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Abstract 

We test people’s ability to optimize performance across two concurrent tasks. Participants 

performed a number entry task while controlling a randomly moving cursor with a joystick. 

Participants received explicit feedback on their performance on these tasks in the form of a 

single combined score. This payoff function was varied between conditions to change the value 

of one task relative to the other. We found that participants adapted their strategy for 

interleaving the two tasks, by varying how long they spent on one task before switching to the 

other, in order to achieve the near maximum payoff available in each condition. In a second 

experiment, we show that this behavior is learned quickly (within 2-3 minutes over several 

discrete trials), and remained stable for as long as the payoff function did not change. The 

results of this work show that people are adaptive and flexible in how they prioritize and 

allocate attention in a dual-task setting. However, it also demonstrates some of the limits 

regarding people’s ability to optimize payoff functions. 
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1. Introduction 

With the growing ubiquity of mobile technology people regularly interleave attention between 

concurrent tasks. Human multitasking occurs in a variety of task domains and is investigated 

across many disciplines (e.g., see special issue Janssen, Gould, Li, Brumby, & Cox, 2015). 

Everyday multitasking can have implications for safety, such as when a driver uses a phone 

while driving (Dingus et al., 2016), as well as implications for productivity, such as when an 

office-worker is having a conversation with a colleague while working on a spreadsheet 

(González and Mark, 2004). Fundamentally when people are faced with two or more tasks, 

they are faced with a scheduling problem: deciding how much time to spend on one task before 

shifting attention to the next task (Moray, Dessouky, Kijowski, & Adapathya, 1991). Given the 

prevalence of multitasking, it is important to understand how well people deal with the problem 

of allocating their attention between tasks. 

In this paper, we investigate how priorities, as formalized through an explicit payoff 

function, affect how people choose to allocate their attention when multitasking. We report the 

results of an experiment in which participants had to perform two independent tasks. Each of 

these tasks gave a reward based on how well the task was performed. Critically, participants 

could not perform both tasks at the same time, and so had to decide how to divide effort 

between them. We examine whether participants were able to interleave tasks in such a way as 

to earn the maximum amount of overall reward that was achievable for them. In other words, 

we consider whether participants were able to settle on the optimal dual-task strategy. This 
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approach allows us to understand how good people are at dividing attention between multiple 

concurrent tasks, and provides insights into the cognitive constraints that might otherwise limit 

or prevent people from achieving optimal performance in a demanding multitasking 

environment.   

Existing multitasking research has highlighted several important factors that influence how 

people interleave tasks. One such factor is the characteristics of the task itself. People may 

avoid combining tasks of similar modalities in order to prevent interference between them 

(Salvucci & Taatgen, 2008, 2011; Wickens, 2002, 2008). A task can have ‘natural breakpoints’ 

(Janssen, Brumby, & Garnett, 2012), where interleaving is particularly beneficial, for example, 

because workload is low at those points (Bailey & Iqbal, 2008; Salvucci & Bogunovich, 2010) 

or because these natural breakpoints incur shorter resumption costs after an interruption 

(Altmann & Trafton, 2002; Borst, Taatgen, & van Rijn, 2010). Other researchers debate 

people’s ability to multitask optimally (e.g., Nijboer, Taatgen, Brands, Borst, & van Rijn, 2013; 

Ophir, Nass, & Wagner, 2009; Stoet, O’Connor, Conner, & Laws, 2013; Watson & Strayer, 

2010), focusing on the interplay between cognitive characteristics and task performance (e.g., 

‘do people perform worse when they are faced with two challenging tasks?’) and on 

performance decrements in multi-task compared to single-task settings. 

When multitasking, people often have to choose how tasks should be prioritized relative to 

one another (e.g., Gopher, 1993; Gopher, Brickner, & Navon, 1982). For example, in our 

previous work examining in-car multitasking (Brumby, Salvucci, & Howes, 2009; Janssen et 

al., 2012; Janssen & Brumby, 2010), we found that varying instructions for how a phone 
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dialing task should be prioritized relative to the driving task affected how participants choose to 

interleave these two tasks. Participants who were instructed to prioritize safer driving achieved 

this by interacting with the phone in shorter bursts of activity (i.e., by dialing fewer digits at a 

time). In contrast, participants who were instructed to prioritize the dialing tasks achieved this 

by interacting with the phone in longer bursts, resulting in poorer driving performance. A 

limitation of this prior research on the effect of task priorities on multitasking strategy, is that 

instructions like ‘prioritize safer driving’ represent a subjective criterion of performance: it is 

unclear to both the participant and the researcher just how much one task should be prioritized 

relative to the other.  

Some researchers have attempted to overcome this problem by giving participants clearer 

instructions as to how tasks should be prioritized. For example, participants might be told: “you 

should give Task-A 80% of your attention and Task-B 20% of your attention” (e.g., Norman 

and Bobrow, 1975; Navon and Gopher, 1979). While such instructions tell participants how 

they should aim to divide their attention between tasks, there are many possible ways in which 

this outcome might be achieved, and consequences of this strategy variation for performance. 

As demonstrated by Brumby and colleagues (Brumby, Salvucci, & Howes, 2009; Janssen et al., 

2012; Janssen & Brumby, 2010), dual-task performance often depends on low-level decisions 

about how tasks are interleaved (i.e., the time spent on a task before switching to another task).  

In the current study we investigate human multitasking behavior by focusing on how people 

decide to interleave two concurrent tasks. We gave participants an explicit reward based on 

how well each task was performed; this reward is represented as points earned on a given trial. 
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Critically, each task makes an independent contribution to the reward total, which allows for 

the relative value of one task to the other to be systematically varied. With this setup we 

investigate how changing task weighting affects the dual-task interleaving strategy that 

participants choose to adopt. A particular benefit of this approach is that it allows us to 

formally assess how “good” the strategy adopted is: Do people select strategies that earn them 

the most points available (i.e., the optimal multitasking strategy)?   

1.1. Testing strategy flexibility through payoff manipulation 

Payoff functions can be used to test people’s ability to optimize performance on tasks that have 

competing dimensions like speed and accuracy. These functions translate performance on each 

separate dimension of a task into a single unit of reward, which can then be fed back to the 

participant in terms of the number of points accrued over the course of an experiment. 

In a dual-task setting, a payoff function can communicate performance trade-offs between 

tasks to the participant, indicating how one task should be prioritized relative to the other. 

Whereas a verbal instruction might allow for multiple subjective interpretations of what 

constitutes optimal performance, an explicit payoff score does not. A payoff function means 

that reward can be accrued (either explicitly or implicitly) and therefore can give participants a 

sense of progress, and influence how they interleave tasks (Duggan, Johnson, & Sørli, 2013; 

Payne, Duggan, & Neth, 2007). This can be used to motivate the participant to try to achieve 

the maximum score (e.g., Hornof, Zhang, & Halverson, 2010; Schumacher et al., 1999; Wang, 

Proctor, & Pick, 2007; Zhang & Hornof, 2014), and help them to learn better ways of dividing 

attention between tasks (Erev & Gopher, 1999). 
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When combined with computational cognitive models, payoff functions can be used to 

explore how changes to the function (i.e., the relative weight of one task to another) affect 

overall performance, and whether people can apply strategies that maximize reward (Howes, 

Lewis, & Vera, 2009; Janssen, 2012; Janssen et al., 2011; Lewis, Howes, & Singh, 2014; Payne 

& Howes, 2013; Janssen & Brumby, 2015). There is good evidence that people will seek to 

maximize reward in tasks where the optimal strategies are tractable and where feedback is 

available (see special issue Howes, Lewis, & Singh, 2014, and work on decision-making in 

which performance is measured in terms of efficiency, e.g., Jarvstad, Hahn, Rushton, & 

Warren, 2013).  

