Kreisel’'s “unwinding” program

Solomon Feferman

1 Introduction.

Through his own contributions (individual and collaborative) and his ex-
traordinary personal influence, Georg Kreisel did perhaps more than anyone
else to promote the development of proof theory and the metamathemat-
ics of constructivity in the last forty-odd years. My purpose here is to give
some idea of just one aspect of Kreisel’s contributions to these areas, namely
that devoted to “unwinding” the constructive content of prima-facie non-
constructive mathematical proofs.! This program was the subject of his first
remarkable papers in the 1950’s, and it has drawn his repeated attention ever
since.

Anyone who is familiar with even a small part of Kreisel’s writings knows
that he inverts the usual ratio of technical work to discussion. He takes much
greater pains to explain, at length, the significance of the work than to set
it out in an organized step-by-step fashion. His attitude seems to be that
if one has the right ideas, the details will look after themselves. And they
did amazingly often (or, he could rely on more disciplined collaborators to
look after them). However, in the specific area dealt with here, there are
several important cases where the expected details are either problematic or
simply missing. This can’t help but affect my main aim here, which is to
assess whether the work on Kreisel’s unwinding program, both his own and
that of others, lives up to its claims. My overall conclusion is that while the
general theory of unwinding launched by Kreisel is eminently successful, the
supposed applications to date are few and far between; moreover, in some
prominent cases, their status even as applications has to be put in question.

IThe full range of Kreisel’s contributions to proof theory and constructivity certainly
deserves exposition and critical evaluation, but providing such would require a much more
substantial investment of effort than that which was found possible here.



Kreisel’s unwinding program was a reaction to Hilbert’s consistency pro-
gram. It aimed to substitute clear mathematical results for what were said
to be vague, misplaced, crude foundational goals. But, as with his work on
constructivity, Kreisel also sought to replace those by a more sophisticated
stance about foundations, to be advanced by the technical results. In the
end we must ask, as well, to what extent he was successful in doing so.

I believe that the general direction and character of Kreisel’s contribu-
tions were influenced considerably by his early studies. Kreisel commenced
university studies in mathematics at Trinity College, Cambridge in 1942, at
the age of 19. He reports in several places (e.g. 1987, p. 395) having read the
second volume of Hilbert and Bernays’ Grundlagen der Mathematik in that
same year, so the level of his logical sophistication and direction of interests
was already exceptional then. In mathematics, Cambridge was noted for its
predominant concentration on analysis and number theory, with such famous
exemplars as Hardy, Littlewood, and Besicovitch. There were no logicians
on the faculty (Russell was long gone), but some reinforcement of Kreisel’s
interests in logic and foundational matters was to be found in the lectures
he attended on the philosophy of mathematics offered by his compatriot, the
stormy petrel Ludwig Wittgenstein. According to Monk 1990 (p. 498), in
1944 Wittgenstein declared Kreisel to be “the most able philosopher he had
ever met who was also a mathematician.”

During the war, Kreisel joined the British Admiralty in 1943 where he
worked on problems of hydrodynamics and naval engineering until 1946. This
experience with applied mathematics no doubt honed his skills with classical
analysis but may also have encouraged a casual disregard for mathematical
fastidiousness. Kreisel returned to Cambridge as a Research Fellow in 1946
48, receiving an M. A. in 1947. During this period he engaged in regular
discussions with Wittgenstein on the philosophy of mathematics, but in later
years he was extremely critical of Wittgenstein’s ideas in this respect (cf.
Monk 1990, p. 499 and the references to K. on W. op. cit. p. 642). For the
details of the further progress of Kreisel’s career, cf. his C. V. in this volume.

2 The wnterpretation of non-finitist proofs.

The title of this section is taken from that of the fundamental paper for
Kreisel’s program (K. P.) for unwinding non-constructive proofs; it appeared
in The Journal of Symbolic Logic in two parts, Kreisel 1951/52. This work



modifies Hilbert’s program (H. P.) in several important respects but initially
retains some of the same language in a way that does not adequately convey
the shifts of emphasis. Later, in Kreisel 1958, improved ways were used for
describing what is to be accomplished, and thus 1958 supersedes 1951/52 to
a certain extent. However, to respect the historical progression of ideas, we
shall not mix the two, but return to the 1958 paper in Section 6 below.

For both H. P. and K. P. there is a basic syntactic distinction between
free-variable (quantifier-free) formulas Ay and those formulas A which con-
tain bound variables. H. P. restricts attention to decidable Ay with free
individual variables x,y, . .. ranging over the natural numbers. Kreisel allows
consideration of Ag containing, in addition, free function variables f,g,... ;
these are supposed to be decidable for each substitution instance by specific
numerals and computable functions. Ay is said to be verifiable if it is correct
for each such substitution instance.

A necessary, but clearly not sufficient, condition on finitist proofs is that
they consist of verifiable free variable formulas. Kreisel is careful to avoid
claiming any characterization of finitist proofs (1951 p. 242, ftn. 2).2 At
any rate, proofs which contain formulas with bound variables (even just
individual variables) are non-finitist on their face. The Hilbert program
aimed to establish the consistency of formal systems for arithmetic, analysis,
etc., by finitist reasoning. For systems containing a modicum of arithmetic,
this would insure that free variable formulas Ag(z1,...,z,) established in
such formalisms by non-finitist proofs (i. e. which contain some formulas with
bound variables) are verifiable and, indeed, finitistically provable. However,
even where H. P. succeeds, this tells us nothing about proofs of formulas A
with bound variables. The “problem of non-finitist proofs” that Kreisel poses
in 1951/52 is how to give “finitist sense” to such formulas.

To make this more precise, and to avoid the problem of saying just what
is finitist (skirted as indicated above), Kreisel introduces the idea of an inter-
pretation, which applies to systems ¥ within an effectively specified formal
language L£(X); ¥ itself need not be effectively given (for reasons to be ex-
plained below). An interpretation of 3 is taken to be an effective association
with each formula A in £(X) of a sequence of free variable formulas Aén) such
that:

2But in Kreisel 1960 he would later propose a formal characterization of the notion
of finitist proof; cf. Kreisel 1987, p. 396 for one of his more recent assessments of that
venture.



