
Multilevel Modeling and the Explanatory Autonomy of Psychology 

 

Abstract: This article argues for the explanatory autonomy of psychology drawing on 

cases from the multilevel modeling practice. This is done by considering a multilevel 

linear model in personality and social psychology, and discussing its philosophical 

implications for the reductionism debate in philosophy of psychology. I argue that this 

practice challenges the reductionist position in philosophy of psychology, and 

supports the explanatory autonomy of psychology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction  

 

It has been a longstanding debate in philosophy concerning the status of psychology 

as an autonomous science (Jessor 1958; Putnam 1967, 1975; Fodor 1968, 1974, 1998; 

Block and Fodor 1972; Churchland 1989; Bickle 1998, 2003). While the debate was 

once focused on theory reduction that concerns reducing a higher-level theory’s 

predicates to a lower-level theory’s predicates via bridging laws or corresponding 

principles (Nagel 1961; Suppes 1962, 1967; Stegmüller 1976; Suppe 1977, 1989; 

Schaffner 1993), more recently it has shifted to a slightly different but closely related 

dispute: explanatory reductionism (Sarkar 1998; Bickle 2003; Weber 2005; Rosenberg 

2006; Waters 2008).1  

Explanatory reductionism is a position weaker than theory reductionism for all 

what it requires is only individual reductive explanation, conducted in a piecemeal 

manner, rather than wholesale theory reduction. More specifically, it is the view that a 

higher-level phenomenon can (always) be reductively explained by features residing 

at a lower-level (Kaiser 2015, 97).2 Although different authors express the idea 

                                                             

1 Note that when referring to levels I mean either hierarchical organization such as 

nations, provinces, cities, etc., or functional organization such as organisms, organs, 

tissues, etc. 

2 Sarkar (1998) distinguishes three different forms of reductionism—i.e., constitutive 

(ontological), epistemic and theory reductionism—and treats explanatory 



differently, they share one core: to explain a given phenomenon of interest, an 

explanation that appeals exclusively to features at a lower-level is always better than 

an explanation that appeals to features at a higher-level. In philosophy of psychology, 

a lower-level may refer to the neural (molecular) level whereas a higher-level may 

denote the cellular, tissue, personal or social level, depending on what question is 

under consideration.3  

This position is explicitly held by some key figures in the explanatory 

reductionist camp, e.g., John Bickle (2003), who manages to urge a ‘ruthless’ 

reduction of psychological phenomena (e.g., memory, consciousness and attention) to 

molecular neuroscience. For Bickle, the molecular level is clearly the desired level of 

analysis, a level from which phenomena happening at a higher-level—here the 

psychological level—can be reductively explained (other prominent proponents of 

this view are Clark 1980; Churchland 1989, 2007; Kim 1992). 

                                                             

reductionism as a special kind of epistemic reductionism. Maria Kaiser (2015) divides 

explanatory reductionism into two sub-types: (a) “a relation between a higher-level 

explanation and a lower-level explanation of the same phenomenon” (97); (b) 

individual reductive explanations, i.e., a relatively higher-level phenomenon can be 

reductively explained by a relatively lower-level feature (Ibid., 97). This essay will 

focus on the second sub-type.  

3 A parallel debate is happening in philosophy of biology (see, e.g., Weber 2005; 

Rosenberg 2006; Bechtel 2010). 



Although Bickle’s ruthless reduction has received serious criticisms (e.g., Craver 

2005; Jong and Schouten 2005; Aizawa and Gillett 2009, 2011; Marshall 2009; Figdor 

2010), one important line of argument, which is based on practice in psychology, has 

not been sufficiently explored in the literature.4 This is the multilevel linear modeling 

practice (Mason et al. 1983; Goldstein 1995), also termed mixed-effects modeling 

(Singer 1998), hierarchical linear modeling (Raudenbush and Bryk 2002), etc. It has 

proven to be very useful and thus been widely employed in many disciplines of 

science, e.g., neuroscience (e.g., Gueorguieva and Krystal 2004; Baayen et al. 2008; 

                                                             

4 Bourrat (2016) and Fang (2019) are two exceptions. Notice that this essay extends 

Fang (2019)’s arguments in many ways. First, Fang (2019) discusses how the 

multilevel modeling practice challenges explanatory reductionism in philosophy of 

science in general, but this essay examines how the practice casts doubt on 

explanatory reductionism in philosophy of psychology in particular. Second, this 

essay points out another two severe problems that the single-level analysis strategy 

faces, problems that are overlooked by Fang (2019) (see Section 2). Third, this essay 

further extends one argument made by Fang (2019) to philosophy of psychology as 

well as answers two possible objections, offers a new argument against explanatory 

reductionism, and deals with a new problem that any regression analysis must face 

(see Section 4). Finally, throughout this essay a number of examples drawn from 

personality and social psychology are discussed (see, especially, a case study in 

Section 3).  