The analysis of optimality in human performance can be used to model the interaction 

between an agent’s goal and their cognitive constraints. Previous studies have shown that 

people can optimize payoff functions to maximize reward in simple dual-task scenarios such as 

the Psychological Refractory Period task (Howes et al., 2009) and in discretionary multitasking 

scenarios (Janssen, 2012; Janssen et al., 2011; Janssen & Brumby, 2015; Zhang & Hornof, 

2014). In these studies, participants adapted performance to different levels of difficulty of the 

task, given the payoff function at hand. However, these studies have often used a stable and 

consistent payoff function, rather than varying it and seeing how people respond and whether 

they adapt their behavior according to changes to the function. The present study is aimed at 

testing the claim that people can optimize payoff (reward) functions in dual-task settings. 

Specifically, the experiments and associated models were designed to expose participants to a 
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variety of different payoff functions for the same dual-task scenarios. Across conditions, 

participants had to be flexible and adapt their strategy in order to achieve the optimal payoff.  

For the experiments reported here, we use a modified version of the task environment that 

was developed by Janssen and colleagues (Janssen, 2012; Janssen et al., 2011; Janssen & 

Brumby, 2015). In this dual-task setup, participants have to type in a string of digits while also 

making sure that they keep a randomly moving cursor within a target area. Janssen and Brumby 

(2015) demonstrated that people change their task interleaving strategy based on the weight 

given to each task in the payoff function. Specifically, when the payoff functions weighted the 

reward of one of the tasks (e.g., typing in digits), participants paid longer visits to that task 

compared to the other, less weighted task (e.g., tracking a cursor). However, this study 

presented several limitations. First, characteristics of the participants, such as their typing 

speed, strongly affected their performance, which made it difficult to compare strategies 

between participants. In other words, the optimal dual-task interleaving strategy for a given 

condition was dependent on an individual’s performance on the component tasks (e.g., faster 

typists would have optimal visit durations different from slower typists). Accounting for such 

individual differences is challenging. Second, within each participant group, we tested the 

effect of different task characteristics while keeping the payoff function constant. Some 

participants then transferred previously successful strategies to this new setting, even though 

the strategies were now suboptimal.  

Here we seek to redress issues with Janssen and Brumby’s (2015) study by testing how 

different payoff functions affect the ability to optimize task interleaving. To do this we examine 
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each participant’s capacity to perform optimally while taking into account their individual 

cognitive constraints, by modeling the full range of task-interleaving strategies (how long to 

spend on each task) available to each participant given their individual performance profile on 

the component tasks. In addition, we use a within subjects design in Experiment 1 to test 

whether people can adapt to changes in payoff function (rather than the between subjects 

design used by Janssen and Brumby, 2015). The benefit of this approach is that contrasts 

between conditions can be identified even when there are individual differences in skill (more 

specifically: in Janssen and Brumby, 2015, there were some differences in skill between 

groups, which counteracted some of the payoff manipulations). However, it does come at the 

risk of strategy transfer between conditions. 

In the current experiments, we used three different payoff regimes to systematically vary the 

importance of one task relative to the other. Specifically, we changed the penalty that was 

applied for failing to attend to the tracking task (details below). We were interested in whether 

participants were sensitive to these changes to the payoff function and whether it would 

influence the time participants chose to spend on one task before switching back to the other. 

Based on the observation that people could maximize rewards in previous multitasking 

studies (e.g., Howes et al., 2009; Janssen et al., 2011; Janssen, 2012; Zhang & Hornof, 2014) 

and in other settings (e.g., Lewis et al., 2014; Lewis, Shvartsman, & Singh, 2013; Myers, 

Lewis, & Howes, 2013; Gray, Sims, Fu, & Schoelles, 2006), we again predict that participants 

in our study should be able to adapt their behavior to maximize payoff. More specifically, we 

hypothesize that participants will adapt their strategy when a change in the payoff function 
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makes a different strategy optimal. We also hypothesize that participants will apply strategies 

that achieve optimal performance as predicted by a cognitive model for different experimental 

conditions, which vary both in terms of the payoff function and the difficulty of the tasks being 

performed. 

1.2. Reward manipulations and their relationship with everyday life 

A key feature of the current experiments is the manipulation of payoff function (or the 

reward given to one task relative to the other). In everyday life, rewards can take many forms, 

making it challenging to capture all forms in a single experiment. Three critical aspects that 

characterize rewards are: the timing of the reward, the objective function (i.e., what is 

rewarded?), and the magnitude of the reward (Janssen & Gray, 2012). In this study, we keep 

the timing of rewards aligned with a specific event in the task, that is, after participants switch 

from typing to tracking. We also keep the objective function comparable: all rewards relate to 

the duration of typing (i.e., how many digits are typed?) and to the accuracy of tracking (i.e., 

did the cursor leave the target area?) 

We therefore chose to manipulate payoff by varying the severity of the penalty imposed for 

letting the cursor move outside of the target area in the tracking task. This setup reflects 

situations where inattention to one task (tracking) can result in losses on the task on which you 

previously gained (typing). We manipulate the cost of distraction in tracking in three ways and 

illustrate the motivation for each function with an analogy to driver distraction. 
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First, sometimes inattention can have severe consequences. For example, in a driving 

context you might end up in an accident. We capture this situation in the lose 500 payoff 

condition: if the cursor moves outside of the target area while you type, you are given a severe 

penalty of 500 points, most likely meaning that it will be difficult to obtain a positive total.  

Second, in other situations, inattention might result in no progress, but also no actual 

damage. For example, while driving in an unfamiliar area you might not realize that you have 

taken the wrong turning and substantially delay your arrival at your destination. We capture 

this with the lose-all condition: all the accumulated points are lost, but the total cannot go 

negative. 

Third, sometimes the losses you incur are relatively minor. If you fail to pay attention when 

driving a very familiar route, you might miss the turning for the quickest route home, but you 

can easily take the next turning without adding much time to your journey. The experiment 

captures this situation in the lose-half condition, where half the accumulated points are lost if 

the cursor moved outside of the target area. 

To summarize, previous work has made claims about humans’ ability to optimize task 

interleaving in various situations, including dual-task studies, provided that a clear payoff 

function is given. The aim of the current work is to test this general claim further, by testing the 

capabilities and limitations of people’s ability to divide their time efficiently between two tasks. 

In particular, if participants change their strategy in response to a change in the payoff function, 
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can they find and select the best strategy for maximizing reward under the current payoff 

regime? 

2. Experiment 1 

2.1. Methods 

2.1.1. Participants Twenty students (seven female) from University College London 

participated on a voluntary basis. Participants were between 22 and 37 years of age (M = 27 

years). Participants were not paid for their time, but an incentive of a £10 voucher was offered 

for the participant who achieved the highest score in the study. 