(I;) for each proof of A in ¥ we can find an n such that Al is verifiable,
(I3) for each proof of =A in ¥ and each n we can find a substitution
instance which makes A" false.
There is also an obvious third condition which relates the interpretation of
B to that of A when B is proved from A in X.

The best known example of an interpretation is provided by Herbrand’s
Theorem for the classical 1st order predicate calculus . This associates
with each formula A a sequence of formulas A(()") each of which is a finite
disjunction of substitution instances of the quantifier-free matrix of A when
A is taken in prenex form; details of the association will be recalled in the
next section. It turns out that Herbrand’s Theorem applies to extensions X
of the predicate calculus by arbitrary verifiable formulas; these need not be
effectively given.

Remark. The above notion of interpretation is too broad to be really useful
as a general theoretical tool. As Kreisel points out, every usual formal system
Y. with decidable proof predicate Prfs(z,y) (“x is the number of a proof in
Y of the formula with number y”) admits a trivial interpretation of each
formula A by a single formula Ag(x), namely = Prfs(z,/ =A!). One would
want the A(()n) in an interpretation to have a closer contentual relation to
A, and to be informative about that content. In this respect, the modified
notion of interpretation introduced in Kreisel 1958 is an improvement; cf.
Sec. 6 below. At any rate, (I;), (Iy) serve for initial orientation to what is to
be accomplished.

3 The no counterexample interpretation.

The main result of Kreisel 1951/52 is to provide an informative recursive
interpretation of classical 1st order arithmetic and its extension by verifiable
free variable formulas. This is the so-called no counterexample interpretation
(n. c. i.). Its form is illustrated by TI3 formulas A, which in any case cover
the specific applications to be discussed later. So let us consider

(1) A=VadyVzR(z,y, z)
with R quantifier-free. The n. c. i. is to be contrasted with the “naive”
interpretation of A, which proceeds via its Skolem normal form, the 2nd
order formula

()s 3fVz,zR(z, f(x), 2).



The naive interpretation seeks to find a computable f satisfying (1)s when
(1) is proved. Simple recursion-theoretic examples show that, in general, this
cannot be done when Vz3yVzR(x,y, 2) is proved in arithmetic.?

In the classical predicate calculus, Skolem normal form is the appropriate
one to consider for satisfiability; its dual, the Herbrand normal form, in this
case

(D Vo, [FyR(z,y, f(y)),
is the more appropriate one for wvalidity and hence (by completeness) for
derivability. This is equivalent to

(2) —3z, nyﬂR(x, Ys f<y>>
which, by Skolem form, is equivalent to

(3) —JaVy3dz—R(x,y,2),
ie. to A itself. A pair z, f such that Vy—R(z,y, f(y)) would provide a
counterezample to A; hence (2) and so, also (1)fy can be read as asserting
that there is no counterexample to A. The Herbrand form and its obvious
generalization to arbitrary prenex A is the common formal starting point of
both Herbrand’s Theorem (H. T.) and Kreisel’s n. c. i. for arithmetic.

Let us recall, briefly, some details of H. T. 4 For ¥ the classical predicate
calculus, extend the language £(X) by new free function variables f, g, .. ..
Then it is shown that A is derivable in ¥ just in case the 1st-order version
of its Herbrand form, i. e.

(4) FyR(z,y, f(y))
is derivable; moreover, that — according to H. T. — holds just in case there
is a finite disjunction of substitution instances

(5) R(z,t1,f(t1))V ... VR(x, tg, f(tx))
which is tautologous. Note that the ¢; in (5) are built up by the function
symbols in R together with f from the variable x and constants in R. These

can be assumed to be ordered in such a way that when new variables zq, ..., 2z
are substituted for f(¢),..., f(tx), resp., the t1,..., tx are transformed into
terms sy, . .., Sk, such that the free variables of s;(i = 1, ..., k) are contained
in {x,21,...,2_1}. That is, we have a disjunction

(6) R(z,s1(x),2z1)V R(x,s2(x,21),22) V...V R(x, sp(w, 21, - -, 2k-1), 2k)
which is tautologous when A is provable; moreover, A is derivable from each
instance of (6) by Herbrand’s direct rules for the predicate calculus. Note

3The formula Va3yvz[T(z,x,y) V =T (z,x, z)] using Kleene’s T' predicate provides one
example; Kreisel gives an example from elementary analysis in Appendix I to 1952.
4Ct., e. g., Shoenfield 1967, pp. 52-55.



that the formulas (6) lie back in the original language £().

Granted these facts about H. T., Kreisel shows straightforwardly in 1951
that the sequence A(()") of all possible disjunctive substitution instances of
the form (6) constitutes an interpretation (in his sense, as described in sec.
2) of the predicate calculus. He then goes on to give, as a second such
interpretation, the n. c. i. for the predicate calculus, by returning to the form
(4). Basically, this is to regard the choice of y satisfying R(z,vy, f(y)) for
arbitrary x, f as given by explicitly defined functionals

(7) y=F(f2)
which are found through those disjunctions (5) that are tautologous. Namely,
y may be taken to be t;(= t;(x, f)) for the first ¢ such that R (z,t;, f (¢;))
holds. The n. c. i. for the predicate calculus simply associates with each A
of the form (1) the sequence A(()n) of all possible formulas of the form

8) Rz, F(f,2),f(F(f )
in which the F' are specific explicit functionals built from terms of £(X) using
definition by cases.® Kreisel sketches a proof of this in 1951 for arbitrary
prenex A, using, instead of H. T., the Hilbert e-calculus and results about
the Hilbert substitution method (for it) from Hilbert and Bernays 1939.

