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This paper focuses on two highly publicized formal trade-offs in the field of responsible artificial

intelligence (AI)—between predictive accuracy and fairness and between predictive accuracy and

interpretability. These formal trade-offs are often taken by researchers, practitioners, and policy-

makers to directly imply corresponding tensions between underlying values. Thus interpreted,

the trade-offs have formed a core focus of normative engagement in AI governance, accompanied

by a particular division of labor along disciplinary lines. This paper argues against this prevalent

interpretation by drawing attention to three sets of considerations that are critical for bridging

the gap between these formal trade-offs and their practical impacts on relevant values. I show

how neglecting these considerations can distort our normative deliberations, and result in costly

and misaligned interventions and justifications. Taken together, these considerations form a

sociotechnical framework that could guide those involved in AI governance to assess how, in many

cases, we can and should have higher aspirations than the prevalent interpretation of the trade-offs

would suggest. I end by drawing out the normative opportunities and challenges that emerge

out of these considerations, and highlighting the imperative of interdisciplinary collaboration in

fostering responsible AI.

1 INTRODUCTION

Our aims and values are diverse and many. So, unsurprisingly, in many cases we can’t

have them all, as interventions that realize some will sacrifice others. In contending

with this reality, we thus regularly face difficult questions about value trade-offs. Formal

analyses of decision scenarios can offer valuable assistance in our deliberations about

these questions. These analyses can provide decision-makers with a precise perspective for

identifying when their values (suitably operationalized) come into conflict, and assessing

different ways of navigating those tensions. When used appropriately, incorporating these

formal perspectives into practical reasoning promises to bring discipline and rigor to our

deliberations.
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This paper focuses on two highly publicized formal trade-offs in the field of responsible

artificial intelligence (AI)—between predictive accuracy and fairness and between predictive
accuracy and interpretability. Ideally, the adoption of AI tools in social decision-making

should enhance decision quality in a way that promotes societal values such as relia-

bility, fairness, transparency, trust, and safety. As the two trade-offs purport to show,

however, it may be inherently impossible for AI models to simultaneously promote formal

operationalizations of all these relevant values in the general case. Ensuring fairness (in

some statistical sense) might necessitate relinquishing the opportunity of deploying more

predictively accurate models (Corbett-Davies et al. 2017; Kleinberg 2018). Similarly, the

most accurate models might be “blackboxes” that lack interpretability (in some sense),

whose deployment can threaten values that interpretability is said to support, such as

trust, safety, or procedural fairness (Molnar 2022; Murdoch et al. 2019).

As policymakers seek to better understand value tensions that can emerge in responsible

AI governance,
1
these formal trade-offs have become a core locus of normative and policy

engagement (Babic et al. 2021; Fazelpour and Danks 2021; Fleisher 2022; Johnson 2021;

Kearns and Roth 2019; Loi and Christen 2021; London 2019; Rudin 2019; Tabassi 2023). But,

questions remain as to how we should interpret the value implications of these trade-offs.

As I explain in Section 2, at a high level of abstraction, both trade-offs can be seen as

potential upshots of learning AI models under constraints that encode desiderata other

than maximizing predictive accuracy. While relevant to our practical reasoning, there is

a gap between these model properties and the impacts of adopting those models on the

relevant values. How should we understand the relation between these formal trade-offs,

on the one hand, and the interrelation between underlying societal values, on the other?

A prevalent attitude towards this question is to reason as if there is a direct correspon-
dence here. In normative literature, this attitude often involves a two-fold process: first,

assuming that, given the formal trade-offs, there also exists a tension between corre-

sponding values; second, offering justifications or mechanisms for some way of resolving

the value tension, and assuming that it has direct implications for choosing models that

1
See for example the National Institute of Standard and Technology’s influential AI risk management

framework, and the roadmap for its development, including “Guidance on the tradeoffs and relationships that

may exist among trustworthiness characteristics”: https://www.nist.gov/itl/ai-risk-management-framework/

roadmap-nist-artificial-intelligence-risk-management-framework-ai.
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(supposedly) prioritize the relevant values. Babic et al. (2021), for example, suggest that

while in some healthcare scenarios (e.g., diagnosis) accuracy may take precedence, in

other cases (e.g., allocating scarce resources) transparency—seen as a means to procedural

fairness—should take priority. Taking this to have direct implications for model selection,

they note that “in such contexts, even if interpretable AI/ML is less accurate, we may

prefer to trade off some accuracy, the price we pay for procedural fairness” (Babic et al.

2021, p. 286). A similar approach pervades other discussions of the trade-offs (Loi and

Christen 2021; London 2019; Rahwan 2018). In the reverse direction, many technical

works seek to provide a set of suitable models, each exhibiting a different way of striking

the trade-off (Kearns and Roth 2019; Molnar 2022), from which stakeholders can choose

based on their values and priorities. In this way, this prevalent attitude also involves a

convenient division of labor, across disciplinary lines.

In this paper, I argue against this attitude. As emphasized by an emerging body of work,

understanding the social impacts of AI requires adopting a sociotechnical perspective that
encompasses not only the properties of AI models in isolation, but also those of the techno-

logical, psychological, and social processes that critically shape the design, development,

and deployment of those models (Selbst et al. 2019; Suresh and Guttag 2019). In Section 3,

I will show how adopting this sociotechnical perspective complicates the translation of

formal model trade-offs into interrelations between values. Specifically, I integrate and

thematize different strands of emerging research into three sets of considerations that are

critical for interpreting the practical significance of the model-level trade-offs: considera-

tions of validity and instrumental relevance (Section 3.1), compositionality (Section 3.2),

and dynamics (Section 3.3).

