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ABSTRACT. Most axiomatizations of set theory that have been treated
metamathematically have been based either entirely on classical logic
or entirely on intuitionistic logic. But a natural conception of the set-
theoretic universe is as an indefinite (or “potential”) totality, to which
intuitionistic logic is more appropriately applied, while each set is taken
to be a definite (or “completed”) totality, for which classical logic is ap-
propriate; so on that view, set theory should be axiomatized on some
correspondingly mixed basis. Similarly, in the case of predicative analy-
sis, the natural numbers are considered to form a definite totality, while
the universe of sets (or functions) of natural numbers are viewed as an
indefinite totality, so that, again, a mixed semi-constructive logic should
be the appropriate one to treat the two together. Various such semi-
constructive systems of analysis and set theory are formulated here and
their proof-theoretic strength is characterized. Interestingly, though the
logic is weakened, one can in compensation strengthen certain principles
in a way that could be advantageous for mathematical applications.!

1 Introduction

There are various foundational frameworks in which the full universe or domain
of its objects is considered to be indefinite but for which certain predicates and
logical operations on restricted parts of the universe are considered to be defi-
nite. For example, on one view in the case of set theory, each set is considered
to be a definite (or “completed”) totality, so that the membership relation and
bounded quantification are definite, while the universe of sets at large is an
indefinite (or “potential”) totality. The idea carries over to frameworks with
more than one universe, some of which may be regarded as definite while others
are indefinite. For example, in the case of predicativity, the natural numbers
are considered to form a definite totality, while the universe of sets (or func-
tions) of natural numbers forms an indefinite totality. Thus quantification over
the natural numbers is taken to be definite, but not quantification applied to
variables for sets or functions of natural numbers. Most axiomatizations of
set theory that have been treated metamathematically have been based either
entirely on classical logic or entirely on intuitionistic logic, while almost all
axiomatizations of predicative systems have been in classical logic. But it has
been suggested on philosophical grounds that it is more appropriate to restrict

1For my friend and colleague Grisha Mints, on the occasion of his 70th birthday, June 7,
2009, with special appreciation for his steadfast support of logic at Stanford.
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the application of classical logic to definite predicates and quantifiers and to
take the basic logic otherwise to be intuitionistic. We shall show here, for var-
ious examples — including the ones that have been mentioned — that while
this may provide a more philosophically satisfying formal model of the given
foundational framework — there is no difference in terms of proof-theoretical
strength from the associated system based on full classical logic; in that respect
they are equally justified. On the other hand, the semi-constructive systems
in general have a further advantage that they admit more formally powerful
principles — such as the unrestricted axiom of choice — without increase of
strength, and this can be advantageous when considering what mathematics
can be accounted for in the given systems.

The initial stimulus for my work here was the paper of Coquand and Palm-
gren (2000) in which they give a constructive sheaf model for a theory of finite
types over the natural numbers together with a domain of countable tree ordi-
nals, formulated in intuitionistic logic plus the so-called numerical omniscience
scheme for ¢ an arbitrary formula:

(NOS)  Vn[p(n) V =¢(n)] = Ynp(n) V In—¢(n)

A special case of this non-constructive principle is what Errett Bishop (1967)
called the limited principle of omniscience:

(LPO) Vnf(n)=0V3nf(n)#0

Bishop pointed out that all the results in classical analysis for which he
found constructive substitutes follow from those substitutes plus LPO. In Fe-
ferman (2001) I reported determination of a bound on the proof-theoretical
strength of the Coquand-Palmgren system by means of an extension of Gddel’s
Dialectica (functional) interpretation interpretation using non-constructive op-
erators. That method goes back to Feferman (1971), with further applications
in Feferman (1977), (1979); semi-constructive systems there played an essential
intermediate role in the use of the method to determine the proof-theoretical
strength of various classical systems. Here, by contrast, they are at the center
of our attention.

What’s needed in the following about Godel’s (D-)interpretation is reviewed
in section 2; the reader is referred to the exposition of the basic interpretation
and various of its extensions in Avigad and Feferman (1998) for more details. In
section 3, we take up the particular extension by means of the non-constructive
minimum operator, where it is also shown by a simple argument that (NOS)
follows from (LPO) under the assumption of the Axiom of Choice (AC), as
expressed in our finite type systems and verified by the D-intepretation. This is
followed in section 4 by determination of the strength of some semi-constructive
theories of finite type over the natural numbers, and then in section 5 the
same augmented by the type of countable tree ordinals. Both sections 4 and 5
make direct use of previously established results. The main new results are in
section 6, which deals with the strength of some semi-constructive systems of
admissible set theory with strong choice principles plus a generalization of NOS
called the Bounded Omniscience Scheme (BOS) and where the method of non-
constructive D-interpretation is adapted in a new way. I conclude in section
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7 with comparison with work on a various related systems and some open
questions, in particular with strong systems of semi-intuitionistic set theory
due to Poszgay (1971, 1972), Tharp (1971), Friedman (1973) and Wolf (1974)
and, by contrast, a system conservative over PA, due to Friedman (1980).

The reader familiar with the material of Avigad and Feferman (1998) through
its section 8 is encouraged to skip directly to the new results here in section 6,
after taking note of Theorem 2 in section 3.2 below.

2 Review of Godel’s Dzialectica interpretation

The main basic notions, notation and results concerning this interpretation
are recalled here from Avigad and Feferman (1998). For each formula ¢, the
double-negation (or negative) translation of ¢ is denoted by ¢%, and the Di-
alectica (or D-) interpretation of ¢ is denoted by ¢”. The N-translation in
general takes one from classical theories to formally intuitionistic theories, and
the D-interpretation is then applied to take one to a quantifier free theory of
functionals of finite type. The basic example is given by the N-translation of
Peano Arithmetic PA into Heyting Arithmetic HA (Gddel, Gentzen) followed
by the D-interpretation of HA into a quantifier-free theory T of primitive re-
cursive functionals of finite type (Godel). The latter extends directly to a D-
interpretation of a finite type extension HA® of HA into T, and then by making
a similar extension PA“ of PA, we obtain a composite ND-interpretation of that
system into T. Finally, T has a model in HEO, the Hereditarily Extensional
(Recursive) Operations of finite type, and that can be formalized in PA. Thus
all these systems are of the same proof-theoretical strength.

