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Abstract

From 1931 until late in his life (at least 1970) G�odel called for the

pursuit of new axioms for mathematics to settle both undecided

number-theoretical propositions (of the form obtained in his in-

completeness results) and undecided set-theoretical propositions

(in particular CH). As to the nature of these, G�odel made a vari-

ety of suggestions, but most frequently he emphasized the route

of introducing ever higher axioms of in�nity. In particular, he

speculated (in his 1946 Princeton remarks) that there might be

a uniform (though non-decidable) rationale for the choice of the

latter. Despite the intense exploration of the \higher in�nite" in

the last 30-odd years, no single rationale of that character has

emerged. Moreover, CH still remains undecided by such axioms,

though they have been demonstrated to have many other inter-

esting set-theoretical consequences.

In this paper, I present a new very general notion of the \unfold-

ing" closure of schematically axiomatized formal systems S which

provides a uniform systematic means of expanding in an essential

way both the language and axioms (and hence theorems) of such

systems S. Reporting joint work with T. Strahm, a characteriza-

tion is given in more familiar terms in the case that S is a basic

�Invited lecture, G�odel '96 conference, Brno, 25-29 August 1996. This paper was pre-
pared while the author was a fellow at the Center for Advanced Study in the Behavioral
Sciences, Stanford, CA, whose facilities and support are greatly appreciated.
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system of non-�nitist arithmetic. When re
ective closure is ap-

plied to suitable systems of set theory, one is able to derive large

cardinal axioms as theorems. It is an open question how these

may be characterized in terms of current notions in that subject.

1 Why new axioms?

G�odel's published statements over the years (from 1931 to 1972) pointing to

the need for new axioms to settle both undecided number-theoretic and set-

theoretic propositions are rather well known. They are most easily cited by

reference to the �rst two volumes of the edition of his Collected Works.1 A

number of less familiar statements of a similar character from his unpublished

essays and lectures are now available in the third volume of that edition.2

Given the ready accessibility of these sources, there is no need for extensive

quotation, though several representative passages are singled out below for

special attention.

With one possible exception (to be noted in the next section), the single

constant that recurs throughout these statements is that the new axioms to

be considered are in all cases of a set-theoretic nature. More speci�cally, to

begin with, axioms of higher types, extended into the trans�nite, are said

to be needed even to settle undecided arithmetical propositions.3 The �rst

and most succinct statement of this is to be found in the singular footnote

48a of the 1931 incompleteness paper, in which G�odel states that \...the true

reason for the incompleteness inherent in all formal systems of mathematics

is that the formation of ever higher types can be continued into the trans�-

nite...[since] the undecidable propositions constructed here become decidable

whenever appropriate higher types are added". In an unpublished lecture

from that same period G�odel says that analysis is higher in this sense than

number theory and set theory is higher than analysis: \...there are number-

theoretic problems that cannot be solved with number-theoretic, but only

with analytic or, respectively, set-theoretic methods" (G�odel [1995], p.35). A

couple of years later, in his (unpublished) 1933 lecture at a meeting of the

Mathematical Association of America in Cambridge, Massachusetts, G�odel

said that for the systems S to which his incompleteness theorems apply \...ex-

1Cf. in G�odel [1986] the items dated: 1931(p.181, ftn.48a), 1934(p.367), 1936(p.397),

and in G�odel [1990] those dated: 1940(p.97, ftn.20[added1965]), 1946(p.151), 1947(pp.181-
183), 1964(pp.260-261 and 268-270), and 1972a, Note 2 (pp.305-306).

2Cf. in G�odel [1995] the items dated: *1931?(p.35), *1993o (p.48), *1951(pp.306-307),
*1961/?(p.385) and *1970a,b,c(pp.420-425).

3The kind of proposition in question is sometimes referred to by G�odel as being of
\Goldbach type" i.e. in �0

1
form, and sometimes as one concerning solutions of Diophantine

equations, of the form (P )D = 0, where P is a quanti�er expression with variables ranging
over the natural numbers; cf. more speci�cally, the lecture notes *193? in G�odel [1995].
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actly the next higher type not contained in S is necessary to prove this arith-

metical proposition...[and moreover] there are arithmetic propositions which

cannot be proved even by analysis but only by methods involving extremely

large in�nite cardinals and similar things" (G�odel [1995], p.48). This asser-

tion of the necessity of axioms of higher type | a.k.a. axioms of in�nity

in higher set theory | to settle undecided arithmetic (�0
1) propositions, is

repeated all the way to the �nal of the references cited here in footnotes 1

and 2 (namely to 1972).

It is only with his famous 1947 article on Cantor's continuum problem

that G�odel also pointed to the need for new set-theoretic axioms to settle

speci�cally set-theoretic problems, in particular that of the Continuum Hy-

pothesis CH. Of course at that time one only knew through his own work

the (relative) consistency of AC and CH with ZF, though G�odel conjectured

the falsity of CH and hence its independence from ZFC. Moreover, it was

the question of determining the truth value of CH that was to preoccupy

him almost exclusively among all set-theoretic problems | except for those

which might be ancillary to its solution | for the rest of his life. And rightly

so: the continuum problem | to locate 2@0 in the scale of the alephs whose

existence is forced on us by the well-ordering theorem | is the very �rst

challenging problem of Cantorian set theory, and settling it might be consid-

ered to bolster its conceptual coherence. In his 1947 paper, for the decision

of CH by new axioms, G�odel mentioned �rst of all, axioms of in�nity:

The simplest of these ... assert the existence of inaccessible num-

bers (and of numbers inaccessible in the stronger sense) > @0.
The latter axiom, roughly speaking, means nothing else but that

the totality of sets obtainable by exclusive use of the processes

of formation of sets expressed in the other axioms forms again a

set (and, therefore, a new basis for a further application of these

processes). Other axioms of in�nity have been formulated by P.

