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Abstract

The paper starts with an examination and critique of Tarski’s well-
known proposed explication of the notion of logical operation in the
type structure over a given domain of individuals as one which is
invariant with respect to arbitrary permutations of the domain. The
class of such operations has been characterized by McGee as exactly
those definable in the language L∞,∞. Also characterized similarly is
a natural generalization of Tarski’s thesis, due to Sher, in terms of
bijections between domains. My main objections are that on the one
hand, the Tarski-Sher thesis thus assimilates logic to mathematics, and
on the other hand fails to explain the notion of same logical operation
across domains of different sizes. A new notion of homomorphism
invariant operation over functional type structures (with domains M0

of individuals and {T, F} at their base) is introduced to accomplish
the latter. The main result is that an operation is definable from
the first-order predicate calculus without equality just in case it is
definable from homomorphism invariant monadic operations, where
definability in both cases is taken in the sense of the λ-calculus. The
paper concludes with a discussion of the significance of the results
described for the views of Tarski and Boolos on logicism.
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What follows is the text of an invited lecture that I gave at the Boolos
Symposium held at the University of Notre Dame April 16–18, 1998. 1 I was
very pleased to be a part of that conference in George’s memory. I valued him
as a friend and as a colleague, for his devotion to logic and philosophy, for his
clarity and sense of purpose, and for his unique combination of seriousness
and a dry but charming wit. He left an important legacy in many ways that
was well demonstrated by the variety of talks at the symposium. It was
difficult for me to choose a topic to talk about among our areas of mutual
interest, but I finally settled on the one that I think was most fundamental
to George’s thought, at least since the mid 80s.
I have been ruminating for the last few years about the perennial problem

of the precise demarcation of logic—wondering if it is possible to arrive at
such a dividing line at all—and that is what is being chewed over here. If you
get the feeling that I don’t have a settled view of the matter, you are right.
But—unlike George—I have been moving more and more to the position that
the classical first-order predicate logic has a privileged role in our thought,
and so I have been looking at various arguments which justify or challenge
that position. Surely some, if not much of this is familiar to the reader, and
I apologize for that; but there are new things to say, and they have to be
related to what isn’t new.2

The immediate stimulus for these ruminations was the article by Vann
McGee in the 1996 Journal of Philosophical Logic, entitled “Logical opera-

1It was only at the Notre Dame conference that I learned of the forthcoming publication
by Harvard Press of a collection of George Boolos’ papers under the title, Logic, Logic and
Logic (Boolos 1998). I am not sure I would have selected my own title for this lecture if I
had known that in advance, but having done so, I am glad that they resonate with each
other. (The volume, edited by Richard Jeffrey, with an introduction and afterword by
John Burgess, was laid out by Boolos shortly before his death in 1996; it appeared very
soon after the conference.)

2A first version of the material in this paper was presented at the Sixth CSLI Workshop
on Logic, Language and Computation held at the Center for the Study of Language and
Information at Stanford University on May 30, 1997, under the title “Logical operations
according to Tarski, McGee and me”, and again as the First Spinoza Lecture at the
1997 European Summer School in Logic, Language and Information (ESSLLI ’97) in Aix-
en-Provence, on Aug. 13, 1997 under the title “What is a logical operation?” Only the
material of Sections 1–3 agree with the previous presentations. In particular, the proposed
notion of similarity invariant operations introduced in Section 4 and the main results there
about it and homomorphism invariant operations are new, as is the discussion in Sections 5
and 6. I wish to thank Johan van Benthem for useful early conversations about this work,
and Michael Detlefsen and Geoffrey Hellman for useful comments on a draft of this paper.
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tions” (McGee 1996). What McGee did there was provide a complete char-
acterization of the proposal—in terms of permutation invariant operations—
made by Alfred Tarski in his posthumous publication “What are logical no-
tions?” that appeared ten years earlier (Tarski 1986) (summarized in Section
1 below). Very briefly, if Tarski’s proposal is accepted, McGee’s work (de-
scribed in Section 2) shows that the logical operations are exactly those
definable in the full infinitary language L∞,∞.

3 Since this result struck me as
blatantly implausible (for reasons given in Section 3), I began to examine the
proposal to see why it goes so far afield from what I would have expected,
and then I tried to modify it in a way that would come closer. Part of what
is presented here is devoted to a new approach in terms of homomorphism
invariant operations over functional type structures (Section 4 below) which
is somewhat in the spirit of Tarski’s basic set-up but gives quite different
answers. The main result is that an operation is definable from the first-
order predicate calculus without equality just in case it is definable from
homomorphism-invariant monadic operations, where definability is taken in
the sense of the λ-calculus. Whether that (or any other invariance notion)
can be justified on fundamental conceptual grounds is another matter, cer-
tainly in need of pursuit. Section 5 presents certain arguments in its favor,
but no principled defense is attempted here. The paper concludes in Sec-
tion 6 with a discussion of the relation of this work to Tarski and Boolos on
logicism.
I do not plan to go into the details of McGee’s work, which is faultless

in its execution. It is not that that is at issue; rather it is how to formulate
the conceptual problem raised by Tarski which should be the center of our
attention. Now, one may well ask why that even matters. After all, we have
a plethora of interesting logics suited to a variety of purposes in mathematics,
philosophy, linguistics and computer science (and perhaps other fields), and
it may seem perverse to try to single out just one of these as the only one
deserving the unqualified name ‘logic’. Well, clearly one difference that would
make concerns the logicist program, which stands or falls according to the
answer; and, as already noted, I take that up in the conclusion of the paper.
I believe another, more important, motivation is to contribute, if possible,
to explanations of “how the mind works”. Conversely, one may try to single

3McGee also used this result to characterize in related terms a natural generalization
of Tarski’s proposal in terms of isomorphism invariant operations due to Gila Sher (1991);
this will figure more prominently below. Section 3 contains a critique of the Tarski-Sher
thesis.
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out one logic from some answer to that question, not on the basis of how
men actually reason but how they strive to do so. A quotation from Frege’s
Grundgesetze is apropos: he said that the laws of logic are “the most general
laws, which prescribe universally the way in which one ought to think if one
is to think at all” [itals. mine]. In any case, my ideas in that direction are
very preliminary, and I do not try to develop them here at all.
As traditionally defined, “logic is concerned with the principles of valid

inference” (Kneale and Kneale 1962, p. 1), or as “the science that investigates
the principles of correct or reliable reasoning”(Random House Unabridged),
etc., but such definitions leave wide open the exact scope of our subject.
Namely, what are the basic notions with which this science deals—that is
exactly Tarski’s question—and how are the principles of inference featuring
these notions to be described? Now there is immediately a subsidiary method-
ological question to be raised. Namely, in which of the following terms is an
answer to be sought: model-theoretic (or set-theoretically semantic), proof-
theoretic, constructive, or still other? Not surprisingly, Tarski’s approach is
entirely within a semantic framework 4. Moreover, he does not ask, “What
is a logical inference?” in the sense of, “What formal rules of inference are
justified logically?”. For—in view of his famous article “On the concept
of logical consequence”(Tarski 1936)—that is the wrong question to ask, or
at least it gives misleading emphasis to the syntactic side of logic. Simply,
according to his 1936 analysis, “ The sentence ϕ follows logically from the
sentences of the class K if and only if every model of the class K is also a
model of the sentence ϕ.” So, I begin by following Tarski down the path of
his half-century later publication.