2.1.2. Materials A dual-task setup similar to that of Janssen et al. (2011) was used, in which 

participants completed a discrete typing task while monitoring a continuous tracking task (see 

Fig. 1). Tasks were displayed on a 17-inch monitor at a resolution of 1024 by 1280 pixels, with 

each task being presented within a 450 x 450 pixel area. The typing task was presented on the 

left side of the monitor, and participants entered digits with their left hand using a numeric 

keypad. The tracking task was presented on the right side of the monitor and participants 

controlled the task with their right hand using a Logitech Extreme 3D Pro joystick. There was a 

horizontal separation of 127 pixels between the two tasks. At any moment in time only one of 

the tasks was visible on the monitor. By default, the typing task was visible and the tracking 

task was covered by a grey square. Holding down the trigger of the joystick revealed the 
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tracking task and covered the typing task. Releasing the trigger covered the tracking task and 

made the typing task visible again. Each task could only be controlled when it was visible. 

2.1.3. Typing task In the typing task participants were required to enter digits using a numeric 

keypad. A continuous list of to-be-entered digits was generated from the numbers 1 to 3 drawn 

in a random order with the constraint that no digit was repeated more than three times in a row. 

At any one moment, 27 digits were visible on the typing task display. As a participant typed, 

the left-most digit in the list would disappear, all digits would then move one to the left, and a 

new digit would appear in the right-most position. Each correctly entered digit earned a 

participant 10 points. The display remained unchanged if an incorrect digit was entered and a 

penalty of minus five points was applied. 

---------------Fig.1 about here----------------- 

2.1.4. Tracking task For the tracking task participants were required to keep a square cursor 

inside a circular target area. The cursor was 10 x 10 pixels and the target area had a radius of 

120 pixels. The movement of the cursor was updated every 23 milliseconds. Values were 

sampled from a Gaussian distribution to determine the size of the cursor’s movement, and the 

parameters on this distribution were varied between conditions in such a way to make the 

cursor move about at different speeds. We used two types of cursor noise: high noise (five 

pixels standard deviation), and low noise (three pixels standard deviation). Holding down the 

trigger of the joystick allowed participants to see the tracking task and move the cursor around 

with the joystick if they so wished. Releasing the trigger covered up the tracking task again. 
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While participants were typing, there was no feedback available concerning the status of the 

tracking task. The only way to determine the position of the cursor, and whether it was still in 

target area, was by switching to the tracking task. Due to the nature of the random drift 

function, the cursor could move outside of the target area, and move back in again, whilst the 

participants were typing. When participants switched to the tracking task, they would see a red 

cursor if it had left the target area at any point during the previous typing visit. A red cursor 

was reset to blue by dragging it toward the center of the target area. 

2.1.5. Dual-task Using this dual-task setup, participants completed a series of trials, each 

lasting 120 seconds. During each trial the main decision facing the participant was to judge 

how long they should leave the tracking task unattended while entering digits. Participants 

received feedback on their performance in terms of the number of points achieved after each 

visit to the typing task. The payoff function rewarded participants for each digit that was 

correctly entered during the visit, and penalized them for entering digits incorrectly. An 

additional penalty was also applied if the cursor drifted outside of the target area during the 

visit. The precise nature of the payoff function was varied between conditions. Feedback was 

displayed above the tracking task and remained visible while participants were tracking. 

Participants could therefore evaluate their performance after each visit to the typing task. 

Cumulative feedback was also given at the end of each trial. 

2.1.6. Design A 3 x 2 (payoff function x cursor noise) within-subjects design was used. In each 

of the payoff function levels, points were deducted if the cursor drifted outside of the target 
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area in the tracking task. The severity of this tracking penalty was varied such that participants 

either lost all the points gained for that visit (lose-all condition), half of the points gained for 

that visit (lose-half condition), or incurred a fixed penalty of 500 points (lose 500 condition). 

Because participants typically only typed for a few seconds, a 500-point penalty could make 

the total score negative, making the lose 500 condition the most severe of the three conditions. 

The two levels of cursor noise factor, low noise and high noise, influenced how much the 

cursor drifted on each update. Each cursor update was sampled from a Gaussian function with a 

mean of zero and a standard deviation of three pixels (low noise condition) or five pixels (high 

noise condition). 

The dependent variable of interest was the mean visit duration to the typing task. This 

measure captures the trade-off that participants had to make between gaining points (by typing 

more digits), and losing points (by incurring the tracking penalty). We also collected data on 

how far participants allowed the cursor to drift, the amount of time they spent on the tracking 

task, and their typing speeds. 

 

2.1.7. Procedure Upon arrival, participants received instructions on the dual-task setup. 

Crucially, they were briefed that they could gain points in dual-task trials through fast and 

accurate typing, and that they would lose points by making typing errors and by letting the 

cursor drift outside the target area. Participants were not informed of the exact way in which 
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the gain and penalties were calculated in each condition. They were told that the payoff 

function changed between blocks of trials. 

At the beginning of the experiment participants were given a chance to practice each of the 

tasks separately (tracking for two trials of 10 seconds each and typing for two trials of 20 

seconds each) before being given a chance to practice the tasks together (for two trials of 30 

seconds each). Following the practice session, participants completed six experimental blocks, 

one for each condition. For each block, participants first completed two single-task tracking 

trials of 10 seconds each so that they could estimate the noise on the cursor movement, and two 

single-task typing trials of 20 seconds each. There were then two dual-task trials of 120 seconds 

each. The first trial allowed participants to become familiar with the dual-task and payoff 

function. We report data from only the second of each dual-task trial from each block 

(condition). In total the experiment took about 45 minutes to complete. 

Participants were given a brief break after every other block of trials. The order in which the 

different payoff conditions were experienced was randomized and counterbalanced across 

participants. The order of the noise conditions was assigned randomly for the first two blocks, 

but repeated for each payoff condition. 

2.2. Results 

-------------------Fig. 2 about here----------------- 
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Fig. 2 shows the mean visit duration to the typing task in each of the six conditions grouped by 

amount of noise (bar color) and payoff function. The severity of the payoff function’s penalty 

increases from left to right: lose-half, lose-all, lose 500. For all statistical analyses we used a 3 

x 2 (payoff function x cursor noise) repeated measures analysis of variance (ANOVA), with a 

significance level of p = .05. 

Participants made shorter visits when the penalty for having the cursor go outside of the 

target area was more severe. Similar patterns were observed in other measures recorded, such 

as the distance the cursor was allowed to drift and the number of digits typed (see 

supplementary materials). Statistical analysis on the dependent variable of mean visit duration 

to the typing task showed that there was a significant main effect of payoff function, F(2,38) = 

5.10, p = .011, ηp
2 = .21. A Bonferroni-corrected post-hoc test found that visits were 1.15 

seconds shorter in the lose 500 condition (M = 3.11s, 95% CI = [2.50,3.71]), compared to the 

lose-half condition (M = 4.25s, 95% CI = [3.09,5.41], p = .018). The visit duration in the lose-

all condition (M = 3.55s, 95% CI = [2.92,4.19]) did not differ significantly from the other two 

conditions (p > .2). 

It can also be seen in Fig. 2 that participants made shorter visits to the typing task when the 

tracking task was more demanding. There was a significant main effect of cursor noise on visit 

duration, F(1,19) = 61.12, p < .001, ηp
2 = .76. Participants spent two seconds more per visit 

when the cursor noise was low (M = 2.64s, 95% CI = [2.09,3.18]) compared to when it was 

high (M = 4.64s, 95% CI = [3.70,5.57]). There was no significant interaction effect, F(2,38) = 

0.25. 
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2.3. Model of Optimal Performance 

Although the above results demonstrate that participants changed their interleaving strategy 

with both characteristics of the task and the payoff function, what is not yet clear is how good 

their performance was. Specifically, did participants apply those dual-task interleaving 

strategies that, on average, maximized the payoff on the task? To assess this, we developed a 

model of optimal performance for our task. 