Aarts et al., 2014), biomedical research (e.g., Andersson-Roswall et al. 2010; Ard et 

al. 2015; Bilgel et al. 2016), behavioral and social sciences (Agresti et al. 2000; 

Berger and Tan 2004; Parzen et al. 2011), etc.  

A multilevel linear model is one that simultaneously includes multiple (often 

nested or hierarchical) levels of analyses with explanatory variables ranging over 

several levels of organization to explain a phenomenon of interest. The appeal to 

multilevel rather than single-level models is grounded upon the fact that research, e.g., 

in the social sciences, always involves hierarchical data structures. For instance, a 

resident is typically nested within a district such that she is more similar to her 

neighbors in attitudes towards certain social phenomena, e.g., gender inequality, than 

to the residents from different districts in the same city.  

I argue in this essay that the multilevel linear modeling practice constitutes a 

severe challenge to the explanatory reductionism position, for it flies in the face of the 

position’s core. More specifically, it shows that appealing to the lower-level features 

cannot always provide a better explanation. Rather, scientists usually have to build 

multilevel models that incorporate both the lower-level and higher-level features to 

explain a phenomenon of interest. Moreover, the higher-level features sometimes even 

play a more important role in an explanation than their lower-level counterparts.  

Before proceeding, let me say a few words on what I mean by ‘explanatory 

autonomy’.5 Explanatory autonomy refers to one particular type of autonomy that a 

                                                             

5 I thank one anonymous referee for letting me clarify this notion. 



science can possess. This type of autonomy is reflected by, and grounded upon, the 

fact that the explanations in a science are sufficient to explain the phenomena of 

interest in that field, and that there is no need to reduce the explanations provided by 

this science to some other explanations provided by some other, usually more 

fundamental sciences. Therefore, in this essay when I refer to ‘the explanatory 

autonomy of psychology’ I mean that the explanations in psychology are good enough 

to explain psychological phenomena such that there is no reason to reduce the 

psychological explanations to some other explanations. 

The essay unfolds as follows. Section 2 examines the problems faced by the 

traditional single-level statistical methods. Section 3 briefly introduces the multilevel 

linear modeling practice happening in personality and social psychology. Section 4 

discusses how the practice poses threat to the core of the explanatory reductionist 

position.  

 

2. Problems with Traditional Statistical Methods 

 

It goes without saying that one person’s social behavior is not only influenced by her 

own personality but also by the social context in which she behaves. People are 

situated within social contexts, and different social contexts affect people differently. 

For example, people living in the same district in a metropolis tend to show more 

similar attitudes towards certain social phenomena, e.g., gender inequality, than 

people from different districts in the same metropolis. This common fact in social 



settings, namely hierarchical data structures,6 violates one core assumption of 

traditional statistical methods: independence of observation, because knowing one 

person’s attitude towards a social phenomenon in a district tells us something about 

the other people’s attitudes in the same district. Traditional statistical methods 

employed in personality and social psychology, e.g., ordinary least squares, usually 

focus on a single-level analysis (e.g., either the individual or group-level) and 

overlook the nested/hierarchical data structure, which often results in mistaken 

analysis of the question under consideration (for a more comprehensive discussion of 

the shortcomings of the traditional statistical methods, see Nezlek 2001, 2008; 

Raudenbush and Bryk 2002; Christ et al. 2012; West et al. 2015). 

