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And so on … : Reasoning with infinite diagrams 

Solomon Feferman1 

 

Abstract.  This paper presents examples of infinite diagrams (as well as infinite limits of 

finite diagrams) whose use is more or less essential for understanding and accepting 

various proofs in higher mathematics.  The significance of these is discussed with respect 

to the thesis that every proof can be formalized and a “pre” form of this thesis that every 

proof can be presented in everyday statements-only form. 

 

1. Introduction. A proof of a theorem in mathematics is what we require to convince 

ourselves and others of the truth of the statement made by the theorem.  Here ‘truth’ is 

taken in its prima facie sense, i.e. the notions involved in the statement of the theorem are 

supposed to be meaningful, and if it is to be truth for us, we are supposed to understand 

the meaning of those notions.   In order to be convinced of a proof, one must follow the 

argument and check the various steps for ourselves, making use not only of what is given 

in the proof itself but what is required from background knowledge, i.e. previous 

statements that we have already accepted to be true on some ground or other.  And that 

background knowledge may require understanding other notions not explicitly involved 

in the statement of the theorem.  So both background knowledge and the understanding 

of meanings is an essential component of what it takes to accept a given proof.  Even 

given that, it is possible to go through the steps of a given proof and not understand the 

proof itself.  That is a different level of understanding, which, when successful, leads one 

to say, “Oh, I see!”  In other words, this “really understanding the proof” is a special kind 

                                                
1 This paper is based in part on a lecture delivered to the Workshop on Diagrams in 
Mathematics, Paris, October 9, 2008. Slides for that talk and another one on the same 
topic for the Logic Seminar, Stanford, February 24, 2009 are available at 
http://math.stanford.edu/~feferman/papers/Infinite_Diagrams.pdf .  I wish to thank 
Jeremy Avigad, Michael Beeson, Hourya Benis, Philippe de Rouilhan,Wilfrid Hodges, 
and Natarajan Shankar as well as the two referees for their comments on a draft of this 
article.   
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of insight into how and why the proof works.  And that is necessary if one wants to 

follow proofs of related theorems and contribute to the subject by creating new proofs 

oneself.  It follows that one cannot truly be a consumer and producer of mathematics 

without achieving real understanding of the arguments.2       

Many proofs that mathematicians give rely on diagrams to a significant extent.  They 

were ubiquitous in Greek geometry and in early analysis, but doubts were cast on their 

validity among other reasons because they might not be “typical”: the worry was that 

they might in one way or another lead one to draw conclusions not justified by the 

hypotheses of the theorem to be demonstrated or be incomplete by not dealing with all 

possible cases.  The process of rigorization of mathematics in the 19th century has 

supposedly led to their elimination in principle from modern mathematics.  But the 

practice of reliance on diagrams in various ways is still integral to the presentation of 

mathematical proofs of all sorts, even outside of geometry and analysis.  That is because 

such use of diagrams is part of what we make use of in arriving at real understanding of 

various proofs.  

The concept of a mathematical diagram used here is a rather general one; it is supposed to 

be a representation of an abstract mathematical configuration on a two-dimensional 

surface consisting of points, lines, curves, arrows, with labels, marks, shaded areas, and 

so on. Among the “and so on” there may be special features such as the use of broken 

lines to represent three-dimensional or even higher-dimensional aspects of the given 

configuration, of dotted lines to represent a construction to be made at a certain point in 

the argument, of parallel lines viewed in perspective so that they meet at “infinity”, etc. 

In view of all this it is genuinely questionable whether one can say precisely what 

constitutes a mathematical diagram, let alone a diagram in general.   

                                                
2 Wilfrid Hodges has remarked to me that he is not alone in having said, “Oh, I see!” to 
proofs that he later realized he hadn’t understood.  He went on to say that “[a]rguably one 
should define ‘really understanding a proof’ in terms of ability to paraphrase or adapt it, 
or apply it, or answer objections to it, and maybe other kinds of reactions to it.  If this 
leads to no clear dividing line between really understanding and not really understanding, 
that seem to me to fit our experience.” 
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Most theorems in mathematics state a fact about infinitely many objects of a certain kind, 

e.g. all triangles.  But the diagram used in a proof only represents one such object, and as 

already mentioned it is an issue whether the particular representation taken is typical, i.e. 

does not have features which are not shared by all the objects under consideration.  This 

is a frequent concern when dealing with proofs of geometric theorems that rely to a 

significant extent on diagrams.  What I want to do here is bring attention to a different 

kind of diagram that is ubiquitous in modern mathematics, in which there is a single 

infinite configuration under consideration, and what is exhibited in the diagram is a 

typical finite part of that configuration, with the balance indicated by the use of ellipsis, 

i.e. dots ‘…’ expressing ‘and so on’ or ‘and so forth’ in some way.  The consideration of 

such infinite diagrams is interesting because they enlarge the question of what makes a 

diagram typical.   Moreover, I shall argue that there are certain proofs in modern 

mathematics where the use of such infinite diagrams is essential, i.e. it is not possible to 

even follow the proof without consulting the diagram at practically every step of the way. 

