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Abstract

In his 1918 monograph \Das Kontinuum", Hermann Weyl initiated

a program for the arithmetical foundations of mathematics. In the

years following, this was overshadowed by the foundational schemes

of Hilbert's �nitary consistency program and Brouwer's intuitionistic

redevelopment of mathematics. In fact, not long after his own venture,

Weyl became a convert to Brouwerian intuitionism and criticized his

old teacher's program. Over the years, though, he became more and

more pessimistic about the practical possibilities of reworking math-

ematics along intuitionistic lines, and pointed to the value of his own

early foundational e�orts. Weyl's work in Das Kontinuum has come

to be recognized for its importance as the opening chapter in the ac-

tual development of predicative mathematics, whose extent has been

plumbed both mathematically and logically since the 1960s.

The main reference of Hermann Weyl that I am going to be talking about

is his 1918 monograph Das Kontinuum. Other things that I might be refer-

ring to include a rather late volume, Philosophy of Mathematics and the

Natural Sciences, (1949) (which is an expansion of an encyclopedia article

that he wrote in the late 1920s), his four volumes of collected works, and

various articles. Weyl is a very interesting and many-sided person, and he

has been studied from many di�erent perspectives. So, in particular, about

Das Kontinuum, I have written an article \Weyl vindicated" (1988) which

�This is the second of my three lectures for the conference, Proof Theory: History

and Philosophical Signi�cance, held at the University of Roskilde, Denmark Oct. 31-

Nov. 1, 1997. See the footnote � to the �rst lecture, \Highlights in proof theory" for my

acknowledgments.
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has now been reprinted in my volume of essays, In the Light of Logic (1998).

I should also mention Dirk van Dalen's article on Weyl's intuitionistic math-

ematics (1995). (All these items are included in the list of References below.)

Hermann Weyl lived from 1885 to 1955. He obtained his doctor's de-

gree in G�ottingen in 1908, working with Hilbert. After a few more years

in G�ottingen, Weyl moved to a position in Z�urich and remained there for a

number of years. Hilbert kept trying to get Weyl to come back to G�ottingen

as his successor. Weyl �nally returned in 1930 but then, when the Nazis

came in and the Mathematical Institute started to crumble, he left it and

went to the Institute for Advanced Study in Princeton. Weyl stayed there

for the rest of his academic life; he retired in 1951, and then traveled back

and forth between Z�urich and Princeton until the year of his death. In his

mathematical work, Weyl was just about as wide and as original as Hilbert in

all areas of mathematics: number theory, algebra, geometry, analysis, math-

ematical physics, logic, philosophy of mathematics, as well as the philosophy

of science. Weyl also was a very cultured person; he had a strong interest and

background in art, literature and philosophy. I think he is also of interest as

a literary stylist. His writing can be ornate at times; I do not know if that

is the right word, as I do not read the German language that well. But it

seems to me that he is more of a stylist than Hilbert, for example.

Weyl's own contributions to logic and the foundation of mathematics are

not that many in number. At one point I counted in his collected works a

total of 160 items on all subjects; of those only about a dozen concerned logic

and the foundations of mathematics. And, really, of technical contributions

I count only two or possibly three: an early paper \�Uber die De�nitionen der

mathematischen Grundbegri�en" (1910), then the 1918 monograph, whose

full title is Das Kontinuum. Kritische Untersuchungen �uber die Grundla-

gen Der Analysis, and �nally the break to intuitionism in the paper from

1921, \�Uber die neue Grundlagenkreise der Mathematik". Subsequent pa-

pers mostly dealt with his views of foundational developments in one way or

another. It is not that he forgot any of these early things, by no means. But

as technical contributions these three are the ones to concentrate on.

The 1910 paper I think is sadly overlooked, because what he does there

is provide an explanation of|what we call in modern terms|the notion of

de�nability over any relational structure, and which anticipates Tarski's fa-

mous contribution in that respect. Tarski's own paper on de�nability in the

real numbers did not come until 1931, and his full explication of satisfaction,

truth and thence of de�nability was not published until a few years later. So
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we credit Tarski for the full spelling out of that, but if you look at Weyl's

paper it is quite clearly right there. One of the things he was after had to

do with a question in Zermelo's axiomatization of set theory concerning the

Axiom of Separation. As Zermelo formulated it: if you take any de�nite

property P (x) of elements x of a set a, then there is the set of all x's in a

which satisfy the property P (x). There were various questions about Zer-

melo's axioms: what did they mean, why should one accept them, and so

on. But one question in particular from a logical point of view concerned the

separation axiom. The idea of a de�nite property was itself inde�nite, and

one should really explain just what one had in mind. As a solution to this,

it was natural to propose: as a de�nite property we simply mean all those

properties which are de�nable within the language of set theory. And this

was in fact Weyl's proposal in 1910. He said, well, we now have a notion

of de�nability over any structure consisting of a domain and some relations.

