HECHLER'S THEOREM FOR TALL ANALYTIC P-IDEALS

BARNABÁS FARKAS

ABSTRACT. We prove the following version of Hechler's classical theorem: For each partially ordered set (Q, \leq) with the property that every countable subset of Q has a strict upper bound in Q, there is a ccc forcing notion such that in the generic extension for each tall analytic P-ideal \mathcal{I} (coded in the ground model) a cofinal subset of $(\mathcal{I}, \subseteq^*)$ is order isomorphic to (Q, \leq) .

1. INTRODUCTION

A partially ordered set (Q, \leq) is σ -directed if each countable subset of Q has a strict upper bound in Q. If $f, g \in \omega^{\omega}$, then we write $f \leq^* g$ and say g almost dominates f if the set $\{n \in \omega : f(n) > g(n)\}$ is finite. Hechler's original theorem is the following statement:

Theorem 1.1. ([5],[2]) Let (Q, \leq) be a σ -directed partially ordered set. Then there is a ccc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$ a cofinal subset of $(\omega^{\omega}, \leq^*)$ is order isomorphic to (Q, \leq) .

In [7] L. Soukup asked if Hechler's Theorem hold for classical σ -ideals as partially ordered sets with the inclusion. T. Bartoszyński, M.R. Burke, and M. Kada gave the following positive answers. Denote \mathcal{N} the ideal of measure zero subsets of the reals, and \mathcal{M} the ideal of measure subsets of the reals.

Theorem 1.2. ([3]) Let (Q, \leq) be a σ -directed partially ordered set. Then there is a ccc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$ a cofinal subset of (\mathcal{N}, \subseteq) is order isomorphic to (Q, \leq) .

Theorem 1.3. ([1]) Let (Q, \leq) be a σ -directed partially ordered set. Then there is a ccc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$ a cofinal subset of (\mathcal{M}, \subseteq) is order isomorphic to (Q, \leq) .

Using the model of [3] we prove the following theorem in Section 4.

Theorem 1.4. Let (Q, \leq) be a σ -directed partially ordered set. Then there is a ccc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$ for each tall analytic *P*-ideal \mathcal{I} coded in *V* a cofinal subset of $(\mathcal{I}, \subseteq^*)$ is order isomorphic to (Q, \leq) .

Remark 1.5. Tallness is not really necessary in Theorem 1.4. It is enough to assume that \mathcal{I} can be represented by $\operatorname{Exh}(\varphi)$ (see below) such that $\{n \in \omega : \varphi(\{n\}) < \varepsilon\} \notin \mathcal{I}$ for each $\varepsilon > 0$. This property of $\operatorname{Exh}(\varphi)$ is really weaker than tallness.

Key words and phrases. Hechler's Theorem, forcing, analytic P-ideals.

The preparation of this paper was supported by Hungarian National Foundation for Scientific Research grants no 68262 and 77476.

²⁰⁰⁰ Mathematics Subject Classification. 03E35.

BARNABÁS FARKAS

We always assume that if \mathcal{I} is an ideal on ω then the ideal is *proper*, i.e. $\omega \notin \mathcal{I}$, and \mathcal{I} contains all finite subsets of ω so in particular \mathcal{I} is *non-principal*.

An ideal \mathcal{I} on ω is analytic (Borel etc.) if $\mathcal{I} \subseteq \mathcal{P}(\omega) \simeq 2^{\omega}$ is an analytic (Borel etc.) set in the usual product topology of the Cantor-set. \mathcal{I} is a *P*-ideal if for each countable $\mathcal{C} \subseteq \mathcal{I}$ there is an $A \in \mathcal{I}$ such that $I \subseteq^* A$ for each $I \in \mathcal{C}$, where $A \subseteq^* B$ iff $A \setminus B$ is finite. \mathcal{I} is tall (or dense) if each infinite subset of ω contains an infinite element of \mathcal{I} .

