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Abstract. We prove the following version of Hechler's classical theorem: For
each partially ordered set (Q,≤) with the property that every countable subset
of Q has a strict upper bound in Q, there is a ccc forcing notion such that
in the generic extension for each tall analytic P-ideal I (coded in the ground
model) a co�nal subset of (I,⊆∗) is order isomorphic to (Q,≤).

1. Introduction

A partially ordered set (Q,≤) is σ-directed if each countable subset of Q has a
strict upper bound in Q. If f, g ∈ ωω, then we write f ≤∗ g and say g almost
dominates f if the set {n ∈ ω : f(n) > g(n)} is �nite. Hechler's original theorem is
the following statement:

Theorem 1.1. ([5],[2]) Let (Q,≤) be a σ-directed partially ordered set. Then there
is a ccc forcing notion P such that in V P a co�nal subset of (ωω,≤∗) is order
isomorphic to (Q,≤).

In [7] L. Soukup asked if Hechler's Theorem hold for classical σ-ideals as partially
ordered sets with the inclusion. T. Bartoszy«ski, M.R. Burke, and M. Kada gave
the following positive answers. Denote N the ideal of measure zero subsets of the
reals, andM the ideal of meager subsets of the reals.

Theorem 1.2. ([3]) Let (Q,≤) be a σ-directed partially ordered set. Then there is
a ccc forcing notion P such that in V P a co�nal subset of (N ,⊆) is order isomorphic
to (Q,≤).

Theorem 1.3. ([1]) Let (Q,≤) be a σ-directed partially ordered set. Then there is a
ccc forcing notion P such that in V P a co�nal subset of (M,⊆) is order isomorphic
to (Q,≤).

Using the model of [3] we prove the following theorem in Section 4.

Theorem 1.4. Let (Q,≤) be a σ-directed partially ordered set. Then there is a
ccc forcing notion P such that in V P for each tall analytic P-ideal I coded in V a
co�nal subset of (I,⊆∗) is order isomorphic to (Q,≤).

Remark 1.5. Tallness is not really necessary in Theorem 1.4. It is enough to
assume that I can be represented by Exh(ϕ) (see below) such that {n ∈ ω :
ϕ({n}) < ε} /∈ I for each ε > 0. This property of Exh(ϕ) is really weaker than
tallness.
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We always assume that if I is an ideal on ω then the ideal is proper, i.e. ω /∈ I,
and I contains all �nite subsets of ω so in particular I is non-principal.

An ideal I on ω is analytic (Borel etc.) if I ⊆ P(ω) ' 2ω is an analytic (Borel
etc.) set in the usual product topology of the Cantor-set. I is a P-ideal if for each
countable C ⊆ I there is an A ∈ I such that I ⊆∗ A for each I ∈ C, where A ⊆∗ B
i� A\B is �nite. I is tall (or dense) if each in�nite subset of ω contains an in�nite
element of I.

The following families are well-known examples of tall analytic P -ideals: the

density zero ideal: Z =
{
A ⊆ ω : limn→∞

|A∩n|
n = 0

}
, and the summable ideal:

I 1
n

=
{
A ⊆ ω :

∑
n∈A

1
n+1 <∞

}
.

A function ϕ : P(ω) → [0,∞] is a submeasure on ω i� ϕ(∅) = 0, ϕ(A) ≤ ϕ(B)
for A ⊆ B ⊆ ω, ϕ(A∪B) ≤ ϕ(A) +ϕ(B) for A,B ⊆ ω, and ϕ({n}) <∞ for n ∈ ω.
A submeasure ϕ is lower semicontinuous (lsc in short) i� ϕ(A) = limn→∞ ϕ(A∩n)
for each A ⊆ ω. Note that if ϕ is an lsc submeasure on ω then it is σ-subadditive,
i.e. ϕ(

⋃
n∈ω An) ≤

∑
n∈ω ϕ(An) holds for An ⊆ ω. We assign an ideal to an lsc

submeasure ϕ as follows

Exh(ϕ) =
{
A ⊆ ω : lim

n→∞
ϕ(A\n) = 0

}
.

