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Abstract

Infants segment words from fluent speech during the same period when they are learning

phonetic categories, yet accounts of phonetic category acquisition typically ignore

information about the words in which sounds appear. We use a Bayesian model to

illustrate how feedback from segmented words might constrain phonetic category learning

by providing information about which sounds occur together in words. Simulations

demonstrate that word-level information can successfully disambiguate overlapping

English vowel categories. Learning patterns in the model are shown to parallel human

behavior from artificial language learning tasks. These findings point to a central role for

the developing lexicon in phonetic category acquisition and provide a framework for

incorporating top-down constraints into models of category learning.

Keywords: language acquisition, phonetic category learning, Bayesian inference
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A role for the developing lexicon

in phonetic category acquisition

One of the first challenges for language learners is deciding which speech sound

distinctions are and are not relevant in their native language. Learning to group

perceptual stimuli into categories is a complex task. Categories often overlap, and

boundaries are not always clearly defined. This is especially apparent when one looks at

sound categories that occur in natural language. Phonetic categories, particularly vowel

categories, show substantial acoustic overlap (Figure 2a).1 Even a single speaker’s

productions of a specific category in a specific context are variable. Phonetic categories

contain even more variability across ranges of speakers and contexts. The high degree of

overlap suggests that infants learning language sometimes need to attend carefully to

slight differences in pronunciation between different categories while simultaneously

ignoring large degrees of within-category variability.

Infants nevertheless appear to learn about the sound categories of their native

language quite early. Babies initially discriminate sound contrasts whether or not they are

functionally useful in the native language, but this ability declines for most non-native

consonant contrasts between six and twelve months of age (Werker & Tees, 1984). During

the same period, infants’ ability to discriminate perceptually difficult consonant contrasts

in their native language is enhanced (Narayan, Werker, & Beddor, 2010). Vowel

perception begins to reflect the learner’s native language as early as six months (Kuhl,

Williams, Lacerda, Stevens, & Lindblom, 1992). These perceptual changes are generally

interpreted as evidence for infants’ developing knowledge of native phonetic categories,

implying that young learners have a remarkable ability to acquire speech sound categories
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amidst high acoustic overlap.

Identifying the mechanisms that support infants’ early language learning abilities

has been a central focus of research in language acquisition. Statistical learning theories

propose that infants acquire each layer of structure by observing statistical dependencies

in their input. Infants show robust sensitivity to statistical patterns. They extract

phonological and phonotactic regularities that govern sound sequences (Seidl, Cristiá,

Bernard, & Onishi, 2009; White, Peperkamp, Kirk, & Morgan, 2008), use transitional

probabilities to segment fluent speech into word-sized units (Pelucchi, Hay, & Saffran,

2009; Saffran, Aslin, & Newport, 1996), and notice adjacent and non-adjacent

dependencies between words in grammar learning tasks (Gómez, 2002; Gómez & Gerken,

1999). Learners are also sensitive to statistical structure in non-linguistic stimuli such as

visual shapes (Fiser & Aslin, 2002) and auditory tones (Saffran, Johnson, Aslin, &

Newport, 1999), suggesting that statistical learning is a domain general strategy for

discovering structure in the world.

Distributional learning has been proposed as a statistical learning mechanism for

phonetic category acquisition (Maye & Gerken, 2000; Maye, Werker, & Gerken, 2002).

Learners are hypothesized to obtain information about which sounds are contrastive in

their native language from the distributions of sounds they hear. Learners hearing a

bimodal distribution of sounds along a particular acoustic dimension can infer that the

language contains two categories along that dimension; conversely, a unimodal

distribution provides evidence for a single phonetic category. Distributional learning is

consistent with empirical evidence showing that infants attend to distributional cues at

the age when they are first learning phonetic categories (Maye et al., 2002).

Computational modeling results also suggest that a distributional learning strategy can be
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successful at recovering phonetic categories that have sufficient separation in acoustic

space (McMurray, Aslin, & Toscano, 2009; Vallabha, McClelland, Pons, Werker, &

Amano, 2007). However, distributional learning is less effective when categories have a

high degree of overlap. Overlapping categories pose a problem because the distribution of

sounds in two overlapping categories can appear unimodal (Figure 1), misleading a learner

into believing there are too few categories.

In this article, we show that learners can overcome the problem of overlapping

categories by using feedback from higher levels of structure to constrain category

acquisition. Specifically, we show that using feedback from a developing lexicon can

improve phonetic category acquisition. Interactive learning of words and sounds is

beneficial when sounds occur in distinct lexical contexts. The blue and red categories from

Figure 1 overlap acoustically when considered in isolation, but an interactive learner can

notice that, for example, the blue sounds occur in the word milk and the red sounds occur

in the word game. These lexical contexts are easily distinguishable on the basis of acoustic

information and can be used as disambiguating cues to sound category membership. This

type of interactive learning does not require meanings or referents to be available to the

learner; it requires only that learners use acoustic information to categorize word tokens.

Thus, information from lexical contexts has the potential to contribute to early

development, even before infants have learned the meanings of many words. Our

theoretical framework is similar to that proposed by Swingley (2009), but here we provide

a formal account of this interactive learning hypothesis. Our analysis is framed at Marr’s

(1982) computational level, examining the statistical solution to the sound category

learning problem in a structured environment where sounds are organized into words. We

quantitatively investigate the potential benefit of interactive learning by building a
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computational model that learns to categorize sounds and words simultaneously and show

that word-level information provides an informative cue that can help learners acquire

phonetic categories.

Although our focus in this article is on linguistic categories, the modeling that we

develop here may well have broader application. Distributional learning, for example, can

be thought of as a domain general strategy for recovering underlying structure. Learning

mechanisms that rely on probability density estimation, in which categories are defined by

their probability of producing different stimuli, are popular in research on categorization

(Ashby & Alfonso-Reese, 1995). The specific models that have been proposed as accounts

of phonetic category learning (e.g., Gaussian mixture models, de Boer & Kuhl, 2003;

Vallabha et al., 2007; McMurray et al., 2009; Toscano & McMurray, 2010; Dillon, Dunbar,

& Idsardi, 2013) have also been proposed as accounts of category learning more generally

(Anderson, 1990; Rosseel, 2002; Sanborn, Griffiths, & Navarro, 2010). While studies of

category learning have tended to focus on the acquisition of categories in isolation from

their context, earlier work on the effects of prior knowledge on category learning (e.g.,

Pazzani, 1991; Heit & Bott, 2000; Wattenmaker, Dewey, Murphy, & Medin, 1986; Murphy

& Allopenna, 1994) and more recent work on the consequences of learning multiple

categories simultaneously (Gureckis & Goldstone, 2008; Canini, Shashkov, & Griffiths,

2010; Canini & Griffiths, 2011) suggests that our conclusions about the importance of

using information from multiple levels of structure may have implications beyond just

language acquisition.

In the following, we first introduce the idea of modeling category learning as density

estimation and show how distributional learning can be viewed in this framework. We

then show through an initial simulation that distributional learning can be challenging
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when categories have a high degree of overlap. Our next section explores how constraints

from higher-level structure might supplement distributional learning, formalizing a

lexical-distributional model that learns word- and sound-level information simultaneously.

Three simulations quantify the benefit of interactive learning by comparing performance

of our lexical-distributional model directly to that of distributional models. We conclude

by showing that qualitative behavior of our lexical-distributional model mirrors patterns

from experiments on sound category learning, suggesting that people behave as interactive

learners, and by discussing the plausibility of the interactive learning approach for

language acquisition and for category learning more generally.

Distributional learning

Rational analyses of category learning (e.g., Anderson, 1990; Ashby &

Alfonso-Reese, 1995) reduce the psychological problem of learning a new category to the

statistical problem of density estimation: Learning a category requires estimating a

probability distribution over the items that belong to the category. A learner can use the

resulting distributions to quickly decide which category a new item belongs to, with

categorization being a simple matter of probabilistic inference. This perspective provides a

novel interpretation of traditional models of categorization such as prototype and

exemplar models (Ashby & Alfonso-Reese, 1995) and provides a productive link between

ideas from statistics and theories of human category learning (Griffiths, Sanborn, Canini,

Navarro, & Tenenbaum, 2011).

Distributional learning accounts of early language acquisition (Maye et al., 2002)

likewise propose that phonetic category acquisition can be viewed as a density estimation

problem. That is, adult-like discrimination and processing abilities are assumed to reflect

knowledge of the distributions associated with native language phonetic categories.
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Distributional learning specifies one way in which this knowledge might be acquired:

Learners observe sounds in their input that cluster in perceptual space and hypothesize

categories to coincide with the locations of those clusters. They can use the clusters they

observe to estimate the probability distribution associated with each category. This gives

them a way of simultaneously learning which categories are in their language and which

sounds are associated with each category.

Distributional learning is supported by experimental evidence that infants are

sensitive to distributions of sounds at six and eight months. Maye et al. (2002)

familiarized infants with stop consonants ranging from unaspirated [t] to [d]. Although

these sounds occur as variants of different phonemes in English, they are not used

contrastively, and always appear in different phonological environments. Adults have

previously been shown to have difficulty distinguishing these sounds in laboratory settings,

whereas young infants are sensitive to the distinction (Pegg & Werker, 1997). Maye et al.

investigated infants’ ability to use statistical information to constrain how they interpret

these sounds. During familiarization, infants heard either a bimodal distribution of

sounds, mimicking the distribution that might be associated with two phonetic categories,

or a unimodal distribution, mimicking the distribution that might be associated with a

single phonetic category. Infants who heard the sounds embedded in a bimodal

distribution exhibited better discrimination of the endpoint stimuli at test than infants

who heard the sounds embedded in a unimodal distribution, suggesting that participants’

sensitivity to this contrast had changed to reflect the distributions of sounds that they

heard. Bimodal distributions can also facilitate discrimination of a difficult voicing

continuum (Maye, Weiss, & Aslin, 2008) and of a place of articulation continuum

(Yoshida, Pons, Maye, & Werker, 2010) in infants. Adults retain sensitivity to
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distributional information in consonants (Maye & Gerken, 2000) and vowels (Gulian,

Escudero, & Boersma, 2007), though sensitivity to distributional cues appears to decrease

as phonetic category acquisition progresses (Yoshida et al., 2010).

The period around six to eight months when infants show sensitivity to

distributional information corresponds closely to the period of time when infants lose

sensitivity to non-native contrasts (Werker & Tees, 1984). This suggests that learners can

make use of distributional information during the time when they are acquiring phonetic

categories, and it is intuitively plausible that finding clusters of sounds would be a useful

strategy for acquiring phonetic categories. Computational modeling allows us to look

more carefully at the predicted outcome of distributional learning to determine whether

infants’ sensitivity would be predicted to facilitate phonetic category acquisition. If

computational models can recover the sound categories of a natural language through a

purely distributional learning strategy, then this would lend credence to the possibility

that infants can do the same. The remainder of this section provides an overview of

computational models that have been used to investigate the utility of distributional

learning for phonetic category acquisition.

Mixture models

Models of phonetic category acquisition have implemented distributional learning by

assuming that learners need to find the set of categories that describe the distribution of

sounds in acoustic space, where each category is represented by a Gaussian (i.e., normal)

distribution (de Boer & Kuhl, 2003; Dillon et al., 2013; McMurray et al., 2009; Toscano &

McMurray, 2010; Vallabha et al., 2007). In this framework, phonetic category learning

consists of jointly inferring the mean, covariance, and frequency of each Gaussian category

as well as the category label of each sound. This inference process has been implemented
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through a type of model known as a Gaussian mixture model, which has also appeared in

the general literature on category learning (Anderson, 1990; Rosseel, 2002; Sanborn et al.,

2010). By comparing the outcome of learning in these models to the true set of phonetic

categories in a language, we can gain insight into the plausibility of distributional learning

as a mechanism for phonetic category acquisition.

Mixture models assume that there are several categories and that each of the

observed data points was generated from one of these categories. In phonetic category

acquisition, the categories are phonetic categories and the data points represent speech

sounds. Mixture models typically assume that there is a fixed number of categories C; here

we refer to each category by a number c ranging from 1 to C. Each category is associated

with a probability distribution p(x|c) which defines the probability of generating a

stimulus value x from category c. The probability distribution p(x|c) in mixture models

can take a variety of forms, but here we focus on the case in which p(x|c) is a Gaussian

distribution, so that recovering p(x|c) is equivalent to recovering a mean µc and a

covariance matrix Σc. The observed data points are referred to as xi. Each data point is

assumed to be associated with a label zi, ranging between 1 and C, that indicates which

category it belongs to. In an unsupervised learning setting such as language acquisition,

the labels zi are unobserved. Learners need to recover the probability distribution p(x|c)

associated with each category as well as the label zi associated with each data point.

Inferring a probability distribution p(x|c) is straightforward when a learner knows

which stimuli belong to the category (i.e., when zi is known). If p(x|c) is a Gaussian

distribution, the parameter estimates for µ and Σ that maximize the probability of the

data are given by the empirical mean and covariance

µc =
1
n

∑
zi=c

xi (1)
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Σc =
1
n

∑
zi=c

(xi − µ)(xi − µ)T

where n denotes the number of observed data points xi for which zi = c. These equations

give optimal estimates for category parameters when a learner has no prior knowledge

about what the category mean and covariance should be, but it is also straightforward to

incorporate prior beliefs about these parameters in a Bayesian framework using a type of

prior distribution known as a normal inverse Wishart distribution (see Gelman, Carlin,

Stern, & Rubin, 1995, for details).

