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The present paper aims to assess the systemic risk of the Kenyan banking system.We propose a theoretical framework to reveal the
time evolution of the systemic risk using sequences of financial data and use the framework to assess the systemic risk of the Kenyan
banking system that is regarded as the largest in the East and Central African region. Firstly, we estimate the bilateral exposures
matrix using aggregate financial data on loans and deposits from annual reports and analyze the interconnectedness in the market
using network centrality measures. Next, we extend the Eisenberg–Noe method to a multiperiod setting to the systemic risk of
the Kenyan banking system, in which the multiperiod includes the dynamic evolutions of the Kenyan banking system of every
bank and the structure of the interbank network system. We apply this framework to assess dynamically the systemic risk of the
Kenyan banking systembetween 2009 and 2015.Themain findings are the following.The theoretical network analysis using network
centralitymeasures showed several banks displaying characteristics of systematically important banks (SIBs).The theoretical default
analysis showed that a bank suffering a basic default will trigger a contagious default that caused several other banks in the sector to
go bankrupt. Further stress test proved that the KCB bank theoretically caused a few contagious defaults due to an unusually high
interconnectedness.This methodology can contribute by being part of monitoring system of the Central Bank of Kenya (regulatory
body) as well as the implementation of policies (such as bank-internal stress tests) that assist in preventing default contagion.

1. Introduction

Events beginning in the United States in 2008, including the
collapse of somemajor financial institutions and the rescue of
others, ideally depict the effect that a systemic crisis can have
on an economy.Many financial institutions around the world
felt the impact of the default of some of these institutions
in the United States. Thus, systemic risk emerged as one of
the most challenging aspects. Previous to this occurrence,
there was a limited knowledge of how systemic risk affected
institutions and how to assess the systemic risk. Therefore, it
is essential to have an effective assessment of systemic risk
exposure to an institution.

A few measures of systemic risk have been proposed in
recent empirical studies. Among them, De Jonghe [1] uses
the extreme-value analysis to measure the contribution of
each single financial institution to systemic risk. Using CDS
(Credit Default Swap) of financial firms and correlations
between their stock returns, Huang et al. [2, 3] and Segoviano
Basurto [4] propose portfolio credit risk measurement meth-
ods, such as CoPoD and CIMDO methods. The conditional

Value at Risk (CoVaR) is proposed as measure of systemic
importance of financial institutions proposed by Adrian and
Brunnermeier [5]. The CoVaR can capture how much the
distress of one institution can affect another institution and
it provides a clear direction on the relation between the risks
involved between twofinancial institutions. Anothermeasure
that was proposed and used as an indicator to measure the
systemic risk is the System Expected Shortfall (SES). It was
introduced to measure listed financial institutions’ contri-
butions to systemic risk. SES is defined as an institution’s
tendency to be undercapitalized when the financial system
as a whole is undercapitalized. Marginal Expected Shortfall
(MES)was also introduced as ameasure of an institution’s loss
in the tail of the system’s loss distribution. MES is a systemic
fragility metric that can also be used to determine an optimal
taxation policy based on systemic risk [6]. Both the SES and
the MES methods were proposed by Acharya et al. [7].

However, a limitation of those approaches is that they
measure a financial institution’s loss only if the system is
in normal time and only indirectly take into account the
size, the probability of default, and the correlation of each
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financial institution. Furthermore, the correlation does not
capture the interconnectedness adequately because it does
not consider the various interactions (such as contagious
defaults) or the relationship between interconnectedness and
systemic importance in a financial system.

In normal times, the interbank market ensures efficient
liquidity redistribution from banks with surplus liquidity to
banks with a shortage of liquidity and thus serves as an
absorber of idiosyncratic liquidity shocks. In turbulent times,
however, interbankmarkets can become a channel for liquid-
ity contagion due to liquidity hoarding by banks and/or credit
risk contagion due to credit losses on interbank exposures.
Interbank market contagion is more likely to occur in bank-
ing sectors that are highly dependent on wholesale financing
[8]. In an extensive study of the US financial system, Hautsch
et al. [9] show that it is mainly the interconnectedness within
the financial sector that increases the risk of failure of the
entire system, denoted as systemic risk [10].

