
DOES REDUCTIVE PROOF THEORY
HAVE A VIABLE RATIONALE?

Solomon Feferman

Abstract

The goals of reduction and reductionism in the natural sciences
are mainly explanatory in character, while those in mathematics are
primarily foundational. In contrast to global reductionist programs
which aim to reduce all of mathematics to one supposedly “univer-
sal” system or foundational scheme, reductive proof theory pursues
local reductions of one formal system to another which is more jus-
tified in some sense. In this direction, two specific rationales have
been proposed as aims for reductive proof theory, the constructive
consistency-proof rationale and the foundational reduction rationale.
However, recent advances in proof theory force one to consider the
viability of these rationales. Despite the genuine problems of foun-
dational significance raised by that work, the paper concludes with a
defense of reductive proof theory at a minimum as one of the principal
means to lay out what rests on what in mathematics. In an extensive
appendix to the paper, various reduction relations between systems
are explained and compared, and arguments against proof-theoretic
reduction as a “good” reducibility relation are taken up and rebutted.
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1 Reduction and reductionism in the natural

sciences and in mathematics.

The purposes of reduction in the natural sciences and in mathematics are
quite different. In the natural sciences, one main purpose is to explain cer-
tain phenomena in terms of more basic phenomena, such as the nature of
the chemical bond in terms of quantum mechanics, and of macroscopic ge-
netics in terms of molecular biology. In mathematics, the main purpose is
foundational. This is not to be understood univocally; as I have argued in
(Feferman 1984), there are a number of foundational ways that are pursued
in practice. One such way is organizational; in that enterprise, reduction in
the number of basic concepts and principles is valued, as is ease and natu-
ralness of development. The purpose of other foundational ways is to deal
with problematic concepts or principles by special kinds of reduction, such
as (historically) the reduction of the complex numbers to the real numbers,
or the reduction of the use of infinitesimals to the systematic use of limits.
More recent examples from logic are the reduction of set theory with the
axiom of choice to that without, or the reduction of classical arithmetic to
intuitionistic arithmetic (insofar as the law of excluded middle is problematic
for the constructivist). Foundational concerns are of course also important
in the natural sciences, such as that of providing a philosophically satisfac-
tory and physically adequate foundation for quantum mechanics; but one
does not necessarily think of this as a reductive project. And, explanation
is ubiquitous in mathematics, such as in the use of Galois theory to explain
the unsolvability of the quintic, or of combinatorial topology to explain the
Descartes-Euler formula for polyhedra; again, these are not usually thought
of reductively.

Another contrast to be made is that between piecemeal or local projects of
reduction in both the natural sciences and mathematics, and global reduction-
ist programs in both. In the natural sciences, the philosophy of reductionism
calls for a level-by-level theoretical reduction of the hierarchy of sciences to a
basic material monism. This is envisioned, for example, by Oppenheim and
Putnam (1958) as proceeding from social groups on down through multicel-
lular organisms, living cells, molecules and atoms, all the way to elementary
particles. (Nowadays, that is to be capped by the physicists’ holy grail of
the GUT, the “Grand Unified Theory”, which is then to be the TOE, the
“Theory of Everything”.) I am personally very skeptical of this kind of re-
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ductionist program in science, for reasons that I have not tried to articulate,
at least not in writing (and won’t try to here).1

Global reductionist programs in the foundations of mathematics share
the monistic view with scientific reductionism, but there is no real anal-
ogy with the hierarchical account. The most prominent examples to consider
are the logicist program, set-theoretical foundations, functional foundations2,
categorical foundations and—in a sense—Hilbert’s program (in its original
conception). There are well-known problems with each of these that I shall
not repeat here, though advocates of one or another of these programs per-
sist in pushing them. My own view is again skeptical, and leads me to
pursue local projects of reduction instead. But I would hope that even those
who don’t share my general skepticism as to global reductionist programs
see the interest of such local projects as an illumination of what rests on
what in mathematics. To the extent that various parts of mathematics are
represented by formal systems, that comes down to considering relations of
reduction between such systems.

2 Plan of the paper.

There are three main kinds of local reduction relations S≤T between formal
systems S and T that have been dealt with in the metamathematical litera-
ture: relative interpretation, translation, and proof-theoretic reduction. It is
this last relation which is basic to reductive proof theory. Informally, the idea
for it is that one has an effective (in practice, primitive recursive) method for
passing from proofs in S of formulas φ in a distinguished class of formulas Φ
to proofs in T of the same φ, and that this is established in a third system
U which is considered to be privileged in some sense or other. In words, we
say that S reduces toT preserving Φ, provably in U; in symbols, the relation
is written here as S≤T [Φ] (in U). When this holds, S is a conservative ex-
tension ofT for the formulas inΦ; with false statements such as 0 = 1 taken
to belong to Φ, this insures that S is relatively consistent toT (provably in
U). In practice, U can be taken to be a quite weak system such as Primitive
Recursive Arithmetic PRA, or its conservative extension IΣ1, the subsystem
of Peano Arithmetic PA based on the Σ1 Induction Axiom. The Appendix
to this paper provides comparative examples, definitions, and basic proper-
ties of the three reduction relations in question. It concludes with a defense,
against the challenges raised in (Niebergall 2000), of proof-theoretic reduc-
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tion as a “good” reducibility relation. The details of the Appendix are not
needed for appreciation of the main question of this paper, as to the viability
of rationales for reductive proof theory. Before getting into that, we begin
in sec. 3 with a sketch of how reductive proof theory, with its essential use
of ordinals, works in practice. Two rationales for reductive proof theory are
then taken up, the constructive consistency-proof rationale in sec. 4 and the
foundational reduction rationale in sec. 5. It is the recent advances in proof
theory that force one to consider the viability of these rationales; these are
taken up in sec. 6. Despite the genuine problems raised for current rationales
by that work, the body of the paper concludes in sec. 7 with a defense of
reductive proof theory as one of the principal means to lay out what rests on
what in mathematics, at least in its “everyday” parts.

3 The role of ordinals in reductive proof the-

ory.

Gerhard Gentzen’s work in the 1930s (see Gentzen 1969) has been the most
influential for the development of modern reductive proof theory in practice.
That made its major strides beginning in the 1950s, especially through the
efforts of Kurt Schütte and Gaisi Takeuti, whose work is summarized in their
treatises (Schütte 1960, 1977) and (Takeuti 1975, 1987). The aim of the
Gentzen-Schütte-Takeuti line of development is what I call the constructive
consistency-proof rationale for reductive proof theory, which I will take up
in the next section. Since Gentzen’s demonstration of the consistency of
arithmetic by transfinite induction on an ordering of order type Cantor’s
ordinal ε0, that has led to an enormous amount of proof-theoretical work
of a prima-facie reductive character in which ordinals (or, more generally,
well-founded orderings) play a central role. On the other hand, it is not
immediately obvious how that work in practice relates to the notions of
proof-theoretical reduction treated in Appendix A.4; the purpose here is to
outline how these fit together. As far as the mechanics of the work go, the
emphasis will be on the approach that grew out of the Schütte school; for a
recent survey of that, see (Pohlers 1998). Due to recent work of Buchholz
(1997, 1999) the approaches of the Schütte and Takeuti schools are much
more closely related than had been thought for a long time, so this restriction
is not so one-sided.3
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The general pattern is as follows. Given a formal system S which one
wishes to reduce proof-theoretically to more justified or privileged principles
in some sense or other, one first embeds S in a system S∗ which is more
amenable to proof-theoretical transformations and analysis than S . Since
Gentzen, this means that S∗ is formalized in a sequent calculus, and since
Schütte, this means that S∗ may involve infinitary rules of inference. The
paradigm is given by the system PA of Peano Arithmetic for S, which is
embedded in an extension S∗ of Gentzen’s calculus LK for the classical first-
order predicate calculus by a form of the ω-rule. This first step provides an
effective map from proofs in S to proofs (in general infinite) in S∗,

( )∗ : ProofS → ProofS∗ .(1)

The cut-rule in sequent calculi,

from Γ � �, φ and φ, Γ′ � �′ infer Γ,Γ′ � �,�′,(2)

like the rule of modus ponens in Frege-Hilbert style calculi, involves potential
“detours” through formulas φ of greater complexity than may appear in the
concluding formula(s) of a proof. Gentzen showed how cuts could be elim-
inated completely in LK, but only partially in his sequential formulation of
arithmetic with the usual logical rules and a rule of induction; Schütte showed
how complete cut-elimination could be restored in his infinitary extension of
LK. In general, one has an operation

ρ : ProofS∗ → ProofS∗,(3)

from proofs in S∗ to new proofs in S∗ which reduces their over-all logical
complexity by eliminating cuts as far as possible. Then for proofs p in S
of certain formulas φ of a particularly simple form, the proof ρ(p∗) can be
analyzed to show that φ can be proved by more direct means than may be
apparent in S. Taking Φ to be such a class of formulas, we appear in this way
to be moving in the direction of establishing the proof-theoretic reduction of
S to a system T, conservatively for Φ. But the choice of T is not yet clear
from this.

