Typical Ambiguity: Trying to Have Your Cake
and Eat it too.

Solomon Feferman

Would ye both eat your cake and have your cake?
John Heywood, Proverbs?

Abstract. Ambiguity is a property of syntactic expressions which is ubiquitous
in all informal languages—natural, scientific and mathematical; the efficient use of
language depends to an exceptional extent on this feature. Disambiguation is the
process of separating out the possible meanings of ambiguous expressions. Ambiguity
is typical if the process of disambiguation can be carried out in some systematic way.
Russell made use of typical ambiguity in the theory of types in order to combine the
assurance of its (apparent) consistency (“having the cake”) with the freedom of the
informal untyped theory of classes and relations (“eating it too”). The paper begins
with a brief tour of Russell’s uses of typical ambiguity, including his treatment of
the statement Cls € Cls. This is generalized to a treatment in simple type theory
of statements of the form A € B where A and B are class expressions for which A
is prima facie of the same or higher type than B. In order to treat mathematically
more interesting statements of self membership we then formulate a version of typ-
ical ambiguity for such statements in an extension of Zermelo-Fraenkel set theory.
Specific attention is given to how the“naive” theory of categories can thereby be
accounted for.

1. Ambiguity, disambiguation and typical ambiguity

Ambiguity is a property of syntactic expressions which is ubiquitous in all infor-
mal (if not formal) languages—natural, scientific and mathematical; the efficient
use of language depends to an exceptional extent on this feature. Disambigua-
tion is the process of separating out the possible meanings of ambiguous expres-
sions. Ambiguity is typical, or systematic, if the process of disambiguation can

L Ascribed to John Heywood (c. 1497 — c. 1580) in [3] at Heywood 13.
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be carried out in some uniform way. In natural languages this is determined
by specification of context. For example, the words ‘I’, ‘you’, ‘here’, ‘now’, ‘this’,
‘my’, and ‘your’ used in daily language have meanings which vary with the
context of utterance in a uniform way. Other words with more than one mean-
ing such as ‘bank’, ‘duck’, and ‘visiting’, such as in the utterances ‘He sat by
the bank,” ‘I saw her duck,” and ‘Visiting relatives can be boring’, can also be
disambiguated from the context but not in any uniform way.>

Ambiguity in mathematical language involving such words as ‘member,’
‘union,” and ‘complement,’ is typical in that they are disambiguated in a uni-
form way relative to a context given by an underlying universe; similarly for
the ‘identity map.” In order to disambiguate arithmetic and algebraic symbols
such as ‘0,” ‘1,” ‘+,” ‘x,” and ‘<,” we need to be told just how these are to be
interpreted in a given discussion.

I have not done a serious search of the use of the idea of typical or system-
atic ambiguity in mathematics and logic. The first employment of it that I've
found (though without its being named in that way) was in Bertrand Russell’s
development of the theory of classes, relations and cardinal and ordinal num-
bers in his 1908 paper “Mathematical logic as based on the theory of types”
[18]. How he used it there will be described in the next section. The idea is
of course repeated and expanded in Principia Mathematica, beginning in Vol.
I, from *20 on. But I did not find the words ‘typical ambiguity’ there either,
except that in *65 there is talk of typically ambiguous symbols. Later uses
by others are due, to begin with, to Quine ([16] and [17]) in connection with
his system NF'; the actual words ‘typical ambiguity’ are found in the second of
these papers, pp. 132ff. The seminal work by Specker [19] aimed at proving the
consistency of NF is entitled “Typical ambiguity”; that is tangentially related
to what we are concerned with here in a way that will be briefly explained in
the concluding section to this paper.

Russell used typical ambiguity in the theory of types to make sense of
sentences like Cls € Cls, which can be read as justifying talk in some sense
of the class of all classes. In Section 3 this is generalized in a straightforward
way to a treatment in simple type theory of statements of the form A € B
where A and B are class expressions for which A is prima facie of the same or
higher type than B. My main aim here is to extend that to mathematically
interesting statements of the form A € B such as that the structure A we call
the category of all categories is indeed a member of the class B of all categories.
A few other test challenges of that sort are listed in Section 4. Then a version
of typical ambiguity is formulated in an extension of ZF set theory in Section

2According to Godehard Link, “Shared opinion in the philosophy of language has it
that in the case of indexicals like ‘I’,‘you’, etc., it is not their meaning that varies with
the context but rather their interpretation. .. This is considered to be different from lexical
ambiguity (‘bank’), syntactic ambiguity (‘visiting relatives’) or a combination of both (‘I saw
her duck’),”[e-mail communication of 12 August 2003] I have received a similar comment
from Thomas Wasow.
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5 and applied to the test cases in Section 6. The final Section 7 concludes with
a discussion of the problem of justifying problematic membership statements
when read literally.

2. Russell’s uses of typical ambiguity

The theory of types described in [18] is the ramified theory, but what is es-
sential for his use of typical ambiguity there is best explained in terms of the
simple theory of types (STT) with the Axiom of Infinity. The types are thus
indexed by the natural numbers 0,1,2, ... with the objects of type 0 inter-
preted as the individuals (infinite in number) and for each n, the objects of
type n + 1 interpreted as all classes of objects of type n. We use z, vy, z, ...
as variables for any type n # 0 and a matching list of variables X, Y, Z, ... of
type n+ 1.3 Only atomic formulas of the form v € W where u is of some type
n and W of the next type n + 1 are considered to be meaningful.

