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When setting banks regulatory capital requirement based on their contribution to the overall risk of the banking system we need
to consider that the risk of the banking system as well as each banks risk contribution changes once bank equity capital gets
redistributed. Therefore the present paper provides a theoretical framework to manage the systemic risk of the banking system
in Nigeria based on macroprudential capital requirements, which requires banks to hold capital that is proportional to their
contribution to systemic risk. Using a sample of 10 Nigerian banks, we reallocate capital in the system based on two scenarios;
firstly in the situation where the system shocks do not exist in the system, we find that almost all banks appear to hold more capital;
secondly, we also consider the situation where the system shocks exist in the system; we find that almost all banks tend to hold little
capital on four risk allocationmechanisms.We further find that despite the heterogeneity in macroprudential capital requirements,
all risk allocation mechanisms bring a substantial decrease in the systemic risk. The risk allocation mechanism based on ΔCoVaR
decreases the average default probability the most. Our results suggest that financial stability can be substantially improved by
implementing macroprudential regulations for the banking system.

1. Introduction

The downfall of Lehman Brothers in mid-2008 unveils that
the modern financial system was extremely fragile. The
financial system deteriorated due to the distress and in some
cases failure of important institutions, leading to further
distress and the spread of shocks to the real economy [1].
The crisis emphasizes the need of identifying the underlying
factors that destabilize the financial institutions, which could
result in systemic risk.

Bisias et al. [2] have defined systemic risk as the risk
of disruption to financial services that is caused by an
impairment of all or parts of the financial system and has
the potential to have serious negative consequences on the
real economy. Systemic risk is created endogenously within
the banking system due to banks’ common exposures to
macroeconomic factors and propagated through interbank
connections (contagion); thus systemic risk encompasses two
aspects which are basic and contagious defaults.

To deal with the systemic risk better, the financial sta-
bility board has pinpointed the need for a macroprudential

approach to financial system analysis. Researchers like Galati
and Moessner [3], Cerutti et al. [4], Ebrahimi Kahou and
Lehar [5], Lehar (2005) [6], and Hanson et al. [7] argue that
macroprudential policy is aimed to mitigate the systemic
risk and reduce its aggregate cost for the real economy; thus
the bank regulation should be designed on macroprudential
perspective so as to downsize the amount of systemic risk.
On the other hand, Basel III requires a capital conservation
buffer in normal times consisting of a further amount of core
Tier 1 equity capital equal to 2.5% of risk weighted assets.This
provision is designed to ensure that banks build up capital
during normal times so that it cannot be affected when losses
are incurred during periods of financial distress. Therefore
it is much easier for banks to raise capital during normal
times than during periods of stressed market conditions. In
a situation where the capital conservation buffer has been
wholly or partially used up, banks are required to constrain
their dividends until the capital has been replenished. How-
ever, the bank regulators in some countries require banks to
hold more capital than the minimum specified by the Basel
Committee and some banks themselves have a target for the
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capital they will hold that is higher than that specified by their
bank supervisors.

In a banking system both the overall risk and each bank’s
contribution are endogenous and hinge on the banks’ equity
capital. This means that as banks hold more capital the prob-
ability of default through either direct losses or contagion is
less; therefore redistributing bank capital changes the banks’
default probabilities, overall risk of the banking system, and
each bank’s risk contribution. In this work we investigate
one regulatory mechanism that is macroprudential capital
requirements that require each bank to hold a buffer of equity
capital that corresponds to the banks contribution to the
overall risk of the system.We use the complex network theory
to construct the network model of banking system, where
each bank is regarded as a node and connected with others
through the interbank bilateral exposures. We investigate the
systemic risk of banking system by measuring bank’s basic
default caused by the insolvency of bank itself and contagious
default due to the interbank bilateral exposures.

We derive macroprudential capital requirements as a
fixed point using four risk allocation mechanisms: Compo-
nent and incremental value at risk [8], ΔCoVaR [9], and
a risk allocation mechanism based on Shapley value [10].
Among the mentioned approaches, CoVaR has the ability
to detect the risk on the system by individually systemically
important financial institutions, which are so interconnected
and large that they can cause negative risk spillover effects
on others and in addition to the smaller institutions that
are systemic when acting as part of a crowd. Moreover this
measure does not rely on contemporaneous pricemovements
and therefore can be used to anticipate systemic risk as it
captures institutional externalities such as “too big to fail,”
“too interconnected to fail,” and crowded trade positions.We
show that reallocation of bank capital in the system through
the new capital requirements can change the probability
of the bank to default and change total systemic risk. We
supplement themodel by applying the interbank clearing net-
work algorithm designed by Eisenberg and Noe [11]. Finally,
we compare the effects of macroprudential regulations for
banking system under four risk allocation mechanisms to
measure the stability of the banking system.

Our study considers Africa that is mostly excluded by
researchers in the study of systemic risk because its stock
market capitalization is low in the global banking assets. We
use the data of 10 major banks in Nigeria in terms of assets
value and test its validity even though the country was not
affected heavily by the financial crisis. Moreover this study is
intended to show if banks keep enough capital for the risks
they take and therefore we estimate macroprudential capital
requirements as a fixed point problem. Thus, supported by
both theoretical and empirical evidence in Nigerian banking
system, our studies analyze how macroprudential capital
requirements can reduce the level of systemic risk.

2. Literature Review

There has been awide heterogeneous discussion ofmeasuring
and evaluating contagion and systemic risk around the

globe; however there is a scant of literature reviews on
the macroprudential policy particularly regulatory capital
requirements onmanaging of systemic risk.Themain imped-
iment for a true implementation of macroprudential capital
requirements is that each bank’s capital requirement would
in part be driven by the actions of other banks, and therefore
a bank cannot exercise full control over its own capital
requirements.

Two types of the risk of contagion have been studied in
the literature. One is the network of banks investing in similar
types of assets, in which one bank failure can lead to a fall in
the price of its assets and then affect the solvency of other
banks that hold the same assets [12, 13]. The other is the risk
of contagion in the interbank market, which concerns the
liquidity risk of contagion at a form of interlocking exposure;
such exposure is very short term, mainly overnight. In this
study we focus on the interbank network as a contagion
channel of systemic risk, which is when some banks are not
able to honor their promises in the interbank market they
might push other banks into insolvency which might again
lead to defaults of other banks.