In fact, there are certain theorems whose statement can't even be understood without 

reference to such a diagram.  This raises a prima facie problem for the thesis that every 

mathematical proof can be formalized.  Actually, it already raises the problem for the 

thesis that diagrams are completely dispensable for informal proofs, i.e. can be presented 

in the everyday forms involving only sequences of linguistic and symbolic statements.  I 

shall call these the Formalizability Thesis (FT), and the Pre-Formalizibility Thesis (PFT), 

respectively.   Actually, the problems raised for these theses are already issues for the 

essential use of finite diagrams for the understanding of various proofs, so we need to 

attend to the question of what further problems, if any, may be raised by the use of 

infinite diagrams in higher mathematics. 

There has been a great resurgence of interest in reasoning with diagrams in mathematics 

(and visual reasoning more generally) especially in the last couple of decades, and the 

literature dedicated to that has become quite extensive.  The survey article by Mancosu 

(2005) provides an informative entry to the subject.  Inevitably, what I have to say in the 

following concerning the use of diagrams in general is no doubt already to be found in 

that literature or overlaps it to a considerable extent.  But as far as I know, the 

considerations here concerning the modern uses of infinite diagrams are novel.  
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Before starting, one thing I want to emphasize about diagrams of all sorts, whether finite 

or infinite, is that we should not think of them in the way usually done, as static figures 

when reading a text, but rather as they might be presented in a lecture, constructed in 

stages.3  In that very process our understanding of what is going on begins to feed into 

our understanding of the proof in which the diagram participates.  And then when it is 

completely before us, we may retrace various of its aspects to further fill out that proof.  

Here’s a classic example of that, with a proof, in stages, of Pythagoras’ Theorem (one of 

the hundreds of known proofs).  The figure is taken from Roger Nelsen’s Proofs Without 

Words (1993).  

 

Fig. 1 

One starts with a diagram of a right triangle, say the lightly shaded one in the lower right 

hand corner of the right hand diagram in Fig. 1, and then constructs the square on its 

hypotenuse.  Following that, we add three more copies of the original triangle, each 

having the same square on the hypotenuse, to form a larger square whose side equals the 

sum of the two sides of the original triangle.  Its area is the area of the square on the 

hypotenuse plus four times the area of the initial triangle. Then we form a different 

representation of those four triangles in that large square by reassembling them as shown 

in the left hand diagram of Fig. 1.  This makes evident that the area of the large square is 
                                                
3 A closely related point concerning Euclidean diagrammatic demonstrations is made by 
Manders (2008a), 3.1.1, pp. 68-69.   
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also equal to the sum of the squares on the sides of the initial triangle plus four times the 

square of its area.  By subtraction from this equality we obtain Pythagoras’ Theorem.   

When carrying out that demonstration in class on a blackboard, we hardly use all those 

words after the initial construction and reassembling, since the proof is almost evident by 

inspection.  (Alternatively, we may work from left to right.)   

The plan of the paper is as follows.  Before going to infinite diagrams per se, in Section 2 

I shall give examples of diagrams that are infinite limits of finite geometrical diagrams; in 

those cases it is difficult to visualize the limiting figure, but the process by which they are 

approximated is very clear.  Section 3 presents three examples of the use of infinite 

diagrams in modern mathematics, one from set theory, one from model theory, and one 

from homological algebra.  Finally, Section 4 discusses the relevance of these examples 

to the theses PFT and FT.   

2. Finite diagrams with infinite limits.  The first kind of infinite diagrams that I want to 

consider are those that are difficult to picture in and of themselves but are easily 

conceived as limits of finite diagrams obtained by iterating certain constructions.  A 

simple example is provided by the familiar Koch “Snowflake” that is used to demonstrate 

the existence of a bounded continuous closed curve with no finite length and no tangent 

at any point.  As shown in Fig. 2, it is the limiting curve of a sequence of polygons 

beginning with an equilateral triangle of side 1.  The sequence is described inductively: at 

each stage, one simultaneously divides each side of the polygon before us into three equal 

segments, then builds an equilateral triangle on the middle segment, and finally deletes 

the base of the new triangle except for its endpoints.  Since the length of the 

circumference of this figure at each stage is multiplied by 4/3, and since (4/3)n 

approaches infinity, the limiting curve has no finite length.  The first four terms of this 

sequence are shown in Fig. 2, though three terms would have been sufficient to visualize 

where the process is heading.   
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Fig. 2 

 

The Koch snowflake is just one of a number of counter-intuitive or “pathological” 

functions and figures that emerged in the latter part of the nineteenth century in the 

process of the rigorization of analysis and the development of set theory and point-set 

topology.  Of these Henri Poincaré wrote in 1906:  

Logic sometimes breeds monsters.  For half a century there has been springing up 

a host of weird functions, which seem to strive to have as little resemblance as 

possible to honest functions that are of some use.  No more continuity, or else 

continuity but no derivatives, etc. …  Formerly, when a new function was 

invented, it was in view of some practical end.  Today they are invented on 

purpose to show our ancestors’ reasonings at fault, and we shall never get 

anything more out of them.  (Poincaré 1952, p. 125).  