If we apply this in particular to the domain of sets with the membership

relation (and, optionally, the equality relation), then we can generate all de-

�nable relations in that sense. Then just those properties are the ones that

are to be counted de�nite and are to be used in the Separation Axiom. I

don't know why Weyl does not get proper credit for this. People usually

claim that Skolem or Fraenkel did this in the 1920s in order to explain just

how to make the Separation Axiom precise. But there it is already in Weyl's

1910 paper1.

Now, when we talk about Weyl's philosophy of mathematics, we are faced

with shifting positions. We all change our minds, or most of us do, about

things over periods of time and Weyl was certainly no exception. It is hard

to identify him with a clear-cut philosophy of mathematics or foundational

program in the same sense as we identify Brouwer with constructivism and

Hilbert with his �nitist consistency program. I think part of the reason

that Weyl's program in 1918 was overshadowed by Brouwer's and Hilbert's

programs was that there is not this clear identi�cation, nor did he plug it in

the way that Hilbert and Brouwer plugged their programs. But, as we shall

see, he never really gave up the achievements of his 1918 monograph.

I am not quite sure whether his view of the foundations of mathematics

was set-theoretical in 1910, but you might read the fact that his work then

contributed to the foundations of set theory as in some sense an acceptance

1See the introductory note to Fraenkel's 1922 article on the notion of \de�nite" in van

Heijenoort (1967) p. 285.
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of it. But at some time, at least by 1917, he became critical of set theoretical

foundations. In the preface to Das Kontinuum (I will present to you an

English translation, which is not too precise) he says:

It is not the purpose of this work to cover the �rm rock on

which the house of [mathematical] analysis is founded with a rigid

wooden skeleton [h�olzernen Schauger�ust] of formalism and then

persuade the reader and �nally oneself that this is the real foun-

dation.

With respect to \formalism", it is not clear whether Weyl is directing this

speci�cally at Hilbert or instead an axiomatic presentation of analysis. At

any rate (he continues), it is not his purpose to cover the house of analysis

with this kind of formalistic structure, a structure which can fool the reader

and ultimately the author into believing that it is a true foundation. Rather

I shall show that this house is to a large degree built on sand. I

believe that I can replace this shifting foundation with pillars of

enduring strength. They will not, however, support everything

which today is generally considered to be securely grounded. I

give up the rest since I see no other possibility.

Now it may be argued whether Weyl did indeed show that it was a house

built on sand. But there are some fundamental criticisms he made of basic

assumptions that are implicitly involved in analysis. That led him to reject

those assumptions, in a way that I shall explain at length.

But �rst let me give a quick survey of Weyl's shifting views on the foun-

dations of mathematics.

� 1910 Contribution to Zermelo's set theory

� 1917 Critical of set theoretical foundations

� 1918 De�nitionism (�a la Poincar�e)

� 1920 Joins Brouwer's intuitionistic program and criticizes Hilbert's pro-

gram

� 193? Gradual disillusionment with intuitionism

� 193? Rea�rmation of value of 1918 contribution
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� 1953 Torn between \constructivity" and \axiomatics"

The 1910 work and its contribution to set theory has already been men-

tioned. But from 1917 on, Weyl was critical of set theoretical foundations,

and he seems to have remained critical in that respect for the rest of his life.

On the other hand, in his own mathematical practice he seemed to accept

set theory to a certain extent, and it is not clear how he resolved the two. It

is not uncommon, of course, that people will say one thing during the week

and something else on Sundays; perhaps this is another aspect of the same

thing.

In 1918 Weyl published his monograph Das Kontinuum in which he pro-

duced his own approach, and which represents a form of de�nitionism, ac-

cording to which all mathematical objects that one deals with have to be de-

�ned; but there is an irreducible unde�nable minimum and that irreducible

minimum is simply the structure of the natural numbers. So it is a notion

of de�nitionism, modulo (or given) the natural numbers; in that he followed

Poincar�e.