The literature on contagion starts with the work of
Allen and Gale [14] who give a model of risk propagation
through interbank exposure network. They consider that the
possibility for contagion depends on the precise structure of
the interbank market and show that a complete structure of
claims in which every bank has symmetric exposures to all
other banks is much more stable than an incomplete struc-
ture; thus for same shocks some structures would result in
contagion while others would not. Freixas et al. [15] consider
that for contagion to happen in a system with money-centre
banks where the institutions on the periphery are connected
to banks at the centre but not to each other depends on
the precise values of the models parameters. Researchers
regard financial networks as robust-yet-fragile which means
that they can absorb smaller shocks to the system but may
show contagion and cascade effects when exposed to a large
enough shock [16–18]. Allen and Gale [14] show that if
there is no liquidity shock, all banks can survive; however
in liquidity shock case, number of defaulting banks change
depending on network completeness. Upper [19] makes a
summary of contagion studies in the literature and shows
that as the shock some papers are considering individual
bank failures and some are using failure of group of banks.
Lubloy [20] grouped banks according to their FX exposures
and let all banks in a given category fail jointly. Elsinger et
al. [21] use loan registry data to model common shocks to
loan books and banks foreign exchange and stock market
exposures to model shocks from financial markets. Their
approach included bankruptcy costs in the simulation of the
Austrian banking system and show that the system is able
to absorb shocks well for small bankruptcy costs while large
dead weight losses can crash the banking system. Rogers and
Veraart [22] model clearing in the interbank networks with
bankruptcy costs and provide an analysis of those situations
in which banks have incentives to bail out distressed bank.
Moreover, Frisell et al. [23] use detailed Swedish data to
model common shocks; they use asset prices correlations to
get a covariance matrix for the shock process. They show
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that contagion is much more common and reflected in the
Swedish banking system. Caccioli et al. [24] model common
shocks emanating from overlapping securities portfolios.
Their study reveals that, upon bank default, when the threat
of contagion looms, other banksmight be in weak position as
well making them more vulnerable to contagion. Gauthier et
al. [25] model loan losses of banks using detailed information
on banks’ loan books and common industry exposures and
follow an iterative procedure in which they compute each
bank’s risk contribution, adjust the bank’s capital level to
that risk contribution, and then recompute both systemic
risk and each bank’s risk contribution. Furfine [26] considers
the effect of liquidity in the contagion process in the case
where the largest lender in the federal funds market is
unable to lend, therefore forcing its counterparties of that
institution to look elsewhere for funds or reduce their own
lending.

Several studies have also examined the empirical features
of interbank networks in various countries such as Upper and
Worms [27] inGermany, van Lelyveld and Liedorp [28] in the
Netherlands, Wells [29] in the UK, andMistrulli [30] in Italy.
These studies have revealed the heterogeneity of interbank
network and are systematically surveyed in [19].

A number of studies have examined the dynamic model
of network structure such as Georg [31] who developed a
dynamic model of a banking system that can be used to
analyze the impact of the interbank network structure on
financial stability in way that when depositors decide on
deposit investment via a random walk process, banks pay
their maturing loans depending on their liquidity position.
Lux [32] examined the dynamic model of interbank credit
relationships. He assumed that banks initially choose poten-
tial trading partners randomly but form preferential relation-
ships via an elementary reinforcement learning algorithm.
The dynamic evolution of the system showed a formation
of a core-periphery structure with mainly the largest banks
assuming the roles ofmoney centre banksmediating between
the liquidity needs of many smaller banks, On the other
hand Xu et al. [33] developed a dynamic network model
based on agent behavior to explain the formationmechanism
of interbank market and found that the interbank network
structure keeps dynamic stability in the network evolution
process, while Bluhm et al. [34] built a dynamic banking sys-
temwith banks optimizing decisions andmarket adjustment;
they found that higher liquidity requirements result in more
concentrated network and lower systemic risk.

In our study we believe that deriving macroprudential
capital requirements should take into account the dynamic
evolution of the banking system when measuring the sys-
temic risk of the banking system. Therefore, we extend the
Eisenberg-Noe framework [11] to a dynamic multiperiod.
Besides, the total asset value and equity value of the bank
change dynamically, which can be estimated from real-
world data instead of theoretical assumption. Furthermore,
for shock scenarios, we add a system shock artificially in
the system to observe the time evolution of the banking
system; hence measure the systemic risk and then adjust
macroprudential capital requirements according to each
bank contributing to the whole system risk. We take into

account two scenarios, namely, where the system shocks exist
and do not exist in the banking system. For shock scenarios,
we measure the systemic risk by checking whether a bank
system can withstand certain strength of system shocks.
Some banks may be bankrupt at a certain time point due
to this artificially added system shock; therefore both the
structure and the state of the bank change dynamically. We
measure the systemic risk by recording the number of banks
which undergo bankruptcy during the time. If the strength
of the system shock is fixed, then a bank system with more
banks which undergo bankrupt during the whole time course
of its evolution is believed to suffer more systemic risk.
Moreover we highlight that changing capital requirements
change the risk in the banking system and that macropru-
dential capital requirements have to be seen as a fixed point
problem.

The rest of the paper is organized as follows. Section 3
provides the network model of the banking system which
encompasses methodology for estimating the matrix of bilat-
eral exposures, the process of estimating the time evolution
of balance sheet in the banking system, the methods of
estimating the time evolution of bank’s default, and the
methodology of calculating bank’s macroprudential capital.
Section 4 provides the macroprudential capital requirements
under different risk allocation mechanisms, Section 5 pro-
vides data used, Section 6 presents the results, and lastly
Section 7 provides the concluding remark.

3. The Network Model of Banking System

We use the complex network theory to construct the network
model of banking system, where each bank is regarded as
a node and connected with others through the interbank
bilateral exposures. We investigate the systemic risk of
banking system by measuring bank’s basic default caused
by the insolvency of bank itself and contagious default due
to the interbank bilateral exposures. We show explicitly
that reallocation of bank capital in the system through
the new capital requirements can change the probability of
the bank to default and change total systemic risk. Thus
we set the macroprudential capital requirements as a fixed
problem and use four risk allocationmechanisms to compute
bank’s macroprudential capital requirements. We also com-
pare the effects of macroprudential regulations for banking
system under four risk allocation mechanisms which help
us to measure the stability of the banking system. Figure 1
illustrates the underlying theoretical frameworks in this
study.

