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𝐀𝐛𝐬𝐭𝐫𝐚𝐜𝐭. One of the possible hypotheses about time is to consider any instant of time as fuzzy number, so that 

two instants of time could be overlapped. Historically, some Mathematicians and Philosophers have had 

                    similar ideas like Brouwer and Husserl [5]. 

                    Throughout this article, the impact of this change on Theory of Computation and Complexity Theory are studied.   

                    In order to rebuild Theory of Computation in a more successful and productive approach to solve some major                        

                    problems in Complexity Theory, the present research is done. This novel theory is called here, the fuzzy time theory            

                    of computation, TC∗. 

                   𝐊𝐞𝐲𝐰𝐨𝐫𝐝𝐬. P ≠ NP , P = PBB, MA = AM, Fuzzy Time, TC∗, Reducibility, Complexity Theory Problems 

𝟏. 𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧  

Throughout this article, the author presents the Theory of Computation by appllying Fuzzy 

Time.  More specifically, the author tries to rebuild the structure of the Theory of computation 

based on considering time as a fuzzy concept.  

In fact, there are reasons to belive time as a fuzzy concept. In this article, the author does not 

try to assume these reasons and argue about, but just to note that Brouwer and Husserl views 

on the concept of time were similar [5].   

More precisely, here, given the classical definition of Turing Machine, the concept of Time is 

changed to be Fuzzy. This new theory is called Theory TC∗ and this type of computation “Fuzzy 

time Computation”. We have relatively large number of fundamental unsolved problems in 

Complexity Theory. In the new theory, some of the major obstacles and unsolved problems 

have been solved. It should be noted that in this article, the author considers fuzzy number 

associated to instants of time as a symmetric one. The point is about applying the symmetricity 

of fuzzy time function in the proof of Lemma 3. 

In particular, the new classes of complexity Theory, P∗, NP∗, BPP∗ in the TC∗ are defined similar 

to the definitions of P, NP and BPP as their natural alternative definition. Here, we will see, 

P∗ = BPP∗,  MA∗ = AM∗.  

𝟐. 𝐑𝐞𝐝𝐮𝐜𝐢𝐛𝐢𝐥𝐢𝐭𝐲 
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In this section, firstly, we define a quasi-order relation in TC∗ analogues with the m-reducibility 

in TC .  

It should be reminded that a fuzzy time Turing Machine is a Turing Machine which works with 

fuzzy time.  

In addition, here, the Turing Machine is considered as a two tuple (M, S). Whereas, M is a 

Turing machine in the usual sense and  S is a polynomial function. Meanwhile, M runs in 

bounded time by  S , equivalently, M(x) in less than S([x])  steps is computed.  

First, we remind the Classical definition of m-reducibility: 

Y >m X , if there is a polynomial time computable function f such that: 

x ∈ X ↔ f(x) ∈ Y 

The parallel definition in TC∗ is introduced as following 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏:  For α >
1

2
  ,    Y >𝐦

𝛂 X   if there is a polynomial time computable* function f such 

that:  

1. x ∈ X & f(x) ↓ in bounded time ↔ (f(x) ∈ Y) 

2. Pr (f(x) ↓ in bounded time) >  α 

A Computable* function f is a function that is computable by a fuzzy time Turing machine. 

Here, by bounded time, we mean that for the function f there exists a Polynomial function h  

such that f(x) ↓ in less than h (length(x))  steps. 

Y >𝐦
𝛂 X can be represented by a 5-tuple,  (Y, X, f, Sf, α), Sf(x) is the number of steps that f(x) is 

computed. The definition is as follows 

Y >𝐦
𝛂 X ↔ (Y, X, f, Sf, α) is an acceptable 5-tuple 

 

One of the major question here is about the independence of the definition from the value of 

α? (α >
1

2
) 

In the first step, to answer the above question, we need the following simple lemma.  

𝐋𝐞𝐦𝐦𝐚 𝟏 Let for  1 > α >
1

2
 , (Y, X, f, Sf, α) is an acceptable 5-tuple then for any 1 > β >

1

2
   

there is a computable function g in which (Y, X, g, Sg, β) is an acceptable 5-tuple. 

𝐏𝐫𝐨𝐨𝐟. Actually, there is a natural number 𝑘, so that the function g  is equivalent to, k  times 

repeating f , till we reach a solution with probability less than β. It is easy to understand that 

such  k exists.    □ 



Lemma 1 indicates for  1 > α >
1

2
 , the relation  Y >𝐦

𝛂 X  would be independent of α.  So, we 

define Y >𝐦
∗ X  as follows 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐. Y >𝐦
∗ X  if for some α (1 > α >

1

2
),  Y >𝐦

𝛂 X .  

𝐋𝐞𝐦𝐦𝐚 𝟐.  >m
∗   is a quasi-order relation. 

