
Math. Log. Quart. 45 (1999) 4, 471 - 480 

Mat hemat i cal Logic 
Quarterly 

@ WILEY-VCH Verlag Berlin GmbH 1999 

The Modality of Finite (Graded Modalities VII) 

Maurizio Fattorosi-Barnaba and Uliano Paolozzi Balestrini 

Universiti di Roma “La Sapienza” , Dipartimento di Matematica, 
Piazzale Aldo Moro 2, I - 00185 , Roma, Italy’) 

Abstract. We prove a completeness theorem for Kr, an extension of K by the operator 
Or that means “there exists a finite number of accessible worlds such that . . . is true”, 
plus suitable axioms to rule it. This i s  done by an application of the method of consistency 
properties for modal systems as in [4] with suitable adaptations. Despite no graded modality 
is invoked here, we consider this work as pertaining to that area both because Of is a definable 
operator in the graded infinitary system K& (see [4]), and because this idea was the original 
source for the development of graded modalities. 
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1 Introduction 

During one of the annual meetings in Siena, in the first eighties (maybe in 1982), 
R. MAGARI said (almost literally) that a logic can be considered mature when it can 
treat the finite. The first author then realized that modal logic, which he considered 
a well mature one, had not accomplished yet that task. A first result in this spirit, on 
the semantic side, arrived soon: in [2] F. BELLISSIMA and M. MIROLLI characterize 
any given finite Kripke frame by traditional means (it’s worth noting this line of 
research was carried on: see [l] so far). 

Contemporarily, and independently, the first author considered a syntactical way 
to  treat the finite in modal logic, by imagining a modality like Of to be read as “there 
exists a finite number of accessible worlds such that . . . is true”. It was soon apparent 
that  such a modality was a really intriguing one, being a mix of necessity (being 
empty is a way to be finite, for a set of accessible worlds!) and of an infinite number 
of degrees of possibility (having one element, having two elements, . . .). Furthermore 
i t  was easy to  build counterexamples to compactness, so to  forbid the use of such a 
classical tool as canonical models. 

Then, as a first attempt, he envisaged what he called ‘graded modalities’ as a 
kind of approximation of Of. At that time (1983) he had good reasons to believe 
this idea was entirely new (in the preceding ten years nothing similar appeared): 
later on he was made acquainted by W. VAN DER HOEK [7] that K .  FINE [5] and 
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D. KAPLAN [8] preceded him, but - rather surprisingly - both authors seemed to 
neglect a development of a so promising line of research. 

So a series of works by the first author and many of his pupils was published and 
a well structured theory grew: the main references are to be found in [4]. Eventually 
S. GRASSOTTI and himself studied in [4] an infinitary modal system, inside which Of 
could be defined in the obvious way, as a countable disjunction of graded operators. 
This was in a sense coherent with the general feeling that ‘the finite can be treated 
only by means which transcend it’. 

Nevertheless he thought that modal logic is so powerful and so mature (in the 
MAGARI’S sense) to allow a finitary treatment of the finite, in the strong sense of a 
system with formulas of finite length with a finite set of axioms. The present work 
describes how this challenge was accepted by the first author and another student of 
him (the second author), with success. 

We regret R. MAGARI is no more with us: we would have been glad to  offer this 
work to  him and we think he would have appreciated at  least this offer. All we can 
do now is to dedicate it to His memory and to  testify - once more - the fertility of 
His mathematical thought. 

2 The syntax and the semantics of Kf 

The language of Kf has the usual set of symbols: a countable set of atomic sentences, 
including a specific symbol for “false” (L), a basic set of connectives, the usual modal 
operator of possibility 0, and the new modal operator Of.  Formulas are defined in 
the usual way, so as the other connectives and the dual operators of the basic ones. 
The set of all the formulas of Kf will be denoted by Fml(Kf). 

The axioms of Kf are all instances of the following schemata: 
Ax. 1 classical tautologies; 
Ax.2 
Ax.3 
Ax.4 -OA -+ OfA; 
Ax.5 

O ( A  -+ B )  -+ ( U A  -+ 023); 

n(A -+ B )  ---t (OfB -+ OrA); 

OfA A OfB -+ Of(A V B ) .  
The basic rules of inference of Kf are the usual ones, i.e. modus ponens and necessi- 
tation. 