Implicitly referred to here is the well known example due to Weierstrass of an 

analytically defined continuous but nowhere differentiable function.  

In contrast to Poincaré, Hans Hahn argued against the dependence on intuition in 

mathematics in his famous essay, “The crisis in intuition” (Hahn 1933).  He there pointed 

to a number of mathematical “monsters” to support his critique, such as a simplification 
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due to Hilbert of Peano’s space filling curve, an example due to Brouwer of a “map” of 

three “countries” which meet each other at every point of their boundaries, and a curve 

due to Sierpinski which intersects itself at every point.  Another topological monster 

which could have been mentioned by Hahn is the so-called Alexander “horned” sphere 

which is homeomorphic to the unit sphere in three dimensions yet whose complement is 

not simply connected.   

As I argued in Feferman (2000), the purpose of such monsters in the development of 

modern mathematics was to show that when one makes precise in analytic terms our 

intuitive notions of continuity, curve, tangent, boundary, connectedness, etc., ordinarily 

expected consequent properties don’t necessarily hold.  Thus if it is smooth curves about 

which one wants to obtain results, a hypothesis of differentiability must be added, and so 

on. Ironically, as with the Koch snowflake above, the understanding of how such counter-

intuitive examples are generated makes use of intuitively clear finite diagrams or pictures 

which approach the “monster” in the limit.  For example, the Peano-Hilbert example of a 

space-filling “curve” is the limit of curves that first go through every quadrant of the unit 

square, then modified to go through every sub-quadrant, and so on.  The Sierpinski 

“curve” begins by deleting the interior of an inscribed equilateral triangle within an initial 

such triangle; the required figure is the skeleton of what’s left in the limit of iterating this 

process.  The Alexander horned sphere is formed by successively growing “horns” from 

the unit sphere that are almost interlocked and whose end points approach each other.  

This can be visualized by posing one’s thumb and forefinger of each hand toward those 

of the other hand as if one is going to interlock them, then imagine growing a smaller 

thumb and forefinger on the end of each of these, and so on.   

The 1/3 construction procedure in the Koch snowflake (made public in 1904) may have 

been suggested by the Cantor construction in the 1880s of an uncountable nowhere dense 

subset of the closed interval [0,1] having Lebesgue measure 0 that is obtained by deleting 

successive middle open thirds. Later constructions, in 2 and 3 dimensions, respectively, 

of uncountable nowhere dense sets of  measure 0 are the so-called Sierpinski carpet and 

the Menger sponge.  The notion of measure was introduced in part to serve as a precise 

extension to more or less arbitrary sets of the intuitive notions of length, area and volume. 
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All are examples of what are now called fractals, popularly enjoyed for their unusal semi-

visual properties. 

 

4. Proofs appealing to representations of infinite diagrams.  Let us now turn to infinite 

diagrams which can be visualized in full, in contrast to those of the preceding section, 

though they may also involve the iteration of certain constructions.  Three examples are 

given here, the first from set theory, the second from model theory, and the third from 

homological algebra.   

 

We begin with a proof of the Cantor-Bernstein Theorem.4 Given two sets A, B one 

defines A ≼ B to hold if there is a one-one mapping of A into B, and A ≡ B if there is a 

one-one mapping of A onto B.  The Cantor-Bernstein Theorem tells us that if A ≼ B and 

B ≼ A then A ≡ B.  In the diagram used for the proof in Fig. 3 below, A is represented by 

a broken line above and B by a broken line below, with the reason for the breaks 

explained in the process of the proof.  One begins by taking f to be a 1-1 map of A into B 

and g to be a 1-1 map of B into A.  To proceed, we look alternately at what each of f, g 

misses on the other side, beginning with A0 = A − g(B) and B0 = B − f(A).  Then A0 can 

be matched up on the B side with B1 = f(A0), while B0 can be matched up on the A side 

with A1 = g(B0), so A0 ≡ B1 by f while A1 ≡ B0 by the inverse g−1 of g.  Moving on, we 

define A2 as g(B1) and B2 as f(A1), and then A3 as g(B2) and B3 as f(A2).  This leads us to 

define An and Bn in general for all n, in such a way that A2n ≡ B2n+1 by f and A2n+1 ≡ B2n 

by g−1.  Hence the union of the An’s is in 1-1 correspondence with the union of the Bn’s.  