In 1920 Weyl made his break with his own approach and shifted radically

to Brouwer's intuitionistic program, and, also at the same time, criticized

Hilbert and his program (cf. Weyl (1921) and van Dalen (1995)). As you

can imagine, that upset Hilbert quite a bit in his quarrels with Brouwer,

since Weyl was his former student, and I guess Hilbert had thought of him

as an ally. Weyl's criticism of Hilbert in this respect also lasted apparently

all through his life.

At a certain time in or by the 1930s (and that is why I put 193? in the

dates above) Weyl became disillusioned with the Brouwerian development;

let me read you a passage from the Philosophy of Mathematics and Natural

Science (1949), where he says:

Mathematics with Brouwer gains its highest intuitive clarity. He

succeeds in developing the beginnings of analysis in a natural

manner, all the time preserving the contact with intuition much

more closely than had been done before. It cannot be denied,

however, that in advancing to higher and more general theories

the inapplicability of the simple laws of classical logic eventually

results in an almost unbearable awkwardness. And the mathe-

matician watches with pain the larger part of his towering edi�ce

which he believed to be built of concrete blocks dissolve into mist

before his eyes. (Weyl (1949), p. 54)
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Concerning the second shift in the 1930s indicated above, if you read Weyl

(1949), you see various passages|and I quote them in my 1988 paper|in

which, in e�ect, he says: \Well I really did do something important in 1918,

something that was valuable and something that still has permanent value"|

he is being modest about it but rea�rms his earlier accomplishment.

Finally, Weyl gave a lecture in 1953 that was published posthumously in

1985 in the Mathematical Intelligencer, in which he talks about being torn

between constructivity and axiomatics. He seems there to take constructiv-

ity in a rather general sense as a kind of genetic creation of mathematical

objects. By axiomatics he meant mathematics developed on systematically

organized axiomatic grounds such as in group theory, Hilbert space theory,

topology, and so on; he did not necessarily mean axiomatics in the sense of

mathematical logic.

Let us now return to Weyl (1918) and to its relations with the ideas of

Poincar�e and of Russell, who took up the criticisms of Poincar�e. People were

very much concerned about the paradoxes which emerged towards the end

of the 19th century and the beginning of the 20th century. The naive idea

was that given any property �(x) there is associated with it its extension:

the set or the class of all x's which satisfy �, fxj�(x)g. As we know, a simple

application of this leads to Russell's paradox: if you take the set r of all x's

such that x is not an element of x, i.e. fx j x =2 xg, then r is both an element

of itself and not an element of itself, which is a contradiction.

So, in 1905 Russell asked the question: which predicates determine ex-

tensions? He introduced the word predicative for a property which can be

predicated in such a way that it has an extension. From that we derive the

word impredicative, or non-predicative, for predicates which look as if they

express reasonable properties, but of which we cannot say that they have an

extension. Then the question is: how can we characterize the predicative

properties; alternatively, which are the impredicative properties?

Poincar�e had an answer that came from his analysis of the paradoxes. As

a paradigm, Poincar�e referred mainly to the paradox found by Jules Richard,

which was a kind of paradox about de�nability in natural language. It con-

cerns the set of de�nable real numbers: assumedly, you can enumerate all

de�nitions of de�nable real numbers, but then by diagonalization you can de-

�ne a number which is not in that enumeration, so you have a contradiction.

Poincar�e saw in that paradox, and other paradoxical arguments, a vicious

circle|as he put it: in such paradoxes you de�ne an object which essentially

assumes the existence of a totality which contains that object as a member.
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But, according to Poincar�e, in order to de�ne an object by reference to a

totality, that totality must precede the de�nition. If not, the de�nition is

unsound, there is a vicious circle, and the de�nition is impredicative.

Now, we have many real-life de�nitions which are impredicative. For

example, if we talk about the tallest person in this room, then we are singling

an object out of the totality of objects in this room, by reference to that

totality. But the question is: is that the only way in which to determine that

individual? No, in that case we have other ways, and we can identify such

a person in many di�erent ways. Similarly in number theory. For example

there are the famous theorems that every natural number is the sum of at

most four squares, and every natural number is a sum of at most nine cubes.

And, more generally, by Hilbert's solution to the Waring problem, there is for

each k a numberm, such that every natural number is the sum of at most m

k'th powers. What is the least number m for which that is possible? On the

face of it, that is an impredicative de�nition, since it picks out that number

m by reference to the totality of natural numbers. In the case of k = 2 it is 4,

and in the case of k = 3; m is 9. We don't know the value of m for k > 3, but

we believe that it has another description, that the number exists prior to

having been picked out in this way. So this is not an essential impredicativity.