Here is where ordinals come into the picture. What Gentzen had done
in his consistency proof of PA was assign to each proof p an ordinal |p| < ε0
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such that if p is a proof of 0 = 1 then |ρ(p)| < |p|; hence the consistency of
PA follows by transfinite induction up to ε0, because otherwise its ordering
would not be well-founded. In Schütte’s version, one assigns ordinals simply
as lengths to the infinite proof figures in PA∗, and it is shown that if p is
a proof in PA then |ρ(p∗)| < ε0. Moreover, if p ends in a closed equation
s = t then transfinite induction up to |ρ(p∗)| shows the equation to be true.
There is a natural primitive recursive ordering ≺ε0 of order type ε0 and,
except for transfinite induction on that ordering, Gentzen’s argument can
be carried out in the system PRA of primitive recursive arithmetic. That
can also be achieved via the primitive recursive representation of the infinite
proof-figures and operation ρ on them in Schütte’s argument.4 But the latter
tells us a bit more (though this is also implicit in Gentzen’s work): it gives
us a proof-theoretic reduction of PA to PRA supplemented by the scheme of
transfinite induction for each initial segment of the natural ordering of type
ε0. Using TI(α) to indicate the scheme of transfinite induction up to the
initial segment of type α in the given ordering (applied to suitable formulas
depending on the context)5, we symbolize this by the reduction in the sense
of sec. 4,

PA ≤ PRA + {TI(α)}α<ε0 ,(4)

preserving equations, provably in IΣ1. Since TI(ε0) proves the consistency of
the system to the right, this proof theoretic reduction also gives

IΣ1 � TI(ε0) → ConPA.(5)

Then, as Gentzen showed, that is best possible in ordinal terms, since PA
proves transfinite induction up to each ordinal α < ε0.

All of this is a paradigm for the general pattern in subsequent reductive
proof-theory, using infinite proof figures in an extended calculus S∗ of se-
quents depending on the choice of S. One associates ordinals as lengths to
the proofs in S∗. Then proofs p in S lead to proofs p∗ in S∗ which can be re-
duced in complexity by (possibly partial) cut-elimination to ρ(p∗). This leads
to a computation of the least upper bound αS of the ordinals |ρ(p∗)|, and an
associated natural representation by a primitive recursive well-ordering ≺αS

of order type αS. This leads to a proof-theoretic reduction in the sense of
sec. 4, of the form
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S ≤ PRA + {TI(α)}α<αS
,(6)

preserving equations, provably in IΣ1, and then

IΣ1 � TI(αS) → ConS,(7)

where the transfinite induction is applied to a primitive recursive property.
To show this is best possible, one establishes TI(α) in S for each α < αS.
Finally, when the passage from p to p∗ preserves formulas in a class Φ, one
may seek a familiar system T which is prima-facie weaker than S, in which
TI(α) can be established for suitable formulas (depending on Φ) and each
α < αS, and for which

S ≤ T[Φ](in IΣ1).(8)

In the current work on ordinal analysis of formal systems, as surveyed
e.g. in (Pohlers 1998), the emphasis is on determining the least ordinal αS

satisfying (7) or related criteria, such as being the least (primitive recursive)
ordinal not provably a well-ordering in S. In the practice of ordinal analysis,
reductive concerns are relegated to the background, if not set aside altogether.
This does, at least, lead to an ordering according to ordinal strength of those
formal systems for which an ordinal analysis has been obtained. We shall
return to the issues raised by ordinal analysis in sec. 6.

4 The constructive consistency-proof ratio-

nale for reductive proof theory.

Hilbert’s program was motivated by the view that the “actual infinite” in
mathematics is problematic, leading in some cases to contradictions. The
program aimed to justify various parts of mathematics that make implicit or
explicit use of principles based on the actual infinite, by representing them
in formal systems which would be shown to be consistent by purely finitistic
arguments. Patently, the use of set theory and even of impredicative princi-
ples (such as that of the least upper bound) in analysis would require such
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justification on this view. But, according to Hilbert, already arithmetic (as
represented in the system PA) makes use of the actual infinite in its applica-
tion of classical logic to statements involving quantification over the natural
numbers. That is already seen in the assumption of the law of excluded mid-
dle for statements of the form ∀xR(x) with R quantifier-free; such cannot in
general be decided in a finite number of steps—one must “run through” the
totality of natural numbers to determine their truth or falsity. The Hilbert
school did not delimit finitist proofs by defining finitist mathematics in terms
of a formal system. In practice, at least in the early stages, it did not go be-
yond PRA, and that has been argued by (Tait 1981) to be the upper limit of
finitism, a thesis which is largely accepted these days. In any case, whatever
formal system S0 would be determined to represent finitism, Gödel’s second
incompleteness theorem showed that one would not be able to establish the
consistency of systems stronger than S0 by the means available in S0. In
other words, to continue the consistency program, the idea of a privileged
basis for that kind of justification of all of mathematics would have to be
abandoned, and would have to be replaced by a shifting basis on some other
sort of constructive principles.

In Gerhard Gentzen’s groundbreaking 1936 article “Die Widerspruchsfrei-
heit der reine Zahlentheorie” (referred to here through its English translation
in Gentzen 1969, pp. 132-201), it was shown how, in the case of arithmetic,
the consistency program might be extended while hewing to finitist principles
as closely as possible. Gentzen’s paper contains several sections discussing
the aims and significance of his consistency proof—besides its extensive tech-
nical work whose general character was indicated in sec. 3 above. Under the
heading, “How are consistency proofs possible?”, Gentzen says: “There can
be no ‘absolute consistency proof’. A consistency proof can merely reduce
the correctness of certain forms of inference to the correctness of other forms
of inference. . . . in a consistency proof we can use only forms of inference
that count as considerably more secure than the forms of inference of the
theory whose consistency is to be proved.”(op. cit., p. 138) Gentzen then
goes on to say that because of Gödel’s incompleteness theorem, it is not
possible to establish the consistency of arithmetic using a part or all of the
methods used in that system, but: “[it] remains quite conceivable that the
consistency of elementary number theory can in fact be verified by means of
techniques which, in part, no longer belong to elementary number theory, but
which can nevertheless be considered to be more reliable than the doubtful
components of elementary number theory itself.”(op. cit., p. 139) He later
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argues (op. cit., pp. 193ff) that his entire proof is finitistic except possibly
for the application of transfinite induction up to ε0, and that inspection of
the argument for that principle shows it to be “indisputable”, in contrast to
the “transfinite” principles of the formal system of number theory.

In the further pursuit of the consistency program for analysis and various
of its subsystems, Schütte and Takeuti provided similar rationales for their
work. Schütte’s explanation of the rationale for his proof-theoretical work
is that “Gödel’s investigations (1931) have shown that the strictest finitist
methods are basically inadequate for carrying out the consistency proof re-
quired by Hilbert’s programme. So proof theory needs not only the very
strict finitist methods of a combinatorial nature but also higher level proof
procedures. Thus we arrive at methods, first used by Gentzen (1936), using
induction which in fact goes beyond the usual complete (mathematical) in-
duction but still has a constructive character. . . We use inductive methods
for the consistency proofs but do not admit Tertium non datur as a proof pro-
cedure.” (Schütte 1977, p. 3) The consistency-proof rationale was explained
as follows by Takeuti (1987), p.101: “We believe that our standpoint is a
natural extension of Hilbert’s finitist standpoint, similar to that introduced
by Gentzen, and so we call it the Hilbert-Gentzen finitist standpoint. Now
a Gentzen-style consistency proof is carried out as follows: (1) Construct a
suitable standard ordering, in the strictly finitist standpoint. (2) Convince
oneself, in the Hilbert-Gentzen standpoint, that it is indeed a well-ordering.
(3) Otherwise use only strict finitist means in the consistency proof.” Takeuti
then goes on (loc. cit.) to explain what is supposed to be admitted under (2):
these are “concrete” constructive methods, in contrast to those admitted to
intuitionism, which calls on abstract notions of proof and construction.

In summary, the Gentzen-Schütte-Takeuti modified form of the consis-
tency program, that I shall call the extended Gentzen program, comes down
to carrying out the following three things:

(1) Describe finitistically the ordering relation of a notation system for
ordinals up to an ordinal αS.

(2) Give a finitist proof that the principle of transfinite induction up to αS,
TI(αS), implies the consistency, ConS, of S.

(3) Give a constructive proof of (the instances used in (2) of) TI(αS).

The first obvious criticism to be made of the extended Gentzen program is
that the notions of finitist and constructive proof required for it are vague. In
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particular, there are many varieties of constructivism, which on the one hand
do not always square with each other, and on the other hand are not simply
characterized by saying that one uses only inductive methods without the
law of excluded middle. However, I think we can be charitable to an extent
here, for two reasons. First of all, one can inspect specific executions of the
program and, for the most part, see that the arguments employed in (1)
and (2) are prima-facie finitist, while those employed in (3) are prima-facie
constructive. Secondly, we now have a great deal of knowledge of formal
systems which explicate finitism and constructivism in their various forms,
with respect to which we can locate more precisely what a given execution of
the program succeeds in doing. Still, one can anticipate that questions will
have to be raised in borderline cases, as we shall see in sec. 6.

