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Abstract

Questions of definedness are ubiquitous in mathematics. Informally, these involve
reasoning about expressions which may or may not have a value. This paper surveys
work on logics in which such reasoning can be carried out directly, especially in com-
putational contexts. It begins with a general logic of “partial terms”, continues with
partial combinatory and lambda calculi, and concludes with an expressively rich theory
of partial functions and polymorphic types, where termination of functional programs
can be established in a natural way.

1 Why logics of definedness?

Questions of definedness are ubiquitous in mathematics; they are to be distinguished from the
equally ubiquitous questions of existence. I do not mean by the latter, (external) metaphys-
ical questions about the nature and existence of mathematical objects, but rather (internal)
mathematical questions such as whether there exist infinitely many twin primes or whether
there exist any zeros of the Riemann zeta function in the critical strip off the line z = 1/2.
Questions of definedness, on the other hand, have to do with whether some mathematical
expression has a value, or “exists”, according to some explanation of how it is to be eval-
uated, if at all. Answers to such questions require a definite semantic context. In algebra,
for example, the definedness of v/b? — 4ac is sensitive to whether we are working in integers,
rationals, reals or complex numbers. Much of the conceptual progress in mathematics can
be laid to wrestling with awkward problems of undefinedness or ambiguity of definedness in
some number system or space.

Questions of definedness are particularly ubiquitous in analysis: in daily practice one
deals regularly with expressions such as

m ay, Y an, > apz™, > a,e™ , lim f(z), f'(z), / f(x)dx

e n=0 n=0 n=—o0 e @
etc., etc., without knowing in advance whether or not they are defined. Moreover, there
is a substantial divergence (sic!) between the “official” account governing the use of such
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expressions according to modern logical and set-theoretical criteria, and their everyday us-
age. Take, for example, the expression f’(z) for (partial) functions f of a real argument x.
According to one official account, we first define an operation D as follows: the domain of
D consists of all pairs (f,z) such that

(i) VY0 < |ly—2z| < —yedom(f)), and

(1) _
(ii) 3LV€>035>0Vy<0<]y—x!<5—>‘w <e> .

Then it is proved that for each (f,z) € dom(D), the L in (ii) is unique if it exists, and
D(f,z) is defined in that case to be the unique such L. Finally, f'(z) is said to be defined
if (f,x) € dom(D), and for such f,z, f'(x) is taken, by definition, to be D(f, ). How much
more cumbersome all this is than the “definition”:

fly) — f(z)

2 ! = lim ———~ if it exists .
() f(ﬂf) yl_I)I% y—x , 111t exists

— L

It is natural to make statements about definedness and reason about them directly, rather
than push back to the official definition. For example, again with the derivative, one states
such results as:

if f'(z) and ¢'(z) are defined then
(3) (i) (f+ g¢)'(x) is defined and equals f'(x) + ¢'(z), and
(ii) (f-g)'(x) is defined and equals f'(z)g(x) + f(z)g'(z) .

Proofs of such statements may require us to return to the definition of D, but their application
to compound expressions does not.

In recursion theory and computer science, questions of definedness usually have to deal
with termination of an algorithm; typically, this is given recursively rather than explicitly,
for example in Euclid’s algorithm for ged(a, b) of natural numbers a, b:

(4) gcd(a,b) = [a if b =0 else ged (b, rem (a,b))] .
One proves by complete induction on b that

(5) for all a, gcd(a, b) is defined .

Of course, justification of such reasoning presupposes a semantical account of recursive def-
initions. In particular, on the face of it, (4) requires definition of the functional F'(b) =
Aa.ged(a, b) by recursion of the form

(6) F) =G0, F1b),

and justification of that requires proof by induction on the natural numbers of the statement
that for each x there is a unique function(al) F, with domain [0, z| such that for all y < x

(7) Fo(y) =Gy Fa 1y) ;



then F'() is defined to be Fy(b) for the unique such Fj with dom(F3) = [0, b].

Granted that reasoning about definedness of one form or another of mathematical ex-
pression presupposes a definite semantics which determines the value of the expression in
question when defined, one may ask whether it is not then possible to carry on sustained
reasoning about definedness without hearkening back to the semantical basis.

Indeed, as will be explained in the next section, rather general logics for that purpose
have been proposed and explored since the 1950s. In subsequent sections we shall see how
one of these has been applied to reasoning about definedness in the specific area of the theory
of computation.

2 Logics of existence vs. logics of definedness.

Within philosophical logic, two general kinds of formal systems for reasoning about existence
or definedness have been formulated and studied since the 1950s under the heading of “free
logics”. To be noted among the contributors to this subject from that time on are Henry
S. Leonard, Jaako Hintikka, Hugues Leblanc and Theodore Hailperin, Karel Lambert and
Bas van Fraassen. The volume [Lambert 1991] is an excellent recent collection of essays on
philosophical applications of free logic, to which Lambert has provided a useful introduction.?
In it, he distinguishes broadly between outer (or Meinongian) and inner (or Russellian) logics
of existence. Roughly speaking, in the former, free variables are conceived as ranging over a
domain D of possibly non-existing entities; a predicate F(z) holds for z in D if x actually
exists. In the latter, all objects in D are regarded as existing, so F(z) holds for all x, but
E(t) holds for a term or description ¢ if it has a referent in D. I prefer to refer to these two
kinds of systems here as logics of existence and logics of definedness, respectively.