The n. c. i. for arithmetic takes on a similar shape, only the description of
the functionals required as well as the proof are more involved. Here Kreisel
makes use of Ackermann 1940, which extended to arithmetic the substitution
method for the e-calculus, with termination proved by effective transfinite
induction up to Cantor’s ordinal &g, the first fixed point of w® = «.” What
Kreisel’s result shows is that if a prenex formula A is provable in arithmetic
then its n. c. i. functionals can be defined using primitive recursive schemata
and schemata for effective transfinite recursion up to any ordinal o < ¢¢. In
the case of a II3 formula A as in (1), these functionals may specifically be
determined by

9) F(f.z) = (uy)R(z,y, f(y))
for all (f,x). Since transfinite induction up to each ordinal o < g is provable
in arithmetic, Kreisel’s result gives a complete characterization of the n. c. i.
functionals for that system.

Kreisel further observes — and stresses repeatedly — that for both the

®More mnemonically, one might write y = Y (f, x).

6That is, the (if...then...else...) construction.

"Such use of induction up to ¢ had first been applied by Gentzen (1936) to obtain a
consistency proof of arithmetic by means of a partial extension of his earlier cut-elimination
procedure for the predicate calculus.



predicate calculus and arithmetic, the class of functionals needed for the n. c.
i. is unaffected by the adjunction of purely universal (i.e. I1{) axioms B. For if
A follows from B, then B — A
is provable in the system and hence so also is =B V A; passing to the
prenex form for the latter and applying the n. c. i. to that gives the de-
sired result. For example, if A = Vo3yVzR(z,y,2) and B = VuS(u), with S
quantifier-free, then =BV A goes into Vz3u, yVz [-S(u) V R(z,y, 2)], and its
Herbrand form is Vz, f3u,y [-S(u) V R(x,y, f(y))]. This leads to two func-
tionals F'(f,z), G(f,x), with =S(G(f,z))V R(z, F(f,z), f(F(f,z))). Hence
R(z,F (f,x), f(F(f,z))) holds if VuS(u) holds, and indeed, if S(m) holds
for some one suitable m (depending on z and f). The functionals F, G
lie in the same classes as described before for the predicate calculus, resp.
arithmetic. Note that it is the addition of arbitrary (verifiable) II9 axioms
which gives rise to the non-effective systems X allowed in Kreisel’s notion of
interpretation in Sec. 2 above.

The special case in all this of TTJ formulas Vz3yR(x,y) provable in arith-
metic (possibly extended by arbitrary IIY axioms) is of particular interest.
Since the variable ‘2’ in (1) is missing, the functional F"in (9) simply reduces
to a function

(10) F(z) = (uy)R(z,y).

Then F' can be defined by function schemata for primitive recursion and
ordinal recursion up to ordinals a@ < gy. Since the provable IIy formulas of
arithmetic correspond exactly to its provably recursive functions, one arrives
at the following:

Theorem (Kreisel 1951/52). The provably recursive functions of
arithmetic are exactly those which are ordinal recursive of order
< €9. Moreover, the same holds of any consistent extension of
arithmetic by 119 axioms.

4 Proofs of the n. c. 1.

While the nature of the n. c. i. and results for it are clear enough, the
proofs are quite another matter. Kreisel’s own proof of the n. c. i. for arith-
metic requires familiarity with the ins and outs of Hilbert’s e-calculus and
with its application in Ackermann 1940. For those few brought up on Hilbert
and Bernays 1939 (as, e.g., Kreisel himself) this would not be an obstacle.
But for the rest of us, the proof in Kreisel 1951/52 does not invite detailed
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study; it just looks like a thicket. I myself have never tried to wade through
it, and don’t know anyone who has.® The review by J. Barkley Rosser,
J. Symbolic Logic 18 (1953), pp. 78-79, is extremely critical on a number of
scores, to begin with that “...it is very difficult reading. In the first place, the
subject matter is of considerable complexity. In the second place, there are
many errors, too many to permit a complete listing... Most are typographi-
cal....” Then, “[T]he word ‘finitist’ is itself used in an unfamiliar sense... and
furthermore this sense is never carefully explained... . Apparently ‘finitist’
means ‘constructive’ with the additional restriction that no bound variables
shall occur.” As we shall see, Kreisel would deal with this objection in his
1958 paper.

Finally, in his review Rosser registered disappointment with the nature of
the n. c. i. itself, pointing to provable X9 sentences 3xVyR(x,y) in particular.
For these, he said, one would wish to find a specific constant k such that
R(k,y) holds for all y, and that doing so “...would be of great value, since it
would enable one to transform one of the existing non-constructive proofs of
Siegel’s theorem into a constructive proof, which is badly needed.” Instead,
the n. c. i. only gives an x = F(f) such that R(F(f), f(F(f))) holds for
all f. Presumably, Rosser was here referring to a theorem of C. L. Siegel
guaranteeing that certain kinds of diophantine equations have at most a
finite number of solutions. Kreisel would deal with this general objection
some thirty years later in his paper 1982, as will be discussed in Sec. 7
below.

The first new proof of the n. c. i. for arithmetic was obtained via Godel’s
functional ( “Dialectica”) interpretation of intuitionistic arithmetic (Gddel
1958), as was pointed out by Kreisel himself in his paper 1959. This route
breaks up the work into several more understandable steps: first (i) the
negative translation of classical into intuitionistic arithmetic, then (ii) the
application of Godel’s interpretation to the translations of prenex formulas,
and finally (iii) ordinal analysis of the resulting functionals. The first two
steps are quite direct, and show that the n. c. i. functionals for arithmetic,
which lie at type level 2 in the type hierarchy, are generated by the schemata

8] asked my colleague, Grigori Mints, an expert on Hilbert’s e-substitution method,
whether he had ever studied Kreisel’s proof. He said that he had not because by the
time he learned of the significance of the results, there were more understandable proofs
available [see below]|. After writing the above, I learned from Charles Parsons that back
in the 50’s he had managed to work his way through the proof in Kreisel 1951/52, though
only by relying on Ackerman 1940 to help fill in the details.



for Godel’s primitive recursive functionals of finite type.® The third step,
which shows that every type 2 primitive recursive functional is ordinal recur-
sive of ordinal < ¢, is established in Schwichtenberg 1975, following earlier
work of Tait 1967.