The objective of this type of modeling is to understand whether people adopt the best 

strategies out of the set of possible strategies available to them. This is an analysis toward the 

computational level of Marr’s types of analysis (c.f. Marr, 1982; Peebles & Cooper, 2015). We 

assume that when given experience with a payoff function and feedback on their performance, 

people will act rationally under constraints (Howes et al., 2009; Lewis et al., 2014). In other 

words, participants will try and hone in on and adopt dual-task interleaving strategies that 

achieve the maximum reward available to a participant given their individual abilities. 

There are two key aspects to the model, the first of which is to identify the invariant aspects 

of human performance which constrain performance on each task. We outline our assumptions 

regarding these constraints in the following section. The second aspect of the model is to 

determine the range of strategies available to participants given their individual constraints. 

Identifying all the available strategies then allows us to determine whether people settle on the 

best performing of these strategies. 

2.3.1. Assumptions: Participant parameters We assume that participants spend some time 

typing with a given speed and accuracy, then they switch to the tracking task and return the 
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cursor to the center of the target area. This process is assumed to iterate until the task time limit 

is reached (120 seconds in Experiment 1). Rather than modeling the fine-level structure of each 

of these tasks, we approximate each action based on measured behavior. This approach is close 

to the models developed by Janssen et al. (2011); Janssen (2012); Janssen and Brumby (2015), 

and similar to the use of approximations in engineering-focused models, such as those 

described by Card, Moran, and Newell (1983). Although milliseconds can matter in perception-

action routines (Gray & Boehm-Davis, 2000), the level of abstraction used here has proven 

useful before in exploring multitasking behavior (e.g., Janssen et al., 2011, 2012; Janssen & 

Brumby, 2010; Brumby et al., 2009; Janssen & Brumby, 2015). 

We identified three parameters measured from each participant’s performance on the task. 

These parameters are the typing accuracy, typing speed, and the amount of time taken to return 

the cursor to the center of the tracking task. Given these mean parameters the model explores 

the payoff that each participant would achieve for every possible duration of visit to the typing 

task. The typing task visit duration is the key strategic decision that a participant must make 

while engaged in the task. 

During the second dual-task trial, for each participant, we measured their mean key-press 

interval (the group level mean was 0.39sec, SD = 0.09sec). We also measured each 

participant’s mean typing accuracy (group level: M = 94%, SD = 3%). For the tracking task, we 

measured each participant’s mean time spent away from the typing task while attending to the 
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tracking task (the group level parameters were: M = 1.32sec, SD = 0.25sec) and assumed that 

participants always brought the cursor back to center of the target area at the end of their visit1. 

For each individual, we calibrated the model parameters to their measured performance 

during the task. There were three key parameters which were taken from participants’ 

performance during the second of the two dual-task trials they completed in each condition. In 

the model, we assume that these parameters are constant, reflecting the abilities of each 

participant rather than a strategic decision. The key decision that the participants did have to 

make was how long they should spend on visits to the typing task. This mean visit duration to 

the typing task is what we refer to as the participant’s strategy. On the one hand, a long visit 

duration will accrue many points but will also increase the likelihood that a penalty will be 

incurred in the tracking task. On the other hand, a very short visit duration will decrease the 

likelihood of incurring a tracking penalty but will mean less of the trial duration is spent 

accruing points because the participant would lose time by constantly switching between the 

tasks. 

2.3.2. Calculating the payoff for different strategies We designed the dual-task payoff 

functions such that participants earned 10 points for every correct key press and lost 5 points 

for every incorrect key press. In order to determine each participant’s expected gain for every 

possible duration of visit, the model calculated the product of each participant’s accuracy rate, 
                                                 

1 In initial model explorations we also investigated how performance would vary based on the amount of time 

spent on the tracking task (Janssen et al., 2011; Janssen, 2012). We found that performance rarely fluctuated in this 

setting. 
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their number of digits typed, and the gain (10). From this value the model subtracts the 

expected cost of incorrectly typed digits, that is, the product of error rate, digits-typed and error 

cost (−5). The number of digits typed was calculated as the typing-visit duration divided by the 

participant’s key-press interval. 

The expected penalty for a typing visit was calculated as the probability of the cursor’s exit 

for the amount of time spent typing, multiplied by the penalty amount. Note that the penalty 

amount was an independent variable (payoff function) in our design. The three levels were: loss 

of all points accrued, loss of half the points accrued, and a fixed penalty of 500 points. The 

overall payoff for a visit is given by the expected gain plus the expected penalty. 

While participants were typing, they had to leave the tracking task unattended. The 

probability of a participant incurring a tracking penalty was therefore a function of the amount 

of time they spent typing. The cursor in the tracking task was on a random walk from the center 

of a circular target area with a radius of 120 pixels. The noise on the cursor movement (either 

low or high) varied according to the condition. 

Fig. 3 shows the probability of the cursor location exceeding the radius of the target area at a 

given time. This probability is governed by a cumulative Rayleigh distribution (Walck, 2007) 

scaled to the duration of the participant’s visit and the standard deviation of the cursor 

movement (dependent on the experimental condition). The probability that the cursor would 

exceed the target area (i.e., 120 pixels from the origin) is given by: 
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𝑝(𝑒𝑥𝑖𝑡) = 𝑒𝑥𝑝(− 1202

2(𝑇𝜆)𝜎2
) 

Where T = typing visit duration, σ = the standard deviation of the random movement, and λ = 

the interval between cursor position updates (0.023 sec). Note that σ was an independent 

variable (cursor noise) in our design with two levels, either three (low noise) or five pixels 

(high noise). 

-----------Fig. 3 about here------------ 

In order to prevent the cursor from exiting the target area, participants had to periodically 

switch to the tracking task, move the cursor back to the center of the target area, and switch 

back to the typing task. The mean total duration of these three actions was 1.32 seconds (SD = 

0.25). During this time no gain could be accrued. The time loss incurred by switching to the 

tracking task, moving the cursor, and switching back to the typing task, is represented by the 

parameter k. Since the duration of each trial was 120 seconds the number of typing visits is 

determined as 120𝑇+𝑘 where T is the mean typing visit duration. 

In order to maximize reward over the entire trial, the key strategic decision is to figure out 

how much time to spend on each visit to the typing task. Typing many digits accrues more gain 

but incurs greater risk of a penalty. Typing fewer digits reduces the risk of incurring a penalty 

but results in many switches during which time no gain can be accrued. We derive precise 

predictions about this trade-off by having the model evaluate the entire possible strategy space 

(i.e., all possible variations of visit duration to the typing window before returning attention to 
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the tracking task), from typing a single digit per visit, to spending the entire trial typing and 

never switching to the tracking task. For each of these strategies we use the model to calculate 

the payoff that they would achieve. 