The first place that the issue of ambiguity comes up in [18] is on p. 251 (or
p. 174 in its reprinting in [20]. For any type n # 0, he defines Cls* to be the
class of all classes of objects of type n — 1 and then writes:

...the proposition ‘Cls € Cls’...requires that ‘Cls’ should have a
different meaning in the two places where it occurs. The symbol
‘Cls’ can only be used where it is unnecessary to know the type;
it has an ambiguity which adjusts itself to circumstances.

A little further down he defines the empty class A and the universal class
V and says that like Cls, these symbols are ambiguous “and only acquire
a definite meaning when the type concerned is otherwise indicated.” In our
setting, these are particular objects of type n. Moving on from there Russell
defines the Boolean operations = U ¢,z Ny, and —z; this last is of course the
complement relative to V. Later in the article he defines Cl(x) to be the class
of all subclasses of z; it is thus an object of type n + 1. Extensionally, Cls is
the same as Cl(V).

The theory of types was created in order to save the logistic program from
inconsistency, in particular to avoid Russell’s paradox. The use of variables
x,Y, 2, ... of an indefinite type and the notions just explained illustrates the
use, when necessary, of typical ambiguity to fall back on the underlying type

3Russell uses «, 8, 7, ... for class variables and z, y, z, ... for variables for their elements.
Our choice of X, Y, Z, ... for class variables of type n 4+ 1 has been made so that one can
more easily compare typical ambiguity in type theory with its use in set theory that we take
up in sec 5 below.

4In his [18], Russell wrote ‘cls’ where I write ‘Cls’; the latter is used in Principia Math-
ematica.
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structure for the security it provides (“having your cake”) while regaining as
much of the freedom of the informal theory of classes as possible (“eating it
t00”).

Expanding the above form of STT to a theory of relations (as in Russell’s
theory) one can define the relation x ~ y to hold when the classes  and y are
in one-to-one correspondence. Then Russell defines Nc¢(x) to be the class of
all y such that = ~ y, i.e., Ne(x) is the equivalence class of x under ~j; it is
of type one higher than that of . The class of cardinal numbers NC' is then
taken to be the class of all N¢(z) for x € Cls; it is of type n+2 for z of type n.
The members 0, 1, 2, ... of NC are next introduced, respectively as Nc(A),
Nec({0}), Ne({0,1}), and so on. Of these definitions, Russell writes:

It has to be observed. . .that 0 and 1 and all the other cardinals. . .are
ambiguous symbols, like Cls, and have as many meanings as there
are types. To begin with 0: the meaning of 0 depends upon that of
A, and the meaning of A is different according to the type of which
it is the null class. Thus there are as many 0’s as there are types;
and the same applies to all the other cardinals.

Russell’s partial way out of this embarrassing situation is to note that if
classes = and y are of different types, for example x of a type n and y of type
n + 1, then we can speak of x and y having the same cardinal number or of
one having a larger cardinal number than the other by comparing y with the
class of singletons {u} for u € x. But this still does not get out of the fact that
one has a multiplicity of representatives of the cardinals and in particular of
the natural numbers. To an extent, the use of typical ambiguity is a way of
saving face in this respect.®

The general problem that concerns us here is how to interpret expressions
of the form A € B which are of indefinite type, but where the prima facie
type of A is greater than or equal to that of B. Russell himself signaled this
issue when suggesting how to deal with the pseudo statement Cls € Cls; one
simply interprets the second occurrence of ‘Cls’ as being the class of all classes
of type n+ 1, when the first occurrence is interpreted as the class of all classes
of type n. A simpler statement which is meaningless on the strict account
of type theory but which trades on the ambiguity of the symbols involved is

5Link has suggested that something like the treatment of the meaning of indexicals in
natural language (as quoted in ftn.3 above) could be applied to the notion of number in
the theory of types: one could say that the meaning of the number terms is always the
same as defined via an expression with bound class variables but that only the “typical”
context (namely a given type level) determines which classes are being bound. While I am
not advancing any theory of meaning here, in a sense this is what is done in Sec. 3, where
the meaning is determined by a formula . But the additional problem comes when meeting
such examples as (1),(2) in section 2, so something more has to be done to take specify the
interpretations of the terms in formulas of the form A € B, if both A and B contain the
same terms, e.g. {1,2} € 2. This is what the disambiguation conventions are supposed to
take care of.
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V € V, again legitimized by shifting the interpretation of the second ‘V’ one
type higher.

There are other natural examples of this problem that Russell could have
considered but did not. For example, the following statements seem reasonable
(on the Axiom of Infinity):

(1) Inf € Inf, Fin € Inf, Inf ¢ Fin, Fin ¢ Fin,

where Fin, Inf are defined respectively to be the class of all finite classes and
that of all infinite classes. So also are the statements:

(2) {1}e1,{2}e1,{1} ¢2 {1,2} €2.