Within mathematical logic, especially in connection with the study of constructive math-
ematics and the theory of computation, logics of these two basic kinds have also been intro-
duced and studied since the mid 1970s. In this respect, logics of existence are due to Dana
Scott and were presented in [Fourman 1977] and [Scott 1979] (with [Scott 1967] a precursor
in some respects); however, the predicate F(z) is not given the same informal interpretation
in these as in Meinongian systems but rather is explained in terms of an idea of partial ele-
ments. Logics of definedness, on the other hand, were introduced by Michael Beeson [1981,
1985] under the rubric logic of partial terms; here [Feferman 1975, 1979], with their use of
“pseudo” application terms, may be considered as precursors.?

A side-by-side comparison of these two kinds of logics is provided by [Troelstra and
van Dalen 1988] Vol. I, in Ch. 2, sec. 2, referred to there as E-logic and E*-logic, resp.? In
both logics, the axiom of universal instantiation is modified to its restriction:

(1) VeA(z) N E(t) — A(t) ,

2T am indebted to Charles Parsons for bringing this work to my attention.

3Recently, Grigori Mints brought to my attention the still earlier formulation and use of such logics by
R. A. Pljuskevicus [1968], in the Russian constructivist school of N. A. Shanin; regrettably, both Beeson and
I were ignorant of that work.

4Troelstra and van Dalen present these in the framework of intuitionistic logic, but the comparison applies
equally well to classical logic. Moreover, they work in a natural deduction style formalism, while the following
is presented for a Hilbert-style formalism.



as is the dual axiom of existential instantiation. In accordance with the informal “outer”
interpretation above, in E-logic one has the rule

(2) A(z)/A(t)

but not the rule
(3) A(z)/VzA(x)

while in ET-(“inner”) logic, it is just the other way around. In place of (3) in E-logic one
has
(4) [E(x) — A(x)]/VzA(z) .

While free logic in general countenances the possibility that no objects exist, this seems
irrelevant to mathematical applications. Thus if 3z F/(z) is included in E-logic, one has:

(5) Fp+ A(zy, ... x,) <=tg E(x1) A ... ANE(x,) — A1, ... x0) .

Hence for A closed,
(6) g+ A<=tgpA.

From the point of view of (6) there would seem to be no essential difference between
logics of existence and logics of definedness for the purposes described in the introduction.
However, I prefer the latter for the following reasons:

(i) Philosophical. 1 am troubled by the informal interpretation of the predicate F in the
“outer” logics of existence, at least for mathematical applications. We do not ordinarily
speak in mathematics of non-existing or partially existing objects. This is not to say that
there is no coherent semantics for such logics; indeed, Scott and Fourman provide just that
via the categorical theory of topoi. But that is very different from ordinary ways of saying
what mathematics is “about”.

(ii) Everyday reasoning. It is habitual to begin a proof of a statement of the form VzA(x)
holds — where ‘z’ is understood to range over a domain D — by saying “consider any x in D”.
This corresponds to the acceptance of rule (3) in definedness logic. There are no ordinary
locutions which correspond to the rule (4) in existence logic.

(iii) Models. We shall see in the applications of definedness logic to the theory of computation,
that one has for it a great variety of directly obtained natural models. (Again, this is not to
deny that existence logic has other models of independent interest, such as indicated above.)

3 A basic logic of definedness: the logic of partial
terms.

The syntax of the logic of partial terms (Cf. [Beeson 1985], pp. 97-99) is that of first-order
predicate calculus with equality, extended by a definedness predicate, from now on written
as t | rather than F(t). For simplicity, this is presented here for a single-sorted language,
but the formulations apply mutatis mutandis to a many-sorted language.

The basic term-forming symbols are: wariables (a,b,c,...,z,y, z, with or without sub-
scripts), constant symbols (c), and function symbols (f). There need not be any constant or
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function symbols; each of the latter that is used has a definite number of arguments. The
terms (s,t,...) are generated as usual from the variables and constants by application of
the function symbols. It will be seen that if there are no function symbols then the logic of
partial terms simply reduces to ordinary logic.

The basic predicate-forming symbols are the equality symbol (=), relation symbols (R),
and the definedness symbol (]). There need not be any relation symbols, but each that is
used has a definite number of arguments. The atomic formulas are all those of the form:
s=t,t],and R(ty,...,t,), where s,t, t1,...,t, are terms and R is n-ary.

The basic logical symbols are: =, A, V, —, ¥ and 3. Then the compound formulas (A, B, .. .)
are generated by their application as usual, to form: -A;AA B,AV B,A — B,VzA and
JxA. The underlying logic below may be classical or intuitionistic, and it is only to admit
the latter possibility that the full set of logical symbols is taken as basic; otherwise (say)
=, A,V would suffice. The result of substituting a term ¢ for a variable z in a formula A at
all free occurrences of x in A is indicated by A(t/x), or A(t) when A is written as A(z); it is
assumed this is performed only when there are no collisions of free and bound variables in
the resulting substitution.

The possible interpretations to be considered when the underlying logic is classical are
given by structures

(1) M= (MRM, MM

where (i) M is non-empty, (ii) for each n-ary R in the language, R™ C M" is an n-ary
relation in M, (iii) for each n-ary f in the language, f™ is an n-ary partial function from M
to M (indicated by fM : M" — M or M M™ 5 M), and (iv) for each constant symbol c

in the language, c™ € M. Then for a : Var — M taken to be any assignment in M to the
variables, one defines a partial map [t] o from terms ¢ to M inductively as follows:

(1) [#]ma = a(z)
(2) (i) [elma=c

(i) [f(t1, .. to)]me = M (L] Mma - - [En] M) S

where ‘~’ means that the Lh.s. of (iii) is defined and equal to the r.h.s. just in case
([t:)Mmoar - - -5 [ta] moa) is in the domain of £M. We then take
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(3) [tlm.a | <= [t] M. has a value in M .
Turning to the inductive definition of satisfaction for atomic formulas, one takes:

() Mo (s=1) = [sImal &[t]ma | &[s]rma = [tlra
(4) (ii) M ’:a (t l) — [[t]]/\/l,a I, and
(iil) M Ea R(ts,... 1) &=
[[tl]]/\/l,a l &. .. &[[tn]]/\/l,a l &<[[t1]]/\/l,a: R [[tn]]/\/l,a> € RM .