Conversely, if the probability density function p(x|c) and frequency p(c) associated

with each category is known, it is straightforward to infer zi, assigning a novel unlabeled

data point to a category. This amounts to using Bayes’ rule,

p(c|x) =
p(x|c)p(c)

C∑
c′=1

p(x|c′)p(c′)
(2)

to compute the posterior probability of category membership, where x is the unlabeled

stimulus, c denotes a particular category, and the sum in the denominator ranges over the

set of all possible categories.

The problem faced by language learners acquiring phonetic categories is difficult

because neither category assignments zi for individual stimuli, nor probability density

functions p(x|c) associated with phonetic categories, are known in advance. This produces

a type of chicken-and-egg learning problem that is common to many problems in language

acquisition. Algorithms such as Expectation Maximization (EM) (Dempster, Laird, &

Rubin, 1977) provide a principled solution to these types of problems by searching for the

parameters and category labels that maximize the probability of the data. In phonetic

category acquisition, learners using the EM algorithm would begin with an initial

hypothesis about the category density functions, then iterate back and forth between
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inferring category assignments for each sound they have heard according to Equation 2

and inferring probability density functions for each category according to Equation 1.

The EM algorithm has been used to test distributional models on English vowel

categories. de Boer and Kuhl (2003) fit Gaussian mixture models to actual formant values

in mothers’ spontaneous productions of the /a/, /i/, and /u/ phonemes from the words

sock, sheep, and shoe. They compared model performance from infant- and adult-directed

speech and found better performance when the models were trained on infant-directed

speech, as measured by the accuracy of the inferred category centers. This benefit of

infant-directed speech as training data was attributed to the increased separation between

categories that is typical of infant-directed speech (Kuhl et al., 1997; but see McMurray,

Kovack-Lesh, Goodwin, & McEchron, submitted). However, note that the /i/, /u/, and

/a/ vowel categories used by de Boer and Kuhl (2003) are precisely those vowel categories

with maximal separation in acoustic space, and children acquiring a full set of phonetic

categories would face a more difficult problem. We return to the issue of category

separation below.

Inferring the number of categories

The EM algorithm requires the number of categories to be specified in advance.

However, it is unlikely that human learners know in advance how many phonetic

categories they will be learning, because this number varies across languages. McMurray

et al. (2009) and Vallabha et al. (2007) proposed an online sequential learning algorithm

similar to EM that provides a way around this limitation. The algorithm resembles EM in

that it iterates between estimation of category parameters and assignment of a sound to a

particular category. During each iteration the model observes a single speech sound and

assigns it to a category. It then updates the mean, covariance, and frequency parameters
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of each category on the basis of that sound (see Vallabha et al., 2007, for a detailed

description of these updates, which proceed by a method of gradient descent). Automatic

inference of the number of categories is achieved by eliminating categories whose

frequency drops below a predefined threshold. The model begins with a high number of

phonetic categories and prunes those that are not needed.

Nonparametric Bayesian models provide a second option for flexibly learning the

number of categories. A type of nonparametric Bayesian model known as the Dirichlet

process (Ferguson, 1973) has been used to model category learning in language and other

domains (Anderson, 1990; Goldwater, Griffiths, & Johnson, 2009, 2011; M. Johnson,

Griffiths, & Goldwater, 2007; Sanborn et al., 2010). Dirichlet processes provide a modeling

framework similar to the mixture models described above, but they differ from traditional

mixture models in that they provide a mechanism for inferring an unbounded number of

categories. Because of this, Dirichlet process models are often referred to as infinite

mixture models (IMM). They infer the correct number of categories by considering a

potentially infinite number of categories but encoding a prior bias toward fewer categories.

This bias in the prior distribution encourages the model to use only those categories that

are necessary to explain the data. Here we implement distributional learning using the

infinite Gaussian mixture model (Rasmussen, 2000), which assumes that the probability

density function p(x|c) associated with each category is Gaussian. We use Gibbs sampling

(Geman & Geman, 1984), a form of Markov chain Monte Carlo, as an inference algorithm

for this model. The details of the model and inference algorithm are given in Appendix A.

The gradient descent models and the IMM each provide a way of inferring the

number of categories present in the data, and each can be evaluated on its ability to

recover the correct number of categories. Previous work has examined this ability in both
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types of models. Using the gradient descent method, McMurray et al. (2009) focused on a

voicing contrast in consonants. They generated training data for the models by sampling

sounds from Gaussian distributions that mimicked the voice onset time (VOT)

distributions of voiced and voiceless stops, then showed that their learning algorithm

recovered these two categories correctly. Vallabha et al. (2007) performed similar

experiments using vowels. They generated training data that mimicked the distributions

associated with single speakers producing /i/, /I/, /e/, and /E/ in English or /i/, /i:/, /e/,

and /e:/ in Japanese. The most frequent learning outcome for models trained on these

data was to recover four categories in each case. Models trained on English input data

recovered categories that were distinguished along all three relevant dimensions (F1, F2,

and duration), whereas models trained on Japanese input data recovered categories that

were distinguished primarily by F1 and duration. For both consonants and vowels, then,

the gradient descent algorithm has yielded initial success in inferring the correct number

of categories.

Dillon et al. (2013) examined the performance of the IMM in acquiring a

three-category vowel system from Inuktitut. They considered the possibility that the

model might acquire categories at either the phonemic level (3 categories) or the phonetic

level (6 categories). Simulations showed that given different sets of parameters, the model

could acquire either three or six categories, supporting a successful outcome of

distributional learning. However, the authors also identified several ways in which the

models’ solutions were insufficiently accurate to provide input for learning higher levels of

linguistic structure.

Despite the success of these models, it is not yet clear whether distributional

learning can accommodate more realistic input data. Phonetic categories, particularly
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vowel categories, can show a high degree of overlap (e.g. Peterson & Barney, 1952;

Hillenbrand, Getty, Clark, & Wheeler, 1995), whereas the input data to these

computational models contained only limited category overlap. Categories involved in the

voicing contrast from McMurray et al. (2009) are well separated. The vowel contrasts

used by Vallabha et al. (2007) were composed of neighboring categories that presumably

had some degree of overlap, but even here, each model was trained on data from a single

speaker. The training data therefore had lower within-category variability than one would

expect to find in real language input, and this presumably led to a lower degree of overlap.

The data used by Dillon et al. (2013) contained higher amounts of category overlap, but

in this case the authors identified several shortcomings in the distributional model’s

performance. Because their paper used the IMM, and used training data that did not

conform to their Gaussian assumptions, it is difficult to compare their results directly to

those obtained through the gradient descent algorithm on data generated from Gaussians.

Our initial simulation tests both types of distributional learning models directly on a

single dataset in which the categories have a high degree of overlap, comparing this to

performance on a dataset in which categories have a lower degree of overlap.

Simulation 1: The problem of overlapping categories

Overlap between categories can potentially make the learning problem more difficult

because the distribution of sounds from two categories can appear unimodal, misleading a

distributional learner into assigning the sounds to one category. To explore this challenge,

we test the ability of distributional learning models to recover the vowel categories from

Hillenbrand et al. (1995). These categories exhibit high acoustic variability and therefore

provide a challenging test case for distributional models.

Our simulations use two distributional learning models: the gradient descent
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algorithm from Vallabha et al. (2007) and the IMM. Each model provides a unique set of

advantages. The gradient descent model has been used previously to investigate phonetic

category acquisition, and its use here facilitates comparison with this previous work. Its

algorithm is sequential and is thus arguably more psychologically plausible than the Gibbs

sampling algorithm used with the IMM (but see Sanborn et al., 2010, for a sequential

algorithm that can be used with the IMM). However, the drawback of using gradient

descent is that the model cannot find a set of globally optimal category parameters, and

instead converges to a locally optimal solution. The Gibbs sampling algorithm used with

the IMM has some potential to overcome the problem of local optima. Furthermore, there

is a straightforward way to extend the IMM to incorporate multiple layers of structure

(Teh, Jordan, Beal, & Blei, 2006), and we take advantage of this flexibility to create the

interactive lexical-distributional learning model introduced in the next section. Using the

IMM as a distributional learning model thus allows for a direct comparison between the

distributional and lexical-distributional learning strategies.

Throughout this article, we evaluate models on their ability to recover the correct

number of categories, a measure that has become standard for evaluating success in

unsupervised models of phonetic category learning (e.g. Dillon et al., 2013; McMurray et

al., 2009; Vallabha et al., 2007). In addition, to assess the quality of these categories, we

evaluate the models’ ability to identify which sounds from the corpus are in each category.

Our analyses look at the categories recovered by each model, rather than at the models’

ability to use those categories in specific psycholinguistic tasks. Our assumption is that a

learning strategy that supports robust category learning would also support use of those

categories, either implicitly or explicitly, in psycholinguistic tasks.
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Methods

Corpus preparation. Phoneme and word frequencies were obtained from the

CHILDES parental frequency count (MacWhinney, 2000; Li & Shirai, 2000). We

converted all words in the frequency data to their corresponding phonemic representations

using the CMU pronouncing dictionary. If the dictionary contained multiple phonemic

forms for a word, the first was used. Stress markings were removed, diphthongs /aU/,

/aI/, and /OI/ were converted to sequences of two phonemes, and /Ç/ was treated as a

single phoneme rather than a sequence of two phonemes. Any words whose orthographic

representation in CHILDES contained symbols other than letters of the alphabet, hyphen,

and apostrophe were excluded. In addition, words not found in the CMU pronouncing

dictionary were excluded. This resulted in the exclusion of 7,911 types, representing

28,447 tokens (approximately 1% of tokens), and left us with a phonematized word list of

15,825 orthographic word types, representing 2,548,494 tokens. This phonematized word

list was used to compute empirical probabilities for each vowel (Table 1) for constructing

the corpora in Simulations 1 and 2 and to directly sample word tokens for constructing

the corpora in Simulations 3 and 4.

We obtained phonetic category parameters from production data collected by

Hillenbrand et al. (1995). Production data by men, women, and children were used to

compute empirical estimates of category means and covariances in the two-dimensional

space given by the first two formant values using Equation 1. This gave us a set of

phonetic categories with high variability and therefore high overlap among neighboring

categories. To obtain parameters for a set of categories with lower overlap, we estimated

means and covariances based only on productions by men. Note that schwa was absent

both from the production data from Hillenbrand et al. (1995) and from the CMU
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pronouncing dictionary. Thus, schwa was not included as a vowel in any of our

simulations.

Vowel tokens in each corpus were sampled from these Gaussian distributions. The

same Gaussian parameters were used to sample each token of a phonetic category that

appeared in a corpus; the acoustic values in the corpora thus did not reflect any

contextual (e.g., coarticulatory) effects, and conformed to the Gaussian assumptions of all

the models tested.

For Simulation 1, token frequencies from Table 1 were used to sample the labels zi

for two corpora of 20,000 vowels each. To produce each acoustic value xi, a set of formant

values was sampled from the Gaussian distribution associated with category zi. The first

corpus used phonetic category distributions computed from all speakers’ productions, and

the second corpus used phonetic category distributions computed from men’s productions

only. This created two corpora consisting of 20,000 F1-F2 pairs, one with high

within-category variability and one with lower within-category variability. The label for

each sound zi was not provided to the models as training data, but was used for model

evaluation.

Simulation parameters. Parameters used for the gradient descent algorithm were

based on those from Vallabha et al. (2007). Like McMurray et al. (2009), however, we

found that the initial category variance parameter Cr affected performance of this

algorithm. Here we present results using Cr = 0.02, which we found to yield quantitatively

and qualitatively better results than the value of 0.2 used by Vallabha et al. (2007). Other

parameters, including the number of sweeps and the learning rate parameter, were

identical to those used by Vallabha et al. Note that although we used 50,000 sweeps, the

training data consisted of only 20,000 points; thus, training points were reused over the
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course of learning.

Parameters in the IMM include the strength of bias toward fewer phonetic categories

and the model’s prior beliefs about phonetic category means and covariances. The bias

toward fewer phonetic categories is controlled by the concentration parameter αC , with

smaller values corresponding to stronger biases. We explored a range of values for this

parameter and found little effect on model performance; these simulations use a value of

αC = 10. The prior distribution over phonetic category parameters GC is a normal inverse

Wishart distribution that is controlled by three parameters: m0, S0, and ν0. These

parameters can be thought of as reflecting the mean, sum of squared deviations from the

mean, and number of data points in a small amount of pseudodata that the learner

imagines having assigned to each new category. Parameters were set to m0 =

 500

1500

,

S0 =

 1 0

0 1

, and ν0 = 1.001. They therefore encoded a bias toward the center of vowel

space that was made as weak as possible2 so that it could be overshadowed by real data.

Evaluation. Model performance was evaluated quantitatively by measuring the

number of categories recovered by each model and computing two pairwise measures of

performance, the F-score and variation of information (VI), which are described in detail

in Appendix C. The F-score is a pairwise performance measure that is the harmonic mean

of pairwise precision and recall, which are often referred to as accuracy and completeness

in the psychology literature. It measures the extent to which pairs of points are correctly

categorized together, and ranges between zero and one, with higher numbers

corresponding to better performance. VI is a symmetric measure that evaluates the

information theoretic difference between the true clustering and the clustering found by
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the model. It is a positive number, with lower numbers corresponding to better

performance. Both performance measures require category assignments for each sound in

the corpus. For the IMM we used the category assignments from the final iteration of the

Gibbs sampling algorithm; these should correspond to a sample from the posterior

distribution on category assignments. The gradient descent learning algorithm does not

directly yield a set of category assignments, but we obtained assignments by sampling

from the posterior distribution over categories, p(c|x) (Equation 2), for each sound.