 

𝐏𝐫𝐨𝐨𝐟. X >𝐦
𝜶 Y      implies   ∀

1

2
> ɛ > 0   X >𝐦

𝟏−ɛ Y  (*) 

Y >𝐦
𝜶 Z      implies    ∀

1

2
> ɛ > 0   Y >𝐦

𝟏−ɛ Z  (**) 

 From (*), (**),   we have ∀ 
1

2
> ɛ > 0     X >𝐦

(𝟏−ɛ)2

Y  (***).   □ 

 

𝐋𝐞𝐦𝐦𝐚 𝟑.  Y >m X  implies  Y >𝐦
∗ X  . 

 

𝐏𝐫𝐨𝐨𝐟. ….. 

 

 

𝐑𝐞𝐦𝐚𝐫𝐤 𝟏.  Using lemma 3, suppose we have a computation by Turing Machine (M, Sf) and 

the input x in classical time and (M, Sf)(x) ↓. If we change the classical time to the symmetric 

fuzzy time, the probability of reaching to the final state is more than  
1

2
.   As a conclusion, if we 

consider the computation   (M, k Sf)(x) ↓, the probability of reaching to the final state is more 

than 1 −
1

2𝑘  . 

 

𝟐. 𝟐  𝐏∗, 𝐍𝐏∗, 𝐍𝐏∗ − 𝐇𝐚𝐫𝐝, 𝐍𝐏∗ − 𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞  

One of the main questions throughout this article is, how to redefine the most important 

classes of Complexity Theory in the new theory?  As a first attempt, let we try to define P∗as 

follows: 

P∗ is the class of all problems that can be determined by a Fuzzy Turing Machine (M, S).  

But what exactly do we mean by determined? Since it is possible that we do not reach to the 

final state, we should consider the possibility associated with  x ϵ p   for any  pϵP∗  when x  

belongs to p, and the possibility associated with x ∉ p when 𝑥 belongs to pc. Hence, by the 

above consideration, we are able to modify the definition of P∗, as follows 



𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟑. P∗ is a class of problems such that, for any pϵP∗ and the probability α, we have a 
polynomial Qα,p and an associated algorithm Aα,p to solve p  by probability α such that Qα,p  is 

upper bound of the computation time.  
Equivalently, for any pϵP∗ (p  as a language) and probability α we have an associated algorithm 
Bα,p and a polynomial Qα,p  as an upper bound of  the computation time. 

xϵp → By probability α , Bα,p = 1   

x ∉  p  → By probability  α, Bα,p = 0   

 
This is similar to the definition of the class BPP. Equivalently, by considering time as a Fuzzy 
concept we have BPP∗.  
 
By the above considerations, it is easy to see: 
 
𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏.  P∗ = BPP∗. 
 
The next natural question in TC∗ is the situation of the problem P vs NP, more exactly 

P∗ vs NP∗. Firstly, we are going to prove the following proposition about random generators. 

𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝟏. By considering time as a fuzzy concept, random Generators exist. 

𝐏𝐫𝐨𝐨𝐟. … 
□   

Now, let we consider the following definition of NP problems. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟒 The Complexity class 𝐍𝐏 is the set of decision problems like D such that there is a 

deterministic polynomial time Turing machine MD and polynomils  pD, qD in order that for 

every input x  with length x′ ( l(x)=x′) 

1. x belongs to D implies there exists string z  with length qD(x′) such that   for all string y 

with length pD(x′),  P r(MD(x, y, z) = 1) = 1)  

2. x does not belong to D  implies for all string z  with length  qD(x′) such that for all string 

y with length pD(x′) P r(MD(x, y, z) = 0) = 1 (The definition is Quoted in [4]) 

By considering the above definition and by fuzzifying time we have the definition of NP∗. 

We define NP∗--hard, NP∗-Complete likewise in below 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟓  X is NP∗-hard if for any  Y ∈ NP∗,   X >𝒎
∗ Y.   

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟔 X is NP∗-Complete if X is NP∗-hard and X ∈ NP∗. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐 SAT  is NP∗-Complete.  



𝐏𝐫𝐨𝐨𝐟. SAT belongs to NP, hence SAT ∈ NP∗, by definition. The analogues proof of Cook-

Levin’s theorem works here. More exactly, by employing the reduction associated with the 

reduction function f  in Cook-Levin theorem with this difference that time is fuzzy, we have the 

analogous function f ∗in the new proof, also here, we consider  >𝒎
∗   instead of m -reducibility. 

Lemma 3 guarantees the proof of the theorem.   □ 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦𝟒. P∗ ≠ NP∗ implies  P ≠ NP . 

𝐏𝐫𝐨𝐨𝐟.  To prove  P ≠ NP , we apply Theorem 2 and lemma 3. 

Suppose P = NP and we remind that SAT is a NP-Complete problem. Hence, there is an 

algorithm A  which solves SAT in Polynomial time. 

 Considering Fuzzy time, A also solves SAT  in polynomial time, hence  SAT belongs to P∗. SAT 

is NP∗-Complete, so P∗ = NP∗, A contradiction. Consequently, P ≠ NP.   □ 

𝐋𝐞𝐦𝐦𝐚. SAT ∉ P implies SAT ∉ P∗, unless P = NP. 