3. Disambiguation of membership statements in type
theory

Ambiguous expressions like Cls, A, V, 0, 1, ... can be assigned many types in
STT; they are examples of expressions which are stratified in Quine’s sense,
i.e., result from erasing type indices from all the variables of an expression
of STT (keeping variables of distinct types disjoint from each other). Given
an expression S of STT, let e(S) be the result of erasing all the type indices
from variables of S. For A a stratified expression let type(A) be the least
n for which there is an S of type n with A = e(5); this is what we call
the prima facie type of A. We shall confuse a stratified expression with the
lowest expression of STT from which it results by erasing type distinctions.
The disambiguation of expressions of the form A € B where the type of A
is greater than or equal to that of B is first done here for the special case
that they are of the same type and B is an expression of the form {z|p(x)},
where ¢ is a stratified formula. Let o be stratified by replacing each variable
in ¢ by the corresponding variable of next higher type, and then let B* be
{X|pT(X)}. Then the disambiguation convention is simply:

(Dis 1) A € B means A € BT when type(A) = type(B).

Thus for B of the form {z|p(x)}, A € B is equivalent to ¢+ (A). For example,
the statements (1) above may be inferred as an application of (Dis 1). Simi-
larly, if A is of prima facie type one higher than B = {z|p(x)}, we agree to
the following disambiguation convention:

(Dis 2) A € B means A € Bt when type(A) = type(B) + 1.
Then, for example, the statements (2) above may be inferred as an application
of (Dis 2).

The ambiguity in the kinds of formulas A € B considered here is typical
because disambiguation is systematic using the principles (Dis 1) and (Dis 2)
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depending on the type of A relative to that of B, and similarly when A is
of still higher type. It is also typical because it doesn’t really depend on the
choice of type assignments on the basis of which the type of A is measured
in comparison with that of B, as long as all types are shifted by the same
amount. This is because of the straightforward:

Theorem 1. If a sentence 0 is provable in STT then so also is 6.

It follows that if A € B is provable in STT where A, B are given by closed
terms, then so also is AT € B*. More importantly, if A € B is provable then
every property of elements of B also holds of A. This is formulated as:

Theorem 2. (Transfer rule). For closed terms A, B,C with B = {z|p(x)}
and C = {z|(x)} and type(A) = type(B), if A € B and B C C are provable
in STT then so also is A € C.

Proof. This is because A € B means ¢ T (A). Since Vz[p(z) — (z)] is a
theorem, so also is VX[pT(X) — 7 (X)], so 9T (A) holds, i.e., A € C holds
by the disambiguation convention. O

4. Some mathematical challenges.

All the preceding is quite obvious; moreover the applications are of limited
mathematical interest, because STT doesn’t lend itself to the flexible expres-
sion of mathematical properties in practice. Here are some statements of the
form A € B with the prima facie type of A greater than or equal to that of B
that are intuitively true in a naive theory of structures but cannot be verified
directly in current systems of type theory or set theory. The aim is to make
sense of them by some form of typical ambiguity.

Note that in the following we use (. , .) for the pairing operation, which is
iterated to form m-tuples. We assume understood the mathematical notions
involved (cf. [13] for the examples 4.2-4.4).

4.1 Let P be the class all partially ordered structures and let S be the
substructure relation. Then (P, S) € P.

4.2 Let Set be the category of all sets, AbGrp the category of all Abelian
groups, Top the category of all topological spaces, etc., and let C AT be
the class of all categories. Then, as should be, Set € CAT, AbGrp €
CAT,Top € CAT, etc.

4.3 Also Cat € CAT where Cat = (CAT, FUNCT, o) is the category of all
categories, whose objects are all categories and whose morphisms are the
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functors between categories, and o is the partial operation of composition
of functors.

4.4 If A€ CAT and B € CAT then B4 € CAT where
BA = (FUNCT(A, B), NAT(A, B), o),

whose objects are the class FUNCT(A, B) of all functors from A to B
and whose morphisms are the natural transformations between functors
and where o is the operation of composition of such transformations.

4.5 Let BA be the class of all Boolean algebras. Then (p(V),U,N,—,@,V) €
BA where V is the universal class and (V') is the class of all subclasses
of V.6

5. Typical ambiguity in a system of set theory with
universes

Let L be the language of ZF set theory, using variables z, y, z, ... for sets.
Adjoin to L constants U, for n = 0, 1, 2, ... for an increasing sequence of
reflective universes; the resulting language is denoted L(U.,,), where we use
U, to indicate the sequence of U, for n < w. Each U, is supposed to
be a set which is reflective in the sense that—speaking model-theoretically—it
forms an elementary substructure of (V, €) when the membership relation is
restricted to U,,. As usual, to express this, we use the operation ¢* of forming
the relativization of all quantifiers in the formula ¢ of L to a; we also write
Rel(g, a) for the resulting formula. The universes are also supposed to be
supertransitive, i.e. transitive and closed under the power set operation g;
for the latter it is sufficient to assume that universes are closed under subsets
of members. The system of ZF, resp. ZFC, with universes satisfying these
properties is denoted ZF /U, resp. ZF/U<,. More officially, the axioms are
as follows.

