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Mixed-Effects Modeling and Non-Reductive Explanation 

(4975 words) 

Abstract: This essay considers a mixed-effects modeling practice and its 

implications for the philosophical debate surrounding reductive explanation. 

Mixed-effects modeling is a species of the multilevel modeling practice, where a 

single model incorporates simultaneously two (or even more) levels of 

explanatory variables to explain a phenomenon of interest. I argue that this 

practice makes the position of explanatory reductionism held by many 

philosophers untenable, because it violates two central tenets of explanatory 

reductionism: single level preference and lower-level obsession. 
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1. Introduction 

 

Explanatory reductionism is the position which holds that, given a relatively 

higher-level phenomenon (or state, event, process, etc.), it can be reductively 

explained by a relatively lower-level feature (Kaiser 2015, 97; see also Sarkar 

1998; Weber 2005; Rosenberg 2006; Waters 2008).1 Though philosophers tend to 

have slightly different conceptions of the position, two central tenets of the 

position can still be extracted:2  

 

                                                           
1 According to Sarkar (1998), explanatory reduction is an epistemological thesis 

which is distinguished from constitutive (ontological) and theory reductionism 

theses. Kaiser further distinguishes two sub-types of explanatory reduction: (a) “a 

relation between a higher-level explanation and a lower-level explanation of the 

same phenomenon” (2015, 97); (b) individual explanations, i.e., given a relatively 

higher-level phenomenon, it can be reductively explained by a relatively lower-

level feature (Ibid., 97). This essay will focus on the second sub-type. Besides, 

when referring to levels I mean either hierarchical organization such as 

universities, faculties, departments etc., or functional organization such as organs, 

tissues, cells etc. When referring to scales I mean spatial or temporal scaling 

where levels are not so clearly delimited. 

2 Similar summary of the position can be found in Sober (1999). 
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Single level preference: a phenomenon of interest can be fully explained by 

invoking features that reside at a single, well-defined level of analysis (e.g., 

molecular level in biology). 

 

Lower-level obsession: lower-level features always provide the most 

significant and detailed explanation of the phenomenon in question, so a 

lower-level explanation is always better than a higher-level explanation. 

 

Philosophers sometimes express these two tenets explicitly in their work. For 

example, Alex Rosenberg holds that “[…] there is a full and complete explanation 

of every biological fact, state, event, process, trend, or generalization, and that this 

explanation will cite only the interaction of macromolecules to provide this 

explanation” (Rosenberg 2006, 12). Marcel Weber expresses a similar idea in his 

explanatory hegemony thesis, according to which it’s always some lower-level 

physicochemical laws (or principles) that ultimately do the explanatory work in 

experimental biology (Weber 2005, 18-50). John Bickle attempts to motivate a 

‘ruthless’ reduction of psychological phenomena (e.g., memory) to the molecular 

level (Bickle 2003). 

However, many philosophers have questioned the plausibility of the position 

on the basis of scientific practice (Hull 1972; Craver 2007; Bechtel 2010; 

Brigandt 2010; Hüttemann and Love 2011; Kaiser 2015). To counter that position, 

some authors have pointed to the relevance of an important practice that has not 

received sufficient attention before: multiscale or multilevel modeling or 
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sometimes called integrative modeling approach, where a set of distinct models 

ranging over multiple levels or scales—including the macro-phenomenon 

level/scale—are involved in explaining a (often complex) phenomenon of interest 

(Mitchell 2003, 2009; Craver 2007; Brigandt 2010, 2013a, 2013b; Knuuttila 2011; 

Batterman 2013; Green 2013; O’ Malley et al. 2014; Green and Batterman 2017). 

Often these models work together by providing diverse constraints on the 

potential space of representation (Knuuttila and Loettgers 2010; Knuuttila 2011; 

Green 2013). 

This multilevel modeling surely casts some doubt on explanatory 

reductionism, for it seems unclear what reductively explains what—all those facts 

in the set of models ranging over different levels/scales are involved in doing 

some explanatory work. However, there is a species of multilevel modeling that 

has slipped away from most philosophers’ sights: mixed-effects modeling (MEM 

hereafter)—also called multilevel regression modeling, hierarchical linear 

modeling, etc.—in which a single model incorporating simultaneously two (or 

even more) levels of variables is used to explain a phenomenon. For a mixed-

effects model to explain, features of the so-called reducing and reduced levels 

must be simultaneously incorporated into the model, that is, they must go hand in 

hand.  