A second obvious criticism is that there is no reason given for the asym-
metry of methods in (1), (2) as against those in (3). If one is to admit
constructive proofs in (3), why not allow constructive definitions and proofs
in (1) and (2), not just those that are finitist? And, if one takes that step,
why not consider quite different constructive foundations, such as the sim-
ple reduction of classical to intuitionistic arithmetic (i.e. PA to HA) by the
Gödel translation? (Interestingly, Gentzen describes the translation (1969,
pp. 169-170), but doesn’t make an argument why that is insufficient for his
aims.)

But the main point of criticism of the extended Gentzen program, as of
the Hilbert program which it modifies, is the criterion of consistency itself
as its be-all and end-all. This had its origin in Hilbert’s early identification6

of the “existence” of mathematical concepts with the consistency and com-
pleteness of axiom systems for them. Later, in the mature formulation of his
program, Hilbert only emphasized the consistency criterion in service of an
instrumentalist justification of formal systems, though he still presumed that
completeness would also be established in the cases of interest. The idea was
to eliminate the “ideal” statements of a system in favor of the “real” state-
ments, which we can identify with Π0

1 formulas (treated as open statements).
Indeed, for systems S containing a modicum of arithmetic, if S is consistent,
then every Π0

1 statement provable in S is valid. It was Brouwer who first
objected that consistency is insufficient to guarantee “correctness” in some
intuitive interpretation. Then Gödel’s incompleteness theorems bore out this
criticism with the construction of a consistent system extending PA which is
not valid in the natural numbers (namely PA + ¬ConPA).

The most vocal critic of the consistency criterion (in numerous essays)
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has been Georg Kreisel, saying for example in a late survey of his own work
that “I was repelled by Hilbert’s exaggerated claim for consistency as a suffi-
cient condition for mathematical validity or some kind of existence” (Kreisel
1987, p. 395). Kreisel aimed instead to use proof theory to make “explicit
the additional knowledge provided by those proofs.” (loc. cit.) More ex-
plicitly, he sought to “unwind” mathematical proofs on the one hand and to
provide “general formal criteria such as functional interpretations to replace
the incomparable condition of consistency; ‘incomparable’ because the aim
of functional interpretations is meaningful without restriction on metamath-
ematical methods.” (loc. cit.)7

Of course, consistency itself is meaningful without restriction on meta-
mathematical methods, and one can point to systems of possible mathemati-
cal interest for which there may be a genuine question as to their consistency,
e.g. Quine’s system NF, or PA + ¬TP, where TP is the Twin Prime con-
jecture, or—more ambitiously—PA2 + ¬TP, where PA2 is full 2nd order
arithmetic, or—still more ambitiously—ZF+¬TP. (One may substitute for
TP here any currently open problem in number theory, such as Goldbach’s
Conjecture (GC) or the Riemann Hypothesis (RH), that is strongly suspected
of being true but difficult to prove.8) But what about the consistency of PA
and PA2 and ZF? The most advanced current work in proof theory that
may contribute to the extended Gentzen program hardly reaches beyond the
subsystem Π1

2−CA of PA2(= Π1
∞−CA). I, for one, have absolutely no doubt

that PA and even PA2 are consistent, and no genuine doubt that ZF is con-
sistent, and there seems to be hardly anyone who seriously entertains such
doubts. Some may defend a belief in the consistency of these systems by
simply pointing to the fact that no obvious inconsistencies are forthcoming
in them, or that these systems have been used heavily for a long time without
leading to an inconsistency. To an extent, those kinds of arguments apply
to NF, which has been studied and worked on by a number of people. My
own reason for believing in the consistency of these systems is quite different.
Namely, in the case of PA, we have an absolutely clear intuitive model in the
natural numbers, which in the case of PA2 is expanded through the notion of
arbitrary subset of the natural numbers. Finally, ZF has an intuitive model
in the transfinite iteration of the power set operation taken cumulatively.
This has nothing to do with a belief in a platonic reality whose members
include the natural numbers and arbitrary sets of natural numbers, and so
on. On the contrary, I disbelieve in such entities. But I have as good a
conception of what arbitrary subsets of natural numbers are supposed to be
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like as I do of the basic notions of Euclidean geometry, where I am invited
to conceive of points, lines and planes as being utterly fine, utterly straight,
and utterly flat, resp. What is not evident on the latter conception without
special work is the consistency of the system of Euclidean geometry with the
parallel axiom replaced by its negation. Similarly, while the notion of arbi-
trary set and the cumulative hierarchy argues for believing straight off not
only in the consistency of ZF but also of ZFC(=ZF+AC), much additional
work had to be done to establish the consistency of ZFC+¬CH (namely by
Paul Cohen’s method of forcing). To return, for example, to NF, that has
no intuitive model to support our direct belief in its consistency, and the
problem of establishing such a result, if it is to be established at all, will no
doubt require special metamathematical work, for which restriction in ad-
vance to constructive methods would be irrelevant. But if, say, we find out
that ZFC � ConNF and we accept the consistency of ZF then we must accept
the consistency of NF, since ConNF is a Π0

1 statement.

5 The foundational reduction rationale for re-

ductive proof theory.

Another modification of Hilbert’s program was suggested by Kreisel (1958,
1968) and has been further expanded and pursued by me in (Feferman 1988,
1993). Since quite a bit of detail is supplied in the latter papers, I shall
content myself here with as brief an explanation as possible for present pur-
poses. In the 1993 paper, “What rests on what? The proof-theoretic analysis
of mathematics”, I distinguished four senses in which we can deal, from a
logical point of view, with the question posed there, by reference to the
following categories: an informally developed body of mathematics M, a
formal language L, formulas φ of L, a formal axiomatic system T in L, and a
general foundational framework F (such as that of finitism, constructivism,
set-theoretic platonism, etc.). The four senses are:

(i) M rests on T, in the sense that M can be formalized in T;

(ii) φ rests on T, in the sense that φ can be proved in T;

(iii) T rests on F , in the sense that T is justified by F ; and

(iv) T1 rests on T2, in the sense that T1 is reducible to T2.
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Any of the notions of reduction for formal systems, such as those discussed
in the Appendix, could be taken in (iv), but here our main concern is with
proof-theoretic reductions. All but (ii) (perhaps the most common of the four
senses) are combined in the foundational reduction rationale for reductive
proof theory, which was formulated in general terms as follows in my 1988
paper (p. 364):

A body of mathematics M is represented in a formal system T1

which is justified by a foundational or conceptual framework F1.
T1 is reduced proof-theoretically to a system T2 which is justified
by another, more elementary such framework F2.

Note that in each case it is only expected that Ti, and thence M, repre-
sents a part of what can be justified by Fi, so what a given proof-theoretic
reduction achieves under this rationale is only a partial foundational reduc-
tion. Hilbert’s program called for the reduction of formal systems T1 justified
by an infinitary framework F1 to systems T2 justified by the finitary frame-
work F2; the general foundational pair in this case is briefly indicated here by
〈infinitary, finitary〉. Because of the limitations due to Gödel’s incomplete-
ness theorems as to how far Hilbert’s program can be carried, other pairs of
foundational frameworks are considered under the above rationale, such as
〈impredicative, predicative〉 and 〈non-constructive, constructive〉. But one
can also in some cases reduce systems which require for their direct justi-
fication the uncountable infinite in some form or other (e.g. if they have
quantified variables ranging over “arbitrary” sets of natural numbers) to
those that do not require such, but are still infinitary in their justification
(e.g. systems of arithmetic in quantificational logic); this distinction leads to
the pair 〈uncountable infinitary, countable infinitary〉. Since these various
categorizations are vague to a certain extent, when judging whether a given
proof-theoretic reduction accomplishes a foundational reduction under the
above rationale, one seizes on the most obvious features of the foundational
frameworks involved, so that “insofar as possible, what the work achieves
will speak for itself” (op. cit., p. 367).

One could construe the extended Gentzen program as falling under the
rationale for the pair 〈infinitary non-constructive, constructive〉. But the re-
quirements of that program as described in sec. 4 (1)–(3) above are rather
specialized, involving as they do a mix of reductions to finitism and construc-
tivism as well as the essential role of ordinals. In the papers (Feferman 1988,
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1993), I have referred to the foundational reduction rationale for reductive
proof theory as a relativized form of Hilbert’s program, and that seems to
me to be a more apt description than for the extended Gentzen program
with its specialized character. Note that no requirements are made as to
how the proof-theoretic reductions are to be carried out under this rationale.
They could be achieved by cut-elimination techniques accompanied by or-
dinal analysis as described in sec. 3, or by functional interpretations, or by
other proof-theoretical methods.