We may note that the first two axioms provide an axiomatization of K, while the 
other three ones are a list of the very basic properties of the finite (relatively to the 
set of the worlds which are accessible from a fixed one). 

As to semantics, the intended class of models of K is the whole class of all the 
Kripke models M = (W, R, V). The definition of truth is the standard one, plus the 
clause 

(M, w) I= OfA iff I{w’ E W : wRw’ and (M, w’) b A}] < w ,  

(M, w) ’F TOfA iff I{w’ E W : wRw’ and (M, w’ )  ’F A}I >_ w ,  

(M, w) I= o f A  iff I{w’ E W : wRw’ and (M, w‘) F A}f 2 w .  

so that 
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Obviously a soundness theorem holds for Kf.  On the contrary, compactness fails 
for Kf.  For the sake of readibility we recall that compactness here is intended as the 
following statement: given a set of formulas S, S is satisfiable (in a world of a model) 
iff every finite subset of S is satisfiable (in a world of a model). In fact, if we take a 
countable sequence B ,  Ao, A1, . . . of atomic formulas and define 

Co = B  A Ao, 
C1 = B A 7Ao A A l ,  

Cn=B A -Ao A -A1 A ' . .  A yAn-1 A An, 
. . .  

we see at  once that the set S = {OC, : n E N} U { O f B }  is not satisfiable while any 
of its finite subsets is. This is essentially known already (see e. g. [3] and [4]). 

Finally we want to stress that Kf (identified to the set of its theorems) can be 
thought of as a subsystem of KL1 (identified to  the set of its theorems), via the natural 
embedding which takes Of to  the definable modality Ofin of KL1 (see [4]). 

2 Consistency properties for Kf 

We introduce now the consistency properties for Kf (that will be the same as for K) 
in the style of [4] (i.e. of [6]). 

D e f i n i t  i o n 1. Let C be a non empty family of sets of sentences of Kf . The 
family C is a consistency property for Kf (from now on, simply called a consistency 
property) iff it is a consistency property for K (as in IS], but closed under subsets; see 
[6, Chap. 2, Lemma 5.4]), i.e. iff for any A E C and any formulas A, B of K f ,  the 
following conditions are satisfied: 
(0) if 52 C A ,  then 52 E C;  
(i) I$! A ,  and if A E A ,  then TA $! A ;  

(ii) if A A B E A, then A U {A} E C and A U { B }  E C; 
(iii) if A V B E A ,  then either A U { A }  E C or A U { B }  E C ;  
(iv) if A --* B E A ,  then A U {A} E C implies A U { B }  E C ;  
(v) if A ++ B E A ,  then A U {A} E C iff A U { B }  E C ;  
(vi) if OA E A ,  then A# U {A} E C ,  where 

A # = { A  : U A E A }  U {'A: Y O A E A } .  
The elements of C will be often called C-consistent sets and the maximal elements 

of C w. r .  t .  (if any) will be called C-maximal sets, or C-maximals, or simply 
maximals (when no ambiguity about C can arise). To stress a set of C as a C-maximal 
it will be indexed by C. The reader may have noted that in Definition 1 Of doesn't 
appear: as a matter of fact, the notion of a consistency property for K - but for sets 
of formulas of the language of Kf - suffices to do our job. 

D e f i n i t i o  n 2. Let r be a set of sentences of the language of Kf . A consistency 
property C is called I'-compatible if for any A E C and any A E r ,  A U {A} E C. 
When r = Th(Kf) (= the set of all the theorems of Kf)  we shall write Kf-compatible, 
or simply compatible, instead of Th(Kf)-compatible. 
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As an useful substitute of the axiom of choice we shall use here (as in [6]) the 
Teichmiiller-Tukey Lemma, which has to  do with families (of sets) of finite character. 
The reader who needs a memory’s refreshment about those topics can see e. g. [9]. 

As a matter of fact one can assume - without loss of generality - a consis- 
tency property is of finite character, also saving, if necessary, the r-compatibility 
(see [6, Chap. 2,  Prop. 5.61). In such a case the following theorem holds. 