Taken together, these considerations form a sociotechnical framework that could be

adopted by those involved in the evaluation, design, and governance of AI-based decision

systems. I draw out these broader epistemic, ethical, and policy implications in Section 4.

To be sure, attending to these issues does not obviate the need for navigating various

value tensions. In fact, as I also discuss in Section 4, doing so brings into focus new

trade-offs and tensions. Nor does it mean that existing normative discussions about these

two formal trade-offs are not highly valuable. What these considerations demonstrate is

that the relation between formal model-level properties (e.g., model-level predictive loss)

and the corresponding values (e.g., decisional accuracy) is not a straightforward one, and
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involves many assumptions. Importantly, closely examining these assumptions reveals

that sometimes sacrificing one formal property for another at the model level can improve

both values at the practical level. That is, in many cases, we can and should have higher

aspirations than the direct correspondence interpretation would suggest. Importantly,

however, taking advantage of these possibilities requires that we broaden the scope of

normative engagement with AI technologies and better appreciate the critical importance

of interdisciplinary collaboration in fostering responsible AI.

2 TRADE-OFFS IN AI-BASED DECISION-MAKING

This section provides the intuition behind the accuracy-fairness and accuracy-interpretability

trade-offs and motivates the need for scrutinizing their interpretation in research and

policy discussions. It is worth noting that discussions of both trade-offs predate recent AI

and ML applications. The accuracy-fairness trade-off, for example, has been discussed in

economics (Young 1994) and education (Willingham and Cole 2013). And the accuracy-

interpretability trade-off has been discussed by statisticians (Plate 1999).

2.1 Prediction-based decision-making

Let us ground the discussion using a typical binary classification task, where we hope to

learn the relation between a set of input features 𝑋 and a target label 𝑌 , with supports

X and Y = {0, 1}, respectively. With this relation in hand, given a feature vector 𝑥 ∈ X,

we can then infer the corresponding label 𝑦 ∈ {0, 1}, and use this prediction to inform or

drive a relevant decision. In the context of informing content moderation decisions, for

example, 𝑋 and 𝑌 might correspond to information about social media posts including

their metadata and a label indicating whether they contain offensive language, respectively.

Supervised learning algorithms help us do this by providing a mapping from datasets

of past observations to predictive models (or hypotheses) that can be used to make

inferences about new cases. That is, given a dataset of labeled examples, such algorithms

output a predictive model ℎ : X → {0, 1}, from a set of possible predictive models H .

Typically, these algorithms are designed to find a model ℎ∗ ∈ H that optimizes predictive

performance according to some evaluation function, such as minimizing a loss function

like empirical risk
ˆL:

ℎ∗ = argminℎ∈H
ˆL(ℎ)

4



In practice, there is often a multiplicity of models that perform comparably with respect

to this optimization objective (Coston et al. 2021; D’Amour 2021; Marx et al. 2020). Let us

refer to these as the set of accurate models, H𝐴, which, at their worst, only exhibit 𝜖 more

loss than our best predictive case
ˆL(ℎ∗)2:

H𝐴 := {ℎ ∈ H :
ˆL(ℎ) ≤ ˆL(ℎ∗) + 𝜖}

With this notations in hand, we can get an intuition about the trade-offs by considering

the act of enforcing fairness or interpretability as an intervention that imposes a non-trivial

constraint on the set of available predictive models, and in doing so potentially restricts
our access to only a subset of eligible models inH that may not intersect withH𝐴 (see

Figure 1a).

Of course, there can also be models that do satisfy these additional formal constraints,

without thereby suffering in predictive accuracy. This is because, despite exhibiting

similar predictive performance, the solutions in the set of accurate models, H𝐴, can have

significantly different characteristics when it comes to fairness (Coston et al. 2021; De-

Arteaga et al. 2022) and interpretability (D’Amour et al. 2020a; Semenova et al. 2019),

formally construed. Accordingly, it would be a mistake to assume a priori that there will
in fact be a cost to enforcing fairness- or interpretability-motivated constraints (See also

Rodolfa et al. 2021; Rudin 2019). An exciting avenue of current research is build on existing

transparency documentation tools, such as model cards (Mitchell et al. 2019), to better

inform regulators and auditors about the potential normative significance of the models

within the set of accurate models (See Black et al. 2022; Coston et al. 2021). That said,

let us examine in more detail how demands for fairness and interpretability have been

formulated as enforcing constraints on learning.
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(a) (b) (c)

Fig. 1. Figure (a) represents a characterization of the two trade-offs in terms of a possible relation
in the hypothesis space H between the set of accurate models H𝐴 and the set of models that
satisfy a fairness constraintH𝐹 . The figure is inspired by Figure 1 in Dziugaite et al. (2020). (b)
This figure, adapted from Kearns and Roth (2019), offers a toy illustration of the accuracy-fairness
Pareto frontier, while Figure (c), adapted from Gunning et al. (2019) (itself adapted from DARPA
XAI presentation) offers a widely shared illustration of the accuracy-interpretability trade-off.