2.4. Model Results 

In order to determine whether our participants performed optimally in selecting their 

interleaving strategy, we analyzed how optimal agents would have performed. For each 

participant, we ran the model using their individual parameters (typing speed, error rate, and 

tracking time). As outlined above, we ran the model through the entire strategy space, 

systematically exploring different alternatives for visit durations to the typing task. For each 

strategy alternative, we determined how many points would have been earned on average. This 

analysis allowed us to identify for each participant their individual optimal visit duration (i.e., 

the strategy that would earn the most points on average). Note that each individual participant 

could have a different optimal visit duration, due to variations in their typing speed, accuracy, 

and tracking time. We first consider whether participants could achieve the maximum points as 

predicted by their optimal model. We then examine how participants’ performance was 

affected by the shape of the payoff function in each condition. 

Table 1 shows, for each condition, the mean score achieved by participants in the study and 

the predicted mean score of the optimal dual-task strategies. There was a good level of 

correspondence between predicted optimal scores and those achieved by participants in each 

condition, R2 = 0.97, t(4)=12.80, p<.001. However, despite this seemingly good fit between 



24 

model and data across conditions, participants consistently achieved fewer points than 

predicted by the optimal model, RMSE = 466 points. A series of t-tests were performed 

comparing model and data for each condition. To do this, we compared the optimum score 

predicted for each participant against their actual performance in each condition. As can be 

seen in the table, in all conditions participants’ performance was significantly worse than the 

predicted optimum (i.e., all p’s < .05).  

-----------------------------Table 1 about here---------------------------- 

We next consider the shape of the payoff function for each condition. In other words, how 

the number of points earned varies depending on the duration of visits to the typing task. This 

analysis is important because we want to understand how the shape of the payoff function 

differed between conditions (i.e., in terms of the position of the peak of the payoff function and 

also the precise shape of the payoff function).  

Fig. 4 shows the shape of the modeled payoff functions for each of the conditions. The 

highest point on these curves represents the maximum score and therefore corresponds to the 

“optimal strategy”. The gray bands reveal the efficiency of participants’ chosen strategies, with 

darker areas highlighting visit times that achieved higher scores (with intervals within 1, 2, 5 & 

10% of the optimum). Only in the lose 500 high noise condition did participants choose a 

strategy that was not within at least 5% of the optimal score. 

Fig. 4 also reveals that some conditions were harder than others. The band of strategies that 

achieved a score within 1% of the maximum (represented by the darkest shading) was 

considerably larger, and therefore easier to achieve (had strategies been selected at random), in 
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some conditions than others. In the lose-half low noise condition the band of strategies 

achieving within 2% of the maximum covers 6.65 seconds, whereas in the lose 500 high noise 

condition, the same band covers just 0.44 seconds. 

--------------Fig.4 about here------------- 

Qualitatively, the variance in human strategy selection corresponds to the size of the optimal 

payoff region for each condition. In the lose-all high noise condition there is a narrow region of 

peak reward. Correspondingly, participants show low variance in their choice of strategy. In 

contrast, in the lose-all low noise condition there is a much wider region of peak reward 

predicted by the model, and participants respond by showing greater variance in their choice of 

strategy.  

In most of the conditions participants could have spent more time typing per visit to achieve 

a higher payoff (i.e., the human data is often just to the left of the peak of each payoff curve in 

Fig. 4). In each case the strategy adopted by participants was shorter than the optimal strategy, 

except for in the lose 500 high noise condition, where the chosen strategy was slightly longer 

than the optimal. This result suggests that our participants were being risk averse. The largest 

discrepancy was in the lose-half low noise condition, in which participants chose to spend 3.33 

seconds fewer per visit than the optimal strategy, but were still predicted to achieve 96% of the 

maximum payoff. 

Examining the shape of the payoff curve we see that the lose 500 condition was unusual in 

that it had two points of high reward. The global maxima is a strategy that types for the whole 
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duration of the trial (i.e., outside of the range of Fig. 4). Participants instead appeared to aim for 

the first local maximum (visible in Fig. 4), despite it being less valuable than the later global 

maximum. In the lose 500 low noise condition participants spent, on average, 0.23 seconds 

fewer than required for the local maximum. However, in the high noise, lose 500 condition, 

participants spent an average of 0.85 seconds longer than required for the local maximum. 

 

2.5. Experiment 1 Discussion 

The results from Experiment 1 reveal that participants adapted to changes in payoff function 

and task difficulty (i.e., statistical analyses found significant main effects of both factors). The 

modeling analysis suggests that participants were not adopting the optimal strategy (i.e., the 

strategy that could have earned them the highest reward). However, their strategies were very 

close to the optimal strategies in each condition (see Fig. 4) and were predicted to achieve on 

average a score that was within 94% of the maximum possible score (mean of the median 

efficiency across all conditions). Whether or not this performance is the limit of people’s ability 

to optimize is difficult to assess because there were only two trials in the experiment. It is 

possible that prolonged experience in the environment might have allowed participants to learn 

more about the task environment and payoff functions, and consequently perform better. 

Participants’ performance may have been further limited by transferring strategies from one 

condition to another in the within-subjects design, despite that the overall optimum strategy 

might have changed. This strategy transfer seems likely given that participants were required to 

maximize their score as soon as they encountered a new payoff function, and were not given 
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time to explore alternative strategies. This type of strategy transfer has also been observed in 

Janssen and Brumby (2015). 

3. Experiment 2 

We designed a second experiment in order to address the above issues and provide a more in-

depth understanding of people’s ability to perform optimally. We increased the number of trials 

from two to fifty, and divided them into three phases. An exploration phase allowed 

participants to experiment with different strategies at no cost to them. An exploitation phase 

followed, in which we sought to test whether people could consistently maintain a near-optimal 

performance. The first two phases were used to test two different payoff functions between 

subjects. This design allowed us to avoid any transfer of strategy from one payoff function to 

another. 

In order to explicitly test the possibility of strategy transfer, we added a final stage in which 

both groups abruptly experienced a new payoff function in order to determine whether the 

preceding payoff function influenced the strategy they adopted. 

To have a strong test, we needed three different payoff functions that had distinct optima. 

We used the model and the aggregate parameters from the participants in Experiment 1 to 

design such a new payoff environment. As shown in Fig. 5 we settled on an environment in 

which the cursor’s movement had a standard deviation of 4, and the target area had a radius of 

120 pixels. The gain function changed such that typing a digit correctly earned 4 points while a 
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mistyped digit cost one point. In one payoff function the penalty for allowing the cursor to exit 

was 500 points, and in the other it was 50% of the previously obtained points. We devised a 

third payoff function in which the penalty was to lose 200% of the previously obtained points. 

This third payoff function was used to test for strategy transfer from the other payoff functions 

(See Fig. 5). Critically, all these payoff functions differed only in the nature of penalty applied, 

whereas environment (cursor speed and target radius) remained the same. Each of these payoff 

functions had different optimal strategies such that participants would need to adopt a different 

strategy in each to maximize their reward. 

--------------Fig.5 about here---------- 

3.1. Methods 

3.1.2. Participants Thirty participants (six male) recruited from the University College London 

psychology participant pool took part in the study. Each participant received £7.50 as 

compensation. 

3.1.3. Materials The materials and tasks were identical to those in Experiment 1, with the 

following exceptions. In the typing task participants earned four points per correct key press 

and lost one point per incorrect key press. In the tracking task the cursor movement had a 

standard deviation of four pixels. In the dual-task conditions trials lasted for 30 seconds. 