3.1. Estimation of Bilateral Exposure Matrix. In this section,
we introduce the methodology used in [19] for estimating the
bilateral exposure matrix of banking system. The interbank
exposures cannot be fully observed due to the fact that some
bank’s information is not transparent; therefore, we estimate
the interbank bilateral exposure matrix by minimizing the
uncertainty of bank’s lending information based on the initial
total interbank assets data 𝑎𝑖 and total interbank liabilities
data 𝑏𝑖 in the balance sheet. The lending relationship in
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Figure 1: The theoretical framework.

the interbank market is represented by (N × N) nominal
interbank matrix𝑋:
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𝑏𝑁∑

𝑖
𝑎1 ⋅ ⋅ ⋅ 𝑎𝑗 ⋅ ⋅ ⋅ 𝑎𝑁

(1)

where 𝑥𝑖𝑗 represents the outstanding loans of bank 𝑖 to bank 𝑗,
the sum of each row 𝑏𝑖 represents the total interbank liability
of bank 𝑖, and the sum of each column 𝑎𝑗 represents the total
interbank assets of bank 𝑗. It is donated as

𝑏𝑖 = ∑
𝑗
𝑥𝑖𝑗,

𝑎𝑗 = ∑
𝑖
𝑥𝑖𝑗. (2)

We minimize the uncertainty of bank’s lending information
by standardizing ∑𝑗 𝑎𝑗 = ∑𝑖 𝑏𝑖 = 1, to get the results 𝑥𝑖𝑗 =𝑎𝑗∗𝑏𝑖, which represents the standardized lending relationship
of bank 𝑖 to bank 𝑗. We know that the diagonal elements of𝑋
have to be zero; thuswemake newdefinitions for the elements𝑥𝑖𝑗 in the interbank matrix𝑋 as follows:

𝑥0𝑖𝑗 = {{{
0, 𝑖 = 𝑗,
𝑎𝑗𝑏𝑖, otherwise. (3)

However, 𝑋0 = (𝑥0𝑖𝑗) violates the summing constraints
expressed in (2). The standard way in the literature to handle
this problem is to optimize the elements in the interbank
matrix according to (4):

min
𝑁∑
𝑖=1

𝑁∑
𝑗=1
𝑥𝑖𝑗 ln(𝑥𝑖𝑗𝑥0𝑖𝑗)

𝑁∑
𝑗=1
𝑥𝑖𝑗 = 𝑏𝑖, 𝑁∑

𝑖=1
𝑥𝑖𝑗 = 𝑎𝑗, 𝑥𝑖𝑗 ≥ 0.

(4)
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3.1.1. The Algorithm of Estimating the Bilateral
Exposures Matrix

Step 1. Start the iteration for the elements in the interbank
matrix𝑋, 𝑥0𝑖𝑗 = 𝑎𝑗𝑏𝑖 if 𝑖 ̸= 𝑗; otherwise 𝑥0𝑖𝑗 = 0.
Step 2. Take the rows constraint and set

𝑥1𝑖𝑗 = 𝑥0𝑖𝑗𝑏𝑖∑𝑁𝑖=1∑𝑁𝑗=1 (𝑏𝑖 ∗ 𝑎𝑗) , 𝑖 ∈ 1, 2, . . . , 𝑁. (5)

Step 3. Take the columns constraint and set

𝑥2𝑖𝑗 = 𝑥1𝑖𝑗𝑎𝑗∑𝑁𝑖=1∑𝑁𝑗=1 (𝑏𝑖 ∗ 𝑎𝑗) , 𝑗 ∈ 1, 2, . . . , 𝑁. (6)

The𝐾 iteration runs across the rows and columns constraints
show that

𝑥𝐾𝑖𝑗 = 𝑥𝐾−1𝑖𝑗 𝑏𝑖∑𝑁𝑖=1∑𝑁𝑗=1 (𝑏𝑖 ∗ 𝑎𝑗) , 𝑖 ∈ 1, 2, . . . , 𝑁,

𝑥𝐾+1𝑖𝑗 = 𝑥𝐾𝑖𝑗𝑎𝑗∑𝑁𝑖=1∑𝑁𝑗=1 (𝑏𝑖 ∗ 𝑎𝑗) , 𝑗 ∈ 1, 2, . . . , 𝑁.
(7)

The iteration is stopped when 𝑥𝐾+1𝑖𝑗 − 𝑥𝐾−1𝑖𝑗 < 𝜀, where 𝜀 > 0.
3.2. Estimation of the Time Evolution of 𝑉𝑖. The asset value of
bank is not daily observable, but we can obtain the data at the
end of year from the balance sheet. The daily data of equity
prices can be collected from the stock market on daily basis.
Following Merton [35] we interpret equity as a call option
on bank assets; thus we can estimate the time evolution of
asset value by the stochastic model and maximum likelihood
function based on the time series data of bank’s equity prices.
We assume that the asset value𝑉𝑖 of bank 𝑖 follows a geometric
Brownian motion with drift 𝑢𝑖 and volatility 𝜎𝑖:

𝑑𝑉𝑖 = 𝑢𝑖𝑉𝑖𝑑𝑡 + 𝜎𝑖𝑉𝑖𝑑𝑍. (8)

The equity value of bank 𝑖 𝑆𝑡(𝑡) is given by the Black-Scholes
model as follows:

𝑆𝑡 (𝑡) = 𝑉𝑖 (𝑡) 𝜙 (𝑑𝑡) − 𝐷𝑖 (𝑡) 𝜙 (𝑑𝑡 − 𝜎𝑖√𝑇) . (9)

Then equity 𝑆𝑡(𝑡) can be seen as a call option on the assets of
bank 𝑖 with a strike price equal to the future notional value
of bank 𝑖’s debt𝐷𝑖(𝑡), which is assumed to have a maturity of𝑇. 𝜙(∙) is the standard normal distribution function, 𝑇 = 365
days, 𝑡 represents the evolution of days, and

𝑑𝑡 = ln (𝑉𝑖 (𝑡) /𝐷𝑖 (𝑡)) + ((1/2) 𝜎2𝑖 ) 𝑇𝜎𝑖√𝑇 . (10)

By using the time series of equity prices {𝑆𝑖(0),𝑆𝑖(1), . . . , 𝑆𝑖(𝑇)} from the stock market, the face value of total
liabilities {𝐷𝑖(0), 𝐷𝑖(1), . . . , 𝐷𝑖(𝑇)}, where 𝐷𝑖(𝑡) = 𝐷𝑖(0)𝑒𝑟𝑡
from the balance sheet, the arbitrary initial value of 𝜇𝑖(0),𝜎𝑖(0), and the risk-free rate 𝑟 that is obtained from the Central
bank of Nigeria from 2008 to 2014, we can estimate the time
series of assets value {𝑉̂𝑖(1), 𝑉̂𝑖(2), . . . , 𝑉̂𝑖(𝑇)} according to (9).
Then we use the following maximization likelihood function
to estimate the parameters 󵱰𝑢𝑖 and 󵱰𝜎𝑖:
𝐿 (󵱰𝑢𝑖, 󵱰𝜎𝑖; 𝑉̂𝑖 (1) , 𝑉̂𝑖 (2) , . . . , 𝑉̂𝑖 (𝑇))
= −𝑇2 ln (2𝜋𝜎2𝑖 ℎ) − 𝑇2

𝑇∑
𝑘=1

(𝑅𝑖 (𝑘) − (𝑢𝑖 − 𝜎2𝑖 /2) ℎ)2𝜎2𝑖 ℎ
− 𝑇∑
𝑘=1

ln 𝑉̂𝑘,
(11)

where 𝑅𝑖(𝑘) = ln(𝑉̂𝑖(𝑡)/𝑉̂𝑖(𝑡 − 1)), ℎ = 1/365. In this case ℎ
represents business days instead of calendar days. According
to the stockmarket data source, ℎmay equal about 250, which
will be different at each year.