The following families are well-known examples of tall analytic *P*-ideals: the density zero ideal: $\mathcal{Z} = \{A \subseteq \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$, and the summable ideal: $\mathcal{I}_{\frac{1}{n}} = \{A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty\}$. A function $\varphi : \mathcal{P}(\omega) \to [0, \infty]$ is a submeasure on ω iff $\varphi(\emptyset) = 0$, $\varphi(A) \leq \varphi(B)$

A function $\varphi : \mathcal{P}(\omega) \to [0,\infty]$ is a submeasure on ω iff $\varphi(\emptyset) = 0$, $\varphi(A) \leq \varphi(B)$ for $A \subseteq B \subseteq \omega$, $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$ for $A, B \subseteq \omega$, and $\varphi(\{n\}) < \infty$ for $n \in \omega$. A submeasure φ is lower semicontinuous (lsc in short) iff $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap n)$ for each $A \subseteq \omega$. Note that if φ is an lsc submeasure on ω then it is σ -subadditive, i.e. $\varphi(\bigcup_{n \in \omega} A_n) \leq \sum_{n \in \omega} \varphi(A_n)$ holds for $A_n \subseteq \omega$. We assign an ideal to an lsc submeasure φ as follows

$$\operatorname{Exh}(\varphi) = \left\{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0 \right\}.$$

 $\operatorname{Exh}(\varphi)$ is an $F_{\sigma\delta}$ P-ideal or equal to $\mathcal{P}(\omega)$. It is straightforward to see that $\operatorname{Exh}(\varphi)$ is tall iff $\lim_{n\to\infty}\varphi(\{n\})=0$. Furthermore, we can assume without changing $\operatorname{Exh}(\varphi)$ that $\varphi(\{k\})>0$ for each $k\in\omega$ because if $\varphi'(A)=\varphi(A)+\sum_{k\in A}2^{-k}$, then φ' is also an lsc submeasure on ω , $\varphi'(\{k\})>0$ for each $k\in\omega$, and $\operatorname{Exh}(\varphi')=\operatorname{Exh}(\varphi)$.

Theorem 1.6. ([6], Theorem 3.1) If \mathcal{I} is an analytic *P*-ideal then $\mathcal{I} = \text{Exh}(\varphi)$ for some lsc φ .

Therefore each analytic P-ideal is $F_{\sigma\delta}$ (i.e. Π_3^0) so it is a Borel subset of 2^{ω} .

In Section 2. we recall the definition of *slaloms* and prove that if a forcing notion \mathbb{P} adds a slalom capturing all ground model real, then for each tall analytic P-ideal \mathcal{I} coded in the ground model, \mathbb{P} adds a new element of \mathcal{I} which almost contains old elements of \mathcal{I} .

In Section 3. we recall the model of [3] and its main properties. At last, in Section 4. we prove our main Theorem 1.4.

2. Dominating analytic P-ideals

If φ is an lsc submeasure on ω , then clearly φ is determined by $\varphi \upharpoonright [\omega]^{<\omega}$ so we can talk about the "same" analytic P-ideal in forcing extensions without using analytic absoluteness.

Definition 2.1. Let \mathcal{I} be an analytic ideal on ω . A forcing notion \mathbb{P} is \mathcal{I} -dominating if \mathbb{P} adds a new element of \mathcal{I} which almost contains all elements of $\mathcal{I} \cap V$, in other words $\mathcal{I} \cap V$ is bounded in $(\mathcal{I} \cap V^{\mathbb{P}}, \subseteq^*)$, i.e.

$$\Vdash_{\mathbb{P}} \exists B \in \mathcal{I} \cap V[G] \ \forall A \in \mathcal{I} \cap V \ (A \subseteq^* B).$$

Let $S = \mathsf{X}_{n \in \omega}[\omega]^{\leq n}$ be the set of *slaloms*. If $f \in \omega^{\omega}$ and $S \in S$ then we say S almost captures f and write $f \sqsubseteq^* S$ iff $\forall^{\infty} n f(n) \in S(n)$.

Definition 2.2. A forcing notion \mathbb{P} adds a *slalom over the ground model* if \mathbb{P} adds a new element of \mathcal{S} which almost captures all ground model reals, i.e.

$$\Vdash_{\mathbb{P}} \exists S \in \mathcal{S} \cap V[G] \ \forall f \in \omega^{\omega} \cap V \ (f \sqsubseteq^* S).$$

First of all we mention the following known result on the connection between slaloms and measure zero sets.

Theorem 2.3. ([4], 534I) A forcing notion \mathbb{P} adds a slalom over V iff in $V^{\mathbb{P}}$ the union of null sets coded in V has measure zero, i.e. $\Vdash_{\mathbb{P}} \bigcup (\mathcal{N} \cap V) \in \mathcal{N}$.

Let $\mathcal{I} = \operatorname{Exh}(\varphi)$ be an analytic P-ideal, and in the rest of the paper fix a bijection $e: \omega \to [\omega]^{<\omega}$. If S is a slalom, then let

$$(*) I(S) = \bigcup_{n \in \omega} \bigcup \left\{ e(k) : k \in S(n) \land \varphi(e(k)) < 2^{-n} \right\}.$$

The following Proposition is the core of our main Theorem 1.4.