But those unions might not exhaust the sets A and B.  That can hold for example, if both 

A0 and B0 are countable while A and B are uncountable; then the respective unions are 

countable while their complements are uncountable.  The part to the right of the ellipsis 

on each side of the diagram represents that possibly non-empty complement.  To finish 

off the proof, one argues that f is a 1-1 map of A minus the union of the An’s onto B 

                                                
4 Also called the Schröder-Bernstein theorem.  According to Kuratowski and Mostowski 
(1968), p. 190, its first correct proof was obtained by F. Bernstein and published in a 
book by E. Borel in 1898.   
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minus the union of the Bn’s, since no element of the latter can be caught as the image by f 

of some A2n or by g−1 of some A2n+1.5 

 
Fig. 3 

 

 

The next example is drawn from the subject of what are called amalgamation theorems in 

model theory as exposited in Hodges (1997), pp. 134-149.  I assume some basic 

knowledge of the subject as needed for the following notation: L, L1, L2, … are used for 

first order relational languages, and A, B, … with or without subscripts or superscripts 

are used for L-structures for various L.  Given structures A0, A1 for the same language, 

we write A0 ≡ A1 when A0 and A1 are elementarily equivalent,  and A0 ≼ A1 when A0 is 

an elementary substructure of A1.  Then we write  A0 → A1 when there exists a 

substructure A0′ of A1 for which A0 ≅ A0′ and A0′ ≼ A1. A basic result that is used in the 

main result below is the Tarski-Vaught Theorem according to which if                                

A0 ≼ A1 ≼ A2 ≼ … and A = ∪nAn, then each An ≼ A. 

 

Amalgamation theorems apply to the case when we have two languages L1 and L2 with a 

common non-empty sublanguage L = L1∩L2 and structures A in L1 and B in L2 that are 

                                                
5 I don’t remember where I first saw this use of an infinite diagram for the proof of the 
Cantor-Bernstein Theorem.  Another diagram is used in the proof of a lemma for the 
theorem given in Hrbacek and Jech (1999), p. 67.  Still another diagram is used in an 
automated proof of the theorem in Barker-Plummer et al. (1996); there the diagram is 
used to provide strategic information to the theorem prover employed (GROVER).   
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somehow to be related over L.   Throughout the following, the ‘A’ structures with or 

without subscripts or superscripts are in L1 and similarly the ‘B’ structures are in L2. We 

write A|L and B|L for the respective restrictions of A and B to L.   Then the preceding 

notation is extended so that A ≡ B is written to mean that A|L ≡ B|L,  while A ≼ B is 

written to mean that A|L ≼ B|L, and A → B is written to mean that A|L → B|L.  We 

assume proved the Elementary Amalgamation Theorem (Hodges 1997, p.135, Theorem 

5.3.1 ) by which if A0 ≡ B0 then there exists A1 with A0 ≼ A1 and B0 → A1.  This is 

pictured in the following 

 
Fig. 4 

 

It follows immediately that under the same conditions there exist A1 and B1 such that     

A0 ≼ A1 and B0 ≼ B1 and B0 → A1 and A1 → B1.  This is illustrated in the following  

 

 
Fig. 5 

 

We are now in a position to construct an infinite diagram to prove the Strong 

Amalgamation Theorem (due to Abraham Robinson and exposited in Hodges 1997, p. 

147, Theorem 5.5.1): Given A ≡ B, there exists a structure C in L1∪L2 such that A → C 

and B → C, i.e. A → C|L1 and B → C|L2.  The proof appeals to the folowing diagram 

(Fig. 6): 
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Fig. 6 

 

In Fig. 6 we write A0 for A and B0 for B, and use the diagram of Fig. 4 to construct 

suitable A1 and B1 satisfying the pictured relations and then the same to construct suitable 

A2 and B2, and so on.  Let Aω = ∪nAn and Bω = ∪nBn.  By the Tarski-Vaught Theorem, 

each An ≼ Aω and each Bn ≼ Bω.  Also Aω| L ≅  Bω|L by the successive → relations 

between the An’s and the Bn’s.  So we can construct a C in L1∪L2 that agrees with Aω up 

to isomorphism on L1 and agrees with Bω up to isomorphism on L2, as required.  By the 

way, from the Strong Amalgamation Theorem one quickly infers Craig’s Interpolation 

Theorem and Robinson’s Consistency Theorem.    

 

My final example involving infinite diagrams comes from homological algebra.  Such 

diagrams are ubiquitous in that subject as they are in combinatorial topology; a classic 

reference is Mac Lane (1975).  For a quick illustration, I here follow three pages from an 

introductory text, Jans (1964), pp. 27-29, devoted to an explanation and the first part of a 

proof appealing to a certain infinite diagram of what is called the Exact Sequence of 

Homology Theorem.6  This deals with abstract complexes given by an infinite sequence 

of modules Cn over a ring R, where n is in Z, the set of integers.7  Such a complex is 

given by a collection of R homomorphisms, dn: Cn → Cn−1, called differentials, such that 

for each n, dndn+1 = 0.  For any such sequence, we have Ker(dn) ⊇ Im(dn+1), and we can 

form the homology groups Hn(C) = Ker(dn)/Im(dn+1).  Homological algebra is concerned 

with information about these groups for various complexes.  One defines a complex map         

