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Gödel, Nagel, minds and machines 

Solomon Feferman1 

 

1. The imbroglio between Nagel and Gödel.  Some fifty years ago (1957 to be exact), 

Ernest Nagel and Kurt Gödel became involved in a contentious exchange about the 

possible inclusion of Gödel’s original work on incompleteness in the book, Gödel’s 

Proof, then being written by Nagel with James R. Newman.  What led to the conflict 

were some unprecedented demands that Gödel made over the use of his material and his 

involvement in the contents of the book⎯demands that resulted in an explosive reaction 

on Nagel’s part.  In the end the proposal came to naught.  But the story is of interest 

because of what was basically at issue, namely their provocative related but contrasting 

views on the possible significance of Gödel’s theorems for minds vs. machines in the 

development of mathematics. That is our point of departure for the attempts by Gödel, 

and later Lucas and Penrose, to establish definitive consequences of those theorems, 

attempts which⎯as we shall see⎯depend on highly idealized and problematic 

assumptions about minds, machines and mathematics.  In particular, I shall argue that 

there is a fundamental equivocation involved in those assumptions that needs to be 

reexamined.  In conclusion, that will lead us to a new way of looking at how the mind 

may work in deriving mathematics which straddles the mechanist and anti-mechanist 

viewpoints.   

 The story of the conflict between Gödel and Nagel has been told in full in the 

introductory note by Charles Parsons and Wilfried Sieg to the correspondence between 

them in Volume V of the Gödel Collected Works (Gödel 2003a, pp. 135 ff), so I’ll 

confine myself to the high points.   

 The first popular exposition of Gödel’s incompleteness theorems was published 

by Nagel and Newman in 1956 in an article entitled “Goedel’s proof” for the Scientific 

American.  The article was reprinted soon after in the four volume anthology edited by 

Newman, The World of Mathematics: A small library of the literature of mathematics 

                                                
1 Revised text of the Ernest Nagel Lecture given at Columbia University on September 
27, 2007.  I wish to thank Hannes Leitgeb and Carol Rovane for their helpful comments 
on an earlier version.   
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from A'h-mosé the Scribe to Albert Einstein, presented with commentaries and notes.  

That was an instant best-seller, and has since been reprinted many times.  Newman had 

been trained as a mathematician but then became a lawyer and was in government service 

during World War II.  Endlessly fascinated with mathematics, he became a member of 

the editorial board of the Scientific American a few years after the war.   

 Ernest Nagel had long been recognized as one of the leading philosophers of 

science in the United States, along with Rudolf Carnap, Carl Hempel and Hans 

Reichenbach.  Like them, he was an immigrant to the US, but unlike them he had come 

much earlier, in 1911 at the age of 10.  Later, while teaching in the public schools, Nagel 

received his bachelor’s degree at CCNY in 1923 and his PhD in philosophy at Columbia 

University in 1930.  Except for one year at Rockefeller University, his entire academic 

career was spent at Columbia, where he became the John Dewey Professor of Philosophy 

and was eventually appointed to the prestigious rank of University Professor in 1967.  In 

his philosophical work, Nagel combined the viewpoints of logical positivism and 

pragmatic naturalism.  His teacher at CCNY had been Morris R. Cohen, and with Cohen 

in 1934 he published An Introduction to Logic and Scientific Method, one of the first and 

most successful textbooks in those subjects.   

 Soon after the appearance of Nagel and Newman’s article on Gödel’s theorems in 

The World of Mathematics, they undertook to expand it to a short book to be published 

by NYU Press.  Moreover, they had the idea to add an appendix which would include a 

translation of Gödel’s 1931 paper on undecidable propositions together with the notes for 

lectures on that work that he had given during his first visit to Princeton in 1934.  Early in 

1957 their editor at the Press, Allan Angoff, approached Gödel for permission to use that 

material.  Though Gödel said he liked the Nagel-Newman article very much as a non-

technical introduction to his work, he said that he was concerned with some troublesome 

mistakes2 that had been made in it and even more so with the interpretation of his results, 

so he was reluctant about agreeing to the proposal.  To encourage him to accept, Nagel 

                                                
2 See Putnam (1960) for a review of Nagel and Newman (1958) in which several errors 
are identified, the most egregious being the misstatement of Gödel’s first incompleteness 
theorem and Rosser’s improvement thereof on p. 91 op. cit.  



