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What kind of logic is “Independence Friendly” logic? 
Solomon Feferman 

 

1. Two kinds of logic.  To a first approximation there are two main kinds of pursuit in 
logic.  The first is the traditional one going back two millennia, concerned with 

characterizing the logically valid inferences.  The second is the one that emerged most 

systematically only in the twentieth century, concerned with the semantics of logical 
operations.  In the view of modern, model-theoretical eyes, the first requires the second, 

but not vice-versa.  According to Tarski’s generally accepted account of logical 
consequence (1936), inference from some statements as hypotheses to a statement as 

conclusion is logically valid if the truth of the hypotheses ensures the truth of the 

conclusion, in a way that depends only on the form of the statements involved, not on 
their content.  Interpreted model-theoretically this means that every model of the 

hypotheses is a model of the conclusion.  However, there is an ambiguity in Tarski’s 

explication, as he himself emphasized, since for the specification of form one needs to 
determine what are the logical notions.  Once those are isolated and their semantical roles 

are settled, one can see how the truth of a statement (in a given model and relative to 
given assignments) is composed from the truth of its basic parts, in whatever way those 

are specified.  The problem of what are the logical notions is an unsettled and 

controversial one (cf. Feferman 1999, Gómez-Torrente 2002).  In the classical truth-
functional perspective, proposals range from those of first-order logic to generalized 

quantifiers to second and higher-order quantifiers to infinitary languages and beyond.  
Many of these stronger semantical notions have been treated in the volume Model 

Theoretic Logics (Barwise and Feferman 1987).    

 In a series of singular, thought-provoking publications in recent years, Jaakko 
Hintikka has vigorously promoted consideration of an extension of first-order logic called 

IF logic, along with claims that its adoption promises to have revolutionary 
consequences. My main purpose here is to examine in what sense it deserves to be called 

a logic.  On the face of it, IF logic fits squarely into the semantic approach, but I shall 

argue both that the fit is problematic, and that the neglect of the inferential aspect of logic 
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in its use constitutes a serious defect.  Along the way, I shall raise concerns of a 

philosophical nature concerning its underlying semantics.   
 

2. IF logic.  The primary reference that I shall use in the following for Hintikka’s work 
on IF logic is The Principles of Mathematics Revisited (Hintikka 1996, referred to below 

as PMR).  The basic idea is very simple, and is sketched here in order to make this piece 

reasonably self-contained.   
 When sentences of the first-order predicate calculus are put in prenex normal 

form, the usual semantics makes each existential quantified variable y dependent on all 
the universally quantified variables in whose scope it lies, i. e. which precede it in the 

prefix.  This dependence is made explicit in the language of Skolem functions, whose use 

in general in the semantics requires the Axiom of Choice.  To illustrate, if a sentence S 
takes the following prenex form,  

(1)   ∀x ∃y ∀z ∃u R(x, y, z, u) 

where R is the quantifier-free matrix, its Skolem equivalent is of the form 

(2)   ∃f ∃g ∀x ∀z R(x, f(x), z, g(x, z)). 

In the language of game theoretic semantics, S is true in a given structure M = 〈M, ...〉 

just in case V (“Verifier”) has a winning strategy (f, g) in the associated evaluation game 
(cf. van Benthem, this volume).  At each move by V in this game over M the choice of 

next move is based on complete information about the preceding moves by F (“Falsifier”) 

who first chooses an a ∈ M to which V responds with a choice of some b ∈ M; following 

that F chooses a c ∈ M, to which V responds finally with a choice of some d ∈ M.  For 

this sequence of choices, V wins if R(a, b, c, d) is true in M, otherwise F wins.   
 Motivated in part by games with imperfect information, Hintikka and Sandu 

(1989) proposed consideration of semantic games where V’s choices do not depend on all 
(or, indeed, any) of F’s prior choices.  In the case of (1) above, this leads to the following 

possible independencies from earlier universally quantified variables: (i) y can be 

independent of x and (ii) u can be independent of the variables in a subset of {x, z}, for 
example it can be independent of z.  These particular independence relations are indicated 

by: 
(3)   ∀x ∃y/∀x ∀z ∃u/∀z R(x, y, z, u) 
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or equivalently, 

(4)   ∃y ∃g ∀x ∀z R(x, y, z, g(x)). 