1 Tarski on logical notions.

The circumstances of the posthumous publication (Tarski 1986), edited by
John Corcoran, are described in the editor’s introduction thereto. Except for
minor editorial corrections and amplifications by bibliography and footnotes,
it reproduces a typescript for a lecture that Tarski gave—under the same

4Tarski’s 1986 paper is reprinted in the interesting and useful collection (Shapiro 1996),
which consists of essays largely devoted to the issue of the limits of logic from a semantic
point of view. For example, one of its main sections concerns the question whether second
order logic is to be counted as logic. Several of Boolos’ papers on this topic and on plural
quantification are also reprinted there, as well of course in (Boolos 1998).
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title as that of the paper, “What is a logical notion?”—at Bedford College in
London in 1966, and again at SUNY Buffalo in 1973. Tarski asked Corcoran
to edit it for publication, but that was only a year before his death in 1983,
and he had no further input to its final form.
Tarski’s explication in that paper of the concept of logical notion is by

an extension to the domain of logic of Klein’s Erlanger Programm (Klein
1872) for the classification of various geometries according to invariants under
suitable groups of transformations. Thus, for example, the notions of met-
ric Euclidean geometry are those invariant under isometric transformations,
those of non-metric Euclidean geometry are those invariant under similarity
transformations, those of “descriptive” geometry under affine transforma-
tions, those of projective geometry under projective transformations, etc.,
etc. In more modern structural terms, such groups of transformations are
simply determined as the automorphisms of structures in a given similarity
classK, and the notions appropriate to the part of mathematics encapsulated
in K are then just those invariant under all such automorphisms. Thus, for
example, algebra may be considered the study of notions invariant under au-
tomorphisms of such structures as rings, fields, and so on, while topology may
be considered the study of notions invariant under (auto-)homeomorphisms
of topological spaces. Now, Tarski’s Kleinean-style explication of logical no-
tions simply takes K to be the collection of all structures of classes and
relations of finite type over a basic domain of individuals M0, and the asso-
ciated transformations to be just those induced at higher types by arbitrary
permutations of M0.

5

The following spells this out somewhat more precisely (that was not done
in Tarski’s lecture). First, generate finite relational type symbols τ from the
type symbol 0 by successive formation of τ = (τ1, . . . , τn). Then associate
with each such τ a domain Mτ , beginning with an arbitrary class M0 of
“individuals” at type 0, by taking Mτ for τ = (τ1, . . . , τn) to consist of all
subrelations R of Mτ1 × · · · ×Mτn. In particular, when n = 1, Mτ is just the
class of all subclasses of Mτ1. The structure M = 〈Mτ 〉 is taken to consist
of all the domains Mτ with the membership relations ∈τ for each type τ .
Now, every permutation π of M0 induces in a natural way a permutation
of each Mτ in such a way as to preserve the membership relation at that

5Tarski seems to have been unaware of the first proposal of that type for logic by
F.I. Mautner (1946). In any case, Mautner pursued the idea in a somewhat different
direction from the one taken by Tarski.
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type. According to Tarski’s explication, by a logical notion associated with
M is meant a member of one of the Mτ which is invariant under every such
induced permutation.
In his lecture, Tarski gave several simple examples of logical notions in

this sense, where by individual, is meant a member of M0:

(i) No individual is a logical notion, assuming there are at least two indi-
viduals.

(ii) The only classes of individuals which are logical are the empty class
and the universal class.

(iii) The only binary relations between individuals which are logical are
the empty relation, the universal relation, the identity relation and its
complement.

(iv) At the next level, i.e. classes of classes of individuals, Tarski mentioned
as logical notions those given by cardinality properties of classes, and
says that “the only properties of classes (of individuals) which are log-
ical are properties concerning the number of elements in these classes.
That a class consists of three elements, or four elements . . . that it is
finite, or infinite—these are logical notions, and are essentially the only
logical notions on this level.”

(v) Finally, among relations between classes (or individuals) Tarski pointed
to several which are interesting and “well known to those of you who
have studied the elements of logic” such as “inclusion between classes,
disjointness of two classes, overlapping of two classes”, and so on. He
continued: “all these are example of logical relations in the normal
sense, and they are also logical in the sense of my suggestion.”

Tarski did not attempt to give examples of logical notions in higher types
than those in (iv) and (v) in his lecture, nor did he raise the question of
characterizing the logical notions there. This is understandable in view of
the general audience to which it was addressed. Note that he thus did not
go beyond τ of type level 2 in his illustrations, where

lev(0) = 0 and lev(τ1, . . . , τn) = max(lev(τ1), . . . , lev(τn)) + 1.

Before going into McGee’s characterization, I want to say something
about the significance of Tarski’s proposal as it relates to the background
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in his own work. In his 1936 paper with Lindenbaum, “On the limitations
of the means of expression of deductive theories”, the first theorem stated is
that every relation definable in the simple theory of types is provably invari-
ant under any permutation of the domain of individuals (Lindenbaum and
Tarski 1936, p. 385 in Tarski 1983). Next, in his 1936 article “On the concept
of logical consequence”, Tarski pointed out the following problem concerning
his model-theoretic explication of the concept at issue:

Underlying our whole construction is the division of all terms of
the language discussed into logical and extra-logical. This divi-
sion is certainly not arbitrary. If, for example, we were to in-
clude among the extra-logical signs the implication sign, or the
universal quantifier, then our definition of the concept of conse-
quence would lead to results which obviously contradict ordinary
usage. On the other hand, no objective grounds are known to
me which permit us to draw a sharp boundary between the two
groups of terms. It seems to be possible to include among logi-
cal terms some which are usually regarded by logicians as extra-
logical without running into consequences which stand in sharp
contrast to ordinary usage. . . . In order to see the importance
of this problem for certain general philosophical views it suffices
to note that the division of terms into logical and extra-logical
also plays an essential part in clarifying the concept ’analytical’.
(Tarski 1936, as translated in Tarski 1983, pp. 418-419)

At the time, Tarski concluded his discussion of this problem on a pes-
simistic note, entertaining the possibility that there would never be definitive
results settling the exact boundary between logical and extra-logical notions.
It was exactly this problem to which the Bedford College lecture was ad-
dressed, thirty years later. We shall return to how this affected his view of
what mathematical notions are analytical in the final section below.
The idea of permutation invariance as a criterion for logicality in a seman-

tical setting is a prima facie natural one, and has been widely influential, if
not explicitly following Tarski’s thesis, at least implicitly. Some sample refer-
ences are: in model theory, (Mostowski 1957), (Lindström 1966), and various
of the chapters in (Barwise and Feferman 1985); in linguistics, (Barwise and
Cooper 1981), (Keenan and Stavi 1986), (van Benthem 1989), (Keenan 1999);
and in the philosophy of logic, (Peacocke 1976), (McCarthy 1981), (Simons
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1988), (Sher 1991), and various of the papers in (Shapiro 1996). In particu-
lar, Tarski’s thesis is embraced wholeheartedly (with a natural modification
to invariance across bijections between domains, as will be discussed below)
in Gila Sher’s book just referred to.

2 McGee’s characterization of logical opera-

tions.

What is characterized in (McGee 1996) are those operations O(〈Ai〉i<γ) = B
on sequences of relations Ai between individuals to relations B, which are
invariant under arbitrary permutations of the universe M0 of individuals.
McGee allows the number of argument places γ of O to be an infinite ordinal,
and each Ai is allowed to have an infinite number of argument places. To
simplify matters technically, he takes the relations in question to be subsets
of the set MV

0 of all variable assignments σ : V → M0, where V is a non-
empty set of variables. For n > 0 let (n) be the type of n-ary relations onM0,
so that τ = ((n1), . . . , (nk)) is the type of k-ary relations P between relations
R1, . . . , Rk, where Ri is ni-ary. Tarski’s notion of logical relation of type τ
may be reduced to McGee’s notion of logical operation, as follows. Given a set
A of variable assignments σ, and a natural number n with 0 < n ≤ card(V ),
let A|n be the set of (a0, . . . , an−1) such that there is a σ : V → M0 with
σ(xi) = ai, for each i < n and σ ∈ A, where x0, . . . , xn−1 are the first n
variables of V . Now assume each ni ≤ card(V ). Then take OP to be the
operation given by

σ ∈ OP (A1, . . . , Ak) iff the relation P holds between (A1|n1, . . . , Ak|nk).

In other words, the value of OP at a sequence of sets of V -assignments is the
universal set of V -assignments if P is true of the associated relations, and is
the empty set otherwise. Then P is invariant under arbitrary permutations
of the basic domain (in Tarski’s sense) just in case OP is invariant under
arbitrary permutations of it (in McGee’s sense). In his main characteriza-
tion theorem, McGee considers only operations O of type level 2, but later
describes how to extend his result to operations of higher type level.
The formulas of the language L∞,∞ are generated from given atomic for-

mulas by the operations of negation, arbitrarily long conjunctions and dis-
junctions, and arbitrarily long universal and existential quantifier sequences
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(cf., e.g., Karp 1964). An operation O on a sequence A=〈Ai〉i<γ of subsets of
MV

0 is said to be definable in L∞,∞ , if there is a formula ϕ of that language
with basic relation symbols = and V -ary Ai for each (i < γ) such that

(M0, A) |= ϕ[σ] iff σ ∈ O(A),

where each symbol Ai is interpreted by the set Ai for each (i < γ) in the
structure (M0, A).