Axioms of ZF /U,

I. All the axioms of ZF in L, and for each n =0,1,2, ...:
II. U,, € Upt1
ITII. Trans(Up,).

IV. VaVyly e Uy, Az Cy — x € Uy,).

6This example was suggested to me by Godehard Link.
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V. For each L formula ¢(z1,...,zx),
Vay .. Ve{ay,...,xx € Uy — [Rel(o,Up) (21, ..., 2k) <
o(z1,...,zk)]}

The Axioms of ZF /U, are obtained by adding the Axiom of Choice, AC.

Theorem 3. ZF/U.,, is a conservative extension of ZF.

Proof. This is by a straightforward extension of the result of Montague and
Vaught [14] which in turn modifies Levy’s well known reflection principle argu-
ment; see also ([5]: sec. 2). We give here a brief sketch of the ideas involved.
Note that for conservation we need only show how, given any finite set of
axioms of ZF/U.,, involving only symbols U; for i = 0,...,n for some n, to
define sets in ZF satisfying the given axioms for these universes. Working
informally in ZF, let V,, be the ath set in the cumulative hierarchy, i.e. for
each «, V, is the union of p(Vp) for all 3 < a. For any set z, the rank of =,
p(x), is the unique a such that € Vo471 — V,,. One associates with each ex-
istential formula (3z)¥(z,y1,...,ym) of L an m-ary function Fy whose value
Fy(y1,...,ym) for each y1,...,ym is the set of all = of least rank such that
U(z,y1,-..,Ym) holds. Thus

(31’)\11($,y1,. . ayM) - (E|$ € F‘I/(yla B ayM))\I/($7yla v aym)

The Fy act like Skolem functions, but without needing the Axiom of Choice
to pick a specific value of witness for the existential quantifier. By the rank-
hull of a set b we mean the least V,, such that b C V,,. For any finite set @ of
formulas (3z)U(z,y1,...,Ym), by the Skolem-rank-hull of a set b relative to
Q, in symbols Hg(b), we mean the least V,, such that b C V,, and such that for
each (Fz)¥(x,y1,...,Ym)in Q and each y1, ..., ym € Vo, Fo(y1, .- -, Ym) C Va.
Hg(b) is obtained as the union of bj for j < w, where by = b and each b; is the
rank hull of [b; union all Fy(y1,...,ym) for all formulas (32)¥(z,y1,...,Ym)
in @ and all y1,...,y, € b;]. For simplicity, assume the formulas of L are
generated from atomic formulas x € y and x = y by =, A and 3. Now, given
the finite set of axioms of ZF /U, to be modeled in ZF, let S be the closure
under subformulas of all the L formulas in the given set and let ) consist of
all existentially quantified formulas (3z)¥ in S. Then it is proved by formula
induction that for each set b and each ¢ in S,

Vai ... Vap{z:... zx € Hg(b) — [Rel(p,Ho(b))(x1 ... zx) < @(z1... )]
Since also each Hg(b) is supertransitive by construction, we can define U;
for i = 0,...,n by taking Uy = Hg(0) and for each i < n,U;31 = Ho(U; U
{Ui}). O
NB. If 6 is any sentence of L then adding 6 as an axiom maintains conserva-
tivity by this theorem.
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Corollary. ZFC/U.,, is a conservative extension of ZFC.

Note that each reflective universe U, satisfies all the axioms of ZF by
taking closed ¢ in Axiom V to be any one of these axioms. It follows by
supertransitivity that each universe contains the empty set 0 and the set w of
finite ordinals, is closed under unordered pair, union and power set; moreover,
these are absolute, i.e. have the same values in the universe as in the universe
of all sets. Moreover, each universe U, is closed under the Separation Axiom
and Replacement Axiom schemes. The latter can be thought of as follows:
if f is any function in the set-theoretic sense of the word that is defined in
L (with respect to any given parameters in U,,) and if a € U,, and f : a —
U, then {f(z) : © € a} € U,. If one wishes to drop here the assumption
that f is defined, allowing it to be any function, then p(U,) would have to
be a strongly inaccessible cardinal, and assumption of that would no longer
hold conservatively over ZF; instead we would have to strengthen ZF by the
assumption of the existence of infinitely many strongly inaccessible cardinals.
This might be needed for some applications (see the next section), but is not
assumed here.

We now consider to what extent application of typical ambiguity in the sys-
tem ZF /U, (or the same augmented by AC as dictated by specific needs) can
be used to meet the mathematical challenges of the preceding sec.4.” Looked at
informally, what we have to deal with to begin with in the examples 4.1-4.3 are
membership relations of the form A € B, where B is a class and A is a (possi-
bly) many-sorted relational structure each of whose domains and relations are
classes. In all the cases considered, B is given as {z|¢(z)} for some L formula
©; the classes which are the constituents of A are also defined in L. We shall
relativize the concepts involved in A and B to universes. By a typical reflective
universe U, we mean any U,; then by the next universe UT we mean Uy, 1.
The first step in interpreting the problematic membership statements relative
to any such universe U is to identify classes with the corresponding subsets of
U. The second step is to identify sets with the members of U. Note that since
the classes making up the structure A are subsets of U, we have A € UT. Now,
to make sense of A € B, the third step is to re-identify B with the class of all
sets in U that satisfy the definition of B; call this BT. More precisely, if B is
given formally as {z|¢(z)}, its first identification is with {z € U|pY (x)} which
is the same as {x € U|p(x)}; then, the re-interpretation Bt of B is simply

