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0 Introduction 

Infinitary extensions are not usual for systems of modal logic with traditional modal- 
ities, surely this happens because such a theme would not be sufficiently motivated 
in that context. On the contrary, systems involving graded modalities seem to offer 
strong motivation to  study their infinitary extensions. 

Here we study KZl, the infinitary extension of KO (the basic graded normal system) 
which allows countable disjunctions and conjunctions, and we prove a completeness 
theorem for it.  Such a system has an obvious interest firstly because it allows to treat 
as modalities so traditional mathematical concepts as finite and infinite, letting 

OfinA = V{O! ,A  : n E N}, OinfA = 70finA, 
and secondly because the infinite modality Oinf is essentially the same as the (already 
in [5] introduced) 0,, that is the first and basic example of a graded modality with 
an infinite grade. 

The strategy we shall follow consists in trying to repeat the line of proof of pre- 
ceding works in this area, as [4] and [2], using suitable sets of sentences which are not 
maximal for the system but have their essential properties with respect to a countable 
fragment of it. 

This kind of treatment is usual in infinitary predicate logic and, for the same reason 
(the incompactness of the system), we shall use the notion of a consistency property 

_ _ _ _ _ _ _ ~  ~~ 
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as a tool to define models. But this is not enough: having in mind to  define and use 
sets of sentences with particular properties, we need to consider limits (i.e. unions 
of chains of sets) of a consistency property and to  assure they have suitable closure 
properties. This is made by considering also the notion of a validity property and 
to assure its compatibility with the consistency property which we are working with. 
Moreover, the notion of a consistency property we need must be one adapted to  modal 
logic. 

For all of these reasons we borrow from [7], [l] and [6] notions and ideas, with 
suitable adaptations to the context of graded modal logic. 

We assume the reader is sufficiently acquainted with the quoted works, but, for 
the sake of readibility, we shall repeat without proofs or discussions some crucial 
definitions or results. 

1 The syntax of K,, 

We start by defining the syntactic features of our logic. 

of the following objects: 
D e f i n i t i o n  1.1. An infinitary language with graded modalities is the collection 

(a) a set of power w1 of atomic sentences: S = {PA : X < w 1 }  U {T, I}, 
(b) the connectives 7, A,  V (where A and V are preferably used before sets of 

(c) the graded modal operators On and 0, (n E N), 
(d) a finite number of auxiliary symbols: parentheses, commas, etc. 

formulas), 

The set (S) of well-formed formulas is defined as usual, where countable conjunc- 
tions and disjunctions are also allowed: if A is a countable set of formulas, then /\A 
and V A  are formulas. 

The remaining finitary connectives -+ and H have the usual definition. We shall 
use also the exponentiation of the graded modal operators 0:: and 0; (m,n E N) 
defined in the obvious way. 

D e f i n i t i o n  1.2. Consider numbers T ,  n E N, a sequence c = (mol ml, .  . . , m,) 
of natural numbers of length T + 1 and a sequence of formulas (20,21, . . . , Zr ) of equal 
length. Then we set 

OE(z0, z1,. . . , Z r )  = O~’((z0 A oTl(z1 A . . . A  Orr-’(z,.-1 A oFrzr). . .)). 
Let us stress some particular cases: If T = 0, the sequence c has length 1 (c = ( r n o ) )  
and correspondingly the sequence of formulas is (20) so that 0; ( 2 0 )  = OFo 20. Ob- 
viously, the formula Zo itself is a particular case of the preceding form by letting 
rno = 0, i.e., On (20) = O ~ Z O  = 20. This means that any formula can be written in 
the above form, but we shall be concerned with a special kind of such formulas: let 
us call formula of type C or C-formula any formula written in the above form with 
Z, = V{Ai : i E I }  (111 < w l )  (the letter “C” stands for “choice”, because a disjunc- 
tive formula forces to  choose one of the disjuncts, as we shall see later). So C-formulas 
are a sort of generalization of the formulas of the type V{Ai : i E I }  (111 < q), letting 
e.g. u = ( 0 , .  . . , O )  and ZO = . . . = Zr-l = T. 

( 0 )  
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D e f i n i t i o n  1.3. For any n E M  let 

As usual in the infinitary contexts we introduce the definition of the “right-hand 

D e f i n i t i o n  1.4. 
negation” AT of a formula A: 

T 7  is I, 17 is T, 
PA is -PA, (14- is A,  
V ( A j  : i E Z } l  is A{TA,  : i E I } ,  A{Aj : i E I } T  is V { i A ,  : i E I } ,  
( O n  A ) l  is On(-A), ( o n  A)T is On(-A). 

D e f i n i t i o n 1.5. The axioms of the infinitary normal logic with graded modalities 
KEl are all instances of the following schemata: 

(Axl) any tautology of the classical propositional calculus; 

(Ax2) 0,+1A -+ OnA 

(Ax3) oo(A 4 B )  -+ (OnA + OnB) 

(Ax4) O!o(A A B )  -+ ( (O!nlA A O!n,B) 4 O!n,+n,(A V B ) )  

(n E N); 
(TI E N); 

( n l ,  n2 E N); 
(Ax5) A{Ai : i E I }  -+ Aj (i E 1, III < ~ 1 ) ;  

(Ax6) -V{Ai i E I }  ++ A{-Aj : i E. I }  (111 < ~ 1 ) ;  

(Ax7) TA{Ai  
  AX^) UnA ++ 7On-A 

i E I }  - V ( 7 A i  : i E I }  (111 < ~ 1 ) ;  

(n EN). ’ 
The basic inference rules of KE1 are 

A A - + B  
B ’  

Modus Ponens (MP): 

B +A* ( i  E I )  
B -+ A{Aj : i E I} Conditioned Conjunction (CC): (PI < 4 1  

We write t A to indicate that A is a theorem of K:, . For instance] for any formula 
A one has t 7 A  ++ AT.  

We list below some theorems and derived rules which will be useful in the sequel. 
For short, we skip the obvious proofs. 

Introduction of 7 in - (I 7 H): A - B  
-A ++ 1 B  

1 A  ++ Y E  
A - B  

Elimination of 1 from ++ (ET-): 

A - B  
A- ++ B- 

Introduction of “right-hand 7” in ++ (I ++ 7): 
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A7 - B y  
A - B  

Elimination of “right-hand 7” from - (E ++ 7): 

A, H Bi ( i E  I )  
A{A,  : i E I }  ++ A{Bi : i E I }  Introduction of A in H (A++): (III 4. 

Introduction of v in ++ (V-): (IIl < 4. Ai ++ Bi (i E I) 
V { A i  : i E I }  ++ V { B i  : i E I }  

(14 < 4. Ai (i E I )  
A{Ai : i E I }  

Conjunction (C): 

A 
UoA ’ 

Necessitation (Nec): - 

Ai 4 B ( i E  I )  Left introduction of V in -+ (V+): (I4 < w1).  V { A ,  : i E I }  -+ B 

A + B  Graded possibilization of ---t (P -+): 

Iteration of P -+ (P” -+): 

( n  E N). 
OnA -+ O n 8  

A - + B  
O r A  -+ OTB ( n ,  m E N). 