As an aside, the history of the development of Godel’s functional inter-
pretation is of incidental interest here, as explained in Feferman 19953. Godel
had arrived at this interpretation by 1941, when he lectured on it at Yale
University, though he did not publish the work until 1958. In the 1930s,
Godel had explained several possible routes to obtain a constructive consis-
tency proof for arithmetic going as little as possible beyond finitist methods.
In a lecture he gave in 1938 for an informal seminar organized in Vienna by
Edgar Zilsel, he explained a way of looking at Gentzen’s consistency proof
for arithmetic which is a clear anticipation of the n. ¢. i. Shorthand notes
for this lecture were found in Godel’s Nachlass and transcribed as part of the
Godel editorial project a few years ago. These lecture notes appear in the
third volume of Godel’s Collected Works (1994 ), together with an illuminat-
ing introductory note by Wilfried Sieg and Charles Parsons.

For those versed in Gentzen-style proof theory, the most direct and per-
haps cleanest route to the n. c. i. for arithmetic make use of effective infinitary
versions of cut-elimination. An excellent exposition of such is to be found in
Schwichtenberg 1977, with application to the provably recursive functions of
arithmetic and the n. c. i. op. cit. pp. 884-892.10

5 Application to Littlewood’s theorem.

The final part of Kreisel 1952, pp. 51-65, is supposed, in his words, to pro-
vide an application “...of the ideas of the [n. c. i.] to a theorem of analytic
number theory whose interpretation has given trouble”, namely the result of
Littlewood in 1914 that the functions of integers

(1) ¢(x) —z, and

2) (z) i),
change sign infinitely often. Here 1(z) is the log of the 1. ¢. m. of numbers
< z, w(x) is the number of primes < z and li(x) is the logarithmic integral
15 (1/log u)du (treated as an improper integral at w = 1), which is asymptotic

9Ct. Troelstra 1990 p. 225 and, for more details with a variant of Gédel’s interpretation,
Shoenfield 1967 pp. 223-227.
10Ct. also Girard 1987 pp. 481-482.



to m(x). Littlewood’s theorem for (1) is evidently in the form Va3dyR(z,y)
with R (primitive) recursive; the same holds for (2) by use of suitable recur-
sive approximations for li(x). Littlewood’s result was surprising since as far
as had been calculated, 7(x) < li(z); cf. p. 7 of Ingham 1932", which shows
representative values up to x= 10 billion.

Littlewood’s proof of his theorem exposited in Ingham 1932, Ch. V, is
non-constructive: in both (1) and (2) existence of a y > = is demonstrated
for which a sign change occurs; a bound for y is given explicitly in case
the Riemann Hypothesis (R. H.) is false, but a different argument for the
existence of y is used if R. H. is true, and no explicit bound for y emerges
in that case (see also Littlewood 1948). As Ingham put it (op. cit. p. 7),
“Littlewood’s theorem is a pure ‘existence theorem’ and we still know no
numerical value of x for which m(z) > li(z).” That situation was shortly
remedied by S. Skewes in 1933 who used a different proof of Littlewood’s
theorem for m(x) — li(z), assuming R. H., to put a bound of 103(34) on the
first change of sign, where 10;(n) = 10" and 10;,1(n) = 10*%™): later work by
others from the 1960s on (beginning with Lehman 1966) lowered this bound
considerably (cf. Ingham 1990 p. ix). What Kreisel claimed to do in 1952,
pp. 51-52, was analyze the original proof of Littlewood’s theorem to show
how one could extract recursive bounds, using the idea of the n. c. i. applied
to statements of the form YuS(u) — VrdyR(z,y), where VuS(u) is a 119
equivalent of the R. H.'? Informally, this was to revolve around the feature of
the n. c. i. that S(m) would only be needed for finitely many m; as Kreisel
put it (1952 p. 54), “if the conclusion...holds when the Riemann hypothesis
is true, it should also hold when the Riemann hypothesis is nearly true: not
all zeros [of the Riemann zeta function] need lie on ¢ = 1/2, but only those
whose imaginary part lie below a certain bound...and they need not lie on
the line ¢ = 1/2, but near it.”

The nature of this application is, however, obscure in a number of re-
spects, despite the claim made for it in an introductory section to Kreisel
1951, p. 247: “Since [Littlewood’s] proof was not developed in a formal sys-
tem there can be no question of applying the results of the present work to
it in a precise sense. But if one examines the official proof in [Ingham 1932]

UTngham’s famous 1932 expository monograph on the distribution of prime numbers
has been reprinted without change in 1990; that edition contains an additional foreword
by R. C. Vaughan with supplementary up-to-date information and references.

12Curiously, it is not explicitly stated in Kreisel 1952 that the R. H. can be put in I19
form; this was only brought out in his 1958 paper discussed in Sec. 6 below.
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(and the usual proofs of the standard theorems on complex variables used)...
it might fairly be said, I think, that it applies the principles of [the n. c. i.] in
a straightforward manner without introducing ‘new ideas’ of proof.” First of
all, even though the original proof was not presented in a formal system, one
would want to know whether it can be formalized in arithmetic, at least in
principle. Indeed, Kreisel says (1952, p. 52) that we could be sure of finding
the required bounds if the proof were written out in one of the extensions
of arithmetic that he considers. He says that he has “...discussed elsewhere
[no reference given| how proofs in large parts of the theory of functions of a
complex variable can be presented in [the system] Z,, [of arithmetic|. Here
we shall only give a method of constructing rational approximations to ze-
ros of computable regular functions. This will enable us to deal with the
present problem if we remember our familiar principle [about the n. c. i. for
implications with I hypotheses].” He then launches into a description of
such methods which seem closely related to the work on constructive ap-
proximations to zeros of analytic functions from Kreisel 1952a. The work on
this purported application then goes on to sketch some modifications of the
proof of Littlewood’s theorem in Ingham 1932, Ch. V, making use of those
constructive methods of approximation.'> However, no further indication is
given as to whether or how any of this is to be formalized in arithmetic.!4
Nor is any statement made as to what precise conclusion one could draw if it
were taken for granted that it could all be thus formalized, so that one could
apply the n. c. i. for arithmetic to it. Thus its status as an application of the
logical work is in question. Finally — setting aside the logical aspects (or
lack thereof) — just considered as a piece of work in analytic number theory,
no explicit bounds are extracted that one can point to, certainly none that
would satisfy the mathematicians interested in such matters. Indeed, one is
hard put to say exactly what the conclusion of this work is; of this, more in
the next section.

