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MINIMAL STRUCTURES

FOR MODAL TABLEAUX:

Some Examples

Abstract. In this paper we present some examples of decision procedures
based on tableau calculus for some mono- and multimodal logics having a
semantics involving properties that are not easily representable in tree-like
structures (like e.g. density, confluence and persistence). We show how to
handle them in our framework by generalizing usual tableaux (which are
trees) to richer structures: rooted directed acyclic graphs.

1. Introduction and background

In [5], a general completeness proof based in tableaux has been presented for
a large family of modal logics. In the line of this previous work, we presented
in [6] strategies for some of these logics, and obtain thus decision procedures
for logics based on transitivity plus density or confluence as characteristic
axioms. The main argument of these results is, as for the usual one concern-
ing S4, that the tableau rules have the subformula property and that the
number of subformulas of a given formula is finite.

These previous works lead us to split the usual modal tableau rules into
two distinct sets beside the usual classical and diamond rules:

1. propagation rules

2. structural rules.
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100 Luis Fariñas del Cerro, Olivier Gasquet

The former are formulated as “if in some node of such pattern there is such
formula, then propagate such formula (the same or another one)”, while the
latter are “if there is such pattern then add some new node(s) and edge(s)”.
They respectively correspond to two different families of axioms (relational
properties):

• Propagation rules correspond to axioms T and 4 (properties of reflexivity
and transitivity);

• Structural rules correspond to axioms D, De, C and Per (respectively prop-
erties of seriality, density, confluence and persistence).

In the present paper and in order to give a panorama of our approach, we
summarize results for the monomodal case. Then we extend this approach
to a multimodal logic with a persistence axiom.

We assume that the reader is familiar with modal logic, Kripke semantics
and tableau methods for modal logics as presented e.g. in [7].

1.1. Modal logics and relational properties

A modal logic can be specified syntactically or semantically. We recall what
the links between these presentations are. Monomodal language have 2 and
3 as additionnal connectives, multimodal ones have 2K, 2T, . . . and 3K, 3T,
. . . as additionnal connectives. As usual, 3 abbreviates ¬2¬ and as well for
3K and 3T.

The monomodal logics we consider are all obtained by extending the basic
modal logic K by one or several of the well-known axioms T, 4, D, De (axiom
of density: 3p → 33p) and C (axiom of confluence: 32p → 23p). Thus
KD4.C denotes the modal logic obtained by adding the axioms D, C and 4
to the basic system K.

Among multimodal logic, we will only investigate the system K(K, T)+Per ,
i.e. the logic obtained with axioms K for 2K and 2T, and the interaction

axiom 2K2Tp → 2T2Kp of persistence. The choice of using K and T as indexes
comes from the epistemic-temporal interpretation of the axiom of Persistence:
If one knows that tomorrow A will holds(2K2TA), then tomorrow one will
know that A holds (2T2KA), i.e. the knowledge about future persists.

With each of these axioms can be associated a relational property of the
accessibility relation of the Kripke models:
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Axiom Property Notation

T = 2p → p reflexivity Ref

4 = 2p → 22p transitivity Tr

Group 1: Properties handled by propagation rules

Axiom Property Notation

D = 2p → 3p seriality Ser

De = 3p → 33p density Dens

C = 32p → 23p confluence Conf

Per = 2K2Tp → 2T2Kp persistence Per

Group 2: Properties handled by structural rules

As a consequence of Sahlqvist’s theorem [13], a system based on K plus
any combination of these axioms is characterized by the Kripke models whose
accessibility relation satisfies the corresponding properties. Thus, KD4 is
characterized by Kripke models where the accessibility relation is both serial
and transitive. As well K(K,T).Per is characterized by the class of Kripke
models (W,RK, RT) with RT◦RK ⊆ RK◦RT where ◦ denotes the composition
of relations: (x, y) ∈ R◦S iff ∃z : (x, z) ∈ R and (z, y) ∈ S.

1.2. Preliminaries and notations

The tableau method we are going to present is based on rdag (rooted di-
rected acyclic graphs) having additional properties; let ρ be the set of these
additional properties, we define:

Definition 1. A labelled ρ-rdag is a triple (N , Σ, Φ) where:

• (N , Σ), where N is a set of nodes and Σ is a set of edges, is a directed
acyclic graph (dag for short), i.e. a directed graph that contains no cycle,
with a distinguished node called the root that can access every other node
in the transitive closure of Σ,

• (N , Σ) satisfies all the properties of ρ,

• Φ is a function that associates additional information with each of the
nodes: if x is a node, Φ(x) is a set of formulas.