MEM deserves special attention because it sheds new light on the 

reductionism-antireductionism debate by showing that (a) a mixed-effects model 

violating the two central tenets of explanatory reductionism can provide 

successful explanation, and (b) a single mixed-effects model without integrating 
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with other epistemic means can also provide such successful explanation. 

Therefore, MEM first further challenges the explanatory reductionist position, and 

second offers a novel perspective bolstering the multilevel/multiscale integrative 

approach discussed by many philosophers. 

The essay proceeds as follows. Section 2 discusses the challenges faced by the 

traditional single-level modeling approach, and examines the reasons why the 

MEM approach is preferable in dealing with these challenges. Section 3 describes 

a MEM practice using a concrete model. Section 4 elaborates on the implications 

of MEM for the explanatory reductionism debate. Finally, Section 5 considers 

potential objections to my viewpoint. 

 

2. Challenges to Reductive Explanatory Strategies  

 

In many fields (e.g., biological, social and behavioral sciences) scientists find that 

the data collected show an intrinsically hierarchical or nested feature. Consider a 

simple example: we might be interested in examining relationships between 

students’ achievement at school (A hereafter) and the time they invest in studying 

(T).3 In conducting such a research, we might collect data from different classes 

(say 5 classes in total), with each class providing the same number of samples 

(say 10 students in each class). The data collected among classes might be taken 

for granted to be independent. Then we may use certain traditional statistical 

                                                           
3 For scientific studies of this kind, see Schagen (1990), Wang and Hsieh (2012), 

and Maxwell et al. (2017). 



6 
 

techniques such as ordinary least-squares (OLS) to analyze the data and build a 

linear relationship between A and T.  

However, this single-level reductive analysis can lead to misleading results, 

because it ignores the possibility that students within a class may be more similar 

to each other in important aspects than students from different classes. In other 

words, each group (class) may have its own features relevant to the relationship 

between A and T that the other groups lack. Hence, the data collected from the 

students are in fact not independent, i.e., the subjects are not randomly sampled, 

because the individuals (students) are clustered within groups (classes). In 

technical terms, we say our analysis may fall prey to the atomistic fallacy where 

we base our analysis solely on the individual level—i.e., we reduce all the group-

level features to the individuals. Therefore, traditional OLS techniques such as 

multiple regression cannot be employed in this context, because the case under 

consideration violates a fundamental assumption of these techniques: the 

independence of observations (Nezlek 2008, 843). 

Conversely, we may face the same problem the other way around if we fail to 

consider the inherently nested nature of the data. Consider the student-

achievement-at-school case again. We may observe that in classes where the time 

of study invested by students is very high, the achievements of the students are 

also very high. Given such an observation, we may reason that students who 

invest a lot of time in studying would be more likely to get higher achievements at 

school. However, this inference commits the ecological fallacy, because it 

attributes the relationship observed at the group-level to the individual-level 
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(Freedman 1999). The individuals may exhibit within-group differences that the 

single group-level analysis fails to capture. In technical terms, this inference flaws 

because it reduces the variability in achievement at the individual-level to a 

group-level variable, and the subsequent analysis is solely based on group’s mean 

achievement results (Heck and Thomas 2015, 3). Again, traditional statistical 

techniques such as multiple regression cannot be employed in this context. 

In sum, a single-level modeling approach that disrespects the multilevel data 

structure can commit either an atomistic or an ecological fallacy. Confronted with 

these problems, one response is to ‘tailor’ the traditional statistical techniques by, 

e.g., adding an effect variable to the model which indicates the grouping of the 

individuals. However, many have argued that this approach is unpromising 

because it may give rise to enormous new problems (Luke 2004; Nezlek 2008; 

Heck and Thomas 2015). Alternatively, scientists have developed a new 

framework that takes the multilevel data structure into full consideration, i.e., the 

MEM approach, to which we now turn. 

 

3. Case Study: A Mixed-Effects Model  

 

Depending on different conceptual and methodological roots we have two broad 

categories of MEM approaches: the multilevel regression approach and the 

structural equation modeling approach. The former usually focuses on direct 

effects of predictor variables on (typically) a single dependent variable, while the 

latter usually involves latent variables defined by observed indicators (for details 
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see Heck and Thomas 2015). For the purpose of this essay’s arguments, I will 

concentrate on the first kind. 