13This presumes familiarity on the reader’s part with the exposition loc. cit.

“Later work by a number of researchers, including H. Friedman, G. Mints, and S.
Simpson, has shown that the bulk of classical analysis of the sort applied in Ingham
1932 can in fact be carried out in systems conservative over primitive recursive arithmetic
(PRA); cf. Feferman 1988 for references. Further direct evidence for the formalization in
PRA of complex analysis applied to number theory is provided by Cegielski 1992.
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6 Pushing the program.

Kreisel’s program (K. P.) is formulated in his paper 1958 in an improved
way, without the misleading reference to finitism, as follows (p. 155): “To de-
termine the constructive (recursive) content or the constructive equivalent of
the non-constructive concepts and theorems used in mathematics, particularly
arithmetic and analysis.” This is meant to replace Hilbert’s program (H. P.)
calling for finitist or (more generally) constructive consistency proofs, which
he says has two defects: “(1) Since the notion of constructive proof is vague,
the whole formulation of the program is vague... (2) The formulation does
not cover too well the actual substance of the material contained in [Hilbert-
Bernays 1939]; e. g. the
e-theorems for the predicate calculus go far beyond establishing mere consis-
tency...”. Kreisel adds in (1) that though the problem of providing an exact
formulation of what constitutes a finitist or constructive proof is an interest-
ing one for the logician, H. P. is not attractive to the mathematician because
of its vagueness. Regarding the use of ‘constructive’ in the statement of K.
P., which might similarly be questioned, he says that this may be formulated
in a precise way using his notion of recursive interpretation (1958, p. 160).
That is an improved version of the notion of interpretation from 1951, as
follows: A recursive interpretation of a system Y in a fragment Y, consists
of two recursive functions A — (A(()”)> and p — m(p) such that

(RIy) if A is a formula of ¥ then the Aén) are formulas of ¥y, and if p is
a proof of

A in ¥ then 7(p) is a proof of some Ag") in X,

(RIy) A can be proved from each Al in ¥,

(RI3) if A = Va3dyR(z,y) then A s R(z, F,,(x)) where the F,, are an
enumeration of

the provably recursive functions of .

Once more, H. T. for the predicate calculus and the n. c. i. for the predicate
calculus and for arithmetic provide examples of recursive interpretations.
These are explained in a general way, though some details about the n. c.
i. for the predicate calculus with equality are presented in the Appendix to
1958. The rest of that paper is devoted to a description of examples —
treated in other publications — of applications of recursive interpretations
to results in mathematics and logic. On the mathematical side, two are in
algebra, namely to Hilbert’s 17th problem and Hilbert’s Nullstellensatz, and
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one is in arithmetic, namely the application to m(z) — li(z) discussed in the
preceding section; I shall not go into the logical applications here.

Both the algebraic applications make use of H. T. or the e-theorems with
equality. In the case of Hilbert’s 17th problem, this is used to extract uniform
primitive recursive bounds on the number and degrees in the representation
as sums of squares of rational functions, of a positive semi-definite polynomial
over a real field — from Artin’s result guaranteeing such a representation.
(As he reported at the Cornell logic conference in 1957, Kreisel had also
obtained the same sort of bounds by a direct analysis, without use of logic,
of Artin’s original proof.) This interesting application is discussed in detail
in Delzell’s contribution to the present volume, and will not be dealt with
further here. The application to the Nullstellensatz appears to be rather
straightforward, granted elimination theory for algebraically closed fields.
(However, see Kreisel 1992p. 33 ftn. 6 which refers to a correction of a “sloppy
aside on proof-theoretic aspects of the Nullstellensatz” in his 71958 paper and
also belittles his own work on that by comparison with more recent sharp
results by algebraists.) For both theorems, a comparison is made in 1958,
p- 167, with closely related results obtained by model-theoretic methods.

So we turn again to the earlier application to Littlewood’s theorem; here
there are several supplements to the sketch in 1952 discussed in the preceding
section. First of all (cf. ftn. 12 above) it is now stated explicitly that R. H. is
equivalent to a statement in IT{ form, by an argument in outline based on the
methods of Kreisel 1952a.*> Secondly, the statement of Littlewood’s theorem
is shown to be in II3 form by use of recursive approximations to li(n). Finally,
the way in which the n. c. i. for arithmetic is to be applied is explained more
clearly. Once more, it is stated that proofs in analytic number theory, and
in particular that of Littlewood’s theorem, can be formalized in arithmetic
“...to yield the bounds, at least in principle” and that “if one examines proofs
in analytic number theory with a view to a formalization in Z, one does not
run into difficulties... If one is interested in finding bounds, one will naturally
formalize the given informal proof in as constructive a manner as possible.”
(Kreisel 1958, p. 171). But one can’t expect to do this in a mechanical
manner; Kreisel says that he does not conceive of mathematical logic as “the
mathematics for morons.”

Nevertheless, once more, no precise conclusion is stated as to exactly what

15 Another proof that R. H. is I1{, using only some particular classical results about the
Riemann zeta function, is given in full detail in Davis, Matijasevi¢ and Robinson 1976.
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can be drawn from application of the n. c. i. for arithmetic to Littlewood’s
theorem. This is all the more disappointing, as in the interim Skewes 1955
had published what Kreisel (op. cit. p. 170) calls an ad hoc solution which
gives “the same bound as the method of [Kreisel 1952])”. Indeed, Skewes
makes use of a weakening (H) of R. H.'8, under which he obtains an ex-
plicit bound xy, for the first change of sign, as z; = expexpexp(7.703) (or
e3(7.703)) and, under its negation (NH), an explicit bound x5 as 104(3) and
(slightly better) also as e4(7.705). Despite the close relationship, Skewes 1955
does not refer to Kreisel 1952, and Kreisel 1958 does not refer to Skewes’
specific bounds.