                                                
6 I only discovered after choosing this example that Rav (2007), p. 298, fn 12, had 
pointed to the very same result and essential use of a diagram. 
7 In applications, Cn = 0 for all n < 0.    
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f: A → C between any two complexes, to be a collection of R homomorphisms                    

fn: An → Cn such that the following diagram is commutative  

 

… An  → An−1 … 

↓           ↓ 

… Cn  → Cn−1 … 

 

where the vertical homorphisms are given by the fn’s and the horizontal ones are given by 

the dn’s, i.e., for each n, fn−1dn = dnfn (superscripts on maps attached to specific complexes 

are dropped when there is no ambiguity).  It is then shown by an easy argument that 

whenever this holds, the map f induces (for each n) an R homomorphism, f*: Hn(A)  → 

Hn(C).  By an exact sequence of complexes 

 

0 → A → B → C → 0 

 

where j: A → B and π: B  → C, is meant one where for each n, the sequence 

 

0 → An → Bn → Cn → 0 

 

is exact, i.e. Ker(πn) = Im(jn) for each n. The Exact Sequence of Homology Theorem 

states that whenever 0 → A → B → C → 0 is an exact sequence then there is an induced 

“long” exact sequence  

 

… → Hn+1(C) → Hn(A) → Hn(B) → Hn−1(A) → Hn−1(B) → Hn−1(C) → …, 

 

given by a sequence of homomorphisms θ: Hn+1(C) → Hn(A) called the connecting map.  

The proof occupies three pages in Jans (1964), 29-31, and appeals repeatedly to the 

following diagram on p. 29: 
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Fig. 7 

 

Of this, Jans says that the dashed arrow from Cn to An−1 is used to indicate the path to 

follow for the construction of the connecting map θ.  While that proof⎯which I shall not 

reproduce here⎯is written out fully in symbols, anyone who studies it can hardly deny 

that the diagram in Fig. 7 is absolutely indispensable for understanding how it proceeds 

by “diagram chasing”, i.e. the demonstration that the composition of maps along various 

paths from a given node to another in the diagram always gives the same result.8  This is 

completely typical of arguments in homological algebra, combinatorial topology and 

modern algebraic geometry. 

Note that from a logical point of view there is an essential difference between the infinite 

diagrams in Figs. 3 and 6 and that in Fig. 7, namely the former ones are constructed 

inductively while the latter is not.  Indeed, one could say that what is at issue in Fig. 7 is 

just showing how the connecting map is determined for a finite diagram confined to the 

indices n +1, n and n − 1 in Fig. 7.  However, a little further on in the subject one is led to 

                                                
8 In standard terminology, this is the statement that the diagram is commutative.   
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inductively generated infinite diagrams, namely after the introduction in Jans (1964) p. 33 

of the notion of a projective resolution  

… → Pn → Pn−1 → … → P1 → P0 → A → 0; 

see for example the proof of the Simultaneous Resolution Theorem (ibid., p. 39).  

However, it would take us too far afield to explain the notions involved and the diagrams 

in question.  

 

4. Proofs from diagrams and the Formalizability Thesis. All of this touches on a 

larger issue, namely the thesis that every proof can in principle be formalized, i.e has a 

counterpart formal derivation in some formal system.  For present purposes I will refer to 

this as the Formalizability Thesis (FT).9  It should be clearly distinguished from the 

Formalist Thesis, according to which mathematics has no content but merely consists in 

following formal rules.  The Formalizability Thesis is usually considered with respect to 

the statements-only proofs that one meets in practice, i.e. which consist of a sequence of 

statements given in natural language augmented by various kinds of mathematical 

symbolism.   By the Pre-Formalizability Thesis (PFT) I mean the thesis that every proof 

of a mathematical theorem that may involve diagrams and other possible devices can be 

replaced by an everyday statements-only proof.   In sec. 1 I argued that for something to 

be a proof for us it is not sufficient that we be able to check through it step by step but we 

must also understand it as a whole.  Moreover, there are proofs that make use of diagrams 

in a way that contributes substantially to the understanding of the proof.  In particular, in 

the preceding I offered three examples of such from modern mathematics employing 

infinite diagrams, with the claim for the last⎯from homological algebra⎯that reference 

to the diagram is essential for its proof; moreover, that is just one of a multitude of proofs 

of that character.   These sorts of examples raise a prima facie challenge to the  Pre-

Formalizability Thesis and thence to the Formalizability Thesis.  Even examples from 

more elementary mathematics can be produced which raise the same challenges and use 

                                                
9 Some of my colleagues such as Michael Beeson and Natarajan Shankar say that FT is 
now universally granted, and so a defence of it is in effect beating a dead horse.  That that 
is not the case is evidenced by various well-known critics of FT cited, for example, in 
Rav (1999, 2007).  
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only finite diagrams. Nevertheless, I shall make a case in the following both for PFT and 

then for FT.  In addition I shall explain why it is also necessary to consider proofs 

employing infinite diagrams in doing so.    