Finally, satisfaction for compound formulas is defined as usual.



The following is then a complete Hilbert-style system for this semantics:

L.

IT.

I1I.

IV.

It is understood for the semantics presented in (1) — (4) above that the axioms and rules in
I are complete for the classical propositional calculus and include the rule of Modus Ponens.
If these are replaced by one or another standard version of the intuitionistic propositional
calculus, one obtains with II — IV a complete system for a suitable Kripke-style semantics.

Propositional Axioms and Rules

[see below]
Quantificational Axioms and Rules

(i) YeA@)A(E]) — AW () AW A ]) — JwA(e)

B — A(x) A(x) — B

W) VoA W) A =B
‘z” not free in B in (iii), (iv).
Definedness Axioms

(i) «|

(ii)) c|

(i) f(t1,...,tn) = E DA A(En ])

(iv) s=t—=(s])A(t])

(v) Rlty,....tn) — (Lt DA A (tn ])

Equality Azioms

i) ==

i) s=t—t=s

(ili) r=sAs=t—r=t

(V) Rst,..os) A A (si=t) = Rit,... 1)
)

1<i<n
(v (si=1t;) = £(s1,...,80) = f(t1,... tn),

1<i<n
where, by definition,

(s~t):=(s|Vt]—os=1).

In either case, the system is denoted LPT for the Logic of Partial Terms.

The Definedness Axioms I1I are worthy of special attention. III (i), (ii) reflect the concep-
tion of inner free logic, according to which all objects exist. III (iii) — (v) are called strictness
azioms. In particular, in the theory of computation, III (iii) corresponds to call-by-value se-
mantics; the alternative, call-by-name semantics, permits violations of this axiom.

Remark.

operators (tx)A(z) to LPT with the axioms

(DES) (tr)A(z) =y < Vz[A(z) < = =y].

Following [Lambert & van Fraassen 1967], one may add partial description



Thus, by the strictness axiom III (iv), we have (equivalently)

(i) (tx)A(x) |« (3'z)A(z), and
(i) (lz)A(x) — A((wx) A(z)).

Similarly, one may add partial selection operators (ex)A(x) with the axioms:

(i) (ex)A(x) |« (3x)A(x),and
(SEL) (i) (Fr)A(z) — A(ex.Alz))

The axioms DES are of clear philosophical interest, providing one solution of the familiar
puzzles as to how to handle non-referring definite descriptions, such as in ‘the present king
of France is bald’. But they also serve to regulate the use of mathematical definitions such
as

lim z,, := (wx)Ve > 03InVm > n(|z, — x| <€),

n—oo

and {z:A(zx)} = (a)Vz(zx € a — A(x))

The SEL axioms also serve both philosophical and mathematical purposes. A simple example
of the latter is provided by

4 Logics of definedness for partial combinatory and
lambda calculi; preliminary discussion.

We now turn to specializations of the Logic of Partial Terms to languages for untyped
combinatory and lambda calculi, in which we can reason about definedness of their terms.
The point of view here is different from the original conceptions of these calculi, for which
see [Church 1941], [Curry & Feys 1968], as well as [Barendregt 1977, 1984], and [Hindley &
Seldin 1986]. As originally conceived by Alonzo Church and Haskell B. Curry these were to
be all-embracing systems for the most general concept of functions-as-rules. Every term s is
thought of as representing a function; the formal application of s to t, written st, is supposed
to represent the value of s at t. These calculi were intended to subsume theories of sets as a
foundation for all of mathematics, with sets replaced by their characteristic functions. This
can be done by using the identification of certain terms with the truth values T" and F.
Characteristic functions, then, are propositional functions in another guise, i.e. functions
which evaluate for each object to T or F'.

Not only were these calculi to encompass all of mathematics, they were also supposed
to subsume logic as well. For, the propositional operations could be identified with suitable
truth-value functions and the quantifiers with suitable functions to be applied to proposi-
tional functions. The discovery by Stephen C. Kleene and J. Barkley Rosser of paradoxes
in Church’s original system led him to retrench on these goals. Curry, on the other hand,



continued to pursue the development of consistent logical (or “illative”) systems within his
combinatory calculi, albeit with limited success.

In both kinds of calculus, a variety of reduction rules are considered, leading to a syntactic
relation s > t of reducibility between terms. Of special interest are those terms which are
irreducible or in normal form, i.e. for which s > t holds only when st are identical. s is
said to have a normal form if it is reducible to a term ¢ in normal form. The fundamental
theorem of Church and Rosser shows that ¢ is unique in such a case (for suitable reduction
rules). The possibility of self-application in the untyped combinatory and lambda calculi
leads quickly to terms which have no normal form. The following quotations reveal that
Church and Curry differed as to the significance of this situation.

It is intended that, in any interpretation of the formal calculus [of lambda conversion],
only those well-formed formulas [i.e. terms] which have a normal form shall be meaningful.
([Church 1941], pp. 14-15).

If f denotes a particular function, we shall use the notation (fa) for the value of the
function f for the argument . If o does not belong to the range of arguments of f, the
notation (fa) shall be meaningless ([Church 1941], p. 1).

