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Generalized Darwinism models cultural development as an evolutionary process, where
traits evolve through variation, selection, and inheritance. Inheritance describes either a
discrete unit’s transmission or a mixing of traits (i.e., blending inheritance). In this arti-
cle, we compare classical models of cultural evolution and generalized population dy-
namics with respect to blending inheritance. We identify problems of these models
and introduce our model, which combines relevant features of both. Blending is imple-
mented as success-based social learning, which can be shown to be an optimal strategy.
1. Introduction. This article deals with a special kind of inheritance in cul-
tural evolution (i.e., within the framework of generalized Darwinism). This
framework is postulated by scientists and philosophers from different fields
of research as a new and interdisciplinary theoretical structure or paradigm
(e.g., Richerson and Boyd 2001; Reydon and Scholz 2014). An extensive
overview of the generalized-Darwinism approach is, for example, provided
by Schurz (2011). For a strong defense of generalized Darwinism and a care-
fully worked out core of Darwinian principles, see Aldrich et al. (2008). Dif-
ferent approaches and some methodological problems are discussed byWitt
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(2004) and Crozier (2008). For a critical, but fruitful investigation concern-
ing Darwinian concepts outside of biology, see Reydon and Scholz (2014).

We will focus on cultural inheritance, which differs from biological re-
production in relevant aspects. As described perhaps most prominently by
Boyd and Richerson (1988), Mesoudi (2011), or Lewens (2015), cultural in-
heritance can be modeled as different forms of social learning. In the follow-
ing investigation, we define a specific learning mechanism that consists of a
success-basedweighting of variants of cultural behavior that are then blended
by an agent who observes them. The underlying assumption is that such var-
iations typically are not the result of an unweighted averaging of given traits
that then are passed on. Instead, they are guided by principles that make them
the most promising or attractive for social learning.

Our project can be considered a study of philosophy of the special sci-
ences, providing a rational reconstruction of scientific notions, models, and
theories. Philosophical rational reconstruction as explication in the wide
sense consists of two steps (Carnap 1950/1962, secs. 2 and 3): identifying
the explicandum as clearly as possible and introducing an explicatum to re-
place the former. In our case, the concept we are mainly concerned with is
blending inheritance in cultural evolution. Our reconstruction will be ratio-
nal in the sense that we provide a justification for considering themodel to be
adequate. And it is philosophical, because the reasons we provide are not
empirical (e.g., about the empirical adequacy) but normative ones.

Our investigation is structured as follows. In section 2, we take the first
step of the reconstruction, clarifying the notion of blending inheritance and
discussing the main theoretical constraints and arguments for blending put
forward in cultural evolutionary theory: homogeneity (blending decreases
the otherwise too high variation rate due to biases and drift) and fitness en-
hancement (sec. 2.1). We also describe how the discussion of cultural evo-
lutionary biases is linked to social learning strategies (sec. 2.2). To our knowl-
edge, this relation has not been noted before and plays an important part in
the second step. In section 3, we finalize the first step by describing two
prominent models of cultural inheritance, one model by Boyd and Rich-
erson (1988) and a population dynamical model described by Schurz (2011).
An innovation of the former was the introduction of the distinctive feature
of cultural inheritance, namely, blending inheritance, as social learning (sec. 3.1).
An advantage of the latter is the simplicity of implementing a frequency-
dependency bias, which we will identify as a particular variant of social
learning (sec. 3.2). In section 4, we finalize the second step of the rational
reconstruction by combining features of both models. Blending inheritance
is introduced as a form of social learning via success-based weighting. We
also provide a normative rationale for the model (sec. 4.1). We conclude the
investigation with some provisos and a simulation illustrating the result
of the rational reconstruction (sec. 4.2).
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CULTURAL INHERITANCE IN GENERALIZED DARWINISM 239
2. Blending Inheritance in Cultural Evolution. As indicated in the in-
troduction, we commence our rational reconstruction by characterizing dif-
ferent constraints for the notion of blending inheritance put forward in the
literature. Afterward, we analyze the ingredients of these constraints as a
form of social learning, which will be of utmost importance for the second
step of our reconstruction.

2.1. Different Explanatory Roles of Blending Inheritance. In this sec-
tion, we provide a general discussion of the notion of inheritance in cultural
evolution, which is, because of its specific feature of mixing traits, some-
times also called blending inheritance. First, we hint at some historic roots
of the concept, then we briefly outline our explication to provide a starting
point for the modeling in the subsequent sections.

Mesoudi (2011, 61) applies the term ‘blending inheritance’ to a certain
microperspective, namely, to trait-copying individuals who are exposed
to the cultural traits of more than one person, adopting the average of all
of those traits. However, in Darwin’s time (as well as contemporarily; see
Lande 1979), blending inheritance was thought to happen in natural evolu-
tion as well, even if Mendelian genetics was accepted (Richerson and Boyd
2005, 88; Mesoudi 2011, 41–42). According to this hypothesis, offspring
constitute an intermediate form of their parents. Darwin himself proposed
that inheritance takes an average of the genetic contributions of both par-
ents. However, as Fleeming Jenkin has pointed out in a review of theOrigin
as early as in 1867, such a concept of inheritance would mean that variation
would be reduced by half at each new generation, and variety would disap-
pear quickly (if there is no sufficiently high mutation rate). In consequence,
Darwin himself abandoned blending as a principle for inheritance in natural
evolution and left the problem of inheritance unresolved. Only when the
significance of Gregor Mendel’s work was properly understood and appre-
ciated, and because of Ronald A. Fisher’s population dynamical models, was
this problem of biological inheritance tackled. Establishing principles of
particulate heredity via the transmission of discrete units (genes) and trans-
mission rules, such as the distinction between dominant and recessive al-
leles, did the job.

There are theories of cultural evolution that adopt particulate inheritance
for the cultural realm, but operationalizing such cultural units, as meme the-
orists have tried to do, has been the subject of severe critique (Lewens 2015,
26). One of the reasons is that cultural inheritance seems, indeed, to be non-
particulate and blending in many relevant cases.

Not only is it hard to identify and operationalize the notion of discrete
units of cultural inheritance, but there are also more general arguments in
favor of nonparticulate cultural inheritance. The approach of cultural attrac-
tors of Sperber (1997) and Claidière and Sperber (2007) argues that discrete
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units of cultural inheritance aremisguided and superfluous, since assuming a
distribution of psychological dispositions among humans on the natural level
suffices to explain similar developments in culture, without there being a need
to assume memes as units of reproduction.