( n  E N). A - B  Graded possibilization of - (P *): 
OnA * OnB 

A - B  
O!,A +P O!,B 

Exact graded possibilization of ++ (P !-): (n E N). 

( n  E N). 

( n  E N). 

A - B  Graded necessitation of -+ (Nec -+): 
UnA ---t On B 

A - B  Graded necessitation of - (Nec H): 

Possibilization of 

nnA H On B 

with V on the right (P- V ) :  
B -+ V { A i  : i E I} 

( J I J  < ~ 1 ) .  

(i E I ,  II( < w1). 

OoB -+ V{OoAi : i E I }  

T1. I- A, -+ V { A ;  : i E I }  

T2. 

T3. 

T4. 

t- B A V { A i  : i E I }  w V { B  A Ai : i E I }  

I- OEV{Ai : i E I }  +-+ V{O:Ai : i E I }  

I- V{O:(Zo,Zl, .  . . , Zr-l ,  B AAi)  : i E I }  

( IZ( < ~ 1 ) .  

( n  E M, ) I )  < ~ 1 ) .  

H Og(Zo,Z1,.  . . , Z r - l ,  B A V { A i  : i E I}) (111 < w1). 

Conditioned elimination of choice (CEC): 

(IZl < w1). 
B ---* 10; (Zo, Z1, . . . , 2,- 1, Ah A V{Ai  : i E I}) ( h  E I )  

B - - , 7 O ~ ( Z o I Z 1 ,  ..., Zr_l ,V{Ai  : i E I } )  
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T5. l - O ~ ( Z o , Z l ,  . . . ,  Z r - l , A A B )  
+ O ~ ( Z O , Z I , . . . , Z , - I , A ) A O ~ ( Z O , Z I , . . . , Z ~ - ~ , B ) .  

As semantics we shall use the well-known Kripke models M = (W, R, P) .  The 
definition of truth is standard. In particular we recall that for w E W and II( < w1, 

(M, w )  k V { A i  : i E I }  
(M,w)  k A{Ai : i E I} 

iff there exists i E I such that ( M , w )  k Ai, 
iff for every i E I, (M,w)  C= Ai 

and for w E W and n E M, 
iff l{w’ E W : w R w ’  and (M, w’) k A } /  > n ,  
iff l{w‘ E W : w R w’ and (M, w’)  F A}I 5 n ,  
iff I{w’ E W : w R w ’  and (M, w’)  I= A}I = n.  

The soundness theorem has a tedious but obvious proof that we skip. 

(M, w)  k 0 , A  
(M, w )  k 0 , A  
(M, w )  C= O!,A 

2 Fragments and consistency properties 

We follows essentially [7] both for the notion of fragment and for its properties. The 
main differences are related to the circumstance that we have to do with a proposi- 
tional calculus (with operators) instead of a predicative one (without operators). 

It can be useful to recall that all the syntactic features are intended to be coded in- 
side set theory so that one needs a ‘good’ set to detach from the system an appropriate 
fragment. 

We list below the necessary definitions and properties without comments or proofs 
that can be found in [7]. 

D e f i n i t i o n  2.1. A set A is said to be a good set if 

(i) A is a non-empty transitive set, 
(ii) if a ,  b E A, then {a, b } ,  a U b ,  a x b E A, 
(iii) if a E A and Q is the least ordinal which is not in the transitive closure of a,  

then Q E A. 
D e f i n i t i o n  2.2. If A is a good set, then FA = (8) n A  is called a fragment 

(relative to A) of K:l. When either misunderstandings are impossible or the topic 
does not depend on a particular good set, we shall drop the indication of the good 
set writing simply F for a fragment of KE1.  

P r o p o s i t i o n  2.3. If A is a good set and FA the fragment of K t ,  relative to A, 
then the following statements hold: 

(i) w E A; 
(ii) FA is closed with respect to  negation, finite conjunctions and disjunctions, and 

(iii) if A f FA, then, for any subformula B of A ,  B E FA; 
(iv) if {Ai : i E I }  is a countable set of formulas and {Ai : i E I }  E A, then 

(v) if A E FA, then A- E FA. 

to  the operators 0, and 0, ( n  E W); 

( 7 A i  : i E I }  E A, and A { A ,  : i E I } , V { A i  : i E I} E FA; 



552 Maurizio Fattorosi-Barnaba and Silvano Grassotti 

P r o p o s i t i o n  2.4. If { A ,  : i E I }  is a countable set of formulas,  then there exists 

D e f i n i t i o n  2.5. Let F be a fragment. An F-consistency property is a family C 
a least countable fragment  FA such that {Ai : i E I }  E FA.  

of sets of sentences of F such that 

(i)  if R E C and A 
(ii) if A E A E C, then 7 A  $! A; 

(iii) if - A  E A E C ,  then A U { A T }  E C; 
(iv) if A{Ai : i E I }  E A E C (111 < ul), then, for any i E I ,  A U { A , }  E C ;  
(v) if V { A i  : i E I }  E A E C (111 < W I ) ,  then, for some i E I ,  A U { A i }  E C; 

(vi) if O ~ ( Z o , Z 1 , .  . . , & - I ,  V { A i  : i E I}) E A E C (]I1 < q), then there exists 

(vii) if OoA E A E C, then A# U { A }  E C, where 

R ,  then A E C; 

h E I such that A U {O,"(Zo, 21,. . . , Zr-1, Ah A V { A i  : i E I } ) }  E C; 

A# = { A  : BOA E A} U {'A : 7OoA E A}. 

The idea of using A# is borrowed from [6]. The next two definitions, those of a 
validity property for a fragment and of a set of sentences compatible with a consistency 
property, are borrowed from [l], where the second one has no specific name and is 
limited to the case when the set of sentences is a validity property. 

D e f i n i t i o n  2.6. An F-validity property is a set r of formulas of F that 

(i) contains any instance of the axioms of K i l  that belongs to F, 
(ii) is closed with respect to the inference rules of KZl, provided that premises and 

(iii) does not contain A A - A  for any formula A belonging to F .  
conclusions of the rules belong to F ,  

D e f i n i t i o n  2.7. Let I' be a set of sentences of K E l .  A consistency property C is 
Compatible with I7 or r-compatible if A U { A }  E C for any A E C and any A E I?. 

The idea of the next definition appears both in [7] and [l], but without any par- 
ticular relevance. On the contrary we stress explicitly the following notion because it 
is, in a good sense, the key for the proof of the completeness theorem. 