Consider the student-achievement-at-school example again. Since students are 

typically clustered in different classes, a student’s achievement at school may be 

both influenced by her own features (e.g., time invested in studying) and her 

class’s features (e.g., size of the class). Hence here comes two levels of analysis: 

the individual-level (level-1) and the group-level (level-2), and individuals (𝑖 =

1, 2, … ,𝑁) are clustered in level-2 groups (𝑗 = 1,2, … , 𝑛).4 Now suppose that 

students’ achievements at school are represented as scores they get in the exam. 

The effect of time invested in studying on scores can be described as follows: 

 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑗                                                               (1) 

 

where 𝑌𝑖𝑗 refers to the score of individual 𝑖 in the 𝑗th group,  𝛽0𝑗 is a level-1 

intercept representing the mean of scores for the 𝑗th group, 𝛽1𝑗 a level-1 slope (i.e., 

different effects of study time on scores) for the predictor variable 𝑋𝑖𝑗, and the 

residual component (i.e., an error term) 𝜀𝑖𝑗 the deviation of individual 𝑖’s score 

from the level-2 mean in the 𝑗th group. Equation (1) looks like a multiple 

regression model; however, the subscript 𝑗 reveals that there is a group-level 

incorporated in the model. It can also be seen from this equation that both the 

                                                           
4 Note that, for instructive purposes, our case involves only two levels; however, 

the MEM approach can in principle be extended to many more levels. 
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intercept 𝛽0𝑗 and slope 𝛽1𝑗 can vary across the level-2 units, that is, different 

groups can have different intercepts and slopes.  

The most remarkable thing of MEM is that we treat both the intercept and 

slope at level-1 as dependent variables (i.e., outcomes) of level-2 predictor 

variables. So here we write the following equations expressing the relationships 

between the level-1 parameters and level-2 predictors: 

 

𝛽0𝑗 = 𝛾00 + 𝛾01𝑊𝑗 + 𝑢0𝑗                                                               (2) 

 

and 

 

𝛽1𝑗 = 𝛾10 + 𝛾11𝑊𝑗 + 𝑢1𝑗                                                                (3) 

 

where 𝛽0𝑗 refers to the level-1 intercept in level-2 unit 𝑗, 𝛾00 denotes the mean 

value of the level-1 intercept, controlling for the level-2 predictor 𝑊𝑗, 𝛾01 the 

slope for the level-2 variable 𝑊𝑗, and 𝑢0𝑗 the error (i.e., the random variability) 

for unit 𝑗. Also, 𝛽1𝑗 refers to the level-1 slope in level-2 unit 𝑗, 𝛾10 the mean value 

of the level-1 slope controlling for the level-2 predictor 𝑊𝑗, 𝛾11 the effect of the 

level-2 predictor 𝑊𝑗, and 𝑢1𝑗 the error for unit 𝑗.  

Equations (2) and (3) have specific meanings and purposes. They express how 

the level-1 parameters, i.e., intercept or slope, are functions of level-2 predictors 

and variability. They aim to explain variations in the randomly varying intercepts 

or slopes by adding one (or more) group-level predictor to the model. These 
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expressions are based on the idea that the group-level characteristics such as 

group size may impact the strength of the within-group effect of study time on 

scores. This kind of effect is called a cross-level interaction for it involves the 

impact of variables at one level of a data hierarchy on relationships at another 

level. We will discuss this in detail in the next section.  

Now we combine equations (1), (2) and (3) by substituting the level-2 parts of 

the model into the level-1 equation. We finally obtain the following equation: 

 

𝑌𝑖𝑗 = [𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01𝑊𝑗 + 𝛾11𝑋𝑖𝑗𝑊𝑗] + [𝑢1𝑗𝑋𝑖𝑗 + 𝑢0𝑗 + 𝜀𝑖𝑗]        (4) 

 

This equation can be simply understood that 𝑌𝑖𝑗 is made up of two components: 

the fixed-effect part expressed by the first four terms and the random-effect part 

expressed by the last three terms. Note that the term 𝛾11𝑋𝑖𝑗𝑊𝑗 denotes a cross-

level interaction between level-1 and level-2 variables, which is defined as the 

impact of a level-2 variable on the relationship between a level-1 predictor and 

the outcome 𝑌𝑖𝑗. We have 7 parameters to estimate in (4), they are four fixed 

effects: intercept, within-group predictor, between-group predictor and cross-level 

interaction, two random effects: the randomly varying intercept and slope, and a 

level-1 residual.  