In contrast, in the discussion of alternative explanations of the paradoxes in [Curry &
Feys 1968] one reads:

One alternative starts with the observation that [the “paradoxical” combinator] ... has
no normal form. This suggests that the possession of a normal form should be a necessary
condition for significance. This thesis appears to be the opinion of Church. ... From our
standpoint every ob [term of the combinatory calculus] is significant in the broadest sense
of being an object of thought; significance in a narrower sense means belonging to some
semantical category. It seems to us unlikely ... that a single category of significant obs
will suffice for the purposes of logic; rather, we suspect, there must be a whole hierarchy
of them. ([Curry & Feys 1968], pp. 260-261)

In addition to reduction relations, one deals in these calculi with relations of intercon-
vertibility or interreducibility s = t. For any given reduction relation, this is defined to hold
if there is a finite sequence of terms sg, s1,..., s, beginning with s and ending with ¢ such
that s; > s;11 or s;01 > s; for each . Thus = is the smallest equivalence relation which
extends the > relation. (For reduction relations for which the Church-Rosser result holds,
one has s =t if and only if there is an r with s > r and t > r.)

In the spirit of the original conceptions, both Church and Curry treated the > and =
relations as defined informally, outside of their calculi; equally, reasoning about them was
carried out informally. A major step toward treating these calculi within the framework of
mathematical logic was taken by Dana Scott in 1969 with his construction of the so-called
Do, model for the A-calculus and, thence, the combinatory calculus (cf. [Scott 1972] and
the general references above). The very idea of discussing the semantics of these systems
in terms of models was novel to the subject at that time. What these constituted were
models of the A- calculus and combinatory calculus as equational calculi. But the question



of definedness of expressions in one sense or another was still regarded as external to the
calculi. It was only with [Feferman 1975] that such calculi were first treated within the full
symbolism of the first-order predicate calculus with equality in such a way as to reason about
definedness internally. The approach there took as a basic relation between individuals a
three-place relation App(z,y, z) informally interpreted as: x applied to y evaluates to z, and
written xy ~ z. In the cited paper, terms of the combinatory calculus were not dealt with
as first-class citizens, but only introduced contextually (as so-called “pseudo-terms”). One
first defines t ~ z inductively; this is taken to be t = z if ¢ is a variable or constant, and
then one takes

(1) (st ~z) := Jxy(s ~x At~y A App(z,y, 2)).

Thence one defines

(2) s>t = Vr[s~x et~

It was only with Beeson’s introduction of the logic of partial terms (cf. [Beeson 1981,
1985]) that terms of the combinatory or A-calculus could be reasoned about as first-class
citizens. The shape this takes is described in the next two sections. One can alternatively
carry out this kind of reasoning within the “outer” FE-logic; that is not done here but the
basis for such a development can be found (side-by-side with that in E*-logic) in [Troelstra
& van Dalen 1988] Vol. II, pp. 473 ff. In retrospect, it is tempting to identify the views of
Church and Curry quoted above with one or the other of these approaches. This seems to me
to be asking more of them than is fair, but if pressed I would say that the quote from Church
puts him on the side of E-logic since on the face of it, the universe of discourse consists of
all A-terms, while that from Curry and Feys puts him (them) on the side of E*-logic. But
as there is no restriction on substitutivity of terms for variables in either system (except to
avoid collisions of free and bound variables in the A-calculus) one may have to assimilate
both to E-logic.

5 The partial combinatory calculus.

The terms of the standard basic system of combinatory calculus are generated from the vari-
ables a,b,c,...,x,y, z and two constants k and s by closure under a binary function symbol
fapp for application. We write st for fapp(s,t) and, as usual, sty ---t, for (---(st1)---)t,.
On the face of it, the usual formulation of the combinatory calculus within equational logic
treats application as a total operation. This system is denoted CL and is called the to-
tal combinatory logic. Its axioms are (i) kzy = x and (ii) szyz = zz(yz). By contrast, the
system CL, of partial combinatory logic as formulated within LPT, has the following axioms:

(CL,) () key—s
(i) (szy) | Aszyz >~ xz(yz).
The idea behind (CL,) (ii) is that szy always names a rule but its value at any given

z may not be defined. In contrast, from (CL,) (i) and the strictness axioms, kzy is always
defined.



CL, has a variety of interesting and natural models M (cf. also [Beeson 1985], Ch. VI
and [Feferman 1979] sec. I1I for these).
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Recursion-theoretic models.

(a) Ordinary recursion theory. Here the domain of M is the set w = {0,1,2,...,}
of natural numbers. The interpretation of fapp(z,y) in M is {x}(y). There are
suitable choices of k, s in w to satisfy (CL,) (i), (ii). This model is also referred
to as PRF for the partial recursive functions.

(b) Generalized recursion theory. Any enumerative recursion theory on an arbitrary
structure, such as the notion of prime computability from [Moschovakis 1969] (cf.
also [Fenstad 1980]) serves to determine a model of CL,,.

Term models. Both of these start from the set T'erm of terms in the language of CL,,.
The reduction relation s > t is defined as usual in Term (cf. [Barendregt 1984] or
[Hindley & Seldin 1986]). Then one takes the convertibility relation s ~ ¢ to hold if s,¢
have a common reduct. (equivalently if (s,?) belongs to the least equivalence relation
extending the > relation). A term ¢ is said to be in normal form if ¢ is irreducible; NT
denotes the set of all terms in normal form. By the Church-Rosser theorem, for each
s € Term there is at most one t € NT with s > ¢; we write NF(s) for ¢ in such a case.

(a) The normal term model (NT). Here M has domain the set of all terms in NT’;
we take fapp(s,t) >~ NF(st). The constants k, s are interpreted by themselves.
(The closed normal terms form a submodel CNT of NT'.)