2.2 Fairness as a constraint

The concern about accuracy-fairness trade-off most naturally arises when we focus on the

properties of predictive models (Corbett-Davies et al. 2017; Kearns and Roth 2019). Even

given this relatively restrictive lens, there is considerable debate about the appropriate

formalization of fairness in terms of model properties (Barocas et al. 2019; Chouldechova

2017; Corbett-Davies et al. 2017). We can largely sidestep these disagreements, however,

because in practice many proposed fairness measures can be formulated as non-trivial

parity constraints on the joint distribution 𝑝 (𝑋,𝑌,𝑌,𝐴), where 𝐴 denotes membership

in a protected group and 𝑌 = ℎ(𝑋 ) denotes model predictions (Barocas et al. 2019;

Fazelpour and Lipton 2020). For example, according to some, fairness might demand that

the chosen predictive model exhibit equal sensitivity across different demographic groups

(i.e., 𝑝 (𝑌 = 1 | 𝑌 = 1, 𝐴 = 𝑎) = 𝑝 (𝑌 = 1 | 𝑌 = 1, 𝐴 = 𝑎′)) (Hardt et al. 2016).

2
This formulation is helpful because it leaves it open how many solutions there exists to the optimization

problem, which can be more than one even when 𝜖 = 0. As Marx et al. (2020) note, the choice of small 𝜖

can be perfectly justifiable, as small differences in training error, of the sort captured by the empirical risk

function
ˆL(ℎ), does not necessarily correlate with significant performance differences in deployment (See

also D’Amour et al. 2020a).
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Achieving “fairness”, from this perspective, requires enforcing the relevant parity con-

straint(s) (Corbett-Davies et al. 2017). This might be done, for example, by adding fairness

considerations as constraints in optimization (e.g., Zafar et al. 2017), or as penalty terms

incorporated in the optimization objective (e.g., Kamishima et al. 2011). Roughly speak-

ing, many of these algorithmic manipulations have the effect of restricting the choice

of predictive models to a subset of possible predictive models that satisfy the relevant

parity constraint(s)H𝐹 ⊆ H . This act of constraining model choice might come with a

predictive cost, however, insofar as the best predictive models in this restricted space of

“fair” modelsH𝐹 , at best, only equal the predictive performance of the models from the

broader hypothesis classH . That is,

SinceH𝐹 ⊆ H , then min

ℎ∈H𝐹

ˆL(ℎ) ≥ min

ℎ∈H
ˆL(ℎ)

Put in terms of the set of accurate models, there might be a predictive “cost” to enforcing

fairness-related parity constraints in thatH𝐹 may not include any of the accurate models:

H𝐴 ∩H𝐹 = ∅. In such cases, enforcing those constraints will result in drops in accuracy.

2.3 Interpretability as a constraint

While widely discussed in research and policy literature, the trade-off between accuracy

and model interpretability (transparency, explainability, or other cognates) is more cir-

cuitous with respect to its technical underpinnings as well as the potential value tensions

it supposedly signifies. The trade-off is less straightforward in terms of value tensions

because “interpretability” is typically not sought as an end in itself. Rather, its value is

often tied to a varied set of goals, such as increased understanding, enhancing user trust

and decision support quality, improving deployment performance and safety, fostering

autonomy and procedural fairness, and ensuring public accountability (Creel 2020; Fleisher

2022; Jobin et al. 2019; Krishnan 2020; Lipton 2018; Murdoch et al. 2019; Vredenburgh

2021).

Even when we assume model interpretability (in some sense) is the requisite means for

achieving (some of) those aims, there are substantial disagreements about what precise

properties would render a model “interpretable” in the relevant sense (Krishnan 2020;

Lipton 2018). Once more, though, we can sidestep these more specific disagreements by
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broadly characterizing “interpretability” as a non-trivial constraint, whose enforcement

will restrict one’s search (or learning) to a subset of predictive models H𝐼 ⊆ H judged

to satisfy that constraint (Dziugaite et al. 2020). This broad characterization captures

various attempts to interpret “interpretability” in terms of some well-defined technical

notion (low model complexity, variable decomposability, ...), without committing to one

operationalization, which might be contested. It also captures some of the so-called post-

hoc explainability methods that seek to render blackbox models interpretable, insofar

as those methods may depend on restrictions toH , whether by being model-specific by

design or by depending on certain properties of target models for their proper functioning

in practice (Murdoch et al. 2019). Given this characterization, the accuracy-interpretability

trade-off can again be seen as an upshot of enforcing a non-trivial constraint on learning—

namely, “interpretability”, whatever it might imply. Thus viewed, enforcing interpretability

can result in a loss in predictive accuracy, whenH𝐴 ∩H𝐼 = ∅. In such cases, one could

quantify (in context) the “price” of interpretability in terms of the incurred loss of predictive

accuracy (Bertsimas et al. 2019).

To capture this framing, in what follows we adopt a general understanding of the

accuracy-interpretability trade-off that nonetheless tends to be operative in technical,

philosophical and policy discussions: cases where we might need to sacrifice predictive

accuracy to make gains in understanding of model behavior (broadly construed), in order

to promote one of the aims for which interpretability, explainability, or transparency is

taken to be a means (see, e.g., Fleisher 2022; Miller 2019).

