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Hilbert’s program modified.

The background to the development of proof theory since 1960 is contained
in the article (MATHEMATICS, FOUNDATIONS OF), Vol. 5, pp. 208-
209. Briefly, Hilbert’s program (H.P.), inaugurated in the 1920s, aimed to
secure the foundations of mathematics by giving finitary consistency proofs
of formal systems such as for number theory, analysis and set theory, in
which informal mathematics can be represented directly. These systems are
based on classical logic and implicitly or explicitly depend on the assumption
of “completed infinite” totalities. Consistency of a system S (containing
a modicum of elementary number theory) is sufficient to ensure that any
finitary meaningful statement about the natural numbers which is provable
in S is correct under the intended interpretation. Thus, in Hilbert’s view,
consistency of S would serve to eliminate the “completed infinite” in favor of
the “potential infinite” and thus secure the body of mathematics represented
in S. Hilbert established the subject of proof theory as a technical part of
mathematical logic by means of which his program was to be carried out;
its methods will be described below.

In 1931, Godel’s second incompleteness theorem raised a prima facie ob-
stacle to H.P. for the system 7 of elementary number theory (also called
Peano Arithmetic, and denoted below by PA) since all previously recog-
nized forms of finitary reasoning could be formalized within it. In any
case, Hilbert’s program could not possibly succeed for any system such as
set theory in which «ll finitary notions and reasoning could unquestion-
ably be formalized. These obstacles led workers in proof theory to modify
H.P. in two kinds of ways. The first was to seek reductions of various for-
mal systems S to more constructive systems S’. The second was to shift
the aims from foundational ones to more mathematical ones. Examples of



the former move are the reductions of PA to intuitionistic arithmetic HA,
and Gentzen’s consistency proof of PA by finitary reasoning coupled with
quantifier-free transfinite induction up to the ordinal €y, TI(¢p), both ob-
tained in the 1930s (cf. MATHEMATICS, FOUNDATIONS OF, p. 208).
The second re-direction of proof theory was promoted especially by George
Kreisel starting in the early 1950s; he showed how constructive mathemati-
cal information could be extracted from non-constructive proofs in number
theory. The pursuit of proof theory along the first of these lines has come
to be called relativised Hilbert program or reductive proof theory, while that
along the second line is sometimes called the program of unwinding proofs
or, perhaps better, extractive proof theory. In recent years there have been a
number of applications of the latter both in mathematics and in theoretical
computer science. Keeping the philosophical relevance and limitations of
space in mind, the following account is devoted entirely to developments in
reductive proof theory, though the two sides of the subject often go hand in
hand.

Methods of finitary proof theory.

Hilbert introduced a special formalism called the epsilon calculus to carry
out his program (the nomenclature is related neither to the ordinal ¢y nor to
the membership symbol in set theory), and he proposed a particular substi-
tution method for that calculus. Following Hilbert’s suggestions, Wilhelm
Ackermann and John von Neumann obtained the first significant results in
finitary proof theory in the 1920s. Then, in 1930, another result of the same
character for more usual logical formalisms was obtained by Jacques Her-
brand, but there were troublesome aspects of his work. In 1934, Gerhard
Gentzen introduced new systems, the so-called sequent calculi, to provide
a very clear and technically manageable vehicle for proof theory, and re-
obtained Herbrand’s fundamental theorem via his cut-elimination theorem.
Roughly speaking, the latter tells is that every proof of a statement in quan-
tificational logic can be normalized to a direct proof in which there are no
detours (“cuts”) at any stage via formulas of a complexity higher than what
appears at later stages. Sequents have the form I' — A where I' and A
are finite sequences of formulas (possibly empty). I' — A is derivable in
Gentzen’s calculus LK just in case the formula A D B is derivable in one of
the usual calculi for classical predicate logic, where A is the conjunction of
formulas in I' and B is the disjunction of those in A.



Introduction of infinitary methods to proof theory.

Gentzen’s theorem as it stood could not be used to establish the consistency
of PA, where the scheme of induction resists a purely logical treatment, and
for this reason he was forced to employ a partial cut-elimination argument
whose termination was guaranteed by the principle TI(€¢p). Beginning in the
1950s, Paul Lorenzen and then, much more extensively, Kurt Schiitte began
to employ certain infinitary extensions of Gentzen’s calculi (cf. Schiitte 1960
and 1977). This was done first of all for elementary number theory by re-
placing the usual rule of universal generalization by the so-called w-rule, in
the form: from I' — A, A(n) for each n = 0,1,2,..., infer I' — A (x)A(x).
Now derivations are well-founded trees (whose tips are the axioms A—A),
and each such is assigned an ordinal as length in a natural way. For this
calculus LK, one has a full cut-elimination theorem, and every derivation of
a statement in PA can be transformed into a cut-free derivation of the same
in LK, whose length is less than ¢y. Though infinite, the derivation trees
involved are recursive and can be described finitarily, to yield another con-
sistency proof of PA by TI(¢p). Schiitte extended these methods to systems
RA, of ramified analysis (o an ordinal) in which existence of sets is posited
at finite and transfinite levels up to a, referring at each stage only to sets in-
troduced at lower levels. Using a suitable extension of LK, to RA,, Schiitte
obtained cut-elimination theorems giving natural ordinal bounds for cut-free
derivations in terms of the so-called Veblen hierarchy of ordinal functions.
In 1963, he and the undersigned independently used this to characterize (in
that hierarchy) the ordinal of predicative analysis, defined as the first o for
which TI(«) cannot be justified in a system RAg for § < o. William Tait
(1968) obtained a uniform treatment of arithmetic, ramified analysis and
related unramified systems by means of the cut-elimination theorem for LK
extended to a language with formulas built by countably infinite conjunc-
tions (with the other connectives as usual). Here the appropriate new rule
of inference is: from I' — A, A, for each n = 0,1,2,..., infer I' — AA,
where A is the conjunction of all the A, ’s.