T h e o r e m  1 (LINDENBAUM’S Lemma for C). Let C be a consistency property of 
finite character. For any C E C there exists (9 E C such that C C (9 and @ is maximal 
in C .  

P r o o f .  Let C E C and 3 = {A E Fml(Kf) : C U A E C}. We show that 3 is 
of finite character. Assume A E 3 and 0 Cf A (that is, 0 is a finite subset of A). 
Then 0 E 3, because C U 0 E C U A E C and C is closed under subsets. Vice versa 
let A be such that 0 E 3 for every 0 Cf A.  We show that A E 3. Now A E T iff 
C u A E C, and C is of finite character. Then C U A E C if for any A (If C U A 
one has A E C.  But if A cf C U A, then A Cf C U 0 for some 0 Cf A ,  so such that 
0 E 3. Then C U 0 E C and A E C, because C is closed under subsets. 

Then 3 is of finite character and not empty (0 E T ) ,  i. e. 7 has a maximal 
element A.  Therefore (9 = C U A is maximal in C: if C U A E C U A U 0 E C ,  

0 then A U 0 6 3, so A = A U 0. 
0 b s e r v a t i o n  1. The maximals are closed w. r. 2. Modus Ponens. 
P r o o f .  We have to  prove that if A E A c  and A + B E A c ,  then B E A c .  This 

0 

If C is a compatible consistency property and AC is a maximal of C, one has clearly 
Th(Kf) C A c .  This fact has important consequences: we prove, in this situation, 
that  the maximals have the main properties of the maximal consistent sets of the 
classical logic. 

0 b s e r  v a  t i o n  2. If C is a compatible consistency property, then A V B 6 AC 
if either A E A c  or B E A c .  

P r o o f .  The left-to-right implication is an immediate consequence of the maxi- 
mality of A c  and of Definition l(iii). As to the vice versa, let us note that A + AVB, 
B ---t A v B E Th(Kf) and, being Th(Kf) Ac,  the statement follows from Obser- 
vation 1. 0 

As a consequence we obtain that for any sentence A,  since A V T A  E Th(Kf), one 
has either A E AC or -A E A c ,  but not both (Definition l(i)). Therefore, 

0 b s e r v a t i o n  3. If C is a compatible consistency propedy and A is a sentence 
of Kf, then A E A c  E f f  1 A  4 A c .  

Finally, we have 
O b s e r v a t i o n  4. If C is a compatible consistency property and A A B is a 

sentence of Kf, then A A B E AC i f f A  E A c  and B E A c .  
P r o o f .  The left-to-right implication is an immediate consequence of the maxi- 

mality of A c  and of Definition l(ii). As to the vice versa, if A A B $ Ac, then 
’ ( A  A B )  E A c  (by Observation 3), so that -A V T B  E A c  (by compatibility) and 

13 

follows immediately from the maximality of A c  and Definition l(iv). 

the Observations 2 and 3 imply that either A 6 A c  or B 4 A c .  
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When a compatible consistency property is assumed to  be also of finite character, 

O b s e r v a t i o n  5. Let C be a Compatible consistency property off inite character 

P r o o f  . Let Fc be a maximal of C, extending A.  Since A A B E Fc, one has 
17 

a stronger version of clause (ii) of Definition 1 holds. 

and A A B a sentence of Kf. I f A  A B E A E C,  then A U { A ,  B }  E C. 

A ,  B E I'c (Observation 4), and A U { A ,  B }  E C ,  by closure under subsets. 

4 The restriction of a consistency property 

Here we introduce the key tool to  obtain our main results. Firstly we remember that a 
set Q of sentences of Kf is called closed under subformulas when, if B is a subformula 
of A E R ,  then also B E R.  

Fml(Kf). The restric- 
tion Cln of C to  $2 is the collection of the sets A n R, where A E C. Note that 

D e f i n i t i o n  3. Let C be a consistency property and R 

Cln 5 c. 
The following is the key result about restrictions of consistency properties. 
P r o p o s i t i o n  1. Let C be a consistency property and R a set of sentences closed 

under subformulas and deletion of negated diamonds ( i .  e. if 1 0 A  E R, then 7 A  E R ) .  
Then C(n is a consistency property. Furthermore if C is of finite character, the same 
holds for Cln. 