The intricate structure of linkages can be naturally cap-
tured via a network representation of the financial system.
Such a network models the interlinking exposures between
financial institutions and can thus assist in detecting impor-
tant shock transmission mechanisms. The use of network
theories can enrich our understanding of financial systems,
helping to answer questions related to how resilient financial
networks are to contagion and how financial institutions
form connections when exposed to risk of contagion [11].
Two types of sources for the risk of contagion have been
studied in the literature.One is the network of banks investing
in similar types of assets, in which one bank failure can
lead to a fall in the price of its assets and then affect the
solvency of other banks that hold the same assets [12, 13].
The other is the risk of contagion in the interbank market,
which concerns the liquidity risk of contagion at a form
of interlocking exposure; such exposure is very short term,
mainly overnight.The focus of the present paper is on the risk
of contagion in the interbankmarket.The empirical studies of
the risk of contagion in the interbank market have been done
in those references [14–17]. In the theoretical studies of the
risk of contagion in the interbankmarket, Allen andGale [18]
studied the effect of the static network structure on the risk
of contagion. Their results found that an interbank network
system with a complete network structure is more stable than
that with an incomplete network structure. Besides Allen
and Gale, many researchers theoretically study the effect
of the network structure on the risk of contagion [19–24].
Although studies on the risk of contagion in the interbank
network systems have made the great progress, there are
some limitations in existing research. Most of the studies
are based on static network structures (fixed bank lending
matrixes) and static bank systems (fixed the bank balance
sheets). However, the reality of an interbank network system
is with high complex dynamics.

This is where the present paper is useful in assessing
systemic risk in relation to dynamic financial networks.
In theory, the Eisenberg–Noe framework [25] describes
simultaneous defaults for one period and not for a dynamic
multiperiod scenario which applies to our case. We have
to mention that we extend the framework to a multiperiod

setting, which borrows from the framework of Kanno [26]
and theoretically analyze the Kenyan interbank market using
aggregate data on loans and deposits from the portal-
African Markets. Kanno [26] and Lehar [27] considered the
multiperiod scenario on the systemic risk; however, they did
not consider the dynamic change of the interbank network.
Besides, Kanno only uses the maximum entropy algorithms
to estimate the topology of the interbank system. Here,
in the present paper, we use two methods (the maximum
entropy algorithms and the minimum density approach)
to estimate the network structure and make the structure
of the network system change with time. Therefore, the
present paper proposes a theoretical framework to reveal
the time evolution of the systemic risk using sequences of
financial data and uses the framework to assess the systemic
risk of the Kenyan banking system which is the largest in
East and Central Africa. This study will help us understand
the impact of systemic risk in the Kenyan banking sector.
The theoretical frame work we proposed merges existing
algorithms, maximum entropy estimation method [14], the
minimum density approach [28], the asset value estimation
algorithm [26, 27], and obligation clearing algorithm [25],
seamlessly to calculate the time evolution of the systemic risk.

The key results of the present paper are summarized as
follows. First, we explain the network structure of the Kenyan
interbank market and theoretically examine its structure
using the estimated bilateral exposures matrix. Based on the
measures on in- and out-strength, we show that most of the
banks designated as systematically important banks (SIBs)
are quite significant in the role they play in the Kenyan
interbank market. Second the contagious defaults are then
modeled in the Kenyan interbank market to then analyze the
mechanism behind contagious defaults. Thirdly stress tests
are conducted to analyze the possibility of contagious defaults
conditional on a banks basic default at an evaluation time
point.

The present paper is organized as follows. Section 2
proposes a theoretic framework of the systemic risk. In the
theoretic framework, Section 2.1 first proposes the method
of measuring systemic risk that includes basic defaults and
contagious defaults, then Section 2.2 deliberates the method-
ology of the bilateral exposures matrix, and Section 2.3
explains the estimation methodology for the market values
of assets. Section 3 describes the data used in this study.
Section 4 presents the results of the risk analysis and finally
Section 5 concludes the paper.

2. The Dynamic Theory Framework of
Assessing Systemic Risk

We first construct a dynamic theory framework of assessing
systemic risk, which is described as Figure 1. Figures 1(a) and
1(b) describe the network structure of the interbank system in
Kenyan, which can be estimated by the methods described in
Section 2.1. Figure 1(a) shows the complete network, which
can be estimated by the Maximum Entropy Method, while
Figure 1(b) represents the sparse network structure that can
be estimated by theminimumdensity approach, which is first
proposed by Anand et al. [28]. Figure 1(c) is the dynamic
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Figure 1: The dynamic theory framework of assessing systemic risk.

estimation method of banks’ assets, which is described in
Section 2.2. When we get the parameters 𝑢𝑖 and 𝜎𝑖, then,
according to (7), we get the evolution of banks’ assets like
Figure 1(d). In Figure 1(d), in each time step, we first calculate
the basic default of banks; then, due to the connection of
banks like Figures 1(a) and 1(b), the basic default of banks,
namely, total assets smaller than the total liabilities, cause the
default of other banks that are connected to the basic default
banks. The method of computing losses from basic default
and contagion default is described in Section 2.3. At time 𝑡 =0, the structure of the interbank network system is estimated
by the balance sheet of end of each year. However, due to the
time evolution, banks may be defaulted by basic default or
by contagion, then banks that are default will be removed
from the network, and, therefore, the structure of network

will change with time, which is showed in Figure 1(e), the
evolution equations of which will be described in Section 2.4.