Since this depends on declarations of independence, Hintikka called the resulting 
semantics of sentences such as (3), Independence Friendly Logic, or IF logic for short.i 

More recently, Hintikka (2002) has proposed to call this Hyperclassical Logic instead, 
but I shall follow the earlier designation since it is more suggestive of the basic idea 

involved, and also because it was used in all the prior publications on the subject.  One 

difference here: in PMR Hintikka refers to this consistently as IF first-order logic, but 
since that is tendentious and the main bone of contention in this piece--see below--I will 

omit the “first-order” part except when quoting directly.  Even the use of “logic” may be 

considered tendentious, in view of my arguments below, but I shall at least follow 
Hintikka in retaining that part of the name for the subject.  

 Another source of motivation for IF logic is the study of branching quantifiers, 
introduced by Henkin and pursued by Walkoe (1970), Enderton (1970) and Barwise 

(1979), among others.  The paradigm example is given by 
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where y depends only on x and u only on z.  Such quantifiers are subsumed by IF logic in 

terms of the independence notation, e. g. as 
(6)   ∀x ∀z ∃y/∀z ∃u/∀x R(x, y, z, u). 

 Because ordinary first-order logic lacks the capacity to indicate such relations of 

independence between bound variables, Hintikka calls it dependence handicapped or 

independence challenged (Hintikka 2002, p. 408).  By comparison, he asserts that  
 

[u]nder any term [IF logic] is the general unrestricted first-order logic.  Some 
philosophers have been so blindly committed to the “ranging over” idea as the 

whole truth about quantifiers that where this idea fails, as it fails in IF logic, they 

have jumped to the conclusion that such a logic must somehow be higher-order.  
This is nonsense by their own criteria, for the only reasonable way of making the 

first-order vs. higher-order distinction is in terms of the entities one’s quantified 
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variables range over.  And by this criterion IF logic first-order logic is indeed 

first-order.  (Hintikka 2002, p. 409). 
 

This remarkable claim cannot go unchallenged.ii 
 

 Before getting into these issues, I need to introduce some more precise 

terminology concerning IF logic, in this respect following PMR only in part.  As Hintikka 
explains, the logic in general applies to sentences in negation normal form (i.e., in which 

negation appears at most applied to atomic formulas) that are built up by means of the 
operations ∧, ∨/∀x, ∀u and ∃y/∀x, under the following restrictions: x is a sequence of 

variables, u and y are any variables, y is not in x, and each ∨/∀x and ∃y/∀x is in the 

(eventual) scope of all the ∀xi for each xi in x.  (Slashes are dropped if the sequence x is 

empty.)  Formulas generated along the way are called IF-formulas, and those without free 
variables are called IF-sentences.  The semantics of the “slashed” disjunctions is 

illustrated by the case of an IF-sentence of the form 
(7)   ∀x∀z [A ∨/∀z B],  

where A and B are IF-formulas.  Given a distinguished constant 0, to show independence 
of the disjunction from the variable z, (7) is taken to hold just in case 

(8)   ∃f∀x∀z[ (f(x) = 0 ∧ A) ∨ (f(x) ≠ 0 ∧ B) ]. 

This has the same truth conditions as the IF sentence, 
(9)   ∀x∀z∃u/∀z[ (u = 0 ∧ A) ∨ (u ≠ 0 ∧ B) ]. 

In view of these equivalents, for simplicity we ignore slashed disjunctions in the 

following, and take IF-sentences to be built up from atomic formulas and their negations 

by ∧, ∨, ∀u and ∃y/∀x, under the restrictions on variables given above.  Every IF-

sentence can be brought as usual to a prenex normal form in which there is an initial 
quantifier prefix consisting of quantifiers of the form ∀u and ∃y/∀x, in which the latter 

occur within the scope of earlier ∀xi for each xi in x; the matrix of such a formula is 

quantifier-free.  These are called here prenex IF-sentences; the initial sequence of 

quantifiers is called the  

IF-quantifier prefix of such a sentence.  The Skolem form of a prenex IF-sentence S is of 
the form  
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(10)   ∃f∀u R(f, u),  

where f is a sequence of function variables fi of various numbers of arguments (possibly 

zero); each fi  is associated with a (possibly) slashed existential quantifier ∃yi/∀x(i) in the 

original IF-quantifier prefix of S and each occurrence of that yi in the matrix of S is 
replaced by fi(w(i)), where w(i) is the list of variables in u other than those in x(i). 

 Sentences of the form (10) are said to be in Σ1
1-form.  Walkoe (1970) and 

Enderton (1970) showed how to associate with every Σ1
1  sentence a prenex IF-sentence 

to whose Skolem form it is equivalent, in the sense that they are true in the same models.  