Now a mixed-effects model has been built, and the next step is to estimate the 

parameters of the model. However, we will skip this step and turn to explore the 

philosophical implications of the modeling practice relevant to the explanatory 

reductionism debate. 
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4. Implications for the Explanatory Reductionism Debate  

 

Looking closely into the MEM practice, we find that a couple of important 

philosophical implications for the explanatory reductionism debate can be drawn. 

 

4.1. All levels are indispensable  

 

The first, and most obvious, feature of MEM is that it routinely involves many 

levels of analysis in a single model, and all these levels are indispensable to the 

model in the sense that no level can be reduced to or replaced by the other levels. 

These levels consist of both the so-called reducing level in the reductionist’s 

terminology, typically a lower-level that attempts to reduce another level, and the 

reduced level, typically a higher-level to be reduced by the reducing level. In our 

student-achievement-at-school case, for example, a reductionist may state that the 

group-level will be regarded as the reduced level whereas the student-level as the 

reducing level.  

The indispensability of each level in the model can be understood in two 

related ways. First, due to the nested nature of data, only when we incorporate 

different levels of analyses to the model can we avoid either the atomistic or 

ecological fallacy discussed in Section 2. As discussed in the student-

achievement-at-school example where students are clustered in different classes 

(in the manner that students from the same class may be more similar to each 
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other in important aspects than students from different classes), reducing all the 

analyses to the level of individual students can simply miss the important 

information associated with group-level features and thus lead to misleading 

results. Although it’s true that the problem might be partially mitigated by 

tailoring traditional single-level analytical techniques such as multiple regression, 

it’s also true that this somewhat ad hoc maneuver can simply bring about various 

new vexing and recalcitrant issues (Luke 2004; Nezlek 2008; Heck and Thomas 

2015). 

Second, the problem can also be viewed from the perspective of identifying 

explanatory variables. In building a mixed-effects model, the main consideration 

is often to find a couple of variables that may play the role of explaining the 

pattern or phenomenon observed in the data. Here a modeler must be clear about 

how to assign explanatory variables, for instance, she must consider if there are 

different levels of analyses and, if so, which explanatory variables should be 

assigned to what levels, and so on. These considerations may come before her 

model building because of background knowledge, which paves the way for her 

to develop a conceptual framework for investigating the problem of interest. 

However, without such a clear and rigorous consideration of identifying and 

assigning multilevel explanatory variables, an analysis can flaw simply because it 

confounds variables at different levels.  

Respecting the multilevel nature of explanatory variables has another 

advantage: “Through examining the variation in outcomes that exists at different 

levels of the data hierarchy, we can develop more refined theories about how 
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explanatory variables at each level contribute to variation in outcomes” (Heck and 

Thomas 2015, 33). In other words, in respecting the multilevel nature of 

explanatory variables, we get a clear idea of how, and to what degrees, 

explanatory variables at different levels contribute to variation in outcomes. If 

these variables do contribute to variation in outcomes, as it always happens in 

MEM, then the situation suggests an image of explanatory indispensability: all the 

explanatory variables at different levels are indispensable to explaining the pattern 

or phenomenon of interest. 

Given these considerations, therefore, one implication for the explanatory 

reductionism debate becomes clear: it isn’t always the case that, given a relatively 

higher-level phenomenon it can be reductively explained by a relatively lower-

level feature. Rather, in cases where the data show a nested structure or, put 

differently, the phenomenon suggests multilevel explanatory variables, we 

routinely combine the higher-level with the lower-level in a single (explanatory) 

model. As a result, one fundamental tenet of explanatory reductionism is violated: 

single level preference. 