Exh(ϕ) is an Fσδ P-ideal or equal to P(ω). It is straightforward to see that Exh(ϕ) is
tall i� limn→∞ ϕ({n}) = 0. Furthermore, we can assume without changing Exh(ϕ)
that ϕ({k}) > 0 for each k ∈ ω because if ϕ′(A) = ϕ(A) +

∑
k∈A 2−k, then ϕ′ is

also an lsc submeasure on ω, ϕ′({k}) > 0 for each k ∈ ω, and Exh(ϕ′) = Exh(ϕ).

Theorem 1.6. ([6], Theorem 3.1) If I is an analytic P -ideal then I = Exh(ϕ) for
some lsc ϕ.

Therefore each analytic P-ideal is Fσδ (i.e. Π
0
3) so it is a Borel subset of 2ω.

In Section 2. we recall the de�nition of slaloms and prove that if a forcing notion
P adds a slalom capturing all ground model real, then for each tall analytic P-ideal
I coded in the ground model, P adds a new element of I which almost contains old
elements of I.

In Section 3. we recall the model of [3] and its main properties. At last, in
Section 4. we prove our main Theorem 1.4.

2. Dominating analytic P-ideals

If ϕ is an lsc submeasure on ω, then clearly ϕ is determined by ϕ � [ω]<ω so
we can talk about the "same" analytic P-ideal in forcing extensions without using
analytic absoluteness.

De�nition 2.1. Let I be an analytic ideal on ω. A forcing notion P is I-dominating
if P adds a new element of I which almost contains all elements of I ∩ V , in other
words I ∩ V is bounded in (I ∩ V P,⊆∗), i.e.


P ∃ B ∈ I ∩ V [Ġ] ∀ A ∈ I ∩ V (A ⊆∗ B).

Let S = Xn∈ω[ω]≤n be the set of slaloms. If f ∈ ωω and S ∈ S then we say S
almost captures f and write f v∗ S i� ∀∞ n f(n) ∈ S(n).

De�nition 2.2. A forcing notion P adds a slalom over the ground model if P adds
a new element of S which almost captures all ground model reals, i.e.


P ∃ S ∈ S ∩ V [Ġ] ∀ f ∈ ωω ∩ V (f v∗ S).
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First of all we mention the following known result on the connection between
slaloms and measure zero sets.

Theorem 2.3. ([4], 534I) A forcing notion P adds a slalom over V i� in V P the
union of null sets coded in V has measure zero, i.e. 
P

⋃
(N ∩ V ) ∈ N .

Let I = Exh(ϕ) be an analytic P-ideal, and in the rest of the paper �x a bijection
e : ω → [ω]<ω. If S is a slalom, then let

(∗) I(S) =
⋃
n∈ω

⋃{
e(k) : k ∈ S(n) ∧ ϕ(e(k)) < 2−n

}
.

The following Proposition is the core of our main Theorem 1.4.

Proposition 2.4. Assume that a forcing notion P adds a slalom S over V . Then
I(S) ∈ I ∩V P and I(S) almost contains all elements of I ∩V so P is I-dominating
for each analytic P-ideal I.

Proof. For each n the set
⋃{

e(k) : k ∈ S(n) ∧ ϕ(e(k)) < 2−n
}
is �nite and has

measure less then n
2n so I(S) ∈ I.

Assume A ∈ I ∩ V . Then let dA(n) = min{k ∈ ω : ϕ(A\k) < 2−n} and

fA(n) = e−1
(
A ∩ [dA(n), dA(n+ 1))

)
.

Clearly ϕ
(
e(fA(n))

)
< 2−n and fA ∈ ωω ∩ V . Because S is a slalom over V , there

is an N such that fA(n) ∈ S(n) for each n ≥ N so A\dA(N) ⊆ I(S). We are
done. �

We recall the de�nition of the localization forcing. Let T =
⋃
n∈ω Xk<n[ω]≤k be

the tree of initial slaloms. p ∈ LOC i� p = (sp, F p) where

(1) sp ∈ T and F p ⊆ ωω,
(2) |F p| ≤ |sp|.
q ≤ p i�

(a) sq ⊇ sp and F q ⊇ F p,
(b) ∀ n ∈ |sq|\|sp| ∀ f ∈ F p f(n) ∈ sq(n).