Mahlo. [Very little is known about this section of set theory; but

at any rate]4 these axioms show clearly, not only that the ax-

iomatic system of set theory as known today is incomplete, but

also that it can be supplemented without arbitrariness by new

axioms which are only the natural continuation of those set up so

far. (G�odel [1990], p.182)

However, G�odel goes on to say, quite presciently, that \[a]s for the continuum

problem, there is little hope of solving it by means of those axioms of in�nity

which can be set up on the basis of principles known today...", because his

proof of the consistency of CH via the constructible sets model goes through

4The section enclosed in brackets was deleted from the 1964 reprinting of the 1947
article (cf. G�odel [1990], p. 260).
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without change when such statements are adjoined as new axioms (indeed

there is no hope in this direction if one expects to prove CH false):

But probably [in the face of this] there exist other [axioms] based

on hitherto unknown principles ... which a more profound under-

standing of the concepts underlying logic and mathematics would

enable us to recognize as implied by these concepts. (ibid.)

Possible candidates for these were forthcoming through the work of Scott

[1961] in which it was shown that the existence of measurable cardinals (MC)

implies the negation of the axiom of constructibility, and the later work of

Hanf [1964] and of Keisler and Tarski [1964] which showed that measurable

cardinals and even weakly compact cardinals must be very much larger than

anything obtained by closure conditions on cardinals of the sort leading to

hierarchies of inaccessibles. But as we now know through the extensive subse-

quent work on large cardinals as well as other strong set-theoretic principles

such as forms of determinacy, none of those considered at all plausible to date

settles CH one way or the other (cf. Martin [1976], Kanamori [1994]). G�odel

himself o�ered only one candidate besides these, in his unpublished 1970

notes containing his \square axioms" concerning so-called scales of functions

on the @n's. The �rst of these notes (*1970a in G�odel [1995]) purports to

prove that the cardinality of the continuum is @2 while the second (*1970b,
op.cit.) purports to prove that it is @1. However, there are essential gaps

in both proofs and in any case the axioms considered are far from evident

(cf. the introductory note by R.M. Solovay to *1970a,b,c in G�odel [1995], pp.
405-420).

G�odel's �nal fall-back position in his 1947 article is to look for axioms

which are \so abundant in their veri�able consequences...that quite irrespec-

tive of their intrinsic necessity they would have to be assumed in the same

sense as any well-established physical theory" (G�odel [1990], p.183). It would

take us too far a�eld to look into the question whether there are any plausible

candidates for these. Moreover, there is no space here to consider the argu-

ments given by others in pursuit of the program for new axioms; especially

worthy of attention are Maddy [1988, 1988a], Kanamori [1994] and Jensen

[1995] among others.

My concern in the rest of this paper is to concentrate on the consideration

of axioms which are supposed to be \exactly as evident" as those already

accepted. On the face of it this excludes, among others, axioms for \very

large" cardinals (compact, measurable, etc.), axioms of determinacy, axioms

of randomness, and axioms whose only grounds for accepting them lies in

their \fruitfulness" or in their simply having properties analogous to those

of @0. Even with this restriction, as we shall see, there is much room for

reconsideration of G�odel's program.
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2 Where should one look for new axioms?

While the passage to higher types in successive stages, in one form or another,

is su�cient to overcome incompleteness with respect to number-theoretic

propositions because of the increase in consistency strength at each such

stage, it by no means follows that this is the only way of adding new axioms

in a principled way for that purpose. Indeed, here a quotation from G�odel's

remarks in 1946 before the Princeton Bicentennial Conference is very apropos:

Let us consider, e.g., the concept of demonstrability. It is well

known that, in whichever way you make it precise by means

of a formalism, the contemplation of this very formalism gives

rise to new axioms which are exactly as evident and justi�ed as

those with which you started, and this process of extension can

be iterated into the trans�nite. So there cannot exist any for-

malism which would embrace all these steps; but this does not

exclude that all these steps (or at least all of them which give

something new for the domain of propositions in which you are

interested) could be described and collected together in some non-

constructive way. (G�odel [1990], p.151)

It is this passage that I had in mind above as the one possible exception

to G�odel's reiterated call for new set-theoretic axioms to settle undecided

number-theoretic propositions. It is true that he goes on immediately to say

that \[i]n set theory, e.g., the successive extensions can most conveniently

be represented by stronger and stronger axioms of in�nity". But note that

here he is referring to set theory as an example of a formalism to which the

general idea of expansion by \new axioms exactly as evident and justi�ed as

those with which you started" may be applied as a special case. That idea,

in the case of formal systems S in the language of arithmetic comes down

instead to one form or another of (proof-theoretic) re
ection principle, that

is a formal scheme to the e�ect that whatever is provable in S is correct. In

its weakest form (assuming the syntax of S e�ectively and explicitly given),

this is the collection of statements

(RfnS) ProvS(# (A) )! A

for A a closed formula in the language of S, called the local re
ection princi-
ple.5 This is readily generalized to arbitrary formulas A uniformly in the free

variables of A as parameters, in which case it is called the uniform re
ection
principle RFNS. The axioms RfnS, and more generally, RFNS may indeed be

considered \exactly as evident and justi�ed" as those with which one started.

5Note that the consistency statement for S is an immediate consequence of the local
re
ection principle for S.
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Moreover, as shown by Turing [1939], extension by such axioms may be ef-

fectively iterated into the trans�nite, in the sense that one can associate with

each constructive ordinal notation a 2 O a formal system Sa such that the

step from any one such system to its successor is described by adjunction of

the re
ection principle in question, and where all previous adjunctions are

simply accumulated at limits by the formation of their union. These kinds

of systematic extensions of a given formal system were called ordinal logics
by Turing; when I took them up later in 1962, I rechristened them (trans�-
nite) recursive progressions of axiomatic theories (cf. Feferman [1962, 1988]).

While Turing obtained a completeness result for �0
1 statements via the trans-

�nite iteration in this sense of the local re
ection principle, and I obtained

one for all true arithmetic statements via the iteration of the uniform re-


ection principle, both completeness results were problematic because they

depended crucially on the judicious choice of notations in O, the selection of

which was no more \evident and justi�ed" in advance than the statements

to be proved.