Results and discussion

Results from each model are shown in Table 2 and illustrated in Figure 2. Whereas

twelve categories were used to generate the corpus, the gradient descent model from

Vallabha et al. (2007) recovered only six categories from the corpus with high category

overlap and eight categories from the corpus with lower category overlap. The IMM

recovered ten and eleven categories from these two corpora, respectively. However, the

higher number of categories found by the IMM did not lead to better performance on the

quantitative measures in either case. This is likely due to the fact that the extra category

divisions found by the IMM did not match precisely with the true category divisions. For

example, the long diagonal category in Figure 2c does not correspond to a true category,

and even in Figure 2f, the division between the /I/ and /e/ categories is incorrect. Neither

model was able to recover the twelve categories used to generate the data. This was true

of both corpora, but the problem was more pronounced in the corpus with high acoustic

overlap between categories.

These results highlight the potential problem posed by overlapping categories.

Often, tests of distributional learning are conducted on corpora in which vowels have an

artificially low degree of overlap. de Boer and Kuhl (2003) selected three vowels with a
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large degree of separation, and Vallabha et al. (2007) removed speaker variability from the

training data. Our simulations suggest that this lower degree of overlap between

categories may have been critical to the models’ success. This corroborates the findings of

Dillon et al. (2013) and suggests that more realistic data can potentially pose a problem

for the types of distributional learning models that simply look for clusters of sounds in

the acoustic input.

Our results from this simulation should be interpreted with caution, as it is not

clear to what extent we have over- or underestimated the difficulty of the learning

problem. Some degree of overlap can be overcome by using additional dimensions such as

duration (Vallabha et al., 2007) and formant trajectories (Hillenbrand et al., 1995), and

augmenting the data with information from these extra dimensions has the potential to

improve performance in both models. Learning might also be supported by the increased

separation between category means found in infant-directed speech (Kuhl et al., 1997),

though it is not yet clear whether this advantage persists when one considers the increased

within-category variability of infant-directed speech, especially for contrasts that do not

involve the point vowels /a/, /i/, and /u/ (Cristia & Seidl, in press; McMurray et al.,

submitted). Cristia and Seidl, for example, suggest that some vowel contrasts may be

hypoarticulated, that is, less distinct in infant-directed speech than in adult-directed

speech. However, it is possible the data used in this simulation were simply too

impoverished to support acquisition of a full vowel system in either models or humans.

Because our training data were sampled from Gaussian distributions, the IMM is also

likely to show better performance if trained on a larger corpus, though this would not

necessarily be the case for non-Gaussian data. On the other hand, additional variability

beyond what is reflected in Figure 2a is likely to arise through contextual variation, such
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as coarticulation with neighboring sounds, making the learning problem more difficult

than is evident from the Hillenbrand et al. data. On the basis of our results, we wish to

merely suggest the possibility that distributional learning may not be as robust as is often

assumed. It is therefore important to consider possible supplementary learning

mechanisms that could lead to more robust acquisition of phonetic categories. We propose

one alternative strategy that children might use for learning phonetic categories, following

Swingley (2009): if children are able to learn information about words and sounds

simultaneously, they can use word-level information to supplement distributional learning.

Incorporating lexical constraints

Young infants show evidence of segmenting word-sized units at the same time that

they are acquiring phonetic categories. Eight-month-olds track transitional probabilities of

the speech they hear, discriminating words from non-words and part-words based purely

on this statistical information (Saffran et al., 1996). Older infants can learn to map these

segmented words onto referents (Graf Estes, Evans, Alibali, & Saffran, 2007), suggesting

that infants use their sensitivity to transitional probabilities to begin learning potential

wordforms for their developing lexicon. Studies using more naturalistic stimuli have

demonstrated that infants can use stress and other cues to segment words from sentences

and map these segmented words onto words they hear in isolation. Six-month-old infants

can use familiar words such as Mommy to segment neighboring monosyllablic words from

fluent sentences (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005), and a more general

ability to segment monosyllabic and bisyllabic words develops over the next several

months (Jusczyk & Aslin, 1995; Jusczyk, Houston, & Newsome, 1999), during the same

time that discrimination of non-native sound contrasts declines.

Segmentation tasks with naturalistic stimuli require infants not only to attend to
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segmentation cues, but also to ignore the within-category variability that distinguishes

different word tokens. Infants need to recognize that the words heard in isolation are

instances of the same words that they heard in fluent speech. There can be substantial

acoustic differences among these different word tokens. Thus, infants as young as six

months, who presumably have not yet finished acquiring native language phonetic

categories, appear to be performing some sort of rudimentary categorization of the words

they segment from fluent speech. Although young infants may not know meanings of these

segmented words, they seem to be categorizing the word tokens on the basis of acoustic

properties. This suggests a learning trajectory in which infants simultaneously learn to

categorize both speech sounds and words, potentially allowing the two learning processes

to interact.

Interaction between sound and word learning is not present in distributional learning

theories. Distributional learning treats each sound in the corpus as being independent of

its neighbors, ignoring higher level structure. The independence assumption has been

present in both empirical and computational work. In experiments, infants have heard

only isolated syllables during familiarization. This type of familiarization forces infants to

treat those syllables as isolated units. Models of distributional learning similarly assume

that infants consider only isolated sounds. In fact, distributional learning is precisely the

type of statistical solution to the category learning problem that a learner should use if

sounds were generated independently of their neighbors.

Here we demonstrate the importance of higher level structure by considering the

optimal solution to the phonetic category learning problem when one assumes that sounds

are instead organized into words. Throughout the remainder of this article, we will

distinguish between words, acoustic tokens in the corpus, and lexical items, categories
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(word types) that represent groupings of acoustic tokens. Just like speech sounds are

categorized into phonetic categories, we will assume that words are categorized into lexical

items. Given this distinction, we can now use our Bayesian framework to define a

lexical-distributional model that acquires phonetic categories and lexical items. Our

model differs from distributional models in the hypothesis space it assigns to learners. A

distributional model’s hypotheses consist of sets of phonetic categories, and learners are

assumed to optimize the phonetic category inventory directly to best explain the sounds

that appear in the corpus. In contrast, the lexical-distributional model’s hypotheses are

combinations of sets of phonetic categories and sets of lexical items. Under this model

learners optimize their lexicon to best explain the word tokens in the corpus, while

simultaneously optimizing their phonetic category inventory to best explain the lexical

items that they think generated the corpus. This allows the lexical-distributional model to

incorporate feedback from the developing lexicon in phonetic category learning.

Our lexical-distributional learning model uses the same phonetic category structure

from the IMM, allowing a potentially infinite number of Gaussian phonetic categories but

incorporating a bias toward fewer categories. The model additionally includes a lexicon in

which lexical items are composed of sequences of phonetic categories. Parallel to the

phonetic category inventory, the lexicon contains a potentially infinite number of lexical

items but incorporates a bias toward fewer lexical items. Word tokens in a corpus are

assumed to be produced by selecting a lexical item from the lexicon and then producing

an acoustic value from each phonetic category contained in that lexical item. We make the

simplifying assumption that each phonetic category corresponds to the same acoustic

distribution regardless of context, and thus assume that there is no phonological or

coarticulatory variation. We consider in the General Discussion how such variation could



Developing lexicon and phonetic category acquisition 25

be accommodated in an interactive model. We additionally assume that there are no

phonotactic constraints, so that phonetic categories are selected independently from the

phonetic category inventory regardless of their position in a word. Given these

assumptions and a corpus of word tokens, the model needs to simultaneously recover the

set of lexical items and the set of phonetic categories that generated the corpus. The

model and inference algorithm are described in detail in Appendix B.

Our model is aimed at identifying the learning outcome that one would expect of a

learner that makes combined use of sound and word information in a statistically sensible

way. Because our framework allows us to implement joint sound and word learning, using

this framework provides important data on the utility of an interactive learning strategy,

and these data can be used to inform future research into the mechanisms that might

support interactive learning. In this work we do not address questions of implementation

and algorithm, but we consider in the General Discussion how such questions might be

addressed in the future.

We present three simulations that examine the extent to which a

lexical-distributional learning strategy can help a learner acquire the categories of a

natural language, examining learning performance on corpora composed of acoustic values

that are characteristic of English vowel categories. Simulation 2 illustrates the model’s

basic behavior using artificial lexicons in which lexical items consist only of vowels.

Simulation 3 tests performance on a lexicon of English words from child-directed speech,

examining the extent to which words in a natural language contain information that can

separate overlapping vowel categories. Simulation 4 extends the results from Simulation 3

to a corpus in which speaker variability is reduced. Together, these simulations test the

extent to which making more realistic assumptions about the way in which language data
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are generated can improve the phonetic category learning outcome.

Simulation 2: Lexical-distributional learning of English vowels

Simulation 2 examines whether lexical-distributional learning confers an advantage

over distributional learning in recovering the English vowel categories from Hillenbrand et

al. (1995). Our aim is to reveal a general advantage conferred by the use of higher-level

structure. This advantage is likely to be strongest when the higher-level structure to be

learned matches the learner’s assumptions about that structure. In consideration of this,

our corpora for this simulation were based on lexicons generated from the model’s prior

distribution over lexical items, but where the phonetic categories contained in those lexical

items were vowels whose distributions corresponded to Hillenbrand et al.’s data. We

tested ten corpora, each generated from a different artificial lexicon. Each corpus consists

of a sequence of 5,000 word tokens, with word boundaries marked, in which vowel tokens

are represented by acoustic values based on data from Hillenbrand et al. (1995).

The corpora used for Simulation 2 were similar to those used for Simulation 1, but

they differed in two important ways. First, the vowel tokens in these corpora were

organized into sequences corresponding to word tokens. Because of this, the corpora for

Simulation 2 incorporated the type of structural information that is useful to the

lexical-distributional model but is ignored by the distributional model. Word boundaries

were assumed to be known, so that the model did not have to solve the segmentation

problem. Categorizing word tokens into lexical items is nevertheless a non-trivial problem,

as the model needs to decide on the basis of acoustic values whether two words with the

same number of phonemes are the same or different. In lexical categorization we compare

our lexical-distributional model to a baseline model that uses no distributional

information from vowels. This baseline model classifies word tokens together if they have
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the same number of phonemes and thus produces a lower bound on the word

categorization behavior of the lexical-distributional model.

Second, although vowels in the artificial lexicon were drawn from vowel type

frequencies in the English lexicon, this did not translate into equivalent token frequencies

in the corpus because word frequencies in the artificial lexicon did not match English word

frequencies. We ensured that these altered token frequency distributions did not

substantially reduce the difficulty of the learning problem by testing the two distributional

models on these corpora.

Methods

Corpus preparation. Ten training corpora were constructed. For each corpus, a

different set of lexical items consisting only of vowels was drawn from the model’s prior

distribution GL. Phonetic categories in these artificial lexicons were drawn according to

the type frequency distribution of vowels in the English lexicon (Table 1), but otherwise

contained no phonotactic constraints. This yielded lexical items such as /2/, /IA/, /E/,

/223~/, or /UE3~/, where the actual phonemic sequences contained in the lexicon varied

across the ten training corpora. Lexical frequencies were drawn according to the

lexical-distributional model’s prior distribution. The distribution GL used a geometric

distribution over word lengths with parameter 1
3 . This parameter was different from that

used for inference but was chosen to help generate a lexicon that contained enough

information about all twelve vowel categories; using the generating parameter for inference

produced qualitatively similar results. This lexicon was used to sample a corpus of 5,000

word tokens. When generating these training data, we ensured that each vowel appeared

at least twice in the lexicon and at least 50 times in the corpus by discarding and

resampling any corpora that did not meet these specifications. The corpora each had
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5,000 word tokens and the number of vowel tokens ranged from 8,622 to 19,395 (mean

corpus size was 13,489 vowel tokens). The upper end of this range was comparable to the

20,000 vowel tokens used in Simulation 1, whereas the lower end was much smaller,

providing potentially a substantial challenge for models of category learning.

Simulation parameters. The prior distribution over phonetic category parameters

GC in the IMM and the lexical-distributional model was identical to that used in

Simulation 1 for the IMM, with the bias toward fewer phonetic categories set to αC = 10.

Parameters for the gradient descent algorithm were also identical to those used in

Simulation 1, with an initial category variance of Cr = 0.02.

The lexical-distributional model contains an additional parameter αL that controls

the strength of the bias toward fewer lexical items. Smaller values of the parameter

correspond to stronger biases. The distribution over word frequencies in the corpus was

generated from our model with αL = 10, and we simply used the same value during

inference. The prior distribution over lexical items in the lexical-distributional model

further includes a geometric parameter g controlling the lengths of lexical items. This

parameter did not appear to have a large qualitative effect on results; for the simulations

presented here, it was set to a value of g = 1
2 .

Evaluation. Phonetic categorization performance was evaluated in the same way as

in Simulation 1. For the lexical-distribitional model and the IMM, we used category

assignments from the final iteration of Gibbs sampling, which should correspond to a

sample from the posterior distribution over category assignments. For the gradient

descent algorithm, each sound was assigned probabilistically to one of the categories based

on the learned parameters using Equation 2.

Lexical categorization in the lexical-distributional and baseline models was
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evaluated using these same performance measures (F-score and VI; see Appendix C).

However, because the lexical-distributional model in principle allows different lexical items

to have identical phonemic forms, we computed both measures twice, in two different

ways, for this model. We first counted lexical items with identical phonemic forms as

separate, penalizing models for treating words as homophones rather than a single lexical

item. We then re-computed the same measures after merging any lexical items that had

identical phonemic forms. In the true clustering, all items with the same true phonemic

form were treated as a single lexical item, reflecting the gold standard for a form-based

learner. Thus, the model was not penalized under either measure for merging homophones

into a single category, but was penalized in the first measure for splitting tokens of a

single lexical item into two categories.

