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Abstract. Tarski presented his definition of consequence operator to explain the most im-
portant notions which any logical consequence concept must contemplate. A Tarski space is
a pair constituted by a nonempty set and a consequence operator. This structure character-
izes an almost topological space. This paper presents an algebraic view of the Tarski spaces
and introduces a modal propositional logic which has as a model exactly the closed sets of a
Tarski space.
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Introduction

This work is inserted into the tradition of the algebraic logic, particularly, in the
Lindenbaum-Tarski style.

The contribution of this paper to the algebraic logic field is to present the con-
cept of Tarski’s consequence operator in an algebraic structure, the TK-algebra, and
as well as to introduce a subnormal modal logic whose algebraic models are the
counterpart of Tarski’s consequence operator.

Thus, a new propositional logic is generated and its adequacy in relation to TK-
algebras is shown.

1. Tarski spaces

As follows, we adopt the concept of consequence operator in a slightly more general
way than it was introduced by Tarski, in 1935.

Definition 1.1. A consequence operator on E is a function − : P (E) → P (E) such
that, for every A, B ∈ P (E):

(i) A⊆ A;

(ii) A⊆ B⇒ A⊆ B;
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(iii) A⊆ A.

From (i) and (iii), it follows that A= A holds, for every A⊆ E.

Definition 1.2. A consequence operator − : P (E) → P (E) is finitary when, for
every A⊆ E:

A= ∪{A0 : A0 is a finite subset of A}.

Definition 1.3. A Tarski space (Tarski’s deductive system or Closure space) is a pair
(E,− ) such that E is a nonempty set and − is a consequence operator on E.

Definition 1.4. Let (E,− ) be a Tarski space. The set A is closed in (E,− ) when A= A,
and A is open when its complement relative to E, denoted by AC , is closed in (E,− ).

Proposition 1.5. In (E,− ) any intersection of closed sets is also a closed set.

Proof. If {Ai} is a collection of closed sets, then ∩iAi ⊆ ∩iAi ⊆ ∩iAi = ∩iAi . Hence,
∩iAi = ∩iAi .

Clearly, ∅ and E correspond to the least and the greatest closed sets, respectively,
associated to the consequence operator −.

Proposition 1.6. In a structure of sets, the following conditions are equivalent:

(i) A⊆ B⇒ A⊆ B;

(ii) A⊆ A∪ B.

Proof. (i)⇒ (ii): As A⊆ A∪ B, by (i), it follows that A⊆ A∪ B. (ii)⇒ (i): If A⊆ B,
then A∪ B = B. So, by (ii), A⊆ B.

Definition 1.7. A Tarski space (E,− ) is vacuous when ∅=∅.

Definition 1.8. An almost topological space is a pair (S,Ω) such that S is a nonempty
set and Ω⊆P (S) satisfies the following condition:

B ⊆ Ω⇒∪B ∈ Ω.

The collection Ω is called almost topology and each member of Ω is an open of (S,Ω).
A set A∈ P (S) is closed when its complement relative to S is an open of (S,Ω).

Proposition 1.9. In an almost topological space (S,Ω) the set∅ is open and S is closed.

Proposition 1.10. In an almost topological space (S,Ω), any intersection of closed sets
is still a closed set.
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Definition 1.11. Let (S,Ω) be an almost topological space. The closure of A is the
set:

A=df ∩{X ⊆ S : X is closed and A⊆ X }.

Proposition 1.12. Let (S,Ω) be an almost topological space. For every A ⊆ S, A is
closed.

Proposition 1.13. Let (S,Ω) be an almost topological space and let A be defined as
above, for every A⊆ S. Then (S,− ) is a Tarski space.

On the other hand, if (E,− ) is a Tarski space, let us consider Ω = {X ⊆ E :
X is open}.

Proposition 1.14. If (E,− ) is a Tarski space, then (E,Ω) is an almost topological space.

It follows from Propositions 1.13 and 1.14 that that given a Tarski space an
almost topological space is obtained and in another direction given an almost topo-
logical space we can define a Tarski space. So naturally we can make an interrelation
between the two concepts.

Definition 1.15. An almost topological space (S,Ω) is 0-closed when it holds:

(iv) ∅=∅.

Definition 1.16. A topological space (S,Ω) is an almost topological space 0-closed
such that it holds:

(v) A∪ B = A∪ B.

The previous definition of topological space was given by the Kuratowski’s clo-
sure. Naturally, every topological space is a Tarski space, but there are several Tarski
spaces which are not topological spaces. Each topological space is an instance of a
vacuous Tarski space.

2. TK-algebras

The definition of a TK-algebra introduces the notions of consequence operator in the
context of the algebraic structures.

Definition 2.1. A TK-algebra is a sextuple A = (A, 0, 1,∨,∼,•) such that (A, 0, 1,∨,
∼) is a Boolean algebra and • is a new operator, called operator of Tarski, such that:

(i) a ∨ • a = • a;

(ii) • a ∨ •(a ∨ b) = •(a ∨ b);
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(iii) •(• a) = • a.

Examples:

(a) The space of sets P (A) with A 6=∅ and • a = a, for all a ∈ A, is a TK-algebra.
(b) The space of sets P (R) with •X = X ∪ {0} is a TK-algebra.
(c) The space of sets P (R) with •X = ∩{ I | I is an interval and X ⊆ I} is a TK-
algebra.

Since we are working with Boolean algebras, the item (i) of the Definition 2.1
asserts that, for every a ∈ A, a ≤ • a.

We define in a TK-algebra:

a� b =df ∼ a ∨ b;

a− b =df a ∧∼ b.

Proposition 2.2. In any TK-algebra the following conditions are valid:

(i) ∼• a ≤∼ a ≤ •∼ a;

(ii) a ≤ b⇒ • a ≤ • b.

Proof. (ii) a ≤ b⇒ a∨b = b⇒ •(a∨b) = • b⇒ • a∨• b = • a∨•(a∨b) = •(a∨b) =
• b⇒ • a ≤ • b.

Proposition 2.3. In any TK-algebra the following assertions are valid:

(i) •(a ∧ b)≤ • a ∧ • b;

(ii) • a ∨ • b ≤ •(a ∨ b).

Proof. (i) a ∧ b ≤ a and a ∧ b ≤ b⇒ •(a ∧ b) ≤ • a and •(a ∧ b) ≤ • b⇒ •(a ∧ b) ≤
• a ∧ • b.
(ii) is similar to (i).

Example:

(a) Let E = {a, b, c}. The space of sets (P (E),∅, E,∩,∪, C) can be extended to a
TK-algebra in the following way: •X = X , for all X ⊆ E such that X 6= {a, b}, and
•{a, b}= E.

If X = {a} and Y = {b}, then •X = •{a}= {a} and •Y = •{b}= {b}; •X ∪•Y =
{a, b}; •(X ∪ Y ) = •{a, b}= E. Hence, •X ∪ •Y ⊂ •(X ∪ Y ).

If X = {a, b} and Y = {c}, then •X = •{a, b}= E, •Y = •{c}= {c}, •X ∩ •Y =
{c}, •(X ∩ Y ) = •∅=∅. Hence, •(X ∩ Y )⊂ •X ∩ •Y .

Proposition 2.4. In any TK-algebra, it holds:
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(i) •(• a ∧ • b) = • a ∧ • b;

(ii) •(• a ∨ • b) = •(a ∨ b);

(iii) • a� • b ≤ •(a� b).