2.4 Direct correspondence and a convenient division of labor

How should we understand the relation between the formal properties (and trade-offs)

of AI models and the (potentially varied) impacts of deploying those models on corre-

sponding values? As mentioned above, a prevalent interpretation of the trade-offs is

to proceed as if there is a direct correspondence between these two. Importantly, this

prevalent interpretation suggests a straightforward division of labor between technical

and normative efforts.
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On the technical side, for example, Kearns and Roth (2019) see the role of formal tools

as providing guidance for normative deliberation by mapping the accuracy-“fairness”
3

Pareto frontier—consisting of the set of models that cannot be improved in terms of one

of these formal measures without incurring a loss on the other (see Figure 1b). Within

this framing, normative deliberation has its place in choosing a specific model, depending

on the contextually relevant values and priorities. Similarly, other works aim to provide

guidance about how decision-makers, once they have decided that some sacrifice in

predictive accuracy is justified, might go about choosing an appropriate “interpretable”

model (e.g., Molnar 2022) (see also Figure 1c). Conversely, many philosophical and policy

discussions simply take it for granted that the formal trade-offs imply the existence of

tensions between underlying values. And, they see their task as providing means of

resolving those tensions, perhaps by offering justifications for when, why, or to what

extent some value should be prioritized (Babic et al. 2019; Loi and Christen 2021; London

2019), or by proposing participatory mechanisms for making such determinations (Lee

et al. 2019; Rahwan 2018).

We now turn to the different considerations that complicate this picture, discussing the

broader implications of this change of perspective for this understanding of the division

of labor in Section 4.

3 A SOCIOTECHNICAL PERSPECTIVE ON INTERPRETING THE TRADE-OFFS

Useful as it might be for motivating the discussion of the formal trade-offs, the charac-

terization of AI-based decision-making in the previous section involves significant, and

potentially problematic simplifications. Specifically, researchers have argued against fram-

ing the value implications of AI models solely in terms of model properties, in isolation

from their context of development and use (Fazelpour and Lipton 2020; Herington 2020;

Raji et al. 2022; Selbst et al. 2019; Suresh and Guttag 2019). Instead, there have been calls

for adopting a sociotechnical perspective that encompasses not only the properties of

AI models, but also other technical, psychological, organizational, and social factors that

shape the life-cycle of AI-based decision systems, and ultimately their societal impacts.

In this section, I approach the trade-offs from this perspective, discussing three sets of

3
Or more accurately, fairness-motivated statistical parity
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considerations that are required for bridging the gap between the formal, model-level

trade-offs described above and their practical value impacts. As we will see, in each case,

attending to these considerations reveals that we can have things better than the formal

trade-offs might have us expect.

3.1 Validity and relevance

Trade-offs between two formal constructs (e.g., some measure of accuracy and fairness)

have the purported normative implications, only if those constructs aptly track our

values. But this assumption can fail, when invalid operationalization, measurement, and

estimation procedures and practices result in disconnects between formal constructs and

the epistemic, ethical, or legal aims and values that those constructs are supposed to

capture.

Consider first the notion of “predictive accuracy”, which is implicated in both trade-offs.

In many prediction-based decision settings, institutions care about inferring outcomes

that are ambiguous, latent, and contested, such as being a patient with “severe healthcare

needs” (Obermeyer et al. 2019), a child “at risk” (Saxena et al. 2020), or a tweet containing

“hate speech” (Waseem 2016). Let us refer to this outcome that we practically care about

as 𝑌𝑐 . Rendering 𝑌𝑐 suitable for machine learning application often requires selecting a

simplified and unambiguously measurable proxy outcome, 𝑌 . This is not a trivial task,

and often involves various value judgments. In practice, 𝑌 might not be a valid proxy for

𝑌𝑐 for a variety of reasons, ranging from lack of construct validity in operationalization to

challenges of bias and validity in measurement, estimation, and aggregation (De-Arteaga

et al. 2018; Fazelpour and Danks 2021; Jacobs and Wallach 2021; Kleinberg et al. 2018a).

Importantly, for our purposes, the accuracy-fairness trade-off can arise when the extent

of the disconnect between 𝑌 and 𝑌𝑐 is not evenly distributed across the population of

interest (De-Arteaga et al. 2022).
4
That is, when 𝑌 exhibits differential validity across

groups, optimizing for predictive accuracy can undermine some fairness-motivated parity

constraints (and vice versa). In a salient example of such differential validity in healthcare,

the disconnect between a patient’s “healthcare need” and its operationalization in terms

4
Intuitively, this can be thought of as potentially resulting in a statistical dependence between 𝑌 and

some protected attribute 𝐴 not because one exists in reality, but as a result of differential validity in our

categorization and data collection practices.
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of “healthcare expenditure” particularly harmed Black patients, for whom expenditure

was particularly an unreliable proxy due to a variety of factors including justice-related

ones (Obermeyer et al. 2019). Similar issues arise when our measurement, estimation, and

aggregation techniques exhibit differential validity across protected groups (Coston et al.

