Boolean filters of principal p-algebras

Abd EL-Mohsen Badawy ${ }^{1}$ and Mohammad Atallah ${ }^{2}$
Department of Mathematics
Faculty of Science, Tanta University
Tanta, Egypt
${ }^{1}$ abdelmohsen.badawy@yahoo.com
${ }^{2}$ atallahm@hotmail

Abstract

The concept of Boolean filters is introduced in principal p-algebras. Many properties of Boolean filters are studied. A set of equivalent conditions is given to characterize Boolean filters. For a closed element a of a principal p-algebra L, we observed that the filter $\left[F_{a}\right)$ which is generated by the Glivenko congruence class F_{a} is a Boolean filter of L. It is proved that the set $F_{B}(L)=\left\{\left[F_{a}\right): a \in B(L)\right\}$ forms a Boolean algebra on its own. Finally, some properties of Boolean filters are investigated with respect to the direct products and homomorphisms.

Keywords: p-algebras; principal p-algebras; Filters; Boolean filters; Glivenko congruence; Direct product; homomorphisms.
2000 Mathematics Subject Classification: 06A06, 06D15, 06D30.

1 Introduction

The study of pseudocomlemented lattices or shortly p -algebras has a long tradition in lattice theory(see [5] or [7]). The best known examples of p-algebras are the Boolean algebras and Stone algebras. The class of quasi-modular p-algebras was introduced by T. Katriňák [8]. M. Haviar [4] introduced the class of principal p-algebras which contains all quasi-modular p -algebras having a smallest dense element,i.e., it also generalizes the Boolean algebras. Recently T. Katriňák and J. Guričan [9] discussed the tight connection between the spectra and the Glivenko congruence of finite pseudocomplemented lattice.

Recently M. Sambasiva Rao and A. Badawy [10] introduced and characterized μ-filters of distributive lattices. A. Badawy and M. Sambasiva Rao [1] introduced σ-ideals of distributive p-algebras. M. Sambasiva Rao and K.P. Shum [11] introduced the concept of Boolean filters of bounded pseudocomplemented distributive lattices. Also A. Badawy and K. P. Shum [2] studied the relationship between certain congruences and Boolean filters of a quasi-modular p-algebra.

After Preliminaries in section 2, the concept of Boolean filters is introduced in principal p algebras and then many properties of Boolean filters are studied in section 3. It is observed that every maximal filter is a Boolean filter and the converse is not true. However, a set of equivalent
conditions are derived for a Boolean filter to become a maximal filter. Also a characterization of Boolean filters of principal p-algebras is given. In section 4, we introduced a Boolean filter $\left[F_{a}\right)$ for each $a \in B(L)$, which is generated by the congruence class F_{a} of the Glivenko congruence relation Φ on a principal p-algebra L. It is proved that the set $F_{B}(L)=\left\{\left[F_{a}\right): a \in B(L)\right\}$ forms a Boolean algebra on its own. It is also observed that $F_{B}(L)$ is isomorphic to $B(L)$. Some properties of the direct products of Boolean filters are investigated in section 5. In the last section of this paper, the Boolean filters are characterized in terms of homomorphisms.

2 Preliminaries

In this section, we recall some definitions and results which are taken mostly from the papers [3], [4], [5], and [8] for the ready reference of the reader.

A pseudocomplemented lattice (or p-algebra) is an algebra ($L ; \vee, \wedge,{ }^{*}, 0,1$) where $(L ; \vee, \wedge, 0,1)$ is a bounded lattice and * is the unary operation of pseudocomplementation, i.e.,

$$
x \wedge a=0 \Leftrightarrow x \leq a^{*}
$$

A p-algebra L is called distributive (modular) if the lattice ($L ; \vee, \wedge, 0,1$) is a distributive (modular). The variety of modular p -algebras contains the variety of distributive p -algebras. A p -algebra satisfies the Stone identity

$$
x^{*} \vee x^{* *}=1
$$

is called an S-algebra. A distributive S-algebra is called a Stone algebra.
Let L be a p-algebra. An element $a \in L$ is called closed if $a=a^{* *}$. The set $B(L)=\{a \in L$: $\left.a=a^{* *}\right\}$ of all closed elements of L forms a Boolean algebra $(B(L) ; \nabla, \wedge, 0,1)$, where the join ∇ is defined by the rule

$$
a \nabla b=\left(a^{*} \wedge b^{*}\right)^{*}=(a \vee b)^{* *} .
$$

In S-algebra, $B(L)$ is a subalgebra of L where $a \nabla b=a \vee b$. An element $d \in L$ is said to be dense if $d^{*}=0$. The set $D(L)=\left\{x \in L: x^{*}=0\right\}=\left\{x \vee x^{*}: x \in L\right\}$ of all dense elements of L is a filter of L.

Besides distributive and modular p-algebras, a larger variety of quasi-modular p-algebras is interesting to investigate (see [5]). The variety of quasi-modular p-algebras is defined by the identity

$$
\left((x \wedge y) \vee z^{* *}\right) \wedge x=(x \wedge y) \vee\left(z^{* *} \wedge x\right)
$$

It is known (see [6.1, 8]) the quasi-modular p-algebras satisfy the identity

$$
x=x^{* *} \wedge\left(x \vee x^{*}\right)
$$

which can be weakened to the equation $x=x^{* *} \wedge\left(x \vee d_{L}\right)$ in the case the filter $D(L)$ is principal and $D(L)=\left[d_{L}\right)$.