Proof. (i) It is enough to verify that •(• a ∧ • b) ≤ • a ∧ • b. But, •(• a ∧ • b) ≤
•• a ∧ •• b = • a ∧ • b.
(ii) •(a ∨ b)≤ •(• a ∨ • b)≤ ••(a ∨ b) = •(a ∨ b). Hence, •(a ∨ b) = •(• a ∨ • b).
(iii) • a� • b = ∼• a ∨ • b ≤ •∼ a ∨ • b ≤ •(∼ a ∨ b) = •(a� b).

We have a new operation in a TK-algebra, dual of •:

◦ a =df ∼•∼ a.

Proposition 2.5. In a TK-algebra, the following conditions are valid:

(i) ◦ a ¶ a;

(ii) a ≤ b⇒ ◦ a ≤ ◦ b;

(iii) ◦(a ∧ b)≤ ◦ a;

(iv) ◦ a ≤ ◦◦ a.

Proof. (i) ◦ a =∼•∼ a⇒∼ a ≤ •∼ a =∼◦ a⇒ ◦ a ≤∼∼ a = a.
(ii) a ≤ b⇒∼ b ≤∼ a⇒ •∼ b ≤ •∼ a⇒∼•∼ a ≤∼•∼ b⇒ ◦ a ≤ ◦ b.
(iii) It follows from (ii).
(iv) ◦ a ≤ a⇒∼ a ≤∼◦ a⇒ •∼ a ≤ •∼◦ a⇒∼•∼◦ a ≤∼•∼ a⇒ ◦◦ a ≤ ◦ a.

Definition 2.6. An element a ∈ A is closed when • a = a, and a ∈ A is open when
◦ a = a.

Proposition 2.7. In any TK-algebra:

(i) If a is open, then: a ≤ b⇔ a ≤ ◦ b;

(ii) If b is closed, then: a ≤ b⇔• a ≤ b.

Definition 2.8. An algebraA is non-degenerate when its universe A has at least two
elements.

Definition 2.9. Let A = (A, 0, 1,∨,∼,•) and B = (B, 0, 1,∨,∼,•) be TK-algebras.
A homomorphism between A and B is a function h : A −→ B that preserves the
TK-operations. The kernel of h is the set Ker(h) =df {x ∈ A : h(x) = 0}= h−1(0).

Theorem 2.10. For each TK-algebraA = (A, 0, 1,∨,∼,•) there is a monomorphism h
from A into a Tarski space of sets defined in P (P (A)).
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Proof. Through Stone’s isomorphism, we know that for each Boolean algebra A =
(A, 0, 1,∨,∼) there is a monomorphism h from A into a field of subsets of P (A).

Next, we introduce a Tarski space in P (A) in the following way:
For each set X ⊆P (A), we define:

X = ∩a∈A{h(a) : X ⊆ h(a) and a = • a}.

Then, we must show that:

(i) X ⊆ X

(ii) X ⊆ Y ⇒ X ⊆ Y

(iii) X ⊆ X

(iv) h(• a) = h(a).

We can see that (i) - (iv) are valid by:
(i) By definition of X .
(ii) Suppose X * Y . Then there is z such that z ∈ X and z /∈ Y . So, for some

a ∈ A, z /∈ h(a) with Y ⊆ h(a) and • a = a. Since X ⊆ Y ⊆ h(a) and • a = a, then
z /∈ X , and it contradicts z ∈ X .

(iii) x ∈ X ⇒ x ∈ ∩a∈A{h(a) : X ⊆ h(a) and a = • a}. As X ⊆ X , it follows that

x ∈ ∩a∈A{h(a) : X ⊆ h(a) and a = • a}= X and, therefore, X ⊆ X .
(iv) On one hand, h(• a) ⊆ h(a) is valid: Consider that h(a) ⊆ h(b) and b = • b.

Since h is a Boolean monomorphism, a ≤ b and • a ≤ • b. But, since • b = b,
then • a ≤ b and h(• a) ⊆ h(b). Concluding, for each b ∈ A such that • b = b and
h(a)⊆ h(b), it results that h(• a)⊆ h(b), that is, h(• a)⊆ h(a).

On the other hand, h(a) ⊆ h(• a) is also valid: a ≤ • a ⇒ h(a) ⊆ h(• a) ⇒
h(a) ⊆ h(• a). Since h(• a) ⊆ h(• a) and • a = •• a, then h(• a) = h(• a) and h(a) ⊆
h(• a).

3. Ideals in TK-algebras

As in Boolean algebras, we can define an ideal into TK-algebras and use it to analyze
aspects of the consequence in the next sections.

Definition 3.1. LetA = (A, 0, 1,∨,∼,•) be a TK-algebra. An ideal in A is a nonempty
set I ⊆ A such that, for all x , y ∈ A:

(i) x , y ∈ I ⇒ x ∨ y ∈ I ;

(ii) x ∈ I and y ≤ x ⇒ y ∈ I .
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If I is an ideal and a1, a2, · · · , an ∈ I , by induction on n, we have that a1 ∨ a2 ∨
· · · ∨ an ∈ I .

Definition 3.2. The ideal I is a TK-ideal when x ∈ I ⇒ • x ∈ I .

Examples:

(a) The set A is a TK-Ideal inA .
(b) The single {0} is a TK-ideal if, and only if, •0= 0.
(c) Given a ∈ A, the set [a] = {x ∈ A : x ≤ • a} is a TK-Ideal. The set [a] is the
TK-Ideal generated by a.

Proposition 3.3. Let A be a TK-algebra and I be an ideal in A . The following
conditions are equivalent:

(i) a ∈ I ⇒ • a ∈ I ;

(ii) a� b ∈ I ⇒ • a� • b ∈ I .

Proof. (⇒) a� b ∈ I ⇒ •(a� b) ∈ I . Since • a� • b ≤ •(a� b), then • a� • b ∈
I .
(⇐) If a ∈ I , as a = 1� a, then 1� a ∈ I . By (ii), •1� • a ∈ I ⇒ 1� • a ∈ I ⇒
• a ∈ I .

Proposition 3.4. Let A be a TK-algebra and ∅ 6= B ⊆ A. The set [B] = {x ∈ A :
(∃a1, . . . , an ∈ B)(x ≤ •(a1 ∨ . . . ∨ an)} is a TK-ideal.

Proof. (i) If x , y ∈ [B], then there are a1, . . . , an, b1, . . . , bn ∈ B such that x ≤
•(a1∨. . . ∨an) and y ≤ •(b1∨. . . ∨bn). So x∨ y ≤ •(a1∨. . . ∨an)∨•(b1∨. . . ∨bn)≤
•(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bn) and x ∨ y ∈ [B]. (ii) If x ∈ [B] and y ≤ x , then
y ∈ [B]. (iii) If x ∈ [B], then there exists a1, . . . , an ∈ B such that x ≤ •(a1∨. . . ∨an)
and since •(a1 ∨ . . . ∨ an) is closed, by Proposition 2.7, • x ≤ •(a1 ∨ . . . ∨ an) and
• x ∈ [B].

Definition 3.5. TK-ideal [B] defined in the Proposition 3.4 is the TK-ideal generated
by B.

Proposition 3.6. LetA be a TK-algebra. If I is a TK-Ideal inA and b ∈ A, then

[I , b] = {x ∈ A : (∃c ∈ I)(• x ≤ •(b ∨ c))}

is a TK-Ideal.

Proof. Of course, if x ∈ [I , b] and y ≤ x , then y ∈ [I , b]; and x ∈ [I , b] ⇒ • x ∈
[I , b].