What was missing in this �rst attempt to spell out the general idea ex-

pressed by G�odel in the above quotation was an explanation of which ordinals

| in the constructive sense | ought to be accepted in the iteration proce-

dure. The �rst modi�cation made to that end (Kreisel [1958], Feferman

[1964]) was to restrict to autonomous progressions of theories, where one ad-
vances to a notation a 2 O only if it has been proved in a system Sb, for some

b which precedes a, that the ordering specifying a is indeed a well-ordering.

It was with this kind of procedure in mind that Kreisel called in his paper

[1970] for the study of all principles of proof and ordinals which are implicit
in given concepts. However, one may question whether it is appropriate at

all to speak of the concept of ordinal, in whatever way restricted, as being

implicit in the concepts of, say, arithmetic. I thus began to pursue a modi�ca-

tion of that program in Feferman [1979], where I proposed a characterization

of that part of mathematical thought which is implicit in our conception

of the natural numbers, without any prima-facie use of the notions of ordi-

nal or well-ordering. This turned out to yield a system proof-theoretically

equivalent to that proposed as a characterization of predicativity in Feferman

[1964] and Sch�utte [1965]. Then in my paper [1991], I proposed more gen-

erally, a notion of re
ective closure of arbitrary schematically axiomatized

theories, which gave the same result (proof-theoretically) as the preceding

when applied to Peano Arithmetic as initial system. That made use of a

partial self-applicative notion of truth, treated axiomatically. The purpose

of the present article is to report a new general notion of re
ective closure

of a quite di�erent form, which I believe is more convincing as an explana-

tion of everything that one ought to accept if one has accepted given concepts
and principles. In order not to confuse it with the earlier proposal, I shall
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call this notion that of the unfolding of any given schematically formalized

system. This will be illustrated here in the case of non-�nitist arithmetic as

well as the case of set theory. Exact characterizations in more familiar terms

have been obtained for the case of non-�nitist arithmetic in collaboration

with Thomas Strahm; these will be described in Section 4 below. However,

there is no space here to give any proofs.

3 How is the unfolding of a system de�ned?

As we shall see, it is of the essence of the notion of unfolding that we are

dealing with schematically presented formal systems. In the usual concep-

tion, formal schemata for axioms and rules of inference employ free predicate
variables P;Q; : : : of various numbers of arguments n � 0. An appropriate

substitution for P (x1; : : : ; xn) in such a scheme is a formula A(x1; : : :xn : : :)

which may have additional free variables. (Thus if P is 0-ary, any formula

may be substituted for it.) Familiar examples of axiom schemata in the

propositional and predicate calculi are

:P ! (P ! Q) and (8x)P (x)! P (t) :

Further, in non-�nitist arithmetic, we have the Induction Axiom Scheme

(IA) P (0)^ (8x)[P (x)! P (x0) ]! (8x)P (x) ;

while in set theory we have the Separation and Replacement Schemes

(Sep) (9b)(8x)[x 2 b$ x 2 a ^ P (x) ]; and

(Repl) (8x 2 a)(9!y)P (x; y)! (9b)(8y)[y 2 b$ (9x 2 a)P (x; y) ] :

Familiar examples of schematic rules of inference are, �rst of all, in the

propositional and predicate calculi,

P; P ! Q) Q and [P ! Q(x) ]) [P ! (8x)Q(x) ] (for x not free in P );

while the scheme for the Induction Rule in �nitist arithmetic is given by

(IR) P (0); P (x)! P (x0)) P (x) :

It is less usual to think of schemata for axioms and rules given by free function
variables f; g; : : : But actually, it is more natural to formulate the Replace-

ment Axiom Scheme in functional form as follows:

(Repl)0 (8x 2 a)(9y)[f(x) = y]! (9b)(8y)[y 2 b$ (9x 2 a)f(x) = y] :
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Note that here, and for added compelling reasons below, our function vari-

ables are treated as ranging over partial functions.

The informal philosophy behind the use of schemata here is their open-
endedness. That is, they are not conceived of as applying to a speci�c lan-

guage whose stock of basic symbols is �xed in advance, but rather as applica-

ble to any language which one comes to recognize as embodying meaningful

basic notions. Put in other terms, implicit in the acceptance of given schemata
is the acceptance of any meaningful substitution instances. But which these

instances are need not be determined in advance. Thus, for example, if one

accepts the axioms and rules of inference of the classical propositional calcu-

lus given in schematic form, one will accept all substitution instances of these

schemata in any language which one comes to employ. The same holds for

the schemata of the sort given above for arithmetic and set theory. In this

spirit, we do not conceive of the function, resp. predicate variables as having

a �xed intended range and it is for this reason that they are treated as free
variables. Of course, if one takes it to be meaningful to talk about the total-

ity of partial functions, resp. predicates, of a given domain of objects, then

it would be reasonable to bind them too by quanti�cation. In the examples

of unfolding given here, it is only in set theory that the issue of whether and

to what extent to allow quanti�cation over function variables is unsettled.

Now our question is this: given a schematic system S, which operations
and predicates | and which principles concerning them | ought to be ac-
cepted if one has accepted S? The answer for operations is straightforward:

any operation from and to individuals is accepted in the unfolding of S which
is determined (in successive steps) explicitly or implicitly from the basic op-
erations of S. Moreover, the principles which are added concerning these op-

erations are just those which are derived from the way they are introduced.

Ordinarily, we would con�ne ourselves to the total operations obtained in

this way, i.e. those which have been proved to be de�ned for all values of

their arguments, but it should not be excluded that their introduction might

depend in an essential way on prior partial operations, e.g. those introduced
by recursive de�nitions of a general form.