Lemma 2.5. (Folklore) LOC is σ-n-linked for each n (so ccc) and adds a slalom
over the ground model. More explicitly, if G is LOC-generic over V then S =⋃
{sp : p ∈ G} ∈ V LOC is a slalom over V .

We will use a special version of the localization forcing (see [3], De�nition 3.1):
p ∈ LOC∗ i� p = (sp, wp, F p) where

(1) sp ∈ T , wp ∈ ω, F p ⊆ ωω,
(2) |F p| ≤ wp ≤ |sp|,
q ≤ p i�

(a) sq ⊇ sp, wq ≥ wp, and F q ⊇ F p,
(b) ∀ n ∈ |sq|\|sp| ∀ f ∈ F p f(n) ∈ sq(n),
(c) wq ≤ wp + |sq| − |sp|,
(d) ∀ n ∈ |sq|\|sp| |sq(n)| ≤ wp + n− |sp|.

Lemma 2.6. ([3], Lemma 3.2, 3.3, and 3.4) LOC∗ is σ-linked (so ccc) and adds a
slalom over the ground model.
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3. The forcing notion

In this section, we recall the model of [3] and its main properties.
Let (Q,≤) be a partially ordered set such that each countable subset of Q has

a strict upper bound in Q. Let Q∗ = Q ∪ {Q} and extend the partial order to this
set with x < Q for each x ∈ Q.

Fix a well-founded co�nal R ⊆ Q and a rank function on R∗ = R∪{Q}, % : R∗ →
On. Extend % to Q∗ by letting %(x) = min{%(y) : y ∈ R∗, x < y} for x ∈ Q\R. For
x, y ∈ Q∗ de�ne x� y i� x < y and %(x) < %(y). Further notations:

• Qx = {y ∈ Q : y � x} for x ∈ Q∗,
• Dξ = {x ∈ D : %(x) = ξ} for D ⊆ Q and ξ ∈ On,
• D<ξ = {x ∈ D : %(x) < ξ} for D ⊆ Q and ξ ∈ On,
• D≤x = {y ∈ D : %(y) = %(x), y ≤ x} for D ⊆ Q and x ∈ Q.

If E ⊆ D ⊆ Q, we say that E is downward closed in D, E ⊆d.c. D in short, if
y ∈ E whenever y ∈ D and y ≤ x ∈ E for some x.

De�nition 3.1. ([3], De�nition 3.1) The forcing notions Na for a ∈ Q∗ are de�ned
by recursion on %(a).
p = {(spx, wpx, F px ) : x ∈ Dp} ∈ Na where Dp ∈ [Qa]<ω if the following hold:

(I) for x ∈ Dp, spx ∈ T , wpx ∈ ω, and F px is a set of nice Nx-names for elements
of ωω with |F px | ≤ wpx;

(II) for x ∈ Dp,
∑
{wpz : z ∈ Dp

≤x} ≤ |spx|;
(III) for each ξ ∈ %′′Dp there is an `pξ ∈ ω such that |spx| = `pξ for each x ∈ D

p
ξ .

If p ∈ Na and b ∈ Qa, de�ne p � b ∈ Nb by letting

p � b = {(spx, wpx, F px ) : x ∈ Dp ∩Qb}.

p ≤Na q i�

(A) Dp ⊇ Dq;
(B) ∀ x ∈ Dq

(
spx ⊇ sqx ∧ wpx ≥ wqx ∧ F px ⊇ F qx

)
;

(C) ∀ x ∈ Dq ∀ n ∈ |spx|\|sqx| ∀ ḟ ∈ F qx
(
p � x 
Nx ḟ(n) ∈ spx(n)

)
;

(D) ∀ ξ ∈ %′′Dq ∀ x, y ∈ Dq
ξ

(
x < y ⇒ ∀ n ∈ `pξ\`

q
ξ s

p
x(n) ⊆ spy(n)

)
;

(E) ∀ ξ ∈ %′′Dq∑
{wpx : x ∈ Dp

ξ} ≤
∑
{wqx : x ∈ Dq

ξ}+ (`pξ − `
q
ξ);

(F) ∀ ξ ∈ %′′Dq ∀ E ⊆d.c. Dq
ξ ∀ n ∈ `

p
ξ\`

q
ξ∣∣⋃{spx(n) : x ∈ E}

∣∣ ≤∑{wqx : x ∈ E}+ (n− `qξ).