But in set theory we are dealing with much more general notions, and if you

have the idea that sets are introduced by de�nitions, and by de�nitions only,

then you have to look for what is the source of impredicativity in forming

an extension, that is, the class of x satisfying �(x), fxj�(x)g, or in Russell's

symbolism bx�(x).
Russell agreed with Poincar�e that the source of the logical and math-

ematical paradoxes lay in the appearance of a vicious circle: in each case

there is a presumed totality out of which one member is singled out by ref-

erence to that totality in a way that depends essentially on the presumption

of that totality. For example, Russell's paradox presumes that the totality

of all classes x exists, in order to single out the class of all those classes x

for which x =2 x. As we saw, Poincar�e argued that such apparent de�nitions

are improper: an object is to be de�ned or determined only in terms of prior

objects, notions and totalities; only those are predicative. Russell turned

Poincar�e's proscription of impredicative de�nitions into his Vicious Circle

Principle (VCP):

No totality can contain members de�ned [only] in terms of itself.

There have been considerable discussions about just what Russell's VCP
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says and there have been various criticisms of it. Just to mention two refer-

ences, G�odel had a very interesting article (1944) on Russell's mathematical

logic that contained an extensive critique; another useful source is the book

by Charles Chihara, Ontology and the Vicious Circle Principle (1973). I do

not want to get into any elaboration of the VCP or try to justify it but you

should just have the understanding that if you are going to pursue a de�-

nitionist philosophy of mathematics, in the sense that you believe that all

objects are supposed to be|in some sense|de�ned eventually in terms of

certain basic ones, and that among the objects you want to deal with are

classes, then you are going to con�ne yourself to de�nitions where everything

that occurs in the de�nition is prior to what is actually being introduced by

that de�nition.

Russell's main struggle was to turn the VCP into a logically useful crite-

rion for which de�nitions of classes bx�(x) (in present-day symbolism, fxj�(x)g)

are to be admitted as predicative. He identi�ed the source of possible vio-

lations of the VCP in the unrestricted use of bound variable in bx�(x); in
Russell's terminology, these were called apparent variables. Thus, one re-

formulation he took of the VCP was:

Whatever contains an apparent variable must not be a possible

value of that variable.

Such apparent variables have two kinds of occurrences in expressions of the

form bx�(x): �rst in the variable `x' itself, and second within any quanti�ers

`8y' or `9y' that occur in �. Russell used this observation to employ the VCP

in a positive way in an axiomatic system for predicatively de�ned classes, in

what is called the Rami�ed Theory of Types (RTT). That is the basic sys-

tem of the magnum opus of Whitehead and Russell, Principia Mathematica,

published in three big volumes between 1910 and 1913.

Two kinds of restrictions were made there in order to meet the second

form of the VCP enunciated above. One is a division into types in the

ordinary sense of the word, and the other is into orders or levels of de�nition.

The basic picture is that one starts with a collection of individuals at type

0, then we have a collection of classes of individuals, which would be type 1,

then classes of classes of type 1|that would be type 2, and so on. A natural

restriction is that you can only ask whether an object of type n belongs to an

object of type n+1. Further, we have to talk of levels of de�nitions: we assign

a level to an abstract bx�(x) in such a way that its level is greater than the

levels of all bound variables that occur in �, including `x' itself (without this
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second distinction as to levels of de�nition, the system obtained would just

be the Simple Theory of Types.) Within the rami�ed theory, the type/level

classi�cation can be combined to a single ordering of variables of di�erent

sorts.

What Russell aimed to accomplish in Principia Mathematica was an ex-

ecution of the logicist program, more or less along the lines that Frege had

hoped to achieve, reducing all of mathematics to logic2. However, Russell

had to modify the logicist program in order to go along with the Vicious

Circle Principle and thus to set up his formalism in terms of Rami�ed Type

Theory. Now, what did the logicist program come to in the case of the nat-

ural numbers? The notion of equinumerosity is the basis of the concept of

natural number: two classes are equinumerous if they are in one-to-one cor-

respondence, and cardinal numbers are simply the equivalence classes under

this equivalence relation of equinumerosity. And, �nally the natural numbers

are just particular kinds of cardinal numbers, namely, the �nite ones. So, in

that way the notion of number comes out of a general theory of classes in a

kind of Fregean approach.