2.1. Estimation of Bilateral Exposures Matrix. The lending
relationship in the Kenyan interbank market is represented
by the following nominal interbank matrix 𝑋:

X =
[[[
[

]]]
]

∑
i

xij

∑
j

xij

l1

li

lN

x11 x1j x1N

xi1 xij xiN

xN1 xNj xNN

a1 · · · aj · · · aN

, (1)
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where 𝑥𝑖𝑗 denotes the amount of money that bank 𝑖 borrows
from bank 𝑗. 𝑎𝑗 = ∑𝑖 𝑥𝑖𝑗 denotes the total value of bank𝑗’s interbank assets and 𝑙𝑖 = ∑𝑗 𝑥𝑖𝑗 denotes bank 𝑖’s total
liabilities. It has to hold that

∑
𝑗

𝑎𝑗 = ∑
𝑖

𝑙𝑖 = 𝑋Σ, (2)

where𝑋Σ is size of the interbank market. Next we adopt two
methods to estimate the matrix 𝑋. One is the method of the
maximum entropy estimation [14] in Section 2.1.1, and the
other is the minimum density approach [28] in Section 2.1.2.

2.1.1. Method of the Maximum Entropy Estimation. We know
that the diagonal elements of𝑋 have to be zero.Therefore, we
set the prior matrix of𝑋0 as follows:

𝑋0 = {{{
0 for any 𝑖 = 𝑗
𝑎𝑖𝑙𝑗 otherwise. (3)

Matrix 𝑋0 violates the summing constraints expressed in
(2). Consequently, a new matrix 𝑋 must be found to satisfy
the constraints. The solution is provided by solving the
optimization problem as follows:

min
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑥𝑖𝑗 ln(𝑥𝑖𝑗𝑥0𝑖𝑗)

Subject to
𝑁∑
𝑗=1

𝑥𝑖𝑗 = 𝑙𝑖,
𝑁∑
𝑖=1

𝑥𝑖𝑗 = 𝑎𝑗,
𝑥𝑖𝑗 ≥ 0.

(4)

2.1.2. The Minimum Density Approach. The minimum den-
sity approach minimizes the network’s density, the share of
actual to potential bilateral links. It minimizes the total num-
ber of linkages necessary for allocating interbank positions,
consistent with total lending and borrowing observed for
each bank. Let𝐶 represent the fixed cost of establishing a link.
Then the minimum density approach can be formulated as a
constrained optimization problem as follows:

min
𝑥

𝐶 𝑁∑
𝑖=1

𝑁∑
𝑗=1

1[𝑥𝑖𝑗>0]
Subject to

𝑁∑
𝑗=1

𝑥𝑖𝑗 = 𝑙𝑖,
𝑁∑
𝑖=1

𝑥𝑖𝑗 = 𝑎𝑗,
𝑥𝑖𝑗 ≥ 0,

(5)

where the integer function 1 equals one only if bank 𝑖 lends
bank 𝑗.

2.2. EstimationMethodology ofMarket Values of Assets. Asset
value 𝑉𝑖(𝑡) is not daily observable. However, we can get the
asset value in the bank balance sheet at the end of each year,
while the equity market price of banks can be observed by
stock price on each day.The time 𝑡 is measured in units of day
in the present paper. Next we will give a method to estimate
asset values of each day (time evolution of asset value)
according to the equity market data of banks. Assume that
the asset value 𝑉𝑖(𝑡) of bank 𝑖 follows a geometric Brownian
motion with drift 𝑢𝑖 and volatility 𝜎𝑖:

𝑑𝑉𝑖𝑉𝑖 = 𝑢𝑖𝑑𝑡 + 𝜎𝑖𝑑𝑊 (𝑡) , (6)

where𝑊(𝑡) is the standard Brownianmotion.The solution to
this equation is obtained as

𝑉𝑖 (𝑡) = 𝑉𝑖 (0) 𝑒(𝑢𝑖−(𝜎2𝑖 /2))𝑡+𝜎𝑖√𝑡𝑧, (7)

where 𝑧 is a standard normal random variable. If we know
the parameters 𝑢𝑖 and 𝜎𝑖, then, according to (7), we can get
the evolution of 𝑉𝑖(𝑡). Next we can observe a time series of
equity price 𝐸𝑖(𝑡) from the stock market; then we can use the
Black-Scholes model to estimate the parameters 𝑢𝑖 and 𝜎𝑖 as
follows:

𝐸𝑖 (𝑡) = 𝑉𝑖 (𝑡)𝑁 (𝑑𝑡) − 𝐷𝑖 (𝑡)𝑁 (𝑑𝑡 − 𝜎𝑖√𝑇) , (8)

where 𝑇 = 365 days, 𝑡 represents the evolution of days, and

𝑑𝑡 = ln (𝑉𝑖 (𝑡) /𝐷𝑖 (𝑡)) + (𝜎2𝑖 /2) 𝑇𝜎𝑖√𝑇 . (9)