Proposition 2.4. Assume that a forcing notion \mathbb{P} adds a slalom S over V. Then $I(S) \in \mathcal{I} \cap V^{\mathbb{P}}$ and I(S) almost contains all elements of $\mathcal{I} \cap V$ so \mathbb{P} is \mathcal{I} -dominating for each analytic P-ideal \mathcal{I} .

Proof. For each n the set $\bigcup \{e(k) : k \in S(n) \land \varphi(e(k)) < 2^{-n}\}$ is finite and has measure less then $\frac{n}{2^n}$ so $I(S) \in \mathcal{I}$.

Assume $A \in \mathcal{I} \cap V$. Then let $d_A(n) = \min\{k \in \omega : \varphi(A \setminus k) < 2^{-n}\}$ and

$$f_A(n) = e^{-1} (A \cap [d_A(n), d_A(n+1))).$$

Clearly $\varphi(e(f_A(n))) < 2^{-n}$ and $f_A \in \omega^{\omega} \cap V$. Because S is a slalom over V, there is an N such that $f_A(n) \in S(n)$ for each $n \geq N$ so $A \setminus d_A(N) \subseteq I(S)$. We are done.

We recall the definition of the *localization forcing*. Let $\mathcal{T} = \bigcup_{n \in \omega} X_{k < n}[\omega]^{\leq k}$ be the tree of initial slaloms. $p \in \mathbb{LOC}$ iff $p = (s^p, F^p)$ where

(1) $s^{p} \in \mathcal{T}$ and $F^{p} \subseteq \omega^{\omega}$, (2) $|F^{p}| \leq |s^{p}|$. $q \leq p$ iff (a) $s^{q} \supseteq s^{p}$ and $F^{q} \supseteq F^{p}$, (b) $\forall n \in |s^{q}| \setminus |s^{p}| \forall f \in F^{p} f(n) \in s^{q}(n)$.

Lemma 2.5. (Folklore) \mathbb{LOC} is σ -n-linked for each n (so ccc) and adds a slalom over the ground model. More explicitly, if G is \mathbb{LOC} -generic over V then $S = \bigcup \{s^p : p \in G\} \in V^{\mathbb{LOC}}$ is a slalom over V.

We will use a special version of the localization forcing (see [3], Definition 3.1): $p \in \mathbb{LOC}^*$ iff $p = (s^p, w^p, F^p)$ where

 $\begin{array}{ll} (1) \ s^{p} \in \mathcal{T}, \ w^{p} \in \omega, \ F^{p} \subseteq \omega^{\omega}, \\ (2) \ |F^{p}| \leq w^{p} \leq |s^{p}|, \\ q \leq p \ \text{iff} \\ (a) \ s^{q} \supseteq s^{p}, \ w^{q} \geq w^{p}, \ \text{and} \ F^{q} \supseteq F^{p}, \\ (b) \ \forall \ n \in |s^{q}| \backslash |s^{p}| \ \forall \ f \in F^{p} \ f(n) \in s^{q}(n), \\ (c) \ w^{q} \leq w^{p} + |s^{q}| - |s^{p}|, \\ (d) \ \forall \ n \in |s^{q}| \backslash |s^{p}| \ |s^{q}(n)| \leq w^{p} + n - |s^{p}|. \end{array}$

Lemma 2.6. ([3], Lemma 3.2, 3.3, and 3.4) \mathbb{LOC}^* is σ -linked (so ccc) and adds a slalom over the ground model.

BARNABÁS FARKAS

3. The forcing notion

In this section, we recall the model of [3] and its main properties.

Let (Q, \leq) be a partially ordered set such that each countable subset of Q has a strict upper bound in Q. Let $Q^* = Q \cup \{Q\}$ and extend the partial order to this set with x < Q for each $x \in Q$.

Fix a well-founded cofinal $R \subseteq Q$ and a rank function on $R^* = R \cup \{Q\}, \varrho : R^* \to Q$ On. Extend ϱ to Q^* by letting $\varrho(x) = \min\{\varrho(y) : y \in R^*, x < y\}$ for $x \in Q \setminus R$. For $x, y \in Q^*$ define $x \ll y$ iff x < y and $\varrho(x) < \varrho(y)$. Further notations:

- $Q_x = \{y \in Q : y \ll x\}$ for $x \in Q^*$,
- $D_{\xi} = \{x \in D : \varrho(x) = \xi\}$ for $D \subseteq Q$ and $\xi \in \text{On}$,
- $D_{<\xi} = \{x \in D : \varrho(x) < \xi\}$ for $D \subseteq Q$ and $\xi \in On$,
- $D_{\leq x} = \{y \in D : \varrho(y) = \varrho(x), y \leq x\}$ for $D \subseteq Q$ and $x \in Q$.