Now, if x , y ∈ [I , b], there are c, d ∈ I such that • x ≤ •(b∨c) and • y ≤ •(b∨d).
Hence, •(x ∨ y) = •(• x ∨ • y) ≤ •(•(b ∨ c) ∨ •(b ∨ d)) = •((b ∨ c) ∨ (b ∨ d)) =
•(b ∨ (c ∨ d)). Therefore, x ∨ y ∈ [I , b].
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Definition 3.7. The ideal [I , b] is the TK-ideal generated by I and b.

Definition 3.8. Let I be an ideal in a TK-algebra A . The ideal I is proper when
I 6= A. The ideal I is maximal when it is proper and it is not included in any proper
ideal distinct of I . The ideal I is prime when it is proper and for all a, b ∈ A it holds:
a ∧ b ∈ I ⇒ a ∈ I or b ∈ I .

Of course, if I is proper, then there is an a ∈ A such that a /∈ I and therefore
1 /∈ I .

Proposition 3.9. Let I be an ideal in a TK-algebra A . The following statements are
equivalent:

(i) I is maximal;

(ii) for every a ∈ A: a ∈ I Ù∼ a ∈ I ;

(iii) I is prime;

(iv) for every a, b ∈ A, a− b ∈ I or b− a ∈ I .

Proof. As A is a Boolean algebra (i), (ii) and (iii) are equivalent. Let’s show the
equivalence between (iii) and (iv). (iii) ⇒ (iv) Let a, b ∈ A. As (a− b) ∧ (b− a) =
0 ∈ I and I is prime, then a − b ∈ I or b − a ∈ I . (iv) ⇒ (iii) Let a ∧ b ∈ I . If
a ∧∼ b = a − b ∈ I , then a = (a ∧ b) ∨ (a ∧∼ b) ∈ I . If b ∧∼ a = b − a ∈ I , then
b ∈ I .

The next definitions are specific for TK-ideals.

Definition 3.10. A TK-Ideal I is TK-irreducible when it is proper and for any two
TK-Ideals I1 and I2:

I = I1 ∩ I2⇒ I = I1 or I = I2.

Definition 3.11. A TK-Ideal I is TK-maximal when it is proper and it is not included
in any proper TK-Ideal distinct of I .

Definition 3.12. Let I be a TK-ideal in a TK-algebra A . The ideal I is TK-prime
when it is a proper ideal and for all a, b ∈ A it holds:

• a ∧ • b ∈ I ⇒ • a ∈ I or • b ∈ I .

Let I be a TK-ideal. If I is a prime ideal then I is a TK-prime ideal. However,
it is possible that I is a TK-prime ideal that is not prime. The same holds to TK-
maximal ideals. Besides, being maximal does not imply to be TK-ideal and hence to
be TK-maximal ideal.
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Example:

(a) Let E = {a, b, c}. Consider the TK-algebra A = (P (E),∅, E,∩,∪, C ,•), such
that •∅ = ∅,•{a} = {a},•{b} = •{c} = •{a, b} = •{a, c} = •{b, c} = •{a, b, c} =
{a, b, c}. The TK-ideal {∅, {a}} is TK-prime but it is not prime.

Proposition 3.13. If a TK-ideal is TK-maximal, then it is TK-irreducible.

Proof. Let I be a TK-maximal ideal. So I is proper. Now, if I1 and I2 are two proper
TK-ideals such that I = I1 ∩ I2, then I ⊆ I1 and I ⊆ I2. As I is TK-maximal, so
I = I1 = I2.

Example:

(a) Let E = {a, b}. Consider the TK-algebra A = (P (E),∅, E,∩,∪, C ,•), such that
•∅=∅,•{a}= {a},•{b}= •{a, b}= {a, b}. The TK-ideal {∅} is TK-irreducible and
it is contained in the TK-ideal maximal {∅, {a}}.

It follows from the previous example that we have a TK-irreducible ideal which
is not TK-maximal.

Proposition 3.14. Let A be a TK-algebra and I a TK-ideal in A . The following
statements are equivalent:

(i) I is a TK-prime ideal;

(ii) for every a ∈ A: either • a ∈ I or ∼• a ∈ I .

Proof. (i)⇒ (ii) If I is TK-prime, then I is proper. Now, if • a ∈ I and ∼• a ∈ I , then
• a ∨∼• a = 1 ∈ I , which is a contradiction. Besides, as I is prime and • a ∧∼• a =
0 ∈ I , then • a ∈ I or ∼• a ∈ I .
(ii)⇒ (i) By hypothesis, I is proper. If • a ∧ • b ∈ I and • a /∈ I , then, by hypothesis,
∼• a ∈ I . Hence, • b ≤ • b ∨∼• a = 1∧(• b ∨∼• a) = (• a ∨∼• a)∧(• b ∨∼• a) =
(• a ∧ • b) ∨∼• a ∈ I . Since I is a TK-ideal, then • b ∈ I . Therefore, I is a TK-prime
ideal.

Proposition 3.15. If a TK-ideal is TK-prime, then it is TK-maximal.

Proof. Consider I as a TK-prime ideal which is properly included in a TK ideal M and
take x such that x ∈ M , but x /∈ I . Since I is a TK-ideal, then • x /∈ I and since M is
a TK-ideal, • x ∈ M . As I is a TK-prime ideal, by Proposition 3.14, ∼• x ∈ I . Hence,
• x ∈ M , ∼• x ∈ I ⊆ M , therefore 1= • x ∨∼• x ∈ M , that is, M = A.

Corollary 3.16. If an TK-ideal is TK-prime, then it is TK-irreducible.

Proof. It follows from Propositions 3.15 and 3.13.
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Example:

(a) Let E = {a, b, c}. Consider the TK-algebraA = (P (E),∅, E,∩,∪, C ,•), such that
•∅ = ∅, •{a} = {a}, •{b} = {b}, •{c} = {c}, •{a, b} = {a, b}, •{a, c} = •{b, c} =
•{a, b, c} = {a, b, c}. The TK-ideal I = {∅, {c}} is TK-maximal, but it is not TK-
prime:
(i) I is TK-maximal: if I ⊂ J with J a TK-ideal, then J has an element x such that
x /∈ I . If x = {a}, then {a, c} = {a} ∪ {c} ∈ J , and like J is a TK-ideal, then
{a, b, c} = •{a, c} ∈ J and therefore J = A. If x = {b} or x = {a, b} or x = {a, c} or
x = {b, c} or even x = {a, b, c}, we show that J = A.
(ii) I is not TK-prime: •{a} ∧ •{b}=∅ ∈ I , but •{a} /∈ I and •{b} /∈ I .

Definition 3.17. A chain of ideals is a sequence (I1, I2, I3, . . . ) of ideals such that
I1 ⊆ I2 ⊆ I3 ⊆ . . . .

Lemma 3.18. LetA be a TK-algebra and (I1, I2, I3, . . . ) be a chain of proper TK-ideals
ofA . The union ∪In is a proper TK-ideal.

Proof. Let x ∈ I and y ∈ A, with y ≤ x . Since I = ∪In, there is n ∈ N such that
x ∈ In, and since In is a TK-ideal, then y ∈ In ⊆ I . Let x , y ∈ I = ∪In. Since
I1 ⊆ I2 ⊆ I3 ⊆ . . . , there is n ∈ N such that x , y ∈ In, and as In is a TK-ideal, so
x ∨ y ∈ In ⊆ I . Hence, I is an ideal. Since 1 /∈ In, for every n, hence 1 /∈ I . Therefore,
I is a proper ideal. It is immediate that I is a TK-ideal.