Here, briefly, for purposes of illustration, are some examples of known
proof-theoretic reductions which provide foundational reductions under the
above rationale; details, many more examples and references to the reductive
work involved are given in the aforementioned papers.

5.1 Reductions of the infinitary to the finitary

Here the familiar example is that provided by Parsons’ reduction

IΣ1 ≤ PRA.(1)

Later this was improved (following model-theoretic conservation results
by Harvey Friedman) by Wilfried Sieg to the proof-theoretic reduction

RCA + WKL + IΣ1 ≤ PRA,(2)

where RCA is the recursive comprehension axiom and WKL is the so-called
Weak König’s Lemma given by restriction of KL to binary branching trees.
Note that (2) accomplishes a foundational reduction 〈uncountable infinitary,
finitary〉.

5.2 Reductions of the uncountable infinitary to the

countable infinitary.

As explained above, systems whose language permits quantification over vari-
ables for sets of natural numbers require, on the face of it, the uncountable
infinitary framework, while arithmetic only requires the countable infinitary
framework. The classical example here is
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ACA0 ≤ PA,(3)

where ACA0 is the system based on the arithmetical comprehension ax-
iom with restricted induction (indicated by the sub ’0’). Following model-
theoretic conservation results by Barwise and Schlipf and, independently,
Friedman, (3) was strengthened by Feferman and Sieg to the proof-theoretic
reduction

(�1
1 − CA)0 ≤ PA,(4)

where the subsystem of analysis on the left is based on the �1
1 (or “Hyper-

arithmetic”) Comprehension Axiom.

5.3 Reductions of the impredicative to the predicative.

Systems of (unramified) analysis employing instances of the comprehension
axiom in which set variables occur bound are prima-facie impredicative. The
characterization of predicativity via autonomous transfinite progressions of
ramified systems obtained independently by Feferman and Schütte in 1964,
arrived at Γ0 as the least impredicative ordinal, where Γ0 is the least fixed
point α of φα(0) = α, and where 〈φξ〉 is the Veblen hierarchy of critical func-
tions. Since φ0(β) = ωβ , we have φ1(β) = εβ; in particular, ε0 = φ1(0), hence
ε0 < Γ0. The ramified analytic progression up to ordinal α is equivalent to
ACA iterated α times, so the following proof-theoretic reduction obtained by
Feferman and Sieg (again after a related model-theoretic conservation result
due to Friedman), illustrates the reduction 〈impredicative, predicative〉:

�1
1 −CA ≤ (ACA)<ε0

.(5)

In both systems here, induction is unrestricted, and in the system on the
right, ACA is iterated α times for each α < ε0.

5.4 Reductions of the non-constructive to the construc-
tive.

Here the paradigm is given by Gödel’s translation of classical Peano Arith-
metic into Heyting’s intuitionistic arithmetic:
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PA ≤ HA.(6)

That translation in general works to translate classical systems T into
systems T(i) based on intuitionistic logic, but the translations of the axioms
of T need not be constructively valid. Thus other proof-theoretic reductions,
often heavy-duty, become necessary. An example is provided by:

�1
2 −CA ≤ ID

(i)
<ε0
,(7)

where the intuitionistic system on the right provides for the iteration of
accessibility inductive definitions any number α < ε0 times, and is thus
constructive. The result (7) is due to a long chain of work by Friedman,
Feferman, Pohlers and Buchholz, and is described in the introduction to
(Buchholz et al 1981).

5.5 Discussion.

Note first that we have not said anything about what part of mathematics
M may be formalized in the system T1 which is being reduced in each of the
preceding examples. This requires case studies in each case, some indication
of which can be found in the final section of (Feferman 1993); much relevant
information has been obtained through the so-called Reverse Mathematics
(R.M.) program, which is exposited in (Simpson 1998). Among the claims
of my 1993 paper as well as earlier papers reproduced in (Feferman 1998)
is that all scientifically applicable mathematics can be directly formalized in
systems which are proof-theoretically reducible to PA; this is justified by a
number of case studies. In fact, more refined research in the R.M. program
as well as by Feng Ye (1999) has shown that substantial portions of that
can already be carried out in systems proof-theoretically reducible to PRA.
The philosophical significance of this is that the part of mathematics that
is so far indispensible to science rests on completely arithmetical grounds,
and in fact to a large extent on finitary grounds. To that extent at least,
Hilbert’s original aims are realized (cf., in this respect, Simpson 1988). In
general, investigating what part of mathematics M can be formalized in a
given reducible system T1 carries the foundational reduction achieved over to
mathematical practice, so that one can say that if T1 ≤ T2 and T2 rests on the
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foundational framework F2, then so also does M. Thus we can say, that M
ultimately rests on finitary, countably infinitary, predicative, or constructive
grounds, as the case may be.

The main criticism to be made of the foundational reduction rationale
described in this section is basically the same as the first criticism made of
the extended Gentzen rationale made in sec. 4. Namely, it makes use of vague
notions of being finitary, infinitary (countably and uncountably), predicative
and constructive, among others, and the rationale can only be considered to
be successfully met in specific cases when there is no question as to which
of these notions applies. One can be charitable about this to an extent for
the reasons given in sec. 4, but again there will be genuine problems about
borderline cases, as we see next.

6 Are the rationales for reductive proof the-

ory applicable to recent advances in ordinal

analysis?

We are here entering an area which is unsettled in many respects. The
most advanced work in proof theory involving ordinal analysis is that due
to Michael Rathjen (1995). Related work in the style of the Takeuti school
has been carried out by Toshiyasu Arai (1996, 1997). The discussion here
is confined to the former, mainly because that is material with which I am
more familiar.9 One thing that is unsettled is that the article in question—
(Rathjen 1995)—is a report, and full details of notions and proofs have not
yet appeared, though work is in progress to provide a complete presentation
of this very complicated material. For our purposes, though, the report
suffices. The primary thing that is unsettled is the significance of that work
vis-à-vis the rationales for reductive proof theory that have been discussed
in this paper. Before getting into that, let me step back to relevant earlier
work of Rathjen (1991). I shall not try to explain in full the various systems
and principles involved; the reader not familiar with them will have to rely
on the references to follow.

In Rathjen’s 1991 paper, an ordinal analysis was given of the system
KPM obtained by extending Kripke-Platek set theory KP (based on classi-
cal logic) by an axiom for a recursively Mahlo universe of sets. An admissible
ordinal α is recursively Mahlo if for each α-recursive function f there exists

17



an admissible ordinal β < α with β closed under f . For the corresponding
universe Lα, the appropriate axiom is given by the Π2 Reflection Principle
(Π2-Ref). The crucial question for the extended Gentzen rationale is whether
a well-ordering proof for the (primitive) recursive ordinal representation sys-
tem used in the ordinal analysis of KPM can be given constructively. The
question for the foundational reduction rationale is whether KPM can be re-
duced proof-theoretically to a system T based on a more elementary frame-
work than that required to justify KPM. It’s not clear to me what framework
justifies KPM that does not already justify ZF without the power axiom, but
at any rate both require non-constructive infinitary principles, and so the first
question here would be whether we can reduce KPM proof-theoretically to
a constructive system T. Since the two rationales are related in practice, we
consider only the question of reduction here. There are three candidates for
such T, each obtained as an extension of a basic system in the literature
which has been argued to be constructive, namely the constructive theory
of types ML of (Martin-Löf 1984), the constructive theory of sets CZF in-
troduced in (Aczel 1978), and the system of explicit mathematics T0 in its

intuitionistic version T
(i)
0 introduced in (Feferman 1975, 1979). For each of

these systems S, an extension T by an axiom of Mahlo character has been
proposed and the relation with KPM has been explored, and for each one
there are then two questions to be asked:

1◦ Is KPM reducible to T?

2◦ Is T evidently constructive?

The situation concerning candidate extensions MLF and CZF + (a Mahlo
rule) of ML and CZF, resp., is reported in (Rathjen 1998). It is shown
there that each of these is proof-theoretically equivalent to KPM(r), which
is KPM taken with the foundation scheme restricted to �0 formulas. It
seems to be generally agreed that MLF is constructive on the same basis as
ML and hence that KPM(r) is proof-theoretically reducible to a constructive
system. As for full KPM, the situation is more delicate; in the final section
of the just cited paper, Rathjen conjectures that it is proof-theoretically
reducible to an extension of ML using “higher order universe operators”
proposed by Erik Palmgren. His view is that this extension “is still in the
vein of Martin-Löf’s original papers,” but that this is the limit of what can
be justified by the kind of informal semantics with its pattern of introduction
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and elimination rules required by (Martin-Löf 1984). Anton Setzer (1998)
has proposed an extension of ML denoted MLM, which is stronger than
KPM, and both Martin-Löf and Setzer have argued for the constructivity of
MLM. But at the end of his 1998 paper, Rathjen points out that “Setzer’s
Mahlo universe is generated by a non-monotonic inductive definition which
is incompatible with elimination rules for the universe.” He concludes that
“[MLM] means a paradigm shift to a new Martin-Löf type theory. Therefore
KPM is only a boundary for oldMartin-Löf type theory.” In other words, the
arguments for constructivity of MLM do not make it evidently constructive
in the sense that one had previously come to understand constructive type
theory. Concerning this, Setzer has written me that “the Mahlo universe
is constructively justified, as documented by meaning explanations... Since
I have found them, I don’t think any more about Mahlo and regard it as
absolutely unproblematic− the [constructive] consistency of KPM is known.”
These “meaning explanations,” which apparently do not require elimination
rules of ML style, are as yet unpublished. On the same grounds, Setzer claims
the constructive reducibility of theories far stronger than KPM, though still
well short of KP + (Σ1−Sep) to be discussed below.