 

4.2. Interactions between levels 

 

Another crucial feature of multilevel modeling is its emphasis on a cross-level 

interaction, which is defined as 

 

“The potential effects variables at one level of a data hierarchy have on 

relationships at another level […]. Hence, the presence of a cross-level 
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interaction implies that the magnitude of a relationship observed within 

groups is dependent on contextual or organizational features defined by 

higher-level units”. (Heck and Thomas 2015, 42-43) 

 

Remember that there is a term 𝛾11𝑋𝑖𝑗𝑊𝑗 in our mixed-effects model discussed in 

Section 3, which indicates the cross-level interaction between the group-level and 

the individual-level. More specifically, this term can be best construed as the 

impact of a group-level variable, e.g., group size, upon the individual-level 

relationship between a predictor, e.g., study time, and the outcome, e.g., students’ 

scores.  

The cross-level interaction points to the plain fact that an organization or a 

system can somehow influence its members or components by constraining how 

they behave within the organization or system. This doesn’t necessarily imply 

top-down causation (Section 5.3 will turn back to this point). Within the context 

of scientific explanation, however, it does imply that it isn’t simply that 

characteristics at different levels separately contribute to variation in outcomes, 

but rather that they interact in producing variation in outcomes. In other words, 

the pattern or phenomenon to be explained can be understood as generated by the 

interaction between explanatory variables at different levels. Therefore, to 

properly explain the phenomenon of interest, we need not only have a clear idea 

of how to assign explanatory variables to different levels but also an unequivocal 

conception of whether these explanatory variables may interact.  
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Different models can be built depending on different considerations of the 

cross-level interaction. To see this, consider the student-achievement-at-school 

example again. In some experiment setting we may assume that there was no 

cross-level interaction between group-level characteristics and the individual-

level relationship (between study time and scores). In such a situation, we kept the 

effect of individual study time on scores the same across different classes, i.e., we 

kept the slope constant across classes. In the meanwhile, we treated another 

group-level variable (i.e., intercept) as varying across classes, i.e., different 

classes have different average scores. So, this is a case where we have a clear idea 

of how to assign explanatory variables but no consideration of the cross-level 

interaction. Nonetheless, in a different experiment setting we may assume that 

there existed cross-level interaction, and hence the effect of individual study time 

on scores can no longer be kept constant across different classes. At the same time, 

we treated another group-level variable (i.e., intercept) as varying across classes. 

Hence, this is a case where we have both a clear idea of how to assign explanatory 

variables and a consideration of the cross-level interaction. Corresponding to 

these two different scenarios, two different mixed-effects models can be built, as 

shown below: 
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Figure 1. Two different models showing varying intercepts or varying 

intercepts and slopes, respectively. Three lines represent three classes. This 

figure is adapted from Luke (2004, 12). 

 

Given such a cross-level interaction, therefore, the explanatory reductionist 

position has been further challenged. This is because any reductive explanation 

that privileges one level of analysis—usually the lower-level—over the others 

falls short of capturing this kind of interaction between levels. If they fail to do so, 

then they are missing important terms relevant to explaining the phenomenon of 

interest. As a consequence, a mixed-effects model involving interactions between 

levels simultaneously violates the two fundamental pillars of explanatory 

reductionism: first, it violates single level preference because it involves 

multilevel explanatory variables in explaining phenomena, and second, it violates 

lower-level obsession because it privileges no levels—all levels are interactively 

engaged in producing outcomes.  
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5. Potential Objections  

 

This section considers two potential objections. 

 

5.1. In-principle argument 

 

One argument that resurfaces all the time in the reductionism-versus-

antireductionism debate is the in-principle argument, the core of which is that 

even if reductive explanations in a field of study are not available for the time 

being, it doesn’t follow that we won’t obtain them someday (e.g., Sober 1999; 

Rosenberg 2006). Therefore, according to some reductionists, the gap between 

current-science and future-science is simply a matter of time, for advancement in 

techniques, experimentation and data collecting can surely fill in the gap.  

However, I think the argument flaws. To begin with, advancement in 

techniques, experimentation and data collecting isn’t always followed by 

reductive explanations. For example, in our MEM discussed in Section 3, even if 

the data about the individual-level is available and sufficiently detailed, it isn’t the 

case that we explain the phenomenon of interest in terms of the data from the 

individual-level alone. Consider another example: in dealing with problems 

associated with complex systems in systems biology, even though large-scale 

experimentation (e.g., via computational simulation) can be conducted and high 

throughput data arranging over multiple scales/levels can be collected, a bottom-

up reductive approach must be integrated with a top-down perspective so as to 
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produce useful explanations or predictions (Green 2013; Green and Batterman 

2017; Gross and Green 2017).  