We reformulate the question concerning predicates in operational terms

as well, i.e.: which operations on and to predicates | and which principles
concerning them | ought to be accepted if one has accepted S? For this, it is

necessary to tell at the outset which logical operations on predicates are taken

for granted in S. For example, in the case of non-�nitist classical arithmetic

these would be (say) the operations :;^ and 8, while in the case of �nitist

arithmetic, we would use just : and ^. It proves simplest to treat predicates

as propositional functions; thus : and ^ are operations on propositions, while

8 is an operation on functions from individuals to propositions. Now we can

add to the operations from individuals to individuals in the unfolding of S
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also all those operations from individuals and/or propositions to propositions
which are determined explicitly or implicitly (in successive steps) from the
basic logical operations of S. Once more, the principles concerning these op-

erations which are included in the expansive closure of S are just those which

are derived from the way they are introduced. Finally, we include in the
expansive closure of S all the predicates which are generated from the basic
predicates of S by these operations; the principles which are taken concerning
them are just those that fall out from the principles for the operations just

indicated.

This notion of unfolding of a system is spelled out in completely precise

terms in the next section for the case of non-�nitist arithmetic. But the

following two points ought to be noted concerning the general conception

described here. First of all, one should not think of the unfolding of a system

S as delimiting the range of applicability of the schemata embodied in S. For

example, the principle of induction is applicable in every context in which

the basic structure of the natural numbers is recognized to be present, even if

that context involves concepts and principles not implicit in our basic system

for that structure. In particular, it is applicable to impredicative reasoning

with sets, even though (as will be shown in the next section) the unfolding

closure of arithmetic is limited to predicative reasoning. Secondly, we may

expect the language and theorems of the unfolding of (an e�ectively given

system) S to be e�ectively enumerable, but we should not expect to be able

to decide which operations introduced by implicit (e.g. recursive �xed-point)

de�nitions are well de�ned for all arguments, even though it may be just

those with which we wish to be concerned in the end. This echoes G�odel's

picture of the process of obtaining new axioms which are \just as evident

and justi�ed" as those with which we started (quoted in Section 2 above),

for which we cannot say in advance exactly what those will be, though we

can describe fully the means by which they are to be obtained.

4 The expansive closure of non-�nitist

arithmetic: what's obtained

Here the starting schematic system NFA (Non-Finitist Arithmetic) has lan-

guage given by the constant 0, individual variables x; y; z; : : : ; the operations

Sc and Pd for successor and predecessor, a free unary predicate variable P

and the logical operations :;^ and 8.

Assuming classical logic, ^;! and 9 are de�ned as usual.6 We write t0

6All our notions and results carry over directly to NFA treated in intuitionistic logic; the
only di�erence in that case is that we take the full list of logical operations, :;^;_;!;8;

and 9 as basic.
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for Sc(t) in the following. The axioms of NFA are:

Ax 1. x0 6= 0

Ax 2. Pd(x0) = x

Ax 3. P (0) ^ (8x)[P (x)! P (x0) ]! (8x)P (x):

Ax 3 is of course our scheme (IA) of induction. Before de�ning the full

unfolding (NFA) of this system, it is helpful to explain a subsystem 0(NFA)

which might be called the operational unfolding of NFA, i.e. where we do

not consider which predicates are to be obtained. Basically, the idea is to

introduce new operations via a form of generalized recursion theory (g.r.t.)

considered axiomatically. The speci�c g.r.t. referred to is that developed

in Moschovakis [1989] and in a di�erent-appearing but equivalent form in

Feferman [1991a] and [1996]; both feature explicit de�nition (ED) and least
�xed point recursion (LFP) and are applicable to arbitrary structures with

given functions or functionals of type level � 2 over a given basic domain

(or domains). The basic structure to consider in the case of arithmetic is

h; Sc; Pd; 0i, where is the set of natural numbers. To treat this axiomatically,

we simply have to enlarge our language to include the terms for the (in

general) partial functions and functionals generated by closure under the

schemata for this g.r.t., and add their de�ning equations as axioms. So we

have terms of three types to consider: individual terms, partial function terms
and partial functional terms. The types of these are described as follows,

where, to allow for later extension to the case of (NFA), we posit a set Typ0
of types of level 0; here we will only need it to contain the type � of individuals,

but below it will be expanded to include the type � of propositions:

Typ 1. � 2 Typ0, where � is the type of individuals. In the following �; �

range over Typ0 and ��, resp. �� range over types of �nite sequences of

individuals, resp. of objects of Typ0.

Typ 2. �; � range over the types of partial functions of the form ��f! �, and

�� ranges over the types of �nite sequences of such.

Typ 3. (�� ; ��f!�) is used as types of partial functionals.

Note that objects of partial function type take only individuals as argu-

ments; this is to insure that propositional functions, to be considered below,

are just such functions. On the other hand, we may have partial functionals

of type described under Typ 3 in which the sequence �� is empty, and these

reduce to partial functions of any objects of basic type in Typ0.

The terms r; s; t; u; : : : of the various types under Typ 1 { Typ 3 are

generated as follows, where we use r : � to indicate that the term r is of type

�.
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Tm 1. For each � 2 Typ0, we have in�nitely many variables x; y; z; : : : of

type �.

Tm 2. 0 : �.

Tm 3. Sc(t) : � and Pd(t) : � for t : �.

Tm 4. For each � we have in�nitely many partial function variables f; g; h; : : :

of type � .

Tm 5. Cond(s; t; u; v) : (�� ; ��; �; �f!�) for s; t : (�� ; ��f!�) and u; v : �.

Tm 6. s(�t; �u) : � for s : (�� ; ��f! �); �t : �� ; �u : ��.

Tm 7. � �f ; �x:t : (�� ; ��f!�) for �f : �� ; �x : ��; t : �:

Tm 8. LFP (�f; �x:t) : (��f! �) for f : ��f! �; �x : ��; t : �.

We now specialize this system of types and terms to just what is needed

for 0(NFA), by taking Typ0 = f�g. The formulas A;B;C; : : : of 0(NFA) are
then generated as follows:

Fm 1. The atomic formulas are s = t; s #; and P (s) for s; t : �.

Fm 2. If A;B are formulas then so also are :A;A^B, and 8xA.