For the finite type theories involved, the finite type symbols (t.s.) o, 7, ... are
generated as follows: (1) 0is a t.s. and (ii) if o, 7 are t.s., then so also is 0 — 7.
These theories have infinitely many variables z7,y™, 27, ... of each type 7; type
superscripts are suppressed when there is no ambiguity. We occasionally use
other kinds of letters like f,g,...n,m,... as well as capital letters X,Y ... for
variables of appropriate types. Terms s,t,... are generated from the variables
and constants (to be described) by closure under application ts (or t(s)) when
t is of a type 0 — 7 and s is of type o, the result being of type 7.

Application in terms such as rst is read by association to the left, while the
t.s. p — o — 7 is read by association to the right. Each higher type symbol
o can be written in the form ¢ = (07 — ... — o — 0); then equality s = ¢
at type o is informally regarded as an abbreviation for sz ...z, = txy ...z
where the z; are fresh variables of type o; for ¢ = 1,..., k. The formal axioms
and rules that we take to govern equality at higher types are given by the
so-called weakly extensional approach due to Spector and described in Avigad
and Feferman (1998), p. 350.

The type 0 — 0 is also denoted 1, and the type 1 — 0 is denoted 2. The
constant symbols include 0 of type 0 and Sc of type 1. In addition we have
symbols K, S for the usual combinators in all appropriate types, satisfying
equations of the form Kst = s and Srst = rt(st); the typed A-calculus is then
introduced by definition as usual. Finally we have constant symbols R for the
recursors in all appropriate types, satisfying equations of the form

Rxy0 = z and Raxyn' = yn(Rxyn)
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where n is a variable of type 0 and n’ = Sc(n). The formulas ¢, 4, ... of T are
generated from the equations s = t and the falsity L by closure under ¢ A 9,
¢ V1, and ¢ — 1; then —¢ is defined as ¢ — L. The formulas of PA“ and
HA® are in addition closed under universal and existential quantification, V¢
and Jdx¢, w.r.t. variables = of all finite types. The underlying logic of PA¥
is classical while that of HA* and T is intuitionistic. The axioms in all three
systems are as usual for 0 and Sc, and as indicated above for the symbols K, S
and R. The induction axiom scheme is given as usual in these systems, while it
is formulated as a rule in T. One may show that quantifier-free (QF) formulas
(with all equations restricted to terms of type 0) are decided, i.e. satisfy the
law of excluded middle (LEM) in all of these systems.

For a formula ¢ of the quantified finite type language, the D-interpretation
of ¢ is of the form

¢P = 3aVyeép(z,y)

where z,y are sequences (possibly empty) of finite type variables and ¢p is a
QF formula whose free variables are those of ¢ in addition to those of = and y.
The inductive definition of the D-interpretation for formulas ¢, with ¢ as
above, and ¥ = JuVvyp(u,v) is as follows:

(i) For ¢ an atomic formula, z and y are both empty and ¢” = ¢p = ¢.
(¢ A)P =z, uvy,v[dp(2,y) Ap(u,v)]
(V)P =3z, 2, uVy,v[(z = 0A dp(z,y)) V (2 = 1 AYp(u,v))]

(Vz¢(2))P = IXVy, 2¢p(X 2,9, 2)

(326(2))" = 3w, 2Vy¢p (2, y. 2)

(¢ — )P = 3U, YVa,v[pp(x,Yav), = ¢p(Uz,v)]

With —¢ defined as ¢ — L, we have

(vil) (=¢)P = IYVa—¢p(z,Ya)

The reasoning behind (iv) lies in the constructive acceptance of the Axiom
of Choice, here taken as the following scheme in all finite types:

(AC) VaIyoé(z,y) — IYVap(z,Y)

The reasoning behind (vi) lies in a chain of steps?, an intermediate one of
which lies in transforming [3zVy¢p(z,y) — JuVoyp(u,v)] into

(vi)* VaFuVoIylop(z,y) = ¥p(u,v)]

Implicitly, that makes use of a principle called Independence of Premises
(IP) that is not intuitionistically justified. Moreover, another one of the steps
to (vi) implicitly makes use of the finite type forms of Markov’s Principle,

(MP)  Vz(—-—3Jy¢ — Jyo) for QF ¢

2See Avigad and Feferman (1998) pp. 346-347 for all the steps involved.
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which is also not justified intuitionistically. Nevertheless, Godel’s interpretation
gives a constructive reduction of both AC and MP.? In the case of AC this is
immediate, and in the case of MP, it is quite easy given that all QF formulas
in the systems we’re dealing with are decided. The additional power of the D-
interpretation below comes from the fact that (AC)P and (MP)P are verified
quite generally.

The following is the direct extension from HA to its finite type version of
Godel’s main result (1958):
Theorem 1. If HAY + AC + MP proves ¢ and ¢ = 3xVypp(z,y) then for
some sequence of terms t of the same type as the sequence x of variables, T’
proves ¢p(t,y).

The main use of the recursor constants R is in verifying the D-interpretation
of the induction axiom scheme in HAY.

By QF-AC we mean the scheme AC restricted to QF formulas ¢. Since for

such ¢ we have ¢ equivalent to ¢, we see that (QF-AC)NP is also verified
in T.

Corollary 1. PA“ + QF-AC is N interpreted in HA“ and so it is ND inter-
preted in T.

By an analysis of the reduction of the terms of T to normal form, one sees
that its closed terms denote recursive functions defined by ordinal recursions
on proper initial segments of the natural well-ordering of order type ¢y. Hence
all the systems PA, PA“, HA, HA® and T have this same class of provably
recursive functions.

3 The non-constructive minimum operator and
interpretation of NOS
3.1 The non-constructive minimum operator

One way to arrange for arithmetical formulas to satisfy the Law of Excluded
Middle, LEM, in a system based as a whole on intuitionistic logic is to make
them equivalent to QF formulas by adjunction of a numerical quantification
operator Ey of type 2 satisfying the axiom

(E()) Eof =0+« Hx(fm = 0)

for f,xz variables of type 1 and 0, resp. In order for this to satisfy the ND-
interpretation we need to verify the following two implications:

fr=0—= Eyf =0and Epf =0 — 3x(fz =0)

The first of these is automatically taken care of, and the N-interpretation of
the second is taken care of by the verification of MP, but in order to get
its further D-interpretation we need to have a functional X which satisfies
Eof =0— f(Xf) =0, and hence fx =0 — f(Xf) =0. To take care of this
we adjoin a new constant symbol p with axiom:

(w)  fr=0—=f(uf)=0

31t also verifies the interpretation of IP, but we shall not make use of that fact.
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We call p the non-constructive minimum operator, though properly speaking
that would need an additional axiom specifying that pf is the least x such that
fx=0if 3z(fx =0) and (say) is 0 otherwise; in fact, that is definable from g
using the primitive recursive bounded minimum operator.