In the stock market, one can observe a time series of 𝐸𝑖(𝑡)
and read the face value of bank debt 𝐷𝑖(0) from the balance
sheet. We assume that all bank debt is insured and will
therefore grow at the risk-free rate 𝑟 (the interest rates
used have been obtained from the Central Bank of Kenya
website, for the relevant years (2009–2015) (https://www
.centralbank.go.ke/statistics/interest-rates/)). Then, 𝐷𝑖(𝑡) =𝐷𝑖(0)𝑒𝑟𝑡. Given the initial data of 𝑉𝑖(0), time series data of𝐸𝑖(0), 𝐸𝑖(1), . . . , 𝐸𝑖(𝑇), 𝐷𝑖(0), 𝐷𝑖(1), . . . , 𝐷𝑖(𝑇), and the arbi-
trary initial value of 𝑢𝑖(0), 𝜎𝑖(0), we can get the estimation of�̂�𝑖(1), �̂�𝑖(2), . . . , �̂�𝑖(𝑇) according to (8) and (9). Then, we use
the following maximization likelihood function to estimate
the parameters 𝑢𝑖 and 𝜎𝑖, which is proposed by Duan et al.
[29–31]:

𝐿 (𝑢𝑖, 𝜎𝑖; �̂�𝑖 (1) , �̂�𝑖 (2) , . . . , �̂�𝑖 (𝑇))
= −𝑇2 ln (2𝜋𝜎2𝑖 ℎ)
− 𝑇2
𝑇∑
𝑘=1

(𝑅𝑖 (𝑘) − (𝑢𝑖 − 𝜎2𝑖 /2) ℎ)2𝜎2𝑖 ℎ
− 𝑇∑
𝑘=1

ln �̂�𝑖 (𝑘) ,

(10)

https://www.centralbank.go.ke/statistics/interest-rates/
https://www.centralbank.go.ke/statistics/interest-rates/
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where 𝑅𝑖(𝑘) = ln(𝑉𝑖(𝑡)/�̂�𝑖(𝑡 − 1)) and ℎ = 1/365. Here, ℎ
represents business days instead of calendar days. According
to the stockmarket data source, ℎmay equal about 250, which
will be different at each year.

The estimated parameters are denoted as 𝑢𝑖, 𝜎𝑖 respec-
tively.Then, we compare the estimated parameters 𝑢𝑖, 𝜎𝑖 with
the initial values 𝑢𝑖(0), 𝜎𝑖(0); if 𝑢𝑖, 𝜎𝑖 do not equal 𝑢𝑖(0), 𝜎𝑖(0),
we replace the initial values 𝑢𝑖(0), 𝜎𝑖(0), and 𝑉𝑖(0) with𝑢𝑖, 𝜎𝑖, and 𝑉𝑖(0), and then we repeat the estimation method
from (8), (9), and (10) once again until the estimated
parameters 𝑢𝑖, 𝜎𝑖 equal 𝑢𝑖(0), 𝜎𝑖(0). Accordingly, we get the
estimated parameters 𝑢𝑖 and 𝜎𝑖. Then, according to (7), we
get the evolution of 𝑉𝑖(𝑡). The estimation method of 𝑉𝑖(𝑡) is
the same as [27].

2.3. Method of Measuring Systemic Risk. Here, we study how
to assess the systemic risk in the financial network.We extend
a fundamental framework proposed by Eisenberg and Noe
[25] to a multiperiod setting. There is a clearing payment
system that deals with the interbank payment amounts of all
the banks in the system daily.

Let us look at a set of banks 𝑁 = {1, . . . , 𝑁} at time 𝑡.
The interbank structure is represented as (𝑋(𝑡), 𝑒(𝑡)), where

𝑋 is a (𝑁 × 𝑁) nominal interbank liabilities matrix and 𝑒 is
the noninterbank net claims which is the difference between
the market value of assets and the value of liabilities, namely,𝑉𝑖(𝑡) − 𝐷𝑖(𝑡).

If the total value of a bank becomes negative for a pair
(𝑋(𝑡), 𝑒(𝑡)), then the bank becomes bankrupt. Let 𝑥𝑖(𝑡) =∑𝑁𝑗=1 𝑥𝑖𝑗(𝑡) represent the total interbank liability of bank 𝑖 to
all banks 𝑗 of the system. Furthermore, we consider a matrixΠ, which is brought about by normalizing the entries to the
total claims:

Π𝑖𝑗 (𝑡) = {{{{{
𝑥𝑖𝑗 (𝑡)𝑥𝑖 (𝑡) , if 𝑥𝑖 (𝑡) > 0
0, otherwise. (11)

A banking system is designated as a tuple (Π(𝑡), 𝑒(𝑡),
and 𝑋(𝑡)), for which we describe a clearing payment vector𝑝∗(𝑡). The clearing payment vector represents the limited
liabilities of the banks and the proportional distribution in
the event of a collapse.