The estimated parameters are denoted as 󵱰𝑢𝑖, 󵱰𝜎𝑖 respec-
tively. We compare the estimated parameters 󵱰𝑢𝑖, 󵱰𝜎𝑖 with the
initial value 𝑢𝑖(0), 𝜎𝑖(0); if 󵱰𝑢𝑖, 󵱰𝜎𝑖 do not equal to 𝑢𝑖(0), 𝜎𝑖(0);
we replace the initial value 𝑢𝑖(0), 𝜎𝑖(0),𝑉𝑖(0) with 󵱰𝑢𝑖, 󵱰𝜎𝑖, 󵱰𝑉𝑖(0)
and then repeat the estimationmethod from (9), (10), and (11)
once again until the estimated parameters 󵱰𝑢𝑖, 󵱰𝜎𝑖 equal to 𝑢𝑖(0),𝜎𝑖(0). Accordingly we get the estimated parameters 𝑢𝑖 and 𝜎𝑖.
Then according to (12), we get the evolution of 𝑉𝑖(𝑡).

𝑉𝑖 (𝑡) = 𝑉𝑖 (0) 𝑒𝑢𝑖−(𝜎2𝑖 /2)𝑡ℎ+𝜎𝑖√𝑡ℎ∗𝑧𝑖(𝑡), (12)

where 𝑧𝑖(𝑡) obeys normal distribution (𝑁(0, 1)).
The above estimation method of 𝑉𝑖(𝑡) is the same as [6].
To test the stability of the bank network system, we add

a system shock to the bank system. If the banks withstand a
strong shock, then we say that the system is stable. If the bank
system collapses when a weak shock applies, then we say that
the bank system is unstable. Thus, we apply a medium shock
to count the number of bankswhich undergoes bankruptcy. If
the probabilities of the banks which undergo bankruptcy are
large for a medium shock, then the bank system is unstable.
The system shock is added to the banking system by replacing𝑧𝑖(𝑡) in (12) with (1 − 𝜉)𝑧𝑖(𝑡) + 𝜉 ∗ 𝜔(𝑡) where 𝜉 represents
the strength of the system shock and 𝜔(𝑡) is the system shock
which is the same for all banks. 𝜔(𝑡) follows the normal
distribution (𝑁(0, 1)), where 𝜉 = 0.1. Thus the evolution of𝑉𝑖(𝑡) can be estimated as follows:

𝑉𝑖 (𝑡) = 𝑉𝑖 (0) 𝑒𝑢𝑖−(𝜎2𝑖 /2)𝑡ℎ+𝜎𝑖√𝑡ℎ∗[(1−𝜉)𝑧𝑖(𝑡)+𝜉∗𝜔(𝑡)]. (13)

3.3. The Measures of Banks Defaults. In the present paper, we
consider the risk of bank defaults that are basic defaults and
contagious defaults. When bank 𝑖 is insolvent, we define it as
the basic default which satisfied

𝑉𝑖 (𝑡) − 𝐷𝑖 (𝑡) < 0, (14)
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where𝐷𝑖(𝑡) can be described as follows:

𝐷𝑖 (𝑡) = (𝑉𝑖 (0) − 𝐶𝑖 (0)) 𝑒𝑟𝑡. (15)

In (15), 𝑟 is risk-free rate. We set 𝐶𝑖(0) = 7% ∗ 𝑉𝑖(0), namely,(𝑉𝑖(0) − 𝐷𝑖(0))/𝑉𝑖(0) = 7%, where𝐷𝑖(0) = 𝑉𝑖(0) − 𝐶𝑖(0). The
7% is a capital adequacy ratio according to Basel III; therefore𝐶𝑖(0) is the initial capital of bank 𝑖.

If bank 𝑖 satisfies (14), bank 𝑖 occurs as basic default. The
losses come from 𝑉𝑖(𝑡) − 𝐷𝑖(𝑡). Due to the variable 𝑉𝑖(𝑡)
following random walk, it will fluctuate around the drift𝑢𝑖; however, 𝐷𝑖(𝑡) is a variable that is increasing with time.
Therefore, with the time step increasing, there must be some
banks default. Then through the interbank market, bank 𝑖
may cause the other banks default, which is the contagion

default.Here, we extend the clearing paymentmechanism [11]
to suit the calculation of the time evolution of the contagion
default. We define a newmatrixΠ ∈ [0, 1]𝑁×𝑁 to standardize
the total interbank liabilities:

Π𝑖𝑗 (𝑡) = {{{{{
𝑥𝑖𝑗 (𝑡)𝑏𝑖 (𝑡) 𝑏𝑖 (𝑡) > 0
0 otherwise, (16)

where 𝑏𝑖(𝑡) = ∑𝑗 𝑥𝑖𝑗(𝑡); this shows the total interbank
liabilities of bank 𝑖 at time step 𝑡. We also define a clearing
payment vector 𝑝∗(𝑡) that respects the limited liability of
banks and proportional sharing in case of default. It denotes
the total payments made by the banks under the clearing
mechanism defined as

𝑝∗𝑖 (𝑡) =
{{{{{{{{{{{{{{{{{{{{{

𝑏𝑖 (𝑡) 𝑁∑
𝑗=1
Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) ≥ 𝑏𝑖 (𝑡) ,

𝑁∑
𝑗=1
Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) 0 ≤ 𝑁∑

𝑗=1
Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) < 𝑏𝑖 (𝑡) ,

0 𝑁∑
𝑗=1
Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) < 0,

(17)

where 𝑒𝑖(𝑡) = 𝑉𝑖(𝑡) − 𝐷𝑖(𝑡). Here, we adopt the default
algorithm [11] to find a clearing payment vector. If bank 𝑖
cannot default according to (14), it may default when other
banks are not able to keep their promises; that is, contagious
default of bank 𝑖 occurs if

𝑁∑
𝑗=1
Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) − 𝑏𝑖 (𝑡) < 0. (18)

3.3.1.The Evolution of the Bilateral Exposures𝑋(𝑡+1), 𝑎𝑗(𝑡+1),
and 𝑏𝑖(𝑡 + 1). After calculating a clearing payment vector at
time step 𝑡, we can calculate the new matrix of 𝑋 at the time
step 𝑡 + 1. We should note that when bank 𝑖 defaults, bank 𝑖
can pay only a part of its liabilities to other banks.The ratio is
defined as follows:

𝜒𝑖 = ∑
𝑁
𝑗=1Π󸀠𝑖𝑗 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡)𝑏𝑖 (𝑡) . (19)

The total assets and liabilities of bank 𝑗 from time step 𝑡 + 1
to 𝑇 will be updated as follows:

𝑉𝑗 (𝑡 + 1 : 𝑇) = 𝑉𝑗 (𝑡) − 𝑥𝑗𝑖
𝐷𝑗 (𝑡 + 1 : 𝑇) = 𝐷𝑗 (𝑡) − 𝑥𝑗𝑖
𝑉𝑗 (𝑡 + 1 : 𝑇) = 𝑉𝑗 (𝑡) − (1 − 𝜒𝑖) 𝑥𝑖𝑗.