3.2 The LPO axiom and the Numerical Omniscience Scheme

As stated, under the axiom (u) every arithmetical formula is equivalent to
a QF formula in intuitionistic logic; various consequences of this for semi-
constructive systems incorporating that axiom will be dealt with in the next
section. In particular, we can derive the NOS scheme for arithmetical formulas
from that assumption. But in the presence of AC we can do even more. We
here understand by the NOS, the scheme described in sec. 1 where we allow ¢
to be any formula of the language of HA“, and by LPO the statement given in
sec. 1, where ‘f’ is a variable of type 1.

Theorem 2.
(i) HA¥ + (p) proves LPO.

(ii) HA“ + (LPO) + AC proves NOS.

Proof. (i) is immediate, and for (ii) we note that if Vn[p(n) V =¢(n)] holds,
then so also does Yn3k[k = 0A¢(n)VEk = 1A=¢(n)]. Hence by AC there exists
f of type 1 such that Vn[(f(n) =0 < ¢(n)) A (f(n) =1 < =¢(n))]. O

4 Semi-constructive systems of finite type over the
natural numbers

4.1 Primitive recursion in a type 2 functional and Kleene’s variant

The system HA“ + (u) + (AC) offers itself immediately for consideration
as a semi-constructive system of interest; this is a predicative system that is
somewhat stronger than PA. But we shall also consider systems using operators
F of type 2 stronger than u. Given any such F, Shoenfield defined a hierarchy
HZI of functions for « less than the first ordinal not recursive in F, such that
the 1-section of F' (i.e., the totality of type 1 functions recursive in F') consists
of all those functions that are primitive recursive in the usual sense in some
such HE'. Now the normalization of terms of the system T augmented by such
an F' shows that its 1-section consists of all those functions primitive recursive
in some HI for a < €. In particular, the 1-section of the functionals defined
by closed terms of T augmented by p consists of the functions in the HYP
hierarchy up to (but not including) €.

We shall also consider an interesting subsystem of T augmented by such type
2 functionals F', obtained by restricting the induction and recursion principles.
The motivation for that restriction lies in the fact that the recursors R with
values of higher type have a kind of impredicative character. For example,
for values of Rfgn of type 2, thought of as Ah.Rfgnh, we have Rfgn’ =
gn(A.Rfgnh)) and that evaluated at a given function h; makes prima-facie
reference to the values of Rfgn at all functions h. It is easily shown that non-
primitive recursive functions such as the Ackermann function may be generated
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in this way. Kleene (1959) introduced restricted recursors R satisfying the
recursion equations

Ray0z and Rayn'z = y(f%xynz)

where z is a sequence of variables such that xz is of type 0. He showed that the
1-section of the functionals generated from 0, Sc, the K, S combinators and
the R recursors by closure under application are exactly the primitive recursive
functions. Thus taking T to be the subsystem of T with constants R in place
of the constants R, and corresponding change of axioms, we have that the 1-
section of T consists exactly of the primitive recursive functions in the usual
sense. Now all this may be relativized to a type 2 functional F' to show that
the 1-section of T augmented by F' consists exactly of the functions primitive
recursive in HY for some n < w. In particular, the 1-section of T+ (1) consists
of all the arithmetically definable functions.

By Res-PA“ and Res-HA“ we mean the systems using the R recursors in
place of the R recursors and with the axiom of induction restricted to QF-
formulas.

4.2 The strength of some semi-constructive systems based on the
non-constructive minimum operator

We begin with semi-constructive variants of predicative systems, i.e. systems
whose strength is at most that of ramified analysis up to the Feferman-Schiitte
ordinal I'y, or equivalently, the union of the (IIY-CA,,) systems for a < T'y.

Theorem 3.

(i) The systems Res-HA® + (AC) + (MP) + (u) and Res-PA“ + (QF-AC)
+ (u) are proof-theoretically equivalent to and conservative extensions of
PA; furthermore they are conservative extensions of the 2nd order system
ACA, for IIi-sentences.

(ii) The systems HA® + (AC) + (MP) + (u) and PA“ + (QF-AC) + (p)
are proof-theoretically equivalent to — and conservative extensions for
II3-sentences of — the 2nd-order systems (in decreasing order) $1-DC,
$1-AC, and the union of the (II9-CA,) systems for a < ¢.

(iii) The systems HA¥ + (AC) + (MP) + (u) + (Bar-Rule) and PA“ + (QF-
AC) + (u) + (Bar-Rule) are proof-theoretically equivalent to — and
conservative extensions for IT} sentences of — the 2nd order systems (in
decreasing order) ¥1-DC + (Bar-Rule), ¥1-AC + (Bar-Rule), and the
union of the (II9-CA,,) systems for o < T.

(iv) There is no increase in strength when the NOS scheme is added to the
semi-constructive systems in (i)-(iii).

Proofs. The result (i) is from Feferman (1977), (ii) is from Feferman (1971)
and (iii) is from Feferman (1979). The ideas for their proofs are exposited in
Avigad and Feferman (1998), sec. 8. Briefly, the proof of (i) uses the fact that
the D-interpretation of the semi-constructive system Res-HAY + (AC) + (u)
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and the ND-interpretation of the classical system Res-PA“ 4+ (QF-AC) + (u)
both take us into T + 1, which is interpreted in PA preserving arithmetical
sentences (as translated using p). For the conservation statement, one notes
that under the p axiom, every II3 sentence is equivalent to one of the form
Vf3gd(f,g), where ¢ is quantifier-free, hence if provable, it is preserved under
the N-translation using (MP) and then under the D-interpretation one obtains
a type 2 term ¢ such that T + (1) proves ¢(f,tf). That term defines g = tf
arithmetically from f. The main steps of the proof of (ii) follow the same lines,
concluding with the interpretation in T + (u), whose 1-section consists of the
functions in the HYP hierarchy up to (but not including) €j, as described in
4.1 above. For (iii) the main new work goes first into the D-interpretation of
HA“ + (AC) + (MP) + (u) + (Bar-Rule) in the extension of T + (u) by two
new rules, (BR) and (TR). These rules involve expressing in QF form, well-
foundedness of any specific segment <, of a given arithmetical well-ordering as
the open formula Vz[Vy(y <, * = y € X) = = € X|, denoted I(=,, X ), where
X is a set-variable (i.e., a characteristic function at type 1). Then, for the
natural well-ordering < of order type I'g, the version BR of the Bar-Rule used
in this context allows one to pass from I(=,, X) for any specific a to the result
I(=4, ) of substituting in it any formula ¢(z) of the system for the formula
x € X, while the rule (TR) allows one to introduce a transfinite recursor on
the given segment under the same hypothesis. One gets up to each ordinal
less than I'y by a boot-strapping argument, and the proof that one doesn’t go
beyond is via a normalization argument. See Feferman (1979) pp. 87-89 for
more details. Finally, (iv) is immediate by Theorem 2.