A payment vector 𝑝∗𝑖 (𝑡) is a clearing payment vector
subject to the following happening:

𝑝∗𝑖 (𝑡) =
{{{{{{{{{{{{{{{{{{{{{

𝑥𝑖 (𝑡) 𝑁∑
𝑗=1

Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) ≥ 𝑥𝑖 (𝑡) ,
𝑁∑
𝑗=1

Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) 0 ≤ 𝑁∑
𝑗=1

Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) < 𝑥𝑖 (𝑡) ,
0 𝑁∑

𝑗=1

Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡) < 0.
(12)

Therefore, bank 𝑗 is solvent in case 1 and insolvent in cases 2
and 3.

We identify an insolvent bank 𝑗 under the condition
(𝑝∗𝑖 (𝑡) < 𝑥𝑖(𝑡)), which holds for cases 2 and 3.

We implement the default algorithm established by
Eisenberg and Noe [25] to find a clearing payment vec-
tor. They demonstrate that, under mild regulatory condi-
tions, a unique clearing payment vector always exists for
(Π(𝑡), 𝑒(𝑡), and 𝑋(𝑡)). These regularity conditions refer to
properties that the network structure must have in order that
there is a unique clearing vector.

These results apply to our multiperiod setting. The num-
ber of defaulted banks is computed by comparing the clearing
payment vector to the nominal liability vector. A theoretical
default algorithm is applied to compute the clearing payment
vector and is summarized as follows.

Type 1: Basic Default

𝑉𝑖 (𝑡) − 𝐷𝑖 (𝑡) ≤ 0, (13)

where 𝑉𝑖(𝑡) is the market value of the total assets of bank𝑖 at time 𝑡 (days) and 𝐷𝑖(𝑡) is the total face value of the
interest-bearing debt of bank 𝑖 at time 𝑡. The basic default

is an idiosyncratic default, caused by the condition of the
defaulting node itself. According to Section 2.3, 𝑉𝑖(𝑡) is a
random walk variable causing the idiosyncratic default at
time step 𝑡.
Type 2: Contagious Default

( 𝑁∑
𝑗=1

Π𝑗𝑖 (𝑡) 𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) + 𝑒𝑖 (𝑡) > 0, (14)

( 𝑁∑
𝑗=1

Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) − 𝑥𝑖 (𝑡)) + 𝑒𝑖 (𝑡) ≤ 0. (15)

If the claims of bank 𝑖 are positive, but its obligations banks
pay less liability to bank 𝑖, which results in the fact that the net
claim of bank 𝑖 is negative, then a contagious default occurs
on bank 𝑖.
2.4. The Evolution of the Bilateral Exposures 𝑥(𝑡 + 1), 𝑎𝑖(𝑡 + 1),
and 𝑙𝑖(𝑡 + 1). After calculating a clearing payment vector at
time step 𝑡, we can calculate the new matrix of 𝑋 at the time
step 𝑡 + 1. We should note that when bank 𝑖 defaults, bank



6 Complexity

𝑖 can pay only part of their liabilities to other banks. 𝜒𝑖, the
ratio, is defined as follows:

𝜒𝑖 = ∑𝑁𝑗=1Π𝑗𝑖 (𝑡) 𝑝∗𝑗 (𝑡) + 𝑒𝑖 (𝑡)𝑙𝑖 (𝑡) . (16)

The total assets and liabilities of bank 𝑗 from time steps 𝑡 + 1
to 𝑇 will be updated as follows:

𝑉𝑗 (𝑡 + 1 : 𝑇) = 𝑉𝑗 (𝑡) − 𝑥𝑗𝑖,
𝐷𝑗 (𝑡 + 1 : 𝑇) = 𝐷𝑗 (𝑡) − 𝑥𝑗𝑖,
𝑉𝑗 (𝑡 + 1 : 𝑇) = 𝑉𝑗 (𝑡) − (1 − 𝜒𝑖) 𝑥𝑖𝑗.

(17)

When bank 𝑖 defaults, we set 𝑥𝑖,𝑗(𝑡) = 0 and 𝑥𝑗,𝑖(𝑡) = 0 and
clear out bank 𝑖 from the network bank system. In real world,
the interbank exposures may change from day to day. And,
in the present paper, due to the default banks, the number
of banks decreases, which causes the interbank exposures to
change by time step. Note that if there is no default bank
in 𝑡, the network estimated does not change, because the
interbank totals remain the same in 𝑡 and 𝑡 + 1.