As Fang (2019) has pointed out, the mistake of traditional statistical methods 

typically stems from two ways of accommodating hierarchical data structures: 

aggregation and disaggregation. On the one hand, one can take an aggregation 

strategy when encountering hierarchical data structures, namely, we base our analysis 

solely at the group-level. This can be done by, e.g., taking the means of individuals 

within a group as a group-level variable and then comparing the group means across 

different groups. In doing so, the subsequent analysis can be conducted at the group-

                                                             

6 A date set can be hierarchical in three different ways: nested/clustered data, 

repeated-measures data and longitudinal data. A nested data set is one that the units of 

analysis are nested within clusters of units. This essay concentrates on the nested data 

type; for other types see West et al. (2015, 9-15). 



level. However, this move is problematic, because it leads one to interpret the 

relationships established between variables at the group-level as relationships between 

variables at the individual-level (Nezlek 2008, 843; also see Luke 2004). The problem 

here is that analysis of this sort is unable to properly capture possible within-group 

variability, and thus unable to make precise prediction about each individual.  

On the other hand, one can take an alternative strategy, disaggregation. Namely, 

we base our analysis solely at the individual-level. This can be done, e.g., by pooling 

all group-level variability into a single error term in the model. This move is also 

problematic, however, because individuals within the same group tend to have 

correlated errors, which violates the independence assumption. Worse still, this move 

usually leads one to reduce all the group-level characteristics to the individual-level 

and thereby misleadingly interprets relationships established at the individual-level as 

relationships at the group-level (Nezlek 2008, 843). In other words, features such as 

group size idiosyncratic to each group and affecting the relationships between 

variables at the individual-level are simply ignored.  

Social psychologists Wagner et al. (2006)’s study of the relationship between the 

percentage of minorities in an area and majority members’ attitudes towards them 

illustrates the points made above. They found that with the same data set at hand, 

shifting the level of analysis from one to another would result in contradictory results. 

For example, if they focused on a lower-level of analysis, e.g., different districts 

within a nation, it would turn out that a higher percentage of minorities is associated 

with more positive intergroup attitudes. By contrast, if they shifted their focus to a 



higher-level of analysis, e.g., different nations, it would turn out that a higher 

percentage of minorities is associated with more negative intergroup attitudes.  

However, in addition to violating the independence of observation assumption 

and mistakenly interpreting relationships established at one level as relationships at 

another, there are other pressing issues for a single-level analysis that Fang (2019) 

does not discuss. The first one is related with random errors, as briefly mentioned 

above. In traditional single-level analysis such as ordinary least squares regression, 

random errors are assumed to be independent (and normally distributed). When the 

data set involves hierarchical structures, however, the independence assumption of 

residuals is also violated. This is because “the individual-level residuals are dependent 

within each unit because they are common to every individual within that unit” (Heck 

and Thomas 2015, 30).  This has implications for other aspects of modeling building, 

e.g., intercepts and slopes, as will be shown in the next section.  

The second is related with underestimated standard errors. Recall that people 

living in the same district tend to be more similar to one another in important features, 

e.g., social attitudes, than people from different districts. Technically put, this entails 

that “the mean correlation of variables measured for persons of one group is higher 

than the average correlation between variables measured in individuals from different 

groups” (Christ et al. 2012, 244). In other words, the nested data structure usually 

generates correlated errors. Therefore, a single-level analysis, due to the failure of 

taking into account these correlated errors, usually obtains estimates of standard errors 

that are smaller than they should be. Moreover, the effect of obtaining underestimated 



standard errors carries over to hypothesis test, for the latter relies on the former (Heck 

and Thomas 2015, 30).7 

Given these challenging problems facing the single-level analysis framework, 

one option is to find ways to fix the framework. However, many such attempts have 

turned out to be unsatisfactory since they usually engender other more recalcitrant 

problems (Luke 2004, 7; see also Nezlek 2008; Heck and Thomas 2015). A different 

strategy, as has been taken by mainstream psychologists, is to put the single-level 

analysis strategy aside and adopt the new emerging multilevel modeling framework. 

The next section will briefly describe this new strategy using cases from psychology.  

 

3. Multilevel Linear Modeling in Psychology: A Brief Introduction 

 

Thanks to the innovations in statistical analysis during the last three decades, 

psychologists now are able to deal with situations with hierarchical data structures 

using multilevel linear models. A multilevel linear model, also called a mixed-effects 

model, has a mix of random and fixed effects (these terms will be explained below). 

The difference between a mixed-effects model and a fixed-effects model relies on the 

fact that the former attempts to capture random or stochastic variability in the data 

arising from different sources, e.g., people and/or the districts they live in, while the 

                                                             

7 More specifically, this is because the hypothesis test relies on the ratio of a 

parameter to its standard error.  



latter does not do so. For example, in mixed-effects modeling, e.g., different social 

contexts can have different effects on how one person’s personality impacts her social 

behavior. As a result, the effects of social context are treated as random across 

different contexts in a mixed-effects model, whereas in a fixed-effects model the 

effects of social context are treated as fixed, namely, people’s personality impacts 

their social behaviors in the same way across various distinct contexts.  