Proposition 3.2. ([3], Proposition 4.3)

(a) If p, q ∈ Na, p ≤Na q, and b ∈ Qa, then p � b ≤Nb q � b.
(b) ≤Na is a partial order.
(c) If a, b ∈ Q∗ and p, q ∈ Na ∩ Nb, then p ≤Na q ⇐⇒ p ≤Nb q.

From now on we write ≤ (=≤NQ) instead of ≤Na .

De�nition 3.3. ([3], De�nition 4.4) For an A ⊆d.c. Q, let NA = {p ∈ NQ : Dp ⊆
A}, and for p ∈ NQ, let p � A = {(spx, wpx, F px ) : x ∈ Dp ∩A} ∈ NA. Furthermore, if
ξ ∈ On then let Nξ = NQ<ξ , p � ξ = p � Q<ξ ∈ Nξ, and p � [ξ,∞) = {(spx, wpx, F px ) :
x ∈ Dp\Q<ξ}.
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So we have Na = NQa for each a ∈ Q∗, and NQ has the same meaning if we
consider Q either as an element of Q∗ or as a subset of Q.

Before the following lemma we recall the de�nition of complete subforcing: As-
sume P = (P,≤P) is a subforcing of Q = (Q,≤Q), i.e. P ⊆ Q and ≤P=≤Q� P .
Then we say that P is a complete subforcing of Q and write P ≤c Q if maximal
antichains of P are maximal antichains in Q as well.

Lemma 3.4. ([3], Lemma 4.6) If A,B ⊆d.c. Q and A ⊆ B, then NA ≤c NB.

Remark 3.5. In [3] Lemma 4.6, exactly the following stronger result was proved:
If p ∈ NB , r ∈ NA, and r ≤ p � A then there is a q ∈ NB satisfying q ≤ p, r.

Lemma 3.6. ([3], Lemma 4.10) NQ has ccc.

We will use the following density arguments.

Lemma 3.7. ([3], Lemma 5.1, 5.2, 5.3, and 5.4) If a ∈ A ⊆d.c. Q, ξ ∈ On, N ∈ ω,
and ḟ is a nice Na-name for an element of ωω, then the following sets are dense in
NA:

(i) {p ∈ NA : a ∈ Dp};
(ii) {p ∈ NA : ξ ∈ %′′Dp ∧ `pξ ≥ N};
(iii) {p ∈ NA : a ∈ Dp ∧ wpa ≥ |F pa |+ 1};
(iv) {p ∈ NA : a ∈ Dp ∧ ḟ ∈ F pa }.

For an a ∈ Q, let Ṡa be an NQ-name such that


NQ Ṡa =
⋃
{spa : p ∈ Ġ}.

Using (i) and (ii) from Lemma 3.7, 
NQ Ṡa ∈ S for each a ∈ Q. Furthermore using

(iv) and the de�nition of NQ we know that Ṡa is a slalom over V [Ġ ∩ Na], i.e.

(]1) 
NQ ∀ f ∈ ωω ∩ V [Ġ ∩ Na] f v∗ Ṡa.

At last, using the de�nition of NQ it is clear that if %(a) = %(b) and a < b then

(†) 
NQ ∀∞ n Ṡa(n) ⊆ Ṡb(n).

4. Proof of the main Theorem 1.4

Let I = Exh(ϕ) be a tall analytic P-ideal. We will use (∗) and Proposition 2.4:
for a slalom S ∈ S, let

I(S) =
⋃
n∈ω

⋃
{e(k) : k ∈ S(n) ∧ ϕ(e(k)) < 2−n} ∈ I.

We prove that in V NQ the set {I(Ṡa) : a ∈ Q} ⊆ I is

(i) co�nal, i.e. ∀ I ∈ I ∩ V NQ ∃ a ∈ Q I ⊆∗ I(Ṡa);

(ii) order isomorphic to (Q,≤), i.e. I(Ṡa) ⊆∗ I(Ṡb) i� a ≤ b.
The only di�cult step is to show that a � b implies I(Ṡa) *∗ I(Ṡb).