Theorem 3.19. Each proper TK-ideal in a TK-algebra is contained in a TK-maximal
TK-ideal.

Proof. The result follows from the previous lemma and by Zorn’s Lemma.

Corollary 3.20. Let A be a TK-algebra and a ∈ A such that • a 6= 1. Then, there is a
maximal TK-ideal I for which a ∈ I .

Proof. Since • a 6= 1, the TK-ideal generated by a is proper, then by previous theorem,
[a] is included in a TK-maximal TK-ideal I and a ∈ I .

Proposition 3.21. Let A be a TK-algebra and I be a TK-ideal in A . If a /∈ I , then
there is a TK-irreducible TK-ideal I∗ such that I ⊆ I∗ and a /∈ I∗.

Proof. Let S be the ordered set of all TK-ideals J ofA such that I ⊆ J and a /∈ J . By
Zorn’s Lemma and Lemma 3.18, there is a TK-maximal element M in S. If M = I1∩I2,
considering that a /∈ M , then a /∈ I1 or a /∈ I2. If a /∈ I1, since I ⊆ M ⊆ I1, then I1 ∈ S
and as M is TK-maximal in S, M = I1. Besides, if a /∈ I2, M = I2. Hence, M is
TK-irreducible.
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Theorem 3.22. Let h : A−→ B be a surjective homomorphism betweenA = (A, 0, 1,∨,
∼,•) andB = (B, 0, 1,∨,∼,•). Then:

(i) h(a) = h(b)⇔ a ≡Ker(h) b⇔d f a− b ∈ Ker(h) and b− a ∈ Ker(h);

(ii) the relation ≡Ker(h) is a congruence;

(iii) A|Ker(h) is a TK-algebra;

(iv) A|Ker(h) tB .

Proof. (i) (⇒) h(a) = h(b) ⇒ h(a) ∧ ∼h(b) = 0 ⇒ h(a ∧ ∼ b) = 0 ⇒ a ∧ ∼ b ∈
ker(h)⇒ a− b ∈ ker(h). In the same way, b− a ∈ ker(h). (⇐) a− b ∈ ker(h)⇒
a ∧ ∼ b ∈ ker(h) ⇒ h(a ∧ ∼ b) = 0 ⇒ h(a) ∧ ∼h(b) = 0 ⇒ h(a) ∨ h(b) = h(b) ⇒
h(a)≤ h(b). Also, b− a ∈ ker(h)⇒ h(b)≤ h(a). So, h(a) = h(b).
(ii) Clearly≡Ker(h) is an equivalence relation. We only need to show the details about
how to extend to a TK-algebra, that is, a ≡Ker(h) b ⇒ • a ≡Ker(h) • b. So a ≡Ker(h) b
⇔ h(a) = h(b)⇒ •h(a) = •h(b)⇒ h(• a) = h(• b)⇔• a ≡Ker(h) • b.
(iii) Since ≡Ker(h) is an equivalence we have a partition on A|Ker(h). Now, let − :
A −→ A|Ker(h) such that a = {b ∈ A : a ≡Ker(h) b}. We must produce a Tarski
operator inA|Ker(h). Let • a = • a. This is the looked operator: (1) a∨• a = a ∨ • a =
• a = • a; (2) • a ∨ •(a ∨ b) = • a ∨ • (a ∨ b) = • a ∨ •(a ∨ b) = • a ∨ •(a ∨ b) =
•(a ∨ b) = • a ∨ b = •(a ∨ b); (3) •• a = •• a = •• a = • a = • a.
(iv) As usual, we define h̃ : A|Ker(h) −→ B by h̃(a) = h(a). Naturally h̃ is well
defined and bijective. We will show that h̃ preserves the operation •: h̃(• a) =
h̃(• a) = h(• a) = •h(a) = • h̃(a).

Definition 3.23. LetA be a TK-algebra and I a maximal (or prime) TK-ideal inA .
Consider the following (equivalence) relation ≡I inA :

a ≡I b⇔=df a− b ∈ I and b− a ∈ I .

In the above definition, I more than TK-maximal is maximal.
The next theorem will show that the relation ≡I is a congruence in A with

respect to ∧,∨,∼ and •, that is, [a] = [b] implies [∼ a] = [∼ b] and [• a] = [• b];
and [a] = [b], [c] = [d] implies [a∧ c] = [b∧ d] and [a∨ c] = [b∨ d]. Also, [1] is
the unit, [0] is the zero element ofA|I .

Proposition 3.24. LetA be a TK-algebra and I a maximal TK-ideal inA .

(i) the relation ≡I determined by I is a congruence relation;

(ii) considering, for every x ∈ A, •[x] = [• x], the quotient algebra A|I is a TK-
algebra;

(iii) the function h :A −→A|I defined by h(a) = a is a surjective homomorphism;
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(iv) I is the kernel of h, and for every a ∈ A, a ∈ I ⇔ a ≡I 0;

(v) for every a ∈ A, a /∈ I ⇔ a ≡I 1.

Proof. (i) Clearly ≡I is an equivalence relation. Now:
(1) [a] = [b]⇔ a − b ∈ I and b − a ∈ I ⇔ a ∧ ∼ b ∈ I and b ∧ ∼ a ∈ I ⇔
∼ a ∧ b ∈ I and ∼ b ∧ a ∈ I ⇔∼ a−∼ b ∈ I and ∼ b−∼ a ∈ I ⇔ [∼ a] = [∼ b].
(2) [a] = [b]⇔ a− b ∈ I and b− a ∈ I ⇔ a ∧∼ b ∈ I and b ∧∼ a ∈ I . If a ∈ I ,
then • a ∈ I and ∼ a /∈ I ⇒ ∼• a /∈ I and b ∈ I ⇒ • b ∈ I ⇒ • a − • b ∈ I and
• b − • a ∈ I ⇔ [• a] = [• b]. If a /∈ I , then • a /∈ I and ∼ b ∈ I ⇒ ∼• a ∈ I and
b /∈ I ⇒ • b /∈ I ⇒ ∼• b ∈ I ⇒ • a − • b ∈ I and • b − • a ∈ I ⇔ [• a] = [• b]. In
any case, we have [• a] = [• b].
(3) If [a] = [b] and [c] = [d], then a∧∼ b ∈ I , b∧∼ a ∈ I , c∧∼ d ∈ I and d∧∼ c ∈ I .
Since I is an ideal, and a∧∼ b, c∧∼ d ∈ I , then a∧ c∧∼ b, a∧ c∧∼ d ∈ I , therefore
(a ∧ c)∧∼(b ∧ d) = (a ∧ c)∧ (∼ b ∨∼ d) = (a ∧ c ∧∼ b)∨ (a ∧ c ∧∼ d) ∈ I . That is,
(a ∧ c)− (b ∧ d) ∈ I . Analogously, (b ∧ d)− (a ∧ c) ∈ I . Hence, [a ∧ c] = [b ∧ d].
(4) If [a] = [b] and [c] = [d] then a∧∼ b ∈ I , b∧∼ a ∈ I , c∧∼ d ∈ I and d∧∼ c ∈ I .
Since I is an ideal, and a ∧∼ b, c ∧∼ d ∈ I , then a ∧∼ b ∧∼ d, c ∧∼ b ∧∼ d ∈ I ,
therefore (a∨c)∧∼(b∨d) = (a∨c)∧(∼ b∧∼ d) = (a∧∼ b∧∼ d)∨(c∧∼ b∧∼ d) ∈ I .
That is, (a∨c)−(b∨d) ∈ I . Analogously, (b∨d)−(a∨c) ∈ I . Hence, [a∨c] = [b∨d].