For an arbitrary lattice L, the set $F(L)$ of all filters of L ordered under set inclusion is a
lattice. It is known that $F(L)$ is a distributive (modular) if and only if L is distributive (modular). Let $a \in L,[a)$ denote the filter of L generated by a.
The relation Φ of a p-algebra L defined by

$$
(x, y) \in \Phi \Leftrightarrow x^{*}=y^{*}
$$

which is called the Glivenko congruence relation, is a congruence relation on L, and $L / \Phi \cong$ $B(L)$ holds. Each congruence class $[x] \Phi$ contains exactly one element of $B(L)$ which is the largest element in the congruence class. The greatest element of $[x] \Phi$ is $x^{* *}$. Hence Φ partitions L into $\left\{F_{a}: a \in B(L)\right\}$, where $F_{a}=\left\{x \in L: x^{* *}=a\right\}=[a] \Phi, a \in B(L)$. Clearly $F_{0}=\{0\}$ and $F_{1}=D(L)$. It is known that $\left[F_{a}\right)=\left\{x \in L: x^{* *} \geq a\right\}$, for each $a \in B(L)$.

We shall frequently use the following rules of the computations in p-algebras.
For any two elements a, b of a p-algebra L, we have (see [7],[9])
(1) $0^{* *}=0$ and $1^{* *}$,
(2) $a \wedge a^{*}=0$,
(3) $a \leq b$ implies $b^{*} \leq a^{*}$,
(4) $a \leq a^{* *}$,
(5) $a^{* * *}=a^{*}$,
(6) $(a \vee b)^{*}=a^{*} \wedge b^{*}$,
(7) $(a \wedge b)^{*} \geq a^{*} \vee b^{*}$,
(8) $(a \wedge b)^{* *}=a^{* *} \wedge b^{* *}$,
(9) $(a \vee b)^{* *}=\left(a^{*} \wedge b^{*}\right)^{*}=\left(a^{* *} \vee b^{* *}\right)^{* *}$.
M. Haviar [4] introduced the class of principal p-algebras which contains all quasi-modular p-algebras having a smallest dense element.

Definition 2.1. [Definition 2.1, 4] A p-algebra $\left(L ; \vee, \wedge,{ }^{*}, 0,1\right)$ is called a principal p-algebra, if it satisfies the following conditions :
(i) the filter $D(L)$ is principal, i.e., there exists an element $d_{L} \in L$ such that $D(L)=\left[d_{L}\right)$;
(ii) the element d_{L} is distributive, i.e., $(x \wedge y) \vee d_{L}=\left(x \vee d_{L}\right) \wedge\left(y \vee d_{L}\right)$ for all $x, y \in L$;
(iii) $x=x^{* *} \wedge\left(x \vee d_{L}\right)$ for any $x \in L$.

If L satisfies the identity $x^{*} \vee x^{* *}=1$, then it will be called a principal S-algebra. Throughout this paper, d_{L} stands for a smallest dense element of a principal p-algebra L, unless otherwise mentioned.

3 Boolean filters of principal p-algebras

In this Section, the concept of Boolean filters is introduced in a principal p-algebra. Some properties of Boolean filters are investigated in a principal p-algebra. It is proved that the maximal filter and prime Boolean filter are equivalent. A characterization of Boolean filters of a principal p-algebra is given.

Definition 3.1. Let L be a principal p-algebra with a smallest dense element d_{L}. A filter F of L is called aBoolean filter if $x \vee d_{L} \in F$ for each $x \in L$.

Now we give some Examples
(1) For any principal p -algebra L with a smallest dense element d_{L}, the filter $D(L)=\left[d_{L}\right)$ is a Boolean filter of L as $x \vee d_{L} \in D(L)$ for all $x \in L$. Moreover $D(L)$ is the smallest Boolean filter of L and L is the greatest Boolean filter of L.
(2) Let L be a Boolean algebra. Then $D(L)=\{1\}$. Thus any filter F of L is a principal Boolean filter as $x \vee 1=1 \in F$ for each $x \in L$.
(3) Let $B_{4}=\{0, a, b, c: 0<a, b<c\}$ be a four elements Boolean lattice and $C_{2}=\{d, 1: d<1\}$ a two element chain. Clearly $B_{4} \bigoplus C_{2}$ is a principal p -algebra (where \bigoplus stands for ordinal sum). The set of all Boolean filters of L is $\{\{c, d, 1\},\{a, c, d, 1\},\{b, c, d, 1\}, L\}$. We observe that the filters $\{d, 1\}$ and $\{1\}$ are not Boolean.

Lemma 3.1. Every maximal filter of a principal p-algebra L is a Boolean filter.
Proof. Let M be a maximal filter of L. Suppose $x \vee d_{L} \notin M$ for some $x \in L$. Then $M \vee\left[x \vee d_{L}\right)=$ L. Hence $a \wedge b=0$ for some $a \in M, b \in\left[x \vee d_{L}\right)$. Then we have

$$
\begin{aligned}
a \wedge b=0 & \Rightarrow 0=a \wedge b \geq a \wedge\left(x \vee d_{L}\right) \geq(a \wedge x) \vee\left(a \wedge d_{L}\right) \\
& \Rightarrow a \wedge x=0 \text { and } a \wedge d_{L}=0 \\
& \Rightarrow a \leq x^{*} \text { and } a \leq d_{L}^{*}=0 \\
& \Rightarrow a=0
\end{aligned}
$$

Then $0=a \in M$ which is a contradiction. Hence $x \vee d_{L} \in M$ for all $x \in L$. Therefore, M is a Boolean filter of L.

It is not true that every Boolean filter is a maximal filter. For, in Example 3 above, the filter $\{c, d, 1\}$ is a Boolean filter but not a maximal filter.

Lemma 3.2. A proper filter of a principal p-algebra L which contains either x or x^{*} for all $x \in L$ is a Boolean filter.

