Skip to main content
Log in

Neutron Time Interferometry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We compare a “Mach-Zehnder interferometer in time” for cold neutrons with its well-known spatial counterpart and demonstrate the intimate connection between space and time for both setups. Further, we outline a combined space-time interferometer, which coherently splits a wavepacket in longitudinal and lateral direction. On the way towards time interferometry “neutron computer holography” seems to be an attractive application. It allows the three-dimensional reconstruction of an object from the scattered intensity, but in contrast to holography with light, there is no need for a reference wave. On the other hand, the possible resolution is worse than in the light case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Moshinsky, Phys. Rev. 88, 625 (1952).

    Google Scholar 

  2. A. Gerasimov. and M. Kasarnovskii, Sov. Phys. JETP 44, 892 (1976).

    Google Scholar 

  3. W. Frahn Nuovo Cimento 7, 499 (1977).

    Google Scholar 

  4. R. Gähler and R. Golub, Z. Phys. B 56, 5 (1984).

    Google Scholar 

  5. D. Haavig and R. Reifenberger, Phys. Rev. B 25, 6408 (1982).

    Google Scholar 

  6. J. Felber, G. Müller, R. Gähler, and R. Golub, Physica B 162, 191 (1990).

    Google Scholar 

  7. V. Nosov and A. Frank, J. Moscow Phys. Soc. 1, 1 (1991).

    Google Scholar 

  8. R. Golub and S. Lamoreaux, Phys. Lett. A 162, 122 (1992).

    Google Scholar 

  9. M. Kleber, Phys. Rep. 236, 331 (1994).

    Google Scholar 

  10. A. Frank and V. Nosov, Phys/ Atom. Nuclei 57, 968 (1994).

    Google Scholar 

  11. A. Frank, and V. Nosov, Phys. Lett. A 188, 120 (1994); Ann. N.Y. Acad. Sci. 755, 29 (1995).

    Google Scholar 

  12. A. Frank and R. Gähler, Proceedings, IV International Seminar on Interaction of Neutrons wih Nuclei, Dubna, April 27-30 (1996), p. 308.

  13. J. Felber, R. Gähler, C. Rausch, and R. Golub, Phys. Ref. A 3, 319 (1996).

    Google Scholar 

  14. S. Bernet, M. Oberthaler, R. Abfalterer, J. Schmiedmayer, and A. Zeilinger, Phys. Rev.Lett. 77, 5160 (1996).

    Google Scholar 

  15. C. Brukner and A. Zeilinger, Phys. Rev. A.

  16. B. Kolner, IEEE J. Quant. Electronics 30, 1951 (1994).

    Google Scholar 

  17. M. Nuss and R. Morrison, Opt. Lett. 20, 740 (1995).

    Google Scholar 

  18. N. F. Ramsey, Molecular Beams (Clarendon, Oxford, 1956).

    Google Scholar 

  19. G. Badurek, H. Rauch, and D. Tuppinger, Phys. Rev. A 34, 2600 (1986).

    Google Scholar 

  20. T. Ebisawa, D. Yamazaki, S. Tasaki, T. Kawai, M. Hino, T. Akiyoshi, N. Achiwa, and Y. Otake, J. Phys. Soc. Japan 7, 1569 (1998).

    Google Scholar 

  21. N. Achiwa, M. Hino, S. Tasaki, T. Ebisawa, T. Akiyoshi and T. Kawai, J. Phys. Soc. Japan 65, 183 (1996).

    Google Scholar 

  22. R. Gähler, R. Golub, and T. Keller, Phys. B 180, 181, 899 (1992).

    Google Scholar 

  23. R. Gähler, R. Golub, K. Habicht, T. Keller, and J. Felber, Physica B 229, 1 (1996).

    Google Scholar 

  24. E. Smith, Al. Dhirani, D. Kokorowski, R. Rubenstein, T. Roberts, H. Yao, and D. Pritchard, PRL81, 1996 (1998).

  25. P. H. van Cittert, Physica 1, 201 (1934).

    Google Scholar 

  26. F. Zernike, Physica 5, 785 (1938).

    Google Scholar 

  27. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

    Google Scholar 

  28. J. Felber, R. Gähler, R. Golub, and K. Prechtel, Physica B 252, 34 (1998).

    Google Scholar 

  29. R. Gähler, J. Felber, F. Mezei, and R. Golub, Phys. Rev. A 58, 280 (1998).

    Google Scholar 

  30. M. Gruber, K. Eder, A. Zeilinger, R. Gähler, and W. Mampe, Phys. Lett. A 140, 363 (1989).

    Google Scholar 

  31. M. Weber, Gravitation in der Interferometrie mit kalten Neutronen, Dissertation (Universität Innsbruck, Innsbruck, 1998).

    Google Scholar 

  32. E. Krüger, Nukleonika 25, 889 (1980).

    Google Scholar 

  33. R. Colub, R. Gähler, and T. Keller, Am. J. Phys 62, 9 (1994).

    Google Scholar 

  34. W. Besenböck, P. Hank, M. Köppe, R. Gähler, T. Keller, and R. Golub, J. Phys. Soc. Jpn. 65, Suppl. A215 (1996).

  35. N. F. Ramsey, Phys. Rev. A 48, 80 (1993).

    Google Scholar 

  36. S. K. Lamoreaux, Int. J. Mod. Phys. A 7, 6691 (1992).

    Google Scholar 

  37. R. Gähler and R. Golub, Phys. Lett. A 213, 239 (1996).

    Google Scholar 

  38. H. Bräuning, A. Breskin, R. Chechik, V. Dangendorf, A. Demian, K. Ullmann, and H. Schmidt-Böcking, NIM A 348, 223 (1994).

    Google Scholar 

  39. V. K. Ignatovich, Yu. M. Ostanevich, and M. I. Podgoretski, “Method of getting holograms without reference frame,” Author certificate No. 745271, issued 7.03.1980.

  40. D. Gabor, Nature 161, 777 (1948): Proc. Roy. Soc. A 197, 454 (1949); Proc. Phys. Soc. B 64, 449 (1951).

    Google Scholar 

  41. G. Bruckner, H. Rauch, A. Rudge, P. Weilhammer, and W. Dulinsky, SPIE 2867, 554 (1997).

    Google Scholar 

  42. W. Besenböck, R. Gähler, P. Hank, R. Kahn, M. Köppe, C.-H. de Novion, W. Petry, and J. Wuttke, J. Neutron Res. 7, 65 (1998).

    Google Scholar 

  43. A. Ioffe, Physica B 234, 118 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felber, J., Gähler, R., Golub, R. et al. Neutron Time Interferometry. Foundations of Physics 29, 381–396 (1999). https://doi.org/10.1023/A:1018814815026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018814815026

Keywords

Navigation