As indicated above, formulas A _ B;A ! B, and 9xA are de�ned as usual

in classical logic. We write s ' t for [s # _ t #! s = t]. Below we write

t [ �f; �x], resp. A [ �f; �x] for a term, resp. formula, with designated sequences

of free variables �f; �x; it is not excluded that t, resp. A may contain other

free variables when using this notation. Since we are dealing with possibly

unde�ned (individual) terms t, the underlying system of logic to be used is

the logic of partial terms (LPT) introduced by Beeson [1985], pp. 97-99,

where t # is read as: t is de�ned. Brie
y, the changes to be made from usual

predicate logic are, �rst, that the axiom for 8-instantiation is modi�ed to

8xA(x) ^ t #! A(t) :

In addition, it is assumed that 8x(x #), i.e. only compound terms may fail to

be de�ned (or put otherwise, non-existent individuals are not countenanced

in LPT). It is further assumed that if a compound term is de�ned then all

its subterms are de�ned (\strictness" axioms). Finally, one assumes that if

s = t holds then both s; t are de�ned and if P (s) holds then s is de�ned.

Note that (s #) $ 9x(s = x), so de�nedness need not be taken as a basic

symbol.

The axioms of 0(NFA) follow the obvious intended meaning of the new

compound terms introduced by the clauses Tm 5-8:
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Ax 4. (Cond(s; t; u; u) )( �f; �x) ' s( �f ; �x)^ [u 6= v ! (Cond(s; t; u; v) )( �f; �x) '
t( �f ; �x) ] :

Ax 5. (� �f ; �x:s[ �f; �x])(�t; �u) ' s[�t; �u] :

Ax 6. For ' = LFP (�f; �x:t[f; �x]); we have:

(i) '(�x) ' t['; �x]

(ii) 8�xff(�x) ' t[f; �x] g ! 8�xf'(�x) #! '(�x) = f(�x) g :

Finally, the predicate substitution rule for 0(NFA) is:

(Subst) A[P ]) A[B=P ]

where in the conclusion of this rule, B is any formula with a designated free

variable x; B[x], and we substitute B[t] for each occurrence of P (t) in A.

This completes the description of 0(NFA).

In the following we shall write

fif y = 0 then s[ �f ; �x] else t[ �f; �x] g for (Cond(� �f; �x:s; � �f; �x:t; y; 0) )( �f; �x);

in order to meet the strictness axioms of LPT; this piece of notation has the

property that the compound term is de�ned when y = 0 if s is de�ned, even

if t is not de�ned, while it is de�ned when y 6= 0 and t is de�ned if s is not

de�ned.

We shall use capital letters F for closed terms of function type such that

NFA proves 8�x(F (�x)#), i.e. for which F is proved to be total. Suppose given

such terms G;H of arguments (�x) and (�x; y; z), resp. Then we can obtain an

F with

F (�x; 0) = G(�x)

F (�x; y0) = H(�x; y; F (�x; y) )

provable in 0(NFA). This is done by taking

' = LFP [�f; �x; y:fif y = 0 then G(�x) else H(�x; Pd(y); f(�x; Pd(y) ) g ] :

It is then proved by induction on y that '(y) #; this is by an application of

the substitution rule to the schematic induction axiom IA (Ax 3) together

with part (i) of the LFP axiom (Ax 6). Then we can take F to be the term '.

It follows that 0(NFA) serves to de�ne all primitive recursive functions, and

so by IA and the substitution rule, we see that 0(NFA) contains the system of

Peano Arithmetic PA in its usual �rst order (non-schematic) form. I believe

this argument formalizes the informal argument (usually not even consciously

expressed) which leads us to accept PA starting with the bare-bones system

NFA.
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Conversely, 0(NFA) is interpretable in PA, by interpreting the function

variables as ranging over (indices of) partial recursive functions, and then

the function(al) terms are interpreted as (indices of) partial recursive func-

tion(al)s. It follows that we have closure under the LFP scheme. Finally, one

shows that if A[P ] is provable in 0(NFA) and B is any formula, and if A�
; B

�

are their respective translations, then A�[B�=P ] is provable in PA. Thus we

conclude:

Theorem 1 0(NFA) is proof theoretically equivalent to PA and conserva-
tively extends PA.

Now to explain the full expansive closure of NFA we treat (as already

mentioned) predicates as propositional functions, more or less following Aczel

with his notion of Frege structures (Aczel [1980]). For this purpose we add

a new basic type �, the type of propositions, and explain propositional func-

tions as total functions f of type ��f!�. To �ll out the language and axioms

of 0(NFA) we thus begin by taking Typ0 = f�; �g. As before, �; � range over

Typ0; �; � over types of the form ��f! � (and thus are either types of partial

functions from individuals to individuals or partial functions from individuals

to propositions), and (�� ; ��f!�) ranges over the types of partial functionals

(of partial function, individual and propositional arguments, to individuals

or propositions). Now the closure conditions on terms are expanded to in-

clude the logical operations on and to propositions. These are given by the

additional symbols Eq; Pr;Neg; Conj and Un with the following clauses:

Tm 9. Eq(s; t) : � for s; t : �.

Tm 10. Pr(s) : � for s : �.

Tm 11. Neg(s) : � for s : �.

Tm 12. Conj(s; t) : � for s; t : �.

Tm 13. Un(s) : � for s : �f!�.

The intended meaning of these symbols is elucidated by Ax 7-11 below.

The formulas A;B;C; : : : of (NFA) are generated as follows, where T (x)

is an additional predicate which expresses that x is a true proposition:

Fm 1.

(a) s = t; s #; and P (s) are atomic for s; t : �.

(b) s = t; s #; and T (s) are atomic for s; t : �.

Fm 2. If A;B are formulas, so also are :A;A ^B; 8xA.
The axioms of (NFA) are now as follows (in addition to Ax 1-6 above),

where we reserve x; y; : : : as variables of type � and a; b; : : : as variables of

type �:



14 Solomon Feferman

Ax 7. Eq(x; y) # ^[T (Eq(x; y) )$ x = y].