D e f i n i t  i o n 2.8. A set A of sentences of F is said to be a good limit  (to distinguish 
it from a simple limit, i.e. a set which has only the property (i) below) or else a l imit  
(since we shall use only the good ones, indeed) of C and will be written with C as 
index, A,, if the following conditions hold: 

(i) there exists a countable chain A0 2 A1 C . . . ,  with A,, E C for each n E N, 
such that Ac = U{A,, : n E N}; 

(ii) if 7 A  E Ac, then A- E Ac; 
(iii) if A { A ,  : i E I }  E Ac (111 < ul) ,  then, for any i E I ,  Ai E Ac;  
(iv) if V { A ;  : i E I }  E AC (11) < ul), then, for some i E I, Ai E Ac; 
(v) if O;(Zo,Z1,. . . , ZT-l, V { A i  : i E I } )  E Ac (IIl < q), then there exists h E I 

such that o;(Zo,Z1,. . . , 
The collection of the limits of C will be indicated by Oc. 

Ah A V { A i  : i E I } )  E Ac.  



An Infinitary Graded Modal Logic 553 

Note that a limit of C has also the property 

(0) if A E Ac ,  then -TA $ Ac 

as one can see immediately by observing that, if not so, it would happen e. g. A E A, , 
-A E Am,  and if n < m, then A, C Am and A,TA E Am,  contradicting Am E C 
(see Definition 2.5(ii)). 

The next theorem states, under suitable conditions, the existence of limits and, 
at the same time, provides a Lindenbaum-like property of them with respect to the 
elements of C. 

T h e o r e m  2.9. Let F be a countable fragment of Ktl ,  C an  F-consistency prop- 
er ty  and r s F. Then  for any A € C there exists AC € @C such that A C Ac. 
Furthermore, if C is I?-compatible, then one has also A U r E Ac. 

P r o o f .  Let us define a chain of sets of sentences A0 C A1 C ’ . ., where A, E C 
for any n E M. 

First let A0 = A. Then, given A,, let us define A,+l. 
Let Ao, A1 , Az, . . . be an enumeration of the sentences of the fragment F .  Consider 

the sentence A,. If A,U{A,} E C,  then let A; = AnU{An}. If A,U{A,} $ C, then 
let A; = A,,. When the first case occurs one has to examine the structure of A,. 

If A, has the form V{A,,i : i E I }  with a countable I ,  enumerate I ,  pick out the 
least i E I such that A; U {An,i} E C and define An+l = A’, U {An,;}. 

If, in general, A, is a C-formula O:(Zo,Z1,. . . , Zr-l,V{Ai : i E I } )  with a 
countable I, then Og(Z0, 21,. . . , Zr-l, V{Ai : i E I } )  E A’, E C. By Definition 
2.5(vi), t he re i shE  Isuchtha t  A;U{O~(Zo,Z1, . . . ,  Zr_l,AhAV{Aj : i E  I } ) } € C .  
The enumeration of I allows to choose ho as the least h E I for which this happens; 
sodefine An+l =A;U{O~(Zo ,Z1 ,  . . . ,  Zr_l,Ah,A\{Ai : i € I } ) } .  

Otherwise define A,+l = A’,. 
Obviously, A, E C for any n E M. Finally let AC = U{A, : n E N}. We verify 

The condition (i) is obviously satisfied. 
Let us verify the condition (ii). Suppose i A  E Ac.  We have to show AT E Ac.  

Let A- have the index m in the above enumeration of the sentences of F ,  and let 
-A = A,. If n = rn (this happens only if A = PA), the condition is trivially satisfied. 
Let us suppose that m < n. Being A,,, C A,, one has Am U {AT} C A, U {AT}. But 
AnU{7A} E C, SOA,U{TA}U{A~} E C. FromAmU{AT} 5 A,U{TA}U{AT} E C 
one gets the conclusion. Suppose now n < m. Then -A E An+l and An+l E Am 
so that -A E A,,, and Am U {A-} E C. This yields A, U {Am} E C, that is 

Let us consider the condition (iii). Let A{Ai : i E I} E AC and assume that 
A{Ai : i E I} = A,. We have to verify that the Ai’s are in Ac. If Ai = A,, 
then certainly m # n. Suppose first n < m. Then A{A, : i E I} E An+l C Am. 
This yields Am U {Ai} E C (because Ai = Am), so A, E A,. If m < n,  then 

one has Am U {Ai} C A, U {A{Ai : i E I}} U {Ai} E C, C is closed with respect to 
inclusion (Definition 2.5(i)), so as above we reach the desired conclusion. 

that AC is a limit. 

A 1  = Am E Am+l s Ac. 

A, U {A{Ai : i E I } }  € C, SO A, U {A{Ai : i E I}} U {Ai} E C. Being Am s An, 
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As to condition (iv), suppose V { A i  : i E I }  E Ac. From the definition of Ac it 
follows that An U { v { A i  : i E I } }  E C for some n E W. Looking a t  the definition of 
the chain of the A,,, there is an Ai E A,+l C Ac, so the condition is verified. 

The condition (v) is obviously satisfied. 
Finally let us verify that if C is a I'-compatible consistency property, then every 

Ac built as above contains I'. In fact, if A ,  E I', then An U {An} E C, so that 
0 

0 b s e r v a t  i o n  2.10. The  limit  sets  are closed with respect t o  Modus Ponens .  
P r o o f .  Suppose that A E Ac and A + B E Ac. The latter means 1AV B E Ac 

so that either -A E AC or B E Ac; but A E Ac and property (0) implies B E Ac. 0 
O b s e r v a t i o n  2.11. Let C be an F-consistency property  compatible wi th an 

F-validity property  I', and let Ac be a l imit  such that I' c Ac. If Oo(A A B )  E Ac, 
then OoA E Ac. 

P r o o f .  It is obvious that the formulas A ,  B ,  A A  B ,  A A B  -+ A ,  o , (AAB -+ A ) ,  
Oo(AA B ) ,  OoA, Oo(A A B )  -+ OoA, Oo(A A B -+ A )  -+ (Oo(A A B )  -+ OoA) belong 
to the fragment F .  A A B -+ A and Uo(A A B -+ A )  -+ (Oo(A A B )  -+ OoA) are 
axioms written with formulas of the fragment, so they belong to I'. Furthermore, 
from A A B -+ A E I' one gets Uo(AA B -+ A )  E I', because I' is closed with respect to 
the rule (Nec) and both the premiss and the conclusion are formulas of the fragment. 
By the I'-compatibility of C, Uo(A A B -+ A )  -+ (Oo(A A B )  -+ OoA) E Ac and 
Q J ( A  A B -+ A )  E Ac, then, remembering that AC is closed with respect to Modus 
Ponens, Oo(A A B )  -+ OoA E Ac.  By hypothesis Oo(A A B )  E Ac, and, by Modus 

0 
This observation will be useful later on, but its principal aim now is to display a 

style of proof that will be used again and again in the sequel. 
The following observations show that the limits have the main properties of the 

maximal consistent sets with respect to the fragment F. 
0 b s e r v a t  i o n  2.12. Let C be an F-consistency property  compatible wi th an 

F-validity property  I', and let Ac be a l imit  such that r Ac.  If  V { A i  : a E I }  E F ,  
then V{Ai  : i E I }  E Ac i f l there  e t i s t s  a n  i E I such that Ai E Ac.  