7Something like this was suggested as follows by Kurt Gédel in a letter to Paul Bernays
dated 1 January 1963:“I find it interesting that you speak. .. of the ‘newer abstract disciplines
of mathematics’ as something lying outside of set theory. I conjecture that you are thereby
alluding to the concept of category and to the self-applicability of categories. But it seems
to me that all of this is contained within a set theory with a finitely iterated notion of
class, where reflexivity results automatically through a ‘typical ambiguity’ of statements.”
(The source for the German original of this letter is in the Bernays archives at the ETH in
Ziirich; the full letter is to be found, along with much else between Goédel and Bernays, in
the collection of correspondence in [9].)
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defined to be {z € U™ |p(x)}. This leads to the disambiguation convention:
(Dis 3) A € B means A € BT.

To take the simplest example, 4.1, P is defined to be the class of structures
(r,y) where y C 22 is a partial ordering of z, and S is defined to be the
substructure relation (z,y) C (z,w) on P which holds just in case z C =z
and y = wN x2. With the variables x,y, z,w taken to range over the sets
in any typical reflective universe U, we have that P and S are subsets of U.
According to the disambiguation principle (Dis 3), (P,S) € P means that
(P,S) € P*, where Pt consists of all those sets (X,Y) with X,Y in U" such
that Y C X2 and Y is a partial ordering of X. It is readily verified that in this
case, we do indeed have (P, S) € P*, so it makes sense by the disambiguation
principle to assert that (P, S) € P. In words: the class of all partially ordered
structures (in a typical universe) together with the substructure relation (in
that universe) forms a partially ordered structure (in the next universe).

There is more to be said about the above disambiguation principle, again
illustrated by reference to 4.1. By the reflection axiom V of ZF/U.,, , P and
P share exactly the same properties expressed in the language L of set theory,
and each relativized to any typical reflective universe can be considered as a
surrogate of the class of all sets (x,y) which form partial ordering structures.
Moreover, consider any property ¥(z,y) formulated in L which is proved to
be true of all such (x,y). Let C be defined as the class of all (z,y) such that
U(z,y) holds. This definition is taken to be ambiguous, i.e. it can be thought
of as pertaining to the class of all sets, or relativized to any universe. Our
assumption is that P C C has been proved in ZF, i.e. when we relativize
to the class of all sets. It follows that PT™ C C* when P is interpreted as
the class of all partially ordered structures in any typical reflective universe
U. From the disambiguation principle, it follows that (P,S) € C. In other
words, (P, S) shares all the properties that are verified of all partially ordered
structures; this is an example of the transfer rule in this framework. More
generally, we have:

Theorem 4. (Transfer rule). If A € B and B C C are provable in ZF where
B, C are class abstracts then A € C is provable there too.

Proof. For B given formally as {z|¢(2z)} and C as {z|¥(x)}, B C C is read as
Vz[p(z) — ¥(z)], and what it means for B C C to be provable in ZF is that
Va[p(x) — W(x)] is provable in ZF. Then by the reflection axiom V, given
any universe U, (Vo € UT)[Rel(p,U")(z) — Rel(V,U")(z)], i.e., Bt C C™T.
From provability of A € B, which means that A € BT by (Dis 3), it follows
that A € CT,i.e. A € C, again by the disambiguation convention. O

To look at things more generally, consider a type structure over sets, where
sets are considered to be at type level 0, classes of sets at type level 1, classes
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of classes of sets of type level 2, and so on. We regard the type level of
a structure A to be the same as the maximum type level of the domains,
relations, operations and individuals that make up that structure. Thus in the
examples 4.1-4.3 of problematic membership statements of the form A € B
the type level of both A and B is 1. But in the example 4.5, the structure
A= (p(V),u,N,—,0,V) is of type level 2 since the class V of all sets is of
type level 1 and p(V), the class of all subclasses of V', is of type level 2. On
the other hand the type level of B—in this case the class BA of all sets which
are Boolean algebras—is still 1. But unlike the case of type theory, where to
disambiguate A € B we had to go to A € B+ when the type level of A is
one higher than that of B, we can still disambiguate by (Dis 3). For, when
we interpret the sets as ranging over any typical universe U, A is interpreted
as being the structure (p(U),U,N, —,@,U) and since U and p(U) belong to
U™, the structure A in this case also belongs to U™, and in fact is a member
of the subset BA™ of U™ consisting of all structures in U™T which satisfy the
conditions to be a Boolean algebra. Thus it makes sense by (Dis 3) to say that
A € B holds in this case. The advantage over ordinary type theory given to us
by the set-theoretical framework is that the type level of U™ over U measured
in terms of the cumulative hierarchy is infinite. A precise explanation of how
(Dis 3) may be applied more generally would require the introduction of an
extension LT of L by variables of classes, which are assumed (unlike Godel-
Bernays or Morse-Kelley theories) to satisfy all the axioms of ZF. Then for
any application, the ZF objects are interpreted as ranging over a universe U
and the classes are interpreted as ranging over the next universe U™'. For the
purposes here, it is sufficient to see how (Dis 3) works in a few specific cases,
like that of 4.5 just discussed, or (4.4) to be treated in the next section.

