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Set-theoretical invariance criteria for logicality 

Solomon Feferman 

 

Abstract.  This is a survey of work on set-theoretical invariance criteria for 
logicality. It begins with a review of  the Tarski-Sher thesis in terms, first, of 
permutation invariance over a given domain and then of isomorphism invariance 
across domains, both characterized by McGee in terms of definability in the 
language L∞,∞.  It continues with a review of critiques of the Tarski-Sher thesis, 
and a proposal in response to one of those critiques via homomorphism 
invariance. That has quite divergent characterization results depending on its 
formulation, one in terms of FOL, the other by Bonnay in terms of L∞,∞, both 
without equality.  From that we move on to a survey of Bonnay’s work on 
similarity relations between structures and his results that single out invariance 
with respect to potential isomorphism among all such.  Turning to the critique that 
calls for sameness of meaning of a logical operation across domains, the paper 
continues with a result showing that the isomorphism invariant operations that are 
absolutely definable with respect to KPU−Inf are exactly those definable in full 
FOL; this makes use of an old theorem of Manders.  The concluding section is 
devoted to a critical discussion of the arguments for set-theoretical criteria for 
logicality. 

 

1. Introduction. This is a survey of work in terms of set-theoretical invariance criteria on 

the question: Which truth-valued operations on one or more relations are to be regarded 

as logical?  It is a sequel to my article [11] that took for its point of departure Tarski’s 

thesis [29], as modified by Sher [26]. Tarski had proposed to identify the logical 

operations on relations over a given domain D with those that are invariant with respect 

to arbitrary permutations of D.  Sher generalized this to operations across domains that 

are invariant with respect to bijection between domains (equivalently, isomorphism of 

structures with these domains).  McGee [21] characterized the logical operations in 

Tarski’s sense as precisely those that are definable in the language L∞,∞ with equality 

over a given domain, and from that he obtained a related characterization of the 

operations that are logical in Sher’s sense.   

I critiqued the Tarski-Sher thesis in [11] on three grounds, the first of which is 

that it assimilates logic to mathematics, the second that the notions involved are not set-

theoretically robust, i.e. not absolute, and the third that no natural explanation is given by 

the thesis of what constitutes the same logical operation over arbitrary basic domains.  In 

this last respect, as an example of a notion that could compare domains of different 
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cardinality, I had proposed consideration in [11] of the homomorphism invariant 

operations (in a strong sense); it was shown op. cit. that the operations that are definable 

from monadic homomorphic invariant operations are exactly those expressible in the 

first-order predicate calculus Lω,ω without equality.   However, Bonnay [6], [7] later 

characterized the operations that are outright homomorphism invariant as just those 

definable in the language L∞,∞ without equality.  Bonnay went on to consider operations 

that are invariant under other kinds of similarity relations. His main results distinguish 

potential isomorphism (Isop) among all such relations, and that has led him to propose 

Isop-invariance as the criterion for logicality; it turns out that the operations invariant 

under potential isomorphism go somewhere beyond those definable in the language L∞,ω.   

The Tarski-Sher thesis and McGee’s results concerning it are reviewed in sec. 2, 

then my critiques of it and result for homomorphism invariant operations are reviewed in 

sec. 3, and Bonnay’s work is described in sec. 4.  Following that, I propose in sec. 5 an 

explanation of what constitutes the same operation across arbitrary domains in terms of 

those that are uniformly definable within the language of set theory.  Moreover, in order 

to meet the second critique above, one should restrict to definitions that are absolute with 

respect to a system of set theory that makes no assumptions about the size of the 

universe.  Specifically, I look at operations on relational structures that are definable in an 

absolute way relative to KPU−Inf, i.e. Kripke-Platek set theory with urelements and 

without the Axiom of Infinity.  It is shown to follow from an old result of Manders [19] 

(reproved in Väänänen [30]) that the operations in question on structures whose domains 

consist of urelements are exactly those expressible in the ordinary first-order predicate 

calculus with equality.  The aguments in favor of set-theoretical invariance criteria for 

logicality are discussed critically in the concluding section 6; despite the attraction of 

various of the results that have been obtained, my overall conclusion is that none of the 

set-theoretical invariance proposals on offer provide a sufficiently convincing criterion 

for logicality in their own right.1   

 

2.  The Tarski-Sher thesis; a review.  Tarski’s article, “What are logical notions?” 

[1986] was based on the text of a lecture that he had given for a general audience at 

Bedford College, London, in 1966.  With Tarski’s agreement, it was edited by John 



 3 

Corcoran, but it did not appear until three years after his death in 1983. Tarski’s answer 

to the question in his title is informal, but essentially it takes logical notions to be 

relations between individuals, classes and relations over an arbitrary non-empty domain 

D of individuals, and singles out the logical relations as exactly those that are invariant 

under arbitrary permutations of D.   In his lecture, Tarski gave several simple examples 

of logical notions in this sense, as follows: 

(i) The only classes of individuals which are logical are the empty class and the universal 

class. 

(ii) The only binary relations between individuals which are logical are the empty 

relation, the universal relation, the identity relation and its complement. 

(iii) At the next level, i.e. classes of classes of individuals, Tarski mentions as logical 

notions those given by cardinality properties of classes such as “that a class consists of 

three elements, or four elements...that it is finite, or infinite⎯these are logical notions, 

and are essentially the only logical notions on this level.” 

(iv) Finally, among relations between classes (of individuals) Tarski points to several 

which are “well known to those of you who have studied the elements of logic” such as 

“inclusion between classes, disjointness of two classes, overlapping of two classes,”  and 

so on.   