When the Skolem form of an IF-sentence S is satisfied, the realization of the function 
quantifiers encodes the winning strategy for Verifier in the (possibly) imperfect 

information game for S.  Such semantics is seemingly “top-down” or “from the outside 
in”, in contrast to usual model-theoretic Tarskian style semantics which is “bottom up” or 

“from the inside out”, i.e. is compositional.  On the face of it--as Hintikka repeatedly 

stresses (and argues as a virtue)--compositional semantics is not in general available for 
IF-sentences built up from IF-formulas.  For, without the universal quantification of the 

variables in x preceding a slashed existential quantifier ∃y/∀x, no explanation of the 

semantics for the latter can be given by a recursive definition of satisfaction in the usual 

way.  However, as has been shown by Hodges (1997), (1997a) there is a perfectly 

reasonable compositional semantics for IF-formulas; this is obtained by taking the 

satisfying objects to be sets of sequences of individuals, rather than sequences of 
individuals in the ordinary way following Tarski.  Hodges’ work has been extended by 

Väänänen (2002) to show that the semantics of IF-formulas can be treated in terms of 

suitable games of perfect information.   

 

3. Generalized first-order logical operations.  Let us follow up the assertion that “the 
only reasonable way of making the first-order vs. higher-order distinction is in terms of 

the entities one’s quantified variables range over,” quoted from Hintikka (2002) above.   

Syntactically, a generalized first-order logical operation O applies to predicates of 
individual variables P1,...,Pk of n1,...,nk arguments respectively.  As defined by Lindström 

(1966), the semantics for such an operation can be specified by a collection K of 
relational structures M = 〈M, R1,...,Rk〉 closed under isomorphism, in which the domain M 
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is non-empty and each Ri is an ni -ary relation between elements of M.  This determines, 

as follows, an operation OKx(1),...,x(k) (P1(x(1)),...,Pk(x(k))) where x(i) is a sequence of ni 
distinct variables and x(i) is disjoint from x(j) when i and j are different.  For any structure  

M = 〈M, R1,...,Rk〉 providing an interpretation of each Pi by an ni-ary relation Ri between 

elements of M, OKx(1),...,x(k) (P1(x(1)),...,Pk(x(k))) is satisfied in M if and only if  
M is in K.   

 We call such OK generalized quantifiers; the usual quantifiers ∀ and ∃ can be 

treated as special cases by taking K to be the class of all 〈M, R〉 with R ⊆ M such that  

R = M, and R ≠ ∅, respectively.  By allowing the ni to be 0, all the usual propositional 

operations also fall out as generalized quantifiers in this sense.  Further familiar examples 

are determined by the following classes of structures: 
(1) For any infinite cardinal number κ, let K be the class of all 〈M, R〉 with  

R ⊆ M and card(R) ≥ κ.  Then OKx (P(x)) expresses that there are at least κ x’s such that 

P(x).  This operation OK is usually denoted ∃≥ κ. 

(2) Let K be the class of all 〈M, R1, R2〉 with R1 ⊆ M and R2 ⊆ M such that card(R1) ≥ 

card(R2).  Then OKx,y (P(x), Q(y)) expresses that there are at least as many x’s such that 
P(x) as there are y’s such that Q(y). 

(3) Let K be the class of all 〈M, R〉 with R ⊆ M2, such that ∃f∀n [ (f(n + 1), f(n)) ∈ R ].  

Then OKx,y (P(x, y)) expresses that the relation determined by P is not well-founded. 

 It is evident from these examples that though the Lindström generalized 
quantifiers are syntactically first-order insofar as the quantified variables are first-order, 

they may be semantically higher-order.  Indeed this is the case for the operations 
determined by (1)-(3), since the notions of cardinality and well-foundedness are 

essentially higher order concepts, requiring either implicitly or explicitly quantification 

over arbitrary functions.   
 The IF-quantifier prefixes may be used to determine generalized quantifiers in 

Lindström’s sense.  For example, with (3) and (4) of the preceding section in mind, the 
prefix ∀x ∃y/∀x ∀z ∃u/∀z may be considered to be the quantifier OK, where K is the 

class of structures 〈M, R〉 with R ⊆ M4 and  

(4)   ∃y ∃g ∀x ∀z [ (x, y, z, g(x)) ∈ R ]. 
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As such, the IF quantifier prefixes are semantically no more first-order than the 

generalized quantifier (3) above, expressing non-well-foundedness.  The issue as to 
whether IF logic deserves to be called a first-order logic is pursued further in the next 

section.   
 Though IF quantifiers can be subsumed under generalized quantifiers in the way 

just explained, there are some obvious differences between Hintikka’s conception of the 