Results and discussion

The three models were tested on corpora generated from ten different artificial

lexicons. The lexical-distributional model recovered an average of 11.9 categories,

successfully disambiguating neighboring categories in most cases. In 7 of the 10 runs, the

model correctly recovered exactly 12 categories. Two corpora failed to provide sufficient

disambiguating information in the lexicon, and in each of these simulations the model

recovered only 11 of the 12 categories, mistakenly merging two categories. On the final

corpus the sample we obtained from the model’s posterior distribution contained 13

categories. This thirteenth category was spurious, as only two of 12,621 sounds in the

corpus were assigned to it. Although the sample we chose to analyze, from the final

iteration of Gibbs sampling, contained this thirteenth category, most posterior samples in

the Markov chain contained exactly twelve categories. In contrast to the

lexical-distributional model, the distributional models mistakenly merged several pairs of
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neighboring vowel categories, recovering fewer categories than the lexical-distributional

model in each of the ten corpora. The IMM recovered an average of 8 of the 12 categories,

and the gradient descent algorithm recovered an average of 5.5 of the 12 categories.

Neither distributional model recovered all 12 categories in any of the 10 corpora. The

lexical-distributional model also outperformed the distributional models along our two

quantitative measures. F-scores were higher for the lexical-distributional model than for

the distributional models, and VI scores were closer to zero for the lexical-distributional

model (Table 3).

We used a one-way ANOVA to look for statistically significant differences among

the models along each measure of phonetic categorization. There were highly significant

differences in number of categories (F (2, 27) = 79.35, p < 0.0001), F-score

(F (2, 27) = 116.37, p < 0.0001), and VI (F (2, 27) = 149.69, p < 0.0001). Pairwise

comparisons showed that the lexical-distributional model outperformed the IMM in the

number of categories (t(18) = 11.21, p < 0.0001), F-score (t(18) = 15.80, p < 0.0001), and

VI (t(18) = 16.92, p < 0.0001) and outperformed the gradient descent algorithm in the

number of categories (t(18) = 11.60, p < 0.0001), F-score (t(18) = 13.10, p < 0.0001), and

VI (t(18) = 13.15, p < 0.0001). Between the two distributional models, it was less clear

which exhibited better performance. The IMM outperformed the gradient descent

algorithm in number of categories recovered (t(18) = 4.16, p = 0.0006), but the gradient

descent algorithm achieved a better score on VI (t(18) = 2.54, p = 0.02). The

distributional models were statistically indistinguishable from each other in the F-scores

they achieved (t(18) = 0.78, p = 0.4).

In word categorization, the lexical-distributional model also outperformed the

baseline model as measured by F-score and VI (Table 4). These differences were significant
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under both measures (F-score: t(18) = 9.93, p < 0.0001, VI: t(18) = 7.99, p < 0.0001).3

This indicates that interactive learning improved performance in both the sound and word

domains. Figure 3b-d illustrates a representative set of results from Corpus 1.

These results demonstrate that in a language in which phonetic categories have

substantial overlap, an interactive system can learn more robustly than a purely

distributional learner from the same number of data points. Positing the presence of a

lexicon helps the ideal learner separate overlapping vowel categories, even when

phonological forms contained in the lexicon are not given to the learner in advance.

However, there was some variability in performance, even for the

lexical-distributional model. For the majority of the corpora, lexical structure was

sufficient for the lexical-distributional model to recover all twelve categories. In two

corpora, however, lexical structure successfully disambiguated 11 of the 12 categories, but

was insufficient to distinguish the last two categories. Thus, the performance of a

lexical-distributional learner depended to some extent on the specific structure available in

the lexicon. Lexical items and lexical frequencies in all of these corpora were drawn from

the model’s prior distribution. A question therefore remains as to whether a natural

language lexicon contains enough disambiguating information to separate overlapping

vowel categories. Simulation 3 tests this directly using a corpus of lexical items from

English child-directed speech.

Simulation 3: Information contained in the English lexicon

Simulation 3 tests the model’s ability to recover English vowel categories when

trained on English words. We test this using a corpus of words from child-directed speech

drawn from the CHILDES parental frequency count (MacWhinney, 2000; Li & Shirai,

2000). Because the corpus is created to mirror English child-directed speech, vowel
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frequencies in both word types and word tokens match those found in English, and the

frequency distribution over words also matches the distribution over words that a child

might hear. If the lexical-distributional model outperforms the distributional models on

this corpus, it would suggest that input to English-learning children contains sufficient

word-level information to allow an interactive learner to recover a full set of vowel

categories.

The drawback of using real English lexical items is that they necessarily contain

consonants, and it is not straightforward to represent consonants in terms of a small

number of continuous acoustic parameters. We sidestep this problem in our simulations by

representing consonants categorically. We therefore assume that consonants have been

perceived and categorized perfectly by the learner. While not entirely realistic, this

assumption allows us to explore vowel learning behavior in a realistic English lexicon. We

modify our baseline model for lexical categorization to take this into account. Our new

baseline model categorizes words together if they have the same length and the same

consonant frame. As before, in phonetic categorization the lexical-distributional model is

compared with two distributional models, the IMM and the gradient descent algorithm

from Vallabha et al. (2007).

Methods

Corpus preparation. The corpus for Simulation 3 was constructed from the

phonematized version of the CHILDES parental frequency count that we used to compute

vowel frequencies for Simulations 1 and 2. However, we sampled entire words, rather than

individual vowels, in constructing our corpus for Simulation 3. Five thousand word tokens

were sampled randomly with replacement based on their token frequencies. This yielded a

corpus with 6,409 vowel tokens and 8,917 consonant tokens. A set of formant values for
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each vowel token was sampled from the Gaussian distributions that were computed from

the Hillenbrand et al. data. Consonant tokens in the corpus were represented categorically.

Simulation parameters. Parameters were identical to those used in Simulation 2,

except that a range of lexical concentration parameters αL was tested to characterize the

influence of this parameter on model performance when using the true frequency

distribution of words in the English lexicon.

The prior distribution over lexical items in the lexical-distributional model again

used a geometric parameter g = 1
2 controlling the lengths of lexical items, but additionally

included a parameter to encode the relative frequencies of consonants and vowels. Each

phoneme slot in a lexical item was assumed to be designated as a consonant with

probability 0.62 (otherwise it was a vowel). This probability was chosen to be

approximately equal to the proportion of consonants in the lexicon. For the purposes of

likelihood computation, consonants were assumed to be generated from a Dirichlet process

with concentration parameter αC=10.

Results and discussion

The number of categories recovered by each model is shown in Table 5. In each case,

the distributional models merged several sets of overlapping categories. Performance of

the lexical-distributional model varied depending on the value of the lexical concentration

parameter. With a weak bias toward a smaller lexicon, the model recovered the correct set

of twelve categories, but with a stronger bias the model hypothesized more than twelve

categories.4 These extra categories had more acoustic variability than the actual

categories in the corpus, encompassing more than one vowel category. Examples of each of

these types of behavior are illustrated in Figure 3e-h. Numerical phonetic categorization
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performance was consistently higher in the lexical-distributional model than in the

distributional models (Figure 4a), indicating that even for the models that hypothesized

extra categories, information from words improved vowel categorization performance.

The number of lexical items recovered by each model is shown in Table 6. Each

lexical-distributional model recovered more lexical items than the baseline model,

indicating that the model used distributional information to separate distinct lexical items

that had the same consonant frame. As expected, stronger biases toward a smaller lexicon

resulted in the recovery of a smaller lexicon. With a strong bias, the model recovered

fewer lexical items than were used to generate the corpus, merging items that should have

been separated. With a weak bias, the model recovered more lexical items than were used

to generate the corpus, separating items that should have been assigned to a single

category. This separation of items that should be categorized together decreases

quantitative lexical categorization performance, but performance improves when different

clusters with the same phonemic form are treated as a single lexical item (Figure 4b).

The merger of lexical items in models with a strong lexical bias is related to the

extra categories hypothesized by these models. These merged lexical items consist largely

of minimal pairs, words in which all but one phoneme are identical, that are assigned by

the model to a single lexical item. The category shown in Figure 3f is used in several

merged lexical items, such as glad-glued, last-lost, pin-pan-pen, snack-snake, and

work-walk-woke-week. This extra category captures the fact that the distribution of

acoustic values in these merged lexical items does not fit any of the existing twelve vowel

categories, but instead has a broader distribution. Intuitively, these merged lexical items

occur because there are many more minimal pairs in English than one would expect if

there were no phonotactic constraints on phoneme sequences. This mismatch between the
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observed and expected numbers of minimal pairs becomes more statistically reliable as

corpus size increases, and thus simply adding more training data does not provide a

solution to this problem. We consider this issue in more detail in our General Discussion.

In summary, the lexical-distributional model consistently outperformed the

distributional models in phonetic categorization performance, indicating that words in the

English lexicon contain information that can improve phonetic category learning. With a

strong bias toward a smaller lexicon, the model showed high lexical categorization

performance but hypothesized extra phonetic categories to account for the high acoustic

variability that resulted from erroneously merging minimally different words. With a

weaker bias, the model’s lexical categorization performance decreased because lexical

items were split into multiple categories, but this allowed the model to find the correct set

of categories.

The hard-coding of consonants in this simulation would ideally be relaxed in a more

realistic model. However, this hard-coding of consonants is unlikely to have been critical

to model success, as our model was able to recover the correct set of vowel categories in

the majority of cases in Simulation 2, where no consonant information was present. In

addition, follow-up work by Elsner, Goldwater, and Eisenstein (2012) has shown successful

learning in a similar model in which consonants can be perceived as mispronunciations of

other consonants.

Simulation 4: Reduced speaker variability

Simulations 2 and 3 used corpora in which acoustic values reflected a large degree of

variability, encompassing productions by men, women, and children. Speaker

normalization is a difficult problem, but one that infants appear to solve quite early

(Kuhl, 1979; but see Houston & Jusczyk, 2000). It may therefore be possible for infants to
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filter out some of this within-category variability when learning about phonetic categories.

Overlap between categories may also be reduced if learners use additional dimensions such

as duration (Vallabha et al., 2007) or formant trajectories (Hillenbrand et al., 1995).

Simulation 4 demonstrates that even when the degree of overlap between categories is

reduced, a lexical-distributional learning strategy can enhance learning performance

beyond what can be achieved through distributional learning.

We reduced within-category variability by creating our corpus from formant values

that were based only on men’s productions. The training data were otherwise parallel to

Simulation 3.

Methods

Corpus preparation. Five thousand word tokens were sampled from the same

frequency counts used in Simulation 3. The corpus for Simulation 4 contained 6,408 vowel

tokens and 8,968 consonant tokens.

Production data by men only from Hillenbrand et al. (1995) were used to compute

empirical estimates of category means and covariances in the two-dimensional space given

by the first two formant values. Vowel tokens in the corpus were sampled from these

Gaussian distributions.

Simulation parameters. Simulation parameters were identical to those used in

Simulation 3.

Results and discussion

As in Simulation 1, the distributional models benefitted from lowered amounts of

speaker variability. However, using word-level information provided an additional boost in

performance (Figure 5). Quantitative phonetic categorization performance was
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consistently better in the lexical-distributional model than in the distributional models

(Figure 6a). Whereas the distributional models underestimated the number of phonetic

categories, the lexical-distributional model recovered the correct number of categories with

a weak prior bias toward a smaller lexicon (Table 7). Lexical categorization performance

showed a similar pattern to that obtained in Simulation 3 (Table 8). Extra phonetic

categories found by models with a strong prior bias toward a small lexicon were again

related to merged lexical items found by those models; the complete contents of one such

category are listed in Figure 7. These results replicate the main results from Simulation 3

in a corpus that excludes a large amount of speaker variability.

General discussion

In this paper we investigated how higher-level lexical knowledge can contribute to

lower-level phonetic category learning by creating a lexical-distributional model of

simultaneous phonetic category and word learning. Under this model, learners are not

assumed to have knowledge of a lexicon a priori, but are assumed to begin learning a

lexicon at the same time they are learning to categorize individual speech sounds, allowing

them to take into account the distribution of sounds in words. Across several simulations,

phonetic categorization performance was shown to be significantly better in a

lexical-distributional model than in distributional models. These results provide support

for the hypothesis that the words infants segment from fluent speech can provide useful

constraints to guide their acquisition of phonetic categories, as well as for the more general

idea that complex systems incorporating multiple levels of structure are not best acquired

by focusing on each level in turn, but rather by considering multiple levels simultaneously.

Here we situate the idea of interactive learning in a broader context. We first

examine the limitations of our modeling framework and the extent to which those
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limitations affect the conclusions we can draw. We then consider the role of minimal pairs

and discuss ways in which the model’s behavior in dealing with minimal pairs can explain

human behavior from artificial language learning experiments. Finally, we discuss the

implications of our findings for theories of sound and word learning and for category

learning more generally.

Model assumptions

Our lexical-distributional model was built to illustrate how feedback from a

developing word-form lexicon can improve the robustness of phonetic category acquisition.

A hierarchical nonparametric Bayesian framework was chosen for implementing this

interactive model because it allows simultaneous learning of multiple layers of structure,

with information from each layer affecting learning in the other layer in a principled way.

However, there were several simplifications that we used when creating our corpus that

restrict the extent to which we can draw conclusions from these results. One

simplification, the lack of phonotactics, actually led to decreased learning performance,

and we address this issue in the next section. Here we examine in detail the role of three

other simplifying assumptions: the use of only two acoustic dimensions, the reliance on

Gaussian distributions of sounds, and the omission of contextually conditioned variability.