It is only in two much later papers that Kreisel states explicit bounds on
the first change of sign IV of 7(z) — li(z) resulting from his 1952 work. First,
in 1968 (p. 362), he writes that this gives roughly exp exp exp exp 8 (or e4(8))
as a bound for N, while by comparison, Lehman 1966 gives (1.65)10'1%°. He
goes on to say that: “In view of these improvements, the present value of
[Kreisel 1952] ... consists not in the bounds themselves, but only in analyzing
the general nature of these problems; it separates what bounds are got from
quite general considerations and what improvements need special study. This
type of analysis is a typical logical contribution ...”. Later, in his paper 1977,
Kreisel says: “[A]n essentially routine application of proof theory (e-theorems
or cut-elimination) applied to Littlewood’s original proof, extracts a bound
for N; cf. [Kreisel 1952]. Of course this cannot be expected to give optimal
bounds, for which further ideas are needed, and it doesn’t. It gives a bound
of about

34
10" compared to (1.65)10'1%

found in [Lehman 1966].” (Kreisel 1977, p. 114) There’s something fishy
about all this, since the bound 103(34) shown here is the same as that ob-
tained in Skewes 1933 (under R. H.) by his alternative proof of Littlewood’s
theorem, and is different from the bound claimed in Kreisel 1968. Moreover,
no mention is made in either paper of the still different bound in Skewes 1955
which Kreisel had stated in the above quote from 1958 to be the same as
that obtained in his 1952 paper.

16Gimilar in character to that of Kreisel 1952. As to the order of priority, it should be
noted that, according to Littlewood 1948 p. 169, Skewes had obtained a numerical bound
“free of hypotheses” in 1937 and that the method used was to be found in Skewes’ Ph.
D. thesis deposited in the Cambridge University Library; apparently only the bound was
improved in Skewes 1955. N.B. This footnote was omitted in Littlewood 1953.
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7 Applications to finiteness theorems.

In his retrospective report 1987, Kreisel says that by the mid 1950s he had
come to assume — “wrongly” — that the potential for striking mathematical
applications of proof theory was low. In the following twenty years, in his
technical work Kreisel concentrated on a number of other aspects of proof
theory and constructivity, with influential side forays into other parts of logic,
such as predicativity and generalized recursion theory. But he says that he
learnt in the late 1970s of many areas “where mathematicians wanted to
unwind proofs of TI9 theorems, but were not able to do so without logical
guidance.” (1987, p. 395). At the same time he began to formulate general
results on unwinding %9 theorems which led to applications to finiteness
theorems in number theory; these are the matters to which the present section
is devoted.

Recall from the description of H. T. in Sec. 3 above that if

(1)  FaVyR(z,y)
is proved in the predicate calculus then there are terms s;(y1,...,yi—1) , @ =
1,..., k such that

(2)  R(s1,3) V R(s2(y1),92) V - V R(s(y1,- - yk-1), Y)
is tautologous. Of special interest in number theory are statements asserting
that a certain set {z|C(x)} is finite, which we write in the form (1) as:

(3) Favy(Cly) —y <)
Then the corresponding Herbrand disjunction may be rewritten as

(4) Cy)A.. . AC(yx) — y1 < $1Vy2 < s1(y1)V. . Ny < Sk(y1, - Yk—1)-
Kreisel observed that in such a case, if we have effective control of the s;
relative to their variables y; (j < 4) then we can provide a bound on the
number of y’s such that C'(y) and — in some cases — on their size. For the
latter, an obvious sufficient condition is that we have a number ¢ such that
Si(y1y .-y yim1) < cfori=1,... k, but we could rarely expect to meet this
in practice. More interesting and potentially useful is when we have control
over the growth of the s;, leading to a bound on the number of y’s such that
C(y), as illustrated in the following.

Theorem (Kreisel 1982). Suppose C(y) is a number-theoretical
predicate and that s;(y1,...,yi—1) (i = 1,...,k) are functions
such that (4) holds for all natural numbers yy,...,yx. If ¢;(i =
1,...,k) are such that

(i) s <ci, and
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(i) si(yr,- - yi-1) < ¢ +max(y, ..., yi-1)  for 1 <i <k,
then XF_ c; is a bound for the number of y’s such that C(y).

The proof of this theorem is quite easy, taking only eight lines in Kreisel’s
1982 paper (p. 41). Another proof of the same length is given in Luckhardt
1989 along with some other results using variant growth conditions.

It should be noted that it is not required in Kreisel’s theorem (or its
variants) that the statement of finiteness be proved in the predicate calcu-
lus or any other given formal system, nor that the s; are terms in a formal
language, nor that C' is decidable. Thus the only role of Herbrand’s theo-
rem here has been to suggest appropriate forms to consider for applications.
This is exactly what one finds in the work of Luckhardt 1989 on “Herbrand
analyses” of two proofs of the famous theorem of Roth 1955 (also known as
the Thue-Siegel-Roth theorem) about diophantine approximations.!” Roth’s
theorem states that if « is an irrational algebraic number then for any € > 0,
there are at most a finite number of ¢ > 1 such that for some (unique) integer

p with (p,q) = 1,
P 1
(5)

a——| < 2re

The theorem guara?ntees that suitably related diophantine equations have
only a finite number of solutions. For each specific « and ¢ = 1/n (say),
Roth’s theorem takes the logical form

(6) ImVq(C(g) — g <m)
where

(7) Clg)=q>1AEpe)l(p,g) =1A|a—pg | < g,
C can be shown to be decidable and hence (6) is in X9 form, though as
mentioned above, that information is not needed for the applications. At
any rate (6) is a prima facie candidate for an Herbrand analysis, i. e. for the
identification of suitable s;(qi,...,¢—1) (1 <i < k) satisfying

8) Clg)N.. .NC(qr) = 1 < 51V < So(@)V.. . Var < se(q1, -, qx—1)
for all qi,...,q.. What Luckhardt does in his 1989 paper is to extract such
s; from two proofs of Roth’s theorem, namely Roth’s own in 1955 and that
of Esnault and Viehweg 1984. In both cases, by careful examination of the
growth conditions, he is able to improve the bounds previously obtained on
the number of ¢’s with C(gq). In particular, Luckhardt obtains a bound from

1"The idea for this specific direction of application was already advanced by Kreisel in
1970; cf. Kreisel 1977 pp. 114-115.
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the second proof which is polynomial of low degree in n and logd, where
n = 1/e and d = degree . It turns out that the same bounds were obtained
independently by Bombieri and van der Poorten (1988) without any (explicit)
Herbrand analysis.