Theorem 1 (McGee 1996, p. 572). O is invariant under arbitrary permu-
tations of the domain of individuals if and only if O is definable in L∞,∞.

It is straightforward that every L∞,∞ definable operation is invariant
under arbitrary permutations of the domain of individuals. The idea of the
proof in the other direction is to lay out all possibilities for the operation O
as its arguments range over all possible A. This can be achieved using a set
W of variables containing V , with card(W − V ) = κ + 1. Enumerate M0

as {sα : α < κ} and W − V as {xa : α < κ} ∪ {y}. The xα act as formal
surrogates of the sα. Let ψA be the diagram of A under this association
together with ¬(xα = xβ) for each α < β, and then take χA to be the
formula which says that whenever xα (α < κ) are such that ψA holds and
each y in the domain is one of the xα, then (using V ) the formal expression
of σ ∈ O(A) holds. Finally, take ϕ to be the conjunction of all the χA over
all sequences A of the considered kind; note that this final conjunction is of
cardinality at least 2κ, and the longest quantifier sequences in ϕ are of length
at least κ.
McGee says (p. 575) that this theorem “gives us good reason to believe

that the logical operations on a particular domain are the operations invari-
ant under permutations”. It is natural, though, not to tie logical operations
to specific domains, and so he goes on to consider operations across do-
mains which for each set of individuals M0 turn sequences A of subsets Ai

of V -assignments in M0 into a subset B of V -assignments in the given do-
main. Then he argues (rightly, in my view), that “(i)n order for an operation
across domains to count as logical, it is not enough that its restriction to
each particular domain be a logical operation”. For example, McGee de-
fines an operation of “wombat disjunction” ∪W across domains such that σ
belongs to A1 ∪W A2 iff there are wombats in the universe of discourse M0

and σ ∈ A1 ∪A2 or there are no wombats in the universe of discourse and
σ ∈ A1 ∩A2. Clearly wombat disjunction is not a logical operation, though
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on each domain it is invariant under permutations. Another example given
is that of “affluent cylindrification” $(A) which holds in a domain just in
case some rich person belongs to A; again this is not a logical operation,
but meets the permutation invariance condition on “upper-crust domains”
in which every person is rich. However, on an equinumerous domain contain-
ing at least one rich and one poor person, the operation $ is not permutation
invariant by taking A to be a singleton of one of these.
Thus McGee is led to consider an extension of Tarski’s thesis proposed

by Gila Sher (1991, pp. 53 ff) according to which:

an operation across domains is logical if it is invariant under every
bijection between domains.

He refers to this as the Tarski-Sher thesis, and I shall follow him in that, with
one exception. As already noted, Tarski is apparently willing to consider
logical operations at any level of the type hierarchy, while Sher explicitly
restricts herself to operations of type level ≤ 2 (Sher 1991, p. 54, Condition
A), so it is only for the latter that their names are legitimately paired. The
following is then a corollary of the result above.

Theorem 2 (McGee 1996, p. 576). An operation O across domains is a
logical operation according to the Tarski-Sher thesis iff for each cardinal κ �= 0
there is a formula ϕκ of L∞,∞ which describes the action of O on domains
of cardinality κ.

More specifically, one can take ϕκ to be the formula constructed for the
proof of Theorem 1 for any domain M0 of cardinality κ. Whatever such
ϕκ is taken, in order to obtain a single definition of the operation O across
domains, one must take something like the disjunction over the class of all
non-zero cardinals κ of the statement that there are exactly κ elements in the
domain and that ϕκ holds. This goes beyond L∞,∞ as ordinarily conceived.

3 Critique of the Tarski-Sher thesis

McGee’s results lay bare the character of logical operations according to the
Tarski-Sher thesis. I have, accordingly, three basic criticisms of it:

1) The thesis assimilates logic to mathematics, more specifically to set
theory.

10



2) The set-theoretical notions involved in explaining the semantics of
L∞,∞ are not robust.

3) No natural explanation is given by it of what constitutes the same
logical operation over arbitrary basic domains.

The first of these, I think, speaks for itself, given McGee’s results, but it
will evidently depend on one’s gut feelings about the nature of logic as to
whether this is considered reasonable or not. For Sher, to take one example,
this is no problem. Indeed, she avers that “(t)he bounds of logic, on my view,
are the bounds of mathematical reasoning. Any higher-order mathematical
predicate or relation can function as a logical term, provided it is introduced
in the right way into the syntactic-semantic apparatus of first-order logic.”
(Sher 1991, pp. xii-xiii) What that “right way” is for her, is spelled out in a
series of syntactic/semantic conditions A–E (op. cit pp. 54-55), of which the
crucial ones are condition A that a logical operation is of type-level at most
2, and E is the condition for invariance under bijections. The paradigms of
condition A are the cardinality quantifiers of (Mostowski 1957) and, more
generally, the generalized quantifiers of (Lindström 1966), where the bound
variables range over individuals of the domain. But note that L∞,∞ accom-
modates second-order quantification as a logical operation across domains
(in the Tarski-Sher sense) as follows. First, given formulas ψ(X) and θ(x)
of this language, where X is a second-order variable, by ψ({x : θ(x)}) is
meant the result of substituting θ(t) for each occurence of an atomic formula
t ∈ X in ψ. Thus, on a domain of cardinality κ, (∀X)ψ(X) is equivalent
to the statement ϕκ that there exist κ elements xα which are distinct and
exhaustive of the domain, and are such that

∧
S⊆κ
ψ({y :

∨
α∈S
y = xα}) holds.

(Again, we require a conjunction of cardinality 2κ in this formula.) As a
logical operation O of type-level 2 across arbitrary domains (∀X)ψ(X) is
defined by the disjunction of all these ϕκ over all non-zero cardinals κ. So,
from Theorem 2 above, the restriction to bound first order variables is only
apparent, and Sher’s condition A is not set-theoretically restrictive. By a
trick similar to the preceding, we can quantify over arbitrary relations on
the domain, and then say that they are functions, etc. In particular, we can
express the Continuum Hypothesis and many other substantial mathematical
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propositions as logically determinate statements on the Tarski-Sher thesis.
Of course, if one follows Tarski by allowing consideration of invariant notions
in all finite types, the assimilation of logic to set theory is patent on his thesis,
without needing to invoke infinite formulas at all. But insofar as one or the
other version of the thesis requires the existence of set-theoretical entities of
a special kind, or at least of their determinate properties, it is evident that we
have thereby transcended logic as the arena of universal notions independent
of “what there is”.
The point 2) is in a way subsidiary to 1). The notion of “robustness” for

set-theoretical concepts is vague, but the idea is that if logical notions are
at all to be explicated set-theoretically, they should have the same meaning
independent of the exact extent of the set-theoretical universe. For example,
they should give equivalent results in the constructible sets and in forcing-
generic extensions. Gödel’s well known concept of absoluteness provides a
necessary criterion for such notions, and when applied to operations defined
in L∞,∞, considerably restricts those that meet this test. For example, the
quantifier “there exist uncountably many x” would not be logical according
to this restriction, since the property of being countable is not absolute. The
study of absolute logics was initiated by (Barwise 1972), and is surveyed in
detail in (Väänänen 1985). One should be aware that the notion of absolute-
ness is itself relative, and is sensitive to a background set theory, hence again
to the question of what entities exist. For examples of absolute operations
which are patently set-theoretical yet come out as logical on the Tarski-Sher
thesis, see the just mentioned reference.
For me, point 3) is perhaps the strongest reason for rejecting the Tarski-

Sher thesis, at least as it stands. It seems to me there is a sense in which the
usual operations of the first-order predicate calculus have the same meaning
independent of the domain of individuals over which they are applied. This
characteristic is not captured by invariance under bijections. As McGee puts
it “(t)he Tarski-Sher thesis does not require that there be any connections
among the ways a logical operation acts on domains of different sizes. Thus,
it would permit a logical connective which acts like disjunction when the
size of the domain is an even successor cardinal, like conjunction when the
size of the domain is an odd successor cardinal, and like a biconditional at
limits.”(McGee 1996, p. 577) In the end (though perhaps more for other
reasons), McGee accepts the Tarski-Sher thesis as a necessary condition for
an operation to count as logical, but not a sufficient one. I agree completely,
and believe that if there is to be an explication of the notion of a logical
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operation in semantical terms, it has to be one which shows how the way an
operation behaves when applied over one domainM0 connects naturally with
how it behaves over any other domain M ′

0. The concept of homomorphism
invariant operation studied in the next section is proposed as a first step in
that direction.