(ii) We need to verify that • |≡I
preserves the properties of operator •.

(1) [x]∨ •[x] = [x]∨ [• x] = [x ∨ • x] = [• x] = •[x].
(2) •[x]∨•[x ∨ y] = [• x]∨[•(x ∨ y)] = [• x ∨•(x ∨ y)] = [•(x ∨ y)] = •[(x ∨ y)].
(3) ••[x] = [•• x] = [• x] = •[x].

(iii) It is immediate.
(iv) (⇒) If a ∈ I , as a = a ∧ 1= a ∧∼0= a− 0 ∈ I and 0= 0∧∼ a = 0− a ∈ I .

So a ≡I 0. (⇐) If a ≡I 0 then a = a ∧ 1= a ∧∼0= a− 0 ∈ I .
(v) a /∈ I ⇔∼ a ∈ I ⇔∼ a ≡I 0⇔ a ≡I 1.

We observe that if I is an ideal thenA|I is degenerate⇔ I = A.

Proposition 3.25. If I is a prime TK-ideal, then the quotient algebra A|≡I
is linearly

ordered.

Proof. Let I be a prime TK-ideal and take a, b ∈ A. From this we have that a−b ∈ I or
b− a ∈ I , that is, [a]≤ [b] or [b]≤ [a] and, thereforeA|I is linearly ordered.

In the next section, a new logic associated with Tarski’s consequence operator is
introduced.
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4. Logic TK

The propositional logic TK is the logical system associated to the TK-algebras. The
propositional language of TK is L = (¬,∨,→,�, p1, p2, p3, . . .) and TK is presented
as follows:

Axioms:

(CPC) ϕ, if ϕ is a tautology;

(TK1) ϕ→ �ϕ;

(TK2) ��ϕ→ �ϕ.

Deduction Rules:

(MP)
ϕ→ψ, ϕ

ψ
;

(RM�)
` ϕ→ψ
` �ϕ→ �ψ

.

As usual, we write `S ϕ to indicate that ϕ is a theorem of some axiomatic system
S, and we drop the subscript when there is no possibility of misunderstanding.

Definition 4.1. Let Γ be a set of formulas, and ϕ a formula of some system S. We
say that Γ deduces ϕ (notation: Γ `S ϕ) if there is a finite sequence of formulas
ϕ1, . . . ,ϕn such that ϕn = ϕ and, for every ϕi , 1≤ i ≤ n,

(i) ϕi is an axiom; or

(ii) ϕi ∈ Γ; or

(iii) ϕi is obtained from previous formulas of the sequence by some of the deduc-
tion rules.

Notice that the notion of syntactic consequence (deduction) presented here is
global. Accordingly, we will have, for instance, p → q ` �p → �q. However, (p →
q) → (�p → �q) is not a theorem (what we can show semantically after proving
completeness), and so the Deduction Theorem does not hold1.

Proposition 4.2. ` �ϕ→ �(ϕ ∨ψ).

Proof.
1. ϕ→ (ϕ ∨ψ) Tautology
2. �ϕ→ �(ϕ ∨ψ) R� in 1

Proposition 4.3. ` ϕ⇒ ` �ϕ.
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Proof.
1. ϕ Premise
2. ϕ→ �ϕ AxTK1
3. �ϕ MP in 1 and 2.

Proposition 4.4. Γ ` �ϕ ∨�ψ→ �(ϕ ∨ψ)

Proof.
1. �ϕ→ �(ϕ ∨ψ) Proposition 4.2
2. �ψ→ �(ϕ ∨ψ) Proposition 4.2
3. �ϕ ∨�ψ→ �(ϕ ∨ψ) CPC.

As in the case of a TK-algebra, we can define the dual operator of � in the
following way:

◊ϕ =df ¬�¬ϕ.

Proposition 4.5. ` ϕ→ψ⇒ ` ◊ϕ→ ◊ψ.

Corollary 4.6. ` ϕ↔ψ⇒ ` ◊ϕ↔ ◊ψ.

Proposition 4.7. ` ◊ϕ→ ϕ.

Proposition 4.8. ` ◊ϕ→ ◊◊ϕ.

Proposition 4.9. ` ◊(ϕ ∧ψ)→ ◊ϕ.

Corollary 4.10. ` ◊(ϕ ∧ψ)→ (◊ϕ ∧◊ψ).

We could, alternatively, consider the operator ◊ as primitive and substitute the
axioms TK1 and TK2 for the following ones:

(TK∗1) ◊ϕ→ ϕ,

(TK∗2) ◊ϕ→ ◊◊ϕ,

and the rule RM� by the rule RM◊:

(RM◊)
ϕ→ψ
◊ϕ→ ◊ψ

.

In the following section, the algebraic adequacy of the Logic TK relative to TK-
algebras is shown.
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5. The algebraic adequacy

Below, we indicate the set of propositional variables of TK by Var(TK), the set of
its formulas by For(TK) and a generic TK-algebra by A . The propositional logical
system TK is determined by a pair (L,− ), where L is the propositional language of
TK and − is a consequence operator on For(TK) given by axioms and deduction rules
of TK.

Thus, for Γ ⊆ For(TK), denoting the set of axioms of TK by Ax, then Γ = {ψ :
Γ∪Ax `ψ}. We say that ψ is derivable in TK or is a theorem of TK when ψ ∈∅, or,
Γ =∅.

Definition 5.1. A TK-theory is a set ∆⊆ For(TK), such that ∆=∆.

When ∆=∅, we have the theorems of TK, that is, ψ ∈∅⇔`ψ.

Definition 5.2. A formula ψ ∈ For(TK) is refutable in Γ when Γ ` ¬ψ. Otherwise,
ψ is irrefutable.

Definition 5.3. A set Γ ⊆ For(TK) is irreducible if it is consistent and for any two
sets ∆1, ∆2 ⊆ For(TK):

Γ =∆1 ∩∆2⇒ Γ =∆1 ∨ Γ =∆2.

Definition 5.4. A set Γ⊆ For(TK) is maximal if it is consistent and for any consistent
set ∆⊆ For(TK):

Γ⊆∆⇒ Γ =∆.

Definition 5.5. A restrict valuation is a function v̆: Var(TK) −→ A that interprets
each variable of TK in an element ofA .

Definition 5.6. A valuation is a function v: For(TK) −→A that extends natural and
uniquely v as follows:

(i) v(p) = v̆(p);
(ii) v(¬ϕ) =∼ v(ϕ);

(iii) v(�ϕ) = • v(ϕ);
(iv) v(ϕ ∧ψ) = v(ϕ)∧ v(ψ);
(v) v(ϕ ∨ψ) = v(ϕ)∨ v(ψ).

As usual, operator symbols of left members represent logical operators and the
right ones represent algebraic operators.

Definition 5.7. Let A be a TK-algebra. A valuation v: For(TK) −→ A is a model
for a set Γ⊆ For(TK) when v(γ) = 1, for each formula γ ∈ Γ.
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In particular, a valuation v: For(TK) −→ A is a model for ϕ ∈ For(TK) when
v(ϕ) = 1.

Definition 5.8. A formula ϕ is valid in a TK-algebra A when every valuation v:
For(TK) −→A is a model for ϕ.

Definition 5.9. A formula ϕ is TK-valid, what is denoted by � ϕ, when it is valid in
every TK-algebra.