former and the usual treatment of the latter.  Namely, generalized quantifiers can be 
compounded unrestrictedly with themselves and with other quantifiers and the usual 

classical propositional operations.  For example, taking κ to be the least uncountable 

cardinal ℵ1, we can express that there are only countably many P’s by forming 

 ¬∃≥ κx (P(x)), and we can express that there are uncountably many P’s or uncountably 

many Q’s by ∃≥ κx (P(x)) ∨ ∃≥ κ y (Q(y)); finally, for example, ∃x ∃≥ κ y P(x, y) expresses 

that for some x there are uncountably many y for which P(x, y).  Once the semantics of 

the quantifier ∃≥ κ is specified as in (1) above, the truth conditions of such compounds is 

determined compositionally.   
 By contrast, IF operations as given by quantifier prefixes are not compounded 

with themselves or other operations except in a limited sense, and only to the extent that 

they can be treated via game-theoretic semantics (allowing imperfect information), for 
example by taking the conjunction or disjunction of two IF-sentences, brought to a 

common prenex form.  The prime example of an operation which cannot be so treated is 
that of classical or “contradictory” negation (¬), where ¬S is true if and only if S is not 

true.  The operation of contradictory negation does not in general take an IF-sentence to 

another IF-sentence (up to equivalence); that holds only for first-order sentences S in the 

ordinary sense (cf. PMR, p. 133).  Rather a new “dual negation” operation ~S is 
introduced by Hintikka (PMR, Ch. 7), whose semantics is given by the game dual to that 

for S, i.e. ~S is true if Falsifier has a winning strategy in the game associated with S.  We 
do not in general have S ∨ ~S valid since neither Verifier nor Falsifier may have a 

winning strategy, as is commonly illustrated by the case of the IF-sentence ∀x∃y/∀x (x = 

y) when tested in a domain of more than one element.  Similarly there are two operations 
of conditional to be considered in application to IF-formulas S and S′, the one being the 

classical S → S′ [denoted S ⊃T S′ by Hintikka] whose semantics is the same as that of  
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¬S ∨ S′, while the other, denoted S ⊃ S′, is defined as ~S ∨ S′; the latter has game 

theoretic semantics since the disjunction of two IF formulas can be treated as a single IF 

formula.   
 Sentences S* of the form ¬S for S an IF-sentence can be brought to Π1

1 form and 

conversely.  When Hintikka considers the expressive power of IF sentences or their 

negations in this sense, he refers to it as extended IF logic.  Allowing full compounding 

of IF-sentences with ¬, ∧ and ∨ leads to what he calls truth-functionally extended IF-

logic.  As is easily seen, such sentences can be brought to Δ1
2 form, i.e. are equivalent to 

sentences in both Σ1
2 and Π1

2  form.  This is a non-trivial part of full second-order logic; 

the relation to that is examined more closely in the next section.   
 Another difference of IF logic from the semantics of generalized quantifiers is 

that it is not informative to speak of the logic of the latter as a whole.  Rather, what is of 

interest is the logic of one or a few such specific quantifiers considered in combination 
with the connectives and quantifiers of ordinary first-order logic.  This is illustrated by 

the work descending from Mostowski (1957) in which the center of attention is the logic 
of ∃≥ κ in that sense, for various cardinal numbers κ.  For example, as shown by Keisler 

(1970), the logic of “there exist uncountably many” shares many good properties with 

usual first-order logic, including a completeness theorem for validity (which happens not 

to be the case for the logic of “there exist infinitely many”).  By contrast, IF logic is 
simply the logic of arbitrary IF quantifier prefixes and their relations to each other.   

 Thus, though IF logic shares with the logic of generalized quantifiers a model-
theoretic perspective, the concerns in most respects are orthogonal to each other.  In 

PMR, Ch. 1, in opposition to the traditional deductive, inferential function of logic, 

Hintikka identifies model theory with its descriptive function, i.e. with what structures 
can be described or characterized in terms of given sentences.  To be sure, the 

fundamental relation of model theory is that of satisfaction, M |= S, between structures M 

of a specified kind and sentences S from a specified language L.  But that is only the 

beginning, as any text in model theory reveals (cf., e.g., the classic Chang and Keisler 
(1990) and the more recent Hodges (1993)).  In general, one wants to know--given a set Γ 

of sentences--what is the class K of models of all S in Γ, and inversely--given a class K 

of structures--what is the theory of K, i.e. the set Γ of all sentences satisfied in all 
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members of K.  The first problem implicitly involves the relation of logical consequence 

in Tarski’s model-theoretic sense, since every model of Γ is a model of all consequences 

of Γ.  In other words, the inferential function of logic is implicit in this broad conception 

of model theory.  Of course, without a completeness theorem for a given language L and 
satisfaction relation for L, there is no assurance that such inference can be conducted on a 

purely syntactic plane; but the point is that, whether or not one has a completeness 

theorem, this general model-theoretic problem takes us beyond purely descriptive 
concerns.  Other traditional concerns that are syntactic but not necessarily inferential 

occupy attention in model theory, e.g. one asks whether the theory of a class K of 
structures is decidable, or whether its theory can be axiomatized in a sublanguage of L.  