It is clear from (]1) and Proposition 2.4 that for each a ∈ Q

(]2) 
NQ ∀ I ∈ I ∩ V [Ġ ∩ Na] I ⊆∗ I(Ṡa).

Lemma 4.1. 
NQ"{I(Ṡa) : a ∈ Q} is co�nal in (I,⊆∗)".
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Proof. Let İ be a nice NQ-name for an element of I. Using that NQ is ccc and that
each countable subset of Q is (strictly) bounded in Q, there is an a ∈ Q such that

İ is an Na-name. Then 
NQ I ⊆∗ I(Ṡa) by (]2). �

Lemma 4.2. Assume a, b ∈ Q and a ≤ b. Then 
NQ I(Ṡa) ⊆∗ I(Ṡb).

Proof. If a � b then 
NQ I(Ṡa) ∈ I ∩ V [Ġ ∩ Nb] so we are done by (]2). If
%(a) = %(b) then we are done by (†). �

We will need the following version of Lemma 3.7 (ii) which says that we can
extend conditions in a natural way.

Lemma 4.3. Assume p ∈ NQ, ξ ∈ %′′Dp, and m ≥ `pξ . Then there is a q ≤ p such

that Dq
ξ = Dp

ξ and q � ξ forces that ∀ b ∈ Dq
ξ ∀ n ∈ [`pξ ,m]

sqb(n) =
{
ḟ(n) : ḟ ∈

⋃
{F pb′ : b′ ∈ Dp

≤b}
}
.

Proof. First we choose an r ∈ Nξ, r ≤ p � ξ which decides ḟ � [`pξ ,m] for each

ḟ ∈
⋃
{F pb′ : b′ ∈ Dp

≤b}: r 
Nξ ḟ � [`pξ ,m] = gḟ for some gḟ ∈ ω
[`pξ ,m].

Now let q be the following condition:

(i) q � ξ = r, q � [ξ + 1,∞) = p � [ξ + 1,∞), and Dq
ξ = Dp

ξ ;

(ii) if b ∈ Dq
ξ then let |sqb | = m+ 1, sqb � `

p
ξ = spb , w

q
b = wpb , and F

q
b = F pb ;

(iii) if b ∈ Dq
ξ and n ∈ [`pξ ,m] then let

sqb(n) =
{
gḟ (n) : ḟ ∈

⋃
{F pb′ : b′ ∈ Dp

≤b}
}
.

Clearly q ∈ NQ. We have to show that q ≤ p. (A), (B), (C), (D), and (E) hold
trivially.

To see (F) assume E ⊆d.c. Dp
ξ and n ∈ [`pξ ,m] (m+ 1 = `qξ). Then∣∣⋃{sqx(n) : x ∈ E}

∣∣ =
∣∣{gḟ (n) : ḟ ∈

⋃
{F px : x ∈ E}

}∣∣ ≤∑{|F px | : x ∈ E} ≤∑
{wpx : x ∈ E} ≤

∑
{wpx : x ∈ E}+ (n− `pξ).

�

In Lemma 4.4 we will use the following notation: if s ∈ T is an initial slalom
then let

I(s) =
⋃
n<|s|

⋃
{e(k) : k ∈ s(n) ∧ ϕ(e(k)) < 2−n} ∈ [ω]<ω.

Clearly, if p ∈ NQ and a ∈ Dp, then p 
NQ I(spa) ⊆ I(Ṡa).

Lemma 4.4. Assume a, b ∈ Q and a � b. Then 
NQ I(Ṡa) *∗ I(Ṡb).

Proof. Let p ∈ NQ and N ∈ ω. We have to �nd a q ≤ p such that q 
NQ I(Ṡa)\N *
I(Ṡb). Using Lemma 3.7 (i) and (iii) we can assume that a, b ∈ Dp and |wpa| ≥
|F pa |+ 1.