The situation concerning extensions of the system of explicit mathemat-
ics T

(i)
0 in relation to KPM was up in the air until recently. In (Jäger and

Studer 1999) Gerhard Jäger has proposed a Mahlo style axiom (M) which is
very natural in the context of explicit mathematics. It provides for a uniform
operation m for passing from a pair (f, a) in which f takes classes to classes
and a represents a class, to m(f, a) which represents a universe containing a
and which is closed under f . It is shown, op. cit., that the classical system T0

+ (M) is interpretable in KPM (incidentally via a non-monotone inductive
definition), and the same holds for corresponding restricted versions. Sergei
Tupailo has very recently announced results (Tupailo 2000) giving the inter-
pretation of a system CZFM (containing a full version of the Mahlo axiom

in the language of CZF) in T
(i)
0 + (M). It may be argued that the latter

system is constructively justified on the same direct basis as for T
(i)
0 , which

is constructively justified.10 I understand that the system CZFM in Tupailo’s
result is conjectured by Rathjen to be proof-theoretically equivalent to KPM.
Thus it would follow that T0 + (M) in both its intuitionistic and its classical
versions is equivalent in strength to KPM.

The paper (Rathjen 1995) referred to at the beginning of this section
concerns the system (Π1

2−CA) of Π1
2 comprehension in the language of 2nd
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order analysis, augmented by the scheme (BI) of Bar Induction; this is di-
rectly equivalent to the set-theoretic system KP augmented by the scheme
(Σ1−Sep) of Σ1 Separation. Rathjen’s ordinal analysis of KP + (Σ1−Sep)
is obtained by “slicing” (Σ1−Sep) into transfinite degrees of reflection, thus
going far beyond (Πn−Ref) for each n. As a warm-up for this, Rathjen
had earlier obtained an ordinal analysis of KP + (Π3−Ref), which already
required essentially new ideas beyond the treatment of KPM; see (Rathjen
1994). Whether that subsystem is constructively reducible is by no means
clear, though again Setzer has argued for that on the same kind of grounds
as for MLM above (personal communication). In any case, the status of
the full system KP + (Σ1−Sep) vis-à-vis our rationales for reductive proof
theory is very much up in the air. Efforts are being made by Setzer (and
perhaps others) to reduce it to some system of constructive character, but
whether any such system will be evidently constructive remains to be seen;
at the moment, there is little to encourage optimism in that respect. It is
mainly for this reason that the question has been raised in the present paper
whether reductive proof theory has a viable rationale.

One final remark, harking back to the discussion in sec. 4, is in order
about all this work in relation to the extended Gentzen rationale. Even
if one succeeds in reducing the system (Π1

2−CA) ± BI to a constructive
system (whether evidently so or not), one can hardly expect that doing so
will appreciably increase one’s belief in its consistency (if one has any doubts
about that in the first place) in view of the difficulty of checking the extremely
complicated technical work needed for its ordinal analysis.

7 Why reductive proof theory?

To conclude, I want to respond to questions as to the value of reductive
proof theory which have been raised within the logical community. But first
one must make a simple distinction, that could (and perhaps should) have
been made much earlier. Recall the general explanation in sec. 2 of the
relation of proof-theoretic reduction S ≤ T [Φ] (in U), where U = IΣ1 or
some other standard relatively weak base theory. Sections 3–6 have been
entirely concerned with the use of this relation in reductive proof theory,
which is the pursuit via proof-theoretic reductions of an extended Hilbert
program in some sense or other, such as discussed in secs. 4 and 5 above.
Now, all relations S ≤ T, including relative interpretations and translations,
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that have been established by logicians for specific systems in practice fall
under the relation of proof-theoretic reduction for suitable Φ and U since,
after all, the interpretation or translation has to be proved somewhere, and
that somewhere is a prior accepted system U. With a little more fuss in
each case, it may be seen that the relations S ≤ T in question are in fact
subsumed under proof-theoretic reduction in the above strong sense. Thus,
for example, all relative consistency results obtained in set theory by inner
model constructions or forcing constructions can be seen to fall under this
relation. Evidently, those cases have nothing to do with reductive proof
theory as presently pursued, but the fact that the use of proof-theoretic
reduction is common to both pursuits shows the clear value of this relation,
as a general means of establishing intertheoretic reduction.

At any rate, with that distinction in mind, let us consider the kinds of
questions that are often raised concerning the value of reductive proof theory:

1◦ Why reduce at all?

2◦ Why restrict to weak systems?

3◦ Why tie our hands?

In the background to these is the common view, sometimes referred to
as set-theoretic imperialism, that set theory is the foundation of all of math-
ematics. Exactly what this means is not clear (and to the extent that it is
clear is not, in my opinion, defensible11), but it is the general attitude that
concerns me here, not any precise formulation. On this view, there is no
reason to consider other foundational frameworks such as finitism, predica-
tivism, constructivism, and so on, which—if accepted as the only source of
legitimation—cast one out of “Cantor’s Paradise” and apparently force one
to jettison vast tracts of mathematics. However, if one can’t swallow the kind
of platonism required to justify infinitary, impredicative, non-constructive set
theory12, it is necessary to examine such alternative frameworks to see what
philosophical arguments might be made for them and what sacrifices may
be required if one is to live by them mathematically. The traditional way of
seeing what can be achieved under such restrictions is to reconstruct mathe-
matics from the ground up, while adhering to the informal principles of the
preferred framework. The alternative offered by reductive proof theory is to
formalize various parts of mathematics in subsystems of set theory and see
which of these can be reduced to systems justified by one or another of these
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frameworks F . This way of proceeding is non-committal to which such F is
to be preferred, and leads more quickly to a survey of what parts of mathe-
matics can be reconstructed, at least in principle, on the grounds of F . (In
doing so, the reductive proof-theorist may face, coming from the other side,
criticism from the committed advocate of F , who will say that it is only what
can be explicitly worked out under the principles of F that is of interest to
him or her. Well, you can’t satisfy everybody.)

As has already been indicated in sec. 5.5, what has emerged, for exam-
ple, from both the directly reconstructive and the reductive work is that
substantially all of scientifically applicable mathematics can be formalized in
systems which are predicatively reducible (in fact all the way down to PA)
and considerable parts of that—e.g. the parts of functional analysis needed
for quantum mechanics—can be grounded finitistically (as represented in
PRA); see, for example, (Feferman 1993), (Simpson 1998, chs. III and IV)
and (Ye 1999). On the other hand, interesting parts of pure mathematics
which can be formalized in (Π1

1-CA) definitely require impredicativemethods;
see, for example (Simpson 1998, ch. VI). In that respect then, one can see
how one’s hands would indeed be tied by restriction to the finitist or predica-
tive frameworks, but not necessarily by the general constructive framework.
In fact, as explained in (Buchholz, et al. 1981) one of the results of reductive
proof theory is that (Π1

1-CA) and many of its transfinite iterates are justified
constructively by reduction to constructive theories of iterated accessibility
inductive definitions. And evident constructive methods reach beyond these
via the reduction obtained by (Jäger and Pohlers 1982) of (�1

2-CA) + BI

to T
(i)
0 . As we have seen, it is currently an open question as to how much

farther one can go constructively. From our present perspective, it is very
likely that constructive methods taken in their widest possible sense do not
reach far beyond (Π1

2-CA) in strength if at all, and there are certainly many
interesting results of descriptive set theory (for example) which are known to
require substantially more. So, at that point the critic is certainly justified
in raising question 3◦. The devotee of finitism, predicativity, constructivity,
or other such non-set-theoretical framework can simply answer, “So be it”
and dismiss anything that cannot be justified by their preferred methods
as being either meaningless or useless or both. A less ideological response
to 3◦ might be that the bulk of “everyday”13 pure and applied mathemat-
ics can be comfortably formalized in systems of strength well under that of
(Π1

2-CA), where the proof-theoretic reductions accomplish more or less clear
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foundational reductions.
Finally, one might point out that question 3◦ is loaded, and that trying

to respond to it is to fall into the trap of accepting some truth in the veiled
accusation. The pursuit of reductive proof theory does not by itself imply
an intention to tie anyone’s hands. Indeed, as I have stated elsewhere, after
having pointed out the mathematical strength of relatively weak subsystems
of analysis: “I am not by any means arguing that everyday mathematical
practice should be restricted to working in such subsystems. The instrumen-
tal value of ‘higher’ and less restricted set-theoretical concepts and principles
is undeniable. The main concern here is rather to see: what, fundamentally,
is needed for what?” (Feferman 1999, p. 109) This, then, yields a rather
simple response to the above questions which is not hinged to what might
be considered vague and subjective matters of philosophy or foundational
frameworks. Namely, as ever in the history of mathematics, one wants to
see, dispassionately: what rests on what? And among the different senses
of that recalled in sec. 5, reductive proof-theory has had a pre-eminent role
to play in answering the question in its fourth sense there, i.e. as to what
systems are reducible to what other systems. That argument for the value
of reductive proof theory as one tool among others in helping to lay out the
landscape of logical dependencies in mathematics allows one to ignore the
loaded question 3◦. At the same time, it bypasses the questions raised in
the body of this paper about the viability of current rationales for reductive
proof theory growing out of Hilbert’s program. This foundationally neutral
way of looking at the present and no doubt continued value of our work is fine
as far as it goes. But the foundational dimension should not, by any means,
be dismissed. All along, reductive proof theory has rightly been called on
to do more, and it is just that more which has been put up for examination
here.