(b) The total term model (T'T). Here M has as domain, the set of all (convertibility)
equivalence classes [s] for s € Term; we take fapp([s], [t]) = [st]. Application is
thus total in this model. (Again, we can form a submodel CTT of T'T by taking
equivalence classes [s] of closed terms.)

Generated models. Given any M with a pairing operation P : M? i, M, and any
collection F of partial functions from M to M with card(F) < card(M), we can
generate a model of CL, which includes a code ¢y for each element of F. (The pairing
operation is used to form codes.) k, s are chosen to be any distinct members of M,
and for any z,y we form further distinct codes kx, sz, sry. Then the ~ relation is
generated by the inductive closure conditions:

(i) cjr ~ f(x) foreach f e F,xe M,
(ii) (kz)y ~ x, and

(iii)

TZ U, YZ U, UV W

(szy)z ~w

Set-theoretic models. Given any transitive M in the cumulative hierarchy closed under
pairings (in the set-theoretical sense), let F be the set of all functions (in the set-
theoretical sense) which belong to M. Then use the procedure in 3° to form a model
of CL, which contains a code of each element of F.

10



5° Other models. Particularly to be mentioned are Scott’s D, model and the graph model
of Plotkin and Scott. These are more complicated to describe; cf. [Barendregt 1984]
for details.

Remark on extensionality. Of the indicated models, only D, is extensional though
the graph model satisfies a weak form of extensionality. However, Henk Barendregt showed
how one can construct extensional variants NTE and TTE of the term models in 2° above;
cf. [Barendregt 1984] for their description.

6 The partial lambda calculus.

We now turn to a version of the lambda calculus in LPT. The terms are generated from
variables as usual by application and abstraction, i.e. if s,¢ are terms then st is a term
and Ax.t is a term. The latter does not fit into the form of term builders in the first-order
predicate calculus as described in sec. 3 above, though it can be subsumed under its extension
by selection operators indicated there, i.e. by taking \x.t := (ez)Vx[zz ~ t]. Instead, we
introduce the axioms A, for Partial Lambda Calculus directly, as follows:

() () At
(i) (Azt(x))y = t(y).

The axiom (ii) corresponds to f-reduction in the ordinary (“total”) lambda calculus, but
the limitation on instantiation in LPT restricts its application to:

(1) s | — (Az.t(x))s ~t(s).

The usual translation of CL into the total A-calculus works equally well for CL, into Ap:
one takes k to be AxAy.z and s to be Az yAz.xz(yz). In the other direction, the following
translation of the total A-calculus into CL works equally well for A\, into CL,:

Definition  For each term ¢ of CL,, the term \*z.t is a term of CL, defined as follows:
(i) (Nz.z) := skk,
(ii) (A*z.u) := ku if u is a constant or variable distinct from z, and
(iil) (Nz.tity) = s(Nz.ty) (N z.to).
This is easily seen to have the following properties:

Lemma  If s,¢ are terms of CL, then
(i) the free variables of (A*z.t) are just those of ¢ distinct from z,
(ii) CL, F (A\*z.t) |, and
(iii) CL, F (Nz.t(x))y ~ t(y).

11



One then infers the translation of (1):

(2) CL,Fs|— (ANz.t(x))s >~ t(s).

On the basis of this translation, I had taken it for granted since 1975 that every model
of CL,, in particular that in the partial recursive functions (PRF’), induces a model of \,.
However, not long ago, Thomas Strahm discovered that the situation is not so simple and
requires reconsideration. The following reports briefly his work [Strahm 1994] in this respect.
The problem is that substitution in the partial A-calculus, defined by

(3) (Az.t)[s/y] := Ax.t[s/y] if x,y are distinct and x ¢ free (s),

is not preserved under the s-translation. Namely,

(4) there exist s,t with (A*z.t)[s/y] # X*x.(t[s/y]).

An example is provided by the terms y for tz and yy for s; in that case (A\*z.t)[s/y] is k(yy)
while \*z.(¢[s/y]) is s(ky)(ky).

One consequence of (3) in A, which fails in the recursion-theoretic model is weak exten-
sionality, i.e.

(5) AN Fs=t— \r.s = Azt

For, s = t implies (AyAz.y)s ~ (AyAz.y)t so that by the “f-axiom” ()\,) (ii), A\z.s =
(AyAz.y)s = (AyAz.y)t = Ax.t. But the *- translation of (5) is false in PRF. One might ask
whether there is another reasonable translation of A, into CL, which converts PRF' into a
model of \,. In general, a model M for ), is supposed to determine a partial valuation [t],
for each term ¢ and assignment « in M such that [st], is the application in M of [s], to
[t]a and [Az.t], is a partial function on the domain M of M with

(6) [Az.t]am =~ [t]am for each m € M,

where o'(z) = m, o'(y) = a(y) for y # x. As noted by Strahm, my student Elena Pezzoli
proved the following:

Theorem It is not possible to make PRF" into a model of A\, in such a way that the eval-
uation function eval(t,a) ~ [t]a, fort a A, term and o : free (t) — N, is partial recursive.

So not only does the *-translation fail to turn PRF into a model of CL,, it appears from
this that no reasonable translation will do so.