(20)

When bank 𝑖 defaults, we set 𝑥𝑖,𝑗(𝑡) = 0, 𝑥𝑗,𝑖(𝑡) = 0 and clear
out bank 𝑖 from the network bank system. Then, we need to
recalculate the bilateral exposures matrix 𝑋𝑡+1 according to

the algorithm in Section 3.1.1. Thus, the evolution of 𝑎𝑗(𝑡 + 1)
and 𝑏𝑖(𝑡 + 1) is described as

𝑎𝑗 (𝑡 + 1) = 𝑁∑
𝑖=1
𝑥𝑖,𝑗 (𝑡 + 1)

𝑏𝑖 (𝑡 + 1) = 𝑁∑
𝑗=1
𝑥𝑖,𝑗 (𝑡 + 1) .

(21)

Thus, we measure the stability of the banking system by
calculating the probability of bank’s default. The probability
of basic default of bank 𝑖 is calculated as the ratio of the times
of basic default of bank 𝑖 occurring and the total times of
the simulation. Similarly, the probability of the contagious
default of bank 𝑖 is calculated as the ratio of the times of
contagious default of bank 𝑖 occurring and the total times
of the simulation. The probability of the total default of
banking system is the sum of the basic defaults probability
and contagious defaults probability.

3.4.TheMeasure of Bank’s Macroprudential Capital. The core
algorithm of calculating bank’s macroprudential capital lies
in measuring bank’s losses, which is defined as

𝑙𝑖 (𝑡) = min( 𝑁∑
𝑗=1
Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) − 𝑏𝑖 (𝑡) , 0) . (22)

The dynamic evolution (time step 𝑡) of banking system is
iterated for test of times (test = 1, 2, 3, . . . ,𝑀); 𝑙𝑖,test(𝑡)
represents the loss of bank 𝑖 at every time of simulation.
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Figure 2: The algorithm flowchart of calculating macroprudential capital requirements.

Therefore, we get a 𝑁 × 𝑀 loss matrix of 𝑁 banks in 𝑀
times of simulation. The loss matrix under the given capital𝐶𝑖 = (𝐶1, 𝐶2, . . . , 𝐶𝑁) can be expressed as 𝑙(𝐶); then, we
use the risk allocation mechanism 𝑓(∙) to allocate systemic
risk to every bank, which is described as 𝑓𝑖(𝑙(𝐶)). Thus, the
macroprudential capital of bank 𝑖 is computed as

𝐶∗𝑖 = 𝑓𝑖 (𝑙 (𝐶∗𝑖 )) × ( 𝑁∑
𝑖=1
𝐶0𝑖)

𝑁∑
𝑖=1
𝑓𝑖 (𝑙 (𝐶)) = 1, 𝑓𝑖 (𝑙 (𝐶)) ≥ 0,

(23)

where𝐶0𝑖 is the initial capital of bank 𝑖;𝐶∗𝑖 is the redistributed
capital of bank 𝑖.The algorithmflowchart of calculating bank’s
macroprudential capital is shown in Figure 2.

4. Macroprudential Capital
Measures Underlying Four Risk
Allocation Mechanisms

Following Caccioli et al. [24] and Liao et al. [36], we use four
risk allocation mechanisms to calculate each bank’s macro-
prudential capital requirements, namely, Component VaR,
Incremental VaR, Shapley value, and ΔCoVaR. The methods
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for calculating bank’s macroprudential capital requirements
are summarized as follows.

4.1. Component VaR. The core of this allocation mechanism
is to reallocate the capital based on the contribution 𝛽 of each
bank’s loss 𝑙𝑖 to the total loss of banking system∑𝑛𝑖=1 𝑙𝑖(𝑙𝑝), and𝛽𝑖 = cov(𝑙𝑖, 𝑙𝑝)/𝜎2(𝑙𝑝). The macroprudential capital of bank 𝑖
under the Component VaR mechanism is given by

𝐶CVaR
𝑖 = 𝛽𝑖 𝑛∑

𝑖=1
𝐶0𝑖 . (24)

The change in capital under the Component VaRmechanism
is (𝐶CVaR
𝑖 − 𝐶0𝑖 )/𝐶0𝑖 .

4.2. Incremental VaR. The theme of this allocation procedure
is to reallocate the capital according to the change in the
overall risk due to the exclusion of a bank in the system.

Individual bank losses are simulated over ten thousand
scenarios and for each scenario we compute the 5% VaR of
the total losses 𝑙𝑝 in the system, denoted by VaR𝑃. Then, we
calculate the 5% VaR of total losses excluding bank 𝑖 denoted
by VaR−𝑖. Thus, the increment VaR of bank 𝑖 is calculated as

IVaR𝑖 = VaR𝑃 − VaR−𝑖. (25)

The macroprudential capital of bank 𝑖 under the increment
VaR mechanism is given by

𝐶IVaR
𝑖 = IVaR𝑖∑𝑛𝑖=1 IVaR𝑖

𝑛∑
𝑖=1
𝐶0𝑖 . (26)

The change in capital under the increment VaRmechanism is(𝐶IVaR
𝑖 − 𝐶0𝑖 )/𝐶0𝑖 .

4.3. Shapley Value EL. The Shapley value EL method is the
arithmetic average of 𝑛 times of simulation based on the
increment VaR mechanism.Thus, a new IVaR𝑖 is represented
as 𝜙𝑖 by the calculation of arithmetic average based on VaR𝑃
and VaR−𝑖.

Thus we compute the macroprudential capital require-
ments of bank 𝑖 under the Shapley value EL mechanism by

𝐶Shapley EL
𝑖 = 𝜙𝑖∑𝑛𝑖=1 𝜙𝑖

𝑛∑
𝑖=1
𝐶0𝑖 . (27)

The change in capital under the Shapley value ELmechanism
is (𝐶Shapley EL
𝑖 − 𝐶0𝑖 )/𝐶0𝑖 .