4.3 The strength of some semi-constructive systems based on p
plus the Suslin-Kleene operator

For a given f, let Tree(f) be the tree consisting of all finite sequence numbers s
such that f(s) = 0. This tree is not well-founded if and only if 3gVz f(g | z) = 0,
where for any type 1 function g, ¢ | « is the number s of the finite sequence
gos -, g9(x — 1). The Suslin-Kleene operator is the associated type 2 choice
functional p1, obtained by taking the left-most descending branch in Tree(f)
if that tree is not well-founded. It satisfies the axiom

(1) Vaf(glz)=0—=Vof((uf) |z)=0

which may be re-expressed in QF form using the p operator. From the work
of Feferman (1977) and Feferman and Jéger (1983) one then obtains character-
izations of the proof-theoretical strength of the semi-constructive systems HA“
+ (AC) + (MP) + (u) + (w1), its restricted version, and its extension under
the Bar-Rule, in a form analogous to Theorem 3. For example, in analogy to
part (ii) of that theorem, the strength of HAY + (AC) + (MP) + (u) + (u1)
is characterized as that of the iterated II}-CA systems up to ¢, which is the
same as that of (33-DC). See Avigad and Feferman (1998) pp. 384-385 for
full statement of results and indication of proofs. An alternative characteriza-
tion may be given in terms of the iterated ID systems up to €. And, finally,
addition of the NOS comes for free by Theorem 2.
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5 The strength of a semi-constructive theory of finite
type over the natural numbers and countable tree
ordinals.

Here we can draw directly on Avigad and Feferman (1998), sec. 9, which
reports the work of an unpublished MS, Feferman (1968). The type structure
is expanded by an additional ground type for abstract constructive countable
tree ordinals, denoted €2, and lower case Greek letters «, 3,7,... are used to
range over ). But now we use ‘N’ to denote the type symbol 0. The constants
are augmented by Oq of type €2, Sup of type (N — Q) — Q, Sup~! of type
Q2 = (2 = N), and for each o, Rg, of type (2@ = (N = 0) = 0) = 0 —
Q) — 0. The subscript ‘o’ is omitted from the ordinal recursor Rq, when there
is no ambiguity. The constant Oq represents the one-point tree, and for f of
type (N — Q), Sup(f) represents the tree obtained by joining together the
subgrees fn for each natural number n. For o = Sup(f), Sup *(a) = f is
the constructor of a; in that case we write a, for (Sup™'(a))n. For each type
o the ordinal recursor Rq works to take an element a of type o, a functional
f of type (2 - (N — o) — o), and a tree ordinal a to an element Rq fax
satisfying the recursion equations

(Ra) Rafalq = a, and for a # 0q, Ro faa = fa(An.Rq faa,)

We also take the language to include the constant p. In it, we form three
theories of countable tree ordinals of finite type, first a classical theory COg +
(u), then a semi-intuitionistic theory SO + (1), both with full quantification
at all finite types, and finally a quantifier free theory Tq.* The basic axioms
of COg + (p) and SO¢E + (u) are the same, consisting of the following:

(1) The axioms of HA¥ + (u), with the induction scheme extended to all
formulas of the language;

(2) Sup(f) # 0q and Sup™*(Sup(f)) = f, for [ of type N — Q
(3) Sup(Sup~!(a)) = « for a # 0q
(4) (00)s = 0q
(5) the (Rq) equations
(6) ¢(0a) AVala # 0q AVrg(az) = ¢(a)] = Vag(a) for each formula ¢(a)
The theory Tq + (1) has as axioms:
(1)* The axioms of T + (1)
(2)*~(5)* The same as (2)-(5)

(6)* The rule of induction on ordinals for QF formulas ¢

4In Avigad and Feferman (1998), p. 387, we wrote ORY for the system CO¥ + (QF-AC).
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Note that this last is to be expressed in quantifier free form using the p
operator. In the next statement, ID; and IDgl) are respectively the classical

and intuitionistic theory of non-iterated positive inductive definitions given by
arithmetical ¢(x, PT).

Theorem 4. The following theories are all of the same proof-theoretical strength:
(i) 1Dy
(i) COgG + (1) + (QF-AC)

SO¥ + (u) + (AC) + (NOS)

Tao + ( )

(iii

(iv

)
)
)
(v) ID

Proof. It is shown in Avigad and Feferman (1998) pp. 388-389 how to
translate ID; into CO¢ + (u). That system is then carried into SOg + (u)
by the N-translation. By a direct extension of the work described in secs.
2-4 above, we see that SOg + (1) + (AC) + (NOS) is D-interpreted in Tq
+ (); this also verifies the classical (QF-AC) under the ND-interpretation.
Next, as in op. cit. pp. 390-391, To + (u) has a model in HRO(?E), the
indices of operations hereditarily recursive in ?E in the sense of Kleene (1959),
interpreting the type ) objects as the members of a version O of the Church-
Kleene ordinal notations. That model can be formalized in ID; so as to reduce
Tq + (u) to IDy. Finally, the reduction of ID; to IDgl) is due to Buchholz
(1980), in fact to the theory of an accessibility inductive definition.?