A Appendix

A.1 Notions of local reduction between formal sys-
tems.

There are three main kinds of relations S ≤ T dealt with in the metamath-
ematical literature between formal systems S and T. Each is induced by a
specific kind of reduction in a sense to be explained; since they reduce one
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formal system to another, rather than all formal systems to a single one,
they are candidates for local rather than global reductions. The three are:
relative interpretation, translation and proof-theoretic reduction. In section
A.2 we give some basic examples of each. The relations are then defined and
examined in the successive sections, with proof-theoretic reduction taken up
at length in section A.5. Two theorems are proved there which show that
under rather general conditions the non-uniform version of this relation is
equivalent to the uniform version. The Appendix concludes in section A.6
with an examination of the results of Niebergall (2000) which he considers
to raise problems about proof-theoretic reduction as a “good” reducibility
relation.

A.2 Examples of the three kinds of reduction.

(a) Relative interpretation. The following are familiar:

(a1) PA ≤ ZF, i.e. the interpretation of Peano Arithmetic in Zermelo-
Fraenkel set theory;

(a2) ZF + AC + GCH ≤ ZF, via Gödel’s model of ZF + AC + GCH
in the constructible sets;

(a3) S ≤ PA + ConS, for recursive S, by the Bernays-Wang formaliza-
tion of Gödel’s completeness theorem.

(b) Translation. Some examples here are:

(b1) PA ≤ HA, the “negative” translation of PA into Heyting’s intu-
itionistic arithmetic;

(b2) HA ≤ PRω, Gödel’s “Dialectica” translation of HA into a quanti-
fier free theory of primitive recursive functionals of finite type;

(b3) IPC ≤ S4, by Gödel’s translation of the intuitionistic propositional
calculus (IPC) into Lewis’ modal system S4.

(c) Proof-theoretic reduction. The following are standard examples:

(c1) BG ≤ ZF, the reduction of Bernays-Gödel theory of sets and
classes to ZF;

(c2) ACA0 ≤ PA, the system based on Arithmetical Comprehension
Axiom with restricted induction, reduced to PA;
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(c3) Σ1−IA ≤ PRA, the subsystem of PA based on Σ1−Induction Ax-
iom, reduced to the quantifier free system of Primitive Recursive
Arithmetic.

We now turn to a more detailed examination.

A.3 Relative interpretation.

One has a relative interpretation of S into T if with each basic relation,
function, and constant symbol of the language LS of S is associated as its
interpretation a definition of it in the language LT of T, and with each sort s
of variable in LS is associated a defined range of variation given by a formula
δs(x) in LT; it is usually assumed that the equality relation is interpreted
by itself. Then with each formula φ of LS is associated as its interpretation
in LT a formula f(φ) obtained by substituting the respective definitions for
the basic symbols and relativizing quantified variables of sort s to δs. For
simplicity, we assume, as is usual in applications, that the basic symbols of S
and T are each effectively specified. It follows that the function f , which is
defined recursively, is an effective map of the formulas of LS into the formulas
of LT; we write this property in the following as:

f : LS → LT is effective.(1)

This interpretation function f is then defined to constitute a relative inter-
pretation of S in T, if we have

S � φ⇒ T � f(φ).(2)

S≤ T is defined to hold in the sense of relative interpretability if there
is such an interpretation f . In that case, various “good” properties of T
transfer to S. In particular, since f preserves negation, i.e.

f(¬φ) = ¬f(φ) for any formula φ,(3)

consistency transfers in this way, i.e.,

S ≤ T and T consistent ⇒ S consistent.(4)

Finally, if T′ is any extension of T and S′ := {φ | T′ � f(φ)} then S′ ≤T′ and
so if T′ is consistent so also is S′.
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Though long in actual use—as the examples A.2(a) show—the precise
notion of relative interpretation seems first to have been defined by Tarski in
(Tarski, Mostowski and Robinson 1953), where it was applied as a general
tool in proofs of undecidability of various systems. The basis is that (with
f effective) if S is relatively interpretable in T and T is decidable then so
also is S. Hence if S is undecidable then so also is T and if S is essentially
undecidable (i.e. no consistent extension S′ of S is decidable) then the same
holds for T.

The relation of interpretability also serves as a measure of strength of
formal systems. It is reasonable to say that T is essentially stronger than
S under the relation ≤ of relative interpretability if S ≤T, but not T≤S. It
may well be that for LS ⊆ LT, T is stronger than S in the sense of proving
more statements than S, but is not essentially stronger than S. For example, I
showed in (Feferman 1960) that PA + ¬ ConPA ≤ PA, though ¬ ConPA is not
provable in PA by Gödel’s first incompleteness theorem. On the other hand,
I was able to show there that PA + ConPA is essentially stronger than PA in
the sense of relative interpretability, and the same holds for any consistent
r.e. extension of PA. These kinds of results, together with a proper general
formulation of the formalized completeness theorem, A.2(a3), led to a study
of the relation of relative interpretability between systems for its own sake.
For a recent survey, see (Lindström 1997).

A.4 Translation.

Here, it must be admitted that, despite the many examples in practice of
the sort dealt with in A.2(b), there is no useful general theory which does
not already assimilate the notion of translation to proof-theoretic reduction.
First of all, there is no settled definition of what constitutes a translation;
some proposals were floated by Wang (1951) and Kreisel (1955). The minimal
assumptions seem to be that we have a function f satisfying the following
(1)-(3), as for relative interpretations.

f : LS → LT is effective,(1)

S � φ⇒ T � f(φ), and(2)

f(¬φ) = ¬f(φ).(3)
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To make sense of these, as background assumptions we need that the lan-
guages LS of S and LT of T are effectively specified, that negation is defined
for every formula of each of these languages, and that each is based on a
system of logic with given axioms and rules of inference, in terms of which
the provability relation is defined. Another assumption which might be made
is that f preserves all the propositional operations. This makes sense only
if every such operation on formulas of LS is also an operation on formulas
of LT, and that they function logically in the same way. That requirement
is not met, for example, when the logic of S is classical and that of T is
intuitionistic, as in the “negative”, or “double-negation” translation A.2(b1)
of PA into HA, for there we take f(φ ∨ ψ) = ¬¬(f(φ) ∨ f(ψ)). Further, in
Gödel’s functional translation A.2(b2) of HA into the quantifier-free theory
PRω, propositional operations on quantified formulas are not preserved. So
in various cases of interest that occur in practice, the additional assumption
is not met. Moreover, even when such an additional assumption is made,
one obtains trivializing results. Namely, it was shown by Pour-El and Kripke
(1967) that for each consistent recursively enumerable system S in first-order
classical logic there is a primitive recursive translation f of S into the weak
subsystem Q of PA (“Robinson’s system”), which satisfies (1)–(3) and pre-
serves all propositional operations.14

For the kinds of translations of which A.2 (b1) and (b2) are illustrative,
it is more reasonable to assume that for each system S, we have an atomic
sentence ⊥S of LS such that S proves ⊥S just in case S is inconsistent. In
the case of systems (such as in those examples) that contain a modicum of
arithmetic, we can simply take for the sentence ⊥S the sentence 0 = 1. Then
in place of (3) as a condition on translations, we take

f(⊥S) =⊥T .(3′)

Now define f : S≤ T to hold in the sense of translation if f is a function
satisfying (1), (2) and (3′), and S ≤ T if there is such an f . Then consistency
transfers from T to S just as for relative interpretability, so at least in that
respect, translations are “good“, i.e. we have

S ≤ T and T consistent ⇒ S consistent.(4)

Of course, that would also hold if we took S ≤ T to mean that there
is a translation f satisfying (1)–(3), or even one preserving all propositional
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operations. So that notion of translation also has the value of insuring relative
consistency (4), and the Pour-El/Kripke result does not affect that value,
since it constructs a trivializing translation only for S already assumed to be
consistent.