If we consider the set of formulas For(TK), naturally we have an algebra on
For(TK), B = (For(T K),∧,∨,∼,�) such that ∧ and ∨ are binary operators, ¬ and
� are unary operators.

Now, we define the Lindembaum algebra of TK.

Definition 5.10. Let Γ ∪ {ϕ,ψ} ⊆ For(TK) and ' the equivalence relation defined
by:

ϕ 'ψ⇔d f Γ ` ϕ→ψ and Γ `ψ→ ϕ.

The relation ', more than an equivalence, is a congruence, since by the rule R�:
ϕ ' ψ ⇒ Γ ` ϕ → ψ and Γ ` ψ → ϕ ⇒ Γ ` �ϕ → �ψ and Γ ` �ψ → �ϕ ⇒
�ϕ ' �ψ.

For each ψ ∈ For(TK), we denote the class of equivalence of ψ modulo ' and Γ
by [ψ]Γ = {σ ∈ For(T K) : σ 'ψ}.

The Lindembaum algebra of TK, denoted by AΓ(T K), is the quotient algebra
B|', defined by:
AΓ(T K) = (For(T K)|', 0, 1,¬',�',∧',∨'), such that:

0= [ϕ ∧¬ϕ],
1= [ϕ ∨¬ϕ],
¬'[ϕ] = [¬ϕ],
�'[ϕ] = [�ϕ],
[ϕ]∧' [ψ] = [ϕ ∧ψ],
[ϕ]∨' [ψ] = [ϕ ∨ψ].

In general, we do not indicate the index ' of operations. When Γ = ∅ we just
writeA (T K).

Proposition 5.11. InAΓ(T K) it is valid: [ϕ]≤ [ψ]⇔ Γ ` ϕ→ψ.

Proof. [ϕ] ≤ [ψ]⇔ [ϕ] ∨ [ψ] = [ψ]⇔ [ϕ ∨ψ] = [ψ]⇔ Γ ` ϕ ∨ψ↔ ψ⇔
Γ ` ϕ→ψ.

Proposition 5.12. The algebraAΓ(T K) is a TK-algebra.
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Proof. AxT K1: Γ ` ϕ→ �ϕ ⇒ [ϕ]≤ [�ϕ]⇒ [ϕ]≤ �[ϕ];
Proposition 4.2: Γ ` �ϕ→ �(ϕ ∨ψ)⇒ [�ϕ]≤ [�(ϕ ∨ψ)]⇒ �[ϕ]≤ �[ϕ ∨ψ];
AxT K2: Γ ` ��ϕ→ �ϕ ⇒ [��ϕ]≤ [�ϕ]⇒ ��[ϕ]≤ �[ϕ].

Definition 5.13. The algebraAΓ(T K) is the canonical model of Γ⊆ For(TK).

As an immediate consequence, A (T K) is the canonical model for the theorems
of TK.

Corollary 5.14. Let Γ∪ {ϕ} ⊆ For(TK):

(i) If Γ ` ϕ, then [ϕ] = 1 inAΓ(T K);

(ii) If Γ ` ¬ϕ (ϕ is refutable in Γ), then [ϕ] = 0 inAΓ(T K);

(iii) IfAΓ(T K) is non degenerate, then there is a formula that is not a theorem of Γ.

Proof. SinceAΓ(T K) always has an identity element 1, then for every ϕ ∈ For(TK),
[ϕ]≤ 1.
(i) The formula ϕ → (ψ → ϕ) is a tautology and, hence, a theorem of TK. With a
substitution we have ` ϕ → ((ϕ → ϕ)→ ϕ). Now, if Γ ` ϕ, by MP, it follows that
Γ ` (ϕ→ ϕ)→ ϕ, that is, 1= [ϕ→ ϕ]≤ [ϕ] and [ϕ] = 1.
(ii) Let ϕ be refutable in Γ, that is, Γ ` ¬ϕ. But Γ ` ¬ϕ iff [¬ϕ] = 1 iff ∼[ϕ] = 1 iff
[ϕ] = 0.
(iii) Finally, [ϕ] = 1 iff Γ ` ϕ and, therefore, AΓ(T K) has a different element of 1
iff there is ϕ ∈ For(TK) such that Γ 0 ϕ.

Naturally, if [ϕ] = 1, then Γ ` ϕ and if [ϕ] = 0, then Γ ` ¬ϕ. So, it results
from preceding propositions that for every formula ϕ: [ϕ] = 1 iff Γ ` ϕ, [ϕ] = 0 iff
Γ ` ¬ϕ, and [ϕ] 6= 0 iff ϕ is irrefutable in Γ, and, sinceAΓ(T K) is non-degenerate,
then Γ has some non theorem.

Theorem 5.15 (Soundness). The TK-algebras are correct models for the Logic TK.

Proof. LetA = (A, 0, 1,∨,∼,•) be a TK-algebra. It remains to prove that the axioms
AxT K1 and AxT K2 are valid and the rule R� preserves validity:
AxT K1: v(ϕ→ �ϕ) = v(ϕ)� v(�ϕ) = ∼ v(ϕ)∨ v(�ϕ) = ∼ v(ϕ)∨ (v(ϕ)∨ v(�ϕ))
= (∼ v(ϕ)∨ v(ϕ))∨ v(�ϕ) = 1∨ v(�ϕ) = 1.
AxT K12: v(��ϕ → �ϕ) = •• v(ϕ) � • v(ϕ) = ∼•• v(ϕ) ∨ • v(ϕ) = ∼• v(ϕ) ∨
• v(ϕ) = 1.
R�: Using Proposition 2.2 (ii): v(ϕ → ψ) = 1⇔ v(ϕ) ≤ v(ψ) ⇒ �v(ϕ) ≤ �v(ψ)
⇒ v(�ϕ)≤ v(�ψ)⇔ v(�ϕ→ �ψ) = 1.

Theorem 5.16 (Adequacy). Let ϕ ∈ For(TK). The following assertions are equivalent:
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(i) ` ϕ;

(ii) � ϕ;

(iii) ϕ is valid in every TK-algebra of closed subsets of a Tarski space (S,− );

(iv) v0(ϕ) = 1, where v0 is the valuation defined at the canonical model.

Proof. (i)⇒ (ii) it follows from Soundness Theorem. (ii)⇒ (iii) it suffices to observe
that the algebra of closed subsets of any Tarski space is a TK-algebra. (iii) ⇒ (iv)
since every TK-algebra is isomorphic to a subalgebra of closed subsets of a Tarski
space (S,− ) andA (T K) is a TK-algebra, the result follows. (iv)⇒ (i) if ϕ ∈ For(TK)
and it is not derivable in TK, by Corollary 5.12, [ϕ] 6= 1 inA (T K) and thus v0(ϕ) 6=
1.

Corollary 5.17 (Completeness). If ϕ ∈ For(TK), then: � ϕ⇔` ϕ.

In the next proposition it is proved that the formula (ϕ → ψ)→ (�ϕ → �ψ) is
not TK valid by a counter example.

Proposition 5.18. 2 (ϕ→ψ)→ (�ϕ→ �ψ).