Proof. Let F be a proper filter contains either x or x^{*} for all $x \in L$. Then $x \vee x^{*} \in F$ and $D(L) \subseteq F$. Since L is a principal p-algebra, we have $D(L)=\left[d_{L}\right)$ for some $d_{L} \in L$. Then $x \vee d_{L} \in D(L)$ implies $x \vee d_{L} \in F$. Therefore F is a Boolean filter.

Now, we study some equivalent conditions for a Boolean filter of a principal p-algebra to became a maximal filter.

Theorem 3.3. Let F be a filter of a principal p-algebra L. Then the following conditions are equivalent
(1) F is maximal,
(2) $x \notin F$ implies $x^{*} \in F$ for all $x \in L$,
(3) F is prime Boolean.

Proof. (1) $\Rightarrow(2)$: Let F is a maximal of L. Suppose $x \in L-F$. Then $F \vee[x)=L$. Thus $a \wedge x=0$ for some $a \in F$. Hence $a \leq x^{*}$, which implies that $x^{*} \in F$.
$(2) \Rightarrow(3)$: Suppose F is not Boolean. Then $x \vee d_{L} \notin F$ for some $x \in L$. Then $x \notin F$ and $d_{L} \notin F$. Now $y \vee y^{*}=d_{L} \notin F$ for some $y \in L$. Hence $y \notin F$ and $y^{*} \notin F$, which is a contradiction to the condition (2). Then F is a Boolean filter. Suppose F is not prime. Let $x \vee y \in F$ such that $x \notin F$ and $y \notin F$. Then by the condition (2), we get $x^{*} \in F$ and $y^{*} \in F$. Hence $(x \vee y)^{*}=x^{*} \wedge y^{*} \in F$. Therefore $0=(x \vee y) \wedge(x \vee y)^{*} \in F$, which is a contradiction. So F is prime. Then F is a prime Boolean filter.
$(3) \Rightarrow(1)$: Let F be a prime Boolean filter of L. Suppose F is not maximal. There exists a proper filter G of L such that $F \subset G$. Choose $x \in G-F$. Since F is Boolean, we get, $x \vee d_{L} \in F$. Then $x \vee x^{*} \geq x \vee d_{L} \in F$ implies $x \vee x^{*} \in F$. Since F is prime and $x \notin F$, we get $x^{*} \in F \subset G$. Hence we have $0=x \wedge x^{*} \in G$, which is a contradiction. Therefore F is a maximal filter.

The following lemma is obvious from the Definition 3.1 of Boolean filter.
Lemma 3.4. Let L be a principal p-algebra. Then we have the following :
(1) Any filter of L containing $D(L)$ is a Boolean filter,
(2) Any filter of L containing a Boolean filter is a Boolean filter,
(3) The set $B F(L)$ of all Boolean filters of L is a $\{1\}$-sublattice of the lattice $F(L)$.

Now, we characterize the Boolean filters on the following Theorem 3.5
Theorem 3.5. Let F be a proper filter of a principal p-algebra L. Then the following conditions are equivalent.
(1) F is a Boolean filter,
(2) $x^{* *} \in F$ implies $x \in F$,
(3) For $x, y \in L, x^{*}=y^{*}$ and $x \in F$ imply $y \in F$.

Proof. (1) $\Rightarrow(2)$: Assume that F is a Boolean filter of L. Suppose $x^{* *} \in F$. Since F is a Boolean filter, we have $x \vee d_{L} \in F$ for all $x \in L$. Then $x^{* *} \wedge\left(x \vee d_{L}\right) \in F$. Since $x=x^{* *} \wedge\left(x \vee d_{L}\right)$ for every $x \in L$, then $x \in F$ and the condition (2) holds.
$(2) \Rightarrow(3):$ Let $x, y \in L$ and $x^{*}=y^{*}$. Suppose $x \in F$. Then $y^{* *}=x^{* *} \in F$. Then by the condition (2), we get $y \in F$.
$(3) \Rightarrow(1)$: Let $x \in D(L)$. So $x^{*}=0 \leq a^{*}$ for all $a \in F$. Then $x^{* *} \geq a^{* *} \in F$. Hence $x^{* *} \in F$. Since $x^{*}=x^{* * *}$ and $x^{* *} \in F$, by the condition (3), we have $x \in F$. Then $D(L) \subseteq F$. Thus by Lemma 3.4(1), we get that F is a Boolean filter of L.

4 Boolean filters via Glivenko congruence classes

In this section, we show that for every closed element a of a principal p -algebra L, the congruence class F_{a} of the Glivenko congruence relation Φ on L generates a Boolean filter $\left[F_{a}\right)$. Many properties of the Boolean filters $\left[F_{a}\right)$ for all $a \in B(L)$ are studied in a principal
p-algebra L. Also, we derived that the set $F_{B}(L)=\left\{\left[F_{a}\right): a \in B(L)\right\}$ forms a Boolean algebra. It is observed that $F_{B}(L)$ is isomorphic to $B(L)$.

Theorem 4.1. Let L be a principal p-algebra. Then for any two closed elements a, b of L we have the following conditions :
(1) $\left[F_{a}\right)=\left[a \wedge d_{L}\right)$,
(2) $\left[F_{a}\right)$ is a principal Boolean filter of L,
(3) $a \leq b$ in $B(L)$ if and only if $\left[F_{b}\right) \subseteq\left[F_{a}\right)$ in $F_{B}(L)$,
(4) $\left[F_{a \wedge b}\right)=\left[F_{a}\right) \vee\left[F_{b}\right)$,
(5) $\left[F_{a \nabla b}\right)=\left[F_{a}\right) \cap\left[F_{b}\right)$,
(6) $\left[F_{a \vee b}\right)=\left[F_{a}\right) \cap\left[F_{b}\right)$ whenever L is a principal S-algebra.