2023; Jacobs and Wallach 2021).
5

In such cases, it would be a serious error to take the accuracy-fairness trade-off as

an inescapable fact and to focus our deliberative efforts simply on selecting among the

set of Pareto optimal solutions. Instead, we need to address the underlying issue of

differential validity by adopting better sociotechnical practices in problem formulation,

operationalization, and data collection (Hellman 2020; Kleinberg et al. 2018b; Obermeyer

et al. 2019). Taking the trade-off at face value not only obscures the underlying epistemic-

ethical problems; doing so also prevents us from recognizing that we can have things

better than the formal trade-offs lead us to think.

Similar validity concerns arise for formal notions of“interpretability”. Currently, there

exists a considerable disconnect between the underlying values for which “interpretability”

is sought (e.g., trust, improved decision quality, safety, recourse, ...) and the technical op-

erationalizations of the term (e.g., in terms of model complexity, variable decomposability,

model type, ...) (Krishnan 2020; Lipton 2018). Indeed, in some cases, formal operational-

izations appear to undermine the very values they are meant to support, such as when

individuals lose their trust in algorithmic predictions upon seeing that they originated

from a simple decision tree, whose lack of complexity was meant to invite user trust (Lu

et al. 2019). When a measure of “interpretability” lacks validity in this sense, it is unclear

why we would want it, especially if attaining it comes at a cost to predictive accuracy.

What is more, even if interpretability (in some sense) is a means to those underlying

values, it may not be the only, or even the most effective, means in context. In healthcare

settings, for example, London (2019) proposes a number of alternative, potentially less

costly pathways for achieving some of the aims for which interpretability is sought (see

also Krishnan 2020).

This is, of course, not to say that interpretability—in the broader sense defined in

Section 2.3 and suitably specified—is not critical for supporting key epistemic, social, and

5
For example, if our data collection and aggregation practices make it more likely that tweets from certain

marginalized groups are more likely to be labeled as “toxic speech” (Davani et al. 2022).
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ethical values in many settings, as will be discussed below (See also Creel 2020; Murdoch

et al. 2019; Vredenburgh 2021). But the practical implications of a potential accuracy-

interpretability trade-off is dubious, if the formalization of interpretability lacks validity or

when there exist other sociotechnical interventions that can better promote the values that

animate concerns about interpretability without imposing a cost on predictive accuracy.

Closely inspecting the validity and instrumental relevance of the formal constructs can

uncover normatively significant disconnects and alternatives. In many cases, addressing

these underlying issues can enable us to robustly promote both sets of relevant values

in ways that remain outside the purview of the narrow formal characterization of the

trade-offs.

3.2 Compositionality

In many cases of social concern, algorithmic tools are not stand-alone decision-makers, but

function as part of broader decision-making systems. Examples include healthcare (Kompa

et al. 2021), child welfare services (De-Arteaga et al. 2020), loan approvals (Paravisini

and Schoar 2013), and fact-checking (Guo et al. 2022), where algorithms assist (rather

than replace) human experts. In such cases, the focus should shift from the AI model’s

isolated performance to how its integration can improve the overall decision quality,

especially compared to the status quo of unaided human experts (See Green and Chen

2019). It thus become crucial to examine how properties of AI models (accuracy, fairness,

interpretability, or their respective trade-offs) contribute to the broader decision-making

systems those AI models are integrated in.

Works in sociology, organizational science, and philosophy demonstrate that the epis-

temic norms and properties of groups cannot necessarily be inferred from those of their

individual members (Mayo-Wilson et al. 2011; O’Connor andWeatherall 2019). The concept

of complementarity in teaming and collective intelligence illustrates this divergence (Page

2019; Steel et al. 2018). It suggests that, especially in complex tasks, a group’s performance

hinges on how its members’ cognitive tools (information, background knowledge, decision

heuristics, ...) interlink. For instance, one member’s unique and different perspective can

offer a breakthrough on a problem that hinders another. Conversely, this synergy is lost,

if members’ strengths and weaknesses are too similar (Bang and Frith 2017). Importantly,

selecting individuals with appropriate complementary cognitive capabilities can mean

12



(a) (b)

Fig. 2. The importance of complementarity when predictive models function as decision support.
(a) represents individual performance of two algorithms 𝑎1 and 𝑎2 and a human expert ℎ on two
equally encountered feature regions, X1 and X2, measured by a loss function L(.). Overall, 𝑎1 has
the best predictive performance, followed by 𝑎2. Human ℎ performs worst on the task.Notice, that
the mistakes are not similarly distributed across feature regions. (b) represents team performance.
ℎ + 𝑎2 is the best team, due to the complementarity in their performance. Notice that the best
predictive model 𝑎1 is not the best decision support. It is assumed that a system integrator
(possibly ℎ herself) allocates tasks according to each team member’s ability on a given feature
region.

not selecting the “best” performing individuals (according to some measure) (Hong and

Page 2004).

The logic of complementarity also applies to cases where AI models function as decision

aids. Consider our classification task from 2.1, where the feature space is divided into two

equally probable regions X1 and X2 (e.g., corresponding to different types of patients in a

healthcare setting) (see Figure 2).
6
Evaluating predictive performance as before, we might

have:

i Algorithm 𝑎1 with equal performance in both regions
ˆL(𝑎1 | X1) = ˆL(𝑎1 | X2) = 0.5,

and so
ˆL(𝑎1) = 0.5 overall;

ii A less accurate algorithm 𝑎2 with ˆL(𝑎2 | X1) = 0.45 and ˆL(𝑎2 | X2) = 0.65, and so

ˆL(𝑎2) = 0.55 overall;

iii A human ℎ, who is the least accurate overall, with ˆL(ℎ | X1) = 0.75 and ˆL(ℎ | X2) =
0.45, and so

ˆL(ℎ) = 0.6.