 3 

paid a lengthy personal visit to him at the Institute in March of 1957.  A week later, 

Gödel wrote Angoff with three conditions.  First, 

 

I would have to write an introduction to the appendix on the one hand in order to 

mention advances that have been made after the publication of my papers, [and] 

on the other hand in order to supplement the considerations given in the book, 

about the philosophical implications of my results.  I am not very well pleased 

with the treatment of these questions that came out in the Scientific American and 

in the “World of Mathematics”.  This, for the most part is not the fault of the 

authors, because almost nothing has been published on this subject, while I have 

been thinking about it in the past few years.  (Gödel 2003, p.1) 

  

A second condition, somewhat of a surprise, was that he share in some way in the 

royalties of the book.  But the most contentious condition was the one he put at the 

beginning of his letter to Angoff:  “In view of the fact that giving my consent to this plan 

implies, in some sense, an approval of the book on my part, I would have to see the 

manuscript and the proof sheets of the book, including the appendix.”  This condition was 

made even more explicit in a follow-up letter: 

 

Of course I shall have to see the manuscript of the book before I sign the contract, 

so that I can be sure that I am in agreement with its content, or that passages with 

which I don’t agree can be eliminated, or that I may express my view about the 

questions concerned in the introduction. (op. cit., p. 4) 

 

Gödel also wrote Nagel saying that he had made to Angoff “the same suggestions I 

mentioned to you in our conversation in Princeton.”  But when Nagel was shown the 

correspondence with Angoff, he exploded.  He thought the proposal to share royalties 

was “grasping and unreasonable” yet was prepared to accept that.  But what really ticked 

him off, as he wrote Angoff, was Gödel’s number one condition: 
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I could scarcely believe my eyes when I read his ultimatum that he is not only to 

see the manuscript of our essay before signing the contract with you, but that he is 

to have the right to eliminate anything in the essay of which he disapproves.  In 

short, he stipulates as a condition of signing the contract the right of censorship. 

 This seems to me just insulting, and I decline to be a party to any such 

agreement with Gödel. … If [his] conditions were granted, Jim and I would be 

compelled to make any alterations Gödel might dictate, and we would be at the 

mercy of his tastes and procrastination for a period without foreseeable end.  … 

Gödel is of course a great man, but I decline to be his slave.  (Gödel 2003a, pp. 

138-139) 

 

Nagel’s fears about how things might go if they agreed to this condition were indeed 

well-founded, but he left it in Angoff’s hands to communicate his displeasure with it.  In 

the event, Angoff tried to avoid direct conflict, and wrote Gödel in a seemingly 

accomodating but ambiguous way.  It was not until August 1957 that Nagel wrote Gödel 

himself making clear his refusal to accept it: 

 

… I must say, quite frankly, that your … stipulation was a shocking surprise to 

me, since you were ostensibly asking for the right to censor anything of which 

you disapproved in our essay.  Neither Mr. Newman nor I felt we could concur in 

such a demand without a complete loss of self-respect.  I made all this plain to 

Mr. Angoff when I wrote him last spring, though it seems he never stated our case 

to you.  I regret now that I did not write you myself, for I believe you would have 

immediately recognized the justice of our demurrer… (op. cit, pp. 152-153) 

 

This was passed over in silence in Gödel’s response to Nagel.  In the end, the proposal to 

include anything by him in the book by Nagel and Newman came to naught, and even the 

specific technical errors which Gödel could have brought to their attention remained 

uncorrected.  Since this was to be the first popular exposition that would reach a wide 

audience, Gödel had good reason to be concerned, but by putting the conditions in the 

way that he did he passed up the chance to be a constructive critic.   
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 As an aside, it is questionable whether Gödel indeed recognized the “justice of 

[their] demurrer”.  He made a similar request seven years later, when Paul Benacerraf and 

Hilary Putnam approached him about including his papers on Russell’s mathematical 

logic and Cantor’s continuum problem in their forthcoming collection of articles on the 

philosophy of mathematics. Gödel feared that Benacerraf and Putnam would use their 

introduction to mount an attack on his platonistic views, and he demanded what 

amounted to editorial control of it as a condition for inclusion.  In that case, the editors 

refused straight off, but gave Gödel sufficient reassurance about the nature of its contents 

for him to grant permission to reprint as requested.3  

 

2. Gödel’s concerns, Part I: the formulation of the incompleteness theorems.  Recall 

that from his first letter to Allan Angoff, one of the conditions that Gödel put for the 

proposed appendix to the Nagel and Newman book was that he write an introduction to it 

“in order to mention advances that have been made after the publication of my papers” as 

well as “to supplement the considerations, given in the book, about the philosophical 

implications of my results”, with which he was “not very well pleased”.  As to the first of 

these, Gödel would have wanted to use the opportunity to put on record what he 

considered the strongest formulation of his incompleteness theorems.  This was signaled 

in a letter that he composed to Nagel early in 1957 but that was apparently never sent.  

(A number of letters found in Gödel’s Nachlass were marked nicht abgeschickt.)  He 

there writes that 

 

[c]onsiderable advances have been made … since 1934. … it was only by 

Turing’s work that it became completely clear, that my proof is applicable to 

every formal system containing arithmetic.  I think the reader has a right to be 

informed about the present state of affairs.  (Gödel 2003a, pp. 147) 

 

 What he is referring to, of course, is Alan Turing’s analysis in 1937 of the concept 

of effective computation procedure by means of what we now call Turing machines; 

Gödel had readily embraced Turing’s explication after having rejected earlier proposals 

                                                
3 Cf. the Gödel Collected Works II (1990), p. 166. 
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by Church and Herbrand.  But it wasn’t until eight years after the debacle with Nagel and 

Newman that Gödel spelled out the connection with formal systems and his own work.  