At any rate, in view of this situation, Strahm investigated whether a modified form of
Ap could be developed which does have a model in PRF'. He succeeded in doing this via
a calculus A\,o which is a form of A\, with explicit substitutions; a full report of that work
is given in [Strahm 1994], and only the basic idea is described here. By a substitution 6 is
meant a set 0 = {t1/x1,...,t,/x,} where n > 0, the x; are distinct variables and the ¢; are
terms of A\,0. Those terms are generated simultaneously with the substitutions by closing
under application, abstraction, and tf for any substitution ¢. Then the (-axiom of A, is
restated as
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(7) (Az.1)0y ~ t(y/x - 0),

where (y/x - 0) denotes the substitution {y/z} U6~ and 0~ is  with any binding for x
deleted. There are a number of other axioms governing definedness in this calculus as well as
properties of substitutions. Not only is PRF' then restored as a model of A\,o but also every
model of CL, described in the preceding section induces a corresponding model for A,o.

Strahm’s calculus A\,o turns out to have interesting relations with work on explicit sub-
stitution for functional programming languages by [Abadi et al 1991] and [Curien 1991]
among others. Moreover, Robert Stérk [1994] has found that there is a very close relation-
ship between Strahm’s axiomatization and the functional programming language SCHEME
(in which explicit substitutions are called environments). So A\,o constitutes a very natural
extension of the partial A-calculus which connects directly with work in theoretical computer
science.

7 Logics for termination and correctness of functional
programs.

About 10 years ago, I started exploring the application of my “explicit mathematics” ap-
proach ([Feferman 1975, 1979]) to logics for reasoning about functional programs, with either
CL, or A, at their base. For ready applications, one wants to have a rich language to talk
about various data type structures involved in practice, e.g. Booleans, natural numbers, sets,
lists, trees, records, streams, etc. Program constructs typically involve pairing, projections,
definition by cases, recursive definition, etc. While these can be defined in CL, or A, it is
more convenient to take them as primitives. In these logics, programs are represented by
terms ¢t. Termination of a program t for arguments in a data type (or class) T is expressed
by

VeeT (tx ]).

Specifications are properties ¢(t) of programs; proof of correctness of a program according
to a specification is then a proof of ¢(t) in one of these logics.

The main aim of computer science is the construction of efficient, correct programs.
For correctness one wants program design that makes the program construction follow an
informal algorithm as closely as possible. Also large programs should be constructed in
modular fashion, so the correctness problems can be broken into manageable pieces, each of
which can be improved independently of the others.

There are various measures of the proof-theoretical strength of a logic. The one that is
closest to the efficiency concerns of computer science is given by the characterization of its
provably recursive functions. In the present framework, a function F' is provably recursive if
there is a term ¢ such that for each n, tn defines F'(n) and is such that Vo € N(tx | Atx € N)
is provable in the logic. In principle, if a logic is proof-theoretically weak then it is closer
to guaranteeing efficiency of its provable recursive functions than one that is strong. On the
other hand, the weaker the logic, the less maneuvering room do we have to reason about
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correctness of programs. The game then is to try to maximize expressive power and flexibility
of reasoning while minimizing proof-theoretical strength. In my papers [1990], [1992], [1992a],
I've explored a gamut of logics for these purposes ranging in strength from full second-order
number theory (PA;) down to primitive recursive arithmetic (PRA). As indicated by its
name, the provably recursive functions of PRA are just the primitive recursive functions.
Others have been working on pushing this down further to systems whose provably recursive
functions are just the feasibly (polynomial time) computable functions.

For simplicity, I shall describe just one of these logics here, which is of strength PA,; it
is taken from [Feferman 1990], where it is denoted IOC. From the proof-theoretical point of
view, PAy (and hence 10C) is very, very strong, and its provable recursive functions — for
which no informative characterization is known — go far beyond any conceivable practical
applications. Thus, I will describe in the next section a drastic formal weakening of 10C,
yet one which retains many of its advantages as a place to reason freely about programs.

The system 1OC is a variant of the system IOC, from [Feferman 1990]. It is two-sorted,
in order to speak both about individuals and classes (or types). Individual terms s,t, ...
are generated from the individual variables a,b,c,...,z,y, z and the constant 0 by the op-
erations: st, \x.t, P(s,t), Pi(t), Px(t), D(r,s,t,u), Rec(t), Sc(t), and Pd(t). Class terms
S,T,... are generated from the class variables A, B, ..., XY, Z and the class constant
N by the operation {z|p} where ¢ is any formula. And formulas are generated simultane-
ously with the class terms from the atomic formulas ¢ |, s =t and s € T' by the operations
=), ON Y, d N, ¢ — 1, Vee, e, VX P, IX .

The logic of IOC is LPT with the strictness axioms extended to include:

(1) seT —s|.
(Thus ‘s |’ is redundant with ‘s € 7). The non-logical axioms of IOC are as follows
L ()
(i) (Az.t) |
(i) (Az.t(x))y ~ i(y)

II. Pairing, Projections

(i) Plz,y) L APi(z) | AP(2) |
(i) P (P(z,y)) =z APy(P(x,y)) =y

ITI.  Definition by Cases

(i) D(z,y,u,v) |
(ii) 2 =y — D(z,y,u,v) =u
(i) @ # y — Dlw,y,u,0) = v
IV. Recursion

(i) Rec(z) |
(ii) y = Rec(x) — yz ~ xyz
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V. Natural numbers

(i) 0 eN

(ii) xr e N— Se(x) e NA Pd(x) €N

(iii) x € N — Sc(z) # 0 A Pd(Sc(z)) =

(iv) 0 e X AVa(zr € X — Sc(x) € X) »Ve(reN—z € X)

VI. Comprehension
y € {zlo(x)} < o(y)

Any individual  may serve to represent an operation (or function), with values xy when
xy |; we tend to use the variables f, g, h when thinking of individuals as operations. As
is common in the proof-theoretical literature, the comprehension axiom schema is said to
be impredicative, since when ¢ contains bound class variables, it serves to define a class
A = {z|¢(x)} by reference to the “totality” of classes, among which is A itself. These are
the reasons for designating this system as IOC, for Impredicative Theory of Operations and
Classes.