Suppose knowing these, a decision-maker (possibly ℎ herself) can allocate tasks to indi-

viduals accordingly. Which of 𝑎1 or 𝑎2 should partner ℎ? If we simply focused on overall

6
The example is based on Donahue et al. (2022)
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performance, it might be tempting to select 𝑎1 due to its superior accuracy.
7
But, the con-

cept of complementarity suggests a different approach. Precisely on account of suitable

differences in their predictive capabilities, the human-AI team ℎ + 𝑎2 turns out to be the

best overall team with
ˆL(ℎ + 𝑎2) = 0.45, outperforming the ℎ + 𝑎1 team as well as 𝑎1

(Figure 2b). Crucially, then, the most accurate model is not necessarily part of the most

accurate human-AI team.

As this example shows, for groups to benefit from complementarity, there needs to

be relevant variability in individual performance, stemming from underlying differences

in background knowledge, representation, available information, or heuristics. Crucial

too are appropriate task allocation (who should do what cases) and effective information

integration (whose prediction should weigh how much). Recent works on human-AI col-

laboration have explored these factors: by characterizing the extent of variability required

for complementarity (Donahue et al. 2022) and mechanisms that could give rise to such

differences between humans and AI models (Rastogi et al. 2022); by designing optimization

objectives to suitably complement human experts (Mozannar and Sontag 2020); by devel-

oping optimal task allocation schemes (Madras et al. 2018); and by facilitating effective

information integration (Bansal et al. 2019a).
8

These works underscore that properly evaluating AI model properties and trade-offs

depends on understanding their contribution to the qualities of the broader decision-

making system. Many of the above techniques can result in reduced model accuracy,

but improve accuracy at the system-level. Notably, in some cases, model accuracy is

traded for improved understanding. This might be done to help experts construct suitable

mental models of the AI behavior (Bansal et al. 2019a) or be better placed to combine AI

outputs with their own knowledge (Caruana et al. 2015). More generally, interpretability,

as defined in Sec 2.3, can also alleviate experts’ distrust of AI models, promoting better

7
In fact, this is currently standard practice where predictive models are primarily optimized for individual-

level properties.

8
Some of this work can also be seen as ways of incorporating other group-level norms. For example, works

on tools that ask for second opinions (e.g., Kompa et al. 2021; Raghu et al. 2019) can be seen as computational

implementations of contestability considerations—proposed by many philosophers as a group-level epistemic

norm (e.g., Anderson 2006; Landemore 2020).
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informational uptake and integration (Zerilli et al. 2022).
9
Thus, a perceived compromise

at the model-level can in fact translate into an advantage at the broader system-level.

The study of “fairness under composition” reveals a similar insight (Dwork and Ilvento

2018; Wang et al. 2021). As Chouldechova and Roth (2020) note “often the composition of

multiple fair components will not satisfy any fairness constraint ... [while] the individual

components of a fair system may appear to be unfair in isolation” (p. 86). Here too, moving

beyond a model-centric view is essential to recognize potential (individual vs. system)

divergences and understand how principled model-level losses in a given dimension can

result in system-level gains along that same dimension.

Of course, as will be discussed in Section 4, this system-level perspective doesn’t mean

that “we can have all the good things at once” without facing trade-offs. Rather, the

suggestion is that we can have higher aspirations compared to what a simple interpretation

of the two trade-offs would suggest. When predictive models compose just one part of
broader decision-making systems, it is a category mistake to focus on their properties apart

from those of the other parts (e.g., user characteristics and capabilities, organizational

norms). In such cases, the simple interpretation of the two trade-offs is not only misguided,

it can also distract us from other promising (and challenging) epistemic and ethical

considerations.

3.3 Deployment dynamics

To responsibly integrate AI models into social decision pipelines, it’s essential to under-

stand more than just model properties within a static testing environment. It also requires

a grasp of the mechanisms governing the dynamic interactions of AI outputs with their

organizational and social embeddings. Understanding these dynamics is key for properly

contextualizing model-level trade-offs. What appears as a sacrifice of one desideratum for

9
Some techniques for providing explanations (e.g., local saliency explanations) have been shown to have

detrimental impact on the quality of AI-informed decisions by increasing experts reliance on (and reducing

their vigilance about) AI output, even in cases of incorrect AI predictions (Bansal et al. 2021). But, caution is

needed when interpreting such findings. We must distinguish between the values of interpretability and the

effectiveness of particular interpretability-seeking techniques in achieving those values; the fact that some

techniques can result in misleading explanations does not undermine the value of explanations (Lombrozo

2011) or improved understanding (Grimm 2012) in general. Moreover, even when sometimes unjustified,

increased reliance overall on AI can still be a net epistemic good, depending on the status quo of unaided

human decision making.
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another from a static perspective could be necessary for ensuring sustained gains in the

former in the longer term.

Consider first how our thinking about fairness and accuracy can be informed by better

understanding social dynamics.
10

Findings from workforce diversity research offer a

salient example. These works show that the benefits of increased team diversity—often

understood in this literature to be maximal at demographic parity—is not linear, and

depends, among other things, on how diverse a team initially is (Bear and Woolley 2011;

Phillips 2017; Post and Byron 2015). That is, while moving towards demographic parity

can have negative effects on team performance in highly homogeneous teams, it can

improve performance in groups that are already (to some extent) diverse (Steel et al.