To capture this kind of random or stochastic variability in the data, a multilevel 

linear model must simultaneously incorporate multiple levels of analyses. To show 

this, consider an example drawn from personality and social psychology research. 

Kuppens et al. (2008) attempted to explore the relationship between the frequency of 

positive and negative emotions (𝐹𝐸) people experienced and their level of life 

satisfaction (𝐿𝐿𝑆) in different nations. They hypothesized that different national 

cultures (𝑁𝐶), e.g., survival/self-expression and individualism/collectivism, might 

moderate the relationship differently. More specifically, they hypothesized that 

“individualism would moderate primarily the relation between life satisfaction and 

negative emotions and that survival/self-expression would primarily moderate the 

relation between positive emotions and life satisfaction” (2008, 72). To test these 

hypotheses, the first step is to build a multilevel linear model. This model has two 

levels of analysis: level-1 for people (𝑖 = 1, 2, … ,𝑁) who are clustered in level-2 

nations (𝑗 = 1,2, … , 𝑛). The relationship between the predictor variable 𝐹𝐸 and the 

dependent variable 𝐿𝐿𝑆 is described below: 

 



𝐿𝐿𝑆𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝐹𝐸𝑖𝑗 + 𝜀𝑖𝑗                                                               (1) 

 

In equation (1), 𝐿𝐿𝑆𝑖𝑗 stands for the level of life satisfaction for person 𝑖 in the 𝑗th 

nation;  𝛽0𝑗 denotes a level-1 intercept that indicates the mean of life satisfaction for 

the 𝑗th nation; 𝛽1𝑗 refers to a level-1 slope for the predictor 𝐹𝐸𝑖𝑗 that represents 

different effects of emotions on life satisfaction; and the residual 𝜀𝑖𝑗, an error term, 

represents the deviation of person 𝑖’s level of life satisfaction from the level-2 mean 

in the 𝑗th nation. 𝜀𝑖𝑗 is usually assumed to be normally distributed with a mean of zero 

and a constant level-1 variance, 𝜎2. At the first glance, equation (1) strikes us as a 

multiple regression model. Looking closely, however, the subscript 𝑗 unmasks the fact 

that there is a group-level component included in the model.  

Unlike traditional statistical methods where intercept and slope are routinely 

treated as fixed for people across different nations, here in equation (1) the intercept 

𝛽0𝑗 and slope 𝛽1𝑗 are treated as random, namely, they can vary across the level-2 units 

(i.e., nations) such that different nations can have their own distinct intercepts and 

slopes. In technical terms, this means that we can treat 𝛽0𝑗 and 𝛽1𝑗 at level-1 as 

dependent variables of level-2 predictors. This idea is expressed in the following two 

equations: 

 

𝛽0𝑗 = 𝛾00 + 𝛾01𝑁𝐶𝑗 + 𝑢0𝑗                                                               (2) 

 

and 



 

𝛽1𝑗 = 𝛾10 + 𝛾11𝑁𝐶𝑗 + 𝑢1𝑗                                                                (3) 

 

In equations (2), 𝛽0𝑗 denotes the level-1 intercept in level-2 unit 𝑗, i.e., unit 𝑗’s own 

intercept; 𝛾00 stands for the average intercept across the level-2 units, controlling for 

the level-2 predictor, 𝑁𝐶𝑗 (i.e., national cultures); 𝛾01 the effect (slope) of the level-2 

predictor, 𝑁𝐶𝑗; and 𝑢0𝑗 is the error for unit 𝑗. In equations (2), 𝛽1𝑗 denotes the level-1 

slope in level-2 unit 𝑗, i.e., unit 𝑗’s own slope; 𝛾10 the average slope across the level-2 

units, controlling for the level-2 predictor, 𝑁𝐶𝑗; 𝛾11 is the effect of the level-2 

predictor, 𝑁𝐶𝑗; and 𝑢1𝑗 the error for unit 𝑗.  