Remark. In view of the preceding section, in order to have a model for IOC in the partial
recursive functions, we should modify the )\, axioms to something like Strahm’s \,o.

The following abbreviations are made to simplify notation: (s,t) for P(s,t),t for Sc(t)
and t — 1 for Pd(t). (t1,...,t,)isdefined inductively by: (¢1) = t1, (t1, ..., tnt1) = ((t1,. .., tn),

tnt1). We write (Vo € A)¢ for Va[zr € A — ¢] and (Fz € A)¢ for Jx(z € ANP). ACB
abbreviates (Vo € A)(x € B) and A = B is written for A C B A B C A. Note that implicit
in our logic is instantiation of class variables by class terms:

(i) (VX)o(X) = o(T).
(2)
(i) o(T) — (FX)o(X).

Hence we can derive induction on N for arbitrary formulas:

(3) ¢(0) AVz(¢(x) — ¢(2')) — (V& € N)g(z).

Now write

(4) (i) f:(A— B) forVx € A(fx € B), and
() (4 B) = {z]:: (A B)).

For n-ary operations, we take f : (A™ — B) where

(5) (i) AxB={z3z3y(z=(z,y) Nz € ANy € B)},
(i) A'= A, A" = A" x A.

Definition by primitive recursion on N is effected by the recursion axiom together with
definition by cases to yield, for any a, g an f with
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a itr=20
(6) fo = { g(z=1)(f(z—1)) ifz#0
so that
(7) f0~aAVz e N(fa' ~ gx(fx)).

From this it is proved by induction on N that if a € A and ¢ : N x A — A then

(8) (f :N— A).

By carrying this out uniformly in n parameters one can associate with each a : N* — A and
g: Nt x A — Aan f:N*— A with

() (i) f(x1,...,2,,0) = a(zy,...,x,),and
(i) flxy, ..., 20, y) = g(x1, ..., Tn,y, f(T1, ... T0,Y)).
In particular, all primitive recursive functions are defined in IOC. From this it follows that
second-order number theory PA, can be translated into IOC. A translation of IOC into PA,
is described in [Feferman 1990] sec. 6.3, so these systems are of the same strength.
To deal with partial recursive functions in IOC we need to define (uz)(gx = 0) for any
function g from N to N. This is obtained by the following recursion:

N N Y if gy =0

(10 )9 = 0) = 1(2.0) where flopy = { Y20

The provably recursive functions on N in IOC may then be identified with those recursive
functions which are provably total on N.

As an illustration of a proof of definedness and correctness in this system, let us return
to the recursive definition of ged(x,y) in sec. 1. Here we assume the prior development of
arithmetic and the definition of the primitive recursive functions [z + y| and rem(z,y) with
the properties, for x,y € N :

(11) y>0—ax=y-[r+yl+ rem(z,y) A rem(z,y) <y

The recursion for ged(x,y) defines it as fry where:

N x for y =0
(12) foy = { fy(rem(z,y)) ify#0

To show f is total, we prove by complete induction on y € N that

(13) (Az.fry) :N—N

That is, suppose Vz < yVu € N[fuz € N|. To show for any € N that fzy € N, there are
two cases to consider: (i) y = 0, in which case fry = z, so fry € N; (ii) y # 0, in which
case fxy ~ fy rem(x,y), so for z = rem(x,y) < y we can apply the induction hypothesis
to conclude that fyz € N, hence again fzy € N.
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To show that f meets the required specification, write ¢(z, y, z) for the formula [z|zAz|yA
Vu(ulz Auly — u|z)]. Thus what is to be proved is that ¢(z,y, fry) holds for all x,y € N. In
parallel with the proof of (13), the following is established by complete induction on y € N:

(14) (Vz € N)gp(x,y, fry).

Again there are two cases: (i) y = 0, in which case (14) holds by ¢(z,0,z), and (ii) y > 0,
in which case one uses that [z|z A z|y < z|y A z|rem(z, y)] from (11).

8 Class constructions, polymorphism and virtual classes

A variety of standard class constructions are easily carried out in IOC. Besides A x B, A™ and
A — B already defined in sec. 7, we have a universal class V, finite classes {a1,...,a,}, and
the Boolean operations ANB, AUB and —A. Sequences of classes (B, ).c 4 are represented by
a class C with z € C' — (Ir € A)(Jy)(z = (z,y) Ay € B,). Then one defines U B, N B,

z€A z€A
as well as the disjoint sum Y B, and Cartesian product [[ B,. The sum ). B, is in effect
z€A z€A z€A
the class C' above, while ] B, is obtained as {f|(Vx € A)(fx € B,)}. If T'(z) is a class

€A
term with parameter = then by taking B, = T'(z) one is led in this way to U T, N Tx,

€A €A
> T(x)and J] T(x).
€A €A
Now if T'(X) is a class term with class parameter X, we can also form
(i) UT(X)={z3X(z€T(X))} and
X
(1) )
(ii) QT(X) = {2|VX(z € T(X))}.
In this system we cannot form > 7'(X) and []7(X), but it is shown in [Feferman 1990] how
X X

to define these in a conservative extension IOC, of IOC where operations f can take classes
as arguments; then [[7'(X) = {f[VX(fX € T(X)}. We shall return to this in the discussion
X

of polymorphism, below.