3.1.4. Design Between subjects we tested two levels of payoff function (lose 500, lose-half). 

Participants were initially allowed to explore the payoff functions and different strategies for 20 
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trials (exploration phase), and then given a further 20 trials to maximize their score 

(exploitation phase). After trying to maximize their score, both of the between subjects groups 

then experienced a new payoff function (lose 200%), called the transfer stage. These three 

stages were designed to allow us to measure how quickly participants learned to adapt to the 

payoff functions, whether their performance then remained stable, and finally whether the 

learned strategy would be transferred to a novel condition. 

For all of the payoff functions the task difficulty remained the same with the cursor having a 

standard deviation of four pixels on its movement. In Experiment 2 we scaled the payoff 

functions such that the expected amount they could earn was approximately the same in each 

condition, which allowed for a simpler comparison of performance between conditions. As in 

Experiment 1, we measured the mean visit duration to the typing task as our principal 

dependent variable. 

3.1.5. Procedure The experimenter explained the dual-task setup to participants, instructing 

them how to use the joystick and emphasizing that they should earn as many points as possible. 

The experimenter also informed participants that they could gain points by typing fast and 

accurately, but lose points by typing inaccurately or letting the cursor move outside the target 

circle. Details of the payoff function, however, were not revealed to participants. 

The study started off with a practice session, during which participants completed two 

tracking-only trials, two typing-only trials, and two dual task trials. For the practice session, 
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each tracking-only trial lasted 10 seconds, each typing-only trial 20 seconds, and each dual-task 

trial 30 seconds. 

In contrast to Experiment 1, participants completed 50 dual-task trials, divided into three 

phases: exploration (20 trials), exploitation (the next 20 trials), and transfer (the last 10 trials). 

During the exploration phase, participants were instructed that their score on these trials would 

not count towards their total score; participants could therefore safely explore the success of 

different strategies. In the exploitation phase participants were instructed to obtain as many 

points as possible. The final phase began with a change in the tracking penalty from either lose 

500 or lose-half (depending on the between-subjects group) to lose 200%. Again, participants 

were instructed to maximize their points total, but they had no opportunity to explore different 

strategies. 

After every five trials of these three phases, participants were allowed to take a break and 

could return to the task by pressing the spacebar on the keyboard. The experiment lasted 45 to 

60 minutes in total. 

3.2. Results 

3.2.1. Exploration & Exploitation Fig. 6 shows the mean visit duration for the explore and 

exploit phases of the two conditions. To assess the impact of payoff condition (lose-half, lose 

500) and phase (exploration, exploitation) we conducted a 2 x 2 Mixed ANOVA on the 

dependent variable of mean typing task visit duration. There was a significant main effect of 
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phase F(1,28) = 9.13, p = .005, 𝜼𝝆𝟐=.25. Visit time was higher during the exploration phase, (M 

= 3.59 s, CI = [3.18, 3.99]) compared to the exploitation phase (M = 3.36 s, CI = [2.97, 3.75])  

--------------Fig.6 about here-------------- 

There was also a significant effect of payoff function F(1,28) = 10.42, p = .003,𝜂𝜌2  = .27. Visit 

time was higher in the lose-half condition (M = 4.09 s, CI = [3.54, 4.64]) than in the lose 500 

condition (M = 2.86 s, CI = [2.31, 3.41]). A significant interaction phase*payoff was also 

observed F(1,28) = 5.06,p = .033, 𝜂𝜌2  = .15. The reduction in mean visit duration was, however, 

larger in the lose 500 condition than in the lose-half condition. Participants in the lose-half 

condition had a mean visit duration of 4.12 s (SD = 1.27 s) in the exploration phase, falling 

slightly to 4.06 s (SD = 1.27 s) in the exploitation phase. Participants in the lose 500 condition 

had a mean visit duration of 3.06 s (SD = 0.85 s) in the exploration phase, falling to 2.66 s (SD 

= 0.76 s) in the exploitation phase. Similar patterns were observed in other recorded measures 

such as number of keys pressed (see supplementary materials). 

To get a sense of how the time spent on the typing task changes with task experience, Fig. 7 

shows the maximum visit duration for each trial in the lose 500 condition (left) and the lose-

half condition (right). In each condition participants reduced the amount of time spent on the 

typing task as the number of trials (and experience) increased. This adaptation was slightly 

faster (indicated by a steeper slope) in the lose 500 condition. 

----------------Fig.7 about here------------------ 
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3.2.2. Transfer To determine whether the previously experienced condition (lose-half, lose 

500) affected the strategies participants used in the transfer phase, we conducted an 

independent samples 2-way t-test on the mean visit duration in the transfer phase. There was a 

significant difference in visit duration between the groups t(28) = 2.93, p = .007. When the 

tracking penalty changed to lose 200%, participants in the lose-half condition reduced the 

duration of their visits to the typing task, thereby adopting a different strategy (M = 3.43 

seconds, SD = 0.68). Participants in the lose 500 condition did not adjust their behavior and 

continued with approximately the same strategy (M = 2.62 seconds, SD = 0.83). 

3.2.3. Model Results We modeled the results from Experiment 2 using the same model as 

Experiment 1 with adjustments to reflect the different payoff structure used in the second 

experiment. In order to examine how close to optimal the participants performed, for each 

participant we ran the model using their individual parameters in the exploitation phase (typing 

speed, error rate, and tracking time). We determined the entire strategy space available to each 

participant by systematically exploring the effect of different visit durations to the typing task. 

For each strategy, we determined how many points would have been earned on average. This 

analysis allowed us to identify for each participant their optimal visit duration.  

Table 2 shows that there was a significant difference between participants’ scores and those 

of the optimal strategies. In the lose-half condition, and in the lose 500 condition, participants’ 

scores were significantly lower than those predicted by the optimal strategy. 

---------------------------------Table 2 about here----------------------------------- 
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We now examine how the shape of the payoff functions in each condition affected 

participants’ performance. Fig. 8 shows the shape of the expected payoff as a function of all the 

possible strategies in each condition. The lose 500 condition has relatively few strategies that 

are optimal (i.e., the dark shaded area is small), whereas the lose-half condition is more 

forgiving with a large range of near-optimal strategies. This difference is reflected in the 

variance of the participants’ performance: the standard error of participants’ strategies was 

larger in the lose-half condition than in the lose 500 condition. Although each participant’s 

payoff curve was slightly different depending on their individual parameters, all curves 

followed the basic shape seen in Fig. 8. Participants in the lose 500 condition adopted a mean 

visit time of 2.66 seconds, outside the range of optimal strategies shown in Fig. 8. Participants 

in the lose-half condition adopted a mean visit time of 4.06 seconds - a strategy that achieves 

97% of the optimum.  

---------------------Fig.8 about here------------------- 

Participants’ performance was not optimal in either condition, but it was stable. Fig. 9 plots 

the mean visit duration to the typing task for each trial of the exploitation phase, the gray 

shaded areas represent the standard error on the visit duration. These data show that 

participants adopted different strategies in the different payoff conditions, and that those 

strategies remained stable throughout the exploitation phase. There was no significant 

difference between the first and last trial visit durations in the lose 500 condition, t(14) = 0.38, 

p = 0.71, or in the lose-half condition t(14) = -0.79, p = .45. Fig. 9 shows that participants 
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needed to spend less time typing in the lose 500 condition and more in lose-half condition. The 

optimum strategy (shown by the dashed red line) required many more digits to be typed per 

visit in the lose-half condition than in the lose 500 condition. 