Classes were to be conceived of as logical objects, as extensions of predi-

cates. To the extent that Russell's explanation of mathematical notions and

results in RTT would succeed, that would constitute a reduction of math-

ematics to logic. But now we do not have classes without restriction, only

classes of type 0, of type 1, of type 2, and so on. Moreover, in each type we

have classes of di�erent levels. So we do not have one de�nition of natural

number, but we have natural numbers in every (appropriate) type and level.

In more detail: when we ask what the natural numbers are, we have to start

with the number 0, and we have also to de�ne the successor operation on car-

dinal numbers, and, �nally, de�ne the natural numbers as the smallest class

which contains 0 and which is closed under successor. But, when one says

\smallest class", one has a quanti�er ranging over classes: something belongs

to the smallest class satisfying a certain condition only when it belongs to

all classes satisfying that condition. But in RTT we cannot talk about all

classes unrestrictedly, we can only talk about classes of a certain type and

level. Therefore we have not just one notion of natural number, but a notion

of natural number in each appropriate type and at each appropriate level of

(predicative) de�nition.

Obviously, this should have been disturbing to Russell. To get around

2Actually, Frege did not include geometry in his program.
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that, he had some idea of what he called typical ambiguity, which was: what-

ever you do in one of these types and levels of de�nition looks the same as

what you do at every other type and level. A case could be made for that

in arithmetic, but it is when we come to the real numbers that we get into

serious problems about the logical foundations of mathematics in RTT. Real

numbers may be identi�ed|if one is going to reduce them to something

more basic|in terms of rational numbers, either as Cauchy sequences or as

Dedekind sections of rational numbers. Rational numbers can, of course, be

built up by pairing from natural numbers or integers, so there is no problem

about that, assuming a suitable notion of pairing. But real numbers then ap-

pear as objects of a higher type than rational numbers, basically one higher

type, and so if we have the natural numbers as equivalence classes in types

n � 2, then the real numbers will be in the next higher type on up, so again

one does not have one notion of real number, but a notion associated with

each (appropriate) type and level. Now, when one comes to verifying the

least upper bound axiom for real numbers, one �nds that if you are dealing

with a class of real numbers of a certain level then the least upper bound

axiom has to take you to a higher level though within the same type. The

invocation of typical ambiguity does not serve to deal with this problem. You

cannot stay within the level, you always have to go to higher levels in order

to satisfy the least upper bound axiom. And since that seems to be a basic

essential principle of analysis, RTT proves to be unworkable mathematically.

For that purely pragmatic kind of reason, Russell introduced what is called

the Axiom of Reducibility, which basically says: anything which is de�nable

at a higher level is coextensive with something which is introduced in the

most basic level. Formally, for type 1 variables, this takes the form

8X(j)
9Y (0)

8n[n 2 X(j)
, n 2 Y (0)]

where X(j) is a variable of type 1 and level j, Y (0) a variable of type 1 and

level 0, and n is a variable of type 0.

In e�ect this eliminates the distinction between levels of de�nition and

wipes out Rami�ed Type Theory in favor of the impredicative Simple Theory

of Types. Russell, in the introduction to the second edition of Principia

Mathematica, said that he realized that pragmatic necessity was not a good

fundamental reason for accepting the Axiom of Reducibility. But he seemed

to feel that some such justi�cation could eventually be given for it.

Weyl, as I said, allied himself with Poincar�e, and did not accept the

logicist program of trying to reduce all of mathematics to logic, which would
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have to start with a de�nition of the natural numbers. Instead, he said that

the natural number system was an irreducible minimum of mathematics and

that we would have to accept proof by induction and de�nition by recursion as

basic principles. He also rejected the Axiom of Reducibility on the grounds

that it was "k�unstlichen und unbrauchbar", i.e. arti�cial and unworkable.

Weyl also said of the Axiom of Reducibility, that it was this \chasm" which

separated him from Russell.

So, Weyl was a predicativist in the sense that he was only going to deal

with things that were introduced by de�nition, but not an absolute predica-

tivist in the sense that everything had to reduce to purely logical principles|

rather, a predicativist given the natural numbers. Now, there are di�erent

ideas as to what predicativity means and I do not want to go into those, but

one could think of it as a kind of a relative stance: if one understands or

grants certain concepts, then what is predicative given those concepts is that

which is obtainable by successive de�nition from them.

Weyl's system, reconstructed. I want to turn now to the axiomatics

of Weyl's system. What he is doing here, you will see, is to work with the

assumption that we have the natural numbers, that those are given and that

basic constructions on the natural numbers are accepted. The main question

then is: which sets (or classes) of natural numbers are we to deal with?