Tarski did not attempt to give examples of logical notions in higher types than 

those in (iii) and (iv), though, as explained in [11], his proposal makes sense for objects 

in the finite relational type structure over D, where the objects at each level are relations 

of one or more arguments between objects of lower levels.   Nor did Tarski raise the 

question of characterizing the logical notions, and more generally of the operations on 

members of the type structure that are invariant under arbitrary permutations.  This is 

understandable in view of the general audience to which his lecture was addressed.  The 

first such characterization was provided by McGee [21], who showed that an operation is 

logical according to Tarski’s permutation-invariance criterion if and only if it is definable 

in the language L∞,∞; this is the language defined in set theory which allows⎯in addition 

to the operation of negation⎯conjunctions and disjunctions of any cardinality, together 

with universal and existential quantification over a sequence of variables of any 

cardinality. 
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 For simplicity in the following, and as is common in discussions of logicality, we 

shall restrict attention to the question of what are logical notions Q of type level 2, i.e. 

relations between relations R between individuals.2 The letter ‘Q’ is used here for such 

because logical notions in Tarski’s sense at this level over a given domain D are the 

restriction to D of a generalization of quantifiers due to Lindström [17].  Given R = 

(R1,…,Rn) with Ri a ki-ary relation between elements of D (ki a non-zero natural number) 

we write QD(R1,…,Rn) or QD(R) to express that the relation QD holds of R over D.  For 

each permutation π of D, each Ri, and each ki-ary sequence a of elements of D, let π(Ri) 

be the relation that holds of π(a) if and only if Ri holds of a; then π(QD) is defined to be 

the relation that holds of (π(R1),…,π(Rn)) if and only if QD holds of (R1,…,Rn). In these 

terms we can now define: 

 

QD is a logical notion in Tarski’s sense over D if and only if Q is invariant under 

all permutations of D, i.e. π(QD) = QD for all permutations π of D. 

 

 In the following we also think of relations as operations to truth values, i.e. we 

take QD(R) = T if QD holds of R and = F otherwise.  In those terms we call QD a logical 

operation (in Tarski’s sense) over D if it meets the permutation invariance criterion.  In 

general we shall treat the QD as relations and as operations interchangeably.   

Tarski’s examples (iv) of logical notions over an arbitrary domain are the 

inclusion relation, the disjointness relation, and the overlapping relation; they are 

relations (or operations) of monadic type, i.e. have unary relations as arguments.  The 

first holds between two classes A and B of individuals just in case A ⊆ B, the second 

holds just in case A ∩ B = ∅ and the third just in case A ∩ B ≠ ∅; formal-logically 

speaking these are expressed in the first case by use of the universal quantifier together 

with implication, in the second case by the same with negation, and in the third case by 

use of the existential quantifier together with conjunction.  The pure universal quantifier 

∀ relative to D is the unary relation of monadic type that holds of A just in case A = D, 

while the pure existential quantifier ∃ relative to D holds of A just in case A ≠ ∅.  For 

each cardinal number κ, the cardinality quantifier ∃!κ is also of monadic type and consists 
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of all subclasses A of D whose cardinality card(A) = κ, while the quantifier ∃≥κ consists 

of all A for which card(A) ≥ κ.  In particular, the “infinitely many…exist” quantifier is 

given by ∃≥ω.  All these are logical notions in Tarski’s sense.  Not mentioned by Tarski 

are examples of permutation invariant notions of non-monadic type, such as being a 

linear ordering or well-ordering.   

 We are here taking Tarski’s extensional, set-theoretical framework at face value 

for dealing with the question: what are logical notions?—and save any reconsideration of 

that until the end.  Granted that framework, the permutation invariance criterion is a 

natural necessary condition for logicality if one agrees that what counts as a logical 

notion should be independent of the nature of the particular entities in a given domain of 

discourse and of the properties of those entities.  Tarski himself motivated it in relation to 

the Klein Erlanger Programm, which identified the notions to be studied in various 

geometries such as Euclidean, affine and projective geometry according to the groups of 

(one-one and onto) transformations under which they are invariant; similarly the notions 

appropriate to topology are those invariant under all homeomorphisms of a topological 

space with itself.  With logic thought of as the mathematics of structures of the most 

general sort, i.e. with no distinguished mathematical content, the transformations to be 

considered are simply all the permutations.  Actually, the criterion was not original with 

Tarski; it was apparently first proposed by F. I. Mautner [20], though he pursued the idea 

in a somewhat different direction from the one taken by Tarski.  But it had already been 

noted in an article by Lindenbaum and Tarski [16] that every relation definable in the 

simple theory of types is provably invariant under every permutation of the domain of 

individuals.  It is thus surprising that he did not expressly have this in mind when he 

raised the issue of the division between logical and extra-logical notions in his article [27] 

on logical consequence, instead of saying that “…no objective grounds are known to me 

which permit us to draw a sharp boundary between the two groups of terms.”  And within 

the Tarski school itself, his former student Andrzej Mostowski [23] had already brought 

attention to those unary operations of monadic type that are invariant under all 

permutations of the domain of individuals, including the various cardinality quantifiers 

mentioned above. 
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 Consider a relation QD over a domain D of signature σ = (k1,…,kn) (ki > 0).  As 

already mentioned, McGee characterized which such QD are invariant under permutations 

of D in terms of the language L ∞, ∞ , whose formulas for the statement of his result are 

generated as follows. 

(i) For each i = 1,..., n and ki-ary sequence of variables x, Pi(x) is an atomic formula; also 

each equation between variables is an atomic formula; 

(ii) if ϕ is a formula then ¬ϕ is a formula; 

(iii) if Φ is any non-empty set of formulas then ∨ϕ [ ϕ ∈ Φ ] is a formula; 

(iv) if ϕ is a formula and U is any non-empty set of variables then (∃U)ϕ is a formula. 

 Given a domain D, an interpretation R = (R1, …, Rn) in D of the predicate 

symbols P1, …, Pn, resp., a formula ϕ of L∞, ∞,, and an assignment s to the free variables 

of ϕ in D, one inductively defines as usual 

 (D, R) |= ϕ[s]. 

When ϕ is a sentence, this is simply written 

 (D, R) |= ϕ. 

ϕ is said to define QD over D if for any R = (R1, …, Rn) with Ri a ki-ary relation in D, we 

have: 

 QD(R) = T iff (D, R) |= ϕ. 

 

THEOREM 1 (McGee [21]).  QD is invariant under arbitrary permutations of the domain 

D of individuals if and only if QD is definable in L∞,∞. 

 

It is straightforward that every L∞,∞ definable operation is invariant under arbitrary 

permutations of the domain of individuals.  The idea of McGee’s proof in the other 

direction is to lay out all possibilities for the operation QD as its arguments range over all 

possible R ∈ D[σ]. This can be achieved using a set W of variables with card(W) = κ + 1.  