4 Homomorphism and similarity invariant

operations.

It is useful here to expand the relational finite type framework of Sec. 1 to
a functional finite type framework, where we add a basic type symbol b for
booleans (i.e., truth values).6 The functional finite type symbols (t.s.) are
generated from 0 and b by formation of τ = (τ1, . . . , τn → σ) whenever
τ1, . . . , τn and σ are t.s. By a functional type structure M = 〈Mτ 〉 over M0

is meant one where Mb = {T, F} (or {1, 0}), and for each τ as above, Mτ

consists of functions from Mτ1 × · · · ×Mτn to Mσ. M is said to be maximal
if for each such τ , Mτ is the set of all such functions. For simplicity we shall
assume thatM is maximal in the following, though for most purposes weaker
assumptions (including closure under definability in the typed λ-calculus) suf-
fice. The relational type symbols (τ1, . . . , τn) are identified hereditarily with
the propositional function type symbols (τ1, . . . , τn → b), and sub-relations
of Mτ1 × · · · ×Mτn are identified with their characteristic functions. In the
following we shall write τ for (τ1, . . . , τn), Mτ for Mτ1 × · · · ×Mτn and x for
(x1, . . . , xn) in Mτ .

Definition 1 Suppose M = 〈Mτ 〉 and M ′ = 〈M ′
τ 〉 are two functional type

structures over M0 and M ′
0 respectively. By a similarity relation ∼ between

M and M ′ we mean a collection of relations ∼τ for each t.s. τ such that

(i) ∀x ∈M0 ∃x′ ∈M ′
0 (x ∼ x′) & ∀x′ ∈M ′

0 ∃x ∈M0 (x ∼ x′),

(ii) ∀x ∈Mb ∀x′ ∈M ′
b [ x ∼ x′ ⇔ x = x′ ], and

6Other standard notations for base types are Church’s ι for the type of individuals and
0 for that of truth values, while in categorial grammar of natural language it is frequent to
use e for individuals and t for truth values. On the other hand, it is standard in pure type
theory to take 0 for the type of individuals, and that dictated my choice of b for booleans.
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(iii) for each τ = (τ → σ) and p ∈Mτ and p
′ ∈M ′

τ wehave

p ∼ p′ ⇔ ∀x ∈Mτ∀x′ ∈M ′
τ [ x ∼ x′ ⇒ p(x) ∼ p′(x′) ].

(Note that we have dropped the type subscripts to the higher type re-
lations ∼τ , since these are determined by the context.) Relations satisfying
(iii) only are called logical relations [sic!] in the typed λ-calculus literature;
cf., e.g. (Mitchell 1990, pp. 416 ff). As with the latter, each similarity relation
is completely determined by ∼0 using (ii) and (iii).
When one has a map h :M0 →M ′

0 which is onto, the relation

x ∼0 x
′ iff h(x) = x′(iv)

determines a similarity relation betweenM and M ′. We shall call h a homo-
morphism from M onto M ′,7 though h itself is only partially extendible as
a mapping to higher types. For example, if τ = (0n → b) and p ∈ Mτ and
p′ ∈M ′

τ , then

p ∼ p′ iff ∀x, x′(h(x) = x′ ⇒ p(x) = p′(x′)).(v)

Then for each p there is at most one p′ with p ∼ p′, and we can write h(p) = p′
when this is defined, namely if we have p(x) = p(y) whenever h(x) = h(y).
Trivially, there is for each p′ a p with h(p) = p′ in this sense. When p ∼ p′,
we can think of p′ as being obtained from p by shrinking along h.

Definition 2 An operation O is of type τ across domains if for each func-
tional type structure M we have an associated OM ∈ Mτ . O is said to be
similarity invariant if for each M,M ′ and similarity relation ∼ between M
and M ′ we have OM ∼ OM ′

. It is said to be homomorphism invariant, if this
is only required to hold for similarity relations determined by homomorphisms
from M to M ′.

It seems to me that there is a natural sense in which operations O in-
variant under homomorphisms are logical form preserving, if one ignores

7A more appropriate use of mathematical terminology for this notion would be epi-
morphism. As only onto homomorphisms are considered here throughout, I did not feel it
was necessary to use that less suggestive terminology.
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equality, at least for propositional operations O of type level 2 with propo-
sition function arguments. This means that whenever h is a homomor-
phism from M onto M ′ and arguments pi are shrunk to p

′
i along h, then

OM (p1, . . . , pn) = O
M ′
(p′1, . . . , p

′
n).

To get an idea how much closer homomorphism invariance brings us to
definability in first-order logic, consider the following three negative exam-
ples.

1) Equality of individuals. This is given by the operator I of type
(02 → b) defined by

IM(x, y) = [ T if x = y, else F ]

Clearly I is not homomorphism invariant.

2) Cardinality quantifiers. For each non-zero cardinal number κ, the
quantifier Eκ of type ((0→ b)→ b) is defined by

EM
κ (p) = [ T if there are at least κ distinct x such that p(x) = T, else F ].

None of the operators Eκ is homomorphism invariant for κ ≥ 2.
3) Internal function quantifiers. The quantifier 2A for universal sec-

ond order function quantification of type (((0→ b)→ b)→ b) is defined for
f of type ((0→ b)→ b) by

2AM(f) = [ T if (∀q ∈ M0→b)f(q) = T, else F ].

If 2A were homomorphism invariant so also would be the following opera-
tion O defined from it in combination with the operations of the first-order
predicate calculus, which (as we shall show in a moment) are homomorphism
invariant. O is of type ((0 → b) → b), and OM (p) = T if the extension p̂ of
p, {x | p(x) = T }, is the intersection of all the proper extensions q of p,
i.e. of all those q with p̂ ⊆ q̂ for which ∃y(q(y) = T and p(y) = F ); other-
wise OM (p) = F . Let M0 contain three distinct elements x, y and z, and let
q(x) = T , q(y) = q(z) = F . LetM ′

0 = {x, y} and q′(x) = T , q′(y) = F . Then
the homomorphism h(x) = x, h(y) = h(z) = y sends q to q′, but OM (q) = T
while OM ′

(q′) = F . Thus 2A is not homomorphism invariant.

Now we turn, by contrast, to the familiar operations of the first-order
predicate calculus (without equality), denoted PC below.
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4) Negation. The operation N of negation is of type (b → b) and is
defined in each M by

NM (p) = [ F if p = T, else F ].

N is clearly similarity invariant.

5) Conjunction. The operation C of conjunction is of type (b, b → b)
and is defined in each M by

CM(p, q) = [T if p = T and q = T, else F ].

C is clearly similarity invariant.

6) Existential quantification over individuals. The operation E of
existential quantification over the domain of individuals is of type
((0→ b)→ b) and is defined in each M by

EM (p) = [ T if ∃x ∈M0(p(x) = T ), else F ].

E is similarity invariant by the following argument. Suppose ∼ is a similarity
relation between M and M ′, and suppose p, p′ are of type (0→ b) in M and
M ′, resp., with p ∼ p′. Thus, whenever x ∈ M0 and x

′ ∈ M ′
0 are such

that x ∼ x′ then p(x) = p′(x′). If EM(p) = T then also EM ′
(p′) = T ; for,

given any x ∈M0 such that p(x) = T , by the first similarity condition there
exists x′ ∈ M ′

0 such that x ∼ x′, so p′(x′) = p(x) = T . By symmetry, if
EM ′

(p′) = T then EM(p) = T . Hence EM (p) = EM ′
(p′) for all such p, p′,

and so EM = EM ′
.