If $E \subseteq D \subseteq Q$, we say that E is downward closed in D, $E \subseteq_{d.c.} D$ in short, if $y \in E$ whenever $y \in D$ and $y \leq x \in E$ for some x.

Definition 3.1. ([3], Definition 3.1) The forcing notions \mathbb{N}_a for $a \in Q^*$ are defined by recursion on $\rho(a)$.

- $p = \{(s_x^p, w_x^p, F_x^p) : x \in D^p\} \in \mathbb{N}_a$ where $D^p \in [Q_a]^{<\omega}$ if the following hold:
- (I) for $x \in D^p$, $s_x^p \in \mathcal{T}$, $w_x^p \in \omega$, and F_x^p is a set of nice \mathbb{N}_x -names for elements of ω^{ω} with $|\tilde{F}_x^p| \le w_x^p$; (II) for $x \in D^p$, $\sum \{w_z^p : z \in D_{\le x}^p\} \le |s_x^p|;$

(III) for each $\xi \in \varrho'' D^p$ there is an $\ell_{\xi}^p \in \omega$ such that $|s_x^p| = \ell_{\xi}^p$ for each $x \in D_{\xi}^p$. If $p \in \mathbb{N}_a$ and $b \in Q_a$, define $p \upharpoonright b \in \mathbb{N}_b$ by letting

$$p \upharpoonright b = \{(s_x^p, w_x^p, F_x^p) : x \in D^p \cap Q_b\}.$$

 $p \leq_{\mathbb{N}_a} q$ iff

- (A) $D^p \supseteq D^q$;
- (B) $\forall x \in D^q \ \left(s_x^p \supseteq s_x^q \land w_x^p \ge w_x^q \land F_x^p \supseteq F_x^q\right);$
- (C) $\forall x \in D^q \ \forall n \in |s_x^p| \setminus |s_x^q| \ \forall \dot{f} \in F_x^q \ (p \upharpoonright x \Vdash_{\mathbb{N}_x} \dot{f}(n) \in s_x^p(n));$
- (D) $\forall \xi \in \varrho'' D^q \ \forall x, y \in D^q_{\mathcal{E}} (x < y \Rightarrow \forall n \in \ell^p_{\mathcal{E}} \setminus \ell^q_{\mathcal{E}} s^p_x(n) \subseteq s^p_y(n));$
- (E) $\forall \xi \in \rho'' D^q$

$$\sum \{ w_x^p : x \in D_{\xi}^p \} \le \sum \{ w_x^q : x \in D_{\xi}^q \} + (\ell_{\xi}^p - \ell_{\xi}^q);$$

(F) $\forall \xi \in \varrho'' D^q \ \forall E \subseteq_{\text{d.c.}} D_{\xi}^q \ \forall n \in \ell_{\xi}^p \setminus \ell_{\xi}^q$ $\left| \left| \int \{s_x^p(n) : x \in E\} \right| \le \sum \{w_x^q : x \in E\} + (n - \ell_{\xi}^q).$

Proposition 3.2. ([3], Proposition 4.3)

- (a) If $p, q \in \mathbb{N}_a$, $p \leq_{\mathbb{N}_a} q$, and $b \in Q_a$, then $p \upharpoonright b \leq_{\mathbb{N}_b} q \upharpoonright b$.
- (b) $\leq_{\mathbb{N}_a}$ is a partial order.
- (c) If $a, b \in Q^*$ and $p, q \in \mathbb{N}_a \cap \mathbb{N}_b$, then $p \leq_{\mathbb{N}_a} q \iff p \leq_{\mathbb{N}_b} q$.

From now on we write $\leq (=\leq_{\mathbb{N}_O})$ instead of $\leq_{\mathbb{N}_a}$.