Enumerate D as {dα : α < κ}, and W as {xa : α < κ} ∪ {y}.  The xα act as formal 

surrogates of the dα.  Let ψR be the diagram of R under this association together with 
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¬(xα = xβ) for each α < β, and then take χR to be the formula which says that there exist xa 

(α < κ) such that ψR holds and such that each y in the domain is one of the xα.  Finally, 

take ϕ to be the disjunction of all the χR over all sequences R such that QD(R) holds; note 

that this final disjunction may be of cardinality as large as 2κ, and the longest quantifier 

sequences in ϕ are of length at least κ. 

 McGee says that this theorem “gives us good reason to believe that the logical 

operations on a particular domain are the operations invariant under permutations.”  I 

shall take strong issue with that below.  But even if one accepts that, it is natural not to tie 

logical operations to specific domains.  And, indeed, McGee goes on to consider 

operations across domains which for each non-empty set D of individuals gives a relation 

QD of type σ over D.  Then he argues (rightly, in my view), that “(i)n order for an 

operation across domains to count as logical, it is not enough that its restriction to each 

particular domain be a logical operation.”  For example, McGee defines a relation of 

“wombat disjunction” QW across domains which acts like ordinary disjunction when 

there are wombats in the universe of discourse D and like conjunction when there are no 

wombats in D.   Clearly wombat disjunction is not a logical notion, though on each 

domain it is invariant under permutations.  Another example given is that of “affluent 

cylindrification” $(A), for A unary, which holds in a domain just in case some rich 

person belongs to the class A; again this is not a logical operation, but meets the 

permutation invariance condition on “upper-crust domains” in which every person is rich.  

However, on an equinumerous domain containing at least one rich and one poor person, 

the operation $ is not permutation invariant, by taking A to be a singleton of one of these. 

Thus McGee is led to consider an extension of the permutation invariance criterion for 

logicality as proposed by Sher [26]: by the Tarski-Sher thesis, McGee means the claim 

that the logical operations across domains are just those invariant under bijections 

between them. The following is then a corollary of Theorem 1. 

 

THEOREM 2 (McGee [21]).  An operation Q across domains is a logical operation 

according to the Tarski-Sher thesis iff for each cardinal κ ≠ 0 there is a formula ϕκ  of 

L∞,∞ which describes the action of Q on domains of cardinality κ. 
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More specifically, one can take ϕκ to be the formula constructed for the proof of Theorem 

1 for any domain D of cardinality κ.  Whatever such ϕκ is taken, in order to obtain a 

single definition of the operation Q across arbitrary domains, one must take something 

like the disjunction⎯over the class of all non-zero cardinals κ⎯of ϕκ conjoined with the 

sentence expressing that there are exactly κ elements in the domain.  This goes well 

beyond L∞,∞ as ordinarily conceived. 

 

3. Critiques of the Tarski-Sher thesis; homomorphism invariant operations.  

McGee’s results lay bare the character of logical operations according to the Tarski-Sher 

thesis.  In my article “Logic, logics and logicism” [11], I raised three basic criticisms of 

it: 

I.  The thesis assimilates logic to mathematics, more specifically to set theory. 

II.  The set-theoretical notions involved in explaining the semantics of L∞,∞ are not 

robust. 

III.  No natural explanation is given by it of what constitutes the same logical operation 

over arbitrary basic domains. 

 

The first of these, also referred to as the “overgeneration problem”, speaks for itself, 

given McGee’s results, but it will evidently depend on one’s gut feelings about the nature 

of logic as to whether this is considered objectionable or not.  For Sher, to take one 

example, that is no problem.  Indeed, she avers that: 

 

The bounds of logic, on my view, are the bounds of mathematical reasoning.  Any 

higher-order mathematical predicate or relation can function as a logical term, 

provided it is introduced in the right way into the syntactic-semantic apparatus of 

first-order logic. (Sher [26], pp. xii-xiii, italics mine)3  

 

What that “right way” is for Sher, is spelled out in a series of syntactic/semantic 

conditions A-E (op. cit. pp. 54-55), of which the crucial ones are the “first-order” 
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condition A⎯that a logical operation be of type-level at most 2⎯and condition E, which 

is that for invariance under bijections.  The paradigms of condition A are the cardinality 

quantifiers of Mostowski [23] and, more generally, the generalized quantifiers of 

Lindström [17], where the bound variables range over individuals of the domain.  But 

note that despite the appearance of this being limited to first-order quantification, L∞,∞ 

also accomodates second-order quantification as a logical operation across domains (in 

the Tarski-Sher sense).  This is seen as follows.  First, given formulas ψ(X) and θ(x) of 

this language, where X is a second-order variable, by ψ({x: θ(x)}) is meant the result of 

substituting θ(t) for each occurrence of an atomic formula t ∈ X in ψ.  Thus, on a domain 

of cardinality κ, (∀X)ψ(X) is equivalent to the statement ϕκ that there exist κ elements xα 

which are distinct and exhaustive of the domain, and are such that  

∧S ⊆ κ ψ({y : ∨y = xα [α ∈ S]})  

holds.  (Again, we require a conjunction of cardinality 2κ in this formula.)  So, from 

Theorem 2 above, the restriction to bound first order variables is only apparent, and 

Sher’s condition A is not set-theoretically restrictive.  By a trick similar to the preceding, 

we can quantify over arbitrary relations on the domain, and then say that they are 

functions, etc.  In particular, we can express the Continuum Hypothesis and many other 

substantial mathematical propositions as logically determinate statements on the Tarski-

Sher thesis.  Of course, if one follows Tarski by allowing consideration of invariant 

notions in all finite types, the assimilation of logic to set theory is patent on his thesis, 

without needing to invoke infinite formulas at all.  But insofar as one or the other version 

of the thesis requires the existence of set-theoretical entities of a special kind, or at least 

of their determinate properties, it is evident that we have thereby transcended logic as the 

arena of universal notions independent of “what there is”. 