Then, we need to recalculate the bilateral exposures
matrix 𝑋𝑡+1 according to the algorithm in Section 2.1. Thus,
the evolution of 𝑎𝑗(𝑡 + 1) and 𝑙𝑖(𝑡 + 1) is described as follows:

𝑎𝑗 (𝑡 + 1) = 𝑁∑
𝑖=1

𝑥𝑖,𝑗 (𝑡 + 1) ,
𝑙𝑖 (𝑡 + 1) = 𝑁∑

𝑗=1

𝑥𝑖,𝑗 (𝑡 + 1) .
(18)

3. Data

In the present paper, we use data from the portal of African
Markets. The portal has historical share price data and
has annual reports of the listed companies of the biggest
economies on the African continent. The data we have used
from this site was obtained from annual reports from the
years 2008 to 2015 from eight listed banks, as well as market
data (share prices) for the same. We also obtained monthly
interest rates from the Central Bank of Kenya for the same
banks. The banks selected for this research are big banks
in the Kenyan banking sector and they essentially have big
market share of banking clients in the market. Financial
sector in the Kenyan banking system includes the Central
Bank of Kenya (CBK), the primary regulator of the banking
industry; 28 domestic and 14 foreign commercial banks with
branches, agencies, and other outlets throughout the country;
one mortgage finance company; eight representative offices
of foreign banks; eleven licensed deposit taking microfi-
nance institutions. However, the banking sector is essentially
dominated by four major commercial banks, namely, Equity
Bank, Kenya Commercial Bank, Barclays Bank of Kenya,
and Standard Chartered. In addition, smaller banks have
emerged and experienced tremendous growth in recent years.
According to the Central Bank of Kenya, 66.7 percent of
the adult population in 2013 had formal access to financial

services through commercial banks and the government-
owned Post Bank. With the advent of mobile money and
its recent linkages to the formal banking system, however,
the number of Kenyans with access to electronic financial
services has grown rapidly. Kenya has now become a leader
in financial inclusion and its example is being replicated in
countries around the world.

To be able to achieve the objectives of our research, we
need to identify the interbank exposures and noninterbank
exposures (net claims cash flow 𝑒 for each bank). The
interbank exposures considered in the analysis are interbank
loans and advances to banks.These items are yearly interbank
transactions in the interbank markets. We do not consider
interbank transfers between parent firms and subsidiaries.
There are plenty of interbank transactions in this market;
therefore, we can estimate the bilateral exposuresmatrix from
the data available in the annual reports. Because we also need
to estimate themarket value of the assets from equity data, we
only consider publicly traded banks. We therefore acquired
daily market share price data of the said eight banks.The data
of end-of-year period for 2009–2015 in the Kenya banking
system is listed in Table 1.

4. Results

This section describes our analysis results. In Section 4.1,
we discuss the significance of the bilateral exposures matrix
estimation and the network analysis. Section 4.2 deals with
the default analysis. Finally, in Section 4.3 we report on the
results of the stress test.

4.1. Network Analysis and Estimation of Bilateral Exposures
Matrix. We estimate the bilateral exposures matrix 𝑋 stated
in (1) and use the matrix to examine the network structure of
the Kenyan interbankmarket.We investigate the global inter-
bank network using network centrality measures. Usually the
degree of a node is considered as a proxy variable for inter-
connectedness and explains the number of edges connected
to a node. In the present paper, we define the in-strength that
shows the ratio of the money lent to all the other banks to
the total money. For simplicity, the in-strength of bank 𝑖 is𝑎𝑖/∑𝑎𝑖. Similarly, the out-strength of bank 𝑖 is 𝑙𝑖/∑ 𝑙𝑖.The total
strength of a bank is the summation of its in-strength and out-
strength. These measures, hence, give a sense of investment
and funding diversifications. Figure 2 highlights the time
variations of the in-strength (red line) and out-strength (blue
line) for eight listed banks. The bigger the increase in the in-
strength, the more the debtors the bank would have. In con-
trast, the bigger the increase in the out-strength, themore the
creditors the bank would have. Therefore, in terms of conta-
gious default, the out-strength is more important than the in-
strength. Figure 2 depicts a group of banks that borrow more
than they lend and others that lend more than they borrow.
Banks like NIC Bank, Diamond Trust Bank, National Bank
of Kenya, Cooperative Bank, and Barclays Bank lend more
than they borrow to other banks by averages of 55.3%, 53.3%,
46.2%, 38.9%, and 35.8%, respectively, from 2008 to 2015.

Meanwhile, banks like Kenya Commercial Bank and
Equity Bank lend more than they borrow by an average of
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Figure 2: Time variations of in-strength and out-strength for 8 banks. The total strength is the sum of the in-strength (red line) and the
out-strength (blue line). The vertical axis (the strength) shows the percentage of the amount of money borrowed or lent by a bank while
horizontal axis represents time in years.
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Figure 3: Time variations in number of defaulting banks in Kenyan
banking system with the network estimated by maximum entropy
estimation method.

24.3% and 19.2%, respectively, from 2008 to 2015. Therefore,
we can examine which banks borrow (lend) more than they
lend (borrow) in the Kenyan network in terms of percentage.
Following is a breakdown of the percentage figures that these
banks borrow in order of magnitude and they include Kenya
Commercial Bank (24.3%) and Equity Bank (19.2%). The list
of banks that lends includes NIC Bank (55.3%), Diamond
Trust Bank (53.3%), HFCK Bank (49.5%), National Bank
of Kenya (46.2%), Cooperative Bank (38.9%), and Barclays
Bank (35.8%).