2018). Accordingly, making short-term utility losses for the sake of parity on fairness-

related grounds can result in robust, long-term utility gains (understood as improved team

performance on a variety of tasks). In other cases, making short-term gains in fairness at

the cost of accuracy can result in compounding injustices in the longer term (Fazelpour

et al. 2021). Take, for example, fairness-related disparities in lending that arise because of

conditions affecting the repayment ability of members of certain disadvantaged groups.

In such cases, achieving fairness-related parities requires reducing predictive accuracy,

resulting in granting loans to individuals who may not be able to repay them. Yet, the

resulting disproportionate defaults canwiden existing discrepancies (e.g., due to its impacts

on other opportunities via damaging credit scores) (D’Amour et al. 2020b; Liu et al. 2018).

Examining these dynamics is also crucial for improved reasoning about longer term

predictive accuracy and its relationship with interpretability. Issues around updating

AI models offer an apt example here. Updating can improve predictive accuracy by

leveraging increased data, especially from post-deployment observations; it is also crucial

for addressing dynamic distribution shifts (e.g., due to environmental changes or strategic

behavior of decision subjects) that can undermine predictive capabilities (Babic et al. 2019;

Zrnic et al. 2021).
11

But the accuracy of the updated AI model with respect to a static dataset is not the only

consideration. We also need to consider the dynamic interactions between the updated

10
For a similar discussion on accuracy-fairness see De-Arteaga et al. (2022) and Fazelpour et al. (2021)

11
Babic et al. (2019) provide a thoughtful discussion of policy and regulatory challenges around these

updates.
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model and the rest of the decision-making system (Bansal et al. 2019a,b; Srivastava et al.

2020). For example, while enhancing a model’s overall accuracy, updates can degrade

accuracy in cases where users had come to justifiably rely on themodel (Bansal et al. 2019b).

These unexpected shifts can hurt the overall human-AI performance, and undermine trust,

in ways that negatively affect experts’ long-term adoption of AI tools (Dietvorst et al.

2015). Updating that ensures sustained improvements can thus require potential sacrifices

of model accuracy for the sake of backward compatibility (Bansal et al. 2019a,b; Srivastava

et al. 2020).
12
These sacrifices can be due to interventions that make the models more

interpretable (in the sense discussed in Section 2.1), and can result in performance gains

at the system level over time.

More generally, AI models are often embedded in complex epistemic practices (Creel

2020; Fleisher 2022). Appreciating the dynamic and evolving nature of these practices

should inform our understanding of the relation between accuracy and interpretability.

As noted by Rudin (2019), for example, interpretable models that exhibit lower accuracy

on a static dataset (compared to a “blackbox” model) may afford better opportunities for

understanding and iteratively refining the knowledge discovery process, thus improving

accuracy in the longer run (See also Murdoch et al. 2019).

Overall, then, static properties of predictive models do not tell the full story about what

we stand to gain or lose by adopting the models in complex, changing environments.

What might appear to be an inescapable trade-off from a static perspective may not be one,

once we adopt a broader and longer term perspective. Similarly, justifications developed

in the abstract about how such trade-offs should be navigated may provide hardly any

epistemic or ethical reassurance in complex social systems.

4 DISCUSSION

Having discussed each of the considerations separately, let us bring out some of the shared

lessons.

12
For example, because some interventions to make updated models backward compatible restrict the space

of learning according to some consistency criteria (with past prediction).
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4.1 Expanding normative engagement, new opportunities, new challenges

The previous section showed how the direct correspondence interpretation of the formal

trade-offs can result in misplaced justifications, and interventions that miss out on better

epistemic and ethical possibilities. Importantly, achieving these better possibilities requires

that we expand the scope of epistemic and ethical normative engagements to include

issues that arise throughout the operationalizations, measurement, and modeling practices

that influence the validity of model properties (Section 3.1) as well as the cognitive,

organizational, and social factors that shape the situated impacts of AI models in setting

(Sections 3.2 and 3.3). And we must do so in an integrated and coherent manner.

For example, in his insightful discussion of the accuracy-interpretability trade-off, Lon-

don (2019) highlights how, in medical practice, decisional accuracy and reliability take

precedence over interpretability and mechanistic understanding. Should we thus dismiss

the search for interpretable models, when they come at a cost to model accuracy? Not
insofar as London’s discussion does not attend to considerations of compositionality and

dynamics that (as discussed in Sections 3.2 and 3.3) are critical in many medical settings

where AI models are used as decision supports. Importantly, what these considerations

show is that even when, as London argues, decisional accuracy matters more than mecha-

nistic understanding, the best way to improve AI-enabled decision-making in dynamic

medical environments may not be choosing the most accurate model. Indeed, as argued
above, this may require selecting an interpretable, even if less predictively accurate model.