Beyond this, model theory has been concerned with which properties of structures are 

preserved under given relations between structures and operations on them.  In the 
opposite (so to speak internal) direction, as pointed out to me by Wilfrid Hodges, 

mainstream “geometric” model theory is concerned with describing relations within a 
particular structure, not with defining classes of structures.iii  None of this is suggested by 

talk of the descriptive function of logic.  In other words, Hintikka’s conception of model 

theory is narrow to the extreme, and is further narrowed by the insistence on dealing with 
sentences of a very particular form, namely the IF sentences.  

 The point of departure in this section was whether IF logic deserves to be called a 
first-order logic according to the criterion offered above by Hintikka, namely “in terms of 

the entities one’s quantified variables range over”.  I have argued that this does not 

distinguish IF logic from the logics of generalized quantifiers in Lindström’s sense, 
which by all ordinary measures go beyond first-order logic.  The question is whether 

something more special about IF logic is supposed to make the difference.  Of course, 
one can talk in picturesque terms about playing games with individuals, each play 

involving only a finite number of choices, as a way of arguing that verification of an IF 

sentence is a first-order matter.  But it is not the particular plays that matter; rather it is 
whether there is or is not a winning strategy for Verifier in such games, both in any one 

structure and over all structures in general.  And, as we shall see in the next section in 

pursuit of my argument, that lands us squarely in full second-order logic.   
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4. The expressive power of IF and extended IF logic.  In Ch. 9 of PMR, Hintikka gives 

a number of examples of mathematical notions which can be expressed by IF-sentences S 
or by their contradictory negations S*.  In ordinary logical terms, this comes down to 

seeing which notions can be expressed in Σ1
1 or Π1

1 form. 

 The following are standard examples.   
(1) The relation of equicardinality is Σ1

1.   

That is, we have a Σ1
1 sentence S in two unary predicate symbols P and Q, which 

expresses that P and Q are in one-one correspondence. 
(2) The property of being infinite is Σ1

1. 

That is, we have a Σ1
1 sentence S in one unary predicate symbol P which expresses that P 

is infinite; using = alone, we can express by such a sentence that the domain of 

interpretation of the first-order variables is infinite. 

(3) The notion of being a non-well-founded binary relation is Σ1
1.  Hence that of being a 

well-founded relation is Π1
1; the same applies to the notion of being a well-ordering 

relation.   
(4) There is a Π1

1 sentence S* which characterizes up to isomorphism the structure of the 

natural numbers 〈N, Sc, 0〉, where Sc is the successor relation; the sentence uses one 

binary symbol P and one constant symbol c.   

(5) There is a Π1
1 sentence S* which characterizes up to isomorphism the two-sorted 

structure 〈N, ℘(N), Sc, 0, ∈〉 for second-order number theory, where ℘(N) is the set of 

all subsets of N.   

(If preferred, the structure in (5) can be treated as one-sorted by unification of domains).  
The sentence S* for (5) may be taken to include the statement that every characteristic 

function f: N → {0, 1} determines a member a of ℘(N) by ∀x [ x ∈ a ↔ f(x) = 0 ].   

(6) Similarly, there is a Π1
1 sentence S* characterizing the finite type hierarchy over the 

natural numbers, obtained by iterating the power set operation ℘ up to ω.   

(7) Transfinite iterations of the power set operation can also be dealt with in this form, 

most smoothly within the one sorted-language for the system ZFC of set theory.  As 
pointed out by Väänänen (2001) among others, there is a Π1

1 sentence S* characterizing 

(up to isomorphism) the structure for the cumulative hierarchy 〈Vκ, ∈〉 up to the first 

inaccessible cardinal κ,where V0 = ∅, each Vα + 1 = ℘(Vα) and Vλ is the union of the Vα 
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for α < λ when λ is a limit ordinal.  The same can be done for still  larger specific 

inaccessible cardinals κ.   