The language of the theory W of Coquand and Palmgren (2000) is close to
that of SO%, but does not contain the Sup~' operator or the (u) operator.
Its axioms are essentially the same as those of SO without the axioms for
those two operators. In addition, it has three special choice axiom schemata,
unique choice (AC!), countable choice (ACp) and dependent choice (DC) — all
of which follow from (AC) — as well as the Numerical Omniscience Scheme
(NOS). Thus W is a subtheory of SO¢ + (AC) 4+ (NOS), and so the proof-
theoretic strength of W is no greater than that of IDgZ). Presumably, the latter
(at least for accessibility inductive definitions) can be interpreted in W, but
I have not checked that. The main part of Coquand and Palmgren (2000)
is devoted to producing a constructive sheaf-theoretic model of W in Martin-
Lof type theory with generalized inductive definitions; an obvious question is
whether their argument provides an alternative reduction of W to IDgz). Finally,
as noted in Theorem 2, NOS already follows in their system from LPO from
countable choice.

6 Semi-constructive systems of set theory.

The basic idea for semi-constructive systems of set theory was stated in the
introduction: each set is considered to be a definite totality, so that the member-
ship relation and bounded quantification are definite, i.e. classical logic apply

5Avigad and Towsner (2009) have obtained an interesting alternative proof of the reduc-

tion of ID; to an accessibility IDgi), using a variant of the functional interpretation method.
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to both, while the universe as a whole is considered to be indefinite, so that only
intuitionistic logic applies to that. This suggests considering axiomatic systems
of set theory based on intuitionistic logic for which it is assumed that classical
logic applies to all Ay formulas. The latter is accomplished by assuming the
following restricted scheme for the Law of Excluded Middle,

(Ag-LEM) ¢V —¢, for all Ay formulas ¢
In this context, we also take Markov’s principle in the form:
(MP) ——3z¢ — Jz¢, for all Ay formulas ¢

Let IKPw be the system KP with logic restricted to be intuitionistic. To be
more precise, IKPw takes the following as its non-logical axioms:

1. Extensionality
2. Unordered pair
3. Union

4. Infinity, in the specific form that there is a smallest set containing the
empty set 0 and closed under the successor operation, z’ = z U {z}.

5. Ap-Separation
6. Ag-Collection
7. The e-Induction Rule

By 7, we mean the rule which allows us to infer Vzi(z) from Va[(Vy €
)YP(y) — Y(x)] for any formula ¢(x). This is easily seen to imply the &-
Induction Scheme

Vz[(Vy € 2)o(y) = ¢(x)] = Vog(z)

by taking ¢(z) = {Vz[(Vy € 2)8(y) = ¢(2)] = ¢(z)}.
Some further schemata in the language of set theory shall be added to IKPw,
first of all the Bounded Omniscience Scheme:

(BOS) Vz € ap(z)V —¢(x)] = Va € a(ep(z)) V Iz € a(—¢(z))

for all formulas ¢(z). The set-theoretical form of NOS is the special case of this
in which @ = w the unique set specified by Axiom 4. We shall strengthen IKPw
by (Ag-LEM) and BOS; but we can make a further considerable strengthening
by adding the following form of the Axiom of Choice,

(ACset) Va € aFyo(z,y) — Ir[Fun(r) ADom(r) = a A (Va € a)p(x,r(x))]

for all ¢, where Fun(r) expresses in usual set theoretic form that the binary
relation 7 is a function, and Dom(r) = a expresses that a is the domain of r;
both of these may be given as Aj formulas. Note that in the presence of (ACget)
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with axioms 1-3 and 5 we can infer Full Collection and Full Replacement i.e.
these schemes for arbitrary formulas.

Theorem 5. The semi-constructive theory of sets, SCS = IKPw + (Ay-LEM)
+ (MP) 4+ (BOS) + (ACgqt), is of the same strength as KPw and thence of
ID(f). The same holds for a natural finite type extension SCS“ over the universe
of sets.

Proof. The proof is in three parts.

I. First, we show that KPw is interpretable in SCS via the N-translation.
Since ¢ is provably equivalent to ¢ for every Ag formula f in IKPw + (Ao-
LEM), one readily checks that the N-translation of each of the axioms 1-5 holds
in that subsystem of SCS. In the case of Ag-Collection, the N-translation is of
the form

(Vx € a)——Fyo(x,y) — -3V € a)(Ty € b)o(x,y)

where ¢ is a Ag formula. But then by (MP) this follows from Ag-Collection
in SCS. Finally, the N-translation of an instance of the €-induction rule is an
instance of the same.

II. Next we introduce a new system Ty and define a D-interpretation of SCS
into Ty; by following through the interpretation, one may see what natural fi-
nite type extension SCS“ of SCS is also verified in the process. The language of
Ty is typed, with a ground type V for sets, and function types o — 7 for each
types o and 7. Variables for sets will be at the beginning or end of the alpha-
bet, while variables for functions will generally be f,g,h,.... Capital letters
will be used for constants, except for 0 and w; the constants are 0 (empty set), w
(natural numbers), D (disjunction operator), N (negation operator), E (char-
acteristic function of equality), M (characteristic function of membership), C
(bounded choice operator), P (unordered pair function), U (union function),
S (separation operator), R* (range operator) and R, (recursion operators).
Terms are generated from variables and constants by closure under well-typed
.application, ts. Atomic formulas are equations between terms, s = ¢, and
membership of terms, s € t. Formulas ¢, 1, ... are generated by closing the
atomic formulas under the propositional operations and bounded quantifica-
tion, (Vy € t)¢ and (Jy € t)¢. Truth values are represented in V' by using 0 for
True and any other value for False. The axioms of Ty fall into three groups (A,
B and C), as follows; these also implicitly determine the types of the various
constants.

A. Equality and logical operation axioms.

1. (Decidability) x =y Va #y

Equality) Exzy =0+ z =y

2
3. (Membership) Mzy =0+« z €y

4. (Disjunction) Dzy =0+ 2z =0Vy =0
5. (Negation) No =0+ 2 #0

6

Bounded choice) z € a A foe =0 — Caf €aA f(Caf) =0

o~~~ o~ o~ o~ o~
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Note by 6 that (z € a)fz =0+ Caf € a A f(Caf) = 0. The following is
then a direct consequence of the group A axioms.

Lemma 1. For each Ag formula ¢ of set theory, all of whose free variables are
among the list £ = z1,...z,, we have a closed term ¢4 such that the following
is provable in Ty :

tg(z) =0 ¢(z)

For the next group of axioms we write a C b for (Vz € a)(x € b).