P r o o f .  The implication from left to right follows immediately by the very defini- 
tion of alimit. As to the inverse implication, note that Ai E F (i E I ) ,  -Ai E F (i E I ) ,  

so that, using various axioms and (both basic and derived) rules, one reconstructs T1 
as an element of I', i.e. Ai -+ V { A ;  : i E I }  E I'. Since I' Ac,  the statement follows 
from Observation 2.10. 0 

In particular, for any A E F ,  AV-A E I' C_ Ac, so that either A E Ac or 7 A  E Ac, 
but not both (by property (0)). This remark justifies the next observation: 

O b s e r v a t i o n  2.13. Let C be an F-consistency property  compatible wi th an 
F-validity property  I', and let AC be a l imit  such that I' 2 Ac. If A E F ,  then 
A 4 Ac i f f  -A  E Ac.  

An E An+l 2 Ac. 

Ponens again, 00 A E Ac . 

( V { A ;  : i E I } ) -  = A { T A ~  : i E I }  E F ,  ( A { T A ,  : i E I } ) -  = V ( 1 - A ;  : i E I }  E F ,  

Finally we have also 
0 b s e r v a t i o n  2.14. Let C be an F-consistency property  compatible wi th an 

F-validity property  I', and let Ac be a l imit  such that I' C_ Ac.  If  A{Ai  : i E I }  E F ,  
then A{Ai  : i E I }  E Ac i f l  for any i E I ,  Ai E Ac. 
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3 A model canonically associated with a consistency property 
compatible with a validity property 

In this section we prove that, under certain conditions, one can repeat (with suitable 
adaptions) the argument developed in [4] and [2] to define a model that is canonically 
associated with a consistency property compatible with a validity property. 

In the sequel we assume as fixed a countable fragment F of KZl and that all 
consistency and validity properties are relative to  F. 

L e m m a  3.1. Let I' be a validity property,  C a I'-compatible consistency property 
and Ac a l imit  such that I' C Ac. Then we  have: 

(a) For every n ,  m E N and A E F, if n 2 m and OnA E Ac, then OmA E Ac. 
(b) I f A o , A l , .  . . ,Ak E F ( k  2 1) such that A{-(Aj A Aj) : 0 5 i < j 5 k }  E I' and 

(c) If A E F and O!nA, O!,A E Ac, then n = m. 
(d) For any A E F ezactly one of the following cases occurs: 

(i) for every n E N, OnA E Ac; 
(ii) there ezis ts  ( a  unique) n E N such that O!,A E Ac. 
(e) If  A + B E 

O!niAi E AC for 0 5 i 5 k, then O!no+ ...+ nkV{A; : i 5 k} E Ac. 

and O!,B E Ac, then there ezis ts  a unique n E N such that 
O!,A E Ac, and one has necessarily n 5 m. 

P r o o f  . The proof of (a) is by induction on n - m. If n - rn = 0, the statement 
(a) is trivial. Suppose, as inductive hypothesis, that (a) is true for n - m = k and 
let n = m + k + 1. If Om+k+lA E Ac,  being Om+k+lA + Om+kA E &-, one has 
Om+kA E Ac,  and the inductive hypothesis yields OmA E A', 

The statement (b) is proved by induction on the number k + 1 of formulas. First 
suppose k = 1, i .e.  we have the hypotheses - ( A D ~ A l )  E I' and O!n,Ao, O!nlAl E Ac. 
As a validity property, I' is closed with respect to (Nec) (premiss and conclusion 
being in the fragment), so that we get Oo-(Ao A Al)  E I' and -Oo(Ao A A1) E I'. 
But -Oo(Ao A Al)  -+ ((O!,,Ao A O!,,Al) + O!no+nl(AO V A1)) E I' C AC and 
Ac is closed with respect to Modus Ponens. Thus the thesis is proved. Now let 
(b) hold for k = 1, . . . , r .  We must prove it when k = T + 1. The hypotheses are: 
A{-(Ai AAj) : 0 5 i < j 5 r +  1)  E r C Ac and O!,,A, E Ac for i 5 r +  1 .  From 

A{T(Aj A Aj) : 0 5 i < j 5 r +  1) +A{- (A i  A A ~ )  : 0 5 i < j 5 r }  E r C Ac 
and the closure of AC with respect to Modus Ponens one gets 

A{-(A; A Aj) : 0 5 i < j 5 T }  E Ac 
so that, by the inductive hypothesis, O!no+...+nrV{Aj : i 5 r }  E Ac. Now we put 
A = V{Ai : i 5 r }  and n = no + . . . + n,. By suitable tautologies and applications of 
Modus Ponens, one proves the following statements: 

A{T(AiAAj) : 0 5 i < j 5 r +  1) E I', 

A{T(Aj A 
-V{A< : i 5 r }  V -Ar+l = -A V -Ar+l E I', 
-(A A Ar+1) E I'. 

: i 5 r }  E r, 
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From the initial hypotheses and from the inductive one, we obtain O!,A E Ac and 
O!n,+lAr+l E A c .  So, applying the statement in the case k = 1, we conclude 

For the proof of (c) we suppose that n # m, e.g. n > m. Surely n > 0, so 
O!nA = 0,-1A A -0,A E Ac.  Since (0,-1A A 70,A)  -+ 0,-1A is a tautology 
formed by formulas of the fragment, (0,-1A A TOnA) -+ 0n-1A E r g Ac, and 
therefore 0n-1A E Ac.  Because n - 1 2 m, from (a) we get O,A E Ac. The other 
hypothesis is O!mA E Ac,  which implies 10,A E Ac: contradiction. 

To prove (d) note first that the two conditions are incompatible: in fact, if (ii) 
holds, then 70,A E Ac, what conflicts with (i). Suppose (i) does not hold. Then 
there exists an n such that 0,A @ Ac,  i.e. -0,A E Ac. Let m be the least such 
number. If m = 0, then 1OoA = O!oA E Ac.  If m > 0, then 0,-1A E Ac and 
-0,A E Ac.  So iO,A A 0,-1A = O!,A E Ac. The uniqueness of m follows 
from (c). 

For the proof of (e) we remark that A --$ B and also 0,A -+ 0, B belong to the 
fragment, and in that circumstance r is closed with respect to the rules of inference. 
So, for any n E N, 0,A -+ OnB E r and, by compatibilty, 0,A -+ 0,B E Ac and 
also 70,B ---* 70,A E Ac. From O!,B E AC one gets 70,B E Ac and, by Modus 
Ponens, 10,A E Ac.  From (d) it follows O!,A E AC for a unique n. So, if m < n, 
then n > 0 and 0,-1A E Ac.  Moreover n - 1 2 m and, by (a), 0 , A  E Ac and 

0 

L e m m a  3.2. Let r be a validity property, C a r-compatible consistency property 
and Ac a limit containing r. Let Ao,Al , .  . . , A h  (k 2 1) be any formulas of r. 
Consider the r = 2k formulas A0 A C1 A . . .  A ck, where Ci is either A, or 1Ai 
(1 5 i 5 k) and call them Bo, B 1 ,  . . . , B,-1. 
(a) I f  there exists n E M such that O!,Ao E Ac,  then there exist also no, n l ,  . . . , n,-1 

such that n = no + n1 + .  . . + n,-l and O!,,Bh for  0 5 h < r .  
(b) I f  0,Ao E AC for any n E M, then there exists h < r such that 0,Bh E A, for 

every n E M. 
P r o o f .  For the proof of (a) we first note that Bh -+ A0 E r for any h < r .  From 