4.4. ΔCoVaR. We define CoVaR of bank 𝑖 as the total loss
of banking system conditional on bank 𝑖 realizing a loss
corresponding to its VaR. CoVaR𝑖 is described as

Pr (𝑙𝑝 < CoVaR𝑖 | 𝑙𝑖 ∈ [(1 − ℓ)VaR𝑖, (1 + ℓ)VaR𝑖])
= 0.5%, ℓ = 0.1. (28)

Here ΔCoVaR𝑖 is defined as the difference of CoVaR𝑖 and the
VaR of the total losses in the banking system conditional on
bank 𝑖making a loss at its median:

ΔCoVaR𝑖 = CoVaR𝑖 − (VaR𝑝 | 𝑙𝑖 = median (𝑙𝑖)) . (29)

The macroprudential capital of bank 𝑖 under the ΔCoVaR
mechanism is given by

𝐶ΔCoVaR𝑖 = ΔCoVaR𝑖∑𝑛𝑖=1 ΔCoVaR𝑖
𝑛∑
𝑖=1
𝐶0𝑖 . (30)

The change in capital under the ΔCoVaR mechanism is(𝐶ΔCoVaR𝑖 − 𝐶0𝑖 )/𝐶0𝑖 .
5. Data

In this paper, we use financial data collected from the African
markets website. The study involves 10 major public traded
commercial banks in Nigeria from 2008 to 2014. The sample
of 10 banks is selected based on banks with large assets
value, namely, Zenith International bank (1 3.3 trillion), FBN
Holdings (1 3.2 trillion), Guaranty bank (1 3.15 trillion),
United bank of Africa (1 2 trillion), Diamond bank (1
1.93 trillion), Access bank (1 1.835 trillion), Fidelity (1 1.19
trillion), Union bank of Nigeria (1 1.049 trillion), Skye bank
1 (1 trillion), and Sterling bank (1 841 billion) as of 2015
(https://www.relbanks.com).

6. Results

6.1. Changes in Capital Requirements. In this section we
present the changes in capital requirements to reach the fixed
point of the four capital allocation mechanism presented in
Section 4 in percent of actual observed capital requirements.
We use numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 to portray Access
bank, Diamond bank, FBNH, Fidelity bank, Guaranty bank,
Skye bank, Sterling bank,Union bank ofNigeria, United bank
of Africa, and Zenith International bank, respectively.We use
different risk allocation mechanisms to reallocate the current
capital in the system as shown in Section 4. Reallocation
of capital in the system through new capital requirements
changes a banks probability of default and systemic risk. In
the first scenario, we assume the casewhere the system shocks
do not exist in the system for the period of 2008-2009.

Table 1 presents the increase in capital as a share of
these banks’ risk weighted assets from the current observed
capital level 𝐶0𝑖 to macroprudential capital requirement 𝐶∗𝑖 .
The change is presented as a proportion of current observed
capital level 𝐶0𝑖 ; for example, (𝐶∗𝑖 − 𝐶0𝑖 )/𝐶0𝑖 .

Themethods of four risk allocationmechanisms are quite
different from each other. Since Shapley value is based on
incremental VaR, in Table 1, these two results are similar.
Themethod of the Component VaR calculates the correlation
between each bank’s losses and the total loss of banking
system. In Table 1, it seems the losses of bank 10 are not very
related to other 9 banks. The method of ΔCoVaR is related
to the total loss of banking system conditional on bank 𝑖

https://www.relbanks.com
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Table 1: Increase in capital as a share of banks’ risk weighted assets for macroprudential capital allocation mechanism in 2008.

Bank Component VaR Incremental VaR Shapley value EL ΔCOVAR
1 −0.224490152 0.075807121 0.079291353 −0.53067966
2 −0.224490152 −0.098024516 −0.108952535 1.278613545
3 −0.224490152 −0.093480509 −0.097516656 −0.413673209
4 −0.224490152 −0.162273193 −0.164247199 0.181725936
5 −0.224490152 −0.144122078 −0.144675929 1.185156475
6 −0.224490152 0.129450668 0.130866402 1.171263759
7 −0.224490152 −0.052641093 −0.050383221 1.862680122
8 −0.224490152 0.739933973 0.74625635 −0.329806275
9 1.205658115 −0.144056852 −0.144084074 −0.507137053
10 −0.224490152 −0.151642289 −0.151117088 −0.631962395

Table 2: Increase in capital as a share of banks’ risk weighted assets for macroprudential capital allocation mechanisms in 2009.

Bank Component VaR Incremental VaR Shapley value EL ΔCOVAR
1 −0.838983488 −0.321911 −0.277249974 0.339348356
2 −0.838983488 −0.324542322 −0.291759584 0.492986513
3 −0.838983488 0.037474798 0.026574758 −0.49003279
4 −0.838983488 −0.392470575 −0.377802565 0.792001406
5 −0.838983488 −0.318295374 −0.313198791 −0.10427448
6 −0.838983488 −0.324506098 −0.3050429 0.453956728
7 −0.838983488 −0.367389192 −0.345570211 3.392491614
8 −0.838983488 0.735790757 0.738495391 −0.18476422
9 −0.838983488 0.565740871 0.550344543 −0.0511749
10 4.219043349 −0.292376022 −0.31859484 −0.41648809

realizing a loss corresponding to its VaR, and the method is
more related to the median of each bank’s losses; therefore,
it may eliminate the effect of extreme value. Therefore, the
results ofΔCoVaR for ten banks inTable 1 seemmore uniform
than the method of Component VaR.

All risk allocation rules suggest that banks 3 and 10
hold more capital than their contribution to the overall risk
the system would require. The results are mixed for both
banks, under three out of four capital allocationsmechanisms
suggesting that banks 2, 4, 5, 7, and 9 hold more capital for
unexpected losses while bank 6 holds little capital. For bank 1
and 8 the results shows that two out of four capital allocation
mechanisms suggest that the bank holds little; the remaining
holds more capital.

In Table 2, all risk allocation rules suggest that bank 5
holds more capital than its contribution to the overall risk
the systemwould require.Three out of four capital allocations
mechanisms suggest that banks 1, 2, 4, 6, 7, and 10 hold more
capital. For banks 3, 8, and 9 the results show that two out
of four capital allocation mechanisms suggest that the bank
holds little, the remaining holds more capital.

We also examine the changes in the capital requirements
when the system shock exists in the system for the period
2008–2014. We use the same risk allocation mechanism to
compute the current capital in the system. Our results are
presented in Figure 3. Figure 3 portrays the changes of capital
expressed in percentage according tomacroprudential capital
requirements in situation where the system shock exists

in Nigerian banking system. We note that almost all risk
allocation rules suggest that almost all banks appear to be
undercapitalized because nearly all the changes are positive.