Definition 3.3. ([3], Definition 4.4) For an $A \subseteq_{d.c.} Q$, let $\mathbb{N}_A = \{p \in \mathbb{N}_Q : D^p \subseteq \mathbb{N}_Q \}$ A}, and for $p \in \mathbb{N}_Q$, let $p \upharpoonright A = \{(s_x^p, w_x^p, F_x^p) : x \in D^p \cap A\} \in \mathbb{N}_A$. Furthermore, if $\xi \in \text{On then let } \mathbb{N}_{\xi} = \mathbb{N}_{Q_{\leq \xi}}, \ p \upharpoonright \xi = p \upharpoonright Q_{\leq \xi} \in \mathbb{N}_{\xi}, \ \text{and} \ p \upharpoonright [\xi, \infty) = \{(s_x^p, w_x^p, F_x^p) : \xi \in \mathbb{N}_{\xi}, \xi \in \mathbb{N}_{\xi}\}$ $x \in D^p \backslash Q_{<\xi} \}.$

So we have $\mathbb{N}_a = \mathbb{N}_{Q_a}$ for each $a \in Q^*$, and \mathbb{N}_Q has the same meaning if we consider Q either as an element of Q^* or as a subset of Q.

Before the following lemma we recall the definition of complete subforcing: Assume $\mathbb{P} = (P, \leq_{\mathbb{P}})$ is a subforcing of $\mathbb{Q} = (Q, \leq_{\mathbb{Q}})$, i.e. $P \subseteq Q$ and $\leq_{\mathbb{P}} = \leq_{\mathbb{Q}} \upharpoonright P$. Then we say that \mathbb{P} is a complete subforcing of \mathbb{Q} and write $\mathbb{P} \leq_{c} \mathbb{Q}$ if maximal antichains of \mathbb{P} are maximal antichains in \mathbb{Q} as well.

Lemma 3.4. ([3], Lemma 4.6) If $A, B \subseteq_{d.c.} Q$ and $A \subseteq B$, then $\mathbb{N}_A \leq_{c} \mathbb{N}_B$.

Remark 3.5. In [3] Lemma 4.6, exactly the following stronger result was proved: If $p \in \mathbb{N}_B$, $r \in \mathbb{N}_A$, and $r \leq p \upharpoonright A$ then there is a $q \in \mathbb{N}_B$ satisfying $q \leq p, r$.

Lemma 3.6. ([3], Lemma 4.10) \mathbb{N}_Q has ccc.

We will use the following density arguments.

Lemma 3.7. ([3], Lemma 5.1, 5.2, 5.3, and 5.4) If $a \in A \subseteq_{d.c.} Q$, $\xi \in \text{On}$, $N \in \omega$, and \dot{f} is a nice \mathbb{N}_a -name for an element of ω^{ω} , then the following sets are dense in \mathbb{N}_A :

- (i) $\{p \in \mathbb{N}_A : a \in D^p\};$
- (ii) { $p \in \mathbb{N}_A : \xi \in \varrho'' D^p \land \ell_{\xi}^p \ge N$ }; (iii) { $p \in \mathbb{N}_A : a \in D^p \land w_a^p \ge |F_a^p| + 1$ };
- (iv) $\{p \in \mathbb{N}_A : a \in D^p \land \dot{f} \in F_a^p\}.$

For an $a \in Q$, let \dot{S}_a be an \mathbb{N}_Q -name such that

$$\Vdash_{\mathbb{N}_Q} \dot{S}_a = \bigcup \{ s_a^p : p \in \dot{G} \}.$$

Using (i) and (ii) from Lemma 3.7, $\Vdash_{\mathbb{N}_Q} \dot{S}_a \in \mathcal{S}$ for each $a \in Q$. Furthermore using (iv) and the definition of \mathbb{N}_Q we know that \dot{S}_a is a slalom over $V[\dot{G} \cap \mathbb{N}_a]$, i.e.

$$||_{\mathbb{N}_{O}} \forall f \in \omega^{\omega} \cap V[\dot{G} \cap \mathbb{N}_{a}] f \sqsubseteq^{*} \dot{S}_{a}.$$

At last, using the definition of \mathbb{N}_Q it is clear that if $\varrho(a) = \varrho(b)$ and a < b then

$$\Vdash_{\mathbb{N}_{O}} \forall^{\infty} n \, \dot{S}_{a}(n) \subseteq \dot{S}_{b}(n).$$

4. Proof of the main Theorem 1.4

Let $\mathcal{I} = \text{Exh}(\varphi)$ be a tall analytic P-ideal. We will use (*) and Proposition 2.4: for a slalom $S \in \mathcal{S}$, let

$$I(S) = \bigcup_{n \in \omega} \bigcup \{ e(k) : k \in S(n) \land \varphi(e(k)) < 2^{-n} \} \in \mathcal{I}.$$

We prove that in $V^{\mathbb{N}_Q}$ the set $\{I(\dot{S}_a) : a \in Q\} \subseteq \mathcal{I}$ is

- (i) cofinal, i.e. $\forall I \in \mathcal{I} \cap V^{\mathbb{N}_Q} \exists a \in Q \ I \subseteq^* I(\dot{S}_a);$
- (ii) order isomorphic to (Q, \leq) , i.e. $I(\dot{S}_a) \subseteq^* I(\dot{S}_b)$ iff $a \leq b$.