In constructing our corpora we assumed that learners attend to only two acoustic

dimensions, corresponding to the first and second formants, when learning vowel

categories. Real speech input has rich acoustic cues, and vowels have been shown to differ

reliably along dimensions such as duration (Vallabha et al., 2007) and formant trajectories

(Hillenbrand, Clark, & Nearey, 2001). In limiting ourselves to two dimensions we may

have overestimated the difficulty of the learning problem. Vowel categories exhibit

substantial overlap when viewed in two dimensions, but additional dimensions may lead to
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greater separation between categories. Given that our lexical-distributional learning

algorithm works well on just two acoustic dimensions, it is likely that the same strategy

would succeed when additional informative dimensions are taken into consideration.

However, distributional learning algorithms may also produce better results when given

richer cues that help separate overlapping categories. At this point our results should not

be taken as evidence that distributional learning is impossible, but rather that an

interactive learning strategy can improve the learning outcome on categories that pose a

challenge for distributional learning. Both distributional learning and interactive learning,

as described in Appendices A and B, can be implemented for arbitrary numbers of

dimensions, and this will allow the issue of the number of relevant dimensions to be

examined in detail in future work.

A second simplifying assumption present in our models and corpora was that sounds

fall into Gaussian distributions along the relevant phonetic dimensions. While this same

assumption has been made in previous models of phonetic category acquisition

(McMurray et al., 2009; Vallabha et al., 2007), it is not likely to be true in real speech

data. Gaussian mixture models have shown substantial difficulty in cases where they were

trained directly on acoustic vowel measurements (de Boer & Kuhl, 2003; Dillon et al.,

2013). The fact that acoustic values in our corpora were sampled directly from Gaussian

distributions is likely to have improved learning performance in all three models. Because

it affected all three models equally, this simplification should not have affected the

comparison across models, but in future work it will be important to replicate these

results using actual acoustic values from speech corpora.

More importantly, if real speech data exhibit non-Gaussian distributions of sounds

and learners eventually acquire knowledge of these distributions, then learning algorithms



Developing lexicon and phonetic category acquisition 40

need to be extended to consider non-Gaussian distributions in their hypothesis space.

Vallabha et al. (2007) proposed one potential method by which models might learn

non-Gaussian categories, and Gaussian assumptions have also been relaxed within the

framework of neural network models of phonetic learning (Behnke, 1998; Gauthier, Shi, &

Xu, 2007). The extent to which such proposals can be integrated within a hierarchical

learning framework remains an interesting question for future research. One possibility

would be to incorporate more flexible function learning algorithms (e.g. Griffiths, Lucas,

Williams, & Kalish, 2009), but relaxing the Gaussian assumption makes the search space

of hypotheses considerably larger, presenting a challenge for probabilistic frameworks. In

this case having additional constraints from lexical structure might become even more

critical.

A third simplification was the lack of contextual variation in our training corpora. In

these corpora acoustic values for each sound were sampled independently of surrounding

sounds. This contrasts with actual speech data, where acoustic characteristics of sounds

change in a context-dependent manner. These context-dependent changes come from

coarticulation with neighboring sounds (e.g., Hillenbrand et al., 2001) and phonological

alternations (e.g., Pegg & Werker, 1997) and lead to patterns of complementary

distribution, in which distinct acoustic realizations of phonemes occur consistently in

distinct phonological contexts. This means that the data given to our models satisfied the

idea that sounds were sampled independently of their context, but real speech data would

not satisfy this assumption. Similarly, schwa vowels were not included in our simulations,

as they are not present in the CMU pronouncing dictionary and were also not included in

the production study by Hillenbrand et al. (1995). In real speech data these would arise

through phonological processes of vowel reduction. At a minimum, the presence of schwas
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would require learners to recover one additional vowel category, but one might also expect

learners to notice that reduced and unreduced vowels alternate based on stress assignment.

Phonological processes that operate across word boundaries can potentially cause

sounds to appear interchangeably in the same set of words, and this would allow learning

to proceed through a mechanism similar to our proposed model, as suggested by Martin,

Peperkamp, and Dupoux (2013). However, phonological processes that affect primarily

word-internal sounds pose a problem for our model. A lexical-distributional learner

hearing reliable differences between sounds in different words would be likely to

erroneously assign coarticulatory variants of the same phoneme to different categories,

having no other mechanism to deal with context-dependent variability. This means that

omitting context-conditioned variability from the corpus is likely to have benefitted the

lexical-distributional model. In contrast, it is not obvious that the presence or absence of

contextually conditioned variability would affect learning performance in a distributional

learning model. Because of this, it is not clear which type of model would perform better

on training data that incorporate contextually conditioned variability.

The lexical-distributional model’s predicted difficulty with coarticulation and

allophony points to an inherent confound in language input. Lexical structure, which we

have shown to be useful for separating overlapping categories, is confounded with

context-dependent phonological variability. Consistent acoustic differences across words

can arise either because the words contain different sounds or because the words contain

the same sound in different phonological environments. The lexical-distributional model

only considers one of these potential causes for systematic acoustic variability across

words.

Dillon et al. (2013) have begun to address this problem of contextually conditioned
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variability, proposing a generative framework in which a phoneme’s pronunciation varies

depending on the identities of neighboring sounds. They analyzed this learning problem

mathematically and built a model in which phonemes are represented as

context-dependent mixtures of Gaussians. Their model showed promising learning

performance when trained on formant values measured from vowel productions. Although

their model has not yet been mathematically combined with ours, it fits nicely into the

theoretical framework of interactive lexical-distributional learning. White et al. (2008)

have shown that infants can detect transitional probability patterns that reflect

phonological alternations at eight months of age, during the same period when they are

segmenting words and learning about phonetic categories. These data suggest that in

addition to segmenting and categorizing words, young infants are sensitive to dependence

of pronunciation on phonological context, and are learning all three aspects of linguistic

structure simultaneously.

These considerations emphasize the fact that this model provides only a starting

point for characterizing how children learn sounds and words. Several issues need to be

addressed before the model can be applied to realistic corpus data, the most important of

which is adding a mechanism to account for contextually conditioned variability.

Nevertheless, interactive learning across different layers of linguistic structure is likely to

remain a key component even as the model is scaled up to deal with more realistic corpus

data.

The role of minimal pairs

Phonetic analyses, such as distributional learning, identify sound categories by

analyzing the clustering of these sounds according to their acoustic properties. In

contrast, phonological analyses concern the distributions of sounds with respect to the
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sound contexts in which they occur (Chomsky & Halle, 1968; Jakobson & Halle, 1956;

Trubetzkoy, 1939). As we have shown here, distributional phonetic analyses may be

inadequate for acquisition of overlapping phonetic categories. The interactive

lexical-distributional learning model that we have proposed instead is similar to the types

of phonological analyses used in theoretical linguistics in that it takes into account the

context in which sounds appear. However, our model’s predictions diverge in interesting

ways from the inferences that are typically drawn by theoretical linguists on the basis of

contextual patterns.

One key phenomenon exploited in phonological analyses is the existence of minimal

pairs, which serve as evidence that two superficially similar sounds are actually members

of different categories. For example, bad and bed constitute a minimal pair, two distinct

words that differ from each other only by a single phoneme. A linguist analyzing English,

knowing that these are different words, can infer that /æ/ and /E/ are functionally

different sounds in the language. In our model, minimal pairs are treated in the opposite

way. The model, having no access to word meanings, mistakenly interprets items from

minimal pairs as tokens of the same word. These mistakes in lexical categorization lead to

mistakes in phonetic category learning, as the wide acoustic variability across tokens in

merged lexical items lead the model to hypothesize extra phonetic categories with a high

degree of acoustic variability. That is, the lexical-distributional model misinterprets

minimal pairs like bad and bed as different tokens of the same word and as a consequence,

it mistakenly creates an extra category that can accommodate acoustic values

corresponding to both /æ/ and /E/.

Although linguists use minimal pairs to identify sound contrasts, young learners

may not use minimal pair based strategies on a large scale in acquiring their first
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language. Minimal pair analyses crucially rely on learners’ knowledge that the words have

different meanings. If meanings are not known, learners can interpret similar-sounding

acoustic tokens such as bad and bed as tokens of the same word. The role of minimal pairs

in phonetic category acquisition therefore critically depends on the extent to which young

infants have access to associations between form and meaning. Children do appear to

know some minimal pairs at a young age, but may not have sufficient vocabulary

knowledge to support large-scale minimal pair based learning, making it unlikely that

early sound category acquisition relies primarily on information from minimal pairs

(Charles-Luce & Luce, 1990, 1995; but see Bergelson & Swingley, 2012; Coady & Aslin,

2003; Dollaghan, 1994). Instead, a good deal of recent theoretical, empirical, and

computational work has demonstrated that non-minimal pairs might provide cues for

phonetic learning during language acquisition (Feldman, Myers, White, Griffiths, &

Morgan, 2013; Martin et al., 2013; Swingley & Aslin, 2007; Swingley, 2009; Thiessen,

2007, 2011; Thiessen & Pavlik, 2013).

If infants were using a minimal pair based strategy for acquiring sound categories,

we should expect to find consistent evidence that pairings of words and objects are helpful

for separating similar sound categories. While some facilitation from word-object pairings

has been shown for nine-month-old infants (Yeung & Werker, 2009), the opposite has been

found in experiments that use the switch task (Stager & Werker, 1997). In this task,

infants are habituated to one or more word-object pairings; during test the pairings are

changed so that familiar objects are paired with novel labels. Success on the task is

indicated by dishabituation to novel pairings, as indicated by longer looking times. Stager

and Werker (1997) found that 14-month-old infants fail to notice when minimally different

object labels bih and dih are switched. This pattern has been replicated using other types
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of contrasts, such as a voicing contrast, a place contrast, and a two-feature voicing and

place contrast (Pater, Stager, & Werker, 2004). Infants succeed in discriminating the same

labels when no potential referents are given (Stager & Werker, 1997), when the referential

context is made clear to them (Fennell & Waxman, 2010), or when the test paradigm is

simplified (Yoshida, Fennell, Swingley, & Werker, 2009), suggesting that task difficulties

are masking their sensitivity to phonetic detail.

Critically, children’s poor performance in the switch task appears only in minimal

pair contexts: 14-month-olds succeed at the task with the easily distinguishable labels lif

and neem (Werker, Cohen, Lloyd, Casasola, & Stager, 1998). It thus provides a method

for identifying which type of familiarization stimuli best support children’s ability to

distinguish between words. Thiessen (2007) used the switch task to specifically investigate

the effects of word context on children’s use of phonetic contrasts. He replicated the basic

finding, showing that 15-month-old infants fail to notice when minimal pair object labels

(in this case, daw and taw) are switched. He then added two additional object-label

pairings to the habituation phase: either dawbow and tawgoo, or dawgoo and tawgoo.

Infants who heard the words dawbow and tawgoo as additional object labels during

habituation discriminated between daw and taw during test, but this facilitation did not

occur when the additional object labels were dawgoo and tawgoo. These results suggest

that facilitation was related to the degree of difference between the two extra familiarized

words. The same qualitative pattern has been found using syllable-final consonant

contrasts as well (Thiessen & Yee, 2010).

The facilitation observed in non-minimal pair contexts is not specific to the switch

task, but has been found in other experimental paradigms as well. Feldman et al. (2013)

obtained similar results with adults in a non-referential task. In their experiment, sounds
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ranging along a vowel continuum from tah to taw were embedded in pseudowords guta and

lita. One group of participants heard all tah and taw sounds interchangeably in both

words, whereas the other group heard the tah half of the continuum consistently in one

word and the taw half of the continuum consistently in the other word. Participants who

heard tah and taw in different word contexts were more likely to assign these stimuli to

different categories at the end of the experiment than participants who heard the sounds

interchangeably. Words without referents similarly help 15-month-old infants perform

better on the switch task (Thiessen, 2011) and lead to better sound differentiation by

8-month-old infants (Feldman et al., 2013). These findings extend Thiessen’s (2007)

findings to novel paradigms, contrasts, and age groups, suggesting that the results are not

tied to a specific laboratory task but instead reflect general principles of sound category

learning. The acquisition and use of sound contrasts is facilitated when the sounds are

heard in distinct lexical contexts.

Results from these experiments are opposite of what would be predicted if learners

were using minimal pairs as their primary basis for acquiring phonemes. Minimal pairs

like dawgoo and tawgoo or gutah and gutaw do not facilitate distinctions between sounds,

whereas non-minimal pairs like dawbow and tawgoo or gutah and litaw do facilitate these

distinctions. This pattern instead suggests that learners are attending to acoustic

differences between the words in which sounds appear. When two sounds appear

consistently in distinct lexical contexts, they are likely to represent different categories,

whereas if the sounds appear interchangeably in the same set of lexical contexts, they are

more likely to belong to the same phonetic category. Reliance on word-level information

has been incorporated into Thiessen and Pavlik’s (2013) model as an a priori assumption,

but our model predicts that this behavior arises as a simple consequence of simultaneous
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learning of phonetic categories and lexical items. Here we illustrate how our model can

explain data from this type of experimental setting, using a simple synthetic dataset to

show that learners’ behavior in these experiments falls directly out of our model.

We mimic the experimental stimuli from Feldman et al. (2013) using four phonetic

categories labeled A, B, C, and D, shown in Figure 8a. The category means are located at

-5, -1, 1, and 5 along an arbitrary phonetic dimension, and all four categories have a

variance of 1. Because the means of categories B and C are so close together, being

separated by only two standard deviations, the overall distribution of tokens in these two

categories is unimodal. Categories B and C play the role of the similar sounds in our

simulations, and categories A and D are used to create the different lexical contexts.