• In the case of multimodal logics, Σ is partitionned into ΣK and ΣT.

By abuse of notation and for the sake of notational economy, we will make
no distinction between the nodes and their associated sets of formulas; thus
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102 Luis Fariñas del Cerro, Olivier Gasquet

we will write A ∈ x instead of A ∈ Φ(x). Also by abuse of notation, we will
sometimes denote a ρ-rdag (N , Σ) by the binary relation Σ. Thus we will
make no distinction between labelled structures and structures.

This notion also extend to graphs:

Definition 2. An rgraph is a graph that has a root, and a ρ-rgraph is a
rgraph that satisfies all properties of ρ.

As usual, Σ(x) will denote the set of nodes accessible from x by Σ: Σ(x) =
{y ∈ N : (x, y) ∈ Σ}. Also, Σn will denote the pairs (x, y) such that there is
a path of length n between x and y. The diagonal relation: {(x, x) : x ∈ N}
will be denoted by I and also by Σ0. Also, given a binary relation Σ, we
denote by Σ+ its transitive closure.

For the sake of clarity, we will use diagrammatic representation for rdag.
The figure below gives the intended meaning of those diagrammatic repre-
sentations in which the edges are implicitely left-to-right directed1:

r
S denotes a node S

S0 r S1r denotes (S0, S1) ∈ Σ

S0 r�
�P

P

r

r

S1
S2 denotes (S0, S1), (S0, S2), (S1, S2) ∈ Σ

S0 r�
�

P
P

r

r

S1

S2
denotes (S0, S1), (S0, S2) ∈ Σ

S0 r�
�

P
P

r

r

S1

S2

P
P

�
�

rS3 denotes (S0, S1), (S0, S2), (S1, S3), (S2, S3) ∈ Σ

The last two diagrams do not involve any order between S1 and S2, e.g.
S0 r�

�

P
P

r

r

S1

S2
can be represented as well by S0 r�

�

P
P

r

r

S2

S1

Also, the same graphical conventions hold for multimodal logics where
edges are labelled with either K or T.

1.3. Rewriting RDAG

Usually, tableaux calculi consist in rewriting a structure by using some ap-
propriate set of rewriting rules (or simply rules). But before presenting our

1 Note that rdag’s are of course antisymmetrical.

© 2001 by Nicolaus Copernicus University
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rules, we propose some visual conventions. The rules we will use will all be
of one of the following forms (the intended meaning is given below the rule);
as usual, S,A denotes S ∪ {A}:

r
S =⇒ r

S, A

rewrite the node S into the node S ∪ {A}, i.e. add the formula A to the
node S,

r
S =⇒ S r S1r

add the new node S1 to the successors of the node S,

S0 r S1r =⇒ S0, A r S1, Br

add the formula A to the node S0 and B to S1,

S0 r

S1
r rS2 =⇒ S0, A r

S1, B
r rS2, C

add the formula A to S0, B to S1 and C to S2,

S0 r�
�

P
P

r

r

S1

S2
=⇒ S0, A r�

�

P
P

r

r

S1, B

S2, C

add the formula A to S0, B to S1 and C to S2.

S0 r�
�

P
P

r

r

S1

S2
=⇒ S0 r�

�

P
P

r

r

S1

S2

P
P

�
�

rS3

add the new node S3 as a common successor of the node S1 and S2,

S0 r S1r =⇒ S0 r�
�P

P

r

r

S2
S1

add the new node S2 between S0 and S1,

S0 r�
�T Kr

S1
P

PrS3 =⇒ S0 r�
�T

P
P

K
K T

r

r

S1

S4

P
P

�
�

rS3

with its obvious reading: if there is a T-K path between S0 and S3 then
add the new K-T path between and create the intermediary new node S4.

This presentation allows to implicitly take into account constraints on the
applicability of rules: e.g. a rule such as

S0 r

S1, 2A
r rS2 =⇒ S0 r

S1, 2A
r rS2, 2A reads “add 2A to any successor

of S1 if S1 has a predecessor and contains 2A”.
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1.4. Rules and naive tableaux

Here are the rules we need:

• Classical and 3 rules:

– Rule ⊥: r
A,¬A,S =⇒ r

A,¬A,⊥, S

– Rule ¬: r
¬¬A, S =⇒ r

¬¬A, A, S

– Rule ∧: r
A ∧ B, S =⇒ r

A ∧ B, A, B, S

– Rule ∨: r
¬(A ∧ B), S =⇒ r

¬(A ∧ B), C, S

where C is one among ¬A and ¬B

Usually, treatment of disjunction is presented by so-called tableau

branching : both possibilities are computed in parallel (width-first com-
putation), while in our presentation, we use a depth-first computation.
These presentations are in fact equivalent, in practice only depth-first
implementations are realized.