6.2. Probability of Bank Defaults and Macroprudential Capi-
tal Requirements. Macroprudential capital requirements can
serve as buffers against the risk created in the banking system.
To supplement our findings which are the core elements of
our study, we thus examine the extent in which macropru-
dential capital requirements reduce the average bank default
probability compared to the probability under Basel equal.
We use different risk allocation mechanisms to show the
individual bank default probabilities. Table 3 depicts the
differences in macroprudential capital requirements under
different risk mechanisms; almost all these allocations reduce
default probabilities compared to the benchmarks “Basel
equal approach.”

Table 3 depicts the individual bank default probabil-
ities under the Basel equal and macroprudential capital
requirements computed with four systemic risk allocation
mechanisms expressed in percent. Average shows the average
default probability. The table depicts that Skye bank, Guar-
anty bank, and Diamond bank are bit weaker banks in the
system as they have the highest total probabilities of basic and
contagious default as shown in Table 5; overall total default
probabilities range between 0.0081% and 0.1422%.

In addition, the findings show that capital requirements
under ΔCOVAR lead to the lowest default probability. The
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Figure 3: Increase in capital as a share of banks’ risk weighted assets using four risk allocation mechanisms assuming shocks exist.
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Table 3: Individual bank default probabilities under the macroprudential capital requirements in 2008.

Bank Basel equal Component VaR Incremental VaR Shapley value EL ΔCOVAR
1 0.0552 0.0552 0.0332 0.0405 0.0552
2 0.1344 0.1344 0.1344 0.1344 0.0238
3 0.0952 0.0952 0.0952 0.0952 0.0952
4 0.0787 0.0787 0.0787 0.0787 0.0033
5 0.1356 0.1356 0.1356 0.1356 0.1268
6 0.1422 0.1422 0.0991 0.1201 0.0845
7 0.1247 0.1247 0.1247 0.1247 0
8 0.0081 0.0081 0 0.0001 0.0032
9 0.1065 0.0002 0.1065 0.0986 0.1065
10 0.0511 0.0511 0.0511 0.0511 0.0511
Average 0.09317 0.08254 0.08585 0.0879 0.05496

Table 4: Individual bank default probabilities under the macroprudential capital requirements in 2009.

Bank Basel equal Component VaR Incremental VaR Shapley value EL ΔCOVAR
1 0.1177 0.1177 0 0.0006 0.0065
2 0.1311 0.1311 0.0111 0.0001 0.0018
3 0.1 0.1 0 0 0.1
4 0.1508 0.1508 0.0197 0.0005 0.0005
5 0.157 0.157 0.0023 0.0558 0.0752
6 0.1643 0.1643 0.1643 0.0543 0.0063
7 0.18 0.18 0.18 0.0002 0
8 0.0722 0.0722 0 0 0.0263
9 0.9982 0.9982 0.9982 0.9982 0.9982
10 0.1222 0.0886 0.0094 0.0037 0.1222
Average 0.21935 0.21599 0.1385 0.11134 0.1337

average probability of bank defaults based on ΔCOVAR
decreases from 0.09317% to 0.05496%, a 0.4101% reduction in
risk.This proves that increased capital levels downsize default
risk and thus macroprudential capital requirements serve as
a buffer against internally created risk in the banking system.
More importantly, other measures like Component VaR,
Shapley value, and incremental value at risk also decrease
individual bank default probabilities.

Table 4 portrays that United bank of Africa is a weaker
bank in the system; overall total probabilities range between
0.1% and 0.9982%. Moreover, the findings show that capital
requirements under Shapley value lead to the lowest default
probability. The average probability of bank defaults based
on Shapley value decreases from 0.21935% to 0.11134%, a
0.4924% reduction in risk; other measures like Component
VaR, incremental value at risk and ΔCOVAR also decrease
individual bank default probabilities.

Figure 4 portrays individual bank total default proba-
bilities under macroprudential capital requirements for the
entire sample of 2008–2014.

From Figure 4, we see that in 2010 Access Bank seems
to be the weaker bank in the system. We find that the
overall total default probabilities range between 0.0247%
and 0.9501%, with ΔCOVAR leading to the lowest default
probability.Moreover the average probability of bank defaults

based on ΔCOVAR decreases from 0.13716% to 0.110084%,
that is, a 0.1974% reduction in risk. Other measures also
appear to decrease individual bank defaults.

For year 2011, Sterling and United bank of Africa are bit
weaker banks in the system. The overall total probabilities in
the system range between 0.0091% and 0.977%. Our results
reveal that capital requirements under ΔCOVAR lead to
the lowest default probability with the average probability
of bank defaults based on this measure decreasing from
0.05885% to 0.022254%, which is approximately a 0.62185%
reduction in risk; other measures appear to decrease the
individual bank default probabilities. Meanwhile for 2012 we
note that Access bank is a weaker bank in the system; overall
total probabilities bank defaults range between 0.0122% and
0.8829%. The findings also unveil that capital requirement
under ΔCOVAR leads to the lowest default probability with
the average probability of bank defaults decreasing from
0.1271% to 0.10012%, a 0.21227% reduction in risk; other
measures do the same.

For year 2013 it can be seen that the overall total
probabilities of bank defaults range between 0.001% and
0.0473%; at the same time the findings reveal that ΔCOVAR
lead to lowest default probability with the average probability
of bank defaults decreasing from 0.02212% to 0.00703%,
which implies a reduction in risk by 0.6822%. Sterling and
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Table 5: Probabilities of Basic and contagious default in 2008.

Bank Basel equal Component VaR Incremental VaR Shapley value EL ΔCOVAR
Basic default probabilities
Access bank 0.0546 0.0546 0.0329 0.0403 0.0546
Diamond bank 0.1342 0.1342 0.1342 0.1342 0.0234
Fbn holdings 0.0949 0.0949 0.0949 0.0949 0.0949
Fidelity bank 0.0783 0.0783 0.0783 0.0783 0.0033
Guaranty bank 0.1349 0.1349 0.1349 0.1349 0.1256
Skye bank 0.1418 0.1418 0.0986 0.1198 0.0837
Sterling bank 0.1247 0.1247 0.1247 0.1247 0
Union bank of Nigeria 0.008 0.008 0 0.0001 0.0031
United bank of Africa 0.1057 0.0002 0.1057 0.0982 0.1057
Zenith international bank 0.0504 0.0504 0.0504 0.0504 0.0504
Average 0.09275 0.0822 0.08546 0.08758 0.05447
Contagion default probabilities
Access bank 0.0006 0.0006 0.0003 0.0002 0.0006
Diamond bank 0.0002 0.0002 0.0002 0.0002 0.0004
Fbn holdings 0.0003 0.0003 0.0003 0.0003 0.0003
Fidelity bank 0.0004 0.0004 0.0004 0.0004 0
Guaranty bank 0.0007 0.0007 0.0007 0.0007 0.0012
Skye bank 0.0004 0.0004 0.0005 0.0003 0.0008
Sterling bank 0 0 0 0 0
Union bank of Nigeria 0.0001 0.0001 0 0 0.0001
United bank of Africa 0.0008 0 0.0008 0.0004 0.0008
Zenith international bank 0.0007 0.0007 0.0007 0.0007 0.0007
Average 0.00042 0.00034 0.00039 0.00032 0.00049