Proof. (1). Since L is a principal p-algebra, then $x=x^{* *} \wedge\left(x \vee d_{L}\right)$ for every $x \in L$. Now for all $a \in B(L)$, we get

$$
\begin{aligned}
{\left[F_{a}\right)=\left\{x \in L: x^{* *} \geq a\right\} } & =\left\{x \in L: x=x^{* *} \wedge\left(x \vee d_{L}\right) \geq a \wedge\left(x \vee d_{L}\right)\right\} \\
& =\left\{x \in L: x \geq a \wedge d_{L}\right\} \\
& =\left[a \wedge d_{L}\right)
\end{aligned}
$$

(2) Since $d_{L} \vee x \geq d_{L} \geq a \wedge d_{L}$, then $d_{L} \vee x \in\left[a \wedge d_{L}\right)=\left[F_{a}\right)$. Therefore $\left[F_{a}\right)$ is a principal Boolean filter of L.
(3) Let $a \leq b$ in $B(L)$. Assume $x \in\left[F_{b}\right)$. Then $x^{* *} \geq b \geq a$. Hence $x \in\left[F_{a}\right)$ and $\left[F_{b}\right) \subseteq\left[F_{a}\right)$ Conversely, suppose $\left[F_{b}\right) \subseteq\left[F_{a}\right)$. Since $b \in F_{b} \subseteq\left[F_{b}\right) \subseteq\left[F_{a}\right)$. Then we get $b=b^{* *} \geq a$.
(4) From (1) we have $\left[F_{a \wedge b}\right)=\left[a \wedge b \wedge d_{L}\right)$. Then

$$
\begin{aligned}
{\left[F_{a \wedge b}\right) } & =\left[a \wedge b \wedge d_{L}\right) \\
& =\left[\left(a \wedge d_{L}\right) \wedge\left(b \wedge d_{L}\right)\right) \\
& =\left[a \wedge d_{L}\right) \vee\left[b \wedge d_{L}\right) \\
& =\left[F_{a}\right) \vee\left[F_{b}\right)
\end{aligned}
$$

(5) Since $a, b \leq a \nabla b$ on $B(L)$, then by (2), we have $\left[F_{a \nabla b}\right) \subseteq\left[F_{a}\right),\left[F_{b}\right)$. Then $\left[F_{a \nabla b}\right)$ is a lower bound of both $\left[F_{a}\right)$ and $\left[F_{b}\right)$ on $F_{B}(L)$. Assume $\left[F_{z}\right) \subseteq\left[F_{a}\right)$ and $\left[F_{z}\right) \subseteq\left[F_{b}\right)$ for some $z \in B(L)$. Then by (2) we have $z \geq a$ and $z \geq b$. Then $z=z^{* *} \geq a \nabla b$ on $B(L)$. So $z \in\left[F_{a \nabla b}\right)$. Hence $\left[F_{z}\right) \subseteq\left[F_{a \nabla b}\right)$. Then $\left[F_{a \nabla b}\right)$ the infimum of both $\left[F_{a}\right)$ and $\left[F_{b}\right)$ on $F_{B}(L)$.
(6) Since L is a principal S-algebra, then $a \nabla b=a \vee b$. So $\left[F_{a \vee b}\right)=\left\{x \in L: x^{* *} \geq a \vee b\right\}=$ $\left\{x \in L: x^{* *} \geq a, b\right\}=\left\{x \in L: x^{* *} \geq a\right\} \cap\left\{x \in L: x^{* *} \geq b\right\}=\left[F_{a}\right) \cap\left[F_{b}\right)$.

Theorem 4.2. Let L be a principal p-algebra, the set $F_{B}(L)$ forms a Boolean algebra on its own. Moreover, $B(L) \cong F_{B}(L)$.

Proof. Clearly $\left[F_{1}\right)=D(L)$ and $\left[F_{0}\right)=L$ are the smallest and the greatest elements of $F_{B}(L)$ respectively. For every $\left[F_{a}\right),\left[F_{b}\right) \in F_{B}(L)$, by Theorem 4.1(3),(4) we get $\left[F_{a \wedge b}\right)=\left[F_{a}\right) \vee\left[F_{b}\right)$ and $\left[F_{a \nabla b}\right)=\left[F_{a}\right) \cap\left[F_{b}\right)$. Then $\left(F_{B}(L), \vee, \cap, D(L), L\right)$ is a bounded lattice. For the distributivity
of $F_{B}(L)$, let $\left[F_{a}\right),\left[F_{b}\right)$ and $\left[F_{c}\right)$ are three elements of $F_{B}(L)$. Using distributivity of $B(L)$ we get

$$
\begin{aligned}
{\left[F_{a}\right) \cap\left(\left[F_{b}\right) \vee\left[F_{c}\right)\right) } & =\left[F_{a}\right) \cap\left[F_{b \wedge c}\right) \\
& =\left[F_{a \nabla(b \wedge c)}\right) \\
& =\left[F_{(a \nabla b) \wedge(a \nabla c)}\right) \\
& =\left[F_{a \nabla b}\right) \vee\left[F_{a \nabla c}\right) \\
& =\left([F _ { a }) \cap ([F _ { b })) \vee \left(\left[F_{a}\right) \cap\left(\left[F_{c}\right)\right) .\right.\right.
\end{aligned}
$$