– Rule 3: r
3A, S =⇒ 3A, S r Ar

And its multimodal versions:

– Rule 3K: r
3KA, S =⇒ 3KA, S r

K Ar

– Rule 3T: r
3TA, S =⇒ 3TA, S r

T Ar

• Propagation rules:

– Rule K: 2A, S r S1r =⇒ 2A, S r A, S1r

– Rule 4: S, 2A r S1r =⇒ S, 2A r S1, 2Ar

And multimodal versions of Rule K:

– Rule 2K: 2KA, S r
K S1r =⇒ 2KA, S r

K A, S1r

– Rule 2T: 2TA, S r
T S1r =⇒ 2TA, S r

T A, S1r

• Structural rules:

– Rule D: r
S =⇒ S r ∅r

– Rule C: S0 r�
�

P
P

r

r

S1

S2
=⇒ S0 r�

�

P
P

r

r

S1

S2

P
P

�
�

r∅

– Rule C∗: S r S1r =⇒ S r

S1
r r∅

– Rule De: S0 r S1r =⇒ S0 r�
�P

P

r

r

∅
S1

– Rule Per: S0 r�
�T Kr

S1
P

PrS2 =⇒ S0 r�
�T

P
P

K
K T

r

r

S1

∅

P
P

�
�

rS2
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Of course, it may be discussed why not to consider rule 3 as a structural
rule. This decision is quite arbitrary, we consider that structural rules are
those describing an existential property of the accessibility relation, while
rule 3 correspond to the expression in the object language of the existence
object.

In order to define a tableau calculus for a logical system, we must asso-
ciate a set of rules with it. All the tableaux calculi we are going to define
contain:

• Classical rules

• Rule(s) 3 (or 3K and 3T in the multimodal case)

• Rule K (or 2K and 2T)
(All these rules being common to all tableaux calculi, we will henceforth
omit them)

• Some or none structural and propagation rules.

A tableau calculus for a system denoted by a set (ρ1 ∪ ρ2) of properties
is obtained by taking (in addition to classical, 3 and K rules) the rules
corresponding to properties of (ρ1 ∪ ρ2); this correspondance is given in the
figure below, where properties of group 1 are handled by propagation rules
while those of group 2 are handled by structural rules.

Properties Rules

Group 1 Ref T Propagation
Tr 4 Rules

Group 2 Ser D Structural
Dens De Rules
Conf C C*
Per Per

Tableau rules

Definition 3. We define what we call naive tableaux, i.e. tableaux com-
puted with no strategy. Thus naive tableaux may lead to non terminating
computation. We will see in the next section that terminating strategies do
exist in the case we are investigating.

A naive (ρ1 ∪ ρ2)-tableau for a formula A is the limit of a sequence Υ0,
. . . , Υi, Υi+1, . . . where:
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106 Luis Fariñas del Cerro, Olivier Gasquet

• Υ0 is an rdag consisting of only one node whose associated set of formulas
is {A},

• Υi+1 is obtained from Υi by applying either a classical rule, or the 3 rule,
or the rule K, or a rule of (ρ1 ∪ ρ2)

• and in which every applicable rule has been applied.

Definition 4. A tableau is closed if some node in it contains ⊥; it is open
otherwise. A formula is ρ1∪ρ2-closed iff all its (ρ1 ∪ ρ2)-tableaux are closed.2

The following result has been stated and proved in [5]:

Theorem 1. The tableaux calculi thus defined are sound and complete.3

As they are defined, naive tableaux may run infinitely. As an example,
a {Ser, Tr}-tableau for 23p runs infinitely because of rules (4) and (3) that
apply infinitely. In this case, of course, the nodes generated all contain the
same formulas and thus the tableau loops. But this loop detection concerns
the strategy.

2. The kernel approach

The basic idea once completeness has been obtained to get decision procedure
is to find for each logic a so-called family of “kernels”: a kernel is simply a
finite structure able to simulate the infinite tableaux obtained with a naive
algorithm that would just implement tableaux as presented above. In this
sense, it is well-known that kernels for S4 (i.e. KT4) are finite trees. We
will also recall (from [6]) that kernels for KD4.C are finite sequences of finite
lattices, and we will show a similar result for KD4.De.