6. Category theory in ZF /U,

The reader is assumed to be familiar with the basic notions of category theory.
A standard reference is [13]. We can take categories to be structures of the form
A =(0,M,C) where O is the class of objects of A, M its class of morphisms
and C the composition of morphisms in A;C is a partial operation on M? to
M considered as a three-placed relation on M. Actually, we can identify O
with the class of identity morphisms, suitably defined, and the domain and
codomain of a morphism with its left and right identities, so it is sufficient to
consider structures of the form (M,C). Alternatively, and more intuitively,
we can take categories to be structures of the form A = (O, M, C, Dy, D1, 1)
where C'is as before, the Dy and D; are maps from M to O giving the domain
and codomain respectively, and [ is a map from O to M. As usual we write
f:x—yoraz —f yin Awhen f € M,Do(f) = x and Di(f) = y; id,
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for I(x); and fg = h when (f,g,h) € C. When it is necessary to compare

objects from one category with another we subscript the terms of A by ‘A’

as A= (0a,Ma,Ca,Doa,D14,14). Ais a large category if O4 and M4 are

both classes. A is said to be locally small if for any objects =,y of A the class

Ha(z,y) ={f|f € Ma A f:x — y}is aset; it is small if A itself is a set.
The following are standard examples of locally small categories.

(The category of all sets) Set is the category whose objects are just the
sets and whose morphisms are all triples f = (u, z,y) where u is a function (in
the usual set-theoretical sense) whose domain is 2 and range is contained in y.
Then Dy(u,z,y) = x and Dy (u,x,y) = y. The composition fg is defined for
f=(u,z,y) and g = (v, z,w) just in case y = z, in which case fg = (u;v, z, w)
where u; v is the relational composition of u and v. Finally I(x) is taken to be
(u, z, x) for each x, where w is the identity function from z to x.

(The category of Abelian groups) AbGrp is the category whose objects
are the sets which are Abelian groups and whose morphisms are group homo-
morphisms with specified domain and codomain. This is then spelled out as
in 6.1.

(The category of all topological spaces) Top is the category whose objects
are the members of U that are topological spaces, treated similarly.

(The category of all categories) Cat is the category whose objects are the
sets (o,m, ¢, dp,dy,1) that satisfy the conditions to be a category, and whose
morphisms are the functors between any two such categories. Cat itself has
the form (CAT, FUNCT, ...) where CAT = O¢qt and FUNCT = Mgas.

Now by (Dis 3) we can make sense of the statements in 4.2 and 4.3 that
Set € CAT, AbGrp € CAT,Top € Cat and even Cat € CAT, i.e., (CAT,
FUNCT, ...) € CAT. Disambiguated, these statements mean that relative
to any typical reflective universe U, each of Set, AbGrp,Top, and Cat is an
element of CAT™, the class of all sets A = (O, M, ...) in the next universe
U* which satisfy the conditions to be a category. Furthermore, the transfer
theorem assures us that any properties that apply to all members of CAT,
i.e. the class of all small categories, also hold for the large categories Set,
AbGrp, Top,Cat,etc.

(The category of all functors between two given categories) When
we turn to making sense of the statement 4.4 that B4 € CAT where A and
B are large categories we meet the problem that the prima-facie type level of
B4 is higher than that of both A and B. In MacLane’s terminology, B is
beyond large, sometimes called superlarge. But from the point of view of the
method of disambiguation proposed in the preceding section, the issue here
is no different from that met with the example 4.5 concerning the Boolean
algebra on p(V'). But there are mathematical aspects of example 4.4 that are
worth a closer look. Consider the usual set-theoretical definition of B4: its
objects are FUNCT(A, B), i.e., the class of all functors F': A — B, and its
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morphisms are natural transformations 7 : F' — G between such functors. We
can take functors to be classes which are functions in the usual set-theoretical
sense, so for each x € Oy, F(z) € Op; as usual, to be a functor, F' is required
to preserve composition and identity morphisms, i.e., for f,g € M4 and z €
Oa,F(fg) = F(f)F(g) in B and F(i;) = ip(y). By a natural transformation
n: F — G between two such functors F': A — B and G: A — B is meant a
map from O4 to Mp such that the following diagram is commutative for any
x,y € Oy, whenever z —" y in A:

G(z) ~ Gly)

Composition of natural transformations is defined in an obvious way. Though,
as noted above, B4 is no longer a large category when A and B are large,
we can still make use of the disambiguation convention (Dis 3) as at the end
of the preceding section to make sense of the statement that it is a member
of CAT, since, according to it, this simply means that relative to any typical
universe U, BA € CAT+. 8 There is no problem with this, since now with the
Oa,M4,0p, and Mp regarded as subsets of a given universe U, the sets O¢
and M¢ belong by the above definition to Ut for C' = B#. Again, the transfer
theorem assures us that any property of all small categories also applies to the
superlarge category B4,