That was in a postscript he added to the 1965 reprinting of his Princeton lectures in the 

volume, The Undecidable, edited by Martin Davis (and reproduced in Gödel 1986, p. 

369): 

 

In consequence of later advances, in particular of the fact that, due to A. M. 

Turing’s work, a precise and unquestionably adequate definition of the general 

concept of formal system can now be given, the existence of undecidable 

arithmetical propositions and the non-demonstrability of the consistency of a 

system in the same system can now be proved rigorously for every consistent 

formal system containing a certain amount of finitary number theory. 

 

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias 

“algorithm” or “computation procedure” or “finite combinatorial procedure”).  

This concept is shown to be equivalent with that of a “Turing machine”.  A formal 

system can simply be defined to be any mechanical procedure for producing 

formulas, called provable formulas.  For any formal system in this sense there 

exists one in the [usual] sense … that has the same provable formulas (and 

likewise vice versa) ... [Italics mine] 

 

As we’ll see, there’s much more to this identification than meets the eye; in fact, in my 

view it is the source of a crucial misdirection in the minds vs. machines disputes that we 

shall take up below.  By comparison, Nagel and Newman distinguish the consequences of 

the incompleteness theorems for axiomatic systems and for “calculating machines” in 

their concluding reflections as follows:  

 

[Gödel’s theorems] show that there is an endless number of true arithmetical 

statements which cannot be formally deduced from any specified set of axioms …  

It follows, therefore, that an axiomatic approach to number theory … cannot 

exhaust the domain of arithmetical truth… (Nagel and Newman 1956, p.1694) 
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Gödel’s conclusions also have a bearing on the question whether calculating 

machines can be constructed which would be substitutes for a living mathematical 

intelligence.  Such machines, as currently constructed and planned, operate in 

obedience to a fixed set of directives built in, and they involve mechanisms which 

proceed in a step-by-step manner.  But in the light of Gödel’s incompleteness 

theorem, there is an endless set of problems in elementary number theory for 

which such machines are inherently incapable of supplying answers, however 

complex their built-in mechanisms may be and however rapid their operations.  

(op. cit., p.1695) 

 

Of course, Gödel could charitably read their informal idea of calculating machines simply 

to be explicated by the notion Turing machines, but as we saw above, he would have 

gone beyond that to stress that there is no essential difference between these results.     

 The first thing that Gödel was surely reacting to on the philosophical rather than 

the technical side was the statement by Nagel and Newman that  

 

[the incompleteness theorems] seem to show that the hope of finding an absolute 

proof of consistency for any deductive system in which the whole of arithmetic is 

expressible cannot be realized, if such a proof must satisfy the finitistic 

requirements of Hilbert’s original program.  (op. cit., p.1694) 

 

What must have annoyed Gödel was that this, together with their further reflections on 

the significance of the incompleteness theorems concerned matters to which he had given 

a good deal of thought over the years, in some respects with overlapping conclusions, in 

others contrary ones, but in all cases in much greater depth and with much greater care 

and precision.  The trouble was that almost none of his thought on these questions had 

been published.  With respect to the significance of the incompleteness theorems for 

Hilbert’s finitist consistency program this was something that he had made only one brief 

cautious comment about at the end of his 1931 paper on undecidable propositions.  But it 

was a matter he kept coming back to all through his life, as we found when we unearthed 
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unpublished lectures and seminar presentations in his Nachlass.  The first time his further 

views on this would begin to come out in print would be in 1958, a year after the 

imbroglio with Nagel and Newman.4  Since my main concern in the remainder of this 

article is with the minds vs. machines debate as it relates to the incompleteness theorems, 

I shall leave that matter at that.   

 

3. Gödel’s conerns, Part II: significance of the incompleteness theorems for the 

minds vs. machines debate.  The above quotations from Nagel and Newman (1956) all 

come from their final three paragraphs on the “far reaching import” of the incompleteness 

theorems.  (My guess is that Nagel was largely responsible for their formulation, but I 

have no specific evidence for that.) These, with some rewording but no essential change 

in content, were to form the entire last chapter, entitled “Concluding reflections”, of 

Nagel and Newman (1958); however, it is only the 1956 version that Gödel would have 

seen and to which he would have reacted and so it is from there that I continue to draw 

the quotations.  We now continue with the remaining parts of these paragraphs that 

concern the potentialities of human thought vs. the potentialities of computing machines, 

already signaled above in their discussion of “calculating machines”:  

 

It may very well be the case that the human brain is itself a “machine” with built-

in limitations of its own, and that there are mathematical problems which it is 

incapable of solving.  Even so, the human brain appears to embody a structure of 

rules of operation which is far more powerful than the structure of currently 

conceived artificial machines.  (Nagel and Newman 1956, p. 1695) 

 

And (from the third paragraph) 

 