8 Assessment of the mathematical applica-
tions.

Besides the applications of proof theory discussed or indicated above, Kreisel
mentions several areas, “...L-functions, Galois cohomology, ergodic theory,
topological dynamics” that he says he learned about in the late seventies
where (as quoted above) “mathematicians wanted to unwind proofs of IT9-
theorems, but were not able to do so without logical guidance”. No references
are given for these and I have not been able to chase them all down. There
is a brief discussion in Kreisel 1990, pp. 247-248 of the question of obtaining
a lower bound for L(1), where L is the Dirichlet L-function. One has a
standard non-constructive proof that L(1) > 0; Kreisel refers loc. cit. to a
modified proof which can be unwound by hand “since it has been done.” (For
this, some indications are to be found in Kreisel 1981, p. 139 ftn. 2, and
1981a, pp. 150-152.)

The mentioned application to topological dynamics is presumably that
made by Girard 1987 to extract bounds from two forms of the Furstenberg and
Weiss 1978 proof (by those methods) of the famous combinatorial theorem
of van der Waerden (1927) on arithmetic progressions in partitions of the
natural numbers. That theorem asserts the existence for any p and k of an
n such that if {0,...,n — 1} is partitioned into k classes C1, ..., Cy, at least
one (C; contains an arithmetic progression of length p. Girard first applies
cut-elimination to an “ad hoc” modified form of the Furstenberg-Weiss proof
(op. cit. pp. 237-251). He later applies the n. c. i. to the Furstenberg-Weiss
proof closer to that originally given (op. cit. pp. 483-496). The unwindings
are shown to lead to bounds for W(p, k), the least n as a function of p and
k, in a sub-recursive hierarchy. In the case of the first, modified proof, this
is at the level of the Ackermann non-primitive recursive function; that is the
same bound as obtained by inspection from the original van der Waerden
proof. In the case of the second proof, the bound for W extracted is at a
somewhat higher level.
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Discussion. What can we say now about these various claimed applications
of proof theory to the unwinding of prima-facie non-constructive mathemat-
ical proofs? Here I would raise several questions:

1. Have there been enough applications so that one can speak of a definite
direction of work, with a clear past and promising future?

2. In what sense are these really applications of proof theory?

3. Do the applications provide the kind of specific information sought by
mathematicians?

As to 1, I think it is fair to say the number of applications is still disap-
pointingly small. Moreover, the nature of the past applications is mixed (to
the extent that one understands their “nature” at all), and the prospects for
the future are far from clear. This is not an existing or emerging direction
of work that one would propose for a thesis topic without a great deal of
hesitation.

Concerning 2, here again the history is mixed. As we have seen, the
unwinding of Littlewood’s theorem, such as it is, is not really an application
of the n. c. i., nor is the use of “Herbrand analysis” in the proofs of the Roth
theorem an application of Herbrand’s theorem. On the other hand, Kreisel’s
first treatment of Artin’s solution of Hilbert’s 17th problem did involve a
genuine application of Herbrand’s theorem or the e-theorems'®, and Girard’s
treatments of the Furstenberg-Weiss proof are genuine applications of cut-
elimination and the n. c. i. Of course, it is recognized that one does not
have, in each of these cases, a matter of blindly formalizing existing proofs in
some formal system and mechanically applying the transformations provided
in principle by the relevant proof theory. Rather, these applications are
“genuine” on their face because they apparently involve steps that correspond
to those transformations in a significant way. On the other hand, there
is no integral involvement of proof theory in the purported applications to
the Littlewood and Roth theorems. The discussion in Luckhardt 1989, pp.
206-261, of the latter is pertinent. Luckhardt there makes the following
points (among others): (i) Herbrand’s theorem (H. T.) is not necessary in
principle (“nicht prinzipiell notig”)'? in his applications; (ii) knowledge of H.

I8Cf. the discussion in Delzell (Part I, this volume).
19Tn fact, as I have stressed in Sec. 7, the use of H. T. was merely to suggest the form
of the statements to be considered; the theorem itself is not used at all.
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T. provides the concepts needed to interpret existing mathematical proofs
as falling under a logical pattern; and (iii) applications to specific cases are
not simply obtained by substitution into a gross (“plump”) scheme.?* With
‘n. c. i.” or ‘cut-elimination’ or ‘normalization’ equally well substituted here
for ‘H. T.”, T think (i)—(iii) pretty much speak for themselves in response to
question 2 for most of the purported applications.

Finally, as to the third question, in the cases that one can make com-
parisons at all, the answer is: Yes ... but. There is no need to repeat the
ambiguous outcome on the Littlewood theorem described at the conclusion
of Sec. 6. And, as mentioned at the end of the preceding section, Luckhardt’s
improvement in the bound from the Esnault-Viehweg proof was obtained in-
dependently by Bombieri and van der Poorten without any appeal to logic.
Finally, in the case of the van der Waerden theorem, the main question that
had interested combinatorists was whether the function W could be given a
primitive recursive bound, i. e. essentially lower than the original Ackermann
function bound. Here the striking result is that obtained by Shelah 1988 by
a novel elementary combinatorial proof, with no use of logic, that gives a
bound for W at level 4 in the “fast-growing” hierarchy.?! For a typical ap-
preciation by a combinatorist of that improvement, see the review by Joel
Spencer of Shelah’s paper in the J. Symbolic Logic 55 (1990), pp. 887—888.