We have seen in equations (2) and (3) “how each of the level-1 parameters are 

functions of level-2 predictors and variability” (Luke 2004, 10). By way of including 

one level-2 predictor into the model (plus its associated error terms), these equations 

are able to capture the variations in the intercepts and slopes that traditional single-

level analysis frameworks cannot capture. This treatment is grounded upon the 

recognition that higher-level features such as national cultures may mediate the lower-

level relationship between, e.g., 𝐹𝐸 and 𝐿𝐿𝑆. In other words, “the magnitude of a 

relationship observed within groups is dependent on contextual or organizational 

features defined by higher-level units” (Heck and Thomas 2015, 43). The higher-

level’s influence on the lower-level relationship is termed a cross-level interaction, 

defined as “the potential effects variables at one level of a data hierarchy have on 

relationships at another level” (Ibid., 42).  



Substituting the level-2 components, i.e., equations (2) and (3), of the model into 

the level-1 equation (1) yields the following combined equation: 

 

𝐿𝐿𝑆𝑖𝑗 = [𝛾00 + 𝛾10𝐹𝐸𝑖𝑗 + 𝛾01𝑁𝐶𝑗 + 𝛾11𝐹𝐸𝑖𝑗𝑁𝐶𝑗] + [𝑢1𝑗𝐹𝐸𝑖𝑗 + 𝑢0𝑗 + 𝜀𝑖𝑗]        (4) 

 

Equation (4) looks a bit complex, but it is simply composed of two constituents: the 

fixed-effects constituent included in the left square bracket, and the random-effects 

constituent included in the right. It now becomes clear why it is called a mixed-effects 

model—simply because the model is a mix of a fixed-effects part and a random-

effects part. One term in the equation deserves special attention: 𝛾11𝐹𝐸𝑖𝑗𝑁𝐶𝑗, 

referring to a cross-level interaction between level-1 and level-2 variables, as defined 

above.  

This model has a couple of parameters to estimate (four fixed effects in the left 

square bracket and three random effects in the right). To test this model, Kuppens et 

al. (2008) examined a data set on the relationship between 𝐹𝐸 and 𝐿𝐿𝑆 provided by 

the International College Survey 2001. This data set features a hierarchical/nested 

nature for it involved 8,557 participants coming from 46 different nations. Using 

multilevel linear modeling techniques as described above, Kuppens and colleagues 

(2008) were able to conclude that the modeling results unambiguously confirmed 

their expectations: 

 

“Only individualism moderated the relation between negative emotions and life 



satisfaction: The more a national culture stresses individualistic values, the more 

adverse is the impact of negative emotions on life satisfaction. With respect to 

positive emotions, only survival/self-expression moderated their relation to 

satisfaction with life: The more a nation stresses self-expression values, the 

stronger the impact of positive emotions on the life satisfaction of its inhabitants.” 

(2008, 72) 

 

This example has illustrated the general point that situations involving hierarchical 

data structures routinely call for hierarchical modeling treatments. Without such a 

kind of treatment, variations across groups might simply go unnoticed or dismissed, 

leading to those remarkable problems pointed out in Section 2. This hierarchical 

modeling practice has important implications for the philosophical debate over 

reductionism versus anti-reductionism, for it challenges the core championed by many 

reductionists in the philosophy of psychology. 

 

4. Discussion: Why Explanatory Reductionism Is Questionable 

 

Fang (2019) has convincingly demonstrated that an explanation sometimes must 

appeal to both the lower-level and higher-level features in order to satisfactorily 

explain a phenomenon of interest; the lower-level alone is not always sufficient to 

explain. However, though Fang (2019)’s idea is very general such that it can be 

applied to many branches of science where the multilevel modeling practice is taking 



place, he does not show how that practice also poses a threat to the reductionist 

position in philosophy of psychology in particular. So, to fill in that gap, I will further 

argue in what follows that, first, to explain a psychological phenomenon of interest 

we sometimes also must appeal to both the lower-level and the higher-level features, 

and second, more seriously, the higher-level features of an explanation sometimes can 

contribute even more to explaining a psychological phenomenon of interest than their 

lower-level counterparts. Note that the first argument is an extension of Fang 

(2019)’s, but the second is brand-new and offers further support to Fang (2019). 

Finally, I will deal with one potential problem that any regression analysis—including 

the multilevel modeling framework—must face: the multi-collinearity problem. 