Proof. There is a TK-algebra in which does not hold the above formula. Let E =
{x , y, z} and take the Boolean algebra (P (E), C ,∩,∪,∅, E). Now, define the fol-
lowing consequence operator over (P (E), C ,∩,∪,∅, E): •{x} = {x , y}, •{x , z} =
{x , y, z}, and •X = X , for all the other sets in P (E). Then (P (E), C ,•,∩,∪,∅, E) is
a TK-algebra, but the formula (ϕ → ψ)→ (�ϕ → �ψ) is not valid in it. Below we
show that v(ϕ→ψ)* v(•ϕ→ •ψ), when ϕ is interpreted by {x} and ψ by {z}:

{x , y, z}

{x , y} {x , z} {y, z}

{x} {y} {z}

;

�
����

H
HHHH

��
�
��

��
�
��

HH
H
HH

HH
H

HH

HH
HH

H

��
��
�

{x}� {z}= {x}C ∪ {z}= {y, z} ∪ {z}= {y, z} and
•{x}� •{z}= (•{x})C ∪ •{z}= {z} ∪ {z}= {z}.
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As a consequence of the previous proposition, follows that the Deduction Theo-
rem is not valid for the TK Logic when it was applied the rule R� in a deduction.

The next results involve the models of set of formulas with the concept of ideals
in a TK-algebra.

6. Strong adequacy

Definition 6.1. LetA be a TK-algebra and Γ⊆ For(TK). An algebraic model for Γ is
a valuation v: For(L) −→A , such that for every γ ∈ Γ, v(γ) = 1.

We denote that A is an algebraic model for Γ ⊆ For(TK) by A � Γ, that is,
A � Γ if, and only if, for every γ ∈ Γ, vA (γ) = 1.

Definition 6.2. Let Γ∪ {γ} ⊆ For(TK). The set Γ implies γ (or γ is a semantic conse-
quence of Γ) when, for every modelA , ifA � Γ, thenA � {γ}.

We denote that Γ implies γ by Γ � γ.

Proposition 6.3. For Γ⊆ For(TK), we have: Γ ` γ⇒ Γ � γ.

Proof. Let v : For(L) −→A be a model for Γ. Since A is a TK-algebra, then v is a
model for every axiom of TK and for every γ ∈ Γ. As in the Soundness Theorem, the
rules of TK preserve validity and if Γ ` γ, then vA (γ) = 1.

Definition 6.4. Let Γ ⊆ For(T K). A model v: For(TK) −→ A is strongly adequate
for Γ when, for every γ ∈ For(TK):

Γ ` γ⇔ Γ � γ.

Proposition 6.5. Let Γ⊆ For(TK) be consistent. Then:

(i) the algebraAΓ(T K) is non degenerate;

(ii) the canonical valuation v0 is an adequate model for Γ in AΓ(T K) such that
Γ ` σ⇔ if v0(γ) = 1, for every γ ∈ Γ, then v0(σ) = 1.

Proof. (i) As Γ is consistent, there is σ such that Γ 0 σ. So [σ] = 0 ∈ AΓ(T K) and
for any axiom ϕ of TK it follows that [ϕ] = 1 ∈ AΓ(T K). Then AΓ(T K) is non
degenerate.
(ii) AΓ(T K) is a TK algebra and by construction v0 = [ ] and Γ ` γ⇔ [γ] = 1, for
any γ ∈ Γ⇒ [σ] = 1.

Theorem 6.6. Let Γ⊆ For(TK). The following conditions are equivalent:

(i) Γ is consistent;
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(ii) there is an adequate model for Γ;

(iii) there is an adequate model for Γ in a TK-algebra A of all closed subsets of a
Tarski space (S,− );

(iv) there is a model to Γ.

Proof. (i)⇒ (ii) It follows of preceding proposition.
(ii)⇒ (iii) Since AΓ(T K) is a TK-algebra and every TK-algebra is isomorphic to a
subalgebra of closed sets of a Tarski space (S,− ), then the result follows.
(iii)⇒ (iv) It is an immediate consequence.
(vi)⇒ (i) Let A be a model for Γ and suppose that Γ is not consistent. Then Γ ` γ
and Γ ` ¬γ. So vA (γ) = 1 and vA (¬γ) = 1 = ∼ vA (γ). But if vA (γ) = 1, then
∼ vA (γ) = 0 and therefore we have a contradiction.

Corollary 6.7. Let Γ ∪ {γ} ⊆ For(T K) consistent. The following conditions are equi-
valent:

(i) Γ ` γ;

(ii) Γ � γ;

(iii) every model of Γ in a TK-algebra of all closed subsets of a Tarski space (S,− ) is a
model to γ;

(iv) v0(γ) = 1, for the canonical valuation v0.

7. Some meta-theorems

In this section, some other syntactic and semantic consequent results from previous
sections are established.

Theorem 7.1. Propositional calculus TK is consistent.

Proof. Suppose that TK is not consistent. Then there is ϕ ∈ For(TK) such that ` ϕ
and ` ¬ϕ. By Soundness Theorem, ϕ and ¬ϕ are valid. Let v be a valuation in
a TK-algebra with two elements 2 = {0,1}. Since ϕ is valid, then v(ϕ) = 1 and
therefore v(¬ϕ) = ∼ v(ϕ) = 0. This contradicts the fact that ¬ϕ is valid.

Proposition 7.2. Let Γ⊆ For(TK). The set IΓ = {[ϕ] : ∃k ∈ N,γ1, . . . ,γk ∈ Γ ` ϕ→
�(γ1 ∨ . . . ∨ γk)} is a TK-ideal in the TK-algebraA (T K).

Proof. (1) [ϕ], [ψ] ∈ IΓ ⇒ ` ϕ→ �(γ1 ∨ . . . ∨ γk) and `ψ→ �(σ1 ∨ . . . ∨σm)⇒
` (ϕ∨ψ)→ �(γ1∨ . . . ∨γk)∨�(σ1∨ . . . ∨σm)⇒ (by Proposition 4.4) ` (ϕ∨ψ)→
�(γ1 ∨ . . . ∨ γk ∨σ1 ∨ . . .∨σm)⇒ [ϕ ∨ψ] = [ϕ]∨ [ψ] ∈ IΓ.
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(2) [ϕ] ≤ [ψ] and [ψ] ∈ IΓ ⇒ ` ϕ → ψ and ` ψ→ �(σ1 ∨ . . . ∨σm) ⇒ ` ϕ →
�(σ1 ∨ . . . ∨σm)⇒ [ϕ] ∈ IΓ.
(3) [ϕ] ∈ IΓ ⇒ ` ϕ → �(γ1 ∨ . . . ∨ γk) ⇒ [ϕ] ≤ [�(γ1 ∨ . . . ∨ γk)] ⇒ [ϕ] ≤
�[(γ1 ∨ . . . ∨ γk)] ⇒ �[ϕ] ≤ �[(γ1 ∨ . . . ∨ γk)] ⇒ [�ϕ] ≤ [�(γ1 ∨ . . . ∨ γk)] ⇒
` �ϕ→ �(γ1 ∨ . . . ∨ γk)⇒ [�ϕ] = �[ϕ] ∈ IΓ.

In the logical context, this proposition is similar to the Proposition 3.4 about
ideals. In both we could take γ ∈ Γ because if γ1, . . . ,γk ∈ Γ, then γ1 ∨ . . . ∨ γk ∈ Γ
and also �(γ1 ∨ . . . ∨γk) ∈ Γ. So, the above TK-ideal IΓ is the TK-ideal generated by
{[γ] : γ ∈ Γ}.

The set Γ ⊆ For(TK) is consistent if, and only if, IΓ is a proper ideal of A (T K),
because Γ is not consistent iff 1 ∈ Γ iff [1] ∈ IΓ iff I is not a proper ideal.

Proposition 7.3. If J is a TK-ideal in A (T K) and Γ = {ψ ∈ For(T K) : [ψ] ∈ J},
then J ⊆ IΓ.