As discussed above, the sociotechnical perspective can bring into view new design

and governance opportunities for improving the overall quality of AI-based decision-

making (e.g., focusing on team complementarity, instead of individual performance). This

does not mean that we never face those value trade-offs. Indeed, this perspective also

reveals difficult questions about other value tensions. For example, enhanced participation

and contestation can improve group decision-making in a way that can be pertinent to

considerations ranging from operationalization andmeasurement (Lee et al. 2019; Martin Jr

et al. 2020) to human-AI teaming (Kompa et al. 2021; Raghu et al. 2019) in the AI lifecycle.

But, they can also result in delays and even undermine group cohesion and decision

quality (Dobbe et al. 2020; Fazelpour and De-Arteaga 2021). Similarly, when thinking

about issues of compositionality, we are likely to face the so-called diversity-stability
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trade-off familiar from other complex systems, where too much variability—a requirement

for complementarity—can destabilize the system and degrade performance (Eliassi-Rad

et al. 2020; Page 2019). The crucial point is that these practically relevant debates can

remain outside the purview of normative deliberation about AI governance, if attention is

instead focused on a formal trade-off that might not have the purported value significance.

4.2 The meaning of “AI talent” and the need for interdisciplinarity

Asmentioned in Section 2.1, the direct correspondence interpretation is often accompanied

by an implicit division of labor between technical and normative efforts. In particular, it

suggests that once researchers, stakeholders, or policy-makers decide which of their values

should be prioritized in a given context, the rest is technical work. Notably, these judgments

about the relevance and priority of values are often made without close engagement

with the various choices involved throughout the design, development, and deployment

processes of AI. For example, arguments about the priority of accuracy over interpretability

are offered by considering the demands of different medical applications, as opposed to

how AI models are designed for and embedded into those applications.

This conception of the disciplinary division of labor may also underpin recent govern-

mental orders and directives that aim to promote responsible AI. For example, in its recent

efforts to promote responsible AI, the United States government has launched an AI Talent
Surge.13 Importantly, however, the notion of the “AI talent” that is meant to help “federal

agencies to responsibly leverage AI” is understood exclusively in technical terms in terms

of data science and tech talent.
14
But, if the considerations above are on the right track,

this is serious misconception.

As discussed above, the prevalent interpretation of the formal trade-offs can mislead

our normative deliberation and result in costly disconnects between implementations and

justifications that are meant to ground them. A sociotechnical perspective not only offers

a safeguard against misinterpreting the trade-offs (and model properties more generally);

it can also offer improved epistemic and ethical opportunities. But taking advantage

13
See for example, the recent directives by the Biden-Harris Administration:

https://www.whitehouse.gov/briefing-room/statements-releases/2024/01/29/fact-sheet-biden-harris-

administration-announces-key-ai-actions-following-president-bidens-landmark-executive-order/

14
See https://ai.gov/apply/

19

https://www.whitehouse.gov/briefing-room/statements-releases/2024/01/29/fact-sheet-biden-harris-administration-announces-key-ai-actions-following-president-bidens-landmark-executive-order/
https://www.whitehouse.gov/briefing-room/statements-releases/2024/01/29/fact-sheet-biden-harris-administration-announces-key-ai-actions-following-president-bidens-landmark-executive-order/
https://ai.gov/apply/


of these opportunities requires serious interdisciplinary collaborations. Advancing our

understanding of any of the considerations above (e.g., operationalizing social phenomena,

human-AI complementarity and collaboration) requires drawing on significant domain

expertise as well as the knowledge and methodologies from a variety of disciplines,

including those in the humanities and social sciences (For related points see Fazelpour

and De-Arteaga 2021; Rudin 2019; Stinson and Vlaad 2024).

Of course, in taking an interdisciplinary approach to responsible AI seriously, we

need to address many challenging questions. For example, at an interpersonal level,

diverse and interdisciplinary teams often face communicative problems (O’Rourke et al.

2013; Page 2019). What type of upskilling is needed to address these challenges in the

context of responsible AI design and governance? At an organizational level, successful

interdisciplinary collaboration appears to require factors such as sustained leadership

support, egalitarian power relations between groups, and more (Phillips 2017). What

interventions and incentives can effectively realize these factors in the responsible AI

ecosystem? At a structural level, what are the appropriate organizational structures

for effective interdisciplinarity (e.g., should we have teams of mostly interdisciplinary

individuals or disciplinary clusters with interdisciplinary bridges; what type of publication

and conferences venues are most suitable)? (Leydesdorff et al. 2008) The first step towards

making advances on these questions is to appreciate that responsible AI governance

cannot simply be achieved by the vision of disciplinary division of labor underpinning

the prevalent interpretation. If “AI talent” is key to responsible innovation and design,

then that talent needs to be understood in an interdisciplinary way.

5 CONCLUSION

With the increasing social use of AI, we need to carefully examine the epistemic and ethical

questions posed by these technologies. Taken together, the three sets of considerations

discussed above can provide a lens that can assist those involved in evaluating, designing,

and investigating these systems. While the focus here is on the two formal trade-offs in

AI-based decision-making, the considerations may be applicable to formal trade-offs in

other normatively significant and policy-relevant scenarios. This is because turning a

policy scenario into one amenable to formal treatment often requires abstractions and

assumptions about the broader sociotechnical context that often tend to be neglected in
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interpreting. The discussion can thus potentially offer something to researchers interested

in those other scenarios. Hopefully, the considerations above allow us to leverage these for-

mal trade-offs in our practical deliberations, without allowing a misleading interpretation

of them punish our normative aspirations in a negative sense.
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