Union bank of Nigeria appear to be weaker banks in the
system in this year. For 2014 our findings unfold that United
bank of Africa is a weaker bank in the system; overall total
probabilities of bank defaults range between 0.006% and
0.0747%; moreover the capital requirements underΔCOVAR
lead to the lowest default probability. The average probability
of bank defaults based onΔCOVAR decreases from 0.02731%
to 0.01631%, a 0.4028% reduction in risk. More importantly,
other measures like Component VaR, incremental value at
risk, and Shapley value also decrease individual bank default
probabilities.

Generally we note that despite the heterogeneity in
macroprudential capital requirements across risk allocation
mechanisms, all risk allocation rules bring a substantial
improvement in bank stability relative to the existing regu-
latory framework. Compared to the bench mark, all capital
allocations mechanisms reduce the probability of banks
defaults, the lowest probability being shown by ΔCOVAR
measures. Our findings prove that increased capital levels
reduce default risk, in line with macroprudential capital
requirements serving as insurance against the risk created
within the financial system.

7. Conclusion

One of the major objectives of macroprudential policy is
to internalize the risk within the banking system so as to

enhance financial stability. We used the complex network
theory to construct the network model of banking system,
whereby each bank is regarded as a node and connected with
others through the interbank bilateral exposures. We used
different risk allocation mechanisms to reallocate the current
capital in the system. We realized that the financial system
risk, individual bank risk contribution, and bank default
probability change upon the reallocation of capital in the
system.

Thusweused amethod to compute a fixed point forwhich
capital redistribution is accordant with the contributions of
each bank to the total risk of the banking system under
proposed capital allocation mechanisms. Upon reallocation
of capital in the system, we based on two scenarios; firstly
in the situation where the system shocks do not exist in the
system; in this scenario, we found that almost all banks appear
to hold more capital. This ensures that banks build up capital
during normal times so that it cannot be affected when losses
are incurred during periods of financial difficulties. Secondly,
we consider the situation where the system shock exists in
the system; we found that almost all banks tend to hold little
capital on both risk allocation mechanisms.

Our results show that United bank of Africa is the
weakest in the system with high default probability in 2009,
2011, and 2014 followed by Access bank in 2010 and 2012;
regulators should apply stringent supervision to these banks.
We reveal that, under diverse risk allocation mechanisms,



Complexity 13

2008 2009

2010

Ac
ce

ss
 

D
ia

m
on

d

Fb
n

Fi
de

lit
y

G
ua

ra
nt

y

Sk
ye

St
er

lin
g

N
ig

er
ia

A
fr

ic
a

Ze
ni

th

2011

Bank 

2012 2013

2014

Fb
n

Sk
ye

A
fr

ic
a

Ac
ce

ss

Ze
ni

th

N
ig

er
ia

Fi
de

lit
y

St
er

lin
g

G
ua

ra
nt

y

D
ia

m
on

d

Bank

Fb
n

Sk
ye

Ac
ce

ss

Ze
ni

th

 A
fr

ic
a 

St
er

lin
g

N
ig

er
ia

 

Fi
de

lit
y 

D
ia

m
on

d

G
ua

ra
nt

y

Bank

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

D
ef

au
lt 

pr
ob

ab
ili

ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
ef

au
lt 

Pr
ob

ab
ili

ty

0

0.02

0.04

0.06

0.08

0.1

D
ef

au
lt 

pr
ob

ab
ili

ty

Fb
n

Sk
ye

A
fr

ic
a

Ac
ce

ss

Ze
ni

th

N
ig

er
ia

Fi
de

lit
y

St
er

lin
g

G
ua

ra
nt

y

D
ia

m
on

d

Bank

0

0.2

0.4

0.6

0.8

1

D
ef

au
lt 

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

D
ef

au
lt 

pr
ob

ab
ili

ty

Fb
n

Sk
ye

A
fr

ic
a

Ac
ce

ss

Ze
ni

th

N
ig

er
ia

Fi
de

lit
y

St
er

lin
g

G
ua

ra
nt

y

D
ia

m
on

d

Bank

0

0.01

0.02

0.03

0.04

0.05

D
ef

au
lt 

pr
ob

ab
ili

ty

Fb
n

Sk
ye

A
fr

ic
a

Ac
ce

ss

Ze
ni

th

N
ig

er
ia

Fi
de

lit
y

St
er

lin
g

G
ua

ra
nt

y

D
ia

m
on

d

Bank

Fb
n

Sk
ye

A
fr

ic
a

Ac
ce

ss

Ze
ni

th

N
ig

er
ia

St
er

lin
g

Fi
de

lit
y 

G
ua

ra
nt

y

D
ia

m
on

d

Bank

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

D
ef

au
lt 

pr
ob

ab
ili

ty

Basel equal
Component VaR
Incremental VaR

Shapley value EL
ΔCOVAR

Basel equal
Component VaR
Incremental VaR

Shapley value EL
ΔCOVAR

Figure 4: Individual bank total default probabilities under macroprudential capital requirements for the entire sample of 2008–2014. Within
the banking system, ΔCOVAR downsizes the average probability of default the most.
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both the average default probability of individual institutions
and multiple banks defaults can be substantially reduced,
with ΔCoVaR decreasing the average default probability the
most. The findings suggest that risk allocation mechanisms
can improve the stability of the system and regulate the
financial system from a macroprudential dimension. The
macroprudential capital allocation mechanisms work as an
instrument of prudent bank regulation and importantly can
reduce the risk of banks as well as the risk of the banking
system.

The approach of estimating bilateral exposure matrix in
the present paper assumes that the topology of the interbank
network is complete network and does not reproduce incom-
plete interbank market. Depending on the actual network
structure this may negatively or positively bias the results.
In the future work, we can adopt the maximum entropy
estimation method [19] and minimum density approach [37]
to estimate the bilateral exposurematrix, and thenwe can give
an interval value ofmacroprudential capital allocation, which
will be more practical.
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