 

4.1. Multiple levels are required  

 

Philosophers such as John Bickle (2003) believe that psychological phenomena like 

attention can be simply explained at the neural level. What they assume is that a 

single-level (usually a lower-level) analysis is sufficient to explain a psychological 

phenomenon of interest. However, as pointed out in Section 2, while it might be true 

that the occurrence of a psychological phenomenon has its neural underpinnings, a 

single-level strategy invoking only neural factors may fail to explain the phenomenon 

when the phenomenon involves a hierarchical data structure; rather, to explain a 

phenomenon of interest, multiple levels are required. Forcefully reducing all relevant 

levels of analyses to a single-level (e.g., neural) may incur the various serious 



problems discussed in Section 2.  

To look closely at how reducing all relevant levels of analyses to a single-level 

might induce severe problems, and to see how multiple levels are required to explain 

a phenomenon of interest when a hierarchical data structure is present, consider an 

example from personality and social psychology. Many people used to believe that 

children’s innate differences in ability to acquire language accounted for their 

differences in language development. Naturally, this supposition encouraged a single-

level analysis strategy where children’s innate differences in ability to acquire 

language, as represented by their parents’ scores on standardized vocabulary tests, 

were treated as the predictor variable while children’s differences in language 

development as the dependent variable. However, heritability studies showed that 

children’s innate differences can only explain 10-20% of the variance in children’s 

scores on the same tests as their parents did (Raudenbush and Bryk 2002, 8). This 

means that there must be some missing factors that could potentially account for the 

rest of the variance in the children’s scores. To capture the missing variance, an 

alternative multilevel linear model was suggested (Huttenlocher et al. 1991), which 

incorporated another level of analysis that is related to children’s exposure to 

language during infancy. Interestingly, it turned out that exposure to language played 

a much more significant role in children’s language development than initially 

thought, which can account for most of the variance in the children’s scores.  

This example, plus the one discussed in the last section, have clearly 

demonstrated that multiple levels are required to account for a phenomenon of interest 



when the phenomenon involves a hierarchical data structure. Some might point out 

that the higher-level factors in each example do account for a large proportion of the 

variance, and therefore a single-level analysis strategy invoking only the higher-level 

might be not so bad at explaining at all. However, remember how we know the fact 

that the higher-level factors account for most of the variance; we know this only when 

we have already built a multilevel model that properly decomposes the variance into 

different components. Without building such a multilevel model, it even makes no 

sense to talk about the proportion of variance. Moreover, it is important to note that 

what a reductionist typically aims at is not an explanation invoking only the higher-

level factors, but rather an explanation resorting exclusively to the lower-level factors 

(we will return to this point in the next section).  

Before going to the next section, let us consider another possible objection. One 

might point out that the children’s language development example does not directly 

challenge Bickle’s proposal, for the example does not invoke anything like neurons. 

Bickle’s proposal concerns whether a psychological phenomenon can be explained 

solely at the neural level whereas our example concerns whether children’s language 

development can be fully explained by the children’s innate ability. They are talking 

past each other. Hence, as the argument goes, it remains open whether we can find 

phenomena that can be exclusively explained at the neural level.8 Nevertheless, 

although the language development example may only hint at the possible limitations 

                                                             

8 I thank Paul Roth for letting me notice this potential line of objection.  



of Bickle’s proposal, there is evidence showing directly that neuroscientific research 

is also vulnerable to the nested data structure problem so that multilevel models are 

better preferred when the date set is nested (Lazic 2010; Aarts et al. 2014; Aarts et al. 

2015). Aarts and colleagues, after surveying 314 research articles published in 

prestigious journals Science, Nature, Cell, Nature Neuroscience and Neuron in 2012 

and the first six months of 2013, obtain the result that at least 53% of these articles 

included nested data (Aarts et al. 2014).  

To illustrate how the nested nature of data affects neuroscientists’ choice of 

analytic strategies, consider an example discussed by neuroscientists Aarts et al. 

(2015). We might be interested in investigating the differences in the number of 

vesicles in presynaptic boutons between wild type (WT) and knock-out (KO) mice, 

since, suppose, the differences may explain some observed differences in mice’s 

behaviors. Because each neuron has a number of presynaptic boutons, measuring the 

number of vesicles in the set of boutons of each neuron leads to multiple 

measurements within each neuron. All the measurements from the same neuron are 

assumed to be obtained from the same environmental condition (e.g., the same 

genotype), though the environmental conditions may vary from neuron to neuron. 