Then $F_{B}(L)$ is a bounded distributive lattice. Define a unary operation ${ }^{-}$on $F_{B}(L)$ by $\overline{\left[F_{a}\right)}=$ [$F_{a^{*}}$). Now

$$
\begin{gathered}
\overline{\left[F_{a}\right)} \cap\left[F_{a}\right)=\left[F_{a^{*}}\right) \cap\left[F_{a}\right)=\left[F_{a^{*} * a}\right)=\left[F_{1}\right)=D(L), \\
\overline{\left[F_{a}\right)} \vee\left[F_{a}\right)=\left[F_{a^{*}}\right) \vee\left[F_{a}\right)=\left[F_{a^{*} \wedge a}\right)=\left[F_{0}\right)=L .
\end{gathered}
$$

Then $\left[F_{a^{*}}\right)$ is the complement of $\left[F_{a}\right)$ in $F_{B}(L)$. Therefore $\left(F_{B}(L), \vee, \cap,{ }^{-}, D(L), L\right)$ is a Boolean algebra. Define $f: B(L) \rightarrow F_{B}(L)$ by $f(a)=\left[F_{a^{*}}\right)$. Now

$$
\begin{aligned}
f(a \wedge b) & =\left[F_{(a \wedge b)^{*}}\right)=\left[F_{a^{*} \nabla b^{*}}\right)=\left[F_{a^{*}}\right) \cap\left[F_{b^{*}}\right)=f(a) \cap f(b), \\
f(a \nabla b) & =\left[F_{(a \nabla b)^{*}}\right)=\left[F_{a^{*} \wedge b^{*}}\right)=\left[F_{a^{*}}\right) \vee\left[F_{b^{*}}\right)=f(a) \vee f(b), \\
f\left(a^{*}\right) & =\left[F_{a^{* *}}\right)=\overline{\left[F_{a^{*}}\right)}=\overline{f(a)}
\end{aligned}
$$

Obviously, $f(0)=D(L)$ and $f(1)=L$. Then f is a (0,1)-homomorphism. Let $f(a)=f(b)$, then $\left[F_{a^{*}}\right)=\left[F_{b^{*}}\right)$. Then $a^{*}=b^{*}$ implies $a=a^{* *}=b^{* *}=b$. Hence f is an injective homomorphism. Also f is surjective as for every $\left[F_{a}\right) \in F_{B}(L)$, we have $\left[F_{a}\right)=\left[F_{a^{* *}}\right)=f\left(a^{*}\right)$. Therefore f is an isomorphism and $B(L) \cong F_{B}(L)$.

Lemma 4.3. Let $F=[x), x \in L$ be a principal Boolean filter of a principal p-algebra L. Then we have the following
(1) $F \cap B(L)$ is a principal filter of $B(L)$ generated by $x^{* *}$,
(2) $F=\left[F_{x^{* *}}\right)$.

Proof. (1). We prove that $[x) \cap B(L)=\left[x^{* *}\right)$. Obviously $\left[x^{* *}\right) \subseteq[x) \cap B(L)$. Conversely, let $y \in[x) \cap B(L)$. Thus $y \geq x$ and $y \in B(L)$, which implies $y=y^{* *} \geq x^{* *}$. Hence $y \in\left[x^{* *}\right)$ and $[x) \cap B(L) \subseteq\left[x^{* *}\right)$. Therefore $F \cap B(L)=\left[x^{* *}\right)$.
(2) Since $\left[F_{x^{* *}}\right)=\left[x^{* *} \wedge d_{L}\right),\left[d_{L}\right)=D(L) \subseteq F=[x)$ and $x=x^{* *} \wedge\left(x \vee d_{L}\right)$, then

$$
\begin{aligned}
{\left[F_{x^{* *}}\right) } & =\left[x^{* *} \wedge d_{L}\right) \\
& =\left[x^{* *} \wedge\left(x \vee d_{L}\right) \wedge d_{L}\right) \text { as } d_{L} \leq x \vee d_{L} \\
& =\left[x \wedge d_{L}\right) \\
& =[x) \\
& =F .
\end{aligned}
$$

Therefore $F=\left[F_{x^{* *}}\right)=\left[x^{* *} \wedge d_{L}\right)$.

Corollary 4.4. Let L be a finite p-algebra. Then we have
(1) Every Boolean filter can be expressed as $\left[F_{a}\right)$ for some $a \in B(L)$,
(2) $B F(L)=F_{B}(L)$.

Now, we can represent any Boolean filter of a principal p-algebra L as a union of certain elements of $F_{B}(L)$.

Theorem 4.5. Let F be a Boolean filter of a principal p-algebra L. Then $F=\bigcup_{x \in F}\left[F_{x^{* *}}\right)$.
Proof. Let $x \in F$. Then $x^{* *} \in F$ and $x \vee d_{L} \in D(L) \subseteq F$. Thus $x=x^{* *} \wedge\left(x \vee d_{L}\right) \in\left[x^{* *} \wedge d_{L}\right)=$ $\left[F_{x^{* *}}\right) \subseteq \bigcup_{x \in F}\left[F_{x^{* *}}\right)$. Then $F \subseteq \bigcup_{x \in F}\left[F_{x^{* *}}\right)$. Conversely, let $y \in \bigcup_{x \in F}\left[F_{x^{* *}}\right)$. Then $y \in\left[F_{z^{* *}}\right)$ for some $z \in F$. Hence $y^{* *} \geq z^{* *} \in F$. Then $y^{* *} \in F$ implies $y \in F$ as F is Boolean. Therefore $\bigcup_{x \in F}\left[F_{x^{* *}}\right) \subseteq F$.

5 Direct product of Boolean filters

Let L_{1} and L_{2} be two p-algebras. Then the direct product $L_{1} \times L_{2}$ is also a p-algebra, where * is defined on $L_{1} \times L_{2}$ by $(a, b)^{*}=\left(a^{*}, b^{*}\right)$. Firstly we study the following useful Lemma.