Nevertheless, reductionists may reply that the situations presented above only 

constitute an in-practice impediment, for it doesn’t undermine the possibility that 

lower-level reductive explanations, typically provided by some form of ‘final 

science’, will be available someday. Let us dwell on the notion of possibility a bit 

longer. The possibility here may be construed as a logical possibility (Green and 

Batterman 2017, 21; see also Batterman 2017). Nonetheless, if it’s merely 

logically possible that there will be some final science providing only reductive 

explanations, then nothing can exclude another logical possibility that there will 

be some ‘mixed-science’ providing only multilevel explanations. After all, how 

can we decide which logical possibility is more possible (or logically more 

possible)? I doubt that logic alone could provide anything useful in justifying 

which possibility is more possible, and that appealing to logical possibility could 

offer anything insightful in helping us understand how science proceeds. As 

Batterman puts, “Appeals to the possibility of in principle derivations rarely, if 

ever, come with even the slightest suggestion about how the derivations are 

supposed to go” (2017, 12; author’s emphasis).  

Another interpretation of possibility may be associated with real possibilities, 

referring to the actual cases of reductive explanations happening in science. 

Unfortunately, I don’t think the real scenario in science speaks for the reductionist 

under this interpretation. Though it’s impossible to calculate the absolute cases of 

non-reductive explanations occurring in science, a cursive look at scientific 
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practice can tell that a large portion of scientific explanations proceeds in a non-

reductive fashion, as suggested by multilevel modeling (Batterman 2013; Green 

2013; O’ Malley et al. 2014; Green and Batterman 2017; Mitchell and 

Gronenborn 2017). Moreover, even in areas such as physics which was regarded 

as a paradigm for the reductionist stance, progressive explanatory reduction 

doesn’t always happen (Green and Batterman 2017; Batterman 2017).  

In sum, we have shown that the in-principle argument fails for it neither offers 

help in understanding how science proceeds if it’s construed as implying a logical 

possibility, nor goes in tune with scientific practice if it’s construed as implying 

real possibilities. 

 

5.2. Top-down causation  

 

In Section 3 we have shown that there is a cross-level interaction taking the form 

that higher-level features may impact lower-level features. A worry arises: Does 

this imply top-down causation?  

My answer to this question is twofold. First, it’s clear that this short essay 

isn’t aimed to engage in the philosophical debate about whether, and in what 

sense, there exists top-down causation (see Craver and Bechtel 2007; Kaiser 2015; 

Bechtel 2017). Second, what we can do now is to show that the cross-level 

interaction is a clear and well-defined concept in multilevel modeling. It 

unambiguously means the constraints on the lower-level processes exerted by the 

higher-level parameters (Green and Batterman 2017). In our multilevel modeling 
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discussed in Section 3, we have shown that group-level features may impact some 

individual-level features through the way that each group possesses its own 

feature relevant to explaining the differences at the individual-level across groups. 

This idea is incorporated into the mixed-effects model by assigning some 

explanatory variables to the group-level and a cross-level interaction term to the 

model. 

The idea of cross-level-interaction-as-constraint is widely accepted in 

multilevel modeling broadly construed, where constraint is usually expressed in 

the form of initial and/or boundary conditions. For example, in modeling cardiac 

rhythms, due to “the influences of initial and boundary conditions on the solutions 

of the differential equations used to represent the lower level process” (Noble 

2012, 55; Cf. Green and Batterman 2017, 32), a model cannot simply narrowly 

focus on the level of proteins and DNA but must also consider the levels of cell 

and tissue working as constraints. The same story happens in cancer research, 

where scientists are advocating the idea that tumor development can be better 

understood if we consider the varying constraints exerted by tissue (Nelson and 

Bissel 2006; Shawky and Davidson 2015; Cf. Green and Batterman 2017, 32). 

 

6. conclusion 

 

This essay has shown that no-reductive explanations involving many levels 

predominate in areas where the systems under consideration exhibit a hierarchical 

structure. These explanations violate the fundamental pillars of explanatory 
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reductionism: single level preference and lower-level obsession. Traditional 

single-level reductive approaches fall short of capturing systems of this kind 

because they face the challenges of committing either the atomistic or ecological 

fallacy.  
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