 

4.1. The case for PFT. I have not seen any general discussions in the literature of the 

Pre-Formalizability Thesis but that does not mean that a case does not have to be made 

for it.  Moreover, the case for FT clearly requires acceptance of PFT.  Let us look at 

several example areas that may constitute specific challenges to PFT. 

 

First of all, consider the “proofs without words” in Nelsen (1993).  The initial ones 

among these make use of dot-patterns and other kinds of patterns that illustrate 

arithmetical identities such as ones of the form f(1) + f(2) + … + f(n) = g(n) for various f 

and suitable g.  The remarkable thing about these is that the typical examples such as 

those for the sum of the first n positive integers or first n odd numbers with some small n 

lead to a very quick conviction as to the truth of the statements for arbitrary n.  The basis 

of that conviction may be only partially reasoned and when made explicit, may not be 

sufficient to be converted to a statements-only proof.  But massive experience with these 

shows that in all cases they can be established by an inductive argument which may be 

quite different from the one suggested by the diagram.  PFT only requires that we be able 

to replace a proof making use of diagrams by another one that is diagram-free. 10  

 

Euclidean geometry provides one of the most extensive body of diagram based proofs in 

mathematics.  For many of these proofs, reference to the diagram is apparently 

indispensable in order to follow and understand the proof; take, for example, Euclid’s 

proof in I.47 of the Pythagorean Theorem.  Nevertheless, in the critical reexamination of 

                                                
10 Jamnik (2001) deals with dot pattern proofs of such arithmetical identities in a 
systematic way.  The idea is that one is led directly from small typical diagrams to 
formulate a conjecture leading to a program P that constructs for each n a formal proof 
P(n) of the given identity.  Then the general statement of the identity follows by the 
recursive ω-rule.  However, each such P must still be supplemented by a proof of 
correctness at the meta level to arrive at a fully formal proof and that inevitably involves 
an inductive argument.     
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Euclidean geometry in the late 19th century by Pasch, Hilbert and others, the Pre-

Formalizability Thesis was in effect claimed to hold.  As referenced by Mancosu (2005) 

pp. 14-15, this is quite explicit in the case of Pasch; in the case of Hilbert it is only 

explicit in various of his lectures on geometry and not in his Grundlagen der Geometrie 

of 1899.  Still, these are statements in principle, not a demonstration that PFT holds for 

Euclidean geometry.  That has only been established quite recently in the work of Avigad 

et al. (2009) via  a formal system E that is faithful to Euclid’s and Euclidean style proofs.  

The system E takes Manders’ (2008b) distinction between exact (or metrical) and co-

exact (or topological) attributes as its point of departure, and builds on experience from 

the PhD dissertation of Mumma (2006) which provides a formal system Eu in which 

diagrams are still bona fide objects.  Some examples are given in sec. 4.2 (pp. 734-738) 

of Avigad et al. (2009) of how Euclidean proofs can systematically be replaced by 

informal statements-only proofs that can then be formalized directly in E.   

 

The process of rigorization of analysis that began in the 19th century and that was 

followed by the rigorization of topology in the 20th century and the subsequent rewriting 

of mathematics Bourbaki style would seem to make the case for PFT in these areas 

without much further ado.  Still, as we saw in sec. 2, various unusual figures (“monsters”) 

were produced in the process to serve as counterexamples to putative (pre-rigorous) 

theorems, and one must test PFT for those cases.  I have not checked the literature to 

verify that each of the figures in question does indeed have a description in analytic 

terms, but in general they are obtained as the limit of an inductively generated sequence 

of finite diagrams, each of which can, in principle, be described analytically, though that 

might require a certain amount of work.   

 

Let’s look, finally, at the three examples of infinite diagrams described in sec. 3.  There is 

no difficulty for each of these in simply replacing each proof by one in which those 

diagrams are eliminated in favor of symbols for the entities and their relationships that 

are partially represented in the diagrams, and the proofs may then be carried out in the 

everyday statements-only form.  As we shall see, what is difficult in these cases, as 
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compared to the ones above from more elementary mathematics, is not the verification of 

the Pre-Formalizability Thesis but rather the Formalizability Thesis.  

 

Note that it is not claimed in any of the above cases that understanding and conviction are 

retained in the process of eliminating appeal to diagrams in favor of proofs in statements 

only form.  The Pre-Formalizability Thesis makes no demands in that respect.  Moreover, 

in practice students of such proofs often supply their own pictures and diagrams with 

which to gain the requisite insight and conviction.   