Since Weyl does not want to use a rami�ed system because that leads to

unworkable formulations of notions, he basically con�nes himself to level 0

sets de�nable in terms of the natural number structure. That is, we are not

going to use|in the de�nitions of sets of natural numbers|bound variables

ranging over sets of natural numbers of various levels; we are only going to

use bound variables ranging over the natural numbers. On the other hand,

we should be able to talk (by quanti�cation) about properties of \arbitrary

sets". So from a modern point of view, the syntax of Weyl's system looks as

follows.

� Variables for natural numbers: x; y; z; � � �

� Variables for sets of natural numbers: X; Y; Z; � � �

� Primitive recursive functions: 0; 0; f; g; � � �

� Individual terms: s; t; � � �
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� Atomic formulas: s = t; t 2 X

� Formulas: :�; � ^  ; � _  ; �!  ; 9x�; 8x�; 9X�; ;8X�

In words, we have variables for natural numbers and variables for sets of

natural numbers. We have constructions on natural numbers: 0, successor(0)

and various primitive recursive functions like addition, multiplication, and

so on. Individual terms, i.e. terms representing natural numbers, are built

from variables and the constant 0 by these primitive recursive operations.

And the kinds of basic questions we can ask are whether two terms are equal

or whether a term belongs to a set. Then we have properties expressible in

this system by the logical operations of negation, conjunction, disjunction,

implication, existential and universal quanti�cation over natural numbers

and over sets. Weyl accepts classical logic here, and, in a sense, accepts the

natural numbers as a completed totality for which that is appropriate. In

the intuitive sense of the word, they form the only completed totality in his

system.

A formula is called arithmetical if it does not contain bound set vari-

ables. So, an arithmetical formula de�nes a property which refers only to

the totality of natural numbers but does not refer to the totality of sets of

natural numbers. This leads to a system which is called ACA0. `ACA'

is an acronym for the Arithmetical Comprehension Axiom, and the sub `0'

indicates a certain kind of restriction on the induction axiom that will be

explained.

Axioms for ACA0

I Peano Axioms for 0; 0

II De�ning equations for f; g; � � �

III Induction Axiom

8X[0 2 X ^ 8x(x 2 X ! x0 2 X)! 8x(x 2 X)]

IV Arithmetical Comprehension Axiom

9X8x[x 2 X $ �(x)]

for each arithmetical �, where the variable X is not in �.
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ACA0 is a modern formulation of Weyl's system. In words: it takes

Peano's Axioms for 0 and successor, i.e. that 0 is not a successor, and succes-

sor is a one-to-one function. For each primitive recursive function one takes

its de�ning equations. Induction is given as a single axiom, which says that

any set which contains 0 and is closed under successor, contains all natural

numbers. The Arithmetical Comprehension Axiom tells us which sets are

guaranteed to exist. It is a scheme, each instance of which is given by an

arithmetical formula �(x), and says that there is a set, X, which � de�nes.

So for those particular kinds of formulas we can speak of this set X as the

set of all x's satisfying �(x).

The system in which we take, instead of the induction axiom III, the

induction axiom scheme, which allows us to apply induction to any property

formulated within the system, is called ACA nowadays. This scheme has

the form

III0 �(0) ^ 8x(�(x)! �(x0) )! 8x�(x); for each formula �:

Note that in III0, � may contain bound set variables. Only those instances

of III0 for � arithmetical can be derived in ACA0, from III and IV.

There is an ambiguity in Weyl's system, because it is not clearly for-

malized in his 1918 monograph, as to whether he accepts just III or, more

generally, III0. In fact, though, for all the mathematical work that he does

in his system, III su�ces, but that is only veri�ed by careful examination

of the proofs. There are other ambiguities in Weyl's formulation that I do

not want to go into, which are spelled out in my \Weyl vindicated" article

(Feferman 1988).

Given this system, and working informally with its basic principles in

mind, what part of analysis can you do? We have the natural numbers, N,

and pairing on N is given by a primitive recursive function. Then we de�ne

the integers Z as usual, as pairs of natural numbers representing di�erences,

and the rationals Q as pairs of integers representing quotients. All this

is obtained in a standard constructive way from the natural numbers. So

the elementary theory of N, Z and Q still stays at the level of the natural

numbers.