Lemma 5.1. If L_{1} and L_{2} be principal p-algebras, then we have the following :
(1) $D\left(L_{1} \times L_{2}\right)=D\left(L_{1}\right) \times D\left(L_{2}\right)$,
(2) $B\left(L_{1} \times L_{2}\right)=B\left(L_{1}\right) \times B\left(L_{2}\right)$,
(3) $L_{1} \times L_{2}$ is a principal p-algebra.

Proof. (1). Let $(d, e) \in D\left(L_{1} \times L_{2}\right)$. Then we get

$$
\begin{aligned}
(d, e) \in D\left(L_{1} \times L_{2}\right) & \Leftrightarrow(d, e)^{*}=(0,0) \\
& \Leftrightarrow\left(d^{*}, e^{*}\right)=(0,0) \\
& \Leftrightarrow d \in D\left(L_{1}\right) \text { and } e \in D\left(L_{2}\right) . \\
& \Leftrightarrow(d, e) \in D\left(L_{1}\right) \times D\left(L_{2}\right) .
\end{aligned}
$$

(2). For any $(a, b) \in B\left(L_{1} \times L_{2}\right)$ we have

$$
\begin{aligned}
(a, b) \in B\left(L_{1} \times L_{2}\right) & \Leftrightarrow(a, b)^{* *}=(a, b) \\
& \Leftrightarrow\left(a^{* *}, b^{* *}\right)=(a, b) \\
& \Leftrightarrow a^{* *}=a \text { and } b^{* *}=b \\
& \Leftrightarrow a \in B\left(L_{1}\right) \text { and } b \in B\left(L_{2}\right) \\
& \Leftrightarrow(a, b) \in B\left(L_{1}\right) \times B\left(L_{2}\right) .
\end{aligned}
$$

(3). Since L_{1} and L_{2} be principal p-algebras, then $D\left(L_{1}\right)=\left[d_{L_{1}}\right)$ and $D\left(L_{2}\right)=\left[d_{L_{2}}\right)$ for some $d_{L_{1}} \in L_{1}$ and $d_{L_{2}} \in L_{2}$. Thus by (1) we get

$$
\begin{aligned}
D\left(L_{1} \times L_{2}\right) & =D\left(L_{1}\right) \times D\left(L_{2}\right) \\
& =\left[d_{L_{1}}\right) \times\left[d_{L_{2}}\right) \\
& =\left[\left(d_{L_{1}}, d_{L_{2}}\right)\right) .
\end{aligned}
$$

So $D\left(L_{1} \times L_{2}\right)$ is a principal filter of $L_{1} \times L_{2}$ and $\left(d_{L_{1}}, d_{L_{2}}\right)$ is the smallest dense element of $L_{1} \times L_{2}$. Since $x=x^{* *} \wedge\left(x \vee d_{L_{1}}\right)$ for all $x \in L_{1}$ and $y=y^{* *} \wedge\left(y \vee d_{L_{2}}\right)$ for all $y \in L_{2}$, then we get

$$
\begin{aligned}
(x, y)^{* *} \wedge\left((x, y) \vee\left(d_{L_{1}}, d_{L_{2}}\right)\right) & =\left(x^{* *}, y^{* *}\right) \wedge\left(x \vee d_{L_{1}}, y \vee d_{L_{2}}\right) \\
& =\left(x^{* *} \wedge\left(x \vee d_{L_{1}}\right), y^{* *} \wedge\left(y \vee d_{L_{2}}\right)\right) \\
& =(x, y)
\end{aligned}
$$

Consequently $L_{1} \times L_{2}$ is a principal p-algebra.
Now we study the direct product of Boolean filters of principal p-algebras.
Theorem 5.2. If F_{1} and F_{2} are Boolean filters of principal p-algebras L_{1} and L_{2} respectively, then $F_{1} \times F_{2}$ is a Boolean filter of $L_{1} \times L_{2}$. Conversely, every Boolean filter F of $L_{1} \times L_{2}$ can be expressed as $F=F_{1} \times F_{2}$ where F_{1} and F_{2} are Boolean filters of L_{1} and L_{2} respectively.

Proof. Let $d_{L_{1}}, d_{L_{2}}$ be the smallest dense elements of L_{1}, L_{2} respectively. Let F_{1} and F_{2} be Boolean filters of L_{1} and L_{2} respectively. Obviously $F_{1} \times F_{2}$ is a filter of $L_{1} \times L_{2}$. Since F_{1} and F_{2} are Boolean filters of L_{1} and L_{2} respectively, we get $a \vee d_{L_{1}} \in F_{1}$ for each $a \in L_{1}$ and $b \vee d_{L_{2}} \in F_{2}$ for each $b \in L_{2}$. So we have

$$
(a, b) \vee\left(d_{L_{1}}, d_{L_{2}}\right)=\left(a \vee d_{L_{1}}, b \vee d_{L_{2}}\right) \in F_{1} \times F_{2}
$$

Then $F_{1} \times F_{2}$ is a Boolean filter of $L_{1} \times L_{2}$. Conversely, let F be a Boolean filter of $L_{1} \times L_{2}$. Consider F_{1} and F_{2} as follows :

$$
F_{1}=\left\{x \in L_{1}:(x, 1) \in F\right\} \text { and } F_{2}=\left\{y \in L_{2}:(1, y) \in F\right\}
$$