O!nAo E A, and Lemma 3.l(e), there exists nh _< n such that O!,,Bh E Ac. Now we 
let m = no+nl+. . .+n,-1 and prove that m = n. For any h ,  1 such that 0 5 h < 1 < r ,  
-(Bh A Bl) is a tautology and a formula of F. Therefore, 7(Bh A Bl) E r and also 
A{-(Bh A B I )  : 0 5 h < 1 < r }  E r. Let G = V{Bh : h < r } ,  which is a formula of 
the fragment. By Lemma 3.l(b) one has O!,G E Ac.  Now let Dh = C1 A . . . A ck 
and G' = V(Dh : 0 _< h < r } .  G' is a tautology and is in F, therefore G' E r. For 
the same reasons, A0 H A0 A G' E r and also A0 A G' H G E r. So we conclude that 
the formula G ++ A0 is a tautology and is in F, therefore G H A0 E r. The formula 
O!,G ++ O!,Ao can be deduced by tautologies and derived rules and belongs to  F. 
Thus O!,G H O!,Ao E r and therefore O!,G H O!,Ao E Ac. But O!,Ao E Ac so 
that O!,G E A c .  Therefore, O!,G E AC and O!,G E Ac, what implies n = m by 
Lemma 3.l(c). 

Turning to (b), suppose the statement fails. Then, for any h < r ,  there exists 
nh such that O!,,Bh E Ac and, arguing as in (a), O!,A E Ac. Then it cannot be 

0 

O!n+nr+l ( A  V Ar+1) E Ac. 

O,B E Ac: contradiction. Therefore, n 5 m. 

0,A E Ac for any n E N (by Lemma 3.1(d)). 
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D ef i n i t i o n 3.3.  Let I' be a validity property and C a r-compatible consistency 
property. The function m : OC x OC - w U { w }  is defined as follows: 

if for any A E Rc and n E N, O,A E Ac,  
rn(AC' ") { :in{n E N : O!,A E AC and A E Rc} otherwise. 

and Ac,  Rc t w o  l imits  of C containing r. The  following conditions are equivalent: 
L e m m  a 3.4. Let r be a validity property,  C a I'-compatible consistency property 

(9 4 A c ,  a,) # 0. 
(ii) For any A E F ,  i f  A E Rc, then OoA E Ac.  
(iii) For any A E F, if OoA E Ac, then A E Rc.  

P r o o f .  Suppose (i) and not (ii), i.e. there is A E F such that A E Rc and 
OoA @ Ac. Then -0oA = O!oA E Ac,  and by the preceding definition this yields 
~ ( A c ,  Qc) = 0: contradiction. 

Now let us prove that (ii) implies (iii). First, since UOA E Ac,  A and all the 
formulas below, built from A ,  are in F .  Because OOA c.) 7 O o i A  is an axiom and is 
in F, one has OoA H -Oo-.A E Ac. Then i O o 7 A  E Ac, therefore 0 0 - A  Ac, and 
by (ii), -A @ R c  what implies A E Rc. 

Finally let us prove that (iii) implies (i). If it were m(Ac,Rc) = 0, then there 
would exist A E RC such that O!oA E Ac, that is 7OoA E Ac. Then 0 0 - A  E Ac 

0 

Let F be a countable fragment ,  r an F-validity property ,  C a 
I'-compatible F-consistency property,  and Ac a limit of C such that r c Ac. If 
OoA E Ac, then there e t i s t s  RC E Oc such that I'U { A }  C Rc and m(Ac, Rc) # 0. 

P r o o f .  Let A = Ao, A l ,  . . . , A,, . . . be an enumeration of the sentences of F .  By 
this enumeration we shall build a chain Ro c R1 . . . c R, c . . . of finite elements 
of C. Those sets will have the further property that if B, = An,,, then OoB, E Ac. 

and, by (iii), 7 A  E Rc: contradiction. 
L e m m a  3.5. 

First we define Ro. Let R' = {Ao} = { A } .  We examine the structure of A.  
If A has the form V{Ai  : i E I } ,  one has OoV{A; : i E I }  E Ac. That is a formula 

of type C and, by Definition 2.8(v), there is h E I such that Oo(Ah A V { A ;  : i E I } )  
belongs to Ac.  Then define f l o  = R'U {Ah}  = { V { A ;  : i E I } , & } .  Let us verify 
the conditions OoBo = %(Ah A V { A ;  : i E I } )  E AC and Ro E C. The first one is 
obvious. As to the second condition, from OoBo E AC one gets OoBo E An E C for 
some n E N, which implies An#U{Ah~\{Aj  : i E I } }  E C. Then there exists alimit 
IIc such that Ah A v { A ;  : i E I }  E IIc. By Observation 2.14, v { A ;  : i E I }  E IIc 
and Ah E IIc. So, if no E I I l  I I z  C_ . . . is the chain whose limit is IIc, for suitable 
n , m  E N one has v { A ;  : i E I} E IIn and Ah E a,, and if e.g. n 5 rn, then 
Ro = { v { A i  : i E I } , A h }  

It will result useful in the sequel to note that the preceding argument can be easily 
generalized to obtain the following implication: 

(*I 
Now let A = O;(Zo,Z1,. . . , Z r ; l , V { A ;  : i E I } )  with u = (rno,ml,. . . ,mr) .  

Because of OoA E AC one has 0; (Zo,Z1, .  . . , Z r - l , V { A ;  : i E I } )  E Ac, where 

II, E c so that Ro E c (see Definition 2.5(i)). 

If Oo(A1 A . . . A A,)  E Ac, then { A l ,  . . . , An} E C .  
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6' ,= (mo + 1,  mi ,  . . . , mr). From this it follows that there exists h E I such that 
0; (zo,z1,. . . , Zr-1, Ah A v{A; : i E I}) E Ac. Then we define the set Ro as 

is obvious that 00 E C. Let us verify that OoBo E Ac. Obviously, the formula 
{O;(Zo,Zl , . . . ,Zr- l ,V(Ai  i E I}),O;(ZO,Z~,...,Z~-~,A~AV{A~ i E I})}. It 

O,"(Zo,Zl,...,Zr-l,AhAV{Ai :iE I}) 
+ O;(Zo, 2 1 , .  . . , z r - 1 ,  V{A; : i E I}) 

A O ; ( Z O , Z ~ ,  . . . , Zr-1, Ah A V{Ai : i E I}) 
belongs to r ,  and as well the formula 

OOO,"(ZO, 2 1 , .  . . ,  Zr-1, Ah A V{A; : i E I}) 
+ 00(0; (20 9 2 1  , . . . ,Zr- 1 I V{Ai : i E I}) 

A O,O(Zo, 2 1 , .  . . , Zr-1, Ah A V{A; : i E I})). 
Because I' 
OoBo E Ac. 