𝐏𝐫𝐨𝐨𝐟. SAT is NP∗-Complete. Suppose SAT ∉ P . If SAT ∈ P∗ then P∗ = NP∗. In brief, P ≠ NP 

implies P∗ = NP∗, which contradicts Theorem 4.    □ 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟓.  P ≠ NP implies P∗ ≠ NP∗. 

𝐏𝐫𝐨𝐨𝐟. Suppose P ≠ NP. By above lemma, P ≠ NP implies SAT ∉ P∗. But SAT ∈ NP∗, so 

P∗ ≠ NP∗.    □  

 

 

Chapter 2. 𝐌𝐀∗, 𝐀𝐌∗ 

 
In the previous chapter, by defining the concepts of P, BPP  in the new framework, we define 

the new classes P∗, BPP∗. It is shown that the new classes P∗, BPP∗  are both equal to each 

other. In contrast, what is the alternative definition for the NP  class in this new framework? To 

illustrate NP  problems in the Theory of Algorithm, it is required to define a new class for it. 

Possibly MA  is the best choice in probabilistic classes [1], [4] (introduced by Laszlo Babai, Shafi 

Goldwasser, Micheal Sipser). 

Indeed, the MA  complexity class is known as an alternative for NP problems in probabilistic 

classes, we also have a theorem states [2], [3] 

P = BPP → MA = NP 

The last point, besides P∗ =  BPP∗ confirms our choice. So, let we define the concept of NP 

problems in fuzzy time by applying and similar to the definition of MA. On the other hand in the 

previous chapter we defined NP∗, as the second way to define an alternative definition for NP 



in TC∗. It is easy to see, these two ways of defining a parallel concept for NP in TC∗ , leads us to 

the equivalent definitions. 

Here, we mention the complexity class Merlin-Arthur MA,  in Two-sided version definition[4]. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟕. The Complexity class 𝐌𝐀 is a set of decision problems like D  such that there are  

deterministic polynomial time Turing machine MD and polynomials  pD, qD in order that for 

every input x  with length x′  (l(x)=x′) 

1.  x belongs to D  implies there exists string z  with length qD(x′) such that for all string y 

with length pD(x′) Pr (MD(x, y, z) = 1) ≥ 2
3⁄ )  

2. x does not belong to D  implies for all string z  with length  qD(x′) such that for all string y  

with length pD(x′) Pr (MD(x, y, z) = 0) ≥ ⅔ (The definition is Quoted in [4]) 

Likewise, we remind the complexity class Arthur-Merlin AM in Two-sided version definition [4]. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟖. The Complexity class 𝐀𝐌 is a set of decision problems like D  such that there are  

deterministic polynomial time Turing machine MD and polynomials  pD, qD in order that for 

every input x  with length x′  (l(x)=x′) 

1.  x belongs to D  implies there exists string z  with length qD(x′) such that for all string y 

with length pD(x′) Pr (MD(x, y, z) = 1) ≥ 2
3⁄ )  

2.  x dose not belong to D  implies for all string z z with length  qD(x′) such that 

Pr (for all string y  with length pD(x′), MD(x, y, z) = 0) ≥ ⅔ (The definition is Quoted in 

[4]) 

  

By considering time as a fuzzy concept, we define MA∗. AM∗ is defined similarly, by considering 

Two sided definition of  AM in above. 

The list of new possible classes which we study here, is 

P∗, NP∗, BPP∗,MA∗ AM∗and  AM∗. 

Instead of P = NP problem and in parallel to it, we have the following problems 

BPP∗ = MA∗ 

BPP∗ = AM∗ 

MA∗ = AM∗  

Theorems 3&4 shed a light on the above problems. 

It is easy to see: 



1. P∗ = BPP∗  (Theorem 1) 

2. NP∗ = MA∗  (Considering certificate definition of  NP)    

It is notable to remind, by proposition 1, we have random generators in the new Theory. So, 

the pseudo-random generators exist too. In addition, we have P∗ = BPP∗ (Theorem 1). In this 

theory the third major conclusion is about the classes  MA∗, AM∗. 

. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑.  MA∗ = AM∗.  

𝐏𝐫𝐨𝐨𝐟. MA is the nondeterministic version of BPP, AM is the probabilistic version of NP.    

So, clearly AM∗ = NP∗and MA∗ is the nondeterministic version of BPP∗. 

By the way, P∗ = BPP∗. Consequently, MA∗ is the nondeterministic version of P∗. By definition, 

MA∗ = NP∗. In sum,  AM∗ = MA∗ = NP∗.   □ 

Moreover, by above we have 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟔.  The following statements are equivalent 

1. P ≠ NP 
2. P∗ ≠ NP∗  
3. BPP∗ ≠ MA∗(= AM∗) 

 

𝐏𝐫𝐨𝐨𝐟. By Theorems 2, 3, 4, 5. 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧. Throughout this article, it is shown that by considering time as a fuzzy concept, 

we have random generators. Under this condition,  TC∗ as a new theory in the field setting of 

computation is introduced. Hereafter, in the new theory, some problems in parallel to some of 

the famous problems in Complexity Theory are solved. In brief, P∗ = BPP∗, MA∗ = AM∗.   
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