Richerson and Boyd (2005, 88–89) argue for distinct principles of inher-
itance in culture as opposed to nature. For natural inheritance, Jenkin argued
that nonparticulate blending leads to toomuch homogeneity in the sense that
variety vanishes, and Fisher’s further theoretical framing shows that discrete
units of inheritance allow for upholding variety or adequate heterogeneity.
But, in cultural evolution it seems that, because of the high variation rate (in
a wide sense), assuming discrete units of inheritance such as memes would
lead to too much heterogeneity and that, given a high variation rate, non-
particulate blending inheritance allows for adequate homogeneity. So, whereas
discrete units in natural inheritance allow for balancing inheritance toward
adequate heterogeneity, blending in cultural inheritance allows for balancing
inheritance toward adequate homogeneity: “Wecan even imagine that cultural
transmission is sufficiently noisy and error prone that blending inheritance
would be an advantage in keeping cultural variation from growing disastrously
large. In a noisy world, taking the average of many models may be neces-
sary to uncover a reasonable approximation of the true value of a particular
trait” (Richerson and Boyd 2005, 89). In the same line, Henrich, Boyd, and
Richerson (2008,misunderstanding 1 and 2) argue against themisunderstand-
ing of cultural evolution that “replicators are necessary for cumulative, adap-
tive evolution.”

As we will see in the sections on modeling cultural evolution (secs. 3 and
4), evolutionary simulations suggest that blending inheritance in fact results
in the reduction of cultural variation in the population. Indeed, as discussed
by Jenkin for biological inheritance, if blending inheritance were the only
process of cultural variation in the population, it would eliminate that vari-
ation completely, since intermediate traits of the daughter generations are al-
ways coming frommore “extreme” ancestral traits. However, it is a high var-
iation ormutation rate (as in natural evolution) and other evolutionary “forces,”
such as guided variation, content bias, and several kinds of randomization
such as drift, that run against a homogenization effect and keep up variation
and change over the cultural generations—or, as Mesoudi (2011, 62) aptly
puts it: “Obviously, in the real world blending inheritance cannot be the only
process operating on cultural evolution, otherwise wewould not see the enor-
mous cultural variation . . . : 7.7 million patents, 10,000 religions, 6,800 lan-
guages, and so on. There must, then, be other processes at work.” So, in gen-
eral, blending inheritance is characterized as a process in which a single
individual adopts the average of two or more demonstrators’ continuous
traits, whereas in the case of particulate inheritance discrete traits are copied.
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CULTURAL INHERITANCE IN GENERALIZED DARWINISM 241
Wewill now outline our explication of blending inheritance as success-based
social learning.

Key to understanding the notion of blending inheritance is that it can in-
crease the frequency of the relevant traits, a fact that many authors do not
stress enough. This possibility is depicted in figure 1. If we assume two cases
of reproduction, one of particulate (left) and one of blending inheritance
(right), then the resulting macroevolutionary patterns might exhibit a higher
frequency in the case of blending inheritance. We say a bit more about fig-
ure 1 below.

In cultural evolutionary modeling, the concept of traits describes identi-
fiable units of cultural transmission. The “units” of inheritance and selection
are not biological organisms or their genes but cultural information, skills,
or artifacts, which are selected by, vary between, and are inherited through
cultural “generations.”Accordingly, these generations are not biological life
cycles but cultural reproductive cycles. Each transmission of socially ac-
quired information from one individual to the next makes up a reproductive
Figure 1. Blending inheritance on a microlevel and the possible results on a
macrolevel. If we assume (bottom right) that traits a2 and b2 blend together under
some guided principle of weighting and form a new trait (ab), and that the 70%
of b2 as well as the 30% of a2 that remain in the new combined trait are not maladap-
tive, then species A0 (top right) should be fitter than in the unblended case on the
left. Indices represent generation numbers, and arrows represent transmission.
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cycle, in which a cultural trait is passed on. The units can be represented by
discrete entities, as is the case in the models in section 3.2, or by continuous
values, as in the models in sections 3.1 and 4. More specifically, in our ex-
amples we think of traits as behavioral dispositions. The term fitness is well
defined in natural evolution, that is, the number of an organism’s reproduc-
ing offspring (fertility notion). In cultural evolution, such a straightforward def-
inition is problematic because of the individuation problem of cultural units
(Ramsey and De Block 2017). However, like Boyd and Richerson (1988),
we will assume that cultural traits are given. We then identify the fitness of
such a trait with the coefficient used to calculate the dynamics of the relative
frequencies of that variant across generations. Therefore, it is important to
note that with ‘fitness’ we do not mean biological fitness of the organism
bearing that variant. Rather, we mean a coefficient linking the relative fre-
quency of a cultural variant in the set of all relevant alternative cultural var-
iants across generations. Note that we also presuppose a notion of relevant
alternatives here. Since a cultural variant cannot be blended with every other
cultural variant, we are only interested in the relative frequencies of cultural
variants that can be blended together. For example, it is possible to mix dif-
ferent styles of piano playing to “create” a new style, but it is impossible to
mix a piano-playing style with a way of cooking (although cooking styles
themselves might be mixed with one another). We assume that categories
in which cultural variants or traits can be blended together are given by their
cultural function in the first place. This cultural evolutionary function plays a
significant role in the emergence of higher-order categories or types. A phil-
osophical approach that encapsulates this idea is teleofunctionalism (Millikan
1984, 2005).