Ac and Ac is closed with respect to Modus Ponens, we obtain that 

In every other case 00 = {A}, and it is obvious that OoBo E Ac and RO E C. 
Suppose now that we have built 52, E C. Let B, = AR, and OoB, E A c .  Let us 

define Rn+l E C such that R n  C Rn+l and OoB,+1 = OoARn+l E Ac. Observe that 
the last condition implies, by (+), that Rn+l E C, SO that we shall define Rn+1 _> R n  
such that OoAR,+1 E Ac. 

Consider the tautology B, -+ (B,  A A,+1) V (B, A -An+l) E Ac. From this 
one gets OoBn -* Oo(Bn A An+1) V Oo(B, V l A n + l )  E Ac and, by Modus Ponens, 
Oo(Bn A By the properties of the limits, then 
either Oo(Bn A A,+1) E AC or Oo(B, A -An+l) E Ac. In the second case we put 
Rn+1 = R n  U { iAn+l};  then one has OoB,+l = Oo(B, A -An+l) E AC so that 
Rn+l  E C. If Oo(B, AA,+1) E Ac,  we put RL = R, U{An+l} and proceed as in case 
n = 0 examining the structure of A,+1. 

If An+l = V{A; : i E I}, then Oo(B, A A,+1) E Ac is a formula of type C: 
Oo(Bn A An+1) = OE(Bn,An+l),  where u = (1,O) .  The properties of the limits 
allow to assert the existence of an h E 1 such that O;(Bn, Ah A v{A,  : i E I}) = 
Oo(Bn A Ah A v{A; : i E I}) E Ac.  In this case we join to Rk the sentence Aho with 
the least such index h: Rn+1 = 0, U {V{Ai : i E I}} U {Aho}. This definition implies 
OoBn+1 E AC and Rn+1 E C. 

If An+l = O ~ ( Z o , Z l ,  . . . ,  Z r _ l , V { A i : i E I } ) ,  thenOo(BnAA,+1)EAcisalso 
a formula of type C and there exists an h E I such that 

V Oo(B, A -An+l) E Ac. 

Oo(Bn A O,"(ZO,ZI,.  . . ,Zr-l ,Ah A V{Ai : i E I})) E Ac. 

Then join to 
such h = ho. One easily verify that OoBn+l E Ac and therefore Rn+1 E C. 

and Rn+l E C. 

really a limit and that rn(Ac, Rc)  # 0. 

the formula O;(Zo,Z1,. . . , Aho A V{Ai : i E I}) with the least 

In every other case let Rn+l = R, u {A,+1}, and it is obvious that OoBn+1 E Ac 

To conclude, we let RC = U{R, : n E N}. What needs to checking is that R c  is 

The condition (i) of Definition 2.8 is satisfied by definition. 
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Let us examine the condition (ii). We have to  verify that, for any formula Z E F, if 
7 Z  E Rc, then Z i  E Rc. The formula -Z occurs in the above enumeration of F with 
an index n and Z7 occurs with an index m. If n = m (i.e. A = PA), the statement is 
trivial. If m = 0, the statement is trivially true again, because A = A0 E R c .  Thus 
we can suppose n # m and m > 0. By hypothesis one has Oo(B,-1 A -Z)  E AC (if 
n = 0, the formula inside brackets is intended equal to  -Z = A0 = A). We have to 
prove that Oo(B,-1 A (27)) E A c .  Suppose not, then Oo(B,-1 A - ( Z i ) )  E A c .  
As a consequence of (*), R, = { A , .  . . , -(ZT)} E C. If m < n, then R, g R, and 
R, = { A , .  . . , - ( Z i ) ,  . . . , -Z } .  Since 7 Z  E R,, R, U { Z T }  E C: Contradiction. If 
n < rn, suppose again Oo(B,-1 A - (Zy))  E Ac.  Then R, C R, = { A , .  . . , -(Z-)}. 
Since 1 Z  E R,, then 4' E R, E C, so R, U {ZT}  E C: contradiction. 

To see that the condition (iii) is satisfied, assume that A{A, : i E I }  E Rc. 
We have to prove that A, E Rc for any i E I .  If in the fixed enumeration of F, 
A{A, : i E I} = A,  and A, = A,, then, of course, n # m. Therefore R, = 
{ A , .  . . , A{Ai : i E I } } .  Suppose Ai # R,, then 7Ai E R,. First assume n < m. 
Then from R, E R, it follows A{Ai : i E I }  E 0, E C. So one has 52, U {Ai} E C, 
but this cannot be accepted, because -A, E R,. If m < n, one has -Ai E R, and 
A{A, : i E I }  E R,, but this forces R, U {Ai} E C: contradiction. 

Conditions (iv) and (v) are immediate consequences of the definition of Rc.  
So we have verified that Rc is a limit. Let us prove now that r E Rc.  If 

A0 = A E r ,  then, by definition, A E Rc. If An+l E I' (n E N) we can assert 
An+l E Rn+l if we can exclude that -An+l E Rn+l,  what amounts to  exclude that 
Oo(Bn A TAn+l) E A c  (see above). In fact, if Oo(B, A 7An+l) E A c ,  then, by (*), 
R n  U {7An+l} E C ,  and by the r-compatibility of C, R n  U {lAn+1} U {A,+1} E C: 
contradiction. 

It remains to  check the value of m(Ac,Rc) .  If it were m(Ac,Rc)  = 0, then 
there would exist An+l E RC such that O!oA,+1 E A c ,  that is -OOAn+l E A, (the 
index is positive because OoAo E A,). From the definition of the chain whose limit 
is Rc i t  follows An+l E Rn+l what yields Oo(B, A A,+1) E Ac. By Observation 
2.11,  OoA,+1 E A c :  contradiction. Therefore, m(Ac,Rc)  # 0 and the proof is 
complete. 0 

L e m m a  3.6. Let I? be a validity property,  C a I?-compatible consistency property 
and let AC,l, A c , ~ ,  . . . , A c , ~  ( h  2 2) be distinct l imits  of C containing I'. Then  
there exist formulas A1,A2,.  . . , A h  in  F such that Ak E AC,k (1 5 k 5 h )  and 
A{-(& AAm) : 15 k < m 5 h }  E I?. 

P r o o f .  If h = 2, we have two distinct limits Ac,l  and A c , ~ .  Then there exists 
A E F such that A E Ac,l  and A @ A c , ~ .  From the latter one gets -A E A c , ~ .  By 
letting A1 = A and A2 = -A and the fact that '(A A -A) is a tautology and is in F, 
one obtains -(A1 A A2) E r. 