The discovery that there are formally indemonstrable arithmetic truths does not 

mean that there are truths which are forever incapable of becoming known, or that 

                                                
4 That was in the article, Gödel (1958). As a sign of his concern with the issues involved, 
Gödel worked on a revision of that until late in his life (Gödel 1972).  For the full story, 
see my piece (200?). 
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a mystic intuition must replace cogent proof.  It does mean that the resources of 

the human intellect have not been, and cannot be, fully formalized, and that new 

principles of demonstration forever await invention and discovery… Nor do the 

inherent limitations of calculating machines constitute a basis for valid inferences 

concerning the impossibility of physico-chemical explanations of living matter 

and human reason.  The possibility of such explanations is neither precluded nor 

affirmed by Gödel’s incompleteness theorem.  The theorem does indicate that in 

structure and power the human brain is far more complex and subtle than any 

nonliving machine yet envisaged.  (ibid.) 

 

And finally, 

 

Gödel’s work is a remarkable example of such complexity and subtlety.  It is an 

occasion not for dejection because of the limitations of formal deduction but for a 

renewed appreciation of the powers of human reason.  (ibid.) 

 

 Here again Gödel would have reacted with a “been there, done that” annoyance, 

since he had already laid out his thoughts in this direction fifteen years earlier in what is 

usually referred to as his Gibbs lecture, “Some basic theorems on the foundations of 

mathematics and their implications” (Gödel 1951).5  But once more this is something he 

had never published, though he wrote of his intention to do so soon after delivering the 

lecture; in fact it never appeared in his lifetime.  After Gödel died, the text languished 

with a number of other important essays and lectures in his Nachlass until it was 

retrieved by our editorial group for publication in Volume III of the Gödel Collected 

Works (1995, pp. 304-323).    

 There are essentially two parts to the Gibbs lecture, both drawing conclusions 

from the incompleteness theorems.  The first part concerns the potentialities of mind vs. 

machines for the discovery of mathematical truths, and it’s that part that we should 

                                                
5 Gödel’s lecture was the twenty-fifth in a distinguished series set up by the American 
Mathematical Society to honor the 19th century American mathematician, Josiah Willard 
Gibbs, famous for his contributions to both pure and applied mathematics.  It was 
delivered to a meeting of the AMS held at Brown University on December 26, 1951.   
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compare with Nagel and Newman’s reflections.  The second part is an argument aimed to 

“disprove the view that mathematics is only our own creation”, and thus to support some 

version of platonic realism in mathematics.  George Boolos wrote a very useful 

introductory note to both parts of the Gibbs lecture in Vol. III of the Gödel Works; more 

recently I have published an extensive critical analysis of the first part, under the title 

“Are there absolutely unsolvable problems? Gödel’s dichotomy” (Feferman 2006), and 

I’ll be drawing on that in the following.   

 What I call Gödel’s dichotomy is the following statement that he highlighted in 

the first part of the Gibbs lecture:  

 

Either … the human mind (even within the realm of pure mathematics) infinitely 

surpasses the powers of any finite machine, or else there exist absolutely 

unsolvable diophantine problems ... (Gödel 1995, p. 310) [Italics Gödel’s] 

 

By a diophantine problem is meant a proposition of elementary number theory (aka first 

order arithmetic) of a relatively simple arithmetical form whose truth or falsity is to be 

determined; its exact description is not important to us.  Gödel showed that the 

consistency of a formal system is equivalent to a diophantine problem, to begin with by 

expressing it in the form that no number codes a proof of a contradiction.6  According to 

Gödel, his dichotomy is a “mathematically established fact” which is a consequence of 

the incompleteness theorem.  However, all that he says by way of an argument for it is 

the following: 

 

[I]f the human mind were equivalent to a finite machine, then objective 

mathematics not only would be incompletable in the sense of not being contained 

in any well-defined axiomatic system, but moreover there would exist absolutely 

unsolvable problems…, where the epithet “absolutely” means that they would be 

undecidable, not just within some particular axiomatic system, but by any 

mathematical proof the mind can conceive.  (ibid.) [Italics Gödel’s] 

                                                
6 In modern terms, consistency statements belong to the class ∏1, i.e. are of the form 
∀xR(x) with R primitive recursive.   
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By a finite machine here Gödel means a Turing machine, and by a well-defined axiomatic 

system he means an effectively specified formal system; as explained above, he takes 

these to be equivalent in the sense that the set of theorems provable in such a system is 

the same as the set of theorems that can be effectively enumerated by such a machine.  

Thus, to say that the human mind is equivalent to a finite machine “even within the realm 

of pure mathematics” is another way of saying that what the human mind can in principle 

demonstrate in mathematics is the same as the set of theorems of some formal system.   

By objective mathematics Gödel means the totality of true statements of mathematics, 

which includes the totality of true statements of first-order arithmetic.  The assertion that 

objective mathematics is incompletable is at first sight simply a consequence of the 

second incompleteness theorem in the form that for any consistent formal system S 

containing a certain basic system S0 of (true) arithmetic, the number-theoretical statement 

Con(S) that expresses the consistency of S is true but not provable in S.   