---------------Fig. 9 about here--------------- 

In the transfer stage of the experiment participants in the lose-half condition adjusted their 

strategy so that they spent less time per visit. By contrast participants in the lose 500 condition 

did not significantly increase their visit duration. Fig. 10 shows that participants adopted 

different strategies in the lose 200% phase depending on which payoff function they had 

experienced immediately before.  

----------------Fig. 10 about here------------- 

4. General Discussion 

Overall, the results of both experiments reveal that people are able to change their strategy in 

response to changes in the environment. Though this adaptation falls short of being optimal, 

people do select strategies that are close to the optimum. 

The adaptation we have seen to different payoff functions suggests that this paradigm can be 

used to both encourage people to change strategies when required, and to investigate the extent 

and limitations of our ability to perform optimally. More work is required to understand what 

governs the relationship between the payoff function in an environment and how quickly 

people settle on a strategy. Our data suggest that there may be a sweet spot in the trade-off 
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between task difficulty and how informative the feedback is. A very difficult task is 

intrinsically hard to optimize; however, a very easy task may not afford sufficiently variable 

feedback to enable people to change their strategy. 

The results from Experiment 1 show that participants were able to strategically adjust how 

long they spent on one task before switching to the other. Changes in the payoff structure and 

task difficulty led participants to adjust their visit times to the typing task in the direction 

predicted by an optimal model of performance. Participants chosen strategies were significantly 

different from the exact optimal strategy, and in five of the six conditions participants adopted a 

strategy that reduced the risk of a penalty at the expense of overall gain. They were nonetheless 

efficient, achieving the large majority of the reward available.  

These results have important theoretical implications for the understanding of human 

multitasking. They suggest that people are flexible and adapt behavior to task priorities (in our 

case: to earn points). This flexibility is in contrast to claims by Salvucci & Taatgen (2008), who 

explain human multitasking behavior as being emergent from task structures and largely 

lacking in strategic (task priority) control. However, the data reported here support the notion 

that people are flexible in how they interleave tasks and that they alter their strategy in response 

to a clearly defined reward metric (Janssen et al., 2011; Janssen, 2012; Janssen & Brumby, 

2015; Howes et al., 2009). This notion of flexible strategies has recently also been proposed for 

threaded cognition models (Nijboer, Borst, van Rijn, & Taatgen, 2016), although in that study 

it is proposed as a hallmark of novice behavior. In contrast, in our work flexible interleaving in 
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response to relative value of tasks is a hallmark of skilled adaptive behavior (similar to models 

in Howes et al., 2009; Janssen et al., 2011; Janssen & Brumby, 2015; Zhang & Hornof, 2014). 

The results from Experiment 2 provide further evidence of the robustness of this finding. 

Participants again used different strategies depending on the nature of the payoff function. 

These strategies were also not optimal but did achieve 94% of the maximum points available in 

the lose-half condition and 48% in the lose 500 condition - up from 82% and 26% respectively 

for the most similar conditions in Experiment 1. Unlike in Experiment 1, in Experiment 2 the 

task difficulty was kept constant and only the payoff function was varied. Furthermore, 

Experiment 2 had many more trials allowing us to determine how quickly participants settled 

on their strategy and whether their performance was stable. Participants adopted significantly 

different strategies in the two conditions, indicating an ability to choose a strategy in response 

to a payoff function. However, despite the longer exposure and the opportunity to explore, 

participants still chose strategies significantly worse than optimal.  

Experiment 2 further suggests that participants may transfer strategies from one payoff 

environment to another. Participants who had previously experienced a payoff function with a 

more severe penalty were more cautious about changing their strategy in the face of a new 

payoff function presented during the transfer phase. 

Whilst our participants’ choice of strategy was predicted by a model of the optimal strategy, 

it is also the case that our participants were somewhat risk averse. For instance, the data from 

Experiment 1 show that our participants could have afforded a greater probability of incurring a 



37 

penalty in five out of the six conditions (for a similar finding see Juni, Gureckis, & Maloney, 

2011). 

4.1. Implications 

The way in which people interleave tasks depends on a variety of factors. The nature of the 

incentive, the characteristics of the task itself, and the cognitive constraints on the individual 

will all play a role (Janssen et al., 2011; Lewis et al., 2014; Howes et al., 2009). An important 

theoretical implication from our findings is that people’s ability to exhibit control over their 

strategy selection needs to be accounted for in models of human multitasking. People do not 

necessarily adopt a fixed strategy, but actively engage with feedback in deciding how to 

interleave. 

Although participants adapted their behavior to the payoff functions, they did not always 

apply the overall most efficient strategies. It is therefore critical that future research examines 

the nature of the payoff functions with which participants are presented. As our results show, 

some payoff functions are easier to adapt to than others, and a strategy from one payoff 

function may be transferred to another, at least while a person adapts to a new environment. All 

of these factors require careful experimental design and consideration of the nature of feedback 

given to participants in experiments. 

Our findings suggest that risk aversion may lead people to take longer to settle on a new 

optimal strategy when a payoff environment becomes more forgiving. By contrast, a payoff 

environment which becomes harsher may result in a much faster change in strategy. 
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Participants in Experiment 2 who first experienced the lose 500 condition chose shorter visits in 

the transfer condition than those who had previously experienced the lose-half condition. This 

difference implies that people may need different levels of time and experience with a task in 

order to settle on an effective interleaving strategy, depending on whether they are moving 

from a safe to risky environment, or vice versa. The observed pattern of risk aversion also 

suggests that learning might proceed more quickly when moving from safer to progressively 

riskier environments than it would in the opposite direction. 

Whilst our experiments suggest that people are flexible in strategy selection and can 

optimize reward, we also found that participants transferred strategy from previous conditions 

to new environments. Future work should look further into how such strategy transfer can be 

overcome in other settings. Many real-world work environments will have frequently shifting 

priorities and incentives (e.g., changes in management), so examining the underlying causes of 

people’s tendency to stick with old strategies or adopt new ones could have strong practical 

importance. 

All of the above implications also suggest important considerations for the design of 

multitasking work. People’s flexibility in strategy selection might be accommodated by 

designing tasks in which a variety of strategies are possible. This is particularly important since 

the optimal strategies will differ between individuals. Task designers should also consider, 

where possible, giving feedback on performance in order to exploit people’s ability to settle on 

a strategy that will maximize their efficiency. 

4.2. Limitations 
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We studied the ability to interleave two tasks in a multitasking setting. As multitasking is 

diverse and can involve all kinds of tasks (Janssen et al., 2015), the general human ability that 

we investigated here should be studied further in more specific settings. Similar to other work 

that has focused on discretionary task interleaving (e.g., Janssen et al., 2011; Payne et al., 2007; 

Duggan et al., 2013), a characteristic of our task was that participants had to interleave the two 

tasks and could only focus on one task at a time. In Experiment 2 participants were given an 

explicit exploration phase. People might not always have this opportunity in real world settings, 

but learn while they are performing. 

In our study we used an explicit payoff function to express success on the task. Although 

explicit feedback is not available in all everyday tasks, tasks often have an associated success 

rate. Making the success rate explicit, via our payoff function, offered us many advantages: it 

captures performance in one unit, provides an objective criterion (and allows for an associated 

interpretation) about which tasks should be valued or prioritized, and avoids participants from 

having to use internal scales to compare performance on tasks. In preceding studies, we showed 

that even in cases where there is not an explicit payoff function, but a subjective priority, 

people can adapt their behavior to prioritize tasks differently to meet verbally stated 

instructions (e.g., Janssen & Brumby, 2010; Janssen et al., 2012). 