 Further examples mentioned in PMR, Ch. 9, concern characterizations of the real 

numbers in extended IF logic and expressibility of various topological notions.  All such 
examples lead Hintikka to conclude (PMR, p. 196) that  “...virtually all of classical 

mathematics can in principle be done in extended IF first-order logic,” i.e. can be 

expressed in Π1
1 form, and that many mathematical concepts can already be expressed in 

Σ1
1 form.  However, there is a substantial difference between the two, since Π1

1  sentences 

do not admit a direct game-theoretic interpretation.  So, what is gained by these 
expressibility results?  Hintikka points out (loc. cit.) a kind of reduction to IF logic, 

which may be formulated more generally as follows.  Given a Π1
1 sentence S* like that 

indicated above in (5)-(7) for second-order or finite-order number theory, or for the 

cumulative hierarchy of sets up to the first inaccessible cardinal, and given a 
mathematical conjecture C expressible in Σ1

1 form in the language of S*, the implication 

S* → C is equivalent to ¬S* ∨ C, and thence to a Σ1
1 sentence, or--if one prefers--an IF 

sentence.  Hintikka concludes  that  

 
...a great many mathematical problems can be taken to relate to the logical status 

of a sentence of an unextended IF first-order language. (PMR, p. 197, italics in the 

original). 
 

 However, in the use here of the words “logical status” there is a shift from 
satisfaction of Σ1

1  sentences in some structure or another--Hintikka’s main concern when 

speaking of the descriptive function of logic--to validity of such sentences, and this 
makes a world of difference when it comes to sentences of the form ¬S* ∨ C.  For, the 

relevant logical status in these cases is that of validity, not satisfaction in one model or 

another.  An IF-sentence or, equivalently, Σ1
1 sentence S is valid if it is true in every 

possible interpretation of its non-logical symbols.  Here is what Hintikka has to say about 
the shift in concerns (taking S* from (6) as the example): 
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The upshot of this line of thought is thus a kind of reduction of the entire finite 

theory of types, with standard interpretation, to IF-first order logic.  Since most of 
mathematics can in principle be expressed in a standardly interpreted finite theory 

of types, this reduction throws some interesting light on mathematics in general.  
For what can we say of the output sentences [i.e., ¬S* ∨ C] of this reduction?  

They are IF first-order sentences.  All their bound variables range over 

individuals.  This should warm the heart of every philosophical nominalist.  More 

importantly, their interpretation is completely free of the logical problems that 
beset the notion of all subsets of a given infinite set.  An IF first-order sentence is 

valid if and only if a certain relational structure can’t help being instantiated in 

every model.  The problem of whether a given IF first-order sentence is valid or 
not is therefore a combinatorial problem in a sufficiently wide sense of the term.  

(PMR, p. 198, italics in the original.) 
 

I take it that what Hintikka means by “a certain relational structure [that] can’t help being 

instantiated in every model” M, for a given IF-sentence S or its Σ1
1 equivalent ∃f∀x 

R(f,x), is a realization of the existentially quantified function variables f in M, if S is true 
in M at all.  As to this, Väänänen (2001) p. 519 has proved that the general question of 

validity of IF sentences is recursively isomorphic to that for validity in full second-order 

logic.iv   Moreover, he shows there (op. cit., p. 517) that the set of valid sentences of full 

second-order logic is a complete Π2 set (in the sense of the Lèvy set-theoretical 

hierarchy), hence is not Σ2 definable.  The two results together imply that validity of IF 

sentences is not Σ2 definable; that strengthens an old result of Montague (1965), p. 263, 

according to which the set of valid Σ1
1 sentences is not definable in finite type theory over 

the natural numbers.   Thus, the validity problem for IF sentences is by no means a 

“combinatorial”, nominalistically heart-warming matter.  On the contrary, if the question 
of validity of such sentences is taken to have definite meaning, there is a concomitant 

commitment to full second-order logic.  This seems to be contradicted by Hintikka’s 

statement (PMR, pp. 191-192) that “IF first-order logic is equivalent only to a small 
fragment of second-order logic, namely, the Σ1

1 fragment.”  By Väänänen’s theorem, that 

is true only if one considers satisfiability of IF sentences, not of validity.v 
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 What we have here is a clear case of trying to have your philosophical cake and 

eat it too.  On the one hand, second-order logic in its supposed standard sense is suspect: 
 

...many hard-nosed logicians will not be happy with the proposal of using a 
second-order language as a medium for their mathematical theorizing, and for a 

good reason.  In order for such a language to serve its purpose, its second-order 

variables must be taken in their standard sense.  They must be taken to range over 
all extensionally possible entities of the appropriate type (sets, functions, etc.)  ... 