The only difficult step is to show that $a \not\leq b$ implies $I(\dot{S}_a) \not\subseteq^* I(\dot{S}_b)$.

It is clear from (\sharp_1) and Proposition 2.4 that for each $a \in Q$

$$(\sharp_2) \qquad \qquad \Vdash_{\mathbb{N}_Q} \forall I \in \mathcal{I} \cap V[\dot{G} \cap \mathbb{N}_a] I \subseteq^* I(\dot{S}_a).$$

Lemma 4.1. $\Vdash_{\mathbb{N}_Q}$ " $\{I(\dot{S}_a) : a \in Q\}$ is cofinal in $(\mathcal{I}, \subseteq^*)$ ".

Proof. Let I be a nice \mathbb{N}_Q -name for an element of \mathcal{I} . Using that \mathbb{N}_Q is ccc and that each countable subset of Q is (strictly) bounded in Q, there is an $a \in Q$ such that I is an \mathbb{N}_a -name. Then $\Vdash_{\mathbb{N}_O} I \subseteq^* I(S_a)$ by (\sharp_2) .

Lemma 4.2. Assume $a, b \in Q$ and $a \leq b$. Then $\Vdash_{\mathbb{N}_Q} I(\dot{S}_a) \subseteq^* I(\dot{S}_b)$.

Proof. If $a \ll b$ then $\Vdash_{\mathbb{N}_Q} I(\dot{S}_a) \in \mathcal{I} \cap V[\dot{G} \cap \mathbb{N}_b]$ so we are done by (\sharp_2) . If $\varrho(a) = \varrho(b)$ then we are done by (†). \square

We will need the following version of Lemma 3.7 (ii) which says that we can extend conditions in a natural way.

Lemma 4.3. Assume $p \in \mathbb{N}_Q$, $\xi \in \varrho'' D^p$, and $m \ge \ell_{\xi}^p$. Then there is a $q \le p$ such that $D_{\xi}^q = D_{\xi}^p$ and $q \upharpoonright \xi$ forces that $\forall \ b \in D_{\xi}^q \ \forall \ n \in [\ell_{\xi}^p, m]$

$$s^q_b(n) = \left\{ \dot{f}(n) : \dot{f} \in \bigcup \{ F^p_{b'} : b' \in D^p_{\leq b} \} \right\}.$$

Proof. First we choose an $r \in \mathbb{N}_{\xi}$, $r \leq p \upharpoonright \xi$ which decides $\dot{f} \upharpoonright [\ell_{\xi}^{p}, m]$ for each
$$\begin{split} \dot{f} \in &\bigcup\{F_{b'}^p: b' \in D_{\leq b}^p\}: \ r \Vdash_{\mathbb{N}_{\xi}} \dot{f} \upharpoonright [\ell_{\xi}^p, m] = g_{\dot{f}} \ \text{for some} \ g_{\dot{f}} \in \omega^{[\ell_{\xi}^p, m]}. \\ \text{Now let } q \ \text{be the following condition:} \end{split}$$

- $\begin{array}{ll} \text{(i)} & q \upharpoonright \xi = r, \, q \upharpoonright [\xi + 1, \infty) = p \upharpoonright [\xi + 1, \infty), \, \text{and} \, \, D^q_{\xi} = D^p_{\xi}; \\ \text{(ii)} & \text{if} \, b \in D^q_{\xi} \, \text{then let} \, |s^q_b| = m + 1, \, s^q_b \upharpoonright \ell^p_{\xi} = s^p_b, \, w^q_b = w^p_b, \, \text{and} \, F^q_b = F^p_b; \\ \text{(iii)} & \text{if} \, b \in D^q_{\xi} \, \text{and} \, n \in [\ell^p_{\xi}, m] \, \text{then let} \end{array}$

$$s^q_b(n) = \left\{ g_{\dot{f}}(n) : \dot{f} \in \bigcup \{ F^p_{b'} : b' \in D^p_{\leq b} \} \right\}.$$

Clearly $q \in \mathbb{N}_Q$. We have to show that $q \leq p$. (A), (B), (C), (D), and (E) hold trivially.