An example will illustrate the principle of fitness enhancement via blend-
ing along the lines of figure 1: on the lower-left side we see trait a, which is
passed on from the mother generation (a1) to the daughter generation (a2).
For illustrative purposes, let us assume that the generations are political elec-
tion cycles, and the traits are political dispositions, such as being left or right
wing (cf. Boyd and Richerson 1988, 70; Mesoudi 2011, 61). More specifi-
cally, the traits should be interpreted as manifestations of such dispositions,
such as acting x% in accordancewith left-wing politics. In this interpretation,
a blended trait is a mixed manifestation of two dispositions, for example,
acting 70% according to right-wing and 30% according to left-wing politics.
The left side of figure 1 shows a simple case of particulate inheritance with
two such variants (a2, b2) at generation 2. On the right, blending inheritance
is depicted. Here, trait a was not fit for one reason or another, so we do not
find it anymore in the daughter generations. However, a new (unblended)
variant b arose, as well as a blended variant ab. Let us assume a proportion
of 70% (b) to 30% (a) in ab. Let us further assume that the 30% of awere not
the reason why it died out, meaning that they are not maladaptive given a
This content downloaded from 134.099.106.176 on April 16, 2020 04:48:20 AM
se subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



CULTURAL INHERITANCE IN GENERALIZED DARWINISM 243
certain environment. To the contrary: maybe the agent who mixed it into the
new combined trait approved it as useful. The resulting macrolevel structure
(right side, top) exposes two hypothetical daughter species B and A0, where
the latter holds the combined trait ab. Assuming that the 30% of a that re-
mained in ab are useful and even provide some increase in success, the cul-
tural species A0 should now be fitter than in the left case. In this way, blend-
ing inheritance might prove to be advantageous. It is important to note that
this view of blending as a principle of fitness enhancement presupposes that
blending is adaptive. Trait abwith 30% a and 70% b only increases fitness if,
roughly speaking, ab manifests a in the 30% of cases in which a is advanta-
geous to b, and abmanifests b in the 70% of cases in which b is advantageous
to a. We call this form of blending adaptive blending. If ab would manifest
a in 30% of the b-advantageous cases, and b in 30% of the a-advantageous
cases as well as 40% of the b-advantageous cases, blending would be mal-
adaptive.We can also define the notion of random blending inwhich abman-
ifests a and b with random frequency (a 30% and b 70%). Random blending
does not generally enhance fitness. It is important to distinguish these three
forms of blending (adaptive, maladaptive, and random) because our model
in section 4 focuses on adaptive blending only and shows underwhich assump-
tions it is optimal.

2.2. Identifying Cultural Evolutionary Biases as Social Learning Strat-
egies. According to Boyd and Richerson (1988, 72), cultural transmission
is often employed by individuals who try to estimate which behavior of other
individuals in their environment has been favored by selection in previous
generations. This form of transmission can be characterized as social learn-
ing, as opposed to individual learning, where one achieves information and
knowledge via a process of trial and error (e.g., in experiments).

Modeling cultural evolution in the framework of social learning allows us
to spell out two basic features of generalized Darwinism, variation and in-
heritance. The third feature, selection, enriches cultural modeling by intro-
ducing “forces of cultural evolution” in the form of biases. According to
Richerson and Boyd (2005, 68), the three most important biases are content-
based biases, model-based biases, and frequency-based biases. In Boyd and
Richerson (1988, 135), content-based bias is also referred to as ‘direct bias’,
which means that one cultural variant is more attractive to the learner than
others. So, the probability of such a variant being chosen by a social learner
is higher than that of its alternatives. Model-based bias is referred to as ‘in-
direct bias’, which means that the choice of a cultural variant by the learner
depends on how successful its bearer is in the mother generation. Model-
based biases are active, for example, in authority imitation or peer imitation
in which, apart from the prestige of the learner’s parental models, similarity
of the parent to the learner influences success. Finally, frequency-based biases
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are active in amodel of cultural evolution if the probability of choosing a var-
iant among the set of all its alternatives depends on the frequency of the var-
iant in the mother generation. If this probability is positively correlated with
frequency, then the bias is a conformist one. If they are negatively correlated,
then the bias is nonconformist. In figure 2, we provide a simplified taxonomy
of these biases. They are considered different kinds of social learning be-
cause, according to Boyd and Richerson, “individuals select from among
the alternative cultural variants that have been modeled for them rather than
choosing among self-generated alternatives” (136).

It is interesting to note that this taxonomy of different forms of biased
learning (partially) matches a taxonomy of social learning as used in applied
machine learning literature. Figure 3 gives a general overview of these dif-
ferent forms of social learning.

Learning can be either individual or social. Individual learning is trial-
and-error learning, reasoning, and so on. Social learning strategies are either
success based (a) or not success based (b). Success-based strategies accept
more transmissions from successful parental traits than from unsuccessful
ones. Take the best, for example, simply favors the most successful trait of
the mother generation. Relative weighting, however, blends traits according
to a weighted average, where the weights are proportional to the traits’ past
success. Inmachine learning and in recent approaches of social epistemology,
Figure 2. Overview of social learning with different biases along the lines of Boyd
and Richerson (1988, 135) and Richerson and Boyd (2005, 69).
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relative weighting is studied under the term meta-induction, since success-
based weighting can be regarded as induction over success rates (Schurz
2008, 2019).

Comparing the two taxonomies, several points are worth noting: non-
success-based social learning and non-frequency-based biased social learn-
ing cover not only the mentioned forms of imitation but also the so-called
fast and frugal heuristics of Gigerenzer, Todd, and the ABCResearch Group
(1999). In contrast to the biases mentioned above, which are parameters of
selection (Boyd and Richerson 1988, 136), guided variation is a form of in-
dividual learning (see fig. 2) because it generates alternative cultural traits. It
is common in cultural evolution (Mesoudi 2011, 63). Sufficiently rational
agents will prefer some variants over others. In the context of cumulative evo-
lution, this is not a problem but an advantage, because fewer dysfunctional
mutations are passed on in the evolutionary dynamic. The space of possibil-
ities of variants (many of which are indeed dysfunctional) shrinks, and that
leads to an acceleration of the generation of complexity in cultural evolution
in comparison to natural evolution.

Furthermore, note that the notion of success as it is used in the taxonomy
of figure 3 might be different from the notion of success in the sense of pres-
tige that is employed by Richerson and Boyd (2005) for describing model-
based biased social learning (b in fig. 2). In fact, in our model of blending
inheritance in section 4 we equate the success of a cultural variant with the fre-
quency of the variant in themother generation. For this reason, success-based
social learning according to the taxonomy of figure 3 is, at a surface level,
comparable to the frequency-based biased social learning of figure 2 (both
as). However, the important difference between both models of frequency-
dependent cultural transmission is that frequency-based biased cultural trans-
mission (fig. 2) is not blending, since it selects only among the cultural alter-
natives provided by themother generation, whereas frequency-based relative
Figure 3. Overview of social learning strategies as used in machine learning ap-
plied in epistemology.
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weighting (fig. 3) is blending, since it creates new cultural variants. In this re-
spect, our way ofmodeling blending is closer to themodel of guided variation
of Boyd and Richerson (1988, 136). Therefore, we will concentrate on this
model and not on their model on frequency-dependent biased social learning.