B. Set theoretic axioms.

7. (Extensionality) a CbAbCa—a=1b
Empty set) =(z € 0)

9.
10.

11.

Unordered pair) x € Pab<>x=aVa =15
Union) z € Ua <+ (Fy € a)(z € y)
Infinity) (i) 0 € w A (Vo € w)(z' € w)
i)0ean(Vzea)(z' €a) 2w Ca

12.
13.

Separation) z € Saf <> x €aA fx =0

o
A~ N N N N N~

Range) y € R*af <> (x € a)(fr =y)

As usual, for Axiom 11 in the preceding, we write {z,y} for Pxy, {z} =
{z,z}, xUy = U{x,y}, and 2’ = 2 U{z}. We also define (x,y) = {{z}, {z,y}}
as usual in set theory, and use it to prove the following:

Lemma 2. There is a closed term Grph such that Ty proves

z € (Grph)af <> (3x € a)(3y € R*af)[z = (x,y) A fx = y]

Proof. (Grph)af is the graph of f restricted to a, considered as a set; it is
formed by separation from the Cartesian product a x (R*af). This depends
on the proof in general of the existence of Cartesian products a x b, as follows.
First let g be such that for each z,y, gry = (z,y), so that gz is Ay.(z,y).
Then for € a, gz : b — {z} x b and R*(b,gz) = {x} x b. Finally, take
h = X\x.R*(b,gz) so that a x b= U(R*(a,h)). O

In the following I shall write f|a for (Grph)af.

The final group of axioms is for recursion and induction. The latter is
formulated as a rule in a way specifically to enable the D-interpretation of the
e-Induction scheme in KPw.

C. Recursion Axiom and Induction Rule.

14. (Recursion) For each type o, R, is of type (V =V — o) = (V —
o). Then for f a variable of type (V. — V — o) and z of type V
and for ¢ = R, f we have the equation

gz = f(glx)x
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15. (Induction) Suppose that 8(z, g, ) is a formula and that G and Z
are closed terms for which the following has been inferred:

(Vy € x)0(y, Gy, Zzu) — 0(x, Gz, u)

Then we may infer 6(z, Gz, u).
NB. In the preceding, g and u may be sequences of variables (possi-
bly empty) of arbitrary type, while z is of type V.

This completes our description of the system Ty .
Lemma 3. SCS is D-interpreted in Ty .

Proof. The D-interpretation of each of the axioms 1-6 of IKPw in Ty is
straightforward. Furthermore, by the general facts about the D-interpretation
established in section 2 above, we obtain without further work the D-interpretations
of (A¢p-LEM), (MP), and (AC), this last in the functional form VaJyd(z,y) —
AfVaé(x, fz), where ¢ is an arbitrary formula. To obtain the D-interpretation
of (ACget) from this, suppose (Vz € a)Jyp(x,y). Then under the D-interpretation,
we also have VaTJy(z € a — ¢(x,y)), so there exists an f such that (Va €
a)p(x, fx). Let r = fla; then by Lemma 2, Fun(r) and Dom(r) = a and
(Vz € a)p(z,r(x)), as required by (ACge). To prove the D-interpretation of
BOS, we argue just as for Theorem 2 in the proof of NOS, but now combining
AC with the bounded choice operator C instead of the operator p.

So the only thing left to deal with is the D-interpretation of the €-Induction
Rule 7 of IKPw. For that, let v (x)P = IgVuiyp(x, g, u), where g,u are se-
quences of variables (possibly empty) of various types. We write 6 for ¢p.
Then to form the D-interpretion of the hypothesis of the e-Induction Rule, we
pass through the following sequence of formulas

Ve{(Vy € z)3hVwi(y, h,w) — IfVub(z, f,u)},
Vg, z3fVudw, y{ly € = — 0(y, gy, w)] = 0(x, f,u)},
3y w'vVe, @ u{ly gru € © — 0(y gau, g(y gzu), w' gzu)] — 0(x, f gz, u)}.

So finally, by induction hypothesis we have closed terms F', Y, W, such that
the following is provable in Tvy:

[Ygzu € x — 0(Y gzu, g(Y gxu), Wgzu)| — 0(x, Fgx, u).
Then the following is also provable in Tvy:
(Vy € 2)0(y, gy, Wgzu) — 0(z, Fgz,u).

Now apply the Recursion Axiom of Ty to obtain G satisfying the equation
Gz = F(G|x)z. Substituting G|z for g throughout the preceding, and taking
Zzu = W(G|zx)u, it follows that (Vy € x)0(y, Gy, Zzxu) has been inferred.
Hence by the Induction Rule 15 of Ty we may infer 6(x, Gz, u), which is the
D-interpretation of Vay(x).
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III. To complete the proof of Theorem 5, we need to interpret Ty in a
system of strength KPw. This is provided by the system of Operational Set
Theory, OST, for a type-free applicative structure over set theory introduced in
Feferman (2001a); see also Feferman (2006) and Jéger (2007). The language of
OST extends the language L of set theory by a binary operation symbol A for
application, a unary relation symbol | for definedness and various constants.
The terms 7, s,t, ... of the extended language are generated from the variables
a,bye,...,f,g,h,...,x,y,z and constants by closing under application, A(s,t).
We write st for A(s,t), and think of s as a partial function (coded as a set)
whose value at t exists if (st)] holds; this allows interpretation of a partial
combinatory type-free calculus in OST. The logic of OST is the classical logic
of partial terms due to Beeson.® The axioms of OST come in four groups:

(1) Axioms for the applicative structure given by the (partial) combinators
k, s.

(2) Axioms for logical operations for negation, disjunction and bounded quan-
tification, along with the characteristic function for membership, as in
Ty.

(3) Basic set-theoretic axioms for extensionality, empty set, unordered pair,
union, infinity and the €-Induction Scheme, as in KPw.

(4) Operational set-theoretic axioms for Separation, Range (or Replacement)
as in Ty; in addition there is a Universal Choice operator C satisfying

Ja(fr =0) = (CHLAF(CS) = 0.

For each type symbol o of Ty, we define M, (z) inductively as follows to
express in the language of OST that x is an object of type o:

(i) My(z)is (x =)
(ii) Mo_sr(z) is Yy[My(y) — zyl AM,(zy)]

We may treat the predicates M, as classes and write f : M, — M, for
My—,+(f). The translation of the constants of Ty into those of OST except for
the recursors is immediate; for each of these we may check that if the constant
is of type o then its translation is a closed term of OST that is provably in M,,.