Ax 8. Pr(x) # ^[T (Pr(x) )$ P (x) ]:

Ax 9. Neg(a) # ^[T (Neg(a) )$ :T (a) ]:

Ax 10. Conj(a; b) # ^[T (Conj(a; b) )$ T (a) ^ T (b) ]:

Ax 11. (8x)(fx #)! Un(f) # ^[T (Un(f) )$ (8x)T (f(x) ) ]; for f : �f!�.

Because propositional terms in general implicitly depend on the predicate

parameter P , we must restrict the rule A[P ]) A[B=P ] to formulas A which

do not contain any such terms. We write Predn(t) for (8�x)(t(�x) #) when
t : ��f!� and �� is of length n. Now the usual way of thinking of a sequence
of n-ary predicates is as a function f of type �f!(��f!�) such that for each x,

f(x) # and Predn(f(x) ). However, we do not have these types in our set-

up (although that is easily modi�ed to include them). Instead, a sequence

of n-ary predicates is treated as being represented by a g of type �;��f!�

such that for each x; �y we have g(x; �y) #, in other words so that for each

x; Predn(��y � g(x; �y) ). Such g can, at the same time, be considered as an

(n+ 1)-ary predicate and in that guise g is simply the join of the sequence it

represents: J(g) = g.

Now the main result about proof-theoretic strength of (NFA) is the fol-

lowing theorem, obtained in collaboration with Thomas Strahm.

Theorem 2 (NFA) is proof-theoretically equivalent to the system of rami�ed
analysis up to but not including �0, and conservatively extends that system.

The system of rami�ed analysis up to and including level � is denoted

RA�, and the union of these for � < � is denoted RA<�. For � = ! �� this is

proof-theoretically equivalent to the iteration of (�0
1�CA) through all levels

� < �. Using Kreisel's proposed characterization of predicative analysis in

terms of the autonomous progression of rami�ed systems, the least impredica-

tive ordinal was determined to be �0 in Feferman [1964] and, independently,

Sch�utte [1965]. Theorem 2 thus re-characterizes predicativity as what ought
to be accepted concerning operations and predicates if one has accepted the
basic notions and principles of NFA, including the logical operations :;^ and

8 applied to variables for the natural numbers. The proof of this theorem

is rather involved and full details will be presented elsewhere; the following

merely gives an indication of how to embed RA<�o in (NFA), by means of

the methods of Feferman [1979], sec.3.3. Basically, one shows for each initial

segment �� of the standard primitive recursive well-ordering of order type

�0 how to establish in (NFA) the principle of trans�nite induction up to �

applied to arbitrary formulas A, in symbols, TI(��; A). For this it su�ces

to prove TI(��; P ) and then apply the substitution rule. Now with the full
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scheme at hand, one can de�ne the jump (�0
1) hierarchy relative to P along

�� by LFP recursion and prove that it de�nes a predicate by induction on

this ordering. Note that the de�nition of this hierarchy makes use of arith-

metical steps at successor stages, guaranteed by the axioms Ax 7-11, and of

join at limit stages, guaranteed by the use of the J operator as explained

above. As is shown in the reference loc.cit., by use of this hierarchy relative

to P up to �, one can prove TI(�
 ; P ) for 
 = �(�)(0) in the Veblen hierarchy

of critical functions. De�ne 
0 = 0; 
n+1 = �(
n)(0); then �0 = limn 
n, so

by this means we can embed RA� in (NFA) for each � < �0. The proof that

(NFA) is no stronger than RA<�0 requires some interesting new arguments

from in�nitary proof theory. However, it is worth noting that in this proof,

partial functions of type ��f! � are still interpreted as partial recursive func-

tions. Indeed the same holds for functions of type ��f!� when propositions

are treated intensionally.

Remarks

1. Implicit de�nability of functions. Another way of introducing par-

tial functions given by implicit de�ning conditions is if we associate

with each partial f : ��; �f! � a g : ��f! � with

(ID) 8�x; y; z[f(�x; y) ' 0 ^ f(�x; z) = 0! y = z]

! 8�x[ (9y)f(�x; y) = 0! f(�x; g(x) ) = 0]:

Adding (ID) as an axiom to 0(NFA) and (NFA) does not a�ect Theo-

rems 1 and 2. It is plausible to include (ID) in the unfolding process

applied to any system with a distinguished constant 0.

2. Predicate types in place of the type of propositions. We can treat

predicates directly, instead of in terms of propositional functions, by in-

troducing a basic type of n-ary predicates �n for each n � 1. Then the

atomic formulas to be used in the process for this symbolism are of

the form s = t for s; t : �n; s # for s : �n and (t1; : : : ; tn) 2 s for

s : �n and tj : � (j = 1; : : : ; n). The axioms provide for suitable op-

erations corresponding to atomic predicates and for the e�ect of Neg

and Conj on each �n and Un on �n+1 to �n for each n. In addition,

we include the Join operator J for each n, which when applied to a

sequence of n-ary predicates, i.e. a total f : �! �n, produces the join

predicate J(f) : �n+1. In the language, so modi�ed, the rule of substi-

tution A[P ] ) A[B=P ] is restricted to A which do not contain terms

of predicate type. Then Theorem 2 holds as before. An advantage

of the predicate type over the propositional type approach is that we

can separate out the role of the Join operator from that of the logical
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operations while, as we saw, J is forced on us in the propositional type

approach. Strahm has shown that if J is omitted, then the resulting

system �(NFA) is proof-theoretically equivalent to RA<!.

3. Quantifying function variables. It was argued in Section 3 that for

the general notion of unfolding, (partial) function variables in their

schematic role ought not to be quanti�ed. However, when we come

to set theory and examine informal arguments that lead us to accept

its basic principles and their immediate extensions, it is plausible to

allow some degree or other of function quanti�cation. Proof-theoretical

strength there is sensitive to the decision as to whether to allow such

quanti�cation, and, if so, to what extent, as will be seen in the next sec-

tion. Interestingly, it happens that in the case of NFA, even if we allow

full function quanti�cation in the language of 0(NFA), resp. (NFA),

with suitable restrictions on the hypothesis A[P ] of the substitution

rule as above, we do not alter proof-theoretic strength, i.e. Theorems

1 and 2 continue to hold as stated.