In order to embed our model even deeper into recent debates about learn-
ing and cultural evolution, let us briefly highlight another model from the
literature that resembles our approach in some features but differs in others.
In a series of papers, Griffiths and Kalish (2007) develop an iterative learn-
ing framework with Bayesian agents, which combines individual and social
learning, occupying a middle ground between the two. Focusing on the evo-
lution of language, the authors present a dynamic analysis of social learning.
They understand the process of learning as an agent choosing from a set of
hypotheses and data. Applying Bayes’s rule (an ability that the agent must
be capable of; Griffiths and Kalish 2007, 472, assumption 3), an agent can
choose either a given hypothesis (which she has acquired via the observation
of others) or new data in light of a given hypothesis (444). Griffiths and Ka-
lish primarily focus on and reflect the strong influence of the (Bayesian)
prior of the learner and its effects on the accuracy of transmission processes.
Convergence of the probability that a learner speaks a particular language
to the prior probability the learner assigns to that language occurs regardless
of the amount of data available to each learner (444). Their mathematical
findings suggest that the influence of inductive biases (individual constraints
on learning which influence our conclusions from incomplete knowledge)
seem to have a very strong effect on iterated social learning. Furthermore,
inductive biases strongly resemble cultural guided variation, since both em-
phasize the individual aspect of learning (Mesoudi 2011). In contrast to these
models, our investigation (see sec. 4) focuses merely on the process of social
learning, meaning that our agents lack any form of individual bias. However,
as we will see, a purely social learner can still achieve optimal performance.

Having illustrated what blending inheritance is and how it influences the
process of cultural evolution, we now take a closer look at the formal struc-
ture of a success-based mechanism of cultural inheritance by studying mod-
els of cultural evolution (sec. 3) and implementing blending in a success-
based manner (sec. 4).

3. Models of Cultural Evolution. Boyd and Richerson (1988) investigate
(almost) all forms of biased social learning as described in the taxonomy in
figure 2: content-based biased social learning (chap. 5, parameter B, repre-
senting an inherent disposition of a cultural trait to be preferred against some
other; cf. 138), model-based biased social learning (chap. 8, via the so-called
runaway processes), and conformist frequency-based biased social learning
(chap. 7, e.g., parameter D; 209). In the following section, we describe their
model of blending inheritance via social learning in detail. Subsequently, we
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discuss a population dynamical model that serves as a basis for our model of
success-based blending inheritance in section 4.

3.1. Cultural Evolution via Social Learning. Boyd and Richerson ar-
gue that very often in the cultural realm data (e.g., data about people in a po-
litical spectrum) can be represented by a normal distribution. This means
that one can take the frequencies, for example, of the number of left-wing,
centered, and right-wing people and summarize them in a probability density
of a normal distribution (see fig. 4). Thus, one defines the probability Pr of
some member of the group being left-wing, and so on. The normal distribu-
tion is characterized by two factors: m, the mean, which is also the frequen-
cies’ median and mode, and j, the standard deviation (i.e., the average devi-
ation from m), where j2 is considered to be a measure for variance within the
sample. The probability that some of the X of generation n (i.e., some of Xn)
take value x, for example, that somemember of the group under consideration
Xn holds position x in the political spectrum, is

Pr(X n 5 x) 5
1ffiffiffiffiffiffiffiffiffiffi
2pj2

p e2
(x2m)2

2j2 :

Using this assumption, Boyd and Richerson propose a model for the trans-
mission of cultural traits by means of social learning (see fig. 5). Their idea
is that a cultural trait can be transmitted by individual learning (copying that
is possibly defective) and social learning about an objective, an ideal state of
the system. The model has the following parameters:

• Xn is the cultural trait to be copied under investigation, expressed as a
random variable and defined by m(Xn) and j2(Xn).
Figure 4. Example of a normal distribution of political attitudes (x) as a cultural
trait in generation Xn. Whether political attitudes are normally distributed depends
on the scale of measurement and the chosen categories; that is, it depends on whether
the frequencies of the categories left, center left, center, center right, right (gray bars)
or frequencies of other categories of political attitudes result in a Gaussian shape.
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• s is the optimal state of the cultural trait; it is supposed to be the objec-
tive or goal value, that is, the value of the distribution that fares best in
the system or habitat (Boyd and Richerson 1988, 95, G(H) andH ). So,
in a sense, s encodes selective pressure: the closer an individual is to s,
the better it will fare in the system.

• l is a parameter in [0, 1] that expresses the individuals’ propensity to
rely on individual as opposed to social learning (Boyd and Richerson
1988, 95, L). Individual learning is maximal if l 5 0, and social learn-
ing is maximal if l 5 1.

• E is an error distribution that characterizes a deviation during the learn-
ing process due to environmental effects, random variation, and esti-
mation errors (Boyd and Richerson 1988, 71). It is defined by m(E)
and j2(E). Error E might be considered the cultural counterpart of mu-
tation in natural evolution.

• X n11 is the cultural trait of the next generation resulting from individ-
ual learning and social learning. It is defined by m(X n11) and j2(X n11).

In short, cultural transmission from X n to X n11 depends on individual, pos-
sibly defective, learning and cultural learning aiming at s; both are balanced
by the parameter l. The influence of individual learning (encoded in Xn) is
taken into account via the influence of error, that is, j2(E ); the influence of
social learning (s with error during social learning E ) is taken into account
via l. Calculating weights by normalizing, we end up with (Boyd and Rich-
erson 1988, 95, eq. [4.9])