P r o o f .  For the first statement, let us verify clauses (0) - (vi) of Definition 1. 
(0) is trivial: if A C C E Cln G C, then A E C by Defintion l(o);  but A 5 R ,  so 

A E C(n . For ease of reference we stress the (quite trivial) fact which this argument 
is based on: 

(*) for every C E C ,  if C 
For (i), let C E Cln. If A,  7 A  E C, then { A , 7 A }  E C ;  contradiction with 

Definition l(i). Analogously, If C. 
For (ii), let A A B E C E C(n. Then, being A A B E C E C, one has, by 

Definition l(ii), C U { A }  E C and C U { B }  E C. On the other hand, C E R ,  
and A A B E R implies A ,  B E R (because of its closure under subformulas). So 
C U { A } ,  C U { B }  5 R and (*) gives the desired conclusion. 

Clauses (iii) - (v) are shown in a similar way, so we skip the detailed verifications. 
For (vi), let C E Cln and O A  E C. We have to  prove that C# U { A }  E Cln. Note 

Cl, then C E Cln. 

that ,  being R closed under subformulas, 

and the same is true for A (which is a subformula of a formula of C C R). But, 
from Cln E C it follows by Definition l(vi) that C# U { A }  E C. Then, by (*), 
C# U { A }  E Cln. 

Now we prove the second statement: restriction saves the finite character. What 
we have to prove is that if every finite subset of a set of sentences C belongs to Cia, 
then C E Cln. Since Cln G C, every finite subset of C, if it belongs to  CJn, then it 
belongs to  C. So, being C of finite character, C E C. To conclude that C E C(n it 
is enough (by (*)) to show that C c R. If A E C, then { A }  cf C and { A }  E C(n, 

C # = { B :  O B E C } U { 7 B :  7 O B E C } S Q ,  

i.e. there exists A E C such that { A }  = A n R,  hence A E Q. 
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as the set obtained by 
substituting in all the formulas of C every occurrence of the operators 0 and Of with 
an occurrence of the respectively equivalent ones 707 and 10fi. Finally define [C] 
as the closure under subformulas of C U z. Then [C] will be called the associated set 
of C. Obviously [C] is closed under deletion of negated diamonds. 

Def i , n i  t i o n  4. Let C be a set of sentences. We define 

5 The satisfiability theorem 

Let C be a compatible consistency property of finite character, R a set of sentences 
of Kf closed under subformulas and deletion of negated diamonds, Cln the restriction 
of C to  R,  and Acl, a maximal of its. We want to observe that Cln is not neces- 
sarily compatible (e. g. it is not such when R is finite). So we have to  reexamine the 
Observations 2 - 4. 

O b s e r v a t i o n  6 .  If A V B E R, then A V B E Acl, iff either A E A q ,  or 

P r o o f .  The left-to-right implication still holds, because it does not depend on 
compatibility. As to vice versa we show that if e. g. A E Acl,, then A V B E Acl,. 
Since Cln s C ,  we have A q ,  E C and, by Lindenbaum’s Lemma, there exists a 
maximal A c  that  extends it. By Observation 2, since A E A c  we have A V B E Ac.  
Therefore Acl, U { A  V B }  E C.  By hypothesis, A q ,  U { A  V B }  C $2, and this 
assures by (*) that A q ,  U { A  V B }  E C(n, and the maximality of A q ,  in Cln yields 

B E A,,,. 