But if so, we face all the problems connected with the ideas of arbitrary set and 
arbitrary function ... I can indicate this kind of commitment to arbitrary higher-

order entities by saying that it involves the idea of “all sets”.  Another way of 

expressing myself might be to speak of the standard interpretation in Henkin’s 
sense.  But whatever the name that this idea passes under, its smell is equally foul 

to many logicians.  And there is a great deal to be said for their perceptions.  The 

idea of the totality of all (sub)sets is indeed a hard one to master.  (PMR, p. 193, 
italics in the original.) 

 
These suspect notions can be avoided simply by restricting to first-order logic.  But 

ordinary first-order logic is totally inadequate expressively to the task of grounding 

mathematics because the principal notions of concern such as those listed (1)-(7) above, 
cannot be characterized in first-order terms.  First-order axiomatic set theory provides no 

solution to this problem since we cannot prevent non-standard interpretations; Ch. 8 of 
PMR is a sustained polemic against axiomatic set theory, aka “Fraenkelstein’s monster”, 

primarily on these grounds.   

 
Since nonstandard interpretations do not help us to deal with the problems of set 

existence, what can?   Here IF logic seems to offer its services to us.  As long as 
we can stay on the level of first-order logic, independence-friendly or not, then 

problems of set existence do not arise.  We do not have to open the Gordian knot 

of set existence since it was not tied in the first place.  (PMR, p. 194) 
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In other words, by declaring IF logic to be a first-order logic one can have one’s 

philosophical cake and eat it too.  But endlessly declaring it to be so does not make it so.  
As I have argued, the assimilation of IF logic to first-order logic just doesn’t hold water.  

On the contrary, once validity comes into the picture, and it does come in essentially if 
one is to account for mathematics in the way that Hintikka proposes above, then one is in 

the same boat as second-order logic.  You cannot buy the one without buying the other. 

 
5. What does it mean to do mathematics?  The necessity of inference.  We have seen 

that Hintikka’s claim, quoted above, that “virtually all of classical mathematics can be 
done in extended IF first-order logic” comes down to the validity of Σ1

1 sentences of the 

form S* → C, where S* is a Π1
1 characterization of some substantial part of set theory, be 

it second-order or higher-order number theory or even the cumulative hierarchy up to the 
first inaccessible.  But that is where the real work for doing mathematics comes into the 

picture; inference is its sine qua non.  For, higher mathematics makes essential use of 
long and involved chains of reasoning from what is already accepted (eventually, special 

cases of S*) to what is to be established (C).  And such reasoning for human 

mathematicians does not and cannot work directly at the semantic level of the notions 
involved; it can only proceed syntactically, in a way that is justified by the semantics.  In 

other words, what is needed for the doing of mathematics is logic in its traditional 
deductive sense.  And for that it is not an issue whether the model-theoretic notion of 

validity has a complete axiomatization.  This is not to say that deductive logic in the 

ordinary sense suffices; what separates mathematics from logic is the employment of 
general notions of set and function that are irreducible to logic, and the assumption of 

axioms concerning those notions that are accepted on the grounds of what they are 
supposed to be about.  That such assumptions may be seriously problematic 

philosophically does not mean that they can be ignored; on the contrary (cf. Feferman, et 

al., 2000).  But that is another matter; what is at issue here is whether there is any sense to 
talking about doing mathematics without considering deductive logic.  This would hardly 

need emphasizing except that in PMR Hintikka is utterly dismissive of the deductive role 

of logic in mathematics for reasons that I fail to comprehend.   
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 Given my view of the matter, I have to ask what might be of value in expanding 

everyday logical reasoning as represented in the ordinary first-order logic to a system of 
reasoning--necessarily incomplete--making use of the formalism of IF sentences.  In 

PMR, Ch. 4, Hintikka gives a few examples in everyday mathematical parlance where the 
ideas of independence are used loosely, and which can be represented by IF-sentences.  

But all such examples are equally well taken care of in ordinary first-order terms with the 

observance of just a little care.  And since no substantial fragment of IF logic as an 
inferential system is on offer, the matter is entirely speculative.  If the promoters of IF 

logic were to grant that some inferential system of reasoning with IF formulas would be 
of value, they should encourage its pursuit.  But I personally think such an effort would 

be regressive, since it was realized long ago in mathematical practice how to say in 

precise terms that one quantity is or is not dependent on another, without invoking a new 
syntax hinging on that idea.  Sometimes, all that is required for that is to take care about 

the order of quantifiers with respect to first-order variables, while other times function 

quantification is needed; but it is rare in the latter cases that one has to appeal to 
substantial function existence axioms to reason with such dependence conditions.   