 The critique II is in a way subsidiary to that in I.  The notion of “robustness” for 

set-theoretical concepts is vague, but the idea is that if logical notions are at all to be 

explicated set-theoretically, they should have the same meaning independent of the exact 

extent of the set-theoretical universe.  For example, they should give equivalent results in 

the constructible sets and in forcing-generic extensions.  Gödel’s well known concept of 
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absoluteness provides a necessary criterion for such notions, and when applied to 

operations defined in L∞,∞, considerably restricts those that meet this test.  For example, 

the quantifier “there exist uncountably many x” would not be logical according to this 

restriction, since the property of being uncountable is not absolute.  My proposed 

alternative to the Tarski-Sher thesis in sec. 5 below will hinge directly on a restriction to 

absolute notions.  

 At first, critique III was for me perhaps the strongest reason for rejecting the 

Tarski-Sher thesis, at least as it stands.  It seems to me there is a sense in which the usual 

operations of the first-order predicate calculus have the same meaning independent of the 

domain of individuals over which they are applied.  This characteristic is not captured by 

invariance under bijections.  As McGee puts it, “(t)he Tarski-Sher thesis does not require 

that there be any connections among the ways a logical operation acts on domains of 

different sizes.  Thus, it would permit a logical connective which acts like disjunction 

when the size of the domain is an even successor cardinal, like conjunction when the size 

of the domain is an odd successor cardinal, and like a biconditional at limits.” (McGee 

[21], p. 577)   

 In the end (though perhaps more for other reasons), McGee accepted the Tarski-

Sher thesis as a necessary condition for an operation across domains to count as logical, 

but not a sufficient one.  I agree completely, and believe that if there is to be an 

explication of the notion of a logical operation in set-theoretical/semantical terms, it has 

to be one which shows how the way an operation behaves when applied over one domain 

D connects naturally with how it behaves over any other domain D′. I made a first step in 

that direction in [11], where I proposed a notion of (strong) homomorphism invariance as 

a criterion for logicality of operations Q across domains.  By a such a homomorphism  

h: (D, R) → (D′, R′) is meant one that is a map from D onto D′ such that for each i = 

1,…, n and each ki-ary sequence x of individuals in D, and for h(x) the corresponding 

sequence of h values in D′, we have Ri(x) iff Ri′(h(x)). Immediately excluded by 

homomorphism invariance are the identity relation between individuals and all the 

cardinality quantifiers.  This evidently brings us closer to first-order logic.  Then a truth-

valued operation Q across domains is said to be (strong) homomorphism invariant if 

whenever h is such a homomorphism then Q(D, R) = Q(D′, R′). The paradigmatic 
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homomorphism invariant operation is that of existential quantification, which is of 

monadic type.  Note also that the truth-functional operations such as negation and 

conjunction preserve homomorphism invariance.  In the following we shall write FOL for 

the first-order predicate calculus with equality, and FOL- for the same without equality. 

 

THEOREM 3. (Feferman [11]) The operations definable in FOL- are exactly those λ-

definable from homomorphism invariant operations of monadic type. 

 

To explain the sense of λ-definability that is intended in this statement, consider for 

example the operation Q(P, R, S) defined for unary P and binary R and S in FOL- by the 

sentence  

∀x[P(x) → ∃y∃z(R(x,y) ∧ S(x,z))], 

which is equivalent to 

¬∃x[P(x)  ∧   ¬∃y∃z(R(x,y) ∧ S(x,z))]. 

Then its λ-definition is given in terms of  the operations of negation (N), conjunction (C) 

and existential quantification (E) and the characteristic functions p, r, s of P, R, S 

respectively by   N(E(λx[C(p(x),N(E(λyE(λzC(r(x,y),s(x,z))))]). 

The reader is referred to [11] for the proof of Theorem 3.   

 As is shown by the result of Denis Bonnay in the next section, homomorphism 

invariant operations in general go far beyond the first-order predicate calculus.  For a 

simple example for the moment, consider the negation of the well-foundedness quantifier 

WF, i.e. the operation QD(R) for binary R which holds in a given domain D just in case 

there exists a function f: N → D such that ∀n[R(f(n+1), f(n))]; that is homomorphism 

invariant.  

Independently of such examples, one immediate criticism of the homomorphism-

invariance criterion for logicality is that it excludes the identity relation, which is 

ordinarily counted as a part of FOL.  Actually, that is a controversial matter.  See, for 

example, the discussion by Quine of that question in his Philosophy of Logic (Quine [25], 

pp. 61 ff).  On the one hand, he says that it “seems fitting” that the predicate of = is to be 

counted with predicates such as < and ∈ as part of mathematics and not of logic.  On the 
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other hand, he gives three arguments for counting = as part of logic.  The first is the 

completeness of the logic of the first-order predicate calculus with equality , the second is 

the “universality” of =, and the third is the possibility of “simulating” = in a language L 

containing finitely many predicate symbols; by that he means its explicit definition from 

those predicates to satisfy the condition of identity of indiscernibles. 

Finally, as pointed out to me by Bonnay, it is hard to see how identity could be 

determined to be logical or not by a set-theoretical invariance criterion of the sort 

considered here, since either it is presumed in the very notion of invariance itself that is 

employed⎯as is the case with invariance under isomorphism or one of the partial 

isomorphism relations considered in the next section⎯or it is eliminated from 

consideration as is the case with invariance under homomorphism.   

  

4. Invariance with respect to similarity relations; Bonnay’s work. As mentioned 

above, it has been shown by Bonnay that the operations in general that are 

homomorphism invariant go far beyond those definable in FOL. The result is stated in his 

paper [7], but a proof is not given there; instead the reader is referred back to his 

dissertation: 

 

THEOREM 4. (Bonnay [6]) An operation Q across domains is invariant under 

homomorphisms iff it is definable in the language L∞,∞ without equality. 

 

The proof of this in [6] proceeds by a straightforward modification of McGee’s proof of 

Theorem 1 using a detour via quotient structures.  Moreover, for each choice of finitely 

many predicate symbols, this language is essentially of the same expressive power as full 

L∞,∞, by means of Quine’s method of simulating identity.   

 Bonnay has obtained further interesting results by consideration of a more general 

question: which operations across domains are S-invariant where S is a “similarity” 

relation M ∼S M′ between structures M = (D, R) and M′ = (D′, R′) of the same signature? 