Two simple corpora were constructed, one corresponding to each experimental

condition. Both corpora contained the same set of 1600 phonetic values, consisting of 400

tokens drawn randomly from each of the four Gaussian phonetic categories. The corpora

differed from each other in the distribution of these phonetic values across lexical items.

The lexicon of the first corpus contained no disambiguating information about categories

B and C. It was generated from four lexical items, with identities AB, AC, DB, and DC.

Each lexical item was repeated 200 times in the corpus for a total of 800 word tokens. In

this corpus, Categories B and C appeared only in minimal pair contexts, since both AB

and AC, as well as both DB and DC, were words. The second corpus contained

disambiguating information about categories B and C. This corpus was identical to the

first except that the acoustic values representing the phonemes B and C of words AC and

DB were swapped, converting these words into AB and DC, respectively. Thus, the second

corpus contained only two lexical items, AB and DC, and there were now 400 tokens of

each word. Categories B and C did not appear in minimal pair contexts, as there was a
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word AB but no word AC, and there was a word DC but no word DB. We refer to the

first corpus as the minimal pair corpus and the second as the informative corpus.

Simulations used parameters αC = αL = 1, m0 = 0, ν0 = 0.001, and S0 = 0.001.

The distributional model was trained on the 1600 acoustic values. Distributional

information correctly separated out categories A and D, but it was insufficient to

distinguish categories B and C from each other (Figure 8b). The lexical-distributional

model was trained separately on each of the two corpora. As shown in Figure 8c, the

model merged categories B and C when trained on the minimal pair corpus. Merging the

two categories allowed the learner to condense AB and AC into a single lexical item, and

the same happened for DB and DC. Because the distribution of these sounds in lexical

items was identical, lexical information could not help separate the categories. In contrast,

the lexical-distributional model was able to use the information contained in the lexicon in

the informative corpus to successfully disambiguate categories B and C (Figure 8d). This

occurred because the model could categorize words AB and DC as two different lexical

items simply by recognizing the difference between categories A and D, and could use

those lexical classifications to notice small phonetic differences between the second

phonemes in these lexical items.

These patterns parallel the experimental results described above. When similar

sounds are heard in different word contexts, they are more likely to be assigned to different

categories. Minimal pairs may be useful when a learner knows that two similar sounding

tokens have different referents, but they pose a problem in this model because the model

hypothesizes that similar sounding tokens represent the same word. The resemblance

between human and model behavior suggests that participants’ reliance on word-level

information in these experiments can be explained through an interactive learning
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strategy in which participants simultaneously learn to categorize both sounds and words.

The close resemblance between model behavior and human data raises the

possibility that the model’s trouble with minimal pairs reflects a real difficulty that

learners face during phonetic category acquisition. That is, human learners might

sometimes misinterpret members of minimal pairs as tokens of the same word. This

resembles an account given by Sebastián-Gallés and Bosch (2009) to explain patterns of

sound category acquisition in Spanish-Catalan bilinguals. Infants raised in

Spanish-Catalan bilingual environments temporarily lose the ability to discriminate [o]

and [u] around eight months of age, despite the fact that these sounds are contrastive in

both Spanish and Catalan. Sebastián-Gallés and Bosch suggest that these infants may be

confused by the large number of cognates between the two languages. They give the

example of the word ‘boat’, pronounced /barko/ in Spanish and /barku/ in Catalan, to

illustrate the type of evidence that could cause such confusion. If learners have not yet

entirely succeeded in separating the two languages, hearing a high number of such

cognates could lead them to erroneously conflate [o] and [u].

While this type of explanation might play a role in explaining some aspects of

learners’ developmental trajectories, and although learners may not rely heavily on

minimal pairs for distinguishing similar phonemes, there are also several reasons to think

that minimal pairs do not pose a significant problem in most phonetic learning situations.

The problem of minimal pairs arises in our model because of a simplifying assumption:

Our model incorporates no phonotactic regularities into its lexicon. The English lexicon

contains more minimal pairs than would be expected on the basis of this assumption of no

phonotactics. For example, counting the number of pairs of distinct phonemic forms in the

CHILDES parental frequency count (Li & Shirai, 2000) that differ by exactly one
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phoneme yields 29,767 minimal pairs. To explore the extent of the mismatch between

these corpus values and our model’s assumptions, we created a series of artificial lexicons

that matched the actual distribution over word lengths, in which phoneme sequences were

constrained by observed phoneme frequencies but not by any phonotactics. On average,

these lexicons contained 9,199 minimal pairs, a substantially lower number than are

actually present in the corpus.

It is important to note that simply adding more training data does not solve the

lexical-distributional model’s problem with minimal pairs. Using larger training corpora

actually makes the problem worse, because the difference between the predicted and

observed number of minimal pairs becomes more statistically reliable as corpus size

increases. Instead, improving learning performance requires that the learner’s assumptions

match the characteristics of the linguistic input.

The lack of phonotactics was a problem for our model, but it may not be a problem

for young infants. Infants appear to have knowledge of phonotactics by nine months

(Jusczyk, Luce, & Charles-Luce, 1994) and perhaps even as early as six months (Molina &

Morgan, 2011). Knowledge of phonotactics can improve performance by assigning higher

probability to phoneme sequences that occur frequently in the lexicon, raising the

probability of generating the same consonant frame more than once. Crucially,

phonotactic constraints appear to be acquired in parallel with sound and word categories,

suggesting that infants do not make the same simplifying assumption regarding

phonotactics as was present in our model.

Other types of information are also available to help infants separate similar

sounding words. For example, semantic information about words can potentially help

infants separate minimal pairs in their lexicon. Although most mappings between words
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and objects are thought to be learned later in development (e.g. Woodward, Markman, &

Fitzsimmons, 1994; Werker et al., 1998), 9-month-old infants can use cooccurences

between sounds and objects to constrain phonetic category learning (Yeung & Werker,

2009). Recent findings also suggest that word-object mappings may be available to infants

earlier than was previously believed (Bergelson & Swingley, 2012). This early knowledge

might give learners a way to separate very common sets of minimal pairs, perhaps even

supporting something parallel to the improved performance that has been observed in the

switch task with familiar words in older infants (Fennell & Werker, 2003). Finally, if

infants are sensitive to phrase-level information, they may be able to use the phrases to

separate acoustically similar words, parallel to the way in which they can use words to

separate acoustically similar sounds. That is, hearing bed and bad in distinct sentential

contexts can provide evidence that these are tokens of different words. These

considerations suggest that a number of strategies are potentially available to infants for

avoiding the challenges posed by minimal pairs, and that more realistic models of

acquisition would not necessarily face the problem encountered by our model.

Learning a prior distribution over lexical items

Lexical-distributional learning differs from many previously proposed statistical

learning algorithms in that it is based on a hierarchical model. Hierarchical models allow

simultaneous learning of specific items (e.g., the pronunciations of individual words in the

lexicon) and information about general characteristics of items (e.g., the pronunciations of

phonetic categories that tend to occur in a variety of words). General knowledge that

constrains lower levels of learning is often referred to as overhypotheses (N. Goodman,

1955; Colunga & Smith, 2005), and in our model knowledge of phonetic categories

constitutes a type of Bayesian overhypothesis (Kemp, Perfors, & Tenenbaum, 2007;
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Perfors, Tenenbaum, & Wonnacott, 2010). Knowledge of phonetic categories benefits

learners by allowing them to predict what sort of variability a new lexical item is likely to

exhibit on the basis of only a few acoustic tokens. This shifts the focus of learning to the

word level: knowledge of sounds is nothing more than a type of general knowledge about

words.

Defining phonetic categories as a prior distribution over the forms of lexical items

means that learners can obtain an estimate of phonetic category parameters by computing

statistics over the items in their hypothesized lexicon. Similar approaches to phonetic

learning have recently been proposed in the automatic speech recognition community as

well (Jansen & Church, 2011). This contrasts with distributional learning models in which

statistics are computed directly over tokens from the corpus, but it parallels approaches in

other linguistic domains. For example, the idea of computing statistics over the lexicon

has been proposed for unsupervised learning of phonotactics (Hayes & Wilson, 2008) and

morphology (Goldwater, Griffiths, & Johnson, 2006; Goldwater et al., 2011). Computing

statistics over lexical items is appropriate when the domain to be learned is a component

of the prior distribution over lexical items, and this is a reasonable assumption in all of

these cases.

The prior distribution over lexical items is likely to have many components, with

phonetic categories, phonotactics, and morphology all providing constraints on lexical

structure. These provide potential ways to extend the model in future work. For example,

our model mistakenly merged lexical items when trained on the English lexicon, and

languages with richer morphological structure would likely present an even greater

challenge in this respect. In Spanish, verb conjugation patterns like quiero ‘want-1sg’ and

quiere ‘want-3sg’ produce sets of minimal pairs that all share the same set of vowels.
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Similar patterns are found in languages with templatic morphology, such as Arabic and

Hebrew. One potential solution would be to directly model morphology as part of the

prior distribution over words (cf. M. Johnson et al., 2007). Although it is not yet clear at

what point this type of pattern becomes available to infants, as sensitivity to

morphological patterns has been found only at 11 months in French-learning infants

(Marquis & Shi, 2009) and not until 15-18 months in English-learning infants (Mintz,

2004; Santelmann & Jusczyk, 1998; Soderstrom, White, Conwell, & Morgan, 2007), it is

possible that morphology also interacts with phonetic learning.

Finally, it is possible that children need to learn the structure, as well as the

content, of the prior distribution over lexical items. For example, learners might infer that

lexical items are composed of sequences of phonetic categories by examining the words in

their developing lexicon. Our implementation of the lexical-distributional model assumes

the form of this prior distribution is known in advance, but our broader theoretical

framework is potentially compatible with the idea that representations such as phonetic

categories emerge during development, as a result of learners observing statistical

regularities across lexical items. Research has begun to formalize structure learning

problems using Bayesian methods (e.g. Kemp & Tenenbaum, 2008), and it will be

interesting to apply those methods to investigate which additional aspects of the prior

distribution over lexical items might be learned from linguistic input.

Relation to process level models

Our model addresses Marr’s (1982) computational level and embodies the idea of

rational analysis (Anderson, 1990), providing a formal analysis of the computational

problem faced by learners and the statistical solution to that problem. The assumption

behind this type of modeling strategy is that infants are solving a statistical inference
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problem when they acquire language, and that identifying which problem they are solving

can give us clues to the types of strategies that are likely to be used. We analyzed the

learning problem that arises when sounds are organized into words, comparing this to the

learning problem that arises when sounds are uttered in isolation, and our more realistic

assumptions led to better model performance. This is one example of how formal analyses

can lead to principled hypotheses about learning strategies that might be used during

language acquisition.

However, because it is specified at the computational level, our model does not

directly address the question of which representations and processes are involved in

interactive learning of sounds and words. With regard to processes, using a Bayesian

framework limits our ability to take into account the time course of development. Our use

of a Gibbs sampler in this paper is certainly not meant to suggest that children use a

batch learning algorithm when acquiring language. Furthermore, our simulations reflect

the learning outcome that can be achieved by an ideal learner at a single time point using

a given effective corpus size, but it is not clear how this maps onto any particular time

point in children’s development.

One way to look at learning trajectories across development might be to examine

the learning outcome in response to varying amounts of training data, running several

simulations that are trained on different corpus sizes. This approach has been used in

previous work (e.g. Kemp & Tenenbaum, 2008), yielding predictions about qualitative

changes in learners’ representations. This strategy is appealing in that it requires no

additional machinery aside from the Bayesian model itself. However, it also has potential

drawbacks, in that it necessarily assumes that learners are optimal at every time during

development and also gives no account of how learners update their beliefs from one time
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point to the next. For these reasons, it is worth considering ways in which Bayesian

computations might be implemented in an incremental fashion.

There is a growing literature on process level models that might support Bayesian

computations (Kwiatkowski, Goldwater, Zettlemoyer, & Steedman, 2012; Pearl,

Goldwater, & Steyvers, 2011; Sanborn et al., 2010; Shi, Griffiths, Feldman, & Sanborn,

2010). Learners encounter speech as it unfolds in time, and thus it seems likely that they

would use an incremental algorithm to update their beliefs about linguistic structure. One

possible algorithm is particle filtering (Sanborn et al., 2010), a sequential Monte Carlo

method in which new data points are assigned to categories probabilistically as they

occur. In the lexical-distributional model, learners would categorize each sound and word

based on their current beliefs about the phonetic category inventory and lexicon. Those

category assignments would then contribute to the prior distribution for future

assignments. However, learners would not have an opportunity to revise category

assignments for previous sounds. This algorithm is guaranteed to converge to the

posterior distribution over category assignments if learners keep track of many

hypothesized category assignments for each sound, but it loses this guarantee if learners

are limited in the number of hypotheses they store in memory. A second type of

incremental algorithm, local MAP (Anderson, 1990; Sanborn et al., 2010; Pearl et al.,

2011), is similar to a particle filter in many ways, but each new datapoint is assigned

deterministically to the category that has highest posterior probability given the previous

assignments. Although this algorithm does not have convergence guarantees, empirically

it outperforms even a more powerful batch sampling algorithm in some cases, such as

word segmentation under a unigram language model (Goldwater et al., 2009; Pearl et al.,

2011). A third variant of incremental learning is online variational inference (Kwiatkowski
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et al., 2012), which, instead of sampling category assignments or assigning points to the

highest probability category, tracks the expectations (under the posterior) of the category

assignments. One way to view this is as if each data point is partially assigned to several

different categories, with the amount of fractional assignment depending on each

category’s probability of having generated that data point. As in the previous two

algorithms, category assignments are made as each data point is observed and cannot be

revised afterward; thus all three of these algorithms can potentially provide incremental

implementations of Bayesian computations. A final possibility, explored by Pearl et al.