This means that the number of vesicles in the set of boutons within the same neuron 

may be more similar than that from different neurons (e.g., boutons within the same 

neuron may have the same number of vesicles while boutons from different neurons 

may have different numbers of vesicles). Hence, the measurements/observations 

within each neuron are not independent. In other words, the measurements are nested 



within neurons, resulting in the hierarchical data structure in which the number of 

vesicles within each bouton constitutes the level-1 variable while the neuron 

constitutes the level-2 variable. The scenario can become even more complicated 

when the neurons themselves are situated within varying subcellular, cellular or tissue 

environmental conditions (of the same animal), where a still higher-level clustering 

variable (i.e., the level-3) representing these varying environmental conditions might 

be introduced. Examples of this latter situation can be easily found in clinical and 

preclinical neuroscience (Raudenbush et al. 2000; Lazic and Essioux 2013). 

As Aarts et al. (2015) claim, settings like these are very common in 

neuroscience, and any single-level strategy that overlooks this nested data structure 

may fall prey to committing all those problems discussed in Section 2. Therefore, the 

moral obtained from these examples is that, contra Bickle, explaining higher-level 

(e.g., psychological) phenomena using resources solely from the molecular (or 

neuronal) level is not always feasible due to the common nested data structure. 

Rather, we usually have to appeal to both the lower-level and higher-level features to 

explain a phenomenon of interest. Notice that in the children’s language development 

example discussed above, the higher-level features explain a larger proportion of the 

variance in the children’s scores—this leads us to the next argument below. 

 

4.2. Higher-level features contribute more 

 

For a reductionist, higher-level features are something to be reduced rather than 



something to be sought after. Correspondingly, for them, lower-level features are 

always better than their higher-level rivals with respect to explaining a phenomenon 

of interest. However, our case study in Section 3 has shown that all levels of analyses 

are equally important in dealing with situations with hierarchical data structures. 

There is no point to claim which level is more important. Nevertheless, there might be 

a sense in which one can reasonably claim, contrary to a reductionist’ expectation, that 

higher-level features sometimes do play a much more important role in explaining a 

phenomenon of interest. This, again, relates to the decomposition of variance. 

To see this, consider a research conducted by Bryk and Raudenbush (1988). 

They collected a longitudinal data set from 618 students distributed over 86 schools,9 

and repeatedly measured each student’s mathematics achievement on five different 

occasions. They thus built a three-level linear model to explain children’s 

mathematics achievement at school, with the first being the occasion-level, the second 

being the student-level and the third the school-level.  This multilevel analysis 

strategy had the advantage of decomposing the variations in student’s mathematics 

achievement into within-school and between-school components. With the aid of this 

strategy, they found that 83% of the variance in student’s mathematics achievement 

was due to between-school effects. In other words, the variance was largely stemmed 

from the higher-level rather than the lower-level, and thus the variations in student’s 

                                                             

9 A longitudinal data set is obtained in such a way that “subjects are measured 

repeatedly over time or under different occasions” (West et al. 2015, 1). 



mathematics achievement were largely accounted for by the higher-level features.  

One might object that this example merely shows that higher-level features 

sometimes can contribute more to accounting for the variance in a target phenomenon. 

So, this leaves room for the possibility that at other times lower-level features might 

contribute more. Nonetheless, even though this might be true, it does not weaken my 

argument. First, remember how we can determine which level of features is more 

important in the first place. As pointed out in Section 4.1, we know which level of 

features contributes more to accounting for the variance only when we have already 

built a multilevel model. So, no matter how important the lower-level features turn 

out to be, in order to know which level is explanatorily more important a multilevel 

model must be in place from the very beginning. Second, notice that a reductionist 

position is not as weak as something that lower-level features are sometimes more 

important, but rather that lower-level features are always more important. The 

reductionist aims high, to be sure. That is why philosophers such as John Bickle aim 

for a non-negotiable ‘ruthless’ reduction of psychological phenomena to molecular 

neuroscience. Yet, if what we have said about the multilevel modeling practice is 

right, then it has at least demonstrated that the reductionist’s dream may turn sour, for 

higher-level features sometimes can contribute even more to explaining a 

phenomenon of interest, even though lower-level features also play a role in that 

explanation. Therefore, unless the reductionist is ready to give in and opt for a much 

weaker position, the example still constitutes an effective objection.  