With respect to [6], nothing new will be added in the monomodal case,
but this will help understanding the approach.

In what follows we will use some conventions and notations that are
presented here:

1. Given a tableau Y = (N,Σ,Φ) and structural rule (S) (among (D), (3),
(De), (C),. . . ) we will denote by NS the set of nodes created by applying
this rule at some iteration, and dually, ΣS the set of edges created by
applying this rule.

2 Due to the rule ∨, a formula may have several distinct tableaux.
3 In fact the whole theorem — that is proved in [5] — takes into account many other

axioms and properties.
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2. In order to lighten the notations, we decided to use bold-face symbols
for those which concern kernels, while naive tableau will be denoted by
non-bold symbols (thus Y denotes a naive tableau, while Y denotes a
kernel).

2.1. The monomodal case

In this section, we consider two subsections, one corresponding to the well-
known monomodal cases KD4, KD4.C and KD4.D (Since the results of this
subsection appeared in previous publications ([5], [6]), the corresponding
proofs are not given), the other corresponding to a multimodal logic with
two modal operators and an interaction axiom that allows the permutation
of the modal operators.

2.1.1. Kernels for KD4

The set of rules that will be used is: all classical rules, and rules (D), (3),
(K) and (4). Kernels for KD4 are simply naive tableaux provided with a
strategy that allows to conclude that some tableau is open after only finitely
many steps; this proves that kernels for KD4 are finite trees. Let A be the
starting formula, we get the following non-deterministic (w.r.t. the order of
application of the rules) algorithm that computes a sequence (Y )i of rdag:

Starting from Y 0 = (N 0,Σ0,Φ0) where N0 only consists of one node r

(the root), Σ0 is empty and Φ0 associate the formula A with r. Then
compute Y i+1 = (N i+1,Σi+1,Φi+1) from Y i = (N i,Σi,Φi) by applying
successively each of the following steps:

1. Loop step: consider all nodes x ∈ N i such that ∃y ∈ N i and y is an
ancestor of x (i.e. (y, x) ∈ Σ

+
i ) and Φi(x) ⊆ Φi(y) and set them as

marked ; (nodes that are “contained” in one already present in the tree
needs not to be further developed)

2. Classical step: apply classical rules ((⊥), (¬), (∨), (∧)) on all nodes as
much as possible (also known as classical saturation);

3. Structural step: apply rules (D) and (3) on each non marked node where
they have not been applied yet4;

4. Propagation step: apply rules (K) and (4) as much as possible.

4 As usual, rule (D) must be applied only once on each node while rule (3) must be
applied once for each formula 3B of each node.
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The above algorithm must be applied until for some i, either Y i is closed or
Y i+1 = Y i (i.e. there are marked nodes on each branch)5.

Theorem 2. The strategy given above is sound, complete and terminating

for KD4.

2.1.2. Kernels for KD4.C

In this subsection, we give a terminating non-deterministic tableau calculus
for the system KD4.C, that can be straightforwardly modified in order to
apply to K4.C and KT4.C.

For this we define a strategy to be applied on naive tableaux as defined
previously; the set of rules that is needed is: all classical rules, and rules (D),
(3), (K), (4) and (C) (rule (C*) is superfluous since it is subsumed by the
rule (D)).

This strategy mainly consists of the following:

1. Compute a KD4-kernel (using only classical rules, and rules (D), (3), (K)
and (4)). This provides a finite tree (either closed or looping on each
branch).

2. Create a successor common to each loop node (we will call this node the
anti-root) and propagate formulas (rules (K) and (4)) into it. Then go
back to step 1, with the anti-root as the starting node (and as such, as
the new root).

Stop the computation when: the tableau closes at any step, or if looping
anti-roots are successively generated.

The algorithm runs as follows: Starting from Y 0 = (N 0,Σ0,Φ0) where
N0 only consists of only one node r

0 (the root), Σ0 is empty and Φ0 associate
the formula A with r

0.

1. Compute Y i+1 = (N i+1,Σi+1,Φi+1) from Y i = (N i,Σi,Φi) by apply-
ing the strategy for KD4 only (i.e. by using only classical rules, and rules
(D), (3), (K) and (4)). In Y i+1, each branch loops (i.e. each of its leaves
is marked), or else, it is closed.

Let us denote by Loop i+1 the set of nodes of N i+1 that are marked.