Our model provides a simple approximation of behavior, for which most parameters were 

derived from empirically observed values. This level of abstraction was chosen as it proved 

useful before (e.g., Janssen et al., 2011, 2012; Janssen & Brumby, 2010; Janssen & Brumby, 

2015). However, the model could be refined by incorporating for example production-rules to 
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govern action selection (e.g., Salvucci & Taatgen, 2008, 2011) or fine-grained perceptual and 

motor actions (Zhang & Hornof, 2014). More generally, our model is at Marr’s computational 

level, and is focused on determining how well participants performed compared to the best 

strategies available. This level of analysis affords a different type of insight focused on 

understanding the goal of human behavior, but does not reveal the mechanism that supports the 

achievement of that goal. The level of model we have used can nonetheless be useful in 

understanding mechanism by combining it with theories of process (Howes et al., 2009; Lewis 

et al., 2014). 

5. Conclusion 

The results of two experiments and computational modeling work described here show people 

to be highly adept at multitasking: participants were able to make sizable and beneficial 

adjustments to how much time they were giving up to a task before switching back to another 

task, based on the downstream cumulative reward that was achieved by such decisions. While 

our results do show that participants often fell short of achieving optimal dual-task performance 

outcomes, we did find that participants often settled on strategies that were efficient and 

achieved very close to the maximum reward available across a variety of conditions. 

Understanding the shape of the payoff curve gives insights into why participants might have 

fallen short of achieving optimal performance outcomes. One reason is that it can be a difficult 

optimization problem (i.e., there was sometimes a narrow and constrained region of peak 
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reward on the payoff curve) and so participants were often risk averse to avoiding 

overshooting. The primary contribution of this work lays in the detailed empirical and 

computational exploration of how people adapt to explicit feedback on performance when 

multitasking. 
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Table 1. Comparison of participants’ mean scores and their predicted optimal score 

Payoff Cursor 

Noise 

Participants score 

(SD) 

Optimal score 

(SD) 

t(19) p 

lose-half 
low 2041 (425) 2345 (490) -4.30 <.001 

high 1637 (362) 1986 (423) -4.85 <.001 

lose-all 
low 2055 (509) 2327 (501) -4.14 <.001 

high 1608 (394) 1944 (514) -4.41 <.001 

lose 500 
low 1799 (626) 2045 (401) -2.85 .010 

high 323 (872) 1240 (628) -3.95 <.001 
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Table 2. Comparison of participants’ mean scores and those of their optimal strategies 

in Experiment 2 

Payoff Participants score 

(SD) 

Optimal score 

(SD) 

t(14) p 

lose-half 253 (64) 268 (60) -2.17 .048 

lose 500 88 (164) 182 (41) -2.32 .036 
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Fig. 1. Position of the two task windows in the interface. Only one of the task windows was 

visible at a time. Participants could switch between windows by pressing or releasing a button 

on the joystick (see text for details). 

 

Fig. 2. Mean visit duration to the typing task in each condition. Error bars are standard error of 

the mean. 

 

Fig. 3. The probability that the randomly moving cursor would exit the target area as a function 

of typing task visit duration. Note that the horizontal axis uses a logarithmic scale. 

 

Fig. 4. Expected trial payoff as a function of the mean typing task visit duration. The horizontal 

axis shows the possible visit durations participants could adopt, while the vertical axis shows 

the corresponding expected payoff for the trial. The payoff curves are based on the aggregate 

parameters across all participants. The data points show participants’ mean visit duration and 

achieved score with 95% confidence intervals. The darkest shaded area indicates the typing 

task visit durations that achieve within 1% of the maximum, the lighter shades indicate 

durations that achieve within 2%, 5% and 10% respectively. 
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Fig. 5. Experiment 2 expected payoff in each condition. These curves are derived from the 

group level parameters observed in Experiment 1. The ‘x’ points show the payoff of the 

transfer condition, which participants experienced immediately after one of the other two 

payoff functions. 

 

Fig. 6. Experiment 2 results. Participants in the lose-half condition made longer visits to the 

typing task than participants in the lose 500 condition during the exploitation phase. In the lose 

500 condition participants’ mean visit time decreased from the exploration to the exploitation 

phase. The optimal strategies were 5.89 seconds and 1.82 seconds for the lose-half and lose 500 

conditions respectively. Error bars are standard error of the mean. 

 

Fig. 7. Participants’ maximum visit time during the exploration phase (to the left of the dotted 

vertical line) and the exploitation phase (to the right of the line). Shaded area shows standard 

error of the mean. 

 

Fig. 8. Expected trial payoff as a function of the mean typing task visit duration. The horizontal 

axis shows the possible visit durations participants could adopt, while the vertical axis shows 

the corresponding expected payoff for the trial. The payoff curves are based on the aggregate 

parameters across all participants. The data points show participants’ mean visit duration and 

achieved score with 95% confidence intervals. The darkest shaded area indicates the typing 
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task visit durations that achieve within 1% of the maximum, the lighter shades indicate 

durations that achieve within 2%, 5% and 10% respectively. 

 

Fig. 9. Participants’ mean visit durations during the exploitation phase of the experiment. Each 

data point shows the mean visit duration for that trial number. Participants maintained a 

consistent level of performance throughout the exploitation phase. Note that strategies were 

markedly different between the two payoff conditions. The dashed horizontal line shows the 

optimal modeled strategy for the mean participant. Shaded area denotes standard error of the 

mean. 

 

Fig. 10. Transfer stage. Participants who experienced the transfer stage after the lose-half 

condition made longer visits than those who had previously experienced the lose 500 condition. 

Error bars show standard error of the mean. 
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Supplementary Materials  
Dividing attention between tasks: Testing whether explicit payoff functions elicit optimal 
dual-task performance 
 
Farmer, G.D., Janssen, C.P., Nguyen, A.T., & Brumby, D.P. 
  
 
 
Table S1 shows the mean values for other measures recorded during Experiment 1. All 
follow the same pattern as the key dependent variable of mean visit time reported in 
the main text.  
  
  

Table S1. Experiment 1 other measures 

    Condition    

   Low noise    High noise   

  
Lose 500 Lose-all lose-half Lose 500 Lose-all lose-half 

Mean tracking 
time  1.24 1.32 1.26 1.37 1.33 1.41 

Mean keys 
pressed  10.32 11.87 12.84 5.77 6.76 8.44 

Max visit 
duration  7.36 7.24 8.46 4.10 4.35 5.42 

  
  
  

Supplementary Material



Table S2 shows the mean values for other measures recorded during Experiment 2. All 
follow the same pattern as the key dependent variable of mean visit time reported in 
the main text.  
  
 
 
  

Table S2. Experiment 2 other measures 

    Condition    

  Lose 500   Lose-half  

 Explore Exploit Transfer Explore Exploit Transfer 

Mean tracking 
time 1.51 1.40 1.33 1.22 1.17 1.17 

Mean keys 
pressed 8.79 8.03 8.29 12.78 13.22 11.19 

Max visit 
duration 7.82 5.29 4.97 11.29 8.95 6.89 

  
  