Basic examples of such are isomorphism and strong homomorphism as above.  But 
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Bonnay also considers a number of others, including α-isomorphism and potential 

isomorphism, defined by Karp [15] as follows: 

An α-isomorphism I from M = (D, R) to M′ = (D′, R′) is a sequence  

I0 ⊇I1⊇….⊇Iβ⊇….⊇Iα such that (i) Iα is non-empty, (ii) for any β ≤ α, Iβ is a set of partial 

isomorphisms f between these two structures with dom(f)⊆ D and rng(f) ⊆D′, and (iii) if  

β+1≤ α then for any f ∈Iβ+1 and x in D (resp. y in D′) there exists g in Iβ with f ⊆ g and  

x ∈dom(g) (resp. y ∈rng(g)).  We write M ∼α M′ if there exists such an α-isomorphism; 

the similarity relation in this case is denoted  Isoα.   

A potential isomorphism I between M = (D, R) and M′ = (D′, R′)  is a non-empty 

collection of partial isomorphisms such that for each f ∈ I and x ∈ D (resp. y ∈ D) there 

exists g ∈I with f ⊆ g and x ∈dom(g) (resp. y ∈rng(g)). We write M ∼p M′ if there exists 

such an I, and the similarity relation in this case is denoted Isop.  

 The similarity relations are partially ordered by S ≤ S′ iff S′ ⊆S.  The smallest S 

w.r.t.  ≤ is the universal relation Univ between structures of the same signature; where 

there are no constant symbols, this agrees with Iso0.  For any α, Iso0 ≤ Isoα ≤ Isop ≤ Iso, 

where Iso is the relation of being isomorphic; the strong homomorphism relation is 

incomparable with Isop.  It is a familiar result due to Fraïssé [13] that two structures are 

elementarily equivalent in Lω,ω  (= FOL) just in case they are in the Isoω relation.  Karp 

[15] obtained analogous results for the languages L∞,ω whose formulas φ are generated by 

arbitrary conjunctions and disjunctions and closed under ordinary quantification, i.e. 

formation of ∀xφ and ∃xφ for any variable x.  One defines the quantifier rank of φ, qr(φ), 

in a natural way.  Then Karp’s theorems are that for limit α, two structures are in the Isoα 

relation if and only if they satisfy the same sentences φ for which qr(φ) < α, and two 

structures are in the Isop relation if and only they satisfy the same sentences of L∞,ω.   

 The class of operations Q across domains that are invariant under a given 

similarity relation S is denoted by Inv(S). Bonnay’s main result characterizes the 

similarity relation Isop in two different ways in the ≤ relation.  The first of these makes 

use of a natural additional criterion for logicality, namely that any operation definable 

from the operations in Inv(S) should already be invariant under S.  We can explain this 
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notion of definability by setting up a language LS containing a generalized quantifier 

symbol Q for each Q invariant under S, with the semantics that interprets Q as Q in the 

way explained by Lindtröm [17]. Taking CInv(S) to consist of all the operations 

definable in LS, Bonnay argues for the following: 

 

Principle for Closure under Definability.  CInv(S) = Inv(S). 

 

This is a strong condition; for example S = Isoω fails to satisfy it. A counter-example is 

provided by the “infinitely many” quantifier: it is Isoω invariant but one construct a 

quantifier from it that is first order definable but which is not Isoω invariant.  In fact, 

Bonnay’s main result is the following. 

 

THEOREM 5. (Bonnay [7]) Isop is the least S in the ≤ relation for which Iso1 ≤ S and 

Cinv(S) = Inv(S).   

 

Bonnay also defines an operation Sim dual to the operation Inv; the domain of Inv 

is the class of all similarity relations S between structures M and the domain of Sim is the 

class of all collections K of operations Q across structures.  Inv maps the former to the 

latter, while Sim maps the latter to the former as follows: two structures M, M′ of the 

same signature are in the relation Sim(K) if for every Q in K, Q(M) = Q(M′).  The classes 

K of operators across structures are ordered by K ≤ K′ iff K ⊆K′.  It is shown that the 

class of all similarity relations S and the class of all classes of operators K form a Galois 

connection with respect to their respective orderings.  In particular, for the class K of 

operators definable in L∞,ω,, we have Sim(K) = Isop by Karp’s theorem and CInv(Sim(K)) 

= Inv(Sim(K)) by Theorem 5.   Note well that this does not tell us that Inv(Sim(K)) = K; 

for, the well-foundedness quantifier WF is Isop-invariant but not definable in L∞,ω ([15]). 

 

 In further favor of Isop as a distinguished similarity relation, Bonnay quotes the 

following characterization of it due to Barwise in terms of the notion of absoluteness, to 

be discussed at length in the next section. 
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THEOREM 6. (Barwise [4]) Isop is the greatest S in the ≤ relation that is absolute with 

respect to ZFC and for which ZFC proves that S ≤ Iso.4   

 

Theorems 5 and 6 together lead Bonnay to state the following: 

 

Isop THESIS FOR LOGICALITY.  An operator Q is logical iff Q is Isop-

invariant. (Bonnay [7], p.61). 

  

We shall discuss Bonnay’s arguments for this thesis at length in the final section 

below.  But I’d like here to look at his approach via similarity relations from a different 

angle.  Historically speaking, one started with natural logics L like Lω,ω and L∞,ω and 

asked for a mathematical characterization of elementary equivalence with respect to such 

L, the results being given in these particular cases by the work of Fraïssé and Karp via the 

similarity relations Isoω and Isop, respectively.  In each case, we could ask of the given L: 

if each operation in L is to be counted as logical, what else ought to be counted as 

logical?  Let KL be the class of operations defined in L. The first thought from a 

similarity invariance point of view is to count as logical all those operations invariant 

under Sim(KL), i.e. the operators in Inv(Sim(KL)).  But in each of the two specific cases, 

as we have seen, that takes us beyond the given logic. In the case of Lω,ω  an example is 

provided by the “infinitely many” quantifier, and in the case of L∞,ω that is provided by 

the “well-foundedness” quantifier.  But if one asks whether an individual operator Q 

ought to be counted as logical, given that each operator in L is counted as logical, we are 

asking that it pass too strong a test.  For we could say of each operator defined in L that 

the reason it is logical is based on a more refined invariance condition than that of being 

invariant w.r.t. the associated similarity relation Sim(KL).  And then we should not 

require of a new operation Q under consideration to pass anything stronger than such a 

refined condition.  Specifically, in the case of FOL, the following theorem tells us that 

there is no reason to count as logical anything stronger than what is counted as logical 

anything that is not Ison-invariant for some n. 
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THEOREM 7.  Q is definable in FOL if and only if there exists n < ω such that Q is Ison-

invariant. 