A further assumption that is reasonable to make on translations that
squares with practice, and which brings us closer to proof-theoretic reduction,
is that f extends to an effective map f∗ from proofs in S to proofs in T
(however these are represented) in such a way that

ProofS(p, φ) ⇒ ProofT(f∗(p), f(p)).15(2′)

In particular, combined with (3′), this has the consequence

ProofS(p,⊥S) ⇒ ProofT(f∗(p),⊥T).(3∗)

When we demand that not only should statements like (2′) or (3′) be true
but also that they be established by restricted means of one sort or another,
we are led closer to the notion of reduction treated next.

A.5 Proof-theoretic reduction.

For simplicity, all systems S, T,. . . considered here are assumed to contain
the system IΣ1, shown by Parsons (1970) to be conservative over the system
PRA of Primitive Recursive Arithmetic. Furthermore, these systems are
assumed to be primitive recursively axiomatized, and that when dealing with
formalized versions of their proof predicates and provability predicates, we
make use of canonically associated primitive recursive representations. Given
S, we write ProofS(y, x) to express that y codes a proof in S of the formula
coded by x, and ProvS(x) for (∃y) ProofS(y, x). Finally we write ConS for
¬ProvS(0 = 1), to express the consistency of S. Where there is no ambiguity,
we identify syntactic objects with their codes.

The essential step in arriving at the concept of proof-theoretic reduction
of a system S to a system T is that this is given by an effective map f from
proofs in S to proofs in T, not from formulas of LS to formulas of LT, as
in A.3 and A.4. (Thus such f corresponds to the f∗ described in 2.3 (2′)
above.) In its greatest generality, as defined in (Feferman 1988), f need not
be total. However, in practice, not only is it total, but it is also primitive
recursive. For simplicity, that too is assumed here, though it is not assumed
that f , even though total as a function, maps every proof in S to a proof
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in T . Given such f , let End(f(p)) denote the end-formula of f(p) when the
latter is a proof in T. Special interest attaches to those end formulas which
are preserved by f , in the following sense. Let Φ be any primitive class of
formulas common to both LS and LT, and which includes the sentence 0 = 1.
Then we require that

for each p, φ, if ProofS(p, φ) and φ ∈ Φ then ProofT(f(p), φ).(1)

It is also an essential part of the notion of proof-theoretic reduction that not
only do we meet (1), but we also prove it by some restricted means or other.
Thus we consider provability of the formalization of (1) in a system W, where
W is in general included in T. Thus define f : S ≤ T [Φ] (in W) to hold if f
satisfies (1) and

W � ∀x, y[ProofS(y, x) ∧ Φ(x) → ProofT(f(y), x)],(2)

where Φ(x) defines the class Φ. Then we put S ≤ T [Φ] (in W) if there exists
a primitive recursive f satisfying both (1) and (2). In words, S is proof-
theoretically reducible to T conservatively for Φ, provably in W, if these hold.
The two main cases of W considered below are W = IΣ1 and W = T, and
the associated proof-theoretic reducibility relation is then said to be uniform
or non-uniform, respectively. Trivially, under the hypothesis (1) alone of S
≤ T [Φ] (in W), we have that T is a conservative exension of S for formulas
in Φ, i.e.,

φ ∈ Φ and S � φ⇒ T � φ.(3)

Applied to the equation 0 = 1, assumed above to belong to Φ, this yields, no
matter what W is taken:

T consistent ⇒ S consistent.(4)

But then the additional requirement (2) gives,

W � ConT → ConS.(5)

We write S ≤RC T (in W) for (5); in words, this expresses that S is relatively
consistent to T, provably in W. Again this relation is said to be uniform or
non-uniform, according as to whether W = IΣ1 or W = T, resp.
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In general, (provable) relative consistency is a weaker relation than proof
theoretic-reducibility, and the non-uniform notions are weaker than the uni-
form ones. However, the following theorem shows that when Φ is taken
simply to be the set ClEq of closed equations s = t of arithmetic, these are
all the same (under our blanket assumption that all systems considered are
primitive recursive and contain IΣ1).

Theorem 1. 16 The following are equivalent:

(i) S ≤ T [ClEq] (in T)

(ii) S ≤ T [ClEq] (in IΣ1)

(iii) S ≤ T [{0 = 1}] (in IΣ1)

(iv) S ≤RC T (in IΣ1).

Proof. We show (i)⇒(iv)⇒(iii)⇒(ii)⇒(i). The last of these implications is
of course immediate. We turn to the first one. Thus assume (i) , so that we
have a primitive recursive function f satisfying

T � ∀y[ProofS(y, 0 = 1) → ProofT(f(y), 0 = 1)].(a)

The matrix of this formula is equivalent in IΣ1 to a primitive recursive rela-
tion R(y). We now make use of the following for any such R.

Lemma 1. If T � ∀yR(y) then IΣ1 + ConT � ∀yR(y).

The proof of this rests simply on the fact that we can prove in IΣ1 both
ProvT(∀yR(y)) and ∃y¬R(y) → ProvT(∃y¬R(y)).

Returning to (a), we thus have

IΣ1 + ConT � ∀y [ProofS(y, 0 = 1) → ProofT(f(y), 0 = 1)] .(b)

But the sentence proved here implies ConT → ConS, so we have

IΣ1 � ConT → ConS,(c)
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as required. Now assume (iv). Then we have

IΣ1 � ∀y¬ProofT(y, 0 = 1) → ∀x¬ProofS(x, 0 = 1),(d)

and hence

IΣ1 � ∀x∃y [ProofS(x, 0 = 1) → ProofT(y, 0 = 1)] .(e)

Thus by Parsons’ conservation theorem for IΣ1 over PRA, there is a primitive
recursive function f such that

IΣ1 � ∀x[ProofS(x, 0 = 1) → ProofT(f(x), 0 = 1)],(f)

i.e. (iii) holds. To show that (iii) implies (ii), working in IΣ1, suppose that x
is a proof in S of a closed equation s = t. We can compute the values n, m of
s, t primitive recursively, and then reduce the equation s = t to |n−m| = 0.
If n �= m, this is equivalent to 0 = 1, and we can then use f to carry over
to a proof of s = t in T. If n = m, this is just 0 = 0, and that carries over
trivially to T.

In practice, one is interested in establishing proof-theoretic reducibility
with conservation for much wider classes Φ than closed equations. Usually,
Φ is taken to include all Π0

2 formulas of arithmetic; conservation of S over
T for these tells us that S has no more provably recursive functions than T,
and if T ⊆ S, that they have the same provably recursive functions. When
the languages of S and T include analytic statements, one is interested in Φ
which contain the class of Π1

1 or even Π1
2 formulas; conservation for the former

class gives conservation with respect to provably recursive well-orderings,
which are a central concern in ordinal analysis.17 It is thus of interest, as
was pointed out to me by Karl-Georg Niebergall, that quite generally for
primitive recursive Φ, uniform and non-uniform proof-theoretic reducibility
agree, at least for primitive recursive extensions S, T of IΣ1, as we have been
assuming all along.

Theorem 2. Suppose Φ is primitive recursive. Then S≤T [Φ] (in T) is
equivalent to S ≤ T [Φ] (in IΣ1).

Proof. Niebergall’s proof is as follows. Suppose f is a primitive recursive
function satisfying (1) above and (2) for W = T, i.e.,
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T � ∀x, y[ProofS(y, x) ∧ Φ(x) → ProofT(f(y), x)].(a)

Denote by R(x, y) the matrix of the sentence in (a); R is primitive recursive.
Hence by the Lemma in the proof of Theorem 1, we have

IΣ1 + ConT � ∀x, yR(x, y).(b)

It follows that

IΣ1 + ConT � ∀x[ProvS(x) ∧ Φ(x) → ProvT(x)].(c)

But also (here’s the trick),

IΣ1 + (¬ConT) � ∀x[ProvS(x) ∧ Φ(x) → ProvT(x)],(d)

because if T is inconsistent, everything is provable from it. Hence, already

IΣ1 � ∀x[ProvS(x) ∧ Φ(x) → ProvT(x)].(e)

Rewriting this as

IΣ1 � ∀x, y∃z[ProofS(y, x) ∧ Φ(x) → ProofT(z, x)],(f)

we can apply Parsons’ (1970) conservation theorem here to obtain z as a
primitive recursive function of x and y, provably in IΣ1, q.e.d.

A.6 Is proof-theoretical reducibility a “good” reducibil-

ity relation?

In his interesting contribution to this issue of Erkenntnis, Karl-Georg Nieber-
gall argues that relative interpretability is the prime candidate for a general
relation of reducibility between systems, partly on the grounds of its many
nice properties, partly on the grounds that various alternative candidates
that have been proposed are unsatisfactory in one respect or another, and
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partly on the grounds that those alternative candidates which are satisfactory
are “not very different“ from relative interpretability (Niebergall 2000, secs. 2
and 4.1). The “problematic” concepts of reducibility criticized op. cit. sec. 2
are not of concern to me here; except for the general notion of translation
already dealt with in A.4 above, these are all model-theoretic in nature.