 Examined more closely, Gödel’s argument is that if the human mind were 

equivalent to a finite machine, or⎯what comes to the same thing⎯an effectively 

presented formal system S, then there would be a true statement that could never be 

humanly proved, namely Con(S).   So that statement would be absolutely undecidable by 

the human mind, and moreover it would be equivalent to a diophantine statement.  Note 

however, the tacit assumption that the human mind is consistent; otherwise, it is 

equivalent to a formal system in a trivial way, namely one that proves all statements.  

Actually, Gödel apparently accepts a much stronger assumption, namely that we prove 

only true statements; but for his argument, only the weaker assumption is necessary 

(together of course with the assumption that the basic system of arithmetic S0  has been 

humanly accepted). Also, Gödel’s sketch to establish his dichotomy should be modified 

slightly, as follows: either humanly demonstrable mathematics is contained in some 

consistent formal system S, or not.  If it is, then Con(S) is an absolutely undecidable 

(diophantine) statement.  If not, then for each consistent formal system S, there is a 

humanly provable statement that is not provable in S, i.e. the “human mind … infinitely 

surpasses the powers of any finite machine.”    
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 Note well that Gödel’s dichotomy is not a strict one as it stands; Gödel himself 

asserts that “the case that both terms of the disjunction are true is not excluded, so that 

there are, strictly speaking, three alternatives.”  This could happen, for example, if the 

human mind infinitely surpasses finite machines with respect to certain diophantine 

problems, but not with respect to all of them.  And if we drop the word ‘diophantine’ 

from its statement, it might be that the human mind could settle all arithmetical problems, 

but not all problems of higher mathematics.  In fact, some logicians conjecture that 

Cantor’s Continuum Problem is an absolutely undecidable problem of that type.   

 Be that as it may, how does Gödel’s conclusion differ from that of Nagel and 

Newman?  They speak of calculating machines “as currently constructed and planned, 

[that] operate in obedience to a fixed set of directives built in, and [that] involve 

mechanisms which proceed in a step-by-step manner,” where Gödel speaks more 

precisely of Turing machines.  Still, to be charitable, I think that’s a reasonable 

interpretation of what Nagel and Newman had in mind.  Secondly, they don’t make the 

connection between formal systems and calculating machines, where Gödel sees these as 

amounting to the same thing.7  But the essential difference is that they seem to come 

down in favor of the first, anti-mechanist, disjunct of the dichotomy when they say that 

“[by] Gödel’s incompleteness theorem, there is an endless set of problems in elementary 

number theory for which such machines are inherently incapable of supplying answers, 

however complex their built-in mechanisms may be and however rapid their operations” 

and “the human brain appears to embody a structure of rules of operation which is far 

more powerful than the structure of currently conceived artificial machines;” 

furthermore, in the third paragraph they say that “the resources of the human intellect 

have not been, and cannot be, fully formalized, and … new principles of demonstration 

forever await invention and discovery.”  

 There’s a lot of evidence outside of the Gibbs lecture that Gödel was also 

convinced of the anti-mechanist position as expressed in the first disjunct of his 

dichotomy.  That’s supplied, for example, in his informal communication of various ideas 

about minds and machines to Hao Wang, initially in the book, From Mathematics to 

                                                
7 Calculating machines are assimilated more closely to axiomatic systems in the 
concluding reflections of Nagel and Newman (1957), p. 100. 
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Philosophy (Wang 1974, pp. 324-326), and then at greater length in A Logical Journey. 

From Gödel to Philosophy (Wang 1996, especially Ch. 6).  So why didn’t Gödel state 

that outright in the Gibbs lecture instead of the more cautious disjunction in the 

dichotomy?  The reason was simply that he did not have an unassailable proof of the 

falsity of the mechanist position.  Indeed, he there says:  

 

[It is possible that] the human mind (in the realm of pure mathematics) is 

equivalent to a finite machine that, however, is unable to understand completely 

its own functioning.  (Gödel 1995, pp. 309)  

 

And in a related footnote, despite his views concerning the “impossibility of physico-

chemical explanations of … human reason” he says that  

 

[I]t is conceivable ... that brain physiology would advance so far that it would be 

known with empirical certainty 

 1. that the brain suffices for the explanation of all mental       

phenomena and is a machine in the sense of Turing; 

 2. that such and such is the precise anatomical structure and       

physiological functioning of the part of the brain which performs mathematical 

thinking.  (ibid.) 

 

And in the next footnote, he says: 

 

[T]he physical working of the thinking mechanism could very well be completely 

understandable; the insight, however, that this particular mechanism must always 

lead to correct (or only consistent) results would surpass the powers of human 

reason. (Gödel 1995, p. 310) 

 

Some twenty years later, Georg Kreisel made a similar point in terms of formal systems 

rather than Turing machines: 
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[I]t has been clear since Gödel’s discovery of the incompleteness of formal 

systems that we could not have mathematical evidence for the adequacy of any 

formal system; but this does not refute the possibility that some quite specific 

system … encompasses all possibilities of (correct) mathematical reasoning …  

In fact the possibility is to be considered that we have some kind of 

nonmathematical evidence for the adequacy of such [a system].  (Kreisel 1972, p. 