To see (F) assume $E \subseteq_{d.c.} D_{\xi}^p$ and $n \in [\ell_{\xi}^p, m]$ $(m+1 = \ell_{\xi}^q)$. Then

$$\begin{split} \left| \bigcup \{ s_x^q(n) : x \in E \} \right| &= \left| \left\{ g_{\dot{f}}(n) : \dot{f} \in \bigcup \{ F_x^p : x \in E \} \right\} \right| \le \sum \{ |F_x^p| : x \in E \} \le \\ &\sum \{ w_x^p : x \in E \} \le \sum \{ w_x^p : x \in E \} + (n - \ell_{\xi}^p). \end{split}$$

In Lemma 4.4 we will use the following notation: if $s \in \mathcal{T}$ is an initial slalom then let

$$I(s) = \bigcup_{n < |s|} \bigcup \{ e(k) : k \in s(n) \land \varphi(e(k)) < 2^{-n} \} \in [\omega]^{<\omega}.$$

Clearly, if $p \in \mathbb{N}_Q$ and $a \in D^p$, then $p \Vdash_{\mathbb{N}_Q} I(s_a^p) \subseteq I(\dot{S}_a)$.

Lemma 4.4. Assume $a, b \in Q$ and $a \nleq b$. Then $\Vdash_{\mathbb{N}_Q} I(\dot{S}_a) \nsubseteq^* I(\dot{S}_b)$.

Proof. Let $p \in \mathbb{N}_Q$ and $N \in \omega$. We have to find a $q \leq p$ such that $q \Vdash_{\mathbb{N}_Q} I(\dot{S}_a) \setminus N \nsubseteq$ $I(\dot{S}_b)$. Using Lemma 3.7 (i) and (iii) we can assume that $a, b \in D^p$ and $|w_a^p| \geq 1$ $|F_{a}^{p}| + 1.$

Let $M = \max\{|s_a^p|, |s_b^p|\}$. Using Lemma 3.7 we can assume that M is large enough such that $\varphi(\{k\}) \ge 2^{-M}$ for each k < N. For each $m \in \omega$ let

$$X_m = \{k \in \omega : 2^{-m-1} \le \varphi(\{k\}) < 2^{-m}\}.$$

Let $\xi = \varrho(b)$. Using that $\mathbb{N}_{b'} \leq_{c} \mathbb{N}_{b}$ if $b' \in D^p_{\leq b}$ by Lemma 3.4, we can define a descending sequence in \mathbb{N}_b : $p \upharpoonright b \ge r_M \ge r_{M+1} \ge \ldots$ such that r_m decides $\dot{f} \upharpoonright [\ell_{\mathcal{E}}^p, m]$ for each $\dot{f} \in \bigcup \{F_{b'}^p : b' \in D_{\leq b}^p\}$. Let $I_m : [\ell_{\mathcal{E}}^p, m] \to [\omega]^{\leq \omega}$ be defined by

$$r_m \Vdash_{\mathbb{N}_b} I_m(n) = \bigcup \left\{ e(\dot{f}(n)) : \dot{f} \in \bigcup \{ F_{b'}^p : b' \in D_{\leq b}^p \} \land \varphi \big(e(\dot{f}(n)) \big) < 2^{-n} \right\}.$$

Claim. There is an $m \ge M$ such that $X_m \nsubseteq I(s_b^p) \cup \bigcup \{I_m(n) : n \in [\ell_{\mathcal{E}}^p, m]\}.$

Proof of the Claim. Assume on the contrary that there is no such an m. Then

$$X_m \subseteq I(s_b^p) \cup \bigcup \{I_m(n) : n \in [\ell_{\xi}^p, m]\}$$

for each $m \geq M$. Clearly $\omega \subseteq^* \bigcup_{m \geq M} X_m$ by tallness¹, the sets $I(s_b^p)$ and $I_m(n)$ are finite, and if $n \leq m_1 \leq m_2$ then $\overline{I}_{m_1}(n) = I_{m_2}(n)$ so we have

$$\omega \subseteq^* I(s_b^p) \cup \bigcup_{m \ge M} \bigcup_{n = \ell_{\xi}^p}^m I_m(n) \subseteq^* \bigcup_{m \ge M} I_m(m).$$

Using that $\varphi(I_m(n)) \leq |D_{<b}^p| \frac{n}{2^n}$ we obtain that $\omega \in \mathcal{I}$, a contradiction.