Proof. Let Γ = {ψ ∈ For(T K) : [ψ] ∈ J}. Hence [ϕ] ∈ J ⇒ ϕ ∈ Γ⇒ [ϕ] ∈ IΓ.

Proposition 7.4. Let Γ⊆ For(TK). The TK-ideal IΓ is maximal if, and only if, the set Γ
is maximal

Proof. (⇒) Suppose that Γ is not maximal. In this case, there is ψ ∈ For(TK) such
that Γ1 = Γ∪ {ψ} and Γ2 = Γ∪ {¬ψ} are consistent. So Γ ⊆ Γ1 ∩ Γ2, with Γ1 6= Γ2.
Therefore, IΓ ⊆ IΓ1

∩ IΓ2
and since IΓ is maximal, then IΓ = IΓ1

= IΓ2
what is a

contradiction, because [ψ] ∈ IΓ1
, [¬ψ] ∈ IΓ2

and 1 /∈ IΓ.
(⇐) If Γ is maximal, for each ψ ∈ For(TK), either ψ ∈ Γ or ¬ψ ∈ Γ. Then for each
ψ ∈ For(TK), [ψ] ∈ IΓ or [¬ψ] ∈ IΓ. Since Γ is consistent, then IΓ is proper and it is
not the case that 1 = [ψ]∨ [¬ψ] ∈ IΓ. Hence, the TK-ideal IΓ is maximal.

Proposition 7.5. If Γ⊆ For(TK) is consistent, then there is a maximal set∆⊆ For(TK)
such that Γ⊆∆.

Proof. The result follows from Zorn’s Lemma.

Proposition 7.6. If Γ ⊆ For(TK) is consistent, then there is ∆ ⊆ For(TK) irreducible
such that Γ⊆∆.

Proof. If Γ is consistent, by previous proposition, there is a maximal set ∆ such that
Γ⊆∆. Now, since each maximal set is an irreducible set, then ∆ is irreducible.

Definition 7.7. A model for Γ in a non degenerate TK-algebra A is a •-semantic
model of Γ when for every a ∈ A: either • a = 1 or • a = 0.

Proposition 7.8. If Γ⊆ For(TK) is consistent, then Γ has a •-semantic model.
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Proof. If Γ is consistent, it is included in a maximal set Γ∗ and it has a modelA . By
Proposition 7.4, IΓ∗ is maximal and from Proposition 3.24,A|J∗ is a non degenerate
TK-algebra with the property that for every ā ∈ A |J∗ , either • ā ≡ 0 or • ā ≡ 1.
If h is the surjective homomorphism h : A −→ A|J∗ , so the composition hov is a
•-semantic model for Γ.

Given Γ ⊆ For(TK), consider the function h : A (T K) −→ AΓ(T K), defined by
h([ψ]) = [ψ]Γ. We are going to denote a member ofA (T K) by [ψ], and a member
of AΓ(T K) by [ψ]Γ. Naturally h is a surjective homomorphism. Now, the kernel of
h is:
Ker(h) = {[ψ] ∈ A (T K) : h([ψ]) = [0]Γ} = {[ψ] ∈ A (T K) : [ψ]Γ = [0]Γ} =
{[ψ] ∈ A (T K) : Γ ` ¬ψ}, because [ψ]Γ = [0]Γ⇔ Γ ` ψ→ 0 and Γ ` 0→ ψ⇔
Γ ` ¬ψ and Γ ` 1⇔ Γ ` ¬ψ.

By Theorem 3.22,A (T K)|Ker(h) is isomorphic toAΓ(T K)

Theorem 7.9. Given Γ⊆ For(TK), the following statements are equivalent:

(i) for every ϕ ∈ For(TK) exactly one holds: Γ ` �ϕ or Γ ` ¬�ϕ;

(ii) Γ is maximal;

(iii) AΓ(T K) is isomorphic to a non degenerate TK-algebra of sets (Tarski space) A
which is a •-semantic model of Γ;

(iv) Γ is consistent and each •-semantic model for Γ is adequate.

Proof. (i) ⇒ (ii) Suppose that Γ is not maximal. So there is ∆ maximal such that
Γ ⊂ ∆. From Proposition 7.5, there is [ψ] ∈ I∆ but [ψ] /∈ IΓ. Then [�ψ] /∈ IΓ
and Γ 0 �ψ. By (i) Γ ` ¬�ψ, then ∆ ` ¬�ψ and ∆ ` �ψ, what contradicts the
maximality of ∆.
(ii)⇒ (iii) By previous analysis AΓ(T K) ≈A (T K)|Ker(h). Now, since Γ is maximal,
AΓ(T K) is not degenerate and, for every ψ ∈ For(TK), Γ ` ψ ⇔ ψ ∈ Γ. So,
for every ψ ∈ For(TK), either [�ψ] = 0 or [�ψ] = 1, that is, A (T K)|Ker(h) is •-
semantic. From Theorem 2.10, this TK-algebra is isomorphic to a TK-algebra of sets
(or Tarski space)A .
(iii) ⇒ (iv) Considering (iii), the set Γ is consistent. Now let A be an arbitrary
•-semantic model for Γ. Given ϕ ∈ For(TK), either vA (ϕ) = 0 or vA (ϕ) = 1. If
vA (ϕ) = 1, then Γ ` �ϕ and if vA (ϕ) = 0, then Γ 0 �ϕ, and thus Γ ` ¬�ϕ.
(iv) ⇒ (i) Since Γ is consistent, by Proposition 7.8, there is a •-semantic model A
for it. By (iv) this model is adequate. So for any ϕ ∈ For(TK), either vA (ϕ) = 0 or
vA (ϕ) = 1, that is, either Γ ` �ϕ or Γ ` ¬�ϕ.

Corollary 7.10 (Decidability). The Logic TK is decidable.
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Proof. Consider the •-semantic model 2= {0, 1}, such that •0= 0 and •1= 1. Since
from previous theorem any •-semantic model is adequate, therefore 2 is adequate
and, in this way, for any formula ψ ∈ For(TK), `ψ⇔ v2(ψ) = 1.

8. Final considerations

Logic TK is a kind of modal logic. The operator � has an intuitive algebraic interpre-
tation and another one given by the Tarski spaces.

As it is known from the modal logics, in the presence of the necessitation rule
(NR - Proposition 4.3) the K axiom: �(ϕ → ψ) → (�ϕ → �ψ) is equivalent to
�(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ). However, only �(ϕ ∧ ψ) → (�ϕ ∧ �ψ) holds in TK.
Therefore we can observe that TK is a subnormal modal logic. It is easier to see that
by analyzing the dual operator ◊.

Of course, we can investigate other kind of semantics for TK, particularly, some
relational semantic kind.

Maybe some variations on TK-algebras can provide natural and simple algebraic
models to other modal logics.
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Resumo. Tarski apresentou sua definição de operador de consequência com a intenção de
expor as concepções fundamentais da consequência lógica. Um espaço de Tarski é um par
ordenado determinado por um conjunto não vazio e um operador de consequência sobre
este conjunto. Esta estrutura matemática caracteriza um espaço quase topológico. Este artigo
mostra uma visão algébrica dos espaços de Tarski e introduz uma lógica proposicional modal
que interpreta o seu operador modal nos conjuntos fechados de algum espaço de Tarski.

Palavras-chave: Espaço de Tarski, espaço quase topológico, operador de consequência, ló-
gica modal, modelo algébrico.
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