322) [Italics mine] 

 

4. Critiquing the minds vs. machines debate.  I shall call the genuine possibility 

entertained by Gödel and Kreisel, the mechanist’s empirical defense (or escape hatch) 

against claims to have proved that mind exceeds mechanism on the basis of the 

incompleteness theorems.  The first outright such claim was made by J. R. Lucas in his 

1961 article, “Minds, machines and Gödel”.  Both Benacerraf and Putnam soon objected 

to his argument on the basis that Lucas was assuming it is known that one’s mind is 

consistent.  Lucas, in response (1996), has tried to shift the burden to the mechanist: “The 

consistency of the machine is established not by the mathematical ability of the mind, but 

on the word of the mechanist,” a burden that the mechanist can refuse to shoulder by 

simply citing his empirical defense.   

 Roger Penrose is the other noted defender of the Gödelian basis for anti-

mechanism, most notably in his two books, The Emperor’s New Mind (1989), and 

Shadows of the Mind (1994).  Sensitive to the objections to Lucas, he claimed in the latter 

only to have proved something more modest (and in accord with experience) from the 

incompleteness theorems: “Human mathematicians are not using a knowably sound 

algorithm in order to ascertain mathematical truth.” (Penrose 1994, p. 76).  But later in 

that work after a somewhat involved discussion, he came up with a new argument 

purported to show that the human mathematician can’t even consistently believe that his 

mathematical thought is circumscribed by a mechanical algorithm (Penrose 1994, secs. 

3.16 and 3.23).  Extensive critiques have been made of Penrose’s original and new 

arguments in an issue of the journal PSYCHE (vol. 2, no. 1, 1996), to which he responded 

in the same issue.  And more recently, Stewart Shapiro (2003) and Per Lindström (2001, 

2006) have carefully analyzed and then undermined his “new argument.”  But Penrose 
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has continued to defend it, as he did in his public lecture for the Gödel Centenary 

Conference held in Vienna in April 2006.   

 Historically, there are many examples of mathematical proofs of what can’t be 

done in mathematics by specific procedures, e.g. the squaring of the circle, or the solution 

by radicals of the quintic, or the solvability of the halting problem.  But it is hubris to 

think that by mathematics alone we can determine what the human mind can or cannot do 

in general.  The claims by Gödel, Lucas and Penrose to do just that from the 

incompleteness theorems depend on making highly idealized assumptions both about the 

nature of mind and the nature of machines.  A very useful critical examination of these 

claims and the underlying assumptions has been made by Shapiro in his article, 

“Incompleteness, mechanism and optimism” (1998), among which the following.  First of 

all, how are we to understand the mathematizing capacity of the human mind, since what 

is at issue is the producibility of an infinite set of propositions?  No one mathematician, 

whose life is finitely limited, can produce such a list, so either what one is talking about 

is what the individual mathematician could do in principle, or we are talking in some 

sense about the potentialities of the pooled efforts of the community of mathematicians 

now or ever to exist.  But even that must be regarded as a matter of what can be done in 

principle, since it is most likely that the human race will eventually be wiped out either 

by natural causes or through its own self-destructive tendencies by the time the sun 

ceases to support life on earth.  

 What about the assumption that the human mind is consistent?  In practice, 

mathematicians certainly make errors and thence arrive at false conclusions that in some 

cases go long undetected. Penrose, among others, has pointed out that when errors are 

detected, mathematicians seek out their source and correct them (cf. Penrose 1996, pp. 

137 ff), and so he has argued that it is reasonable to ascribe self-correctability and hence 

consistency to our idealized mathematician.  But even if such a one can correct all his 

errors, can he know with mathematical certitude, as required for Gödel’s claim, that he is 

consistent?  

 As Shapiro points out, the relation of both of these idealizations to practice is 

analogous to the competence/performance distinction in linguistics.   
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 There are two further points of idealization to be added to those considered by 

Shapiro.  The first of these is the assumption that the notions and statements of 

mathematics are fully and faithfully expressible in a formal language, so that what can be 

humanly proved can be compared with what can be the output of a machine.  In this 

respect it is usually pointed out that the only part of the assumption that needs be made is 

that the notions and statements of elementary number theory are fully and faithfully 

represented in the language of first-order arithmetic, and that among those only 

diophantine statements of the form Con(S) for S an arbitrary effectively presented formal 

system need be considered. But even this idealization requires that statements of 

unlimited size must be accessible to human comprehension.   