As a postscript to the discussion of questions 1-3 above, one should men-
tion the recent work of Kohlenbach 1993, 1993a, which concerns applications
of a variant of Godel’s functional interpretation to results in Chebycheff ap-
proximation theory. The results in question fall under the general form of
uniqueness theorems:

(1) VYueUYvy, 096V, (G(u,v1) = inf{G(u,v) : veV,} = G(u,v9) — vy =
?JQ)
where U,V are complete separable metric spaces, V, is compact in V' and
G : U xV — is continuous. Kohlenbach’s applications extract from classical
proofs of results of the form (1) effective “moduli of uniqueness” @, satisfying:

(2) YueUVuy, vgeVane[f{l (G(u, v;) — inf{G(u,v) : veV, } < 2—<I>un)

— dv('l}l, U2) S 2—n:|7

Note that this is an a priori estimate since ® does not depend on vy, vs.
There is no question that such unwindings are a genuine application of logic

20Gee also Kreisel 1990, pp. 250-253, for further discussion along these lines.
21That is, at level f; where fi(z) = 2z, fir1(z) = fi(m)(l).
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and, on the face of it, provide the kind of specific information of interest to
mathematicians. Indeed, Kohlenbach’s work apparently yields improvement
of known estimates in connection with Chebycheff approximation. It is ob-
viously premature to say how interesting this will be to the mathematicians
in that field, and whether this direction of work augurs well for the future of
applications of unwinding more generally.

9 K. P. versus H. P.

Kreisel’s retrospective report (1987) begins: “Like many others but partic-
ularly Godel [1931] and Gentzen [1936] (on p. 564) who expressed their
reservations discretely [sic] I was repelled by Hilbert’s exaggerated claim for
consistency as a sufficient condition for mathematical validity or some kind
of existence.” Kreisel’s assimilation of Godel and Gentzen to his view in this
respect is misleading, to say the least. Certainly Gentzen was totally com-
mitted to the Hilbert program, though he was more cautious than Hilbert
about what we may claim to be achieved by a finitist consistency proof. And
there is considerable evidence that Godel took certain relativized forms of
the Hilbert program (with consistency as its main aim) seriously all through
his career. This is to be found both in his published work and in unpublished
lectures whose texts have been found in Gédel’s Nachlass and which appear
in the third volume of his Collected Works.?2:%

Be that as it may, Kreisel goes on to say, in the passage in question,
“[BJut unlike most others I was not only attracted by the logical wit of con-
sistency proofs (which I learnt in 1942 from Hilbert-Bernays Vol. 2) but also
by the so to speak philosophical question of making explicit the additional
knowledge provided by those proofs (over and above consistency itself).” He
says that his answers took two forms: “(i) particular applications to mathe-
matical proofs...[and] (ii) general formal criteria such as functional interpre-
tations to replace the incomparable condition of consistency; ‘incomparable’
because the aim of functional interpretations is meaningful without restric-
tion on metamathematical methods.” In other words, the (“philosophical”)
aim was to substitute clear-cut mathematical results for inconclusive philo-
sophical ones; the appeal of these moves (i) and (ii) is evident. But despite

22Forthcoming, at the time of this writing; cf. also Feferman 1993.
23 Kreisel 1958a and 1968 also formulated a relativized reductive form of H. P.; see
Feferman 1988 for my own version which took that as its point of departure.
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the hoopla, the results in direction (i) — at least to date — have been largely
disappointing. What about direction (ii)? Here I count the move a success,
with such prime exemplars as the n. c. i. in Kreisel 1951 and Godel’s func-
tional interpretation in his paper 1958 together with its many interesting
extensions to systems of analysis and down to fragments of arithmetic (cf.
Troelstra 1990 and Feferman 1993), as well finally as the many results, using
these methods and cut-elimination, classifying the provably recursive func-
tions of various systems of arithmetic, analysis and set theory.?* While these
results may only (or primarily) be of interest to logicians, they are certainly
presented in mathematically understandable terms independent of any nor-
mative — and hence (possibly) disputable — foundational doctrines. This
direction of work is surely a success story and a going industry.?® Apparently
Kreisel has lost interest in it (perhaps for that very reason); for example, he
is contemptuous of the “flashy precision” of ordinal analyses, which are one
of the main technical tools in the characterization of the provably recursive
functions of various theories. One can’t fault him for losing interest in a
subject that he helped launch years back; but, with or without his approval,
this direction of work as a whole is sure to march on.

Finally, what about the foundational motivations for proof theory which
(i) and (ii) were intended to replace? Here, I find Kreisel truly ambivalent.
Over the course of his career he has certainly taken the philosophy of math-
ematics seriously and has devoted considerable thought and writing to it.
And, while he railed constantly against the perpetuation of simple-minded
traditional doctrines, substantial portions of his own work were motivated
by more sophisticated foundational — as opposed to mathematical — con-
cerns.?S Indeed, in the period from the 1950’s on when logic as technology
was overtaking logic as a foundational tool, Kreisel led the way in promoting
foundational concerns as the driving force in the pursuit of proof theory and
constructivity, and those of us who followed him did so for exactly that rea-
son. In more recent years, though, Kreisel has become increasingly dismissive
of any attempt at systematic philosophical efforts, at least as practiced by
everybody else, and perhaps even himself. I'm afraid that here, also, we will
continue to be inspired by those original foundational aims while subjecting

24Cf. e. g. Takeuti 1987 and its appendices by Pohlers and myself for a survey of various
such results.

25The impressive results described in Rathjen 1994 give further evidence for this assess-
ment.

26Kreisel’s influential Survey of Proof Theory (1968) provides a prime example.
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their development to his perennial insistence on critical examination — and
re-examination, and re-examination. It is in that spirit that this piece is
dedicated to Kreisel.
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