X n11 5
j2(E)

j2(E) 1 l
� X n 1

l

j2(E) 1 l
� (s 1 E): (1)
Figure 5. Political attitude with social learning in the model of Boyd and Rich-
erson. Starting from the political attitude of generation n (Xn of fig. 4) through social
learning with l > 0 (here l 5 0:5), although defective, but unbiased (m(E) 5 0),
evolution via guided variation tends toward the best fitted political attitude with
value s. (Data generated with Perl.)
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Given that the learning error is not biased, that is, m(E) 5 0, Boyd and Rich-
erson show that the resulting cultural trait is a density function with the fol-
lowing properties/values (1988, 96, eq. [4.10]):

m(X n11) 5
j2(E)

j2(E) 1 l
� m(X n) 1

l

j2(E) 1 l
� s:

j2(X n11) 5
j2(E)
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� �2
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Now, given l > 0 (and a constant and uniform environment), it follows that
iterated individual and social learning will lead to m(X n11) 5 s. Note that
the model assumes that individual learning is fully implemented by the first
summand in equation (1). Given the assumption that the learning error is
not biased (which means that error is not functional), according to this model,
s can be learned only if l > 0. If error E is functional, then also l 5 0 allows
for learning s. An equilibrium of the system is reached, if X n11 5 X n. Since
the weights j2(E)=(j2(E) 1 l) and l=(j2(E) 1 l) add up to 1, the value for
the mean in equilibrium state, X̂ , is calculated as follows:

m(X̂ ) 5
j2(E)

j2(E) 1 l
� m(X̂ ) 1

l

j2(E) 1 l
� s 5 s:

Such an equilibrium state is depicted in figure 6. The equilibrium variance is
more complex but turns out to be

j2(X̂ ) 5
j2(E)

j2(E) 1 l

� �2

� j2(X̂ ) 1
l

j2(E) 1 l

� �2

� j2(E) 5
j2(E) � l

2j2(E) 1 l
:

It is important to note that we can map three relevant parameters in this
model to the three modules of generalized Darwinism: selection is taking
place via s, variation comes in two forms (guided variation via l, mutation
Figure 6. Political attitude: equilibrium state X̂ centers around the political attitude
best fitted with value s. (Data generated with Perl.)
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via E ), and the reproduction dynamics is captured via the cultural traits Xn,
X n11, . . . . This model and its interpretation show that a sufficiently high
degree of information transmission into the next cultural generation suffices
for cumulative cultural evolution. Exact replication of the original is not
necessary (Henrich et al. 2008, misunderstanding 2).

This model was one of the first influential models of cultural evolution. It
is relatively simple and allows for an explanation of reproductive success via
social learning: through social learning the mean of a cultural trait (m(X̂ )) tends
toward the best fitted value (s). However, there are also some restrictions to
this model (Schurz 2011, 220). First, social learning is only successful in the
strict sense of m(X̂ ) 5 s in case that there is no bias in the reproduction error
(m(E) 5 0). And second, selective pressure of social learning is held fixed in
the model via the cross-generational parameter l. For this reason it is also
independent from the reproduction rate, although frequency dependency is
an important feature of cultural transmission. Boyd andRicherson (1988) dis-
cuss possibilities to relax these constraints. For example, also in case of a bi-
ased reproduction error one can still approach the learning target s, although
there is no guarantee to, in fact, learn s. It seems that such an approximation
can still be considered as learning success, and hence successful cultural trans-
mission seems to be possible also in case of biased error. Regarding the prob-
lem that l is cross-generationally defined, Boyd and Richerson (99–100) dis-
cuss models in which l changes (because of genetic influence). However, this
variation of l is still not dependent on the relative frequency of the cultural
traits. Our model in section 4 aims at adding such frequency dependency to
a model of blending. Furthermore, we want to expand Boyd and Richerson’s
result on cultural transmission: we show that even without an objective learn-
ing target s, one can define a frequency-dependent social learning (blending)
strategy that is long-run optimal. In the next section, we introduce the popu-
lation dynamical model on which our model of blending inheritance is based.

3.2. Population Dynamics of Cultural Evolution. The first mathemat-
ical models of population dynamics trace back to Fisher and Haldane (Fisher
1930; Haldane 1964/2008). A clear and didactically valuable introduction
is given by Ridley (2004). Starting with a general scheme, different models
for natural and cultural evolution are spelled out and refined. The general
scheme has the following ingredients (Schurz 2011, sec. 12.3; notation ad-
justed to that above):

• v1, . . ., vk . . . possible variants/values of a system; a set of variants V in
a certain environment is called a population;

• Pr(X n 5 vi) . . . relative frequency of Xn taking value vi;
• Generations: Pr(X n11 5 vi): The relative frequency of vis in the next
generation (X n11).
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The simplest models of population dynamics operate only on the variants’
frequencies across different generations—these are models of cultural repro-
duction. By introducing a selection coefficient s that constrains the variants’
frequencies across different generations, these models are expanded to mod-
els of cultural reproduction and selection (Schurz 2011, 285, 292). In a fur-
ther step, one can take variation (in a wide sense) into account via biases in
errors. This can be done by introducing a parameter m into the dynamics
that represents the mutation rate of a variant. For example, a mutation of var-
iant v1 to variant v2 in .1% of the cases could be represented by mv1 → v2 5
0:001, so mv1 → v2 � Pr(X n 5 v1) is the number of v1 variants in generation
Xn that mutate back to v2 variants in generation X n11. Of course, mutation
can also take place the other way round, from v2 to v1, but we assume that
this direction is already subtracted from the higher mutation rate (so, e.g.,
mv2 → v1 5 0). Furthermore, it is important to note that mutation is under-
stood only as mutation from one variant of a population X to another. The
evolution of new variants is not covered here. This is also the reason why
we expand the model in the next section in order to describe such an evolu-
tion of new variants, that is, evolution by blending.

In order to implement a mutation mechanism into the dynamics, the num-
ber of mutated variants must be subtracted from and added to the frequency
of the variant. The resulting formula is as follows:

Pr(X n11 5 vi)

5
Pr(X n 5 vi) � si 2ok

o≠i Pr(X
n 5 vi) � mvi → vo 1ok

o≠i Pr(X
n 5 vo) � mvo → vi

ok
j51 Pr(X

n 5 vj) � sj
:

The selection coefficient s of this model measures fitness in the sense of se-
lective advantage and not selective disadvantage (as is themore common use
of the term ‘selection coefficient’).We choose s as ameasure for selective ad-
vantage to use terminology coherent to the preceding section (where s was
interpreted as the relevant parameter for selection).