4. The unfolding of �nitist arithmetic. Clearly the starting point for

the study of this notion would be a quanti�er-free system FA based

on Axs 1 and 2 and, in place of Ax 3, the induction rule

P (0); P (x)! P (x0)) P (x):

Beyond this, there are various notions of unfolding to be considered,

related to various informal and formal explanations of �nitism in the

literature, due especially to Hilbert, Kreisel and Tait. Research on these

notions is in progress.

5 The unfolding of set theory

This section is largely programmatic and, given the limitations of space,

necessarily sketchy. On the face of it, set theory o�ers a prime candidate

for the study of what is implicit in given notions and principles by means of

the unfolding procedure, both for ZF as a schematic theory and for G�odel's

program for new axioms. We begin with the former.

In the spirit of the functional formulation of the 0 and procedures, we

take the basic language of set theory to have individual variables a; b; c; x; y; z;

: : : ; variables f; g; h; : : : for partial functions, the constants 0 and !, the oper-

ation symbols f; g;
S
; }, and E (the characteristic function of the 2 relation)

and the relation symbols = and 2. In addition we have functionals S;R and

A whose meaning will be explained in a moment. The axioms of the system

ST are, besides Extensionality, the expected ones for 0; !; f; g;
S
; }, and E,

and the following four function and predicate schemata:
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(S) 8x 2 a[ f(x) # ]! S(f; a) # ^8x[x 2 S(f; a)$ x 2 a ^ f(x) = 0 ]

(R) 8x 2 a[ f(x) # ]! R(f; a) # ^8y[ y 2 R(f; a)$ 9x 2 a( f(x) = y) ]

I(2) 8x[ (8y 2 x)P (y) ! P (x) ]! 8x(P (x) )

(A) 8x[f(x) #]! A(f) # ^[A(f) = 0$ 8x(f(x) = 0) ] :

Thus S gives Separation, R gives Replacement, I(2) is the positive (induc-
tive) schematic form of the Axiom of Foundation, and A serves to represent

every de�nable class by means of a characteristic function. This last allows

(S) and (R) to take the place of the expected schemata:

(Sep) 9b8x[x 2 b$ x 2 a ^ P (x) ], and

(Repl) (8x 2 a)9!yP (x; y)! 9b8y[ y 2 b$ (9x 2 a)P (x; y) ] :

The point of doing it by the above function schemata instead is that we can

treat a wide variety of set theories uniformly, with the only changes being the

deletion or addition (with appropriate axioms) of various individual, function

and functional constants. For example, if we omit !; }, and A, we obtain a

functional schematic form AST of Admissible Set Theory. To be more precise

KP (taken with �0-Replacement instead of �0-Collection) is contained in

0(AST), and the latter is interpretable in the constructible sets of the former

by taking the function variables to range over the �
(L)
1 partial functions. It

would be of interest to determine the strength of (AST).

Quite a few useful general principles and functional constructions can

be derived in 0(AST) and (AST), which then carry over to (the respective

unfolding) of any set theory S extending AST. In particular, we can derive

principles of induction for various classes C with an ordering <C in the form:

I(<C ) 8x 2 C[ 8y(y <C x! P (y) ) ! P (x) ]! 8x 2 C[P (x) ] :

Here <C might be much \longer" than the ordinals, for which we have I(<)

by the axiom I(2). Taking 
 as a symbol for the class of ordinals, we can

de�ne, for example, the lexicographic ordering <
2 on pairs of ordinals by

h�; �i <
2 h�; �i $ � < � _ � = � ^ � < �, and prove I(<
2 ) in 0(AST).

From this and the LFP construction we can derive a principle of recursion

for hierarchies of functions ��; �: f�(�) by means of any given functional

G which determines each f� in terms of hf�i�<�. More generally, I expect

that we can establish I(<�) in 0(AST) for each � < "
+1 and similarly for

each � < �
+1 in (AST), where the ordering up to �
+1 is de�ned in AST

on a suitable class of \notations" as in Feferman [1968]. We would then
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obtain related principles of recursion and construction of hierarchies as for

<
2 above. Note that the form of this ordering is independent of which set

theory S we are in, but the interpretation in a standard model of S depends

on what ordinal 
 turns out to be. What stronger S serve to do is supply

a greater variety of functionals G for generating hierarchies associated with

<� when I(<�) is provable.

Suppose S is an extension of our initial system ST to which we have

added AC and the existence of arbitrarily large inaccessible cardinals. Then

the preceding allows us to actually \name" speci�c large inaccessibles in the

unfolding systems of S. In that sense, it already gives us some large cardinal

axioms. But if we are to generate, e.g., hierarchies of Mahlo cardinals, we

need to add to ST a new scheme which says in e�ect that whatever holds in
the universe of sets already holds in arbitrarily large transitive sets, or what
one would call a scheme of Downwards Re
ection. This takes the following
form:

(D-Ref) P ! 9b[a 2 b ^ Trans(b) ^ P (b)] :

If this scheme is denoted A[P ] and B is a statement which involves both

quanti�ed individual variables and (possibly) quanti�ed function variables,

when forming B(b) in A[B=P ] we relativize the former variables to b as usual,

and the latter variables to partial functions from b to b. Write Strans(b) for

8x 2 b8y[y � x! y 2 b]. We can infer

(D-Ref)0 P ! 9b[a 2 b ^ Strans(b) ^ P (b)]

by substituting P ^ 8x9y[}(x) = y] for P in (D-Ref). Thus with the sub-

stitution rule A[P ] ) A[B=P ] taken to apply to any statement B in the

unfolding language of ST in which function variables may be quanti�ed un-

restrictedly, we obtain a form of Bernays' downward second-order re
ection

principle (Bernays [1961], following on Levy [1960]). And as Bernays showed

op.cit., the existence of hierarchies of Mahlo cardinals then follows from this

principle. Brie
y, one begins by substituting for P in (D-Ref) the statement

that expresses that the universe is closed under power set and replacement,

i.e.