 Taking this idea one step further, it may be of interest (in the spirit of endnote (i)) 
to set up deductive fragments of second-order logic to formalize dependence relations in 

practice.  In particular, it is often the case that one argues for an implication  

∃f ∀x R( f, x ) → ∃g ∀y S( g, y ) between Σ1
1 sentences on the basis of the fact that there 

is an elementary way H of choosing a witness for g from any f satisfying ∀x R( f, x ), i.e. 

the functional H(f) = g is first-order definable and one has ∀x R( f, x ) → ∀y S( H(f), y ).  

This way of reasoning immediately suggests a rule of inference: 
(1)  from ∀x R( f, x ) → ∀y S( H(f), y ), with H first-order,  

 infer ∃f ∀x R( f, x ) → ∃g ∀y S( g, y ).   

More generally, it is natural to consider the fragment dealing with implications between 

essentially Σ1
1 formulas, i.e. those whose prenex form has only existential second-order 

quantifiers.  In particular, this permits formulation of the Axiom of Choice for Σ1
1 

formulas in the form 

(2) ∀z ∃f ∀x R( f, x, z ) → ∃f′ ∀z ∀x R( f′(z), x, z ). 
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A rule like (1) and axiom of the form (2) were featured in one formal system for 

predicativity (Feferman 1979), under special restrictions on the formulas involved (op. 
cit., p. 78) but the preceding shows that such principles are clearly meaningful in a much 

more general context. 
 

6. What’s left? Hintikka has offered more reasons than those considered above from 

logic and mathematics for promoting IF logic.  One main claim surrounds the autonomy 
of the truth definition for IF sentences, in the sense that one has a Σ1

1 formula T(x) such 

that for any Σ1
1 sentence S,  

T(#S) ⇔ S, 

where #S is the Gödel number of S.  The weak link here is the relation ⇔ of equivalence, 

where A ⇔ B is true if A and B are true in the same models; this cannot be treated as a 

connective of IF logic.  For a full critique of the claims on behalf of the self-definability 
of truth within IF logic the reader is referred to Rouilhan and Bozon (this volume).vi  

 Outside of logic and mathematics, Hintikka appeals among other things to 
language games, philosophically and in everyday life, and to the IF representation of 

certain phenomena in natural language (cf. also Hintikka and Sandu 1996).  For these, the 

points disputed in this paper are irrelevant, and a defense of the formalism of IF logic and 
its associated semantics on such other grounds may well be sustained.  In particular, 

games of imperfect information have a clear interest in their own right, and their 
investigation (as well as the investigation of the related games of perfect information in 

Väänänen 2002) merits further study. vii   
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i Interestingly, at least to me, the shift from IF forms such as (3) to modified Skolem forms such as (4), 
corresponds to a shift from attention to questions of independence to those of dependence.   
ii The claim that IF logic is a first-order logic has been challenged by a number of thinkers, including Cook 
and Shapiro (1998), Hodes (1998), Väänänen (2001), and Rouilhan (2002).  Väänänen’s results in this 
respect have been of particular use to me, as will be seen in Section 4 below.   
iii Personal communication.  Hodges added that the usual compositional semantics of first-order formulas is 
essential for the work on geometrical model theory. 
iv The argument indicated by Väänänen makes use of a Π1

1 sentence S* in a binary predicate symbol E and 
two unary predicate symbols P and Q whose models are exactly those isomorphic to 〈M, ∈, P, Q〉 with Q = 
℘(P).  If A is an IF sentence true in the same models as ¬S*, then we can associate with any second-order 
sentence B a first-order sentence B′ in E, P and Q such that B is valid in full second-order logic if and only 
if A ∨ B′ is a valid IF sentence. 
v In effect, Hintikka is hoist here by his own petard via the “reduction of the entire finite theory of types, 
with standard intepretation” to IF logic (as quoted above from PMR, p. 198). 
vi One consequence of the main result of Rouilhan and Bozon, Theorem 2, sec. 4, is that for a great variety 
of IF languages L with standard interpretation, the relation A ⇔ B for sentences A, B of L is not definable 
by any formula of finite order having the same signature as L, nor, a fortiori, by any formula of L.  Their 
full result undermines Hintikka’s claims in PMR  for the autonomy of the model theory of IF languages.  
vii I wish to thank Wilfrid Hodges, Philippe de Rouilhan and Jouko Väänänen for their comments on a draft 
of this piece.   