 

4.2. The case for FT.  It is the Formalizability Thesis rather than the Pre-Formalizability 

Thesis that has been the subject of extensive discussion and controversy. Historically, 

that had its origins in Frege’s Begriffsschrift and was considerably bolstered by the work 

of Whitehead and Russell in the Principia Mathematica. Then at a more general level the 

idea of a formal system came to the forefront via Hilbert through his finitist consistency 

program, and for that reason the view is called by some Hilbert’s Thesis; however, it 

should be understood independently of Hilbert’s program.11 Just what the thesis means 

without begging the question as to what a “proof” is is hard to say, but the idea is 

common enough, and has both many defenders and opponents.  Some recent strong 

critiques of it which also form a guide to the relevant literature have been mounted by 

Rav (1999, 2007) and Pelc (2009), while⎯in a response to Rav (1999)⎯Azzouni (2004) 

argued for a version of formalism, according to which “[o]rdinary mathematical proofs 

indicate (one or another) mechanically checkable derivation of theorem from the 

assumptions those … proofs presuppose.” (ibid., p. 205).12  

 

                                                
11 In addition, Hilbert is often mistakenly referred to as a formalist. 
12 These particular discussions use ‘proof’ for the informal arguments found in 
mathematical practice and ‘derivation’ for their presumed counterparts in formal systems, 
but that terminology is by no means universal.  For a careful discussion of formal vs. 
informal provability, see Leitgeb (2009).   
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While there are very general precise explanations of what constitutes a formal system, a 

real difficulty in any defense of FT lies in saying just what formal system is to be 

associated with a given informal proof, i.e., what is to be taken for its language, axioms 

and rules of inference, and what it means to formalize a given proof in such a system.13  

Nevertheless there is an extensive body of experience in modern mathematical logic that 

can be appealed to, to flesh this out in a great variety of cases.  One might argue that⎯ 

granting PFT⎯the thesis has independent plausibility for informal proofs consisting 

solely of a reasoned sequence of statements that only involve words and symbols, since 

there is hardly any dispute as to the formalizability of individual statements in a suitable 

language.  However, the difficulty lies in the steps from one statement to the next whose 

justification may be evident to the human mathematician specializing in the subject 

matter of the proof but that require extensive filling in, in order to create a fully formal 

derivation. And it is in this respect where the kind of reasoning behind the examples in 

sec. 3 from modern infinitistic mathematics raises particular difficulties, because it is not 

in general simply logical microsteps that have to be inserted. Rather, in practice, the 

expert human mathematician routinely calls on a repertoire of prior notions, methods and 

results from his memory to readily recognize the validity of the steps in question.  

Depending on the mathematics of the proof in question, those notions, methods and 

results may be about sets and functions, or models and satisfaction, or modules and 

groups and homomorphisms, and so on. But they may also involve mathematics not 

explicitly present in the steps being filled in. For example,  in the case of infinite 

diagrams, there is constant appeal to the indexing, and hence to background knowledge 

about the integers, including the use of inductive arguments.  And supplying the detailed 

                                                
13 Philippe de Rouilhan observed that Frege and Russell each proposed a strong form of  
FT, namely that there is a single formal system in whose language every mathematical 
notion can be expressed and in which every mathematical theorem can be derived.  We 
know the fates of their specific proposals due to inconsistency and incompleteness, 
respectively.  In general, Gödel’s incompleteness theorem undermines any proposal for 
such a strong form of FT.  However, some claim that all mathematical notions can be 
defined in the language of set theory while others claim that they can all be defined in the 
language of category theory; just what such claims come to deserves further analysis. (In 
neither case, of course, is it claimed that some specific axiomatic system of set theory, 
resp. category theory, is sufficient to derive all of mathematics.)  
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intermediate steps in a suitable formal system is by no means routine.  However, it is here 

where the considerable experience in recent years with the mechanical verification of 

proofs comes in to give additional substance to the thesis. See for example, 

http://www.mizar.org/ for the Mizar system of proof checking in a formal system of set 

theory, and Nipkow, et al. (2002) for the Isabelle higher-order logic proof-assistant.  Note 

the use of the word ‘assistant’, for the preparation of an informal statements-only proof 

for formal checking requires detailed guidance by the mathematician(s) in charge.14  

 

Despite this kind of evidence, one must still give attention to the critical side and to the 

more specific question whether the kind of use of diagrams illustrated in this paper 

provides specific material for arguments contra the Formalizability Thesis.  Rav’s 

general criticism is of  “the belief that through complete formalization (in a suitable 

formal language) mathematical proofs attain the optimum of certainty and reliability.” 

(Rav 2007, p.291)  He points out that that view is not to be confounded with standards of 

rigor that, historically, have changed and evolved and varied from subject to subject 

within mathematics.   By contrast, Rav identifies the true function of proofs within 

mathematical practice to lie in their interconnected role in the development of individual 

subjects.  As he wrote in his earlier article, “Why do we prove theorems?”, 

 

Proofs are for the mathematician what experimental procedures are for the 

experimental scientist: in studying them one learns of new ideas, new concepts, 

new strategies⎯devices which can be assimilated for one’s own research and be 

further developed. (Rav 1999, p. 20) 

 

The article Rav (2007) continues and elaborates these themes as part of his critique of 

Azzouni (2004).  Pelc, on the other hand, is focused on the much more restrictive 

question, “Why do we believe theorems?”, as he entitles his 2009 paper.  Without 

dismissing Rav’s points, he says that 

                                                
14 An interesting recent example is provided by the mechanical proof check in Avigad, et 
al. (2007) of the Erdös-Selberg “elementary” proof of the prime number theorem also 
using Isabelle.   
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[n]evertheless, the role of proofs as a means of convincing the mathematical 

community of the validity of theorems is very important.  While proofs can also 

serve other purposes, only proofs can directly serve this purpose. … [here] we are 

only interested in the ‘convincing’ role of proofs.”  (Pelc 2009, p. 85).   