Let M = max{|spa|, |s
p
b |}. Using Lemma 3.7 we can assume that M is large

enough such that ϕ({k}) ≥ 2−M for each k < N . For each m ∈ ω let

Xm = {k ∈ ω : 2−m−1 ≤ ϕ({k}) < 2−m}.
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Let ξ = %(b). Using that Nb′ ≤c Nb if b′ ∈ Dp
≤b by Lemma 3.4, we can de�ne

a descending sequence in Nb: p � b ≥ rM ≥ rM+1 ≥ . . . such that rm decides

ḟ � [`pξ ,m] for each ḟ ∈
⋃
{F pb′ : b′ ∈ Dp

≤b}. Let Im : [`pξ ,m]→ [ω]<ω be de�ned by

rm 
Nb Im(n) =
⋃{

e(ḟ(n)) : ḟ ∈
⋃
{F pb′ : b′ ∈ Dp

≤b} ∧ ϕ
(
e(ḟ(n))

)
< 2−n

}
.

Claim. There is an m ≥M such that Xm * I(spb) ∪
⋃
{Im(n) : n ∈ [`pξ ,m]}.

Proof of the Claim. Assume on the contrary that there is no such an m. Then

Xm ⊆ I(spb) ∪
⋃
{Im(n) : n ∈ [`pξ ,m]}

for each m ≥ M . Clearly ω ⊆∗
⋃
m≥M Xm by tallness1, the sets I(spb) and Im(n)

are �nite, and if n ≤ m1 ≤ m2 then Im1(n) = Im2(n) so we have

ω ⊆∗ I(spb) ∪
⋃

m≥M

m⋃
n=`pξ

Im(n) ⊆∗
⋃

m≥M

Im(m).

Using that ϕ(Im(n)) ≤ |Dp
≤b|

n
2n we obtain that ω ∈ I, a contradiction. �

Assume m is suitable in the Claim and let r = rm. Fix a k ∈ Xm\
(
I(spb) ∪⋃

{Im(n) : n ∈ [`pξ ,m]}
)
. Then there is a k̃ such that e(k̃) = {k}. Let ġ be the

canonical Na-name for the constant function with value k̃. Denote p′ ∈ NQ the
condition which extends p by putting ġ into F pa (this is really a condition extending
p because of our assumption |wpa| ≥ |F pa |+ 1). We know that p � b = p′ � b because
a /∈ Qb so r ≤ p′ � b.

Using Remark 3.5 for Qb ⊆ Q<ξ, r ∈ Nb, and p′ � ξ ∈ Nξ we can �nd a q′ ∈ Nξ
with q′ ≤ r, p′ � ξ. Let p′′ = q′ ∪ p′ � [ξ,∞) ≤ p.

At last using Lemma 4.3 we can extend p′′ to a q such that Dq
ξ = Dp′′

ξ (= Dp
ξ )

and q � ξ 
Nξ ∀ n ∈ [`pξ ,m] sqb(n) =
{
ḟ(n) : ḟ ∈

⋃
{F pb′ : b′ ∈ Dp

≤b}
}
.

Because q � b ≤ r we obtain that

q 
NQ I(sqb) ⊆ I(spb) ∪
⋃
{Im(n) : n ∈ [`pξ ,m]}.

By the choice of k and p′ it is clear that k̃ ∈ sqa(m) and ϕ(e(k̃)) = ϕ({k}) < 2−m

so k ∈ I(sqa) which implies that q 
NQ k ∈ I(Ṡa)\N .

To show that q 
NQ k /∈ I(Ṡb) we know that k /∈ I(sqb) and if there would be a

q̄ ≤ q such that k ∈ I(sq̄b), then there would be an n > m and a k′ ∈ sq̄b(n) such

that k ∈ e(k′) ⊆ I(sq̄b) but then 2−n > ϕ(e(k′)) ≥ ϕ({k}) ≥ 2−m−1 would give a
contradiction because n ≥ m+ 1. The proof of Lemma 4.4 is done. �

Now we have �nished the proof of our main Theorem 1.4.
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1This is the only point in the proof where we used tallness of the ideal. As we mentioned in
Remark 1.5, it would be enough to assume that

⋃
m≥M Xm = {k ∈ ω : ϕ({k}) < 2−M} /∈ I.
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