 Finally to be questioned is the identification of the notion of finite machine with 

that of Turing machine.  Turing’s widely accepted explication of the informal concept of 

effective computability puts no restriction on time or space that might be required to 

carry out computations.  But the point of that idealization was to give the strongest 

negative results, to show that certain kinds of problems can’t be decided by a computing 

machine, no matter how much time and space we allow.  And so if we carry the Turing 

analysis over to the potentiality of mind in its mathematizing capacity, to say that mind 

infinitely surpasses any finite machine is to say something even stronger.  It would be 

truly impressive if that could be definitively established, but none of the arguments that 

have been offered are resistant to the mechanist’s empirical defense.  Moreover, suppose 

that the mechanist is right, and that in some reasonable sense mind is equivalent to a 

finite machine; is it appropriate to formulate that in terms of the identification of what is 

humanly provable with what can be enumerated by a Turing machine?  Isn’t the 

mechanist aiming at something stronger in the opposite direction, namely an explanation 

of the mechanisms that govern the production of human proofs?   

 Here is where I think something new has to be said, something that I already drew 

attention to in my article on Gödel’s dichotomy (2006), but that needs to be amplified. 

Namely, there is an equivocation involved, that lies in identifying how the mathematical 

mind works with the totality of what it can prove.  Again, the difference is analogous to 

what is met in the study of natural language, where we are concerned with the way in 

which linguistically correct utterances are generated and not with the potential totality of 
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all such utterances.  That would seem to suggest that if one is to consider any idealized 

formulation of the mechanist’s position at all, it ought to be of the mind as one 

constrained by the axioms and rules of some effectively presented formal system.  Since 

in following those axioms and rules one has choices to be made at each step, at best that 

identifies the mathematizing mind with the program for a non-deterministic Turing 

machine, and not with the set of its enumerable statements (even though that can equally 

well be supplied by a deterministic Turing machine).   

 One could no more disprove this modified version of the idealized mechanist’s 

thesis than the version considered by Gödel, et al., simply by applying the mechanist’s 

empiricist argument.  Nevertheless, it is difficult to conceive of any formal system of the 

sort with which we are familiar, from Peano Arithmetic (PA) up to Zermelo-Fraenkel Set 

Theory (ZF) and beyond, actually underlying mathematical thought as it is experienced.  

And the experience of the mathematical practitioner certainly supports the conclusion 

drawn by Nagel and Newman that “mathematical proof does not coincide with the 

exploitation of a formalized axiomatic method,” even if that can’t be demonstrated 

unassailably as a consequence of Gödel’s incompleteness theorems. 

 

5. One way to straddle the mechanist and anti-mechanist positions.  As I see it, the 

reason for the implausibility of this modified version of the mechanist’s thesis lies in the 

concept of a formal system S that is currently taken for granted in logical work.  An 

essential part of that concept is that the language of S is fixed once and for all.  For 

example, the language of PA is determined (in one version) by taking the basic symbols 

to be those for equality, zero, successor, addition and multiplication (=, 0, ′, +, .), and that 

of ZF is fixed by taking its basic symbols to be those for equality and membership (=, ∈).  

This forces axiom schemata that may be used in such systems, such as induction in 

arithmetic and separation in set theory, to be infinite bundles of all possible substitution 

instances by formulas from that language; this makes metamathematical but not 

mathematical sense.  Besides that, the restriction of mathematical discourse to a language 

fixed in advance, even if only implicitly, is completely foreign to mathematical practice.   

 In recent years I have undertaken the development of a modified conception of 

formal system that does justice to the openness of practice and yet gives it an underlying 
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rule-governed logical-axiomatic structure; it thus suggests a way, admittedly rather 

speculative, of straddling the Gödelian dichotomy.  This is in terms of a notion of open-

ended schematic axiomatic system, i.e. one whose schemata are finitely specified by 

means of propositional and predicate variables (thus putting the ‘form’ back into ‘formal 

systems’) while the language of such a system is considered to be open-ended, in the 

sense that its basic vocabulary may be expanded to any wider conceptual context in 

which its notions and axioms may be appropriately applied.  In other words, on this 

approach, implicit in the acceptance of given schemata is the acceptance of any 

meaningful substitution instances that one may come to meet, but which those instances 

are is not determined by restriction to a specific language fixed in advance (cf. Feferman 

1996 and 2006a, and Feferman and Strahm 2000).   

 The idea is familiar from standard presentations of propositional and predicate 

logic, where we have such axioms as  

P ∧ Q → P     and     (∀x)P(x) → P(a), 

and rules of inference such as 

P, P → Q |⎯  Q     and      P → Q(x) |⎯  P → (∀x)Q(x)  (for x not free in P). 

We do not conceive of logic as applying to a single subject matter fixed once and for all, 

but rather to any subject in which we take it that we are dealing with well-defined 

propositions and predicates; logic is there applied by substitution for the proposition and 

predicate letters in its axioms and rules of inference.  Similarly to allow systems like 

those for arithmetic and set theory to be applicable no matter what subject matter we 

happen to deal with, we formulate their basic principles in schematic form such as the 

Induction Axiom Scheme 

  P(0) ∧ (∀x)[ P(x) → P(x′) ] → (∀x)P(x)  

in the case of arithmetic, and the Separation Scheme 

  (∀a)(∃b)(∀x)[ x ∈ b ↔ x ∈ a ∧ P(x) ]  

in the case of set theory.  (The idea for the latter really goes back to Zermelo’s conception 

of the Aussonderungsaxiom as applicable to any “definite” predicate.)   