The question of an equilibrium of a variant in thismodel is stated similarly
as in the model of Boyd and Richerson by equating X n11 5 X n 5 X̂ . Biased
error, implemented via a mutation rate m, allows for an equilibrium where
not all the other variants disappear completely. So, in the case of two variants
with a positive selection of variant v1, the frequency of v1 has to reach only
1 2 mv1 → v2=(s1 2 s2) in order to be in an equilibrium ( Pr(X n11) 5 Pr(X n)).
If s1 5 1 and s2 5 1 2 s, the equilibrium state is at 1 2 mv1 → v2=s (Schurz
2011, 300). Figure 7 depicts a case of a population dynamics with selection,
variation (mutation), and reproduction. The mutation rate of a variant vi has
to be smaller than the selective advantage of that variant. Otherwise it will
disappear (mutate away) before it can become positively selected.
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Aswe have mentioned in the preceding section, in the model of Boyd and
Richerson, the parameter l weights the importance of social learning but is
the same for all variants and independent from the variants’ reproductive
success. In cultural evolution, however, it seems that social learning is cor-
related with reproductive success. It is positively correlated when conformity
(positive frequency dependency) is relevant for fitness, and it is negatively
correlated when originality (negative frequency dependency) marks a fit var-
iant. Note that frequency dependency does not automatically imply that traits
with higher fitness in the sense of higher frequency are also learned more fre-
quently. Rather, frequency dependency means that the fitness coefficients are
themselves a function of the frequency of the traits. This is an important dif-
ference, since because of such frequency dependency, a stable equilibrium is
no longer guaranteed, but ongoing oscillations are possible (such cases are
also covered by our model).

In the above equation such a dependency can be implemented via fine-
graining the selection coefficient si of a variant vi by making it dependent on
the frequency of the variant (jvijX n). By this we finally end up with the fol-
lowing model:
Figure 7. Natural and cultural evolution with reproduction, selection, and mutation
in the population dynamical model of Schurz (2011). Parameters: natural evolution,
selection of a dominant allele (NE (s dominant)): sdominant 5 1, srecessive 5 1 2 0:2 5
0:8, mdominant→ recessive 5 :5%, Pr(X 0 5 vdominant) 5 0:01, Pr(X 0 5 vrecessive) 5 0:99;
natural evolution, selection of a recessive allele (NE (s recessive)): sdominant 5
1 2 0:2 5 0:8, srecessive 5 1, mrecessive→ dominant 5 :1%, Pr(X 0 5 vdominant) 5 0:99,
Pr(X 0 5 vrecessive) 5 0:01; cultural evolution (CE): s1 5 1, s2 5 1 2 0:2 5 0:8,
mv1→ v2 5 3:16%, Pr(X 0 5 v1) 5 0:01, Pr(X 0 5 v2) 5 0:99. The equilibrium state
is reached at a relative frequency Pr(X̂ 5 v1) 5 1 2 0:0316=0:2 5 0:842. Only
the positively selected variant’s progression is depicted. (Data generated with Perl.)
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Pr(X n11 5 vi) 5
Pr(X n 5 vi) � si(Pr(X n 5 vi))

2ok
i≠o51

Pr(X n5vi)�mvi → vo

1ok

i≠o51
Pr(X n5vo)�mvo → vi

ok
j51 Pr(X

n 5 vj) � sj(Pr(X n 5 vj))
: (2)

Schurz (2011, chap. 14.1) shows that linear dependence of si to Pr(X n 5 vi)
does not change the equilibrium state in case of a positive or in case of a neg-
ative dependency (such a case is depicted in fig. 8). Things turn out to be dif-
ferent for nonlinear dependence: there, negative dependency leads to oscil-
lations, whereas positive dependency might switch the equilibrium state to
another extreme.

The models presented so far combine several features: Boyd and Richer-
son’s model allows for blending inheritance by the combination of variants
via social learning, but it does not implement frequency dependency. In ad-
dition, the population dynamical model presented in equation (2) implements
frequency dependency but does not include blending. In the following sec-
tion, we combine both approaches by expanding this model to a model in
which variants are blended.

4. A Success-Based Model of Blending Inheritance. In this section, we
spell out the frequency dependency of the selection parameter s used in the
foregoingmodel in more detail. As wewill see soon, this allows for blending
via social learning. Schurz (2011) mentions this expansion of his model and
highlights its significance: “Despite the realm of epistemology, meta-induction
Figure 8. Cultural evolution with reproduction, selection, andmutation in a frequency-
dependent model. Parameters: si is frequency dependent, Pr(X 0 5 v1) 5 0:01,
Pr(X 0 5 v2) 5 0:99; mv1 → v2 5 0:05. In case of a linear dependence of more than
1.56 times the ancestor frequency, v1 takes over v2 in the equilibrium state. (Data
generated with Perl.)
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[understood as success-based blending] is also of utmost importance for cul-
tural evolution. In cultural evolution, innate cognitive modules play the role
of non-inductive strategies, individual trial-and-error learning plays the role
of object-inductive strategies, and meta-inductive strategies correspond to
methods of social learning. The optimality results of meta-induction explain
the advantage of creatures who are able to undergo change through cultural
evolution” (387–88, our translation).

The main idea underlying the expansion of the model is to make the se-
lection coefficient for a variant vi (i.e., si) not only dependent on the frequency
of the variant (Pr(X n 5 vi)) but also dependent on the frequencies of the
other variants. Whereas the dependency of si on Pr(X n 5 vi) alone is called
reflective frequency dependency, the latter is called interactive frequency de-
pendency (Schurz 2011, 311). In biology, several models for interactive fre-
quency dependency have been discussed, for example, the so-called predator-
prey equations of Alfred J. Lotka and Vito Volterra (note that in predator-prey
equation models dying out is possible, and thus they allow for changes in the
absolute population size, while in the models discussed so far the absolute
population size is fixed). Also in the cultural domain, interactive frequency-
dependent selection has been investigated regarding the development of
meaning (Mühlenbernd and Franke 2014, sec. 1): in a generalized evolution-
ary game theory, one might try to spell out evolutionary strategies that inter-
act with one another, resulting in models of interactive frequency depen-
dency. The investigation of Mühlenbernd and Franke already makes use of
success-based imitation or reproduction. However, a relevant difference to
our approach is that we introduce relative-success-based blending, which al-
lows for an optimality result for an equilibrium state tending in a similar di-
rection as that of Boyd and Richerson presented above. In what follows we
spell out our approach in more detail.