A V B E &in. 0 

0 b s e r v a t i o n  7. I f A ,  1 A  E Q, then A E A q ,  # - A  4 A q , .  
P r o o f .  The left-to-right implication is a consequence of Definition l(i) and the 

fact that  C(n C_ C .  As to  vice versa, let us assume that A 4 A q ,  E C .  Since C is 
compatible, A q n  U { A  V ’ A }  E C, and either A q ,  U { A }  E C or A q ,  U { T A }  E C 
(by Definition l(iv)). But A q ,  U { A }  C R and A q ,  U { - A }  C R so that by (*) 
either A q n  U { A }  E Cln or Acl, U ( 7 A )  E C(n. The maximality of A q ,  in Cln 

O b s e r v a t i o n 8 .  I f A A  B E R, then A A  B E A q n  ajJA E Acl, a n d B  E A+. 
P r o o f .  Since A ,  B E 52, A q ,  U { A }  C R and A q ,  U { B }  E 0. Then the 

left-to-right implication is an immediate consequence of Definition l(ii), (*), and the 
maximality of Ac~, .  As to vice versa, let us assume that A ,  B E Acln E C.  Then 
there exists a maximal Qrc that extends A q , .  So A ,  B E Qrc and, by Observation 4, 
A A B E Qrc. Furthermore Acl, U { A  A B }  C 9c which yields Acl, U { A  A B }  E C. 
On the other hand, A q ,  U { A  A B }  C R ,  and thus, by (*), A q n  U { A  A B }  E Cln, 

0 

0 b s e r  v a t  i o n  9. If A ,  B E R, A E Acl, and A 4 B E Th(Kf), then B E Aq, .  
P r o o f .  We know that A q n  E C ,  and by the compatibility of C we obtain that 

A’ = A q ,  U { A  ---* B }  E C.  Furthermore A’ U { A }  = A’ E C and Definition l(iv) 
implies Aq,  U { B }  E C.  Since Acl, U { B }  & R, we have by (*) A q ,  U { B }  E Cln 

0 

We can now prove the satisfiability theorem. In what follows ‘countable’ means 

implies that  either A E Acl, or -A E A+,  so 1 A  E A q , .  0 

and by maximality A A B E Aq,. 

and the maximality of A+ assures that B E Aq, .  

‘either finite or denumerable’. 
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T h e  o r e m  2. Let C be a compatible consistency property of finite character and 
let C be a finite set belonging to C and [C] its associated set. Consider the consis- 
tency property cl [~]  and a maximal set E C~[CI. Then there exists a corresponding 
countable family r of maximal sets in Cl[~l such that 

(a) if OA E r, then A belongs to every set of F; 
(b) if - 0 f B  E I', then there exists a denumerable subfamily of i? such that every of 

(c) for every formula OA E [C], OA E I' i f  I{r' E F  : A E P}l # 0; 
(d) f O T  every formula OfA E [C], OfA E r i f l  I{r' E 

its elements contains B ;  

: A E r'}I < w .  

P r o o f  . Since C is finite, so is also [C]; then the same is true for Clp] and any of 
its elements. We divide the proof in three steps. 

S t e p  1. Let us consider the (finite) set of the formulas A such that OA E r 
and the CIpl-consistent sets ra = I'# U { A } .  These can be extended to  Clpl- 
consistent maximal sets F A ,  which exist by Lindenbaum's lemma, because Clp] is of 
finite character (Proposition 1). 

S t e p  2. Now we consider the (finite) set of the formulas B such that O f l B  E r. 
We choose such a B and show that the set A = I'# U { B }  u {'A : OfA E r} 
belongs to CJ[,q. Note that if OfA E [C], then i 0 p A  E [El, so that -A E [C] 
and A c [C]. We have to show that A E C (see (*)). Since I' E C, there exists a 
maximal I'c of C that contains it. We prove that O(B A A{-A : OfA E I?}) E rc. 
Let D = B A A{-A : OfA E I'} and suppose OD $! rc. This implies 1 O D  E rc. 
Since C is compatible, O i D  E rc and O ( B  + V{A : OfA E r}) E I'c, i.e. 
Of V{A : OrA E r} -, OfB E I'c, -OrB -, -OfV{A : OfA E r} E rc, and 
0,-B + -OfV{A : OfA E I'} E rc. By modus ponens (Observation 1) we obtain 
l O f V { A  : OfA E I'} E I'c and V{TOfA : OfA E I'} E rc, what is contradictory. 
Thus O ( B  A A{iA : OfA E r}) E I'c, SO that I?,# U { B  A A{iA : OfA E I?}} E C 
and, by Observation 5, I',# U { B }  U {'A : OfA E r} E C. Since I'# c r,# and C 
is closed under subsets, we have A = r# u { B }  U {'A : OfA E r} E C. Now we 
extend A to  a set I'B which is a maximal in Clp], and we take a denumerable family 
of copies of I'B. 