Definition 3 An operation O is said to be definable from operations O1, . . . ,
Ok if it is given by a definition from them in the λ-calculus uniformly over
each M , i.e. if there is a term t(z1, . . . , zk) of the typed λ-calculus with
constants T and F , where each zi is of the same type as Oi and t is of
the same type as O, such that in each functional type structure M , OM =
t(OM

1 , . . . , O
M
k ).

8

8Alternatively, we can take t to be a term in the typed combinatory calculus gener-
ated by application from the variables z1, . . . , zk, the constants T and F , and the typed
combinators K and S in each appropriate combination of types.
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It is easily seen that every operation definable in this way from similarity
(homomorphism) invariant operations is again similarity (homomorphism)
invariant. The main result, Theorem 6 below, characterizes the operations O
definable from the operations of the first-order predicate calculus PC without
equality in terms of those definable from homomorphism invariant operations
of certain monadic type.
We first have from examples 4)–6) that:

Theorem 3 If O is definable from N,C and E then O is similarity invari-
ant.

Theorem 4 Every operation O determined by a formula of PC, the first-
order predicate calculus without equality, is definable from N,C and E, and
hence is similarity invariant.

Proof. This is illustrated by the operation O of type ((02 → b), (03 →
b), 0 → b) determined by the formula ∀x[P (x, z) → ∃yQ(x, y, z)], which we
rewrite as

¬∃x[P (x, z) ∧ ¬∃yQ(x, y, z)].

Then in each M with p of type (02 → b), q of type (03 → b) and z of type 0,
we have

OM (p, q, z) = N(E(λx.C(p(x, z), N(E(λy.q(x, y, z)))).

The idea is clear: each time one quantifies existentially over a subformula
with respect to a variable x, in the corresponding term one first λ-abstracts
with respect to x, and then applies the operator E. The propositional con-
nectives are defined directly in terms of N and C . For a general proof one
can also make use of (Quine 1971), which basically provides a variable-free
form of PC, λ-definable from N,C and E; cf., also, (van Benthem 1991,
p. 276). Note that only abstraction with respect to individual variables is
here required.
We cannot expect a simple converse to Theorem 4, as the following

counter-example shows:

7) Well-foundedness quantifier. The test W for well-foundedness of
binary relations between individuals is of type (02 → b) → b). Using N for
the set of natural numbers, W is defined by

WM (r) = [ T if (∀f : N → M0)(∃n ∈ N) r(f(n + 1), f(n)) = F, else F ];
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i.e. WM(r) = T just in case there are no infinite descending r-sequences.
Then W is similarity invariant. To show this, consider any similarity relation
∼ betweenM andM ′ such that r ∼ r′ for r, r′ of type (02 → b) inM,M ′, resp.
Given f : N → M0, f

′ : N → M ′
0 define f ∼ f ′ if ∀n(f(n) ∼ f ′(n′)): then by

the condition (i) on similarity relations, ∀f∃f ′(f ∼ f ′) and ∀f ′∃f(f ∼ f ′).
Also, if f ∼ f ′ then r(f(n + 1), f(n)) = r′(f ′(n + 1), f ′(n)). It then follows
easily that WM(r) = WM ′

(r′), as required.9

As we see next, it is essential in the preceeding counter-example that the
argument of W is of the type of relations, or binary propositional functions.

Definition 4 Take π for the type (0→ b) of unary propositional functions,
which correspond to monadic predicates. A type τ = (τ → σ) is said to be
monadic if σ = b (i.e. it is a propositional function) and each argument type
τi is either π, b or 0. τ is said to be pure monadic if it has the form (πn → b).

Note that the operations N,C and E are of monadic type, with E of type
(π → b).

Theorem 5 Suppose O is of monadic type and is homomorphism invariant.
Then O is definable in terms of N,C and E.

Proof. We give the proof for the case that the type of O is pure monadic; the
general case is obtained by a slight modification to be explained below. In
the following we shall deal with structures (M, p) where p = (p1, . . . , pn). In
each such, the unary propositional functions pi determine a partition of M0

whose components are given by a choice of T or F for each i = 1, . . . , n. It is
convenient here to identify T with 1 and F with 0; then each component is
identified with an n-termed sequence k of zeros and ones, and an individual y
belongs to that component just in case p(y) = k. Each non-empty component
can be shrunk to a single point, and this determines a homomorphism of M
onto M ′ sending p onto p′, and is hence such that OM (p) = OM ′

(p′). The
behavior of O is then determined by its behavior on the finitely many reduced
such structures (M ′, p′).

9The example of W as an homomorphism invariant operation not definable in PC was
suggested to me by Johan van Benthem. The contrast with the operation 2A of example
3) is interesting; the latter makes use of function quantification internal to M , while W
uses function quantification external to M .
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In more detail, the proof goes as follows. Given (M, p), let

y ≡ z ⇐⇒ p(y) = p(z)

and let h(y) = [y], where [y] is the equivalence class of y under the equivalence
relation ≡. Let, further,

D(M, p) = { k | (∃y)p(y) = k }, and [[k]] = { y | p(y) = k }.

Then [[k]] �= ∅ iff k ∈ D(M, p). Furthermore, if [[k]] �= ∅ then y ∈ [[k]]
iff [[k]] = [y], so the non-empty equivalence classes are the same as the
[[k]] in D(M, p). Moreover, if k �= l then [[k]] ∩ [[l]] = ∅. So, the im-
age M ′

0 of M0 under h is in one-one correspondence with D(M, p). Let
p′([y]) = p(y) for each y inM0; then by the invariance of O under homomor-
phisms, we have OM (p) = OM ′

(p′). Now, consider any other (M∗, p∗) with
D(M, p) = D(M∗, p∗). Defining the equivalence relation and homomorphism
on (M∗, p∗) just as we did above on (M, p), we see that its homomorphic
image is isomorphic to (M ′, p′). Hence OM (p) = OM∗

(p∗). This shows that
the behavior of O is completely determined by the sets O+ and O− defined
as follows:

O+ = { D(M, p) | OM (p) = T } and O− = { D(M, p) | OM (p) = F }.

Each of these is a finite set of subsets of the set of all n-termed sequences of
zeros and ones, say

O+ = {D1, . . . , Dr} and O− = {Dr+1, . . . , Ds}.

Then O is defined in general by

OM (p) =

{
T if D(M, p) = Di for some i = 1, . . . , r, and
F if D(M, p) = Di for some i = r + 1, . . . , s

Finally, given any subset D of the set of all n-ary sequences k of zeros
and ones, the condition D(M, p) = D is equivalent to the conjunction of all
formulas ∃y(p(y) = k) for k in D and of all formulas ¬∃y(p(y) = k) for k in
the complement of D. Thus O is definable in terms of the operations N,C
and E; logically speaking, it is given by a formula of the monadic predicate
calculus with n monadic predicate symbols.
Now suppose that O is an homomorphism invariant operation of type

(πn, 0m → b). Here we have to show how O behaves on structures (M, p, x)
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where x = (x1, . . . , xm). Again, one forms “diagrams” D(M, p, x). This in-
cludes the information for each xj that it is in a unique member of the parti-
tion determined by p; moreover, if xj ∈ [[k]] then the condition ∃y( p(y) = k)
is superseded by p(xj) = k. The proof then proceeds as before, and one ends
up once more with O definable from N,C and E, corresponding logically to a
formula in the monadic predicate calculus with n monadic predicate symbols
and m free variables. The most general case for an operation of monadic
type is that it also contains arguments of type b; this simply adds a certain
number of purely propositional arguments, whose truth value is invariant
under homomorphisms, and thus do not disturb the proof.

Theorem 6 The operations definable from the operations of the predicate
calculus PC without equality are exactly those definable from homomorphism
invariant operations of monadic type.

Proof. By Theorem 4, every operation definable from a PC operation is
definable from N,C and E, each of which is of monadic type and is similarity
invariant, hence is homomorphism invariant. The converse is a corollary of
Theorem 5.

5 Homomorphism invariance as a criterion

for logicality, pro and con.

The discussion in the following is divided up according to a series of issues,
particularly concerning identity, cardinality quantifiers, higher-order quan-
tification, and the evidence from natural language. It concludes with a brief
pointer to other approaches.