 

And in this respect Pelc’s main criticism of the Formalizability Thesis is found in the 

abstract to his paper: 

 

The formalist [sic!] point of view maintains that formal derivations underlying 

proofs, although usually not carried out in practice, contribute to the confidence in 

mathematical theorems.  Opposing this opinion, the main claim of the present 

paper is that such a gain of confidence obtained from any link between proofs and 

formal derivations is even in principle impossible in the present state of 

knowledge.  (Pelc 2009, p. 84) 

 

For his argument, Pelc defines a natural number M that is so large that no theorem T 

whose shortest possible derivation in ZFC is of length greater than M will be 

mechanically checkable by a physically realizable process within anything like feasible 

time.  And then he goes on to suggest that the proof by Wiles of Fermat’s Last Theorem 

could be a candidate for such T “in the present state of knowledge.”  (Considering the 

great progress being made in the actual mechanical checking of proofs referred to above, 

this is rather incautious speculation.) 

It is seen that the arguments of Rav and Pelc are not arguments against the 

Formalizability Thesis per se, but rather arguments to the effect that informal proofs 

serve a number of purposes that cannot be served by any supposed formalizations of 

them, first and foremost their role in convincing us of the truth of the statements which 

they purport to establish.  In the introduction, I, too, took that to be the primary purpose 

of proofs and added that  understanding proofs is a necessary part of that. In particular, in 

secs. 2 and 3 I brought forth some examples of diagrams which play to some extent or 
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other an essential role in gaining that understanding; indeed, I claimed that that is 

completely the case in the final example considered in sec. 3 (and is so also for similar 

proofs throughout homological algebra and topology).15  Nevertheless, I do not see that 

as an argument against the Formalizability Thesis.  

In other words, I believe that the Formalizability Thesis should be given a very strict 

reading, namely that (i) every good proof has an underlying logical structure, (ii) that 

structure is completely analyzed in the derivation that formalizes the proof, and, finally 

(iii) that derivation assures the correctness of the theorem proved on the basis of the 

background assumptions expressed by the axioms and rules of the system in which the 

proof is formalized.16  This is an in principle thesis that has nothing to do with 

conviction, understanding, or feasibility and it seems to me to be perfectly consistent with 

the view of the central and methodological virtues of proofs emphasized by the critics.17  

The Formalizability Thesis is especially important for logicians since the claims for 

formalizability of various particular informal arguments are ubiquitous in our work.  This 

goes back to Gödel’s proof of his incompleteness theorems, especially the second 

theorem, on unprovability of consistency, the standard argument for which requires 

                                                
15 Note that I have only been concerned here with the use of diagrams in more or less 
sophisticated mathematical reasoning.  Besides the work of Avigad et al. (2009) on 
Euclidean geometry mentioned above there is also an extensive literature on systematic 
reasoning with diagrams outside of these areas; see, among others, Allwein and Barwise 
(1996), Jamnik (2002) and Shin (2008) for an introduction to that. Other directions of 
work, such as Barwise and Etchemendy (1996) involve heterogeneous systems of 
reasoning, e.g. employing manipulations of icons on a computer screen. 
16 Note the use of the word ‘good’ in (i).  Wilfrid Hodges has pointed out to me that there 
are examples of proofs that are basically faulty and that lead to faulty formalizations. 
17 Rav (2007) p. 309 approvingly quotes my paper, Feferman (1979) p. 22, where I 
wondered whether “a conversion [into mechanically checkable form] of really difficult 
and subtle proofs [is] possible without the human agent understanding in all details what 
is to be converted?  And if he does understand ‘in all details’ isn’t the battle over (since 
complete understanding subsumes checking)?”  I admit that the view expressed was part 
of a general skepticism I had about the value of mechanical proof checking, but since 
then I have become more sanguine about the kind of work mentioned above.  In any case, 
the quote itself is consistent with the strict view of the Formalizability Thesis proposed 
here.   
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formalizing the proof of the first incompleteness theorem.  And just as for Gödel’s 

theorems, the significance of all the subsequent work in metamathematics for the 

potentialities and limitations of mathematical thought depends essentially on the extent to 

which the various formal systems of algebra, number theory, analysis and set theory that 

have emerged in that work account for extensive swaths of mathematical practice. The 

underlying logical structure of mathematics is an essential part of what makes it such a 

distinctive body of thought and it is exactly the Formalizability Thesis that allows us to 

say in precise terms a good deal⎯but by no means all⎯of what we are up to when we 

are doing mathematics.    
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