > t0,x ∈Ω, that is, the con-
clusion i holds.

From the first equation of model (15), we get

∂U x, t
∂t

≥D0ΔU + ξ − dU +
β1
a1

+
β2
a2

U x, t 43

Let v x, t, ϕ be the solution of

∂v x, t
∂t

=D0Δv + ξ − dU + β1
a1

+ β2
a2

v x, t ,

∂v
∂ν

= 0, x ∈ ∂Ω,

v 0, x = ϕ 0, x

44

It then follows that U t, x, ϕ ≥ v t, x, ϕ > 0 for all t > 0
and x ∈Ω. It follows from the standard parabolic comparison
principle that liminf

t→∞
U t, ·, ϕ ≥ ξ/ dU + β1/a1 + β2/a2

uniformly for x ∈Ω. The proof is completed.

The following theorem indicates that ℛ0 is a threshold
quantity for virus extinction or persistence.

Theorem 3.2. Suppose u x, t, ϕ is the solution of model (15)
with u0 = ϕ ∈ℂ+ . Then, the following statements hold:

(i) If ℛ0 < 1, then the infection-free steady state E0 of
model (15) is globally attractive.

(ii) Ifℛ0 > 1, then model (15) has at least one coexistence
steady state and there exists ς > 0 such that any
nonnegative solution u t, x, ϕ with ϕ2 0 ≢0 and
ϕ3 0 ≢0, we get

lim inf
t→∞

V x, t ≥ ς,

lim inf
t→∞

ω x, t ≥ ς,
45

uniformly for all x ∈Ω.

Proof 4. From Lemma 2.2, we easily obtain that λ0 Û0 < 0
when ℛ0 < 1. Since lim

ε→0
λ0 Û0 + ε = λ0 Û0 < 0, there exists

ε0 > 0 sufficiently small such that λ0 Û0 + ε0 < 0. For fixed
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ε0 > 0, there exists T2 > 0 such that U x, t ≤ Û0 + ε0 for all
t ≥ T2, x ∈Ω. Therefore, for all t ≥ T2, from the second and
third equations of model (15), it follows that

∂V
∂t

≤ ∇ · DV x ∇V x, t

+
Ω
Γ τ, x, y

β1 y Û + ε0
1 + b1 y Û + ε0

ω y, t − τ dy

+
Ω
Γ τ, x, y

β2 y Û + ε0
1 + b2 y Û + ε0

V y, t − τ dy

− dV x V x, t ,
∂ω
∂t

≤ ∇ · Dω x ∇ω x, t + k x V x, t − dω x ω x, t

46

According to Lemma 2.1, we get λ0 Û + ε0 < 0, and
there exists a positive eigenfunction ψ0 corresponding to λ0
Û + ε0 < 0. It then obtains the following linear system:

∂u2
∂t

= ∇ · DV x ∇u2 x, t

+
Ω
Γ τ, x, y

β1 y Û + ε0
1 + b1 y Û + ε0

u3 y, t − τ dy

+
Ω
Γ τ, x, y

β2 y Û + ε0
1 + b2 y Û + ε0

u2 y, t − τ dy − dV x u2,

∂u3
∂t

= ∇ · Dω x ∇u3 x, t + k x u2 − dω x u3,

47

with the following boundary conditions

∂u2
∂ν

=
∂u3
∂ν

= 0, x ∈Ω, 48

admitting a solution u t, x = eλ0 Û0+ε0 tψ0 x . Then, for any
given ϕ ∈ℂ+, there exists α ′ > 0 such that

V t, ·, ϕ , ω t, ·, ϕ ≤ α u t, · , t ∈ T2 − τ, T2 49

By the comparison principle, it follows that

V t, x, ϕ , ω t, x, ϕ ≤ α ′eλ0 Û0+ε0 tψ0 x , ∀t ≥ T2

50

Thus, lim
t→+∞

V t, x, ϕ , ω t, x, ϕ = 0 uniformly for x ∈Ω.
Hence, by [35], it then follows that lim

t→+∞
U t, x, ϕ = Û0 x

uniformly for ∀x ∈Ω,which ends the proof of Part (i).