5.1 Is identity a logical notion?

If one is sympathetic to seeking a model-theoretic characterization of the
operations of first-order logic in terms of some invariance condition, there
might still be disappointment in—if not opposition to—the use of homomor-
phism invariance for that purpose, since it excludes the relation I of identity.
Quine, for example, worries over the general issue as to whether identity is to
be considered a logical notion in his Philosophy of Logic (Quine 1986, pp. 61
ff). On the one hand, he says that it “seems fitting” that the predicate of
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= is to be counted with predicates such as < and ∈ as part of mathematics
and not of logic. On the other hand, he gives three arguments for counting
= as part of logic. The first is the completeness of the logic of PC with
equality, the second is the “universality” of =, and the third is the possi-
bility of “simulating” = in a language L containing finitely many predicate
symbols; by that he means its explicit definition from those predicates to
satisfy the condition of identity of indiscernibles. The first and third argu-
ments are irrelevant to a logicality-cum-invariance project, both because of
their character and because they do not treat the operation I independently
of the logical operations of the first-order predicate calculus without equality.
The second argument is perhaps the most convincing in general terms but
does not rely on invariance in the Tarski-Sher sense per se. In the end, it is
the third argument that persuades Quine the most. “The upshot is . . . that
identity theory has stronger affinities with its neighbors in logic than with
its neighbors in mathematics. It belongs in logic. Yet we saw it as a threat
to our structurally conceived definitions of logical truth . . .A reconciliation
is afforded [by the definition of = in terms of the other predicates, and then]
all laws of identity become mere abbreviations of logical truths of the purely
quantificational sort. . . The structural view of logic is sustained.” (op. cit.,
p. 64). However, this is not an argument in favor of identity as a logical
notion in its own right, but rather as a notion that can be reduced in certain
contexts to logical notions.
It is undeniable that the relation of identity has a “universal”, accepted

and stable logic (at least in the presence of totally defined predicates and
functions, as is usual in the PC with =), and that argues for giving it a
distinguished role in logic even if it should not turn out to be logical on its
own under some cross-domain invariance criterion, such as under homomor-
phisms. Of course, even if a form of the latter is accepted as a criterion for
logicality, one is still free to consider the operations which are defined from I
by those provided in Theorem 6. That of course buys one the quantifiers Eκ

for κ finite, but not those for κ infinite, whose loss is discussed separately,
next.

21



5.2 What about the cardinality quantifiers and second-

order quantification?

It seems to me clear that the cardinality quantifiers Eκ for κ uncountable
belong to mathematics (specifically, set theory) and not to logic; they are all
excluded by the homomorphism invariance condition, along with the Eκ for κ
countable. As just remarked, the finite ones are recovered once one includes
the identity I . The quantifier“there exist infinitely many”, for κ = ℵ0 is a
borderline case to which intuition and experience do not provide a clearcut
answer as to its status. It can, however, be assimilated to logical notions
under the homomorphism invariance criterion simply by restricting one’s
consideration to those operations which are invariant over infinite domains
M0, without thereby including the Eκ for κ uncountable. The“completeness”
argument for logicality (suggested by Quine in the case of =) here gives quite
anomalous results, since one has a complete logic for Eκ for the case that
κ = ℵ1 by the work of Keisler (1970) while, as is well known, there is no such
logic for the case that κ = ℵ0.
I also agree with Quine (1986, pp. 64 ff) that second-order and higher-

order quantification go beyond the bounds of logic. He takes these (famously)
to be “set theory in sheep’s clothing”, and it is certainly true that the under-
stood meaning of such quantifiers depends on what sets exist, or alternatively
—if such quantifiers are regarded as binding predicate variables—of what
predicates exist. To put it in other more explicit terms, that dependence (on
what objects exist) certainly holds if second-order logic is to be more than
a two-sorted version of first-order logic and is taken to verify the principle
of existential instantiation in the form ∃Xϕ(X) → ϕ({x : ψ(x)}), which
incorporates the comprehension principle for sets or predicates. But logic is
supposed to be independent of ontology, and on those grounds, must exclude
second-order and higher quantification. This is evidently a matter of some
philosophical controversy, represented by the articles in the first part of the
collection (Shapiro 1996), including a defense of second-order logic by Boolos
(1975).10 In any case, I count it as an argument in favor of the homomor-
phism invariance condition for logicality that it excludes second-order, and
thence higher-order, quantification, by example 3) of the preceding section.

10I shall take up Boolos’ proposed “first-orderization” of second-order logic via plural
quantification in Sec. 6.
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5.3 Generalized quantifiers, logical operations and

natural language.

Mostowski (1957) introduced generalized quantifiers as follows (with change
of notation to accord with that used here). A quantifier over a domain M0 is
a function QM : ℘(M0) → {T, F} which is invariant under permutations of
that domain; given this invariance condition, it can alternatively be identified
with the collection {A ⊆ M0|QM(A) = T}. A quantifier in general is a
function Q from domains M0 to quantifiers Q

M on M0. Quantifiers in this
sense correspond to operations O of type (π → b), i.e. ((0→ b)→ b), which
are invariant under the similarity relations M ∼ M given by a permutation
of the underlying domain.
Lindström (1966) generalized considerably the notion of generalized quan-

tifier, as follows. By a relational signature is meant a sequence of natural
numbers k = (k1, . . . , kn). Then a quantifier of signature k is a collection K
of relational structures (M0, R1, . . . , Rn), of signature k, i.e. where each Ri

is a ki-ary relation on M0, such that K is closed under isomorphism. (0-ary
relations are identified with the truth values T or F .)
Alternatively, a quantifier in Lindström’s sense can be identified with a

function Q which assigns to each domain M0 a function

QM : ℘(Mk1
0 )× . . .× ℘(Mkn

0 )→ {T, F},

with QM(R1, . . . , Rn) = T iff (M0, R1, . . . , Rn) ∈ K. Such Q may be iden-
tified with operations O of type ((0k1 → b), . . . , (0kn → b) → b) which are
invariant under isomorphisms M ∼=M ′.
The role of generalized quantifiers in natural language (NL) goes back to

Montague (1970), though not explicitly connected with either of the preced-
ing. Barwise and Cooper (1981) made the first systematic study of quantifiers
in NL in relation to generalized quantifiers in Mostowski’s sense. They iden-
tified NL quantifiers with noun phrases (NPs) which are, as usual, followed
by verb phrases (VPs) to form sentences (Ss); one way to form a NP is as
a Determiner (Det) followed by a common noun (N). From a semantic point
of view items in both N and VP are interpreted as predicates, i.e. unary
relations, and a Det acts like a Lindström quantifier of signature (1,1).
Keenan and Westerst̊ahl (1996) ([K-W] in the following) provide an up-to-

date survey of work on generalized quantifiers in NL, with a substantial list of
references, and my discussion of the question of which operations should be
counted as logical as supported by NL evidence is based on that presentation.
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Basically three kinds of quantifiers Q are initially considered in [K-W], de-
noted by them to be of type 〈1〉, 〈1, 1〉 and 〈〈1, 1〉, 1〉, resp. Over each domain
M0, a Q of type 〈1〉 acts like a function QM : ℘(M0)→ {T, F}; typical exam-
ples in NL are proper nouns, pronouns, and indefinite pronouns. We content
ourselves with one example for purposes below: ‘Some like it hot’ ; refer to
[K-W] for many more examples. Quantifiers of type 〈1, 1〉 include one-place
Dets which combine with common nouns to form type 〈1〉 expressions; se-
mantically, they map ℘(M0) into type 〈1〉 objects. Here one has, among the
many, many examples, ‘All poets daydream’, and ‘Most linguists are bilin-
gual’. Finally, the two-placed determiners such as more...than... in ‘More
students than teachers attended the party’, are counted as quantifiers of type
〈〈1, 1〉, 1〉; semantically, they are treated as maps from ℘(M0) × ℘(M0)into
type 〈1〉. To relate to our notation using π = (0→ b), the quantifiers of these
three types match up with operations of type (π → b), (π → (π → b)), and
(π2 → (π → b)), resp.; and the second and third of these are in correspon-
dence with operations of type (π2 → b) and (π3 → b), resp. All of these are
thus monadic operations, and fall under Lindström quantifiers of signature
(1,1,...,1). We shall consider polyadic operations in NL separately, below.
My first concern here is how logicality of quantifiers relates to NL evidence.
The criterion taken in [K-W], pp. 849 ff. is, “standardly”, isomorphism in-
variance. This would admit all the Mostowski quantifiers in type 〈1〉, though
most of those do not occur in everyday NL usage. [K-W], p. 851, extend
logicality to cover also vague cardinality quantifiers, such as about a hundred
in ‘About a hundred students are in my physics class’, on the grounds that
this can be taken to satisfy the isomorphism invariance condition by spec-
ification according to context. But they go on (p. 852) to point out that
if sensitivity to context is permitted, the isomorphism invariance condition
permits implausible Dets to act as logical operations, e.g. a Det D which is
interpreted as every in domains of less than 10 elements and as some when
there are ≥ 10 elements in the domain. This leads to my second concern,
which was the main point in my critique of the Tarski-Sher thesis, that it
does not explain the idea of same logical operation across all domains. That
is addressed by [K-W], pp. 854-855 in terms of a condition called extension
(EXT) suggested by van Benthem for type 〈1, 1〉 quantifiers Q, which is met
if QM ′