My view is that because of the examples in A.2(b) and (c) above, Nieber-
gall’s thesis is prima-facie wrong. First of all, by the recursive build-up of
the interpretation function f , the definition of relative interpretability makes
sense only if the formulas of LT are closed under the logical operations of LS.
This immediately excludes the reducibility examples (b2) and (c3). Secondly,
even where we have both S and T formalized in the same basic logic, in par-
ticular in the first-order classical predicate calculus, the reductions in exam-
ples (c1) and (c2) can’t be accounted for in terms of relative interpretability,
as Niebergall himself acknowledges. This is because if S is relatively inter-
pretable in T and S is finitely axiomatized, then the interpretation sends S
into a finitely axiomatized subtheory of T. In that case, if T is essentially
reflexive, i.e. proves the consistency of every one of its finite subtheories, we
have T � ConS. The conclusion is that if S is finitely axiomatized and T
is consistent and essentially reflexive and T � ConT ↔ ConS, then S is not
relatively interpretable in T. These hypotheses are met in both examples (c1)
and (c2), of BG in ZF and ACA0 in PA, resp.

For ease of comparison in the further discussion, let me repeat Niebergall’s
proposed axioms from his sec. 3 (op. cit.) for a “good” reducibility relation
S ≤ T (following his numbering of them):

(PRL1) S ⊆ T ⇒ S ≤ T.

(PRL2) S ≤ T & T ≤ U ⇒ S ≤ U.

(PRL3) S ≤ T & T consistent ⇒ S consistent.

(PRL4) S ≤ T & E finite & E ⊆ S ⇒ there exists F finite

with F ⊆ T and E ≤ F.

(PRL5) For E, F finite, E ≤ F ⇒ IΣ1 � ConF → ConE

All of these axioms are satisfied by the relation ≤ of relative interpretability,
but as just pointed out (and as Niebergall himself acknowledges), (PRL4)
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fails for proof-theoretic reduction for the very familiar cases of BG over ZF
and ACA0 over PA. This is the only one of the five proposed axioms with
which I have any dispute.18

Let me now turn to the specific criticisms of proof-theoretic reductions
in (Niebergall 2000, sec 4.1). These are mainly directed at the non-uniform
reduction relation and at the associated non-uniform relative consistency
relation. The suggestion to use the latter apparently originates with Kreisel
(1968), p. 368. Basically, his argument was that when considering the role
of W in

W � ConT → ConS,(1)

one can’t expect to take W = IΣ1, or for that matter, any other uniform
base system, since Gödel’s incompleteness theorems undermined Hilbert’s
program to take something like that system as a privileged base. Once one
gives up uniformity, this does not mean that T must be taken for W but,
as a general requirement, it is not clear what other choice could be made.19

However, under natural additional conditions that are met in practice, one
can insure that uniform relative consistency holds as well. One such condition
was given in Theorem 1 of sec. A.5, namely that we have a primitive recursive
function f that, provably in T, converts any proof of a closed equation in S
(or more particularly, the equation 0 = 1) to a proof of the same in T.

Niebergall’s criticism of the non-uniform relative consistency relation is
that it is not transitive, in contrast to the uniform relation. This is given
(op. cit., Theorem 4.1, and in full detail in Niebergall 1999, Theorem 2.5) by
an ingenious example of three primitive recursive extensions S, T, U of IΣ1

such that S≤RC T (in T) and T ≤RC U (in U), but not S ≤RC U (in U).20

The particularities of his example are not needed for the discussion here,
except to remark that they fail to have other properties met in practice. One
of these is conservation with respect to Π0

2 sentences. Since the statement of
relative consistency is one such, it is easily seen that we have:

S ≤RC T (in T), T ≤RC U (in U) and U Π0
2–conservative over T ⇒(2)

S ≤RC U (in U).
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As it happens, in Niebergall’s example (loc. cit.), U is not even Π0
1 conserv-

ative over T.
The second of Niebergall’s criticisms is directed at non-uniform proof-

theoretic reducibility, again because of an example of failure of transitivity
(op. cit., Theorem 4.3, and in full detail in Niebergall 1999, Theorem 2.20).
It follows from Theorem 2 in the preceding section that the counterexample
can’t be for extensions of IΣ1, since non-uniform proof-theoretic reducibility
is transitive for such, by the equivalence with the uniform relation. In-
deed, this second counterexample (again ingenious) is for systems which are
extensions of the weaker system I∆0 + Exp.21 As a result of this second
counter-example, there may thus be a concern as to the use of the notion of
non-uniform proof-theoretic reducibility when applied to systems which are
in this weaker range. But that does not argue against uniform proof-theoretic
reducibility modified to I∆0 + Exp or perhaps even some weaker system as
a base. Since my concerns in this paper are with the challenges to reductive
proof theory having to do with systems that are vastly stronger than IΣ1,
the problems with those lie elsewhere. However, such careful and thought-
provoking investigations of reducibility relations as Niebergall has carried out
are greatly to be valued for their contribution to the development of proper
conceptual foundations of proof theory in general.

Acknowledgments. I would like to thank Wilfried Buchholz, Gerhard Jäger, Michael
Rathjen, Anton Setzer, and Thomas Strahm for providing technical information and help-
ful comments, especially on section 6; I wish also to thank Karl-Georg Niebergall for the
same with respect to the Appendix section A.5.
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1I must admit I have not studied the literature pro and con scientific reductionism to
any significant extent. I am sympathetic, for example, to the anti-reductionist arguments
presented by Dupré(1993).
2By functional foundations, I mean the attempts by Church and Curry to develop math-
ematically all-encompassing theories whose variables range over arbitrary total functions.
3For a broader picture of proof-theoretical concerns and approaches (not only those which
are reductive in character), see the appendixes to (Takeuti 1987) and the handbook (Buss
1998).
4See (Buchholz 1991) for details.

35



5In order to concentrate on the pattern, we are being deliberately vague about details here
and below.
6For example, in Problem 2 of his famous list of mathematical problems at the meeting of
the International Congress of Mathematicians, Paris, 1900; cf, e.g. (Feferman 1998), p. 13
for discussion.
7I have discussed Kreisel’s program vs. Hilbert’s program in (Feferman 1996), pp. 267–269.
8Incidentally, GC is in Π0

1 form, and it is known that RH can be brought to that form,
while TP is in Π0

2 form.
9My presumption—partially in view of (Buchholz 1997, 1999)—is that whatever applies
to Rathjen’s work, insofar as the discussions in this paper are concerned, applies as well
to Arai’s work.
10The criteria for constructivity of intuitionistic systems of explicit mathematics are infor-
mal and less demanding than those for constructive type theory in the sense of Martin-Löf.
11Examples of mathematical notions that cannot be expressed in full in set theory: truth
of a statement of the language of set theory, and the category of all categories. There are
other common notions which are only modeled (not explicated) in set theory, such as that
of infinitesimal, or random variable.
12I am such a one.
13Non-set-theoretic.
14A precursor to that result was an argument due to Kreisel, presented in (Feferman 1960),
pp. 85–86, which showed that there is such f satisfying (1)–(3); though stated there for
translations into PA, the argument works equally well for translations into Q.
15This was already suggested in (Kreisel 1955), p. 31.
16This theorem has been observed independently by Niebergall (1999), 2.14–2.15. An
essential step in the argument, stated as Lemma 1 in the proof here, is due to a remark of
Kreisel, unpublished by him as far as I know; it is to be found in (Feferman 1988), p. 369.
17See (Feferman 1988, or 1993) for a wide range of examples of such proof-theoretic re-
ductions.
18A fine point to raise about (PRL1) is that if we don’t have a proof that S⊆T then we
can’t satisfy S≤T in the case of proof-theoretic reducibility.
19Kreisel’s argument (loc. cit) for doing so is worth quoting; in it he uses the symbol ‘℘0’
to represent finitist reasoning in something like Hilbert’s original sense, for which PRA
or IΣ1 is now often taken as a surrogate. He says that the requirement that relative
consistency proofs (ConS→ ConS′) be given in ℘0 is “one of the hangovers from Hilbert’s
programme... This depends on the tacit conviction that, some day, ConS would be proved
in ℘0. But, a chain being as weak as its weakest link, a philosophically more meaningful
requirement is to use any of the principles that one expects to need for proving ConS. A
posteriori some ‘justification’ can be given for the old requirement by showing that it is
automatically fulfilled under more reasonable conditions.”
20My notation for the relations involved is somewhat different from Niebergall’s , but the
reader should not have any trouble matching them up.
21It should be noted that the necessary proof-theoretical notions can be formalized in
I�0 + Exp, as is necessary to make sense of the relation of non-uniform proof-theoretic
reducibility between its extensions.
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