Brief mention should also be made of the extensions of the other methods
of proof theory mentioned above, concentrating on elimination of quantifiers
rather than cut-elimination. In the 1960s Burton Dreben and his students
corrected and extended the Herbrand approach (cf. Dreben and Denton
1970). Tait (1965) made useful conceptual reformulations of Hilbert’s sub-
stitution method; a number of applications of this method to subsystems
of analysis have been obtained in the 1990s by Grigori Mints (cf. his arti-
cle 1994). Another approach stems from Goédel’s functional interpretation,



first presented in a lecture in 1941 but not published until 1958 in the jour-
nal Dialectica; besides the advances with this made by Clifford Spector in
1962 reported in (MATHEMATICS, FOUNDATIONS OF, p. 208), more
recently there have been a number of further applications both to subsys-
tems of arithmetic and to subsystems of analysis (cf. Feferman 7993 and
Avigad and Feferman 1998). Finally, mention should be made of the work
of Prawitz (1965) on systems of natural deduction, which has also been
introduced by Gentzen in 1934 but not further pursued by him; for these
a process of normalization takes the place of cut-elimination. While each
of these other methods has its distinctive merits and advantages, it is the
methods of sequent calculi in various finitary and infinitary forms which
have received the most widespread use.

Proof theory of impredicative systems.

The proof theory of impredicative systems of analysis was initiated by Gaisi
Takeuti in the 1960s. He used partial cut-elimination results and established
termination by reference to certain well-founded systems of ordinal diagrams
(cf. Takeuti 71987). In 1972 William Howard determined the ordinal of a sys-
tem ID; of one arithmetical inductive definition, in the so-called Bachmann
hierarchy of ordinal functions; the novel aspect of this was that it makes use
of a name for the first uncountable ordinal in order to produce the countable
(and in fact recursive) ordinal ID;. In a series of contributions by Harvey
Friedman, Tait, the undersigned, Wolfram Pohlers, Wilfried Buchholz, and
Wilfried Sieg stretching from 1967 into the 1980s, the proof theory of systems
of iterated inductive definitions ID, and related impredicative subsystems of
analysis was advanced substantially. The proof-theoretic ordinals of the 1D,
were established by Pohlers in terms of higher Bachmann ordinal function
systems; cf. Buchholz et al (1981). The methods here use cut-elimination
arguments for extensions of LK involving formulas built by countably and
uncountably long conjunctions. In addition, novel “collapsing” arguments
are employed to show how to collapse suitable uncountably long derivations
to countable ones in order to obtain the countable (again recursive) ordinal
bounds for these systems. An alternative functorial approach to the treat-
ment of iterated inductive definitions was pioneered by Jean-Yves Girard
(1985).

In 1982, Gerhard Jager initiated the use of the so-called admissible frag-
ments of Zermelo-Fraenkel set theory as an illuminating tool in the proof
theory of predicatively reducible systems (cf. Jager 1986). This was ex-



tended by Jager and Pohlers (1982) to yield the proof-theoretical ordinal of
a strong impredicative system of analysis; that makes prima facie use of the
name of the first (recursively) inaccessible ordinal. Michael Rathjen (1994)
has gone beyond this to measure the ordinals of much stronger systems of
analysis and set theory in terms of systems of recursive ordinal notations in-
volving the names of very large (recursively) inaccessible ordinals, analogous
to the so-called “large cardinals” in set theory.

Significance of the work for H.P. and reductive proof
theory.

Ironically for the starting point with Hilbert’s aims to eliminate the “com-
pleted infinite” from the foundations of mathematics, these developments
have required the use of highly infinitary concepts and objects to explain
the proof-theoretical transformations involved in an understandable way. It
is true that in the end these can be explained away in terms of transfinite
induction applied to suitable recursive ordinal notation systems. Even so
one finds few who believe that one’s confidence in the consistency of the
systems of analysis and set theory that have been dealt with so far has been
increased as a result of this body of work. However, while the intrinsic
significance of the determination of the proof-theoretic ordinals of such sys-
tems has not been established, that work can still serve behind the scenes
as a tool in reductive proof theory. It is argued in Feferman (1988) that
one has obtained thereby foundationally significant reductions, for example
of various (prima facie) infinitary systems to finitary ones, impredicative
to predicative ones and non-constructive to constructive ones. With a field
that is still evolving at the time of writing, it is premature to try to arrive
at more lasting judgments of its permanent value.

Solomon Feferman
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