5 Since there are no backwards rules, rules (K) and (4) must be applied only in order
to propagate formulas in new nodes introduced at step 3.
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Step 1: compute
a KD4 kernel

Step 2: compute
the first anti-root 

Ar0 Ar0

r1

r1

r0

r1

Step 1: compute
a KD4 kernel
starting from r1 rl-1Φ( )rlΦ( )

r1

r

r

rl-1

rl

2

0

and so on, until:

Figure 1. The strategy for KD4.C

2. Compute Y i+2 = (N i+2,Σi+2,Φi+2) from Y i+1 = (N i+1,Σi+1,Φi+1)
by:

– N i+2 = N i+1 ∪ {ri+2}, where r
i+2 is a new node,

– Σi+2 = Σi+1 ∪ {(x, ri+2) : x ∈ Loop i+1}

– Φi+2(ri+2) =
⋃

x∈Loop
i+1

(Φi+1(x))2; where as usual, S2 denotes the

set {A,2A : 2A ∈ S}

The above algorithm must be applied until for some i and some l, either Y i

is closed or Φi(r
l) ⊆ Φi(r

l−1), where r
l denotes the last anti-root generated.

This strategy is graphically represented in figure 1.

Theorem 3. The strategy given above is sound, complete and terminating

for KD4.C.

2.1.3. Kernels for KD4.De

In this subsection, we give a terminating tableau calculus for the system
KD4.De, that can be straightforwardly modified in order to apply to K4.De
(Note that the system KT4.De is the same as KT4 i.e. S4).
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The algorithm consists in using a modified rule for the treatment of den-
sity, together with the loop-test of KD4.

Consider the new following rules:

Rule (DDe):

S S’ S S’

O

rewrites into

Rule (3De):

O

AAAS, S,rewrites into

The set of rules that will be used is: all classical rules, and rules K, 4,
3

De, and DDe.

We will prove below that this set of rules is both complete and sound.
I.e. that in order to handle density (together with transitivity) one just need
to consider models with only one intermediary world having a reflexive edge.

The algorithm we propose is same as that for KD4, but using rules (3De),
and (DDe) instead of rules (3) and (D). Also, a node in this algorithm is
not considered as its own ancestor (otherwise the loop step would apply
immediately!).
It must be applied until for some i, either Y i is closed or Y i+1 = Y i (i.e.
there are marked nodes on each branch).

Theorem 4. The strategy given above is sound, complete and terminating

for KD4.De.

2.2. The multimodal logic K(K,T).Per

The kernel is obtained as follows: the set of rules that will be used is: all
classical rules, and (3K), (3T),(2T) and (2K). The structural rule (Per) will
be handled in a completion step of our strategy that will consist in applying
it at all possible place at once. Kernels for K(K,T).Per are simply naive
tableaux provided with a strategy that allows to conclude that some tableau
is open after only finitely many steps. Let A be the starting formula, we get
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the following non-deterministic (w.r.t. the order of application of the rules)
algorithm that computes a sequence (Y )i of rdag:

Starting from Y 0 = (N 0,Σ
K
0,Σ

T
0,Φ0) where N 0 only consists of one

node r (the root), both Σ
K
0 and Σ

T
0 are empty and Φ0 associate the formula

A with r. Then compute Y i+1 = (N i+1,Σ
K
i+1,Σ

T
i+1,Φi+1) from Y i =

(N i,Σ
K
i ,Σ

T
i ,Φi) by applying successively each of the following steps:

1. Classical step: apply classical rules ((⊥), (¬), (∨), (∧)) on all nodes as
much as possible (also known as classical saturation);

2. Structural step: apply rules (3K) and (3T) on each node where they have
not been applied yet6;

3. Propagation step: apply rules (2T) and (2K) as much as possible.

4. Completion step: Detailed below

The above algorithm must be applied until for some i, either Y i is closed or
Y i+1 = Y i (i.e. no new node are created)7.