Suppose now inductively that A1, Az, . . . , Ah-1 are formulas in F such that 

The sets A c , ~  (1 5 k < h) are distinct from AC,h. Thus there exist formulas 

B1 A & A . . . A Bh-1 E AC,h. Obviously all the above formulas are in F and the 
tautologies we used are in I?. Let Gk = Ak A 1Bk (1 5 k < h ) ;  it is evident that 

Ak E AC,k (1 5 k 5 h - 1) and A{-(& A Am) : 1 5 k < m 5 h - 1) E r. 
Bk @ AC,k (1 5 k < h )  such that Bk E AC,h. S O  1Bk E AC,k (1 5 k < h )  and 
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Gk E F and that Gk E AC,k (1 5 k < h) .  Moreover let Gh = B1 A BZ A . . . A B h - 1 .  

0 

D e f i n i t i o n  3.7. Let r be a validity property, C a I'-compatible consistency 

The conclusion for the formulas G I ,  . . . , Gh is immediate. 

property and A c  a limit containing r. The satisfying f a m i l y  of AC is the set 

S F ( A ~ )  = {{nc} x m ( ~ ~ ,  nc) : r c fit E ac). 
O b s e r v a t i o n  3.8 .  The elements  of  SF(Ac) are pairs  as  ( R c , ~ )  but they will  

be often indicated s imply by their  f irs t  component,  e .  g .  ( R , , n )  will be wr i t t en  as Rc. 
T h e o r e m  3.9.  Let be a ual idi typroperty ,  C a r - compat ib l e  consistency property  

and Ac a limit  containing I'. For any formuia A E F and for any n E M I  0 , A  E Ac 
if I{Rc E SF(Ac) : A E R c } ~  > R .  

P r o o f .  We prove first that I{Rc E SF(Ac) : A E Rc}( > R implies 0 , A  E Ac.  
Two cases can occur: 

(i) there exists Rc E SF(Ac) such that A E Rc and m(Ac,  Rc) > n ;  
(ii) for any Rc E SF(Ac), if A E Ac, then m(Ac, Rc) 5 n. 

In case (i), if OnA $! Ac,  then - 0 , A  E A c ,  so m(Ac,  0,) 5 n :  contradiction. 
In case (ii) there exist distinct R c , ~ ,  . . . , R c , ,  E SF(Ac) ( h  2 2 )  such that 

A E R C , k ,  0 < nk = m(Ac,RC,k) 5 n (k = 1,. . . , h) ,  and s = nl + .  . . + nh > n .  By 
Lemma 3.6 there exist formulas A l ,  . . . , Ah in F such that Ah E Rc,k (1 5 k 5 h)  and 
A{y(AkAAm) : 1 5 k < m 5 h }  E r. Now let B1, .  . . , Bh be formulas of the fragment 
F such that Bk E RC,k and O!nkBk E Ac (1 5 k 5 h).  Let Dk = A A Bk A Ak E F 
(1 5 k 5 h ) .  First note that 

(1) Dk = A A Bk A Ak E RC,k 

Now let us consider the formulas 
(1 5 k 5 h).  

(Dk A Dm) -+ (Ak A Am),  y(Ak A A,) + l ( D k  A Dm) (1 5 k < m 5 h).  

These tautologies are in I'. Since A{-(& A A m )  : 1 _< k < m 5 h }  E r, then also 
- (At  A A,) E I', therefore 7(Dk A D m )  E r, and then 

(2) A { i ( &  A Dm) : 15 k < m 5 h}  E r .  
The tautologies Dk -+ Bk (1 5 k 5 h )  are also in l7 and we recall that O!,,Bk E Ac.  
Thus, by Lemma 3.l(e), there exist mk 5 nk (1 5 k 5 h)  such that O!mk Dk E Ac.  
But nk is the least number p such that Dk can be in the scope of the operator O!, 
(by the definition of m ( A c , S 1 ~ , ~ ) ) ,  so one has necessarily mk = nk and 

(3) O!nkDk E AC (1 5 k 5 h).  

Now let F = V { D k  : 1 _< k 5 h } .  Obviously F E F. Furthermore, by (2) and (3) and 
by Lemma 3.l(b), one has O!,F E Ac,  so O,-lF E Ac. F 4 A is a tautology in I?, 
like oo(F -+ A )  and 0, -1F + 0 , -1A .  Since AC 2 I?, then 0,-1F -+ 0,-1A E Ac 
and, by the closure of Ac  with respect to Modus Ponens, 0 , - 1 A  E A,. From s-1 2 n 
one gets 0 , A  E Ac.  

As to  the converse, suppose 0 , A  E Ac.  Then OoA E A c  and there exists at  
least one Rc  such that A E Rc and m(Ac,Rc)  # 0. Without loss of generality we 
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may suppose that the family of these limits is finite and each of them is such that 
r n ( A ~ , Q c )  < w (if not, then obviously ~ { R C  E SF(Ac) : A E Rc}( > n). So let 

Rc,,, . . . , Rc, ,  be distinct limits such that 0 < nk = m(&, R C , k )  < w and 
A E R C , k  (1 5 k 5 h )  and we first suppose that h 2 2. We have to prove that 
s = I{Qc E SF(Ac) : A E Rc}J = nl + . . .  + nh > n. By arguing as in point (ii) of 
the first part of the proof one can find formulas as &, Bk, Dk (1 5 k 5 h)  and F 
with the properties ( I ) ,  (2), (3) above. Moreover let G = -V{Bk A Ak : 1 5 k 5 h } .  
Clearly G E F. Now consider the following tautologies (in r): 

A H ( A  A G )  V ( A  A i G ) ,  
( A  A ' G )  * A A v { B k  A Ak : 1 5 k 5 h } ,  
( A  A ' G )  * V { A  A Bk A &  : 15 k 5 h } ,  
( A  A ' G )  * V{Dk : 1 5 k 5 h } ,  

which justify the statement 

(4) A + + ( A A G ) V F E ~ .  

Furthermore '( Dk A(AAG)) (1 5 k 5 h )  is also a tautology belonging to I'. Evidently, 
Dk and A A G are incompatible. so  one can assert 

(5) T ( D k A ( A A G ) ) € r  ( 1 5 k L . h ) .  
One has also 

(6) O!o(A A G )  E Ac.  

In fact, if not, then Oo(A A G )  E AC and there would exist Qc 2 r such that 
A A G E Rc and rn(Ac, Rc) # 0, and since A A G E Rc, then A E Qc. So Qc is one 
of the previously considered limits. Suppose e.g. Rc = Rc,,. Now, being D1 E Rc,] 
and -(Dl A ( A  A G)) E r g R C , ~ ,  one has a conflict with the hypothesis A A G E R c , ~ .  
To conclude, let F' = F V ( A  A G )  and apply Lemma 3.l(b). As a result one has 
O!,F' E A c  and, since A * F' E r, O!,A E Ac, Together with the hypothesis 
0,A E A, this implies s > n, that is the statement. 

It remains to consider the case h = 1. In such a situation one can repeat the 
above arguments observing that the formulas Ak do not exist, that one has only one 
formula B E AC for which it happens that O!,B E Ac,  where s = rn(Ac,Qc) = 
I{Rc E SF(Ac) : A E Rc}[, and which forms only one formula D = A A B = F ,  and 

0 
D e f i n i t  i o n 3.10. Let F be a countable fragment of K:, , r an F-validity property, 

and C an F-consistency property compatible with I?. The model  canonically associated 
with F, r, C is the following Kripke model M = (W, R, P ) :  

(i) The set  W of worlds is the set W = ~ { { A c }  x w : r C A c  E Qc}; when 
misunderstandings cannot occur, we simply write the world (Ac,  i) as Ac. 