8x9y[}(x) = y] ^ 8u8g[ 8x 2 u 9y(g(x) = y) ]

! 9v[R(g; u) = v ^ 8y(y 2 v $ 9x 2 u(g(x) = y) ] :

Then the conclusion of this instance of D-Ref guarantees the existence of

arbitrarily large inaccessible cardinals. It follows that any normal function

on 
 has arbitrarily large inaccessible �xed-points. By substituting that
statement for P in (D-Ref) we obtain the existence of arbitrarily large Mahlo

cardinals | and so on.
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Formulas involving (partial) function quanti�cation are classi�ed into the

�1
n
hierarchies as usual. The existence of Mahlo hierarchies follows from (D-

Ref) by successively substituting suitable �1
1 statements for P . But if one

is to obtain stronger large cardinal statements, e.g. the existence of weakly

compact cardinals, it is necessary to make substitutions by more complicated

formulas. For, as shown in the work of Hanf and Scott [1961], a cardinal � is

weakly compact i� it is �1
1 indescribable. The latter says that (D-Ref) holds

in V� for all �1
1 statements, and saying that is �1

2. In general, we obtain the

existence of arbitrarily large �1
n
indescribables by suitably more complicated

instances of (D-Ref). And that is all one can expect to follow from (D-

Ref) in our languages using only function variables of type level 1 over the

universe. And passing to higher types | however one were to argue for

that | for substitution instances in (D-Ref), at most allows one to obtain

the existence of �m

n
indescribables for all m;n. But one certainly cannot

obtain in this way the existence of measurable cardinals nor even some of its

familiar consequences such as the existence of 0# (or even of some still weaker

consequences from in�nitary combinatorics, such as explained in Kanamori

[1994] p.109).

However, as I see it, there is already a 
at di�erence between the reasoning

which leads us to the hierarchies of Mahlo cardinals, and that which leads,

to begin with, to weakly compact cardinals. Here a quotation from Tarski is

apropos:

... the belief in the existence of inaccessible cardinals > ! (and

even of arbitrarily large cardinals of this kind) seems to be a

natural consequence of basic intuitions underlying the \na��ve" set

theory and referring to what can be called \Cantor's absolute".

On the contrary, we see at this moment no cogent intuitive reasons

which could induce us to believe in the existence of cardinals > !

that are not strongly incompact, or which at least would make it

very plausible that the hypothesis stating the existence of such

cardinals is consistent with familiar axiom systems of set theory.

As was pointed out at the end of Section 1, we do not know of any

\constructively characterized" cardinal > ! of which we cannot

prove that it is strongly incompact and for which therefore the

problems discussed remain open. (Tarski [1962], p.134).

G�odel, commenting on this in a footnote (20) added in 1965 to his 1940

monograph (after referring to the work of Levy [1960] and Bernays [1961]

leading to \all of Mahlo's axioms") said:

Propositions which, if true, are extremely strong axioms of in-

�nity of an entirely new kind have been formulated and investi-

gated as to their consequences and mutual implications in Tarski
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[1962], Keisler and Tarski [1964] and the papers cited there. In

contradistinction to Mahlo's axioms the truth (or consistency) of

these axioms does not immediately follow from \the basic intu-

itions underlying abstract [sic] set theory" (Tarski [1962], p. 134),

nor can it, as of now, be derived from them. However, the new

axioms are supported by rather strong arguments from analogy
... (G�odel [1990] p. 97, italics mine).

What makes the separation of Mahlo from weakly compact cardinals reason-

able is that when we substitute for P in (D-Ref) a �1
1 statement B, we may

read B as asserting a closure condition in the ordinary sense on V under

given function(al)s. But this reading is not plausibly extended to statements

of higher function-quanti�er complexity. Fromwhat G�odel says in the preced-

ing quotation, it seems he would agree with this argument for demarcation.7

My personal attitude concerning the question of \actual" existence of

various kinds of large cardinals, whether smaller or larger, is that it is all
pie in the sky. This may make one wonder why I have even bothered with

the present section. Well, the starting point was to see what one can say

about which large cardinal statements are implicit in the basic notions and

principles of set theory, if one accepts them, as G�odel and many other lo-

gicians certainly do, and to try to apply the unfolding procedure to begin

to say something precise about that.8 While that hypothetical acceptance

does not apply to me, there are other potential values of great interest to me,

which I hope will result from further pursuit of the present framework. The

analogues to various large cardinal statements in admissible set theory are

well-known. The work earlier in this section with AST suggests to me that

there should be a way of stating these as part of a common generalization via

the unfolding of S+(D-Ref) for S�AST, and not merely an analogue. Still

further, there has been a surprising use of recursive ordinal notation systems

employing \names" for very large cardinals in current proof-theoretic ordinal

analyses of formal systems (cf. e.g. Rathjen [1995]). What I would really

hope comes out of this is a generalization which encompasses these as well,

and helps explain how it is that they come to be employed at all for these

7Tait [1990], p.76, ftn. 6, is puzzled by this view of G�odel's. But he says there that the
existence of weakly compact cardinals follows from �1

1
re
ection, which is mistaken, as we

have seen.
8And if one is among the set theorists who believe there are reasons for acceptingmuch

larger cardinals than follow from (ST), it should be of interest to make explicit what are
the basic notions and principles that lead one to such conclusions, rather than depend on
arguments from analogy or fruitfulness. In this respect, a suggestion of G�odel in his 1946
Princeton remarks is most provocative:\It is certainly impossible to give a combinational
and decidable characterization of what an axiom of in�nity is; but there might exist, e.g.,

a characterization of the following sort: An axiom of in�nity is a proposition which has a
certain (decidable) formal structure and which in addition is true." (G�odel [1990], p. 151)
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purposes.
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