Thus, we have shown that, against the reductionist’s expectation, higher-level 



features sometimes can even contribute more to explaining a phenomenon of interest. 

This requires us to take a pluralist stance—rather than a somewhat monist viewpoint 

favoring a particular level of analysis—towards scientific explanation, a stance that is 

at least able to accommodate the fact that higher-level features can sometimes even 

more important than their lower-level counterparts in an explanation.  

 

4.3. The multi-collinearity problem10 

 

The multi-collinearity problem occurs when many (i.e., often more than two) 

independent variables in a regression model are correlated. This is problematic 

because, by designing a regression analysis, we only want to establish the dependence 

relationship between the independent variables and the dependent variable, and 

therefore to isolate each independent variable’s influence on the dependent variable. 

When this problem arises, changes in one independent variable in the model will 

always be correlated with changes in the other independent variables, thus rendering it 

impossible or at least very difficult to independently estimate the relationship between 

each independent variable and the dependent variable. Hence, the detrimental impact 

of multi-collinearity carries over to coefficient estimates, their associated standard 

errors, as well as variance components.11 

                                                             

10 I thank one anonymous referee for helping me notice this problem. 

11 For a detailed discussion of these effects on a hierarchical linear model, see Shieh 



Though this is definitely a serious problem, it does not follow that it can 

undermine what I have said about the multilevel modeling practice, nor can it weaken 

the philosophical implications for the reductionist position in philosophy of 

psychology. First of all, the problem of multi-collinearity is so general and prevalent 

that any regression analysis must face it, be it a single-level analysis or a multilevel 

analysis (Bingham and Fry, 2010, 174-177; also see Greene, 2012). So, it does not put 

any less threat to the traditional single-level analysis methods than to the multilevel 

modeling practice. If it is a problem, it is a problem for all of us.  

Second, the good news is that scientists have found ways to detect and at least 

partially resolve the problem. One very effective way to detect multi-collinearity, for 

example, is via the variance inflation factor (VIF), which can help pinpoint the 

correlation between independent variables as well as measure the strength of the 

correlation (for details of this method, see James et al. (2013, 101-102)). However, 

though it is relatively easy to detect multi-collinearity, to resolve it is usually not so 

straightforward. The most popular method to cope with this problem is called ridge 

regression, in which “the matrix of covariances among the independent variables is 

modified slightly in order to reduce the standard errors of the partial regression 

coefficients” (Allen 1997, 178). There are also other methods suggested in the 

literature, for instance, we re-collect data in such a way that the problem simply 

disappears, or re-define our research problem if we find it reasonable to do so, or re-

                                                             

and Fouladi (2003). 



specify the multiple regression model by deleting an independent variable from the 

model, etc. (Yu et al. 2015, 123). However, we must note that all these methods may 

only suit certain rather than all research purposes and that there is no one-size-fits-all 

method.12  

Therefore, multi-collinearity does not seem to cause an irremediable problem for 

the multilevel modeling practice, nor does it count as a challenge only to the 

multilevel modeling practice.  

 

5. Conclusion 

 

This article has demonstrated that the multilevel explanatory strategy, in coping with 

complex social settings with hierarchical data structures, constitutes serious 

challenges to the explanatory reductionist position advocated by many philosophers. 

It is so challenging because it flies in the face of the core of explanatory reductionism: 

to explain a given phenomenon of interest, an explanation that appeals exclusively to 

                                                             

12 Also note that scientists usually do not worry about the existence of multi-

collinearity but rather the degree or strength of multi-collinearity. Therefore, when the 

strength of multi-collinearity is relatively low (e.g., below 5 in terms of the variance 

inflation factor), when the research purpose is prediction rather than explanation, or 

when the correlated variables are not what scientists are interested in, multi-

collinearity only constitutes a benign problem that can be simply ignored.  



features at a lower-level is always better than an explanation that appeals to features at 

a higher-level. As a consequence, the multilevel modeling practice is in support of the 

explanatory autonomy of psychology, for it shows that higher-level features 

considered by psychology, e.g., personality and social features, are not necessarily 

reduced when explaining a psychological phenomenon of interest. In other words, the 

explanations in psychology are good enough to explain psychological phenomena 

such that there is no reason to reduce the psychological explanations to some other 

explanations; reducing such multilevel explanations can only cripple them rather than 

make them better. 
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