Clearly F_{1} and F_{2} are filters of L_{1} and L_{2} respectively. Now we prove that F_{1} and F_{2} are Boolean filters of L_{1} and L_{2} respectively. For each $x \in L_{1},(x, 1) \in L_{1} \times L_{2}$. Since F is Boolean, then $\left(x \vee d_{L}, 1\right)=(x, 1) \vee\left(d_{L_{1}}, d_{L_{2}}\right) \in F$. Hence $x \vee d_{L_{1}} \in F_{1}$. Therefore F_{1} is a Boolean filter of L_{1}. Similarly, we get F_{2} is a Boolean filter of L_{2}. Now we prove that $F=F_{1} \times F_{2}$. Let $(x, y) \in F$. Then we have

$$
\begin{aligned}
(x, y) \in F & \Rightarrow(x, 1) \in F \text { and }(1, y) \in F \\
& \Rightarrow x \in F_{1} \text { and } y \in F_{2} \\
& \Rightarrow(x, y) \in F_{1} \times F_{2}
\end{aligned}
$$

Then $F \subseteq F_{1} \times F_{2}$. Conversely, let $(x, y) \in F_{1} \times F_{2}$. Now

$$
\begin{aligned}
(x, y) \in F_{1} \times F_{2} & \Rightarrow x \in F_{1} \text { and } y \in F_{2} \\
& \Rightarrow(x, 1) \in F \text { and }(1, y) \in F \\
& \Rightarrow(x, y)=(x, 1) \wedge(1, y) \in F
\end{aligned}
$$

Then $F_{1} \times F_{2} \subseteq F$. Therefore $F_{1} \times F_{2}=F$.
Lemma 5.3. For any two Boolean filters $\left[F_{a}\right)$ and $\left[F_{b}\right)$ of principal p-algebras L_{1} and L_{1} respectively, $\left[F_{a}\right) \times\left[F_{b}\right)=\left[F_{(a, b)}\right)$

Proof. From the above Theorem 5.2, $\left[F_{a}\right) \times\left[F_{b}\right)$ is a Boolean filter of $L_{1} \times L_{2}$. Now

$$
\begin{aligned}
(x, y) \in\left[F_{a}\right) \times\left[F_{b}\right) & \Leftrightarrow x \in\left[F_{a}\right) \text { and } y \in\left[F_{b}\right) \\
& \Leftrightarrow x^{* *} \geq a \text { and } y^{* *} \geq b \\
& \Leftrightarrow(x, y)^{* *}=\left(x^{* *}, y^{* *}\right) \geq(a, b) \\
& \Leftrightarrow(x, y) \in\left[F_{(a, b)}\right) .
\end{aligned}
$$

Therefore $\left[F_{a}\right) \times\left[F_{b}\right)=\left[F_{(a, b)}\right)$.

6 Boolean filters and homomorphisms

In this section, some properties of the homomorphic images and the inverse images of Boolean filters are studied. By a homomorphism on a p-algebra L, we mean a lattice homomorphism h which preserves the pseudocomplementation, that is, $(h(x))^{*}=h\left(x^{*}\right)$ for all $x \in L$.

Theorem 6.1. Let L, L_{1} be principal p-algebras with smallest dense elements $d_{L}, d_{L_{1}}$ respectively and $h: L \rightarrow L_{1}$ an onto homomorphism. Then
(1) $h\left(d_{L}\right)=d_{L_{1}}$
(2) $h\left(\left[F_{a}\right)\right)=\left[F_{h(a)}\right)$ for all $a \in B(L)$,
(3) $h(F)$ is a Boolean filter of L_{1} whenever F is a Boolean filter of L.

Proof. (1). We observe that $h\left(d_{L}\right) \in D\left(L_{1}\right)$ as $\left(h\left(d_{L}\right)\right)^{*}=0$. Then $d_{L_{1}} \leq h\left(d_{L}\right)$. Since h is an onto homomorphism, then $d_{L_{1}}=h(x)$ for some $x \in L$. So $(h(x))^{* *}=1$. Now

$$
\begin{aligned}
d_{L_{1}} & =h(x) \\
& =h\left(x^{* *} \wedge\left(x \vee d_{L}\right)\right) \\
& =\left((h(x))^{* *} \wedge\left(h(x) \vee h\left(d_{L}\right)\right)\right. \\
& =h(x) \vee h\left(d_{L}\right) \geq h\left(d_{L}\right) .
\end{aligned}
$$

Therefore $h\left(d_{L}\right)=d_{L_{1}}$.
(2). Let $a \in B(L)$. Let $t \in h\left(\left[F_{a}\right)\right.$. Then $t=h(x)$ for some $x \in\left(\left[F_{a}\right)\right)$. Then $x^{* *} \geq a$ implies $t^{* *}=h\left(x^{* *}\right) \geq h(a)$. It follows that $t \in\left[F_{h(a)}\right)$. Conversely, let $y \in\left[F_{h(a)}\right.$. Then $y^{* *} \geq h(a)$. Hence $y^{* *} \geq(h(a))^{* *}=h\left(a^{* *}\right)=h(a)$. Then $y \in h\left(\left[F_{a}\right)\right)$.
(3). Let F is a Boolean filter of L. Clearly $h(F)$ is a filter of L_{1}. Since F is Boolean, then $x \vee d_{L} \in F$ for all $x \in L$. Then by (1) we get $h(x) \vee d_{L_{1}}=h(x) \vee h\left(d_{L}\right)=h\left(x \vee d_{L}\right) \in h(F)$. Then $h(F)$ is a Boolean filter of L_{1}.

Theorem 6.2. Let $h: L \rightarrow L_{1}$ be a homomorphism of a principal p-algebra $\left(L ; \vee, \wedge,{ }^{*}, 0_{L}, 1_{L}\right)$ onto a principal p-algebra $\left(L_{1} ; \vee, \wedge,{ }^{*}, 0_{L_{1}}, 1_{L_{1}}\right)$. Then $F_{B}(L)$ is homomorphic of $F_{B}\left(L_{1}\right)$.