Proof. In the forward direction, one shows as usual that if Q is definable by a sentence φ 

of FOL with qr(φ) < n, then Q is Ison-invariant.  The idea of the proof in the converse 

direction stems from Fraïssé [13].  First, one shows that for each n and M there is a 

sentence χn(M) of FOL such that for all M′, M ∼n M′ iff M′ ⊨ χn(M).  Moreover, the set 

Typn of all sentences χn(M) is finite.  Let Typn = {χn(M1),…, χn(Mk)}for suitable M1, …, 

Mk.  Then given an operation Q and an n such that whenever M ∼n M′ then Q(M) = 

Q(M′), we can take the disjunction of those (and only those) χn(Mi) for which Q(Mi) = T 

as the sentence that defines Q in FOL. 

 

A similar result can be stated for L∞,ω using the work of Karp [15]. 

  

5. Adding absoluteness criteria to isomorphism invariance. To return to the central 

question, let’s look in more detail at the absoluteness criterion suggested by my critique 

II of the Tarski-Sher thesis. Let T be a set of axioms in the language of set theory.  A 

formula ϕ of set theory is defined to be absolute w.r.t. to T if ϕ is invariant under end-

extensions for models of T.  It was proved some time ago by Kreisel and me, as 

strengthened in Feferman [9], that ϕ is absolute w.r.t. T iff it is Δ rel. to T, i.e. it is 

provably equivalent to both a ∑  and a ∏ formula rel. to S where here by ∑ (∏) is meant 

the class of formulas in prenex form in which all unbounded quantifiers are existential 

(universal).  Note well that the notion of being absolute is relative to a system of axioms.  

For his proof of the consistency of AC and GCH relative to ZF, Gödel needed to show 

that a number of notions are absolute relative to that system.  It was since established that 

all those notions are absolute relative to Kripke-Platek set theory KP; below it will be 

more useful to deal with the slightly weaker system KPU, which allows urelements, and 

if we speak of absoluteness without explicit reference to a system of axioms, one means 

relative to KPU.  This system includes the Axiom of Infinity, Inf, in the form that 

guarantees the existence of ω; also, in it (even without Inf) every ∑ (∏) formula is 

equivalent to a ∑1 (∏1) formula.  Among the notions that are absolute w.r.t. KPU are 
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being an ordinal, being ω, and being a formula of FOL true in a structure M.  Among 

those that are not absolute are being an uncountable ordinal, being ω1, and being the 

power set of ω.  

 For the determination of which operators across domains ought to be counted as 

logical on the basis of certain absoluteness invariance criteria, it turns out one can make 

use of results about absolute logics within the framework of abstract model-theory. The 

general background is explained in the chapters by Ebbinghaus [8] and Flum [12] of the 

volume Model-Theoretic Logics ([5]). For our purposes, an abstract logic is determined 

by specifying for each signature σ of type level 2 a set Sentσ of “sentences” and a relation 

M |= ϕ between structures of signature σ and members of Sentσ, satisfying certain 

regularity conditions.  A class C of structures of a given signature σ is said to be an 

elementary class for L, if for some ϕ ∈ Sentσ, C consists of all M for which M |= ϕ.  

Logics are ordered by the relation L ≤ L′ which holds when every class C  that is 

elementary for L is also elementary for L′.  Examples of logics that we shall consider 

below are Lω, ω (= FOL) , L∞, ω, and L∞, ∞.  The regularity conditions usually assumed on a 

logic L insure that Lω,ω ≤ L.  Lindström’s famous theorem [18] characterizes Lω,ω  as the 

largest logic satisfying the compactness theorem and the Löwenheim-Skolem theorem; he 

also showed that it is the largest logic such that the set of L-valid sentences is recursively 

enumerable and that satisfies the Löwenheim-Skolem theorem.  Another relevant 

theorem from the same paper characterizes first-order logic as the largest logic that 

satisfies the Löwenheim-Skolem-Tarski theorem, in other words no sentence of the logic 

can have models in just one infinite cardinal.  That is a generalization of a result of 

Mostowski for his cardinality quantifiers.    

 A logic L is said to be absolute if the sets Sentσ and the |= relation for L are 

absolute.  Barwise [3] initiated the study of absolute logics with his proof that L∞,ω is the 

largest logic which is absolute for KP if no restriction is made as to the sets Sentσ.5 The 

subject of set-theoretic definability of logics and in particular of absolute logics was 

extensively surveyed and considerably advanced in the chapter by Väänänen [30] in [5].  

A number of further results have been obtained in the 1995 thesis [1] of Väänänen’s 

student Jyrki Akkanen.  A natural question to ask after Barwise’s result is whether FOL 
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can be characterized by more refined absoluteness criteria than that of [3]. Indeed, in an 

unpublished manuscript dated 1979, Ken Manders proved the following: 

 

THEOREM 9. (Manders [19]) Lω,ω  is the largest logic L that is absolute relative to 

KPU−Inf, whose set of sentences is contained in the hereditarily finite sets HF and whose 

structures M = (D, R) have domains D consisting only of urelements.  

 

A published proof of Theorem 9 is to be found in [30], pp. 620-622, though the result 

there (3.1.5) is incorrectly stated for KP−Inf instead of KPU−Inf.6 Väänänen’s proof of 

this theorem is different from Manders’ in that it makes essential use of my notion of 

adequacy to truth of the notion of one logic L being adequate to truth for another 

language L′ [10].  Roughly speaking what this means is that the satisfaction relation for 

L′ for all subformulas of any given formula of L′ is, in a suitable sense, uniformly 

implicitly invariantly definable in L.  L is said to be truth maximal if whenever it is 

adequate to truth in L′ we have L′ ≤ L.   The main results in [10] for that notion were that 

a logic is truth-maximal iff it has the Δ-interpolation property, and that Lω,ω is truth-

maximal among all logics whose sentences are represented in HF.  The crucial step in 

Väänänen’s proof is to push back being absolute w.r.t. KPU−Inf to the Δ-interpolation 

property.   