S t e p  3. Let us define F as the family of all the C([-q-maximaIs, obtained as in 
- Steps 1 and 2 from the formulas of the set {A : OA E r} u { B  : O f l B  E r}. Clearly 
I' is a countable set. We verify that r satisfies the clauses (a) - (d) of the statement. 

(a) is true by definition: if OA E I', then A belongs to  I'#, so also to any of the 
sets of formulas from which r is made up. 

(b) is true by Step 2: if TOfB E r ,  then, since TOfB -+ 0f-B E Th(Kf) and 
r E C ,  one has (by compatibility) U { i O f B  + 0,-B} E C ;  by the finite character 
of C, this set is included in a C-maximal I'c and this is closed w. r. t .  modus ponens, 
so that r u {nfd?} C rc and, by closure under subsets, r u ( O f 4 3 )  E C. Now, 
if TOfB E [El, then i - O p B  E [C], so that O f i B  E [C]. We can conclude that 
I' U { O f - B }  E Clpj. Since I' is maximal in Clp], we have O f l B  E r. So B belongs 
to  rr, and to  any of its copies in r (being a denumerable family). 

(c) Let OA E [C]. If OA E I?, by Step 1 it is clear that I{P E r : A E r'}l # 0. 
Now suppose that OA 6 r. Note that OA E [C] implies 10 -A E [C] and 0-A E [El. 
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Since C is a compatible consistency property, either J? U {OA} E C or I? u { TOA} E C, 
i.e. either U {OA}  E C or r U {OTA} E C. Now both OA and 0-A belong to  [C]. 
Since I? is a maximal of Clp], one has either OA E r or O-IA E r. Then O l A  E I' 
and, for any I" E r, TA E r' (by (a)). So [{I? E 'T : A E I"}( # 0. 

(d) First of all let us suppose that OfA E r. If it were \{I?' E : A E r'}( = w ,  
then A would belong to  one of the P ' s  of Step 2,  but by the definition of those sets, 
7 A  E I". Contradiction. As to  the vice versa, let !{I' E : A E I?'}[ < w .  Suppose 
that OfA 4 r. Arguing as in (c), 0,-A E r ,  so that ({I' E : A E I"}( = w (Step 2). 
Contradiction. Therefore, OfA E I'. 0 

Now we are able to  prove the Model Existence Theorem for finite C-consistent 
sets. 

T h e  o r e  m 3. Let C be a compatible consistency property of finite character, and 
let C be a finite set of formulas belonging t o  C. Then there exists a model M and a 
world r in A4 such that r k  C. 

P r o o f .  Let C be as in the statement, and let [C] be its associated set. We apply 
Theorem 2. Obviously C E C(pl. Let ro be a maximal of Cl[c] containing C. Keeping 
the notation from Theorem 2, let us define 

a. = {r,,}, . . . ,  a,,+1 = u{r : r E a,,}, . . .  
and 

w = i,j{an : n < w ) .  

The set W is countable and it may be indexed by a countable set I: W = {Ti : i E I } ,  
where r; # r k  if i # k ( 2 ,  k E I ) .  Now we define a binary relation in W by I', R I ' k  

iff r k  E E. The valuation function is so defined that for any I' E W and any atomic 
sentence Pn E [C], V ( r ,  P,,) = 1 iff P,, E r. So we have a model M = (W, R, V ) ,  and 
we want to  show that for any I' E W and A E [C], 
(+) V(I',A) = 1 iff A E ~ .  
The proof of (+) is by induction on the complexity of A E [C]. 

(i) If A = Pn E [C], (+) is true by definition. 
(ii) Let A = 1 B  E [C]. By Observation 7, 4 3  E r iff B 4 I' iff (by induction), 

V ( r ,  B )  = 0 iff V ( r ,  T B )  = 1. 
(iii) Let A = B A C E [C]. By Observation 8, B A C E r iff B,  C E r iff (by 

induction) V ( r ,  B )  = V(r,  C) = 1 iff V ( r ,  B A C) = 1. Analogously one concludes 
for the other Boolean connectives. 