7. Discussion: Axiomatic foundations of category theory

One of the usual foundations of category theory, due to MacLane [11], takes
as its setting the language of the Bernays-Godel theory of sets and classes;
this allows us to talk about two kinds of categories, those that are small, i.e.
are sets, and those that are large, i.e. are classes which are not sets. In such
a foundation, when A and B are both large categories, such as A = AbGrp
and B = Set, there is no place to locate B4, since it is now of a type higher
than the classes in the sense of the language of BG. Thus one often is forced
to restrict this construction to the case that A is small, so that the functors
from A to B are all sets, and B4 is at most a large category in the BG sense.
The preceding shows that that problem is not met in the ZF/U., setting
presented here. Thus, for example, we can state the Yoneda Lemma as a
natural equivalence between any locally bounded (i.e., locally small) category
A and the category Set?’, where A’ is the opposite category to A.

8This is in accord with Gédel’s idea quoted in footnote 8.
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Now it is to be noticed that we never needed more than two universes
U and U™ to take care of disambiguation in the various examples 4.1-4.5.
Thus, we could just as well have restricted the theory to the part of ZF/U.,,
that concerns only Uy and U;. One could go even farther, by dealing with
only one reflective universe U, of which (axiomatically) the full universe V
is taken to be an elementary extension, thus with U being treated like Uy
and V like Uy; call this form of the theory ZF/Uy.° Large categories have as
surrogates subcategories of Uy, and functor categories for them simply sit as
sets in V. On the face of it, this would seem to make it similar to the suggestion
of MacLane [12] according to which one universe suffices. But there is an
essential difference here in the further use of the reflection Axiom V to insure
that there is nothing special about the choice of the universe Uy; with respect
to properties formulated in set-theoretical terms, it is indistinguishable from
the full universe. Thus any property established for subcategories of Uy holds
of all categories, in particular the category Cat and the functor categories of
4.4.

Actually, the idea of using a theory like ZF /Uy or ZFC/U.,, as a founda-
tional framework for category theory is an old one that I first elaborated in
the paper ”Set-theoretical foundations of category theory” (Feferman 1969).10
What ZF /U, resp. ZFC/U.,, provides as an advantage is the ability to
explain more directly the disambiguation relative to any typical reflective uni-
verse in terms of the next universe. The adequacy of ZFC/U, as a framework
for working category theory was considered with respect to some prominent
test cases, including: (i) Yoneda Lemma, (ii) Freyd Adjoint Functor Theorem,
and (iii) the functors Ext, in homological algebra. These, and others, should
be re-considered as test cases for a more flexible development in the system
ZFC/U.,.

In some cases we may need somewhat stronger hypotheses; for example
(as explained in [5], it appears that the Kan Extension theorem requires the
rank of the typical universe U being considered to be a strongly inaccessible
cardinal. To deal with such cases we shall need to add as an assumption
to our base system of set theory that beyond any ordinal there is a strongly
inaccessible cardinal. (Such an assumption is considered to be innocuous by
working set theorists.) A proposed foundation for category theory ascribed to

9That was the form in which typical ambiguity in set theory was presented in a draft of
this paper. The reasons for the shift to a theory with many reflective universes are given
below.

10A similar proposal has more recently been made by F.A. Muller [15], taking an ex-
tension of the theory of sets and classes due to Ackermann, as the basic framework; this
system is known to be interpretable in ZF/Uy by interpreting the sets to be the mem-
bers of Uy and the classes to be the sets in V. Muller incorrectly asserts that my paper,
Feferman (1969) required the assumption of inaccessible cardinals. For a critical review
by Andreas Blass of Miiller (2001) and elaboration of its relation to my earlier work, see
http://www.ams.org/mathscinet/ review 2002k:03008.
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Grothendieck makes use of this assumption; by a universe on that approach
is meant any V,, for a a strongly inaccessible cardinal. What that foundation
does not explain is why such universes may be considered typical. That is what
the reflection Axiom V adds to the Grothendieck approach. But it is useful to
see when the much weaker system ZFC/U.,,, without the assumption of any
inaccessibles, suffices for various parts of the development of category theory;
in fact, that assumption seems to be rarely needed.

Another, general, reason for dealing here with the system with a sequence of
reflective universes rather than a single one has been to show how the handling
of typical ambiguity in set theory parallels, in part, that in the theory of types
as dealt with above in Sec. 3.

There are other candidates for foundational frameworks for category theory
employing typical ambiguity which would seem to have some advantages over
ZF /U, with or without AC, especially with respect to the treatment of func-
tions. One is a form of operational set theory, in which the system is extended
further by variables for a partial combinatory algebra over the universe.!' An-
other is to use one of the systems of Explicit Mathematics introduced in [7]
and studied in a number of publications since then. There the operational
structure in the form of a partial combinatory algebra on the universe of all
individuals is taken as basic. For a system of that kind to work we would have
to extend the formalism by symbols for typical reflective universes with the
appropriate axioms. Both treatments allow B4 to be interpreted directly as
a class of type level 1 rather than type level 2. 1 have done some experimen-
tation with both of these approaches, but have not yet brought the work to a
definitive form.