So now consider any recursor R,; this is of type (V =V — o) = (V — o).
As its interpretation we make use of the type-free form of the recursion theorem
that is a consequence of the applicative axioms of OST; this provides a closed
term rec such that for any f, recf] and for ¢ = recf and any x, we have
gxr =~ fgx, i.e. either both sides are defined and equal or both are undefined.
We also make use of Lemma 5 of Feferman (2006), according to which there
is a closed term fun such that for any f, = such that (Vy € x)fyl we have
funfz|, and funfz is the graph of f restricted to x considered as a set; in
other words fun may be taken as the interpretation of Grph and we also write

6See Troelstra and van Dalen (1988) pp. 50-51, where Et is written for t] and the logic
of partial terms is called E-logic.
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f|z for funfx. Finally, using the recursor rec, we obtain a closed term r such
that rf| for all f, and for g = rf, the following is provable:

gx = f(glr)x

We claim each R, can be translated by this same term r. That is, no matter
what o we take, we have

r:(V—-V—-»M,) — (V= M)

For, suppose given any f : (V — V — M,); and let g = rf. It is to be shown
that g : (V — M,), i.e. that for each x, gz| and gz is in M,. This is proved
by €-induction on z; if it holds for all y € z, then fungz|, i.e. g|z isin V, so
by assumption, f(g|x)z is in M,, and hence the same holds for gz. QED

Lemma 4. Under this translation, Ty is interpreted in OST.

Proof. The verification of all the axioms of Ty by the corresponding axioms
of OST up to those for Recursion and Induction are immediate. The Recursion
axiom is taken care of in the way just described, so it is only left to check the
Induction Rule. So suppose that 6(z,v,u) is a formula which is a translation
of a formula of Ty for which v is a sequence of variables of type ¢ = o1, ...,0p,
and u is a sequence of variables of type 7 = 71,. .., Ty; we write M, (v) for the
conjunction of statements M,,(v;) and similarly for M, (u). Suppose further
that G and Z are closed terms of OST for which the following has been inferred:

VaVu{ My (Gz) AN [M,(u) = M, (Zzw)| AN [(Vy € 2)0(y, Gy, Zzu) — 0(x, Gz, u)]}
Then we conclude
Va{(Vy € )Vu[M,(u) = 0(y, Gy, u)] = Vu[M,(u) = 0(z, Gx,u)}

Thus by the Induction Scheme in OST we conclude VaVu[ M, (u) — 0(z, Gz, u)],
which verifies the translation of the conclusion of the Induction Rule in Ty,. O

We may now complete the proof of Theorem 5 by means of the fact estab-
lished in Feferman (2006) (and in another way in Jager (2007)) that OST is of
the same proof-theoretical strength as KPw. Finally, the fact that KPw is of
the same proof-theoretical strength of ID; is due to Jager (1982); it is then of
the same strength as ID{” by Buchholz (1980). O

If the power set operation is considered as a definite operation, which is sug-
gested by one philosophical view of set theory which still regards the universe
of all sets as an indefinite totality, we are led to a semi-constructive system
for which we can prove the following theorem in the same way as was done for
Theorem 5.

Theorem 6. The system IKPw + (Pow) + (A¢-LEM) + (MP) + (BOS)
+ (AC) has proof-theoretical strength between the classical systems KPw +
(Pow) and KPw + (Pow) + (V=L).

This makes use of the result proved in Jager (2007) that the proof-theoretical
strength of OST + (Pow) is bounded by that of KPw + (Pow) + (V=L). It is
conjectured but it is not known whether the strength of the latter is the same
as that of KPw + (Pow); the standard argument to eliminate the Axiom of
Constructibility does not apply in any obvious way.
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7 A miscellany of related work and questions
7.1 Kohlenbach’s “Lesser” NOS

Kohlenbach (2001) considers the following weakening of NOS that he calls the
Lesser Numerical Omniscience Scheme:

(LNOS)  ¥n[(¢(n) V =¢(n)) A (¢(n) V =p(n))] A =Ind(n) A —Inap(n)

— Yn—¢(n) VVn—1p(n)

His main result is that the semi-constructive system Res-HA“ + (AC) +
(MP) + (LNOS) is conservative over PRA for II9 sentences. The proof is
by means of functional interpretation combined with the method of majoriza-
tion. Kohlenbach also shows that the system in question proves WKL, i.e.
Konig’s Lemma for binary trees (“weak Konig’s Lemma”). Ferreira and Oliva
(2005) have introduced another method, called bounded functional interpreta-
tion, which they show may be used to obtain the same results in a simpler way.
It would be interesting to see if their majorization and/or bounding techniques
can be used to amplify the results of the present paper.

Kohlenbach (2008), p. 154, has also observed that WKL implies KL over
Res-HA® 4+ ACy, so in such contexts, the difference between “weak” and
“usual” Ko6nig’s Lemma disappears; this is in accord with the advantage of
beefing up constructive and semi-constructive systems stressed here.

Since PRA is considered by many to be the limit of finitism, it would also be
interesting to produce a natural semi-constructive system of finite type over the
natural numbers for which all bounded formulas are decidable and whose proof-
theoretical strength is equal to that of PRA. Finally, one may speculate that
there are suitable such systems equivalent in strength to feasible arithmetic.

7.2 Friedman’s system ALPO

Friedman (1980) introduced a semi-constructive system ALPO (for “Analysis
with the Limited Principle of Omniscience”) in the language of set theory with
the natural numbers as a set of urelements, for which the main result is con-
servation of ALPO over PA for all arithmetic sentences.” For comparison with
the system SCS = IKP,, + (A¢-LEM) + (MP) + (BOS) + (AC) of Theorem 5
above, here are the axioms of ALPO: A. Ontological (urelements and sets), B.
Urelement extensionality, C. Successor axioms, D. Infinity, E. Sequential induc-
tion, F. Sequential recursion, G. Pairing (unordered), H. Union, I. Exponenti-
ation, J. Countable choice, K. Ag-separation, L. Strong collection, M. Limited
principle of omniscience. By E is meant that any sequence (i.e. function) a
of natural numbers which is such that a(0) = 0 A Vn(a(n) = 0 — a(n’) = 0)
then Vn(a(n) = 0). Axiom E guarantees definition by primitive recursion. The
axiom J is of course a consequence of ACge; in our system, as is the strong
collection axiom L (i.e. collection applied to arbitrary formulas). Other than
Axiom I, all of these are thus derivable in SCS. That axiom asserts the ex-
istence for any sets a, b, of the set of all functions from a to b, which is not
a consequence of SCS or even of its finite type extension SCS“ (at least not

"1 was reminded of Friedman’s work by Jeremy Avigad.
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in any obvious way). In his paper, Friedman makes use of a special model-
theoretic argument in order to eliminate Axiom I before completing the proof
that ALPO is conservative over PA. It would be of great interest to see whether
the methods of functional interpretation employed here can be adapted to prove
the same. Note that Axiom I does follow from the power set axiom used in the
extension of SCS for Theorem 6.