Relative to any set S of axioms in the language of KPU, an operation Q across 

domains is said to be absolute if the relation between D and R such that D is a set of 

urelements and QD(R) = T is absolute.  When Q is preserved under isomorphism, it 

serves to determine a Lindström quantifier in the sense of [17].  Then we can formally 

extend the language of FOL by a symbol Q for Q, with its semantics determined by Q.    

 

LEMMA 10. If Q is absolute w.r.t. an extension S of KPU−Inf then the logic L = Lω,ω(Q), 

obtained by adjoining Q to Lω,ω , is also absolute w.r.t. S.     
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This is easily seen by the fact that the satisfaction relation for L among subformulas of 

any given formula is Δ in Q w.r.t. S, and that being Δ in Δ definable is equivalent to being 

Δ definable.   

 

THEOREM 11.  If an operation Q across domains is isomorphism invariant and is 

absolute w.r.t. KPU−Inf then Q is definable in Lω,ω.  

  

By Lemma 10, this is a corollary of Manders’ Theorem 9.  

 

CONJECTURE. If an operation Q across domains is homomorphism invariant and is 

absolute w.r.t. KPU−Inf then Q is definable in FOL-.  

 

6. Discussion.  Bonnay [7] presents an interesting analysis of the informal arguments for 

various set-theoretical invariance criteria for logicality.  He formulates the first such, for 

Tarski’s thesis, in terms of the idea of levels of generality.  In the Klein Erlanger 

Programm, levels of generality of a geometry are distinguished by the levels of generality 

of the associated groups of transformations.  Thus, e.g., affine geometry is more general 

than Euclidean geometry since the affine transformations are more general than the 

isometric transformations (as well as the more general similarity transformations).  

Continuing in this vein leads one to explaining logic, which is the most general theory of 

all, in terms of the largest group of transformations, namely the class of permutations on 

any given domain, and to the identification of the logical notions with those invariant 

under permutations of the underlying universe.  More explicitly as given by Bonnay, the 

generality argument for Tarski’s thesis runs as follows. 

 

G.1 The distinctive feature of logic among other theories is that it is the most 

general theory one can think of. 

G.2 The bigger the group of transformations associated with a theory, the more 

general the theory. 

G.3 The biggest group of transformations is the class of all permutations. 

[Hence] 
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The logical notions are notions invariant under permutation. ([7] p.33)  

 

 

By contrast, Bonnay analyzes the informal case made by Sher and others for the 

permutation invariance criterion in terms of what he calls the formality argument, which 

runs as follows: 

 

F.1 Logic deals with formal notions, as opposed to non formal ones. 

F.2 Formal notions are those which are insensitive to arbitrary switching of 

objects. 

F.3 A notion is insensitive to arbitrary switching of objects iff it is invariant under 

permutation. 

[Hence,]  

The logical notions are the notions invariant under permutation. ([7] p.34) 

 

 Bonnay rejects the Tarski-Sher thesis on the grounds that it overgenerates, for 

reasons along the lines of my Critique I, and more specifically because it counts as 

logical any isomorphism invariant mathematical notion.  At the conclusion of [7] he tries 

to make a case instead for his Isop thesis, via a pair of informal arguments modifying the 

preceding.  The first is what he calls the mild generality argument, that runs as follows: 

 

MG.1 Logic deals with very general notions, but not only with trivial notions. 

MG.2 The truth-functions, functional application and first-order existential 

quantification are logical operators. 

MG.3 The good notion of invariance for logicality is to be provided by a 

similarity relation S such that S is closed under definability. 

MG.4 The good notion of invariance for logicality is to be provided by the lowest 

similarity relation compatible with MG.2 and MG.3. 

[Hence} 

The logical notions are the Isop-invariant notions. ([7], p. 59) 
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Bonnay’s reasoning is that the conclusion follows from MG.1-MG.4 by means of his 

main result stated as Theorem 5 above.  And in place of the formality argument, he 

proposes the following lack of content argument, to reflect the idea that “logical notions 

should not encapsulate any problematic set-theoretical content”:    

 

LC.1 Logic deals with notions which are deprived of non formal content and of 

problematic set-theoretic contents. 

LC.2 The good notion of invariance for logicality is to be provided by a similarity 

relation S such that S ≤ Iso. 

LC.3 The good notion of invariance for logicality is to be provided by a similarity 

relation S such that S is absolute with respect to ZFC. 

LC.4 The good notion of invariance for logicality is to be provided by the greatest 

similarity relation S satisfying LC.2 and LC.3. 

[Hence] 

The logical notions are the Isop-invariant notions. ([7], p. 60) 

 

In this case, the reasoning is supported by Barwise’s Theorem 6 above.   

Bonnay returns to the overgeneration problem as a challenge to the Isop thesis for 

logicality in his final subsection (4.3).   Though cardinality quantifiers like ∃≥κ for κ an 

uncountable cardinal are not logical on this thesis, the quantifier “there exist infinitely 

many” is. Thence, as Bonnay acknowledges, all arithmetical truths count as logical truths, 

and “the overgeneration problem is at least eased, if not solved, by the shift from Iso 

invariance to Isop-invariance” ([7], p.65).7 

 I don’t find either of the modified arguments⎯mild generality and lack of 

content⎯convincing even with the supporting theorems, and certainly not as compelling 

on the face of it as the generality and formality arguments for permutation invariance as 

the criterion for logicality.  For one thing, the presumption in both arguments is that 

invariance is to be expressed in terms of a single, global (or “coarse-grained”) similarity 

relation.8 But Theorem 7 above uses invariance instead with respect to what might be 

called a collection of local similarity relations, and reaches the much different conclusion 

that the logical notions are just those definable in FOL.  And even if one accepts that 
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invariance is to be given by a single, global similarity relation, it seems to me equally 

plausible to substitute for LC. 3 the following: 