(2011), is that learners do revise old hypotheses, but to a lower degree than would be

predicted by batch learning algorithms. All of these proposals have shown promising

performance in comparison to batch learning algorithms, and they provide frameworks for

beginning to explore implementations for interactive learning that are incremental,

computationally tractable, and robust.

It is also important to consider representations that might support the

computations described in this paper. While it is possible that listeners do store and

update parameters associated with probability distributions, our use of explicit probability

distributions to represent phonetic categories is not meant to be taken as a theoretical

claim. One alternative proposal that has received a good deal of attention is that

knowledge of words and sounds is represented through stored exemplars (K. Johnson,

1997; Pierrehumbert, 2001). Listeners appear to retain detailed knowledge of speaker

characteristics in word recognition tasks (Goldinger, 1996), and sounds in frequent words

are more prone to reduction or lenition than sounds in infrequent words (Bybee &

McClelland, 2005; Gahl, 2008). This suggests that phonetic knowledge is stored separately

for each word and is also sensitive to non-linguistic characteristics of situations in which



Developing lexicon and phonetic category acquisition 57

those words appear. Exemplar models explain these findings by proposing that listeners’

perception uses stored examples of individual sounds, words, or utterances they have

heard, rather than using a stored representation that abstracts away from those examples.

Exemplar models are often viewed as being incompatible with traditional ideas

about sound category structure (e.g. Port, 2007). Whereas most theories assume that

learners extract generalizations about sounds and words, in exemplar models these

generalizations are unnecessary during learning and are epiphenomenal during perception.

This poses a potential challenge for the assumption in our lexical-distributional model

that learners extract sound and word categories based on distributions in the input.

However, while it is clear that exemplar models are inconsistent with representations that

correspond to sound and word categories, it is less straightforward to determine whether

they are consistent with the existence of categories at Marr’s (1982) computational level of

analysis. Probabilistic computations can often be approximated using samples from the

relevant distributions, and because of this, exemplar models can be used to approximate

at least some types of Bayesian models. If exemplar models can be used to approximate

lexical-distributional learning, then they can be thought of as simply another way of

implementing our computational level model.

It is not yet clear whether exemplar models can provide a plausible approximation

to our lexical-distributional learning model. Ashby and Alfonso-Reese (1995)

demonstrated that for categorization tasks, exemplar models provide a way of carrying

out nonparametric density estimation. Learners are assumed to store labeled exemplars

belonging to a category. They can then assign new exemplars to categories on the basis of

the similarity between those new exemplars and previously encountered exemplars. This

can provide a way to implement the computation of category assignments given in
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Equation 2, but it falls short of providing an implementation for our entire model because

it requires the presence of labeled exemplars.

Shi et al. (2010) proposed a second way in which exemplar models can approximate

Bayesian computations: If stored exemplars correspond to samples from the prior

distribution over hypotheses, then importance sampling can be used to estimate the

posterior distribution. This simply requires that exemplars be weighted according to a

similarity function that is proportional to the likelihood. It is not immediately obvious

how to apply this method to our lexical-distributional model, as each hypothesis in our

model consists of a phonetic category inventory, a lexicon, and a set of category labels for

each sound and word in the corpus. Learners would need to obtain a set of exemplars

representing samples from the prior distribution over these complex hypotheses, and there

is not an obvious way that they could obtain such a sample through experience. Despite

the fact that our model does not meet the requirements for these specific parallels between

Bayesian and exemplar models, it is possible that future work will reveal a framework in

which something similar to an exemplar model can be used to implement interactive

learning of sounds and words.

Thiessen and Pavlik (2013) provide a starting point for thinking about how this

might work, proposing an exemplar-based framework for implementing distributional

learning. Although their model is unable to capture the idea that sounds constitute higher

level knowledge that can be generalized across words (McQueen, Cutler, & Norris, 2006;

White & Aslin, 2011; but see Thiessen & Yee, 2010), they do account for data from

Thiessen (2007) by treating word contexts as acoustic dimensions. It will be interesting to

explore how this type of framework can be extended to represent knowledge at multiple

layers of generality, and to what extent this type of hierarchical structure can emerge from
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the input that children receive.

Category learning in language and other domains

Our model is built around sound and word learning, but it is potentially applicable

to other domains in language and cognition as well. When acquiring language, infants

need to learn multiple layers of linguistic structure. Sounds are organized into words,

words combine to form sentences, and sentences convey meaning in real-world contexts.

Investigations of statistical learning often consider each domain in isolation or assume that

acquisition proceeds sequentially (e.g. Saffran & Wilson, 2003; Graf Estes et al., 2007;

Christiansen, Onnis, & Hockema, 2009). Contrary to this assumption, our simulations

suggest that statistical learning is most effective when dependencies between domains are

taken into account. Recent models of language acquisition have begun investigating the

outcome of interactive learning in a variety of linguistic domains, such as word boundaries

and word meanings (Jones, Johnson, & Frank, 2010), word meanings and syntactic

structure (Maurits, Perfors, & Navarro, 2009), or syntactic and semantic structure

(Kwiatkowski et al., 2012), each time with promising results. It is important to identify

interactions between levels of linguistic structure because they can qualitatively change

how we conceptualize the learning problem. For example, if infants are distributional

learners, then research should be focused on determining how they solve the problem of

overlapping categories, but if they are interactive learners we might instead focus on

questions about how they deal with similar sounding words.

More broadly, one might hypothesize that perceptual categories in general

correspond to higher level knowledge that helps people learn relationships among objects

in the world. For example, Kemp, Shafto, Berke, and Tenenbaum (2007) proposed that

perceptual similarity between objects could be used to detect whether those objects were
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likely to participate in similar types of causal relationships. In N. D. Goodman,

Mansinghka, and Tenenbaum (2007), perceptual categories were inferred directly based on

their role in causal structure, and Kemp, Tenenbaum, Griffiths, Yamada, and Ueda (2006)

used a similar approach to learn categories from relational data. Lake, Salakhutdinov,

Gross, and Tenenbaum (2011) proposed a hierarchical framework for learning to recognize

novel handwritten characters, and object recognition in general has benefitted from an

approach in which the prior distribution is defined in terms of reusable parts (e.g.

Sudderth, Torralba, Freeman, & Willsky, 2008). Other work has explored how learning

multiple categories simultaneously can affect the resulting category representations

(Gureckis & Goldstone, 2008; Canini et al., 2010; Canini & Griffiths, 2011). In each of

these cases, members of each category shared some level of surface similarity, but

categories were also used as building blocks for various types of higher level structures.

Top-down information from these higher level structures provided a cue that learners

could use to recover the underlying categories, supplementing the bottom-up similarity

structure. Combining information in this way is an optimal learning strategy for learners

who live in a world with multiple layers of structure.

Considering the interaction between different sources of information becomes even

more important as we go beyond the artificial stimuli typically used in studies of category

learning. An important set of constraints guiding human category learning comes from

explicit knowledge about the world. People are strongly affected by this knowledge when

learning new categories, with categories that are consistent with prior knowledge being

easier to learn. However, the relevant knowledge is extremely diverse, with experiments

demonstrating the effects of intuitions about the factors that influence the inflation of

balloons (Pazzani, 1991), the properties of different types of buildings (Heit & Bott, 2000),
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the definition of honesty (Wattenmaker et al., 1986), and the properties of vehicles

(Murphy & Allopenna, 1994). Only a small number of computational models of knowledge

effects in category learning exist (Rehder & Murphy, 2003; Heit & Bott, 2000), and these

models treat prior knowledge as a fixed quantity that is exploited by the learner.

Understanding how people build complex theories about the world around them at the

same time as learning the concepts on which those theories are built is a major challenge

for accounts of human category learning, and a place where the insights obtained by

studying language acquisition may be relevant.

Conclusion

Infants learn multiple levels of linguistic structure, and it is often implicitly assumed

that these levels of structure are acquired sequentially. This paper has instead

investigated the optimal learning outcome in an interactive system using a nonparametric

Bayesian framework that permits simultaneous learning at multiple levels. Our results

demonstrate that information from words can lead to more robust learning of phonetic

categories, providing one example of how such interaction between domains might help

make the learning problem more tractable.
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Appendix A

Infinite mixture model

We use xi to represent individual sounds in the corpus and zi to denote a category

label for an individual sound xi. This category label zi indexes directly into the phonetic

category inventory. N represents the total number of sounds in the corpus, and c denotes

the index of a phonetic category in the phonetic category inventory. Parameters µc and Σc

represent the mean and covariance of category c and are assumed to be drawn from a

prior distribution GC , a normal inverse Wishart distribution which plays the role of the

base distribution in the Dirichlet process. Using this notation, the generative model for

our distributional model is

GC :
Σc ∼ IW (ν0, S0), c = 1..∞

µc ∼ N(m0,
Σc
ν0

), c = 1..∞

zi ∼ DP (αC , GC), i = 1..N

xi ∼ N(µzi ,Σzi), i = 1..N

Inference in the distributional model uses a collapsed Gibbs sampler, integrating over the

means µc and covariances Σc of phonetic categories. Minus symbols in subscripts are used

to denote the exclusion of particular components; for example, z−i, is used to denote all

category labels except zi. Each sound xi is given a new category assignment zi according

to Bayes’ rule, based on other sounds’ current category assignments z−i

p(zi = c|xi, z−i) ∝ p(xi|zi = c, z−i)p(zi = c|z−i) (3)
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The prior distribution p(zi = c|z−i) is defined by the Dirichlet process to be

nc∑
c

nc + αC
for existing categories

αC∑
c

nc + αC
for a new category

(4)

where nc is the number of times the phonetic category c has been used previously in the

corpus. The likelihood p(xi|zi = c, z−i) is computed by integrating over all possible means

and covariance matrices for the category to obtain a multivariate t-distribution,

Γ(νc+1
2 )

Γ(νc+1−d
2 )

∣∣∣∣πSc (νc + 1
νc

) ∣∣∣∣− 1
2
(

1 + (xi −mc)T
[
Sc

(
νc + 1
νc

)]−1

(xi −mc)
)− νc+1

2

(5)

where mc, νc, and Sc are the parameters of the normal inverse Wishart distribution that

describes the posterior distribution over means and covariances after observing the nc

sounds currently assigned to category c. These are defined as

mc =
ν0

ν0 + nc
m0 +

nc
ν0 + nc

ȳ (6)

νc = ν0 + nc (7)

Sc = S0 +
∑
y

(y − ȳ)(y − ȳ)T

+
ν0nc
ν0 + nc

(ȳ −m0)(ȳ −m0)T (8)

where nc gives the number of speech sound tokens currently assigned to category c, y are

the acoustic values of individual tokens already assigned to the category, and ȳ represents

the mean of those acoustic values.
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Appendix B

Lexical-distributional model

Let µc and Σc be the mean and covariance of phonetic category c, lk=(lk1, ..., lknk)

be a lexical item composed of a sequence of nk phonetic categories, and wi=(wi1, ..., winzi )

be a word token composed of a sequence of acoustic values. The phonetic category

assignment for slot j of lexical item k is denoted as lkj , and its value indexes into the

phonetic category inventory. Similarly, the lexical item corresponding to word token i is

denoted zi, and its value indexes into the lexicon. Note that this is different from the

variable zi from the infinite mixture model, which denotes the phonetic category label for

a single speech sound token.

The model assumes that phonetic category parameters are drawn from a

distribution GC . For each category in the phonetic category inventory, a mean µc and

covariance Σc are drawn from a prior distribution over category parameters. The

frequency of each category in the lexicon is determined based on the concentration

parameter αC . This creates the phonetic category inventory. Lexical items are drawn from

a distribution GL such that for each item in the lexicon lk, the length of the lexical item is

drawn from a geometric distribution, favoring shorter lexical items. The phonetic

categories for each phoneme slot lkj are drawn from the phonetic category inventory,

introducing a statistical dependency between the lexicon and the phonetic categories in

the language. Lexical frequencies are chosen based on the concentration parameter αL.

This process creates a lexicon in which each lexical item has a length, a phonological form,

and a frequency. For each word token wi in the corpus, a lexical item zi is drawn from the

lexicon, and this determines the word type. Individual sounds wij are sampled from the
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Gaussian phonetic categories contained in that lexical item.

This generative model can be specified as follows:

GC :
Σc ∼ IW (ν0, S0), c = 1..∞

µc ∼ N(m0,
Σc
ν0

), c = 1..∞

GL:
nk ∼ Geom(g), k = 1..∞

lkj ∼ DP (αC , GC), k = 1..∞, j = 1..nk

zi ∼ DP (αL, GL), i = 1..N

wij ∼ N(µlzij ,Σlzij
), i = 1..N , j = 1..nzi

where N(µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ, IW (ν, S)

denotes an inverse Wishart distribution with degrees of freedom ν and scale matrix S, and

DP (α,G0) denotes a Dirichlet process with concentration parameter α and base measure

G0.

Presented with a corpus consisting of isolated word tokens, each of which consists of

a sequence of acoustic values5, a learner needs to recover the lexicon and the phonetic

category inventory of the language that generated the corpus.

To recover samples from the posterior distribution of lexical and phonetic

assignments, we use a collapsed Gibbs sampling algorithm, integrating out µc and Σc. The

algorithm involves two sweeps, the first to sample category assignments for phonetic

category slots in the lexicon, and the second to sample lexical assignments for words in

the corpus. The variables z and l represent the set of word assignments in the corpus and

the set of phonetic category assignments in the lexicon, respectively. The variable w
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represents the set of all acoustic values in the corpus.