(iv) Let A = OB E [C]. By Theorem 2, 
O B E ~  iff ( { I " E W :  I ' ' E ~ a n d B E r ' ) ( # O  

iff I{r' E W : rRr' and V ( P ,  B )  = 1}1 # 0 (by induction) 
iff V ( r ,  O B )  = 1. 

(v) Let A = OfB E [C]. By Theorem 2 again, 
O f B  E I' iff I{r' E W : r' E 'Tand B E P}( < w 

iff I{r' E W : I'Rr' and V(I'', B )  = 1}( < w (by induction) 
iff V ( r ,  OfB) = 1. 

So C is true in ro E W and the proof is complete. 0 
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6 The completeness theorem for Kf 

We are almost ready to  prove the completeness of Kf. First note the following propo- 
sition. 

P r o p o s i t i o n  2. Let C =  {A E Fml(Kf) : A is a consistent set ( i n  Kf)}. Then 
C is a compatible consistency property of finite character. 

P r o o f  . Let us examine the features that define a consistency property. 
(0) and (i) are obviously true. 
(ii) Let A A B E A E C and suppose that A U { A }  $ C. Then there exists 

a A' A such that A -+ 1 A A l  E Th(Kf), so that A I- -AA'. Contradiction. 
Therefore, A U { A }  E C .  By replacing A with B ,  the same argument shows that 

(iii) Suppose A V B E A E C, but A U { A }  $! C and A U { B }  $! C. Then there 
exist two finite subsets A' and A" of A such that A -+ 7 A A' and B -+ 1 A A" are 
provable in Kf.  Then the same holds for A V B + -(AAl A A A"). So one has 
A I- -(A A' A A A"), where A' U A" Cf A. Contradiction. 

A u { B }  E C .  

(iv) and (v) may be analogously verified: we skip the details. 
(vi) If OA E A E C and A# U { A }  $! C ,  then there are B1,. . . , B,, (31,. . . , C, 

such that {OBI  , . . . , OB,, lOC1,. . . , 70Cm} E A and 

~ A ( { ~ ~ , . . . , ~ , , ~ C I , . . . , ~ C , }  U { A } )  E Th(Kf). 
so 

A{BI,.  . . , Bn, ~ C I , .  . . , 1Cm} + 7 A  E Th(Kf),  
0 A{Bi ,  . . . , B,, 4 ' 1 ,  . . . , 7Cm} -+ o l A  E Th(Kf),  
A(UB1,.  . . , OB,, n~C1, .  . . , O+&} + 7 O A  E Th(Kf),  
O A  ---* 7 / \{OBI,.  . . , OB,, loci,. . . , 70Cm} E Th(Kf). 

So A I- 7 / \{OBI,  . . . , OB,, T O C ~ ,  . , . , iOC,}. Contradiction. 
The finite character of C is obvious. 
As to  compatibility, let A E Th(Kf), A E C ,  but A U { A }  fL C. Then there 

exists A' Cf A such that -A(A' U { A } )  E Th(Kf),  so A -+ - A A '  E Th(Kf),  
7 A A' E Th(Kf) and A $! C. Contradiction. 0 

Now we can prove the completeness of Kf. 
T h e o r  e m  4. For any  sentence A of Kf, if k A,  then I- A .  
P r o o f .  If Y A ,  then { i A }  is C-consistent, C being the consistency property of 

Proposition 2. Since { l A }  is a finite set of C, by Theorem 3, A is satisfied in a world 
0 of a (countable) model. Therefore, F A .  

7 Final remarks 

R e m a r k  1.  As noted before, Kf can be considered (up to  the obvious embedding: 
see before) as a subsystem of KZl and shares its class of models, i.e. the class of all 
Kripke models. In this respect, the completeness theorem for Kf shows that K t l  is a 
conservative extension of Kf . 
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R e m a r k  2. Kf does not have the finite model property, i.e. it is not complete 
w. r. t .  the class of its finite models. In fact, if it were so, then every formula in the 
language of K f ,  valid in every finite Kripke model, would have to  be valid in every 
Kripke model, which is obviously false (witness is e. g. the formula OfT). 
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