4.1. The Model and Some Analytic Results. Assuming that the fitness
or success of a variant vi consists in its magnitude or relative frequency
Pr(X n 5 vi), one can try to socially learn from variants by blending the rel-
atively successful ones. To return to the example of Boyd and Richerson, if
v1 and v2 are the most successful variants centering around the correct or ideal
state s, then blending v1 and v2 to (v1 1 v2)=2 might be interpreted as socially
learning from these variants that also center around the ideal state. Boyd
and Richerson interpret social learning as erroneous (E ) taking into account
the ideal state (s) to some fixed degree (l ). In our model, we interpret social
learning as blending those variants (vi) that were relatively successfully in
terms of frequencies (Pr(X n 5 vi)). The formal theory of this interpretation
stems from mathematical learning theory in general and from the theory of
online predictions based on expert advice in particular (Cesa-Bianchi and
Lugosi 2006; Schurz 2008, 2019). An important result of this theory is the
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observation that relative-success-based weighting (cf. a1 in the taxonomy
of fig. 3) turns out to be long-run access optimal in every environment or
habitat (even oscillating ones).

The ingredients of our model are the same as that of the population dy-
namical model of the preceding section. However, we assume that there is
a learning variant vl (for some 1 ≤ l ≤ k). For this variant, the selection co-
efficient sl is made relative-success dependent on all variant’s past frequen-
cies. We will implement this by varying vl at each generation depending on
all variants’ past frequencies. The idea is that by such a blending/learning, vl
approximates the most successful variants in the long run. Here are the de-
tails of the blending mechanism we propose:

• We define a loss function, which calculates the difference between the
relative frequency of a variant from the best fitted variant in a genera-
tion n and normalizes it (∈ [0,1]):

dn(i) 5
Pr(X n 5 vi) 2 max(Pr(X n 5 v1), : : : , Pr(X n 5 vk))j j

max(Pr(X n 5 v1), : : : , Pr(X
n 5 vk))

:

(Note that in machine learning literature the difference between a var-
iant’s [cumulative] loss and the best variant’s [cumulative] loss is also
called the “regret” of the variant with respect to the best variant; e.g.,
Cesa-Bianchi and Lugosi 2006, 2.)

• Using this loss function, we define a measure for normalized success of
a variant up to generation n as the inverse of the average natural loss:

asn(i) 5 on
m511 2 dn(m)

i
:

• Using the normalized success of a variant up to generation n, we define
the relative success of a variant with respect to the social learning var-
iant vl up to generation n by cutting off (i.e., setting 0) the normalized
success of those variants that fare worse than the social learning var-
iant vl:

rsn(i) 5
asn(i),  if  i ≠ l and asn(i) ≥ asn(l)

0,  otherwise:

(

(What we call “relative success” here is also called “attractivity” in the
literature on meta-induction; we opted for the former expression be-
cause the latter is also used in Sperber’s cultural attraction model and
might have caused confusion here; for meta-inductive attractivity, see
Schurz 2008, sec. 7.)

• Using the relative success of a variant up to generation n, we define a
weight for the variant for generation n 1 1 by normalizing the relative
success:
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wn11(i) 5

rsn(i)

ok
j51 rsn( j)

,  if  o
k

j51

rsn( j) > 0

1

k 2 1
,  otherwise:

8>>><
>>>:

• And, finally, using these weights for generation n 1 1, we define the
social learning of variant vl for generation n 1 1 as

vn11
l 5 o

k

l≠j51

wn11( j) � vj:

Here, v0l may be defined as blending by unweighted averaging variants:

v0l 5
ok

l≠j51vj
k 2 1

:

All the nonlearning variants (vi with 1 ≤ i ≠ l ≤ k) remain constant. It is as-
sumed that they can be represented by real numbers as, for example, polit-
ical attitudes on a real-valued spectrum. For their dynamics, the equation of
the reflective frequency-dependent model of Schurz (2011) holds (si is only
reflective frequency dependent). For the learning variant vl, the equation must
be adapted by considering the interactive frequency dependency of vl:

Pr(X n11 5 vn11
l )

5
Pr(X n 5 vn

l ) � sl(Pr(X n 5 vn
l )) 2ok

l≠i51 Pr(X
n 5 vn

l ) � mvnl → vi

ok
i51 Pr(X

n 5 vi) � si(Pr(X n 5 vi))
:

Since vln and vln11 are functions on the frequencies of all variants, the selec-
tion coefficient sl also turns out the be a function of these, and by this sl is
interactively frequency dependent.

How dowe estimate the equilibrium state for the social learning variant vl;
that is, what happens if X n11 5 X n 5 X̂ ? The situation is quite difficult to
analyze. However, if de facto no change takes place any more (i.e., if there
really is an equilibrium), then vn11

l 5 vln 5 v̂l. Now, optimality results of so-
cial learning via meta-induction state that the normalized success of a learn-
ing variant vl approaches the normalized success of the best variant(s) in the
limit if the loss function is convex. Since dn(i) is a linear combination of con-
vex functions, dn(i) is also convex, so we can employ the following opti-
mality result (cf. Schurz 2008, 297; for a simplified proof, cf. Feldbacher-
Escamilla 2018, appendix):

limn→∞(asn(l) 2 asn(i)) ≥ 0 1 ≤ i ≤ kð Þ:
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Since the equilibrium state equals the limiting case, this optimality result
holds for the equilibrium state too:

Pr(X̂ 5 v̂l) ≥ Pr(X̂ 5 vi) 1 ≤ i ≤ kð Þ:
So, in the equilibrium state the normalized success of the learning variant vl
is at least as high as that of the best fitted nonlearning variant. If we identify
the best fitted variant in this state with vb, then we get—in analogy to the re-
sult of Boyd and Richerson (m(X̂ ) 5 s)—the limiting result for the learning
variant:

v̂l 5 vb:

However, themodel is not restricted to the equilibrium case, with a best fitted
variant vb; vl proves to be long-run optimal regarding any development of the
variants, even if the frequencies of the variants do not converge to a limit but
oscillate (Schurz 2008, optimality results). Recall the learning target of Boyd
and Richerson’s model, namely, to end up with (ideal) s or approximate it. In
contrast to this, ourmodel of blending inheritance (vl) aims at optimization in
terms of approximating the best variants or even outperforming them.

4.2. Some Provisos and a Simulation. We had to make some assump-
tions in order to transfer the optimality result for the equilibrium state v̂l 5 vb.
In what follows, we provide a brief discussion of those assumptions.