is an extension of QM whenever M0 ⊆ M ′
0. The constraint EXT is

an apparent NL universal, as witnessed for example by the ∀ quantifier con-
sidered as a type 〈1, 1〉 Det in ∀AB, interpreted as ‘Every A is a B’, which
is independent of the universe encompassing the As and the Bs (classes of
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supposedly fixed extent). But [K-W] acknowledge (p. 856, ftn. 10) that the
corresponding condition for type 〈1〉 quantifiers fails, as witnessed, again by
∀ in the form ∀A, interpreted as ‘Everything is an A’. It is here, in my opin-
ion, that homomorphism invariance wins the day as a criterion for logicality
which explains sameness across domains of different sizes.

5.4 Monadic vs. polyadic quantification.

Next comes the question whether NL evidence supports the view of quanti-
fiers as, first and foremost, monadic operators. Examples such as ‘Most crit-
ics reviewed just four films’, seem to contravene this. [K-W], pp. 867 ff., con-
strue this as a quantifier Q of type 〈〈1, 1〉, 2〉 which acts to take monadic pred-
icates A, B (critic, film) and a binary relation R (reviewed) to Q(A,B)(R),
whose semantics is:

Q(A,B)(R) = T ⇐⇒
|{a ∈ A : |{b ∈ B : R(a, b)}| = 4} > |{a ∈ A : |{b ∈ B : R(a, b)}| �= 4}.

If construed as a Lindström quantifier K of type (1, 1, 2), this is essentially
polyadic. But it is shown in [K-W] how to interpret the given example as
a kind of composition of two type 〈1〉 quantifiers, most critics and (just)
four films, obtained from the type 〈1, 1〉 quantifiers most and four with the
relation reviewed, as

most critics (four films (reviewed)).

This saves treating the quantifiers involved as monadic, at the price of “lift-
ing” the type by two abstraction steps with respect to an argument. The
form is

Q1(A)({a ∈ A : Q2(B)({b : R(a, b)})}).

Thus both Q1 and Q2 remain of type (π → (π → b)), and are in turn
themselves obtained by abstraction from operations O1 and O2 of type (π

2 →
b). The entire second half of [K-W] is devoted to the general question of
reducibility of polyadic quantifiers in NL to monadic quantifiers via suitable
lifting by abstraction, and they come to the following generalization:

Polyadic quantification in natural languages in general results
from lifting monadic quantifiers. ([K-W], p. 890).
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The NP-VP analysis of NL sentences shows the centrality of monadic predi-
cates to human thought as expressed in natural language. I take the preced-
ing conclusion in [K-W], together with the ubiquity of monadic quantifiers of
the sort considered in 5.3, as evidence that the same extends to quantifiers
in general. Combined with my argument for homomorphism invariance as a
criterion for sameness of operations across domains, this makes it plausible
that the class of operations definable from homomorphism invariantmonadic
operations is a natural one to consider from the point of view of what one
might call “natural logic”. If that is granted, then Theorem 6 supports my
view that the first-order predicate calculus PC enjoys a privileged role in
human thought.
We have seen in example 7) of Sec. 4 that homomorphism invariance when

applied to essentially polyadic quantifiers, like that for well-foundedness of a
relation, takes one out of the PC definable operations. As a purely theoretical
question then, that leads us to the following:

Question. Is there a natural characterization of the homomorphism
invariant propositional operations in general, in terms of logics extending
PC?

5.5 Other approaches?

In the introduction I pointed out that a basic methodological choice has to
be made when considering the question: what is a logical operation? Just
to give a brief indication, the following are two quite different approaches,
methodologically, from the model-theoretic ones studied in this paper. They
will not be examined here, but would need to be dealt with in any full-scale
comparative analysis of the general problem.

(a) Proof-theoretic. The idea here goes back to the work of Gentzen
and Prawitz on systems of natural deduction, namely that the meaning of a
logical operation is given by its rules of introduction. When that is explained
in precise formal terms, one can then try to see which operations it is possible
to characterize in that way. Relevant publications of importance here are
(Zucker and Tragesser 1978), (Zucker 1978), and (Hacking 1979); cf. also
(Došen 1994) for a general discussion and further references. The first of
these leads exactly to PC.
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(b) Holistic. By this I mean model-theoretic characterizations of logics as a
whole, without attempting to isolate the separate contributions of individual
operations which may generate them. The first and most famous example
of such is provided by (Lindström 1969), which characterizes first-order logic
with equality PC(=) in terms of general properties of its satisfaction relation.
That work was paradigmatic for considerable further research, surveyed in
many parts of (Barwise and Feferman 1985). Tharp (1975) contains an in-
teresting discussion.

6 Tarski and Boolos on logicism.

In his “What are logical notions?” lecture that was the starting point for
this paper, Tarski concluded with a discussion of its relevance to the logicist
program, as follows:

The question is often asked whether mathematics is a part of
logic. Here we are interested in only one aspect of this prob-
lem, whether mathematical notions are logical notions, and not,
for example, in whether mathematical truths are logical truths,
which is outside our domain of discussion. (Tarski 1986, p. 151)

His answer is, curiously: “As you wish”! The argument is that since “the
whole of mathematics can be constructed within set theory, or the theory of
classes”, and since “all usual set-theoretical notions” can be defined in terms
of the relation of membership, the determination comes down to whether
membership is a logical notion. 11 But—Tarski goes on—two methods have
been provided for the foundations of set theory following the discovery of
paradoxes in that subject, namely the theory of types as exemplified in Prin-
cipia Mathematica (which he takes implicitly in unramified form), and ax-
iomatic set theory as formulated by Zermelo, et al. If one follows the method
of the theory of types then membership is a part of logic, since it is invariant
under the extension to higher types of any permutation of the domain of
individuals. On the other hand, if axiomatic set theory is followed, there
is “only one universe of discourse and the membership relation between its

11It is also curious that Tarski ignores the fact due to his fundamental result on the non-
definability of truth-in-L within a language L, that the mathematical notion of truth of
sentences of the language of set theory cannot be defined within set theory (and similarly
for type theory).
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individuals is an undefined relation, a primitive notion.” On that account,
membership is not a logical notion, since as Tarski had shown earlier, there
are only four permutation-invariant relations between individuals, the uni-
versal relation, the empty relation, the identity relation and its complement.
Tarski winds up these considerations as follows:

This conclusion [“As you wish!”] is interesting, it seems to me,
because the two possible answers correspond to two different
types of mind. A monistic conception of logic, set theory, and
mathematics, where the whole of mathematics would be a part
of logic, appeals, I think, to a fundamental tendency of mod-
ern philosophers. Mathematicians, on the other hand, would be
disappointed to hear that mathematics, which they consider the
highest discipline in the world, is a part of something so trivial
as logic; and they therefore prefer a development of set theory in
which set-theoretical notions are not logical notions. The sugges-
tion which I have made does not, by itself, imply any answer to
the question of whether mathematical notions are logical. (Tarski
1986, p. 153)