Completion. Here we precise how works the completion step, and prove
that it is effective in the sense that:

• It terminates

• After it has been performed at step i, Σ
T
i+1◦Σ

K
i+1 ⊆ Σ

K
i+1◦Σ

T
i+1

Definition 5 (Maximal T-K paths). Let Y i = (N i,Σ
K
i ,Σ

T
i ,Φi) be the ker-

nel at step i. Let Pathi be the set of maximal T-K paths of any length in
Y i, i.e.:
Pathi = {(x0, . . . , xk, xk+1, . . . , xk+l)/(xj , xj+1) ∈ Σ

T
i for 0 ≤ j ≤ k− 1, and

(xj, xj+1) ∈ Σ
K
i for k ≤ j ≤ k + l − 1}, moreover these paths are maximal:

given a path pth = (x0, . . . , xk, xk+1, . . . , xk+l) of Pathi, no path of Pathi

contains pth, i.e. ∀x : neither (x, x0) ∈ Σ
T
i , nor (xk+l, x) ∈ Σ

K
i .

Let Y i = (N i,Σ
K
i ,Σ

T
i ,Φi) be the kernel at step i. Let Pathi be as

defined in the above definition, it is clear that in order to complete any path
of Pathi, we need k.l new nodes (see figure below) in order to ensure that
Σ

T
i+1◦Σ

K
i+1 ⊆ Σ

K
i+1◦Σ

T
i+1.

6 As usual, rules (3K) and (3T) must be applied once for each formula 3KB and 3TB

of each node.
7 Since there are no backwards rules, rules (2T) and (2K) must be applied only in order

to propagate formulas in new nodes introduced at step 3.
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r r r . . . r

r r r . . . r

r r r . . . r

...
...

...
...

r r r . . . r

x0

x1

x2

xk xk+1 xk+2 xk+l

In this picture edges of Σ
T
i are vertical, while those of Σ

K
i are horizontal.

Let us denote the new point at intersection of line u and row v by xu,v.

Definition 6 (Completion). Given a path pth = (x0, ..., xk, xk+1, ..., xk+l)
of Pathi, let

NewNodesi+1(pth) = {xu,v : 0 ≤ u ≤ k − 1, k + 1 ≤ v ≤ k + l}

a set of k.l new nodes,

NewEdgesTi+1(pth) = {(xu,v , xu+1,v) : 0 ≤ u ≤ k − 2, k + 1 ≤ v ≤ k + l}

∪ {(xk−1,v, xv) : k + 1 ≤ v ≤ k + l}

NewEdgesKi+1(pth) = {(xu,v , xu,v+1) : 0 ≤ u ≤ k − 1, k + 1 ≤ v ≤ k + l − 1}

∪ {(xu, xu,k+1) : 0 ≤ u ≤ k − 1}

Graphically :
r r r . . . r

r r r . . . r

r r r . . . r

...
...

...
...

r r r . . . r

x0

x1

x2

xk xk+1 xk+2 xk+l

Then applying completion to Y i = (N i,Σ
K
i ,Σ

T
i ,Φi) gives Y i+1 =

(N i+1,Σ
K
i+1,Σ

T
i+1,Φi+1) defined by:

• N i+1 = N i ∪ (
⋃

pth∈Pathi
NewNodesi+1(pth))
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• Σ
K
i+1 = Σ

K
i ∪ (

⋃
pth∈Pathi

NewEdgesKi+1(pth))

• Σ
T
i+1 = Σ

T
i ∪ (

⋃
pth∈Pathi

NewEdgesTi+1(pth))

• Φi+1 = Φi ∪ (
⋃

pth∈Pathi
{(x, ∅) : x ∈ NewNodesi+1(pth)})

It is straightforward to check that Σ
T
i+1◦Σ

K
i+1 ⊆ Σ

K
i+1◦Σ

T
i+1. Thus com-

pletion is effective in the sense given below (terminating, and completing).
It simply compiles several successive applications of the rule (Per) at once.

Theorem 5. The strategy given above is sound for K(K,T).Per.

Proof. Straightforward since the resulting algorithm is a restriction (on the
order of application of the rules) of the naive one which is sound. Hence,
if there is an open naive tableau for A, there is a fortiori an open kernel
for A.

Theorem 6. The strategy given above is complete for K(K,T).Per.

Proof. If there is an open kernel for A, then there is an open naive tableau
for A: the fact that for some i, Y i+1 = Y i (i.e. no new node are created)
proves that if the computation goes on, no closure can occur.

Now we come to the termination argument which is standard:

Lemma 1. The strategy given above is terminating.

Proof. Since completion step is effective, each step does indeed terminate.
Now, given a path pth, it is easy to show that the average modal degree of
nodes introduced in NewNodesi+1(pth) (i.e. the modal degree of each nodes
divided by the number of nodes) is strictly less than that of nodes of pth since
propagation rules strictly decrease the modal degree of formulas. Hence, at
some iteration, only empty nodes that will remain empty will be generated.
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