It is only when we come to the real numbers that we have to step up

in type. And, as I said, we can treat these either by Cauchy sequences of

rationals or by Dedekind sections. Weyl chose to treat them in the latter

way, and I follow that here. In my third lecture I will talk about a di�erent
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predicative approach which makes use of Cauchy sequences instead, but the

main results are the same.

The idea of Dedekind sections is that every real number is associated

with, and is determined by, the set of all rational numbers which are less

than it. Now, the construction of real numbers goes by looking at those

sets of rational numbers which are closed to the left in the usual ordering,

have no largest element and which do not exhaust the totality of rational

numbers; that is the notion of a (lower) Dedekind section. Real numbers,

then, are identi�ed with Dedekind sections, and you can then de�ne addition,

multiplication, and so on for real numbers in a standard way.

The usual Least Upper Bound Axiom, LUB, says that every set of reals

which is bounded above has a least upper bound. How does this principle

look in Weyl's system? A set S of real numbers is a subset of the set Ded(Q)

of all Dedekind sections in the rationals, S � Ded(Q). If we have a non-

empty set of Dedekind sections and it is bounded above then its least upper

bound has to be another Dedekind section. Considered set theoretically, the

way in which that Dedekind section, lub(S) is obtained from the set S is just

by forming the union of S:

lub(S) =
[
S

So, what is wrong with that, if anything? Well, if the set S is given by a

property  ,

X 2 S $  (X);

then the rationals q which belong to the union
S
S are just those objects

which belong to some element of S, in other words, just those for which there

exists a set, X, such that  (X) holds and such that q belongs to X:

q 2
[

S $ 9X[ (X) ^ q 2 X]

FromWeyl's point of view this is an impredicative de�nition, because it refers

to the totality of subsets of the natural numbers, by quanti�cation over sets.

And that is not derivable in his system, which only uses the Arithmetical

Comprehension Axiom. So, you cannot derive the least upper bound axiom

in its most general form in ACA0 (or even ACA).
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But Weyl observed that you can derive the Least Upper Bound axiom,

not for sets of real numbers, but for sequences of real numbers. A sequence

of real numbers, hXnin2N, in the sense of a sequence of Dedekind sections of

Q, is simply given by a subset X of N�Q; whose sections are just the terms

of the sequence hXnin2N, i.e.

q 2 Xn $ hn; qi 2 X:

The least upper bound of the sequence is then the union, now over natural

numbers, of its terms, i.e.

lubn2N(Xn) =
[
n2N

Xn

A rational q, belongs to such a least upper bound simply if there exists a

natural number, n, such that hn; qi belongs to X:

q 2 lubn2N(Xn)$ 9n(hn; qi 2 X):

That is just an arithmetical de�nition, it only involves arithmetical quanti�-

cation, and it is therefore predicative in Weyl's sense. It is thus acceptable

within the system ACA0.

The natural question then is: if you go back to doing analysis and you do

not allow the least upper bound axiom, LUB, for sets, but you do have it for

sequences, what can be done and how much of what you did before can still

be done? You may not accept Weyl's argument for why one should restrict

oneself to predicative de�nitions. But given that that was what he wanted

to do on philosophical grounds, you cannot do real analysis with the LUB

axiom taken in its usual sense. However, you can try to see what you can do

if you just apply the LUB axiom to sequences rather than to sets.

There is a little bit of a puzzle here because in everyday reasoning the

LUB axiom for sets is equivalent to that for sequences. That the former

implies the latter is trivial, but one needs the Axiom of Choice (AC) for

the converse. The argument is that if you have a set of real numbers which

does not contain a largest element then beyond any real number in the set

there is another real number in the set which is greater than it, so using AC

there exists a sequence whose limit is the same as the supposedly least upper

bound of the set. In that way you reduce the least upper bound axiom for

sets to that for sequences, but at a price, namely assuming AC, and that is
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not justi�ed predicatively. (However, it is, in certain special forms involving

an extension of predicativity beyond ACA0. But even those forms are not

enough for the usual formulation of theorems involving the LUB axiom for

sets in standard set-theoretical foundations of analysis.)

The following example illustrates the di�erence between these two ways

of spelling out the LUB principle. A basic theorem of analysis is the Heine-

Borel theorem, which states that every closed interval of real numbers is

compact: i.e., if we have an arbitrary covering of the closed interval by open

intervals or more generally by open sets, then a �nite sub-covering exists.