Though Tarski’s consideration only of the question “whether mathematical
notions are logical notions” and not of “whether mathematical truths are
logical truths” appears at first sight to be a reasonable one, it is not clear
that the two can be separated so neatly. For, any argument one way or
the other about the first question must necessarily invoke assumptions about
various properties of the notions involved, and those lead one into the second
question. Tarski skirts this by only considering the outer syntactic form of
the two theories for “mathematics” that he compares, namely the theory of
types and the theory of sets. Moreover, he treats these questions in an all-
or-nothing way, not distinguishing whether some prima-facie mathematical
notions (or truths), such as those of arithmetic, might be logical, but not
others, such as those of higher set theory. Indeed, on his thesis, it would
appear that at least finite cardinal arithmetic is in a suitable sense a part of
logic. Finally, what is puzzling to me about his whole discussion is that (as
I have argued in Sec. 3) Tarski’s thesis assimilates logic to a substantial part
of set-theoretical mathematics, so that there is a circularity involved in the
question whether mathematical notions are logical. But I will have to leave
his views of the matter at that.
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************************

Let me turn, finally, to Boolos’ work on logicism, more specifically on
Frege’s program, to the study of which he contributed a number of incisive
essays. I divide that into two parts, the first (a) being his defense, on nomi-
nalistic grounds via plural quantification, of the second-order logic that Frege
used for his program, and the second (b) being his rejection of Frege’s claim
to having reduced arithmetic to logic, even after his system is reconstructed
in a consistent form.

(a) Sublogicism, second-order logic and plural quantification. In the
Begriffsschrift, Frege argued against Kant, as to the necessity of a priori intu-
itions for mathematics, that there are examples of mathematical judgments
that “at first sight appear to be possible only on the basis of some intuition,”
but which can be brought forth in pure thought “solely from the content
that results from its own constitution.” In his “Reading the Begriffsschrift”
(Boolos 1985a), Boolos defends a weakened version of Frege’s logicism that he
calls “sublogicism : the claim that there are (many) interesting mathemati-
cal truths that can be reduced (in the appropriate sense) to logic.” (Boolos
1985a in his 1998, p. 156). This depends first of all on a careful reading
of Frege’s work and secondly on Boolos’ claimed nominalistic reduction to
plural quantification of the second-order quantification in the Begriffsschrift.
It is the latter that is my main concern here. That aim was promoted in two
papers, “To be is to be a value of a variable (or to be some values of some
variables)” (Boolos 1984), and “Nominalist platonism” (Boolos 1985), both
reprinted in (Boolos 1998). These essays have been given serious attention
by a number of philosophers. What Boolos’ claim to have “tamed” second-
order logic in this way comes to is well summarized by Michael Resnik in his
critique “Second-order logic still wild” (Resnik 1988), and there is no point in
my repeating it here. His conclusion, with which I concur completely, is that
no genuine ontological reduction is obtained thereby. “Boolos is involved in a
circle: he uses second-order quantification to explain English plural quantifi-
cation and uses this, in turn, to explain second-order quantification.” (Resnik
1988, p. 83).12 Whatever the merits of this proposed reduction, even Boolos

12Another critique which has been brought to my attention is that of (Shapiro 1993).
On the other hand, as Geoffrey Hellman has written me, David Lewis (1991) 62–71 makes
(what he considers to be ) a persuasive case that we do have an independent grasp of
plural quantification that doesn’t have to be explained in terms of second-order quantifi-
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does not accept Frege’s logicism in full on its basis, and the reasons for that
are what I turn to next.

(b) The consistent reconstruction of Frege’s arithmetic, and its sig-
nificance. In his paper “The consistency of Frege’s Foundations of Arith-
metic” (Boolos 1987, reprinted in Boolos 1998), a second-order system FA
is presented which is shown to be consistent, unlike that of Frege’s Grund-
lagen der Arithmetik, in which the mathematical results of the latter can be
redeveloped exactly following Frege’s work. The system FA has three sorts
of variables: first-order (individual or object) variables x, y, z, . . . ; unary
second-order (or ”concept”) variables F,G,H, . . . ; and binary second-order
(relation) variables ϕ, ψ . . . . There is only one nonlogical symbol, η, relating
concept and object variables. The atomic formulas are of the form Fx, xϕy
and Fηx. Equality is defined by: x = y ←→ ∀F (Fx ←→ Fy). Using the
binary second-order variables, the equinumerosity relation, F eq G, between
two concepts F , G is defined as usual. There are three main axioms. The first
two are the usual comprehension axiom schemes consisting of the universal
closures of

∃F∀x(Fx←→ A(x)),

where A is a formula that does not contain ‘F ’ free, and

∃ϕ∀x∀y(xϕy←→ B(x, y)),

where B is a formula that does not contain ‘ϕ’ free. Boolos regards both of
these as logical. The third (nonlogical) axiom is the single sentence

Numbers: ∀F∃!x∀G(Gηx←→ F eq G).

The idea is that the unique x associated with F by this axiom is a first-order
object representing the equivalence class of F under the relation of equinu-
merosity. If we denote that unique x by N(F ), one has, as a consequence of
Numbers,

Hume’s principle: ∀F∀G(N(F ) = N(G)←→ F eq G).

cation, though there appears to be an asymmetry between existential plurals (natural)
and universal plurals (not natural) in English.
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Frege had used axioms for extensions of concepts to define the operation
N in such a way as to be able to derive Hume’s principle in Section 73 of
his Grundlagen. Russell’s paradox showed that those axioms are inconsis-
tent. By contrast, Boolos shows that FA, which does not use extensions, is
consistent. Then, following the lead of Wright (1983), he shows that “(o)nce
Hume’s principle is proved, Frege makes no further use of extensions.” (Boo-
los 1998, p. 191). In his discussion of the significance of this work, Boolos
comes to the following provocative conclusions (op. cit., p. 200): “(1) Num-
bers is no logical truth; and therefore (2) Frege did not demonstrate the truth
of logicism in the Foundations of Arithmetic. (3) Logic is synthetic if mathe-
matics is, because (4) there are many interesting, logically true conditionals
with antecedent Numbers whose mathematical content is not appreciably less
than that of their consequents.” And he adds to these: “(5) Since we have
no understanding of the role of logic or mathematics in cognition, the failure
of logicism is at present quite without significance for our understanding of
mentality.” In view of my working identification of logic with the first-order
predicate calculus PC, I am in agreement with (1) and (2). I am more or
less in disagreement with (3), though I don’t have strong feelings about what
being synthetic amounts to. I don’t see (4) since all results of mathematics
can be represented as logical consequences of mathematical hypotheses. As
to (5), I agree with the conclusion, but not the premise; it seems to me that
we do have some understanding of the role of logic, and to some extent of
mathematics, in cognition, though we surely have much farther to go in both
respects. To reiterate my introductory remarks, I think that the theoretical
study of what a logical operation is, and hence of what the scope of logic is,
must be connected with the more empirical study of the role of logic in the
exercise of human rationality. I am optimistic that a better understanding
of either will inform the other.

Stanford University
sf@csli.stanford.edu

31



References

Barwise, J. (1972), Absolute logic and L∞w. Annals of Pure and Applied
Logic 4, 309-340.

Barwise, J. and Cooper, R. (1981), Generalized quantifiers and natural lan-
guage. Linguistics and Philosophy 4, 159-219.

Barwise, J. and Feferman, S., eds. (1985), Model-theoretic Logics. Springer-
Verlag, Berlin.

Boolos, G. (1975), On second-order logic. J. Philosophy 72, 509-527.
(Reprinted in Boolos 1998, 37-53.)

Boolos, G. (1984), To be is to be the value of some variable (or some values
of some variables). J. Philosophy 81, 430-450. (Reprinted in Boolos 1998,
54-72.)

Boolos, G. (1985), Nominalist platonism. Phil. Review 94, 327-344.
(Reprinted in Boolos 1998, 73-87.)

Boolos, G. (1985a), Reading the Begriffsschrift. Mind 94, 331-344.
(Reprinted in Boolos 1998, 155-170.)

Boolos, G. (1987), The consistency of Frege’s Foundations of Arithmetic. In
J. J. Thomson (ed.), Being and Saying: Essays for Richard Cartwright, 3-20.
MIT Press, Cambridge. (Reprinted in Boolos 1998, 183-201.)

Boolos, G. (1998), Logic, Logic and Logic. Harvard Univ. Press, Cambridge.
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