Assume m is suitable in the Claim and let $r = r_m$. Fix a $k \in X_m \setminus (I(s_b^p) \cup$ $\bigcup \{I_m(n) : n \in [\ell^p_{\xi}, m]\}\)$. Then there is a \tilde{k} such that $e(\tilde{k}) = \{k\}$. Let \dot{g} be the canonical \mathbb{N}_a -name for the constant function with value \tilde{k} . Denote $p' \in \mathbb{N}_Q$ the condition which extends p by putting \dot{g} into F_a^p (this is really a condition extending p because of our assumption $|w_a^p| \ge |F_a^p| + 1$). We know that $p \upharpoonright b = p' \upharpoonright b$ because $a \notin Q_b$ so $r \leq p' \upharpoonright b$.

Using Remark 3.5 for $Q_b \subseteq Q_{<\xi}$, $r \in \mathbb{N}_b$, and $p' \upharpoonright \xi \in \mathbb{N}_{\xi}$ we can find a $q' \in \mathbb{N}_{\xi}$ with $q' \leq r, p' \upharpoonright \xi$. Let $p'' = q' \cup p' \upharpoonright [\xi, \infty) \leq p$.

At last using Lemma 4.3 we can extend p'' to a q such that $D_{\xi}^q = D_{\xi}^{p''} (= D_{\xi}^p)$ and $q \upharpoonright \xi \Vdash_{\mathbb{N}_{\xi}} \forall n \in [\ell^p_{\xi}, m] \ s^q_b(n) = \{\dot{f}(n) : \dot{f} \in \bigcup \{F^p_{b'} : b' \in D^p_{\leq b}\}\}$. Because $q \upharpoonright b \leq r$ we obtain that

$$q \Vdash_{\mathbb{N}_Q} I(s_b^q) \subseteq I(s_b^p) \cup \bigcup \{I_m(n) : n \in [\ell_{\xi}^p, m]\}.$$

By the choice of k and p' it is clear that $\tilde{k} \in s^q_a(m)$ and $\varphi(e(\tilde{k})) = \varphi(\{k\}) < 2^{-m}$ so $k \in I(s_a^q)$ which implies that $q \Vdash_{\mathbb{N}_Q} k \in I(S_a) \setminus N$.

To show that $q \Vdash_{\mathbb{N}_Q} k \notin I(\dot{S}_b)$ we know that $k \notin I(s_b^q)$ and if there would be a $\bar{q} \leq q$ such that $k \in I(s_b^{\bar{q}})$, then there would be an n > m and a $k' \in s_b^{\bar{q}}(n)$ such that $k \in e(k') \subseteq I(s_h^{\bar{q}})$ but then $2^{-n} > \varphi(e(k')) \ge \varphi(\{k\}) \ge 2^{-m-1}$ would give a contradiction because $n \ge m+1$. The proof of Lemma 4.4 is done. \square

Now we have finished the proof of our main Theorem 1.4.

Acknowledgement

I would like to thank my supervisor Lajos Soukup for his advices and kind help both in mathematics and in formal details. Besides, I would like to thank the referee for the valuable comments and corrections.

¹This is the only point in the proof where we used tallness of the ideal. As we mentioned in Remark 1.5, it would be enough to assume that $\bigcup_{m>M} X_m = \{k \in \omega : \varphi(\{k\}) < 2^{-M}\} \notin \mathcal{I}.$

BARNABÁS FARKAS

References

- Tomek Bartoszynski and Masaru Kada: Hechler's theorem for the meager ideal, Topology Appl. 146-147 (2005), pages 429-435.
- [2] Maxim R. Burke: A proof of Hechler's theorem on embedding \aleph_1 -directed sets cofinally into $(\omega^{\omega}, <^*)$, Arch. Math. Logic **36** (1997), pages 399-403.
- [3] Maxim R. Burke and Masaru Kada: Hechler's theorem for the null ideal, Arch. Math. Logic 43 (2004), pages 703-722.
- [4] David H. Fremlin: Measure Theory. Set-theoretic Measure Theory. Torres Fremlin, Colchester, England, 2004. Available at http://www.essex.ac.uk/maths/staff/fremlin/mt.html
- [5] S.H. Hechler: On the existence of certain cofinal subsets of $\omega \omega$, Axiomatic set theory, editor: Jech, Thomas, pages 155-173, Amer. Math. Soc., 1974.
- Słamowir Solecki: Analytic P-ideals and their applications, Ann. Pure Appl. Logic 99 (1999), pages 51-72.
- [7] Lajos Soukup: *Pcf theory and cardinal invariants of the reals*, unpublished notes (2001)

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS (BME) E-mail address: barnabasfarkas@gmail.com

8