4.2. Bank Default Analysis. We estimate the theoretical num-
ber of defaulting banks during the estimation period of
2009–2015, which is presented in Figure 3. Figure 3 indicates
the time variations of the number of defaulting banks in the
Kenyan banking industry with the complete network that
is estimated by the Maximum Entropy Method. It basically
shows that in 2015 the Kenyan banking system is more
unstable than other years.The years in 2013 and 2010 aremore
stable than other years, because no banks defaulted.

There has also been a banking crisis in Kenya since 2015
mostly due to weak supervision and outright fraud by bank
directors. An example of this is the nonlisted Chase Bank
which was put under receivership in the same year. Several
other banks including National bank also showed signs of
collapsing due to the same. Analysts have been warning
banks since 2012 to stop understating loan provisions and to
increase their capitalization. A lot of work is still needed espe-
cially with the regulators including the CMA (Capital Market
Authority) and Kenyan banking sector poses a challenge of
lack of trust in the banking industry as most clients move to
other rudimentary means of saving their money.

Since the Kenyan banking system in the year 2015 is
most unstable, we compare the effect of network structure
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Figure 4: Time variations in number of defaulting banks in Kenyan
banking system with the network estimated by maximum entropy
estimation method and the minimum density approach in the year
2015 with parameter 𝑐 = 10.

on the time variations in the number of defaulting banks
in 2015, which is presented in Figure 4. From Figure 4, we
can see that the network topology estimation methods cause
not much effect on the time variations in the number of
defaulting banks. Next, we compare the evolution of the
network topology, which is showed in Figures 5 and 6,
respectively. In Figures 5 and 6, the time step is showed in
each bank defaults; for example, in Figure 5, when the time
step is 158, then HFCK defaults. After HFCK is removed
from the bank system, the topology of the network system
is changed after 158 time steps. Figures 5 and 6 show that
although the estimation methods are not similar, the results
are similar, perhaps due to the low number of banks in the
network. However, we note in Figure 4 that the number of
defaults increases earlier in the case of the minimum density
approach.Considering that themaximumentropy estimation
produces a complete network, which lowers systemic risk
measures, and that the minimum density approach produces
a network that increases systemic riskmeasures, we can claim
that the time variations in the number of defaulting banks
in the Kenyan banking system, for the real (nonobserved)
network, is around the range provided by the two methods.

4.3. Stress Testing. Since the effect of the topology of the bank
network system estimated by two methods is not relevant,
we conduct a stress test to confirm the strength of the
Kenyan banking system with the minimum density approach
in 2009, 2011, and 2015, which would provide higher systemic
risk measures (more conservative). Our test is somewhat
different from typical macro stress tests, which first remove
a bank from the Kenyan banking system and then find how
many banks defaults the removed bank can cause, namely,
contagious defaults. The results of stress test are listed in
Tables 2, 3, and 4 as follows. Table 2 shows that in the Kenyan
banking system the KCB bank defaulting can result in four
defaults banks (namely, contagious default), because the KCB
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Figure 5:The evolution of the network topology in 2015 estimated bymaximum entropy; the size of each node represents the total percentage
of in-strength and out-strength of each bank and the number of size is marked beside each node.
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Figure 6: The evolution of the network topology in 2015 estimated by the minimum density approach with parameter 𝑐 = 10.
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Table 2: Results of stress test in 2009; CDs number: number of contagious defaults; IC: interconnectedness: the total strength, namely, sum
of in-strength and out-strength; TA: total assets; IA: interbank assets (loans and advances to banks). Total assets are measured at market
value, whereas interbank assets are measured at book value. We use the letters s1, s2, s3, s4, s5, s6, s7, and s8 to stand for Barclays Bank, Coop,
Diamond Trust, Equity Bank, HFCK, KCB, NBK, and NIC, respectively. The unit of currency is Shs.

Number Bank name Collapsed banks CDs number IC TA IA
S1 Barclays Bank S1, S6, S7, S8 3 0.0518 155,151,000 1061000
S2 Coop S1, S2, S6, S7, S8 4 0.2198 110531373 4642338
S3 Diamond Trust S1, S3, S6, S7, S8 4 0.2713 47146767 5638340
S4 Equity Bank S1, S4, S6, S7, S8 4 0.3821 96512000 2022000
S5 HFCK S1, S5, S6, S7, S8 4 0.1624 18280761 2106419
S6 KCB S1, S2, S3, S6, S7, S8 5 0.6858 172384128 5936128
S7 NBK S1, S6, S7, S8 3 0.0445 51404408 1154271
S8 NIC S1, S6, S7, S8 3 0.1824 47558241 4936616

Table 3: Results of stress test in 2011.