First, the blended variant is guaranteed to fare well in the long run with
respect to all the other variants. Whereas in Boyd and Richerson’s model,
s can be the truly maximal/ideal state of the system, in our model, smatches
only the best variants within the system. It is possible that, in reality, another
variant would fare much better, but vl may never approach it because it only
blends accessible variants. So, a wide range of accessible variants is presup-
posed in our model in order for vl to perform well. Note, however, that the
assumption of a constant absolute population size guarantees at least some
minimal fitness. Since in evolutionary theory a comparative stance regarding
success is much more common than an absolute stance, this restriction should
not be a problem.

Second, blending is very strong regarding the informational basis: all
past frequencies of accessible variants must be considered in calculating the
weights for vl’s blending. Furthermore, since we assume adaptive blending,
the learning variant also needs to be able to identify relevant features of the
environment and partition the frequencies to different types of environments.
For real cases, a restriction of such a strong assumption has to be considered.

Third, the optimality of variant vl with respect to the other variants v1, . . .,
vk in terms of relative frequencies is guaranteed only for the long run, that is,
in the limit. In the short run, the performance of vl depends on the exact evolu-
tionary system under investigation. However, one can derive exact boundaries
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for the short run performance of vl (Schurz 2008, 297): Pr(X n 5 v1≤i≠l≤k)2
Pr(X n 5 vnl ) ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k 2 1)=n

p
. Short-run performance of relative-success-

based blending is guaranteed to be within this bound; however, with the help
of simulations one might also study improved performance of such blending.
We conclude this section with a simulation to illustrate relative-success-based
blending inheritance.

Figure 9 illustrates a simulation of a case of blending via relative-success-
based weighting: the learning variant vl weights the better performing vari-
ants according to their past success in terms of relative frequencies. In the top
diagram, the development of vl is illustrated. Regarding relative frequencies,
the “cake is sliced,” of course, which means that if vl equals one of the other
variants, the success rate in terms of relative frequencies also equals that of
the other variant. This fact is depicted in the middle diagram. The slice of
frequencies is corrected in the bottom diagram, where the relative frequen-
cies of equal variants (values that, strictly speaking, cannot be distinguished)
are added up. There, the learning variant vl coincides with one of the two var-
iants of the setting (v1, v2), except in cases in which a shift in the relative-
success rates occurs. In such cases, vl represents proper blending. It is
rewarded with a bonus—here modeled with a fixed parameter of15% pop-
ulation size compared to the size of the better of the two variants v1 and v2.
Note that this parameter models the assumption that blending is adaptive.
The so-defined learning variant vl can be shown to be expectation optimal
(Schurz 2019, sec. 6.7.1) also for the case of random blending. However,
to flesh out such an expansion will be the subject of future investigation.

5. Conclusion. We have examined the phenomenon of blending inheri-
tance within the framework of cultural evolution. Although cultural and nat-
ural evolution may share some relevant core properties on a general level of
description—the applicability of an evolutionary algorithm consisting of var-
iation, selection, and reproduction—they also differ in some crucial and less
crucial aspects. One of the differences regards inheritance. Whereas in natu-
ral evolution inheritance consists of a transmission of discrete units, in the
cultural realm inheritance happens, among others, via blending. Following
Mesoudi (2011) and the seminal work of Boyd and Richerson (1988), blend-
ing is a process of mixing ideas and behavior in a nonrandom manner. Such
cultural transmission is often constituted by individuals who try to estimate
which behavior of other individuals in their immediate environmentmay have
been favored by selection in previous generations. This fact is captured by
several forms of learning dynamics in general and forms of average imitation
in particular.

In the second part of the article, we took a closer look at the formal struc-
ture of cultural transmission. To implement a proper formal model that cap-
tures as many facets of cultural transmission as possible and feasible, we
This content downloaded from 134.099.106.176 on April 16, 2020 04:48:20 AM
se subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Figure 9. Cultural evolutionwith reproduction, selection, and nomutationwith blend-
ing inheritance via relative-success-based weighting in an interactive frequency-
dependent model. Parameters: s1 5 1, s2 5 1 2 0:02 5 0:98, Pr(X 0 5 v1) 5 0:01,
Pr(X 0 5 v2) 5 0:66; the variants are v1 5 0:75, v2 5 0:5; the mutation rates are 0:
mv1 → v2 5 mv2 → v1 5 0; vl starts with the frequency of v1; that is, Pr(X 0 5v0l ) 5 0:01;
if vnl is not blended (unweighted imitation of variant v1 or v2), then Pr(X n 5 vnl )
equals the frequency of the imitated variant v1 or v2: Pr(X n 5 v1) or Pr(X n 5 v2); if
vnl is blended, that is, weighting v1 and v2, then vnl has a blending advantage/bonus
of15% over the better variant; this implements the assumption that blending is adap-
tive; the fallback option of vnl , that is, its value if none of the variants has an attrac-
tivity above 0, is vn21

l . (Data generated with Perl.)
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proposed the merger of two famous approaches to cultural evolution, the
classical statistical model of information transmission by Boyd and Richer-
son (1988) and population dynamical models as presented, for example, by
Schurz (2011).

The first model allows for blending inheritance and the achievement of an
ideal state s of a system, if such a state exists. The second model allows for
so-called interactive frequency dependency, a key feature of cultural trans-
mission, but does not implement blending inheritance. A combination of the
two models captures as many facets as possible.

Our formal expansion allows not only for reflective but also for interac-
tive frequency dependency. Not only is its selection coefficient of any given
variant of a cultural trait dependent on the variant’s frequency, but its fitness
depends also on the frequency of other variants. It is a form of relative-success-
based blending, where an agent observes the success rates of other agents,
respective to the fitness of their cultural traits, and then combines them into
a weighted average. A general result shows that, in the long run, the normal-
ized success of this form of social learning or relative-success-based cultural
inheritance of traits is at least as good as the fittest nonlearning variant.

Blending inheritance allows for an increase in relative frequency of a cul-
tural trait; therefore, it is rationally applicable and probably one of the main
reasons for the speed of cultural evolution. If we assume that agents blend
traits together under a success-guided principle of weighting, this strategy
is guaranteed to produce new and—in the long run—more successful traits
in cultural evolution.
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