 

LC.3′ The good notion of invariance for logicality is to be provided by a 

similarity relation S such that S is absolute with respect to KPU−Inf,  

 

since much more so than absoluteness w.r.t. ZFC (and even more so than w.r.t. KP), 

absoluteness w.r.t. KPU−Inf guarantees that one does “not encapsulate any problematic 

set-theoretical content.”  (Not that the Infinity Axiom is mathematically problematic; 

rather it is problematic as an assumption in the explanation of what counts as a logical 

notion.) My guess would be that if one substitutes LC.3′ for LC.3, one would be led (in 

analogy to Barwise’s Theorem 6 above) to the conclusion that the logical notions are just 

those invariant under Isoω, thus bringing us closer to FOL as given by Theorem 11.  But 

beyond meeting my Critiques I and II of the Tarski-Sher thesis, which have also been 

Bonnay’s motivations, Theorem 11 was mainly designed to meet Critique III, namely that 

the criterion of isomorphism invariance does not explain what it means to be the same 

logical operation for domains of different size.  To be sure, the result of Theorem 11 still 

does not insure sameness of meaning, since we can define an operator in FOL by means 

of a sentence which has one semantics on domains, say, of  ≤ 5 elements and another on 

domains of ≥ 6 elements.  Similar examples can be provided in FOL-, so this is not an 

issue that depends in any essential way on whether identity is taken to be a logical notion.  

For either case, a better explanation is needed of what constitutes sameness of meaning 

across domains if Critique III is to be dealt with in any way beyond what is done here.  

Coming back to the Critique II: by requiring of the definition of Q that it be 

absolute relative to a weak set theory without the axiom of infinity, we are insuring that 

its meaning does not depend on any special set-theoretical assumptions about what exists 

beyond the most elementary set-constructions that generate HF from any set of 

urelements. i.e. it rests on just what is needed for a theory of the syntax of any humanly 

manageable system of logical reasoning.    

 This last connects with the completely different program to characterize logical 

notions in terms of rules of inference that implicitly determine them; that was initiated by 
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Gerhard Gentzen and has subsequently been pursued by Dag Prawitz, Per Martin-Löf, Ian 

Hacking, Kosta Došen and Jeffery Zucker among others; cf. [11] sec. 6.5 for references.  

And that returns us to the traditional conception of logic as the study of the forms of 

correct reasoning, of what invariably leads from truths to truths.  Despite the various 

appealing results above, and despite my personal feeling that the logical operations do not 

go beyond those represented in FOL, I do not find the various arguments for logicality 

based on any of the invariance notions considered here convincing in their own right.  In 

my view, the semantical and syntactic (inferential-theoretic) approaches are 

complementary to each other, and a proper explanation of what are logical notions and of 

what is logic⎯if there is to be one⎯will have to take both into account.  In the direction 

of a characterization of the logical notions that does just that, consider, by way of 

conclusion, the following result. 

 

THEOREM 12.  Suppose Q is an operation across domains that is 

(i) isomorphism invariant  

(ii) absolute w.r.t. KP 

(iii)  and is such that the set of valid sentences of Lω,ω(Q) is recursively enumerable. 

Then Q is definable in FOL.   

Proof.  By Lemma 10 and (ii), the logic Lω,ω (Q) is absolute w.r.t. KP, and of course its 

sentences are representable in HF.  Then by Theorem 3.2 of Barwise [3] (p.325), the 

logic Lω,ω (Q) is contained in LA, where A is the least admissible set that contains ω, 

namely the constructible sets below the least non-recursive ordinal.  That language LA 

satisfies the Löwenheim-Skolem theorem, hence so also does Lω,ω (Q).  But then by 

Lindström [18], Lω,ω (Q) is contained in Lω,ω . 

 

Note that condition (ii) is more robust on the set-theoretical side than absoluteness w.r.t. 

KPU−Inf as assumed in Theorem 11.  Re condition (iii), it is plausible to assume of any 

system of human logical reasoning, that its sentences are represented in HF and that it 

makes use of some finite set of effective rules.  It follows that the totality of sentences 

that can be shown to be valid in the given logic constitutes a recursively enumerable set.  
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Of course it does not follow from that that (iii) must hold, since there is no guarantee that 

any such system of rules for the semantics that is determined by the given Q is complete.  
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1 The material for this article is drawn from the second of three Tarski Lectures that I gave at the University 
of California at Berkeley during the week of April 3, 2006, this one under the title: “The ‘logic’ question.” 
It has not previously been published.   
2 In [11] I also allowed individuals and truth values as arguments to an operation Q over any given domain; 
the restriction here to n-ary relations as arguments (n > 0) is taken for simplicity.   
3 Bonnay [7], 1.2, points out that any mathematical notion in the form of a class K of structures (D, R) of a 
given signature that is closed under isomorphism determines a logical notion Q in the Tarski-Sher sense by 
Q(D, R) = T iff (D, R) ∈K.  
4 In fact, Isop is absolute w.r.t. KP by [3]. 
5 There are larger logics that are absolute w.r.t. stronger systems such as L∞,ω(WF) and its further extension 
by the “game quantifier.” 
6 Akkanen [1] pointed out that the “infinitely many” quantifier is absolute w.r.t. KP−Inf.  I recently asked 
Väänänen what the problem is with his proof of 3.1.5 in [30], and he replied that it only works if one is 
dealing with L-structures M = (D, R) for which D is a set of urelements.   
7 In defense of the Isop thesis, Bonnay calls on natural language use to support the logicality of arithmetic 
notions, as well as the quantifiers “infinitely many” and “most” (the latter only for countable structures), 
[7] pp. 64-65. On the face of it this seems at odds with his questioning my appeal to natural language use in 
support of the homomorphism invariance criterion via reduction to monadic quantifiers ([7], p. 44); 
however, there are independent considerations for each.  For a comprehensive treatment of quantifiers in 
natural language and logic see Peters and Westerstahl [24].   
8 Denis Bonnay has pointed out that this criticism also applies to the original generality argument, since it is 
a hidden assumption there that one is dealing with a global similarity relation, rather than a family of such 
relations.   