For ℛ0 > 1, we employ the persistence theory in [49] to
study uniform persistence of model (15). Define

X0 = ϕ = ϕ1, ϕ2, ϕ3 ∈ℂ+ ϕ2 0 ≢0 and ϕ3 0 ≢0
51

Obviously, we have that

∂X0 ≔ℂ+ \X0 = ϕ ∈ℂ+ ϕ2 0 ≡ 0 orϕ3 0 ≡ 0
52

In view of Lemma 3.2, it then follows thatX0 is positively
invariant for the solution semiflow Φ t . Define

W ∂ ≔ ϕ ∈ ∂X0 Φ t ϕ ∈ ∂X0, ∀ t ≥ 0 53

Let ω ϕ be the omega limit set of the orbit of Φ t
through ϕ ∈ℂ+, and set W 1 ≔ Û x , 0, 0 .

Claim 1. ∪ϕ∈W ∂
ω ϕ =W 1.

For any given ϕ ∈W ∂, it follows that ut ϕ ∈ ∂X0 for all
t ≥ 0. Since ut ϕ = u t, ·, ϕ , we easily have that for each
t ≥ 0 either V t, ·, ϕ ≡ 0 or ω t, ·, ϕ ≡ 0 For the case
where V t, ·, ϕ ≡ 0, ∀t ≥ 0, combined with the third equation
of model (15), it can be obtained that lim

t→+∞
ω t, ·, ϕ = 0 uni-

formly for x ∈Ω. Further, from the first equation of model
(15) and the theory of asymptotically autonomous semiflows
[50], it then follows that lim

t→+∞
U t, ·, ϕ = Û x uniformly for

x ∈Ω. In the case where V t0, ·, ϕ ≢0 for some t0 > 0, by
parabolic maximum principle, we have that V t, ·, ϕ > 0 for
all t > t0 and x ∈Ω. Therefore, we get ω t, ·, ϕ ≡ 0 for all t ≥
t0. From the third equation of model (15), we obtain that
V t, ·, ϕ ≡ 0 for all t ≥ t0, which is a contradiction. Hence,
we get ∪ϕ∈W ∂

ω ϕ =W 1. We complete the proof of Claim 1.

Claim 2. Similar to the proof of Lemma 3.3 in [17], we easily
get that E0 is a uniform weak repeller in the sense that

lim sup
t→∞

∥u t, ·, ϕ − Û x , 0, 0 ∥ℂ+
≥ χ 54

We define a continuous function p ℂ+ →ℝ+ by

p ϕ =min min
x∈Ω

ϕ2 0 x , min
x∈Ω

ϕ3 0 x , ∀ϕ ∈ℂ+

55

We easily verify that p−1 0, +∞ ⊂X0. By Lemma 3.3,
p has the property that if either p ϕ = 0 and ϕ ∈X0
or p ϕ > 0, then p Φ t ϕ > 0 for all t > 0. Conse-
quently, we have that p is a generalized distance function
for the semiflow Φ t : ℂ+ →ℂ+ (see [49]). From the above
claims, it follows that any forward orbit of Φ t in W ∂
converges to W 1 which is isolated in ℂ+, and Ws W 1
∩X0 = 0, where Ws W 1 is the stable set of W 1 (see,
for example, [49]). Further, we find that no subset of
W 1 forms a cycle in ∂X0 from E0 to E0. By Theorem 3
in [49], we prove that there exists ς > 0 such that min p
ψ : ψ ∈ ω ϕ > ς for any ϕ ∈X0 In view of Theorem
1.3.6 in [51], we obtain that model (15) has at least one
coexistence steady state if ℛ0 > 1. The proof is completed.

4. Discussions and Biological Implications

This paper is devoted to develop a nonlocal and time-delayed
reaction-diffusion model for HIV infection within host
cell-to-cell viral transmissions. For model (15), the virus
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dynamics are fully determined by an important parameter
which is called basic reproduction number ℛ0, in the fol-
lowing sense: if ℛ0 < 1, the infection-free steady state E0 is
globally attractive, implying infection becomes extinct; while
if ℛ0 > 1, the virus will persist in the host environment.
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