Proof. Define $g: F_{B}(L) \rightarrow F_{B}\left(L_{1}\right)$ by $g\left(\left[F_{a}\right)\right)=\left[F_{h(a)}\right)$ for all $a \in B(L)$. For every $a, b \in B(L)$, we get

$$
\begin{aligned}
h(a \nabla b) & \left.=h\left(a^{*} \wedge b^{*}\right)^{*}\right)=h(a \vee b)^{* *} \\
& =(h(a \vee b))^{* *}=(h(a) \vee h(b))^{* *} \\
& =\left((h(a))^{*} \wedge(h(b))^{*}\right)^{*}=h(a) \nabla h(b) .
\end{aligned}
$$

Consequently, we get

$$
\begin{aligned}
g\left(\left[F_{a}\right) \vee\left[F_{b}\right)\right) & =g\left(\left[F_{a \wedge b}\right)\right) \\
& =\left[F_{h(a \wedge b)}\right) \\
& =\left[F_{h(a) \wedge h(b)}\right) \\
& =\left[F_{h(a)}\right) \vee\left[F_{h(b)}\right) \\
& =g\left(\left[F_{a}\right)\right) \vee g\left(\left[F_{b}\right)\right), \\
g\left(\left[F_{a}\right) \cap\left[F_{b}\right)\right) & =g\left(\left[F_{a \nabla b}\right)\right) \\
& =\left[F_{h(a \nabla b)}\right) \\
& =\left[F_{h(a) \nabla h(b)}\right) \\
& =\left[F_{h(a)}\right) \cap\left[F_{h(b)}\right) \\
& =g\left(\left[F_{a}\right)\right) \cap g\left(\left[F_{b}\right)\right), \\
g\left(\overline{\left(\left[F_{a}\right)\right.}\right) & =\left[F_{h\left(a^{*}\right)}\right) \\
& =\left[F_{(h(a))^{*}}\right) \\
& =\overline{\left[F_{h(a)}\right)} \\
& =\overline{g\left(\left[F_{a}\right)\right) .}
\end{aligned}
$$

Clearly $g\left(\left[F_{1_{L}}\right)=\left[F_{1_{L_{1}}}\right)\right)$ and $g(L)=L_{1}$. Therefore g is a homomorphism of Boolean algebras $F_{B}(L)$ and $F_{B}\left(L_{1}\right)$.

Theorem 6.3. Let $h: L \rightarrow L_{1}$ be a homomorphism of a principal p-algebra L with a smallest dense element d_{L} into a principal p-algebra L_{1} with a smallest dense element $d_{L_{1}}$. Then we have the following :
(1) $h^{-1}(G)$ is a Boolean filter of L whenever G is a Boolean filter of L_{1},
(2) Coker h is a Boolean filter of L whenever $h(D(L))=\left\{1_{L_{1}}\right\}$.

Proof. (1). Let G be a Boolean filter of L_{1}. Then $h^{-1}(G)$ is a filter of L. Let $x \in L$. Then $h(x) \in L_{1}$. Since G is a Boolean filter of L_{1}, then $h(x) \vee d_{L_{1}} \in G$. Then $h\left(x \vee d_{L}\right)=h(x) \vee h\left(d_{L}\right) \geq$ $h(x) \vee d_{L_{1}} \in G$ implies $h\left(x \vee d_{L}\right) \in G$. So $x \vee d_{L} \in h^{-1}(G)$. Therefore $h^{-1}(G)$ is a Boolean filter of L.
(2). Obviously Coker $h=\left\{x \in L: h(x)=1_{L_{1}}\right\}$ is a filter of L. For every $x \in L, x \vee d_{L} \in D(L)$ as $\mathrm{D}(\mathrm{L})$ is a Boolean filter of L. Hence $h\left(x \vee d_{L}\right)=1_{L_{1}}$ by hypothesis. Then $x \vee d_{L} \in$ Coker h. Therefore Coker h is a Boolean filter of L.

References

[1] A. Badawy and M. Sambasiva Rao , σ-ideals of distributive p-algebras, Chamchuri Journal of Mathematics, 6 (2014), 1-14.
[2] A. Badawy and K. P. Shum, Congruences and Boolean filters of quasi-modular p-algebras, Discussiones Mathematicae, General Algebra and Applications, 34 (2014), 109-123.
[3] R. Balbes and P. Dwinger, Distributive lattice, Univ. of press, Columbia, 1974.
[4] M. Haviar, Construction and affine completeness of principal p-algebras, Tatra Mountains Math., 5(1995),217-228.
[5] G. Grätzer, Lattice theory. First concepts and distributive lattice, W. H. Freoman and Co. 1971.
[6] G. Grätzer, Lattice theory, Foundation springer Basel AG, 2012.
[7] T. Katrin̆ák, p-algebras, Colloq. Math. Soc. Janos (1980), 549-573.
[8] T. Katriňák and P. Mederly, Construction of p-algebras, Algebra Universalis, 17(1983), 288-316.
[9] T. Katriňák and J. Guričan, Finite pseudocomlemented lattices: The spectra and the Gilvenko congruence, Algebra Universalis, 66(2011), 151-161.
[10] M. Sambasiva Rao and A. Badawy, μ-filters of distributive lattices, Southeast Asian Bulletin of Mathematics, 37 (2013), 1-14.
[11] M. Sambasiva Rao and K.P. Shum, Boolean filters of distributive lattices, International Journal of Mathematics and Soft Comuting, 3 (2013), 41-48.