8. Trying to have your cake and eat it too: naive
category theory.

Minimally, what one is after is to have a demonstrably consistent foundational
framework T for mathematically interesting cases of self-membership such as
provided by category theory. But, more than consistency, one would want
(as with ZF/U.,) conservativity over an accepted framework (in that case
over ZF); all that is done here, though not without some clumsiness in the
applications. Ideally, what one is after—-and that is not done here—is to pro-
vide a framework meeting these criteria in which such objects as C AT exist

1See http://math.stanford.edu/ Feferman/papers/OperationalST-I.pdf for a draft article
featuring such a system. (NB. Theorem 4(i) p.5 needs correction.) Incidentally, Vidhyanath
Rao has informed me that there are some theorems which require global choice for their
proof. The system of operational set theory referred to here incorporates a global choice
operator.
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in the universe of discourse and which are such that (CAT, ...) € CAT is lit-
erally true, and not reinterpreted according to context. For a discussion of the
desiderata for that kind of foundation, see my paper ” Categorical foundations
and foundations of category theory” [8]. We have yet to obtain a satisfactory
solution of the problem posed by naive category theory in that form.

At first sight, one direction in which such a solution might be sought is
to make use of theories like that of Aczel [1] as exposited in [4], in which
the Foundation Axiom is replaced by the Anti-Foundation Axiom AFA. That
certainly allows many examples of self membership such as a € a and (a,b) € a,
and so on, with interesting applications when suitably elaborated. In Ch. 20
of that book there is a proposed extension SECy of the theory of sets in which
class variables are adjoined, that also allows some cases of self-membership
between classes such as A € A and (A, B) € A; grosso modo, such statements
are needed to deal with the kinds of mathematical applications from category
theory considered here. Some of the above desiderata are met by that system,
namely that of consistency relative to ZFC, of which it is an extension. But,
as the authors themselves point out, the mathematical usefulness of SECq in
general remains to be established.!?

Another direction in which such a solution might be sought is via some
form of stratified theories like Quine’s NF. Though that is still not known
to be consistent, the system NFU with urelements allowed was shown to be
consistent by Jensen [10], and he also showed how it can be beefed up to
include, conservatively, ZFC. However, the formalism of NFU is not as it
stands suitable to define {z|z is a relational structure of signature o} where
o is any specified signature. For example, if x is to be of the form (y, z) with
z C y? we need to assign to the elements of z, which are ordered pairs, the
same type level as the elements of y, and thus ordered pairs of elements of a
set need to be assigned the same type level as the elements of that set. None
of the usual definitions of ordered pair in NFU works to do that. However,
one can formulate a simple extension NFUP of NFU in which pairing is taken
as a basic operation, and stratification is modified so as to allow us to assign
the same type to an ordered pair as to its terms. By an adaptation of Jensen’s
proof, one can establish the consistency of NFUP and again one can beef it
up to obtain a version of it conservative over ZFC. I carried this out in an
unpublished MS, “Some formal systems for the unlimited theory of structures
and categories” (abstract in [6]).!® This system indeed serves to literally verify
examples like 4.1-4.4. But it has other defects as a proposed foundation of naive
category theory. One is that there is no way that one can establish existence

12 According to one of the referees, the work of Barwise and Moss on SECo has been
continued by Alexandru Baltag in his doctoral thesis, and one publication resulting from
that is [2]. T do not know how relevant it may be to the questions dealt with here.

13The proof makes use of the existence of two inaccessible cardinals, an assumption which,
as remarked above, is regarded as innocuous by working set-theorists.
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of the cartesian product Ilz,;(i € I) of a collection {z;|i € I} of sets, since
the collection must be given by a function g with g(i) = x; for each i € I,
and the elements of the cartesian product f must be of the form (i, f(7)) with
f(2) € g(i). Thus there is no stratified type assignment for pairing which allows
one to deal with both f and g simultaneously. On the other hand, there is no
obvious way to obtain a consistent extension of NFU allowing stratification of
pairs where the terms of a pair are of prima facie mixed type.

As the title of Specker [19] attests, there is of course a non-trivial connec-
tion of the consistency problem for stratified systems with typical ambiguity.
Specker considered one form of typical ambiguity in STT to be given by the
scheme (p < ™) for all sentences ¢ of type theory; he showed that NF is
consistent just in case STT is consistent when augmented by this scheme. One
way to insure that would be to seek models of type theory in which there is a
shifting endomorphism which takes each type level to its successor level, or a
model of STT allowing negative types in which there is a type shifting auto-
morphism. Jensen succeeded in using Specker’s idea in his proof of consistency
of NFU, by combining it with the Ehrenfeucht-Mostowski theorem on the ex-
istence of models with many automorphisms. But even if the consistency of
NF were established via Specker’s theorem or by some alternative approach,
NF would not, as it stands, provide the interpretation of structural notions
needed to insure literal self-membership in the sense of such examples as 4.1-
4.4, as well as to satisfy the additional criteria of [8] for ordinary mathematical
constructions such as that for product above.
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