7.3 Burr’s interpretation of KPw

A useful variant functional interpretation due to Shoenfield (1967) sec. 8.3
in V3 form that is sometimes used applies directly to a classical system with-
out requiring initial passage through the N-translation. The straightforward
attempt to give such an interpretation of KPw meets an immediate obstacle
if the constant 0 is to be part of the language; namely, it follows from prov-
ability of Vz3y(x # 0 — y € x) that one must have a term ¢(x) such that
x # 0 — t(x) € x is provable in the target QF system. In other words one
must have a non-constructive (“choice”) operator for bounded quantification
(of the sort provided in the system Ty by the bounded choice operator C').
In order to avoid this, Burr (1998, 2000) gives a further Diller-Nahm (1974)
V3-variant interpretation of KPw in a QF theory of primitive recursive set func-
tionals of finite type. It is quite different from the interpretation given here in
sec. 6, but there may be interesting relationships that are worth pursuing.

7.4 Some systems of semi-intuitionistic set theory with the power
set axiom

The study of such subsystems of ZF formulated in intuitionistic logic with
LEM for bounded formulas was apparently initiated by Poszgay (1971, 1972)
and then studied more systematically by Tharp (1971), Friedman (1973) and
Wolf (1974).8 Poszgay had conjectured that his system is as strong as ZF,
but Tharp and Friedman proved its consistency in ZF using a modification of
Kleenes method of realizability. Wolf established the equivalence in strength of
several related systems. The first is K1, a system with axioms of Extensionality,
Pairing, Union, Infinity and Power Set, the full Induction Scheme, and with
Replacement restricted to formulas in which all quantifiers are bounded or
subset bounded. Ks is K; + LEM, and K3 is K; plus a certain strong axiom
scheme of Transfinite Recursive Definitions which implies the Full Replacement
and Collection axiom schemes; finally K3 is K3 + MP. (In this notation, what
Tharp and Friedman proved is consistency in ZF of an extension of K; plus
Full Replacement and the usual Axiom of Choice.) Wolf’s main results include
equiconsistency of K;, Ko + V=L, and K5. The system K3 is close in many
respects to the system IKPw + (Pow) + (Ag-LEM) + (MP) + (BOS) + (ACset)
dealt with here in Theorem 6, except for BOS and ACget (Full Axiom of Choice
scheme), and which also implies Full Replacement and Collection. It should
be of interest to make a detailed comparison between these systems and of the
methods involved.

81 am indebted to Harvey Friedman and Robert Wolf for bringing this work to my atten-
tion, after the body of this paper was completed.
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7.5 Mathematics in semi-constructive systems

Coquand and Palmgren (2000) give a couple of examples of mathematical the-
orems in their semi-constructive system for countable tree ordinals (described
in sec. 5 above) that can be provided with a constructive foundation via their
constructive sheaf-theoretic model of the system. The first is Konig’s Lemma
for binary trees; but in fact, as shown by Kohlenbach in the work described in
7.1 above, a much, much weaker system (conservative over PRA) suffices to do
the same. The second is Dickson’s Lemma, according to which if v : N -+ N
and v : N — N are two sequences of natural numbers then there exist p < ¢
such that u(p) < u(q) and v(p) < v(g). That follows from a prior lemma,
that for any sequence u : N — N of natural numbers, there exists a sequence
ng < nyp < ng < ...such that u(ng) < u(ny) < u(ng) < .... To obtain Dick-
son’s Lemma from this, one first finds a strictly increasing sequence of natural
numbers on which « is increasing, and then a strictly increasing subsequence of
that on which v is increasing, to get a sequence ng < ny < ng < ... on which
both w and v are increasing. We may then take p = ny and ¢ = ny. Again,
what is needed can be proved in a much, much weaker system, namely that of
Theorem 3(i) conservative over PA. The truth of Dickson’s Lemma implies that
we can obtain p, ¢ as recursive functionals of u and v; simply search for the first
p, ¢ which make it true. The constructive model of Coquand and Palmgren can
hardly be expected to provide more useful information about the complexity
of that functional.

More generally, all of the semi-constructive systems treated in Theorem 3 are
candidates of potential interest in which to carry out predicative mathematics.
The actual pursuit of that part of mathematics in various classical systems of
explicit mathematics, as described, e.g., in (Feferman 1975 and Feferman and
Jager 1993, 1996) as well as in theories of finite type over the natural numbers
(Feferman 1977, 1979) make systematic use of explicit witnessing data. For
example, a uniformly continuous function on a closed interval of real numbers
is treated as a pair consisting of a function of real numbers on that interval and
a uniform modulus of continuity functions. As pointed out by Friedman at the
outset of his (1980) article, such padding is unnecessary in semi-constructive
systems in which the Axiom of Choice holds in sufficiently strong form, as
it does in ALPO and in the various systems considered here. How far this
freedom takes us is another matter, but the actual development of predicative
mathematics in these systems should certainly be revisited in that light. In
addition, one should see how much mathematics can be conveniently carried
out in the impredicative semi-constructive systems of secs. 5 and 6. Finally,
it would be worth pursuing the formulation and determination of the proof-
theoretical strength of semi-constructive systems of explicit mathematics and
operational set theory, neither of which has been directly handled here, and
in both of which mathematics can in general be carried out in a more flexible
manner than in typed systems or even in set theoretical systems.

Acknowledgements: I wish to thank the two referees for their useful com-
ments on a draft of this paper, and Shivaram Lingamneni for his help in trans-
forming it into a IATEX file.
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