(ii) The accessibility relation R is defined as follows: 
(a) each set {A,} x w inherits the order of the second factor, so that it has an order 

of type w ;  
(b) let (Ac,  i )  and (Rc, j )  be two elements of W ;  we let (Ac ,  i) R (Rc, j )  for any 

i < w and j < rn(Ac,Qc),  when rn(Ac,Rc) # 0; if rn(Ac,Rc) = 0, it is 
intended that ( R c , j )  is not accessible from (Ac, i). 

that finally G = ' B .  The details are left to the reader. 
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(iii) The function P which determines the truth value of the atomic sentences is 
defined by P : X < w1 I-+ {A, : PA E Ac}  C P(W) .  

(M, Ac)  k PA means that PA E Ac, i.e. AC E P(X). The usual inductive definition 
allows the extension of the definition of I= to more complex formulas. To be explicit, 
if ) I )  < w1 and n E N, we let 

(M, A,) i= 4 iff (M,Ac)FA;  
(M, A,) k- V { A i  : i E I} 
(M, Ac) k- A { A i  : i E I} 
( M ,  Ac)  k OnA 

O b s e r v a t i o n  3.11. By the definition of the accessibility relation, AcRRc iff 
Qc E SF(Ac). 

P r o o f .  If Rc E SF(Ac), then we have rn(Ac,Rc) # 0, and this yields AcRRc.  
If AcRRc,  then there i s j  such that j E rn(Ac, Rc), and this implies rn(Ac,Rc) # 0, 

T h e o r e m  3.12. Let F be a countable fragment of K i l ,  I' an F-validity property, 
C an F-consistency property compatible with I', and M the model canonically associated 
with F ,  I' and C .  Let AC a world of this model. For any A E F ,  (M,Ac) b A i f f  
A E Ac.  

P r o o f  . By induction on the complexity of A .  If A is an atomic sentence belonging 
to F ,  then the statement holds by definition. If A = -B ,  A = V { A i  : i E I }  or 
A = A{Aj : i E I}, the statement is an easy consequence by the Observations 2.13, 
2.12 and 2.14. When A = O n B  one has 

iff l{w E W : AcRw and (M,w) k B}I > n 
iff I{Qc E SF(Ac) : (M, Qc) k B}I > n 
iff I{Rc E SF(Ac) : B E R c } ~  > n 

iff there exists i E I such that ( M ,  A,) t= Ai;  
iff for every i E I ,  (M, Ac)  I= A,;  
iff ~ { R C  E W : AC ROC and (M,Rc) k- A } (  > n. 

therefore Rc E SF(Ac). 0 

(M,Ac) 'F A (by definition of k) 
(by Observation 3.11) 

(by inductive hypothesis) 

Now we are able to prove the model existence theorem for C-consistent sets: 
T h e o r e m  3.13. Let F be a countable fragment of KEl, I' an F-validity property 

and C an F-consistency property compatible with r. Then every A E C is satisfiable. 
P r o o f .  Every C-consistent set A is, by Theorem 2.9, contained together with I' 

in a limit, which is in turn a world of the model canonically associated with the triple 
0 

iff O,B E Ac (by Theorem 3.9). 0 

F ,  I', C .  The statement follows at once from the preceding theorem. 

4 The completeness theorem for KL1 

First of all we display as, having a validity property I' for a countable fragment F ,  
one can define a I'-compatible consistency property for the same fragment. 

T h e  o r  e m  4.1. Let I' be a validity property for a countable fragment F of K i ,  . 
Then C = {A : A is a finite set of sentences of F and -AA $! I'} is a I'-compatible 
consistency property. 

P r o o f .  Preliminarily we observe that all the formulas we shall treat below are 
in the fragment. 

If A E C and R A ,  then r\A -+ l\R is a tautology and Q E C, i .e.  C satis- 
fies 2.5(i). 



An Infinitary Graded Modal Logic 563 

Turning to  condition 2.5(ii), we must prove that,  for any formula A E F and any 
A E C, we don't have A E A and -A E A .  Suppose, on the contrary, that A E A and 
-A E A.  Then {A, 'A} E C. That yields '(A A -A) $! r. This is a contradiction, 
because the formula '(A A 'A) is a tautology of the fragment. 

For condition 2.5(iii) we suppose that -A E A and prove that A U {A-} E C.  
Assume AU{A-}  $! C. Then -A{AU{AT}} E r, i.e. '(AAAAT) E I', from which 
one gets -IAA V -(AT) E I', AT -+ -AA E I?, - I A  -+ -AA E r. Moreover, since 
'A E A ,  we have /\A -+ -A E r and A -i TAA E I'. So TAA E r. This is a 
contradiction, because A E C,  i.e. 'AA $! I?. 

The proofs of the conditions 2.5(iv), 2.5(v) and 2.5(vii) are left to  the reader. 
Let us verify condition 2.5(vi). Assume O,"(Zo,. . . , Zr-1, V{Aj : i E I}) E A E C 

and there is no h E I such that A U {O,"(Zo,. . . , Zr-1, Ah A V{Aj : i E I}) E c .  
Then, for any h E I ,  -A(A U {O;(Zo,. . . , Zr-l, Ah A V{Ai : i E I})}) E r. So, for 
any h E I ,  /\A -+ -O,"(Zo,. . . , Zr-l,  Ah A V{Aj : i E I}) E r. Using rule CEC we 
obtain /\A -+ -O,"(Zo,. . . , Zr-l,  V{Aj : i E I}) E r. On the other hand, because of 

follows that -IAA E I': contradiction. 
The compability of r and C is immediately verified: If A E I' and A E C but 

A U {A} 6 C, then -A(A U {A}) E r and A -+ TAA E I?, so -AA E r, what implies 

O,"(Zo,. . . ,Zr- l ,V{Aj  : i E I}) E A ,  /\A -+ O,"(Zo,. . . , Z r - l , V { A j  : i E I}) E r. It 

A $! C: contradiction. 0 

Now we can prove the completeness theorem. 
T h e o r e m  4.2. For any formula A of K:l, t- A zff I= A. 
P r o o f .  We prove the hard direction that I= A implies I- A. Let F be a countable 

fragment of Ktl  containing A (that surely exists by Proposition 2.4). If I= A, then A 
belongs to  all validity properties for that fragment. Indeed, if not, there is a validity 
property r for F such that A $! r; let C be the r-compatible consistency property 
defined in Theorem 4.1; from A $! I' one gets -(-A) $! I', so {-A} E C; therefore, 
by Theorem 3.13, -A is satisfiable, what conflicts with our hypothesis I= A. Since 
the set of the theorems of the fragment is a validity property for F, we can conclude 
that t- A.  0 
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