The class constructions in (1) are the first examples where impredicative instances of the
comprehension axiom VI of IOC are used. Further such are provided by the definition of
abstract versions O,, of the constructive ordinal number classes, following [Feferman 1975]
pp. 99-100. With 0 = (0,0) as a code for the ordinal, 0, Sc(r) = (1,7) as a code for the

successor of the ordinal coded by z, and sup(n, f) = (2, (n, f)) as a code for the sup of fz

for x € O, we can define:

(i) Op=N
(i) Ops1 = {a|VX[0 € X AVz(z € X — Sc(z) € X)
) ANz VFI(F = O = X) — sup(k. f) € X]
—a € X|}.
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The recursion axiom IV can then be used to establish forms of transfinite recursion on the
classes O,. The procedure (2) can be extended into the transfinite, but that will not be
described further here.

The reader acquainted with proof-theoretical investigations will recognize that all these
impredicative class constructions can already be carried out in a subsystem of IOC much
weaker than PA,, namely one of strength [[{-CA. As for the data types met in computational
practice, still much less suffices. That is clear for the finitary ones such as lists, arrays,
records, trees, graphs, etc. But it also holds for infinitary ones such as streams and “infinite-
precision” reals. For example, the class of infinite streams of members of A may simply be
identified with N — A; more generally, partial A-streams may be identified with {f|(Vx €
N)[fx | = fr € AANYy < z(fy |)]}. And the class of infinite precision reals may be
identified with Cauchy sequences, an elementarily defined subclass of N — Q, where Q is the
class of rational numbers. Both of these are given by predicative definitions, i.e. are of the
form {z|¢} where ¢ contains no bound class variables.

Thus it appears that if the impredicative class comprehension axiom VI of IOC is replaced
by an axiom of the same form restricted to predicative (or elementary) formulas ¢, then all
the data types met in practice are readily constructed. The resulting system is called the
Elementary Theory of Operations and Classes, denoted EOC. It was shown in [Feferman
1990] that EOC is of the same strength as the system PA of Peano Arithmetic, for which
an informative classification by Georg Kreisel of its provably recursive functions has been
known for many years (cf. [Schwichtenberg 1977]). What, then, is the value for the theory
of computation of permitting impredicative class constructions of the kind described above?
An advantage that has received considerable attention in the recent literature is in the use
of polymorphic types. This grew out of work by Jean-Yves Girard and, independently, John
C. Reynolds in the 1970’s; for a recent introduction and survey, see [Mitchell 1990]. The
idea is illuminated by the following examples:

(i) (\x.x) € Q(X — X)
(3) (i) Azdy.x(zy) € Q[(X — X) = (X — X)]
(ili) AzAy.z(y,y) € Q[(X XX = X)— (X — X)]

Each of these tells us something of the uniform (or polymorphic) behavior of an individual
operation with respect to arbitrary types. In (i) this is the identity operation, in (ii) it is
the operation of iterating any operation once, and in (iii) it is the operation of identification
of arguments of any binary operation. In a system such as IOC, (indicated above), where
classes (types) can also serve as arguments of operations, (3) (i) would be expressed instead
as

(4) AX(Az: X)z e [[(X — X),

X
and similarly for (3) (ii), (iii). The difference is that the term AX(Ax : X)z wears its
polymorphic behavior on its sleeve, while that of Az.z in (3) (i) must be deduced. The
latter is called implicit polymorphism and the former explicit polymorphism. However it has
long been known by application of a simple syntactic “erasing” operation that the latter can
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always be reduced to the former, so there is no difference in strength between these forms of
polymorphism.

As it turns out, the essential impredicativity in such polymorphic type constructions
comes not in their definition, but in their application. If it is known of a term ¢ that

(5) te(T(X),

does it follow for any class term .S that

(6) teT(S)?

Obviously, yes, if we admit the full axiom scheme of instantiation for class quantification,

(7) VXG(X) — ¢(S).

But here, now, is a way (initiated in my [1990] paper, and explained more clearly in my
papers [1992], [1992a]) to have one’s cake and eat it too, i.e. to have the advantages of
polymorphism while working in logics of restricted strength so as to bound the complexity of
the provably recursive functions. Namely, one singles out a class of U-types (“user” types)
S which includes the data types to be used in practice and restricts instantiation (7) to such
S, while one retains the full impredicative comprehension axiom VI for arbitrary {z|¢(z)}
(called the G-types or “general” types). Put in other terms, what is involved here is the idea
of wirtual classes, which is a kind of free logic for classes: every abstract {z|¢(z)} for ¢ a
formula of IOC counts as a class term and satisfies

(8) y € {z[o(x)} < o(y),
and can be reasoned with on that basis. But only certain class terms selected according to
some criterion or another serve to instantiate class quantifiers.

9 Further directions of work

(i) In parallel with the kind of definedness theory for untyped individual terms presented
here, one would like to push the idea of virtual classes still further to develop a rea-

sonable definedness theory for untyped (or unstratified) class terms, unlike those of
10C.

(ii) Continuing the pursuit of rich, flexible logics whose provably recursive functions are of
bounded complexity, one would like to obtain such systems whose provable functions
are just those which are polynomial-time computable. As essay in this direction was
made several years ago by Sam Buss and Jeffrey Remmel (unpublished notes). More
recently, Thomas Strahm [1995] has come up with a different and very promising
solution.

(iii) Work on computation on abstract data types with applications to infinite streams and
infinite precision reals initiated in [Feferman 1992b, 1992c| is continuing; that should
be fit into the present framework.
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(iv) The main thing that needs to be done is to see if the termination and correctness of
substantial programs can be demonstrated in logics of the sort considered here. Though
restricted logics are of interest from the proof-theoretical point of view of in-principle
complexity bounds, there is no reason not to make use of the full resources of IOC for
such purposes, at least to begin with.

Stanford University
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