Number Bank name Collapsed banks CDs Number IC TA IA
S1 Barclays Bank S1, S2, S5, S7 3 0.0227 166269000 913000
S2 Coop S2, S5, S7 2 0.2137 167772390 7437716
S3 Diamond Trust S2, S3, S5, S7 3 0.2473 77453024 9452751
S4 Equity Bank S2, S3, S4, S5, S7 4 0.4791 176911000 1094000
S5 HFCK S2, S5, S7 2 0.1242 31972113 4724183
S6 KCB S2, S3, S5, S6, S7, S8 5 0.7407 282493553 17648880
S7 NBK S2, S5, S7 2 0.0741 5564998 3388191
S8 NIC S2, S5, S7, S8 3 0.0981 73581321 4486475

Table 4: Results of stress test in 2015.

Number Bank name Collapsed banks CDs number IC TA IA
S1 Barclays Bank S1, S3, S5, S6, S7, S8 5 0.009 241152698 252867
S2 Coop S2, S3, S5, S6, S7, S8 5 0.3109 339549808 13869273
S3 Diamond Trust S3, S5, S6, S7, S8 4 0.2843 190947903 4973737
S4 Equity Bank S3, S4, S5, S6, S7, S8 5 0.3004 341329318 16554308
S5 HFCK S3, S5, S6, S7, S8 4 0.0956 68808654 5517670
S6 KCB S3, S4, S5, S6, S7, S8 5 0.5193 467741173 9254721
S7 NBK S3, S5, S6, S7, S8 4 0.1976 117789712 1850368
S8 NIC S1, S3, S5, S6, S7, S8 5 0.2828 156762225 5464120

bank is the highest interconnectedness and its total assets and
interbank assets are the largest.

In 2011, Table 3 shows the relationship between the
number of contagious defaults and interconnectedness, the
total assets, and the interbank assets.With high interconnect-
edness, the total assets, and the interbank assets, the default
banks cause more contagious defaults banks, for example,
Equity Bank and KCB bank, which cause the number of
contagious defaults to be 4 and 5, respectively. In 2015, the
Kenyan banking system is more unstable seen from Table 4,
because any bank defaults can cause more than 4 banks to
have contagious defaults.

The stress tests results indicate the number of contagious
defaults caused by a SIB’s (systematically important bank)
default. In general, the banks that trigger over four contagious

defaults have significantly more interbank exposures as well
as greater interconnectedness measured in terms of strength
than the other banks do. In contrast, the banks that trigger less
contagious defaults do not necessarily have more interbank
exposures or greater interconnectedness compared to SIB’s
banks. As per the above results, we do not have any bank that
has triggered five contagious results, only KCB.Therefore, we
found the KCB is the systematically important bank in the
Kenyan banking system.

5. Conclusion

The present paper proposed a theoretical framework to find
the time evolution of the systemic risk by calculating the
number of defaults of banks using sequences of daily financial
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data. The framework combines the asset value estimation
algorithm [26, 27], maximum entropy estimation method
[14], the minimum density approach [28], and obligation
clearing algorithm [25], effortlessly to deal with the dynamic
problem—the time evolution of the systemic risk. The asset
value estimation algorithm is used to approximate the asset
values of the banks at each day which are required to calculate
the time evolution of systemic risk. The obligation clearing
algorithm is used to calculate the systemic risk given the
tuples of data on a daily basis.

In the present paper, we evaluated the systemic risk of the
Kenyan banking system using the theoretical framework pro-
posed.TheKenyan interbankmarket involves various domes-
tic contracts and transactions. First, we clarified the network
structure of the Kenyan interbank market and theoretically
analyzed its network structure using the estimated bilateral
exposuresmatrix.We also analyzed the interconnectedness of
each bank in the Kenyan interbank market using the in- and
out-strength measure. Significantly, we found that the banks
designated as systematically important banks (SIBs) play a
central role in the Kenyan interbank market and these are
Kenya Commercial Bank (KCB) and Equity Bank.

Wemodeled contagious defaults in the Kenyan interbank
network using real aggregate banking data from the portal of
African Markets and theoretically analyzed the mechanism
of contagious defaults conditional on a basic default during a
seven-year period (2009–2015).

Further analysis theoretically showed the occurrence of
some contagious defaults in 2009, 2011, and 2015, and these
years are very unstable than other years. We also conducted a
stress test and analyzed the likelihood of contagious defaults
conditional on a bank’s basic default at an evaluation time
point in the future. Some banks designated as SIBs were
confirmed to have the potential to trigger the contagious
defaults of other banks. In general, the banks that trigger over
more contagious defaults have significantly more interbank
exposures as well as greater interconnectedness measured in
terms of strength than the other banks do. We found that the
KCB is themost systematically important bank in the Kenyan
banking system.

To finalize, we are convinced that, in order to uphold the
stability of the Kenyan banking system, there is a need to
apply systemic risk assessment practices. These could also be
useful in the execution of bank-internal systemic stress tests
of default contagion.
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