That is not provable in the system ACA0. (One can give an independence

argument by a suitable model, and there are even arguments to show, in

a strong way, why it is an impredicative theorem.) What you can prove

is the so-called sequential compactness of the closed interval, the Bolzano-

Weierstrass theorem, which says that any bounded sequence of real numbers,

not necessarily Cauchy, contains a Cauchy sub-sequence. That is a very

special consequence of compactness in the usual sense of the word.

This raises the question: which theorems depending on compactness can

be done using only sequential forms? For example, if you read standard

introductions to analysis, you �nd the theorem that a continuous function

on a closed interval is uniformly continuous. On the face of it, that uses the

Heine-Borel theorem, but in fact you can prove in this case that you only

need the Bolzano-Weierstrass theorem. The theory of Riemann-integration

of continuous functions depends on their uniform continuity, and you can

proceed in a standard way from there.

That is one point as to how to get o� the ground in ACA0. The sec-

ond point is that if we are going to talk about functions of real numbers

we have in general to go one type higher, because a function is an opera-

tion from Dedekind sections to Dedekind sections. However, if we are only

talking about continuous functions we can manage without higher types. A

continuous function Y=F(X) (say on an interval) is determined by its values

at rational numbers. The rationals are embedded in the reals, considered as

Dedekind sections via the association (for q 2 Q):

q 7! Xq = fr 2 Q j r < qg:

Then the function F is determined by

�q:F (Xq):
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The graph of the function F at rational arguments to Dedekind sections is

then given by the set

Z = fhq; ri 2 Q�Q j r 2 F (Xq)g:

Therefore, we can reduce the properties of continuous functions to proper-

ties of subsets of pairs of rational numbers. In other words, for continuous

functions we do not have to raise the type, we can stay at the level of type

2, the type of sets of natural numbers.

Examples of theorems. Listed next are some examples of theorems that

Weyl proved in Das Kontinuum and which can be formalized in ACA0
3. Ba-

sically he showed that all the properties of stepwise continuous functions that

have been established in the 19th century foundations of analysis hold in his

system, and he showed how various results in applications to mathematical

physics could be derived within the system. These include:

� Max and min for continuous functions on an interval [a; b]

� Mean-value theorem for continuous functions on an interval [a; b]

� Uniform continuity of continuous functions on an interval [a; b]

� Existence of Riemann integral of (stepwise) continuous functions

� Fundamental Theorem of Calculus

Which particular functions can we deal with in Weyl's system (as given

by ACA0)? Well, all the familiar functions, e.g. trigonometric, exponential,

and all that we can represent by power series, and all that can be represented

in sequential forms, etc., can be reconstructed within the system. Various

functions represented by Fourier series can be treated there, and so, basically,

all reasonable 19th century analysis can be reconstructed, or redeveloped, on

the basis of Weyl's system.

Limitations of Weyl's system. However, we cannot live with 19th century

analysis in modern applications of analysis; these require extensive functional

3The recent volume, Simpson (1998), contains a substantial body of information about

what mathematical theorems can be proved in ACA0. In continuation of the \Reverse

Mathematics" program inaugurated by Harvey Friedman, many of these are shown to be

equivalent to the Arithmetical Comprehension principle over a weaker system.
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analysis and various kinds of higher function spaces: Banach spaces, Hilbert

spaces, etc. These spaces make use of possibly very discontinuous functions,

for instance various kinds of measurable functions.

To begin with, we have to deal with classes of functions from the real

numbers to real numbers, such as the continuous, Lebesgue measurable, L2

functions etc., which form reasonable spaces, in some sense, of modern anal-

ysis. But once we go beyond continuous functions, it is not so obvious that

we can deal with these at the type level of continuous functions, which can

be reduced to type 2. Moreover, when we deal with functionals applied to

such spaces, we are going to a still higher type. This leads to obvious limi-

tations of Weyl's system. Natural 20th century mathematical talk requires

us to deal with abstract function spaces and with functionals and operators

on these spaces. And it is necessary to deal with the spectral properties of

operators on these spaces and many other advanced topics. It is not obvious

how all this can be developed in Weyl's system. However, these problems

are handled in modern extensions of Weyl's system, and that is what I will

devote part of Lecture 3 to.

As a logical footnote to that, the systemACA0, which I described here, is

a conservative extension of Peano Arithmetic, even though it employs second

order concepts. We would like to see whether there are more 
exible systems

which allow us to deal with notions of higher type, and which are reducible

to Peano Arithmetic in a similar way. In the next lecture we shall see that

there exist many new predicative and constructive systems, which extend

the ideas of Weyl and Brouwer, and that it is possible to prove very strong

reduction results for such systems.
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