In the first sweep, each phonetic category assignment in the lexicon is resampled

according to its conditional probability given all other current assignments. If we define

wk as the set of words wi such that zi = k, this conditional probability distribution can be

computed using Bayes’ rule as

p(lkj = c|wkj , z, w−kj , l−kj) ∝

p(wkj |lkj = c, z, w−kj , l−kj)p(lkj = c|z, w−kj , l−kj) (9)

The prior distribution p(lkj = c|z, w−kj , l−kj) is defined by the Dirichlet process to be

Nc∑
c

Nc + αC
for existing categories

αC∑
c

Nc + αC
for a new category

(10)

where Nc is the number of times the phonetic category c has been used previously in the

lexicon. The likelihood p(wkj |lkj = c, z, w−kj , l−kj) is computed by integrating over all

possible means and covariance matrices for the category to obtain the posterior predictive

distribution

Γd(νc+n2 )|Sc|
νc
2

Γd(νc2 )π
dn
2
n+νc
νc

d
2

∣∣∣∣Sc +
n∑
i=1

(wij − w̄kj)(wij − w̄kj)T

+(
nνc
n+ νc

)(w̄kj −mc)(w̄kj −mc)T
∣∣∣∣− νc+n2

(11)

where n is the number of words in the set wk and mc, νc, and Sc are computed according

to Equations 6-8. Note that Equation 5 is a special case of Equation 11 when n = 1.

The second sweep reassigns word tokens to lexical items according to Bayes’ rule

p(zi = k|wi, z−i, w−i, l) ∝

p(wi|zi = k, z−i, w−i, l)p(zi = k|z−i, w−i, l) (12)
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The prior distribution p(zi = k|z−i, w−i, l) is again given by the Dirichlet process as

Nk∑
k

Nk + αL
for existing lexical items

αL∑
k

Nk + αL
for a new lexical item

(13)

where Nk is the number of words in the corpus that have been assigned to lexical item k.

The likelihood p(wi|zi = k, z−i, w−i, l) for an existing lexical item k is a product of the

likelihoods of the speech sounds from each unique category contained in the lexical item,

integrating over the parameters of the categories. If we define wic to be the set of acoustic

values in word wi for which lkj = c, this likelihood is

p(wi|zi = k, z−i, w−i, l) =
∏
c

p(wic|zi = k, z−i, w−i, l) (14)

Each term p(wic|zi = k, z−i, w−i, l) can be computed using Equation 11, replacing the set

of acoustic values wkj with the set of acoustic values wic.

To estimate the likelihood of a new lexical item, we use a set of 100 samples from

the prior distribution, with the exception that if the word i was previously the only word

assigned to a lexical item, that lexical item takes the place of one of the samples from the

prior (Neal, 2000). When sampling directly from the prior distribution, each of these 100

samples would receive a pseudo-count of αL
100 . In practice, we sample only from the portion

of the prior distribution for which the likelihood is greater than zero. To correct for this,

we multiply the pseudo-count of each sample by the prior probability of obtaining a word

length, syllable template, and set of consonants matching word i.
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Appendix C

Quantitative measures

Two quantitative measures of model performance were computed over clusterings of

vowel tokens (for phonetic categorization) and word tokens (for lexical categorization).

The pairwise F-score, defined as the harmonic mean of pairwise accuracy and

completeness, measures the extent to which pairs of tokens are correctly assigned to the

same category. It ranges between zero and one, with higher scores indicating better

performance. Variation of information (VI) (Meilǎ, 2007) is an information theoretic

measure of the difference between the model’s clustering and the true clustering, with

lower scores corresponding to better performance. A third measure, the adjusted Rand

index, gave results similar to the F-score, and is thus omitted from the paper.

To compute the pairwise F-score, pairs of tokens that were correctly placed into the

same category were counted as a hit ; pairs of tokens that were incorrectly assigned to

different categories when they should have been in the same category were counted as a

miss; and pairs of tokens that were incorrectly assigned to the same category when they

should have been in different categories were counted as a false alarm. Accuracy (a) was

defined as hits
hits+false alarms and completeness (c) was defined as hits

hits+misses . The

F-score was computed by taking the harmonic mean of accuracy and completeness,

F = 2∗a∗c
a+c . Variation of information (Meilǎ, 2007) was computed as

V I(C,C ′) = 2H(C,C ′)−H(C)−H(C ′), where H is entropy and C and C ′ represent the

true clustering and the model clustering, respectively.

The model can assign the same phonemic form to multiple lexical items, and it was

unclear whether to count these as one or two lexical categories when scoring the results.
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Thus, two versions of each measure of lexical categorization performance were computed

for the lexical-distributional model, one that counted each cluster found by the model as a

separate lexical item, and a second in which any clusters with the same phonemic form

were merged into a single lexical item. In both cases, homophones were grouped together

in the evaluation standard so that the model would not be penalized for clustering

together tokens of words with identical phonological forms such as “they’re” and “there”.
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Notes

1These categories are based on vowel data from Hillenbrand et al. (1995) that were

downloaded from http://homepages.wmich.edu/∼hillenbr/.

2To form a proper distribution, ν0 needs to be greater than d− 1, where d is the

number of phonetic dimensions.

3These statistics were computed on the condensed lexicon measure, where any words

with the same phonemic form are treated as a single lexical item, but are still highly

significant when each cluster is treated as separate. We have not analyzed the number of

lexical items recovered because the true number of lexical items varied across the ten

corpora, so averaging this value across multiple simulations is not terribly informative.

4Despite these large changes in behavior from changes in the lexical concentration

parameter, performance was quite robust to changes in the phonetic concentration

parameter.

5Because of the difficulty of identifying a set of phonetic dimensions that applies to

both vowels and consonants, consonants were represented categorically in Simulations 3

and 4, and were thus assumed to be perceived and categorized perfectly by the learner.
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Table 1

Normalized empirical probabilities of each vowel computed from the phonematized CHILDES

parental frequency count.

Vowel Empirical probability in word tokens Empirical probability in word types

/æ/ 0.080 0.068

/A/ 0.125 0.105

/O/ 0.038 0.035

/E/ 0.067 0.075

/e/ 0.039 0.048

/Ç/ 0.035 0.083

/I/ 0.177 0.169

/i/ 0.077 0.099

/o/ 0.061 0.041

/U/ 0.041 0.019

/2/ 0.176 0.229

/u/ 0.083 0.030
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Table 2

Phonetic categorization scores from the infinite mixture model (IMM) and gradient descent

algorithm (GD) in Simulation 1.

All Speakers Men Only

IMM GD IMM GD

Number of categories 10 6 11 8

F-score 0.453 0.480 0.699 0.727

Variation of information 3.195 2.677 1.678 1.440

Note: The true number of phonetic categories is 12.
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Table 3

Phonetic categorization scores for the lexical-distributional model (L-D), infinite mixture

model (IMM), and gradient descent algorithm (GD) in Simulation 2, averaged across all

ten corpora.

L-D IMM GD

Number of categories 11.9 8 5.5

F-score 0.919 0.519 0.545

Variation of information 0.671 2.762 2.426

Note: The true number of phonetic categories is 12.
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Table 4

Lexical categorization scores for the lexical-distributional model (L-D) and baseline model

in Simulation 2, averaged across all ten corpora.

L-D baseline

F-score 0.799/0.854 0.523

Variation of information 1.263/0.921 1.853

Note: The first number evaluates performance by treating each cluster as separate,

regardless of phonological form, and the second number treats all clusters with identical

phonological forms as constituting a single lexical item. The mean number of lexical items

recovered is not shown, as the target number of lexical items differed across the ten corpora.
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Table 5

Phonetic categorization scores for the lexical-distributional model (L-D), infinite mixture

model (IMM), and gradient descent algorithm (GD) in Simulation 3.

L-D
IMM GD

αL = 1 αL = 10 αL = 100 αL = 1000 αL = 10000

Number of categories 14 13 13 12 12 6 6

F-score 0.719 0.756 0.755 0.745 0.709 0.448 0.483

Variation of information 2.085 1.803 1.790 1.765 1.959 2.949 2.699

Note: The true number of phonetic categories is 12 for each corpus.
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Table 6

Lexical categorization scores for the lexical-distributional model (L-D) and baseline model

in Simulation 3.

L-D
baseline

αL = 1 αL = 10 αL = 100 αL = 1000 αL = 10000

Number of categories 900/899 926/920 958/934 1164/989 1602/1086 852

F-score 0.908/0.924 0.919/0.933 0.901/0.918 0.830/0.919 0.610/0.854 0.840

Variation of information 0.368/0.340 0.321/0.290 0.412/0.324 0.705/0.338 1.389/0.538 0.459

Note: The first number treats each cluster as separate, regardless of phonological form, and

the second number treats all clusters with identical phonological forms as belonging to a

single lexical item. The true number of lexical items is 1019.
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Table 7

Phonetic categorization scores for the lexical-distributional model (L-D), infinite mixture

model (IMM), and gradient descent algorithm (GD) in Simulation 4.

L-D
IMM GD

αL = 1 αL = 10 αL = 100 αL = 1000 αL = 10000

Number of categories 17 16 14 13 12 11 8

F-score 0.851 0.870 0.883 0.888 0.868 0.675 0.715

Variation of information 1.277 1.120 0.951 0.826 0.906 1.760 1.516

Note: The true number of phonetic categories is 12.
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Table 8

Lexical categorization scores for the lexical-distributional model (L-D) and baseline model

in Simulation 4.

L-D
baseline

αL = 1 αL = 10 αL = 100 αL = 1000 αL = 10000

Number of categories 901/901 933/931 978/957 1117/1002 1502/1057 840

F-score 0.978/0.978 0.980/0.980 0.948/0.983 0.898/0.973 0.668/0.959 0.873

Variation of information 0.179/0.179 0.158/0.157 0.219/0.116 0.448/0.142 1.105/0.204 0.430

Note: The first number treats each cluster as separate, regardless of phonological form,

and the second number treats all clusters with identical phonological forms as belonging to

a single lexical item. The true number of lexical items is 1019.
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Figure Captions

Figure 1. The problem of overlapping categories. (a) Distribution of sounds in two

overlapping categories. The points were sampled from the Gaussian distributions

representing the /I/ and /e/ categories based on men’s productions. (b) These sounds

appear as a unimodal distribution when unlabeled, creating a difficult problem for a

distributional learner.

Figure 2. Results from Simulation 1. Ellipses delimit the area corresponding to 90% of

vowel tokens corresponding to (a) vowel categories for all speakers from Hillenbrand et al.

(1995) that were used to generate the first corpus and the resulting categories found by

(b) the gradient descent algorithm and (c) the infinite mixture model; and (d) vowel

categories for men only from Hillenbrand et al. (1995) that were used to generate the

second corpus and the resulting categories found by (e) the gradient descent algorithm

and (f) the infinite mixture model.

Figure 3. Results of Simulations 2 and 3. Ellipses delimit the area corresponding to 90%

of vowel tokens for Gaussian categories (a) computed from men’s, women’s, and children’s

production data in Hillenbrand et al. (1995), recovered in Simulation 2 by (b) the

lexical-distributional model, (c) the infinite mixture model, and (d) the gradient descent

algorithm, and recovered in Simulation 3 by (e) the lexical-distributional model with

αL = 10, 000, (f) the lexical-distributional model with αL = 10, (g) the infinite mixture

model, and (h) the gradient descent algorithm.

Figure 4. Results of Simulation 3. (a) F-score and variation of information measuring

phonetic categorization performance by the gradient descent algorithm (GD), infinite

mixture model (IMM), and lexical-distributional model (L-D). (b) F-score and variation of
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information measuring lexical categorization performance by the baseline model and

lexical-distributional model. Solid lines treat each cluster in the lexicon as its own lexical

item, whereas dotted lines treat all clusters with the same phonemic form as a single

lexical item.

Figure 5. Results of Simulation 4. Ellipses delimit the area corresponding to 90% of vowel

tokens for Gaussian categories (a) computed from men’s production data in Hillenbrand et

al. (1995) and recovered in Simulation 4 by (b) the lexical-distributional model with

αL = 10, 000, (c) the infinite mixture model, and (d) the gradient descent algorithm.

Figure 6. Results of Simulation 4. (a) F-score and variation of information measuring

phonetic categorization performance by the gradient descent algorithm (GD), infinite

mixture model (IMM), and lexical-distributional model (L-D). (b) F-score and variation of

information measuring lexical categorization performance by the baseline model and

lexical-distributional model. Solid lines treat each cluster in the lexicon as its own lexical

item, whereas dotted lines treat all clusters with the same phonemic form as a single

lexical item.

Figure 7. Contents of one of the super-categories found by a model with a strong bias

toward a smaller lexicon (αL = 10). The sounds identified as belonging to the

super-category are highlighted in bold. Multiple orthographic forms are listed next to each

other if tokens of that lexical item correspond to more than one word. Many of these

lexical items are minimal pairs that the model mistakenly categorizes together.

Figure 8. Simple synthetic data with two overlapping categories, demonstrating the

treatment of minimal pairs. Data are shown as (a) generated, (b) recovered by the
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distributional model, (c) recovered by the lexical-distributional model from a minimal pair

corpus, and (d) recovered by the lexical-distributional model from a corpus without

minimal pairs.
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bat, bit, boat

bean, been, bone

bedroom

bicycle

break, broke

checking
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hats, hurts

maple

playing

polka

real, roll
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tents

tissues

tomatoes

wake, week, work

walks, weeks

way, were, whoa

wind, wound
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