 But why, it may be (and is) asked, do I insist on the vague idea of an open-ended 

language for mathematics?  Aren’t all mathematical concepts defined in the language of 

set theory?  It is indeed the case that the current concepts of working (“pure”) 
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mathematicians are with few exceptions expressible in set theory.  But there are genuine 

outliers.  For example a natural and to all appearances coherent mathematical notion 

whose full use is not set-theoretically definable is that of a category; only so-called 

“small” categories can be directly treated in that way (cf. Mac Lane 1971 and Feferman 

1977 and 2006b).  Other outliers are to be found on the constructive fringe of 

mathematics in the schools of Brouwerian intuitionism and Bishop’s constructivism (cf. 

Beeson 1985) whose basic notions and principles are not directly accounted for in set 

theory with its essential use of classical logic.  And it may be argued that there are 

informal mathematical concepts like those of knots, or infinitesimal displacements on a 

smooth surface, or of random variables, to name just a few, which may be the subject of 

convincing mathematical reasoning but that are accounted for in set theory only by some 

substitute notions that share the main expected properties but are not explications in the 

ordinary sense of the word.  Moreover, the idea that set-theoretical concepts and 

questions like Cantor’s continuum problem have determinate mathematical meaning has 

been challenged on philosophical grounds (Feferman 2000).  Finally, there is a theoretical 

argument for openness, even if one accepts the language L of set theory as a 

determinately meaningful one.  Namely, by Tarski’s theorem, the notion of truth TL for L 

is not definable in L; and then the notion of truth for the language obtained by adjoining 

TL to L is not definable in that language, and so on (even into the transfinite).   

 Another argument that may be made against the restriction of mathematics to a 

language fixed in advance is historical.  Sustained mathematical reasoning had its origins 

in ancient Greece some 2500 years ago, and mathematical concepts of number and space 

have undergone considerable evolution since then.  Yet even the earliest results have 

permanent validity, though not necessarily as originally conceived.  While Euclidean 

geometry is no longer considered to be the geometry of actual space, its consequences as 

an axiomatic development (suitably refined through the work of Pasch, Hilbert and 

others), such as the angle sum theorem and Pythagoras’ theorem, are as valid now within 

that context as in Euclid’s time.  On the other hand, the origins of number theory as 

represented in Euclid’s Elements, including the existence of infinitely prime numbers and 

the fundamental theorem of arithmetic, retain their direct interpretation and validity.  But 

the language of mathematical practice (often mixed with physical concepts) then and 
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through the many following centuries up to the present obviously cannot be identified 

with the language of set theory.  One thing that would instead account for the continuity 

of mathematical thought throughout its history is the employment of certain underlying 

formal patterns, such as those indicated above, that could be instantiated by the evolving 

concepts that have come to fill out mathematics in the process of its development.  And 

there is no reason to believe that this evolutionary process has come to an end; it would 

be foolish to believe that only that which can be expressed, say, in the language of set 

theory, will count as mathematics henceforth.   

 On this picture, in order to straddle the mechanist/anti-mechanist divide at the 

level considered here, one will have to identify finitely many basic forms of mathematical 

reasoning which work in tandem to fully constrain and distinguish it.  These would 

constitute the mechanist side of the picture, while the openness as to what counts as a 

mathematical concept would constitute the anti-mechanist side.  The evidence for such 

would have to be empirical, by showing how typical yet substantial portions of the 

mathematical corpus are accounted for in those terms while giving special attention to 

challenging cases.  I have suggested steps in that direction (as indicated in Feferman 

2006a), but the program is ambitious and I have only made a start; spelling that out is 

planned for a future publication.  In the meantime, the program itself should be treated as 

highly speculative, yet⎯I hope⎯worthy of serious consideration.   

 Considered more broadly and apart from the tendentious terms of the 

mechanism/anti-mechanism debate, I think the goal should be to give an informative, 

systematic account at a theoretical level of how the mathematical mind works that 

squares with experience.  Characterizing the logical structure of mathematics⎯what 

constitutes a proof⎯is just one aspect of that, important as that may be.  Other 

aspects⎯the ones that are crucial in making the difficult choices that are necessary for 

the mathematician to obtain proofs of difficult theorems⎯such as the role of heuristics, 

analogies, metaphors, physical and geometric intuition, visualization, etc., have also been 

taken up and are being pursued in a more or less systematic way by mathematicians, 
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philosophers and cognitive scientists.8 Without abandoning a basic naturalist stance, I see 

no usable reductive account of the mathematical experience anywhere on the horizon at 

the neuro-physiological level let alone more basic physico-chemical levels of the sort 

contemplated by Nagel and Newman and currently sought by Penrose, among others. 
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