## Metadata of the Book that will be visualized online



## Author's Proof

## Philosophy of Engineering and Technology

## Volume 30

Editor-in-chief ..... 3
Pieter E. Vermaas, Delft University of Technology, The Netherlands ..... 4
Editors ..... 65
Christelle Didier, Lille Catholic University, France
Darryl Cressman, Maastricht University, The Netherlands ..... 8
Neelke Doorn, Delft University of Technology, The Netherlands ..... 9
Byron Newberry, Baylor University, U.S.A. ..... 10
Editorial advisory board1112
Philip Brey, Twente University, The Netherlands ..... 13
Louis Bucciarelli, Massachusetts Institute of Technology, U.S.A. ..... 14
Michael Davis, Illinois Institute of Technology, U.S.A. ..... 15
Paul Durbin, University of Delaware, U.S.A. ..... 16
Andrew Feenberg, Simon Fraser University, Canada ..... 17
Luciano Floridi, University of Hertfordshire \& University of Oxford, U.K. ..... 18
Jun Fudano, Kanazawa Institute of Technology, Japan ..... 19
Craig Hanks, Texas State University, U.S.A. ..... 20
Sven Ove Hansson, Royal Institute of Technology, Sweden ..... 21
Vincent F. Hendricks, University of Copenhagen, Denmark \& Columbia University, U.S.A. ..... 22
Don Ihde, Stony Brook University, U.S.A. ..... 23
Billy V. Koen, University of Texas, U.S.A. ..... 24
Peter Kroes, Delft University of Technology, The Netherlands ..... 25
Sylvain Lavelle, ICAM-Polytechnicum, France ..... 26
Michael Lynch, Cornell University, U.S.A. ..... 27
Anthonie Meijers, Eindhoven University of Technology, The Netherlands ..... 28
Sir Duncan Michael, Ove Arup Foundation, U.K. ..... 29
Carl Mitcham, Colorado School of Mines, U.S.A. ..... 30
Helen Nissenbaum, New York University, U.S.A. ..... 31
Alfred Nordmann, Technische Universität Darmstadt, Germany ..... 32
Joseph Pitt, Virginia Tech, U.S.A. ..... 33
Ibo van de Poel, Delft University of Technology, The Netherlands ..... 34
Daniel Sarewitz, Arizona State University, U.S.A. ..... 35
Jon A. Schmidt, Burns \& McDonnell, U.S.A. ..... 36
Peter Simons, Trinity College Dublin, Ireland ..... 37
Jeroen van den Hoven, Delft University of Technology, The Netherlands ..... 38
John Weckert, Charles Sturt University, Australia ..... 39

## Author's Proof

The Philosophy of Engineering and Technology book series provides the multifaceted 40 and rapidly growing discipline of philosophy of technology with a central overarching 41 and integrative platform. Specifically it publishes edited volumes and monographs 42 in: the phenomenology, anthropology and socio-politics of technology and 43 engineering the emergent fields of the ontology and epistemology of artifacts, design, 44 knowledge bases, and instrumentation engineering ethics and the ethics of specific 45 technologies ranging from nuclear technologies to the converging nano-, bio-, 46 information and cognitive technologies written from philosophical and practitioners 47 perspectives and authored by philosophers and practitioners. The series also 48 welcomes proposals that bring these fields together or advance philosophy of 49 engineering and technology in other integrative ways. Proposals should include: A 50 short synopsis of the work or the introduction chapter. The proposed Table of 51 Contents The CV of the lead author(s). If available: one sample chapter. We aim to 52 make a first decision within 1 month of submission. In case of a positive first decision ${ }_{53}$ the work will be provisionally contracted: the final decision about publication will 54 depend upon the result of the anonymous peer review of the complete manuscript. 55 We aim to have the completework peer-reviewed within 3 months of submission. The 56 series discourages the submission of manuscripts that contain reprints of previous 57 published material and/or manuscripts that are below 150 pages / 75,000 words. For 58 inquiries and submission of proposals authors can contact the editor-in-chief Pieter 59 Vermaas via: p.e.vermaas@tudelft.nl, or contact one of the associate editors. 60

More information about this series at http://www.springer.com/series/8657

## Author's Proof

Sven Ove Hansson ${ }_{62}$
Editor

# Technology and Mathematics 

 Philosophical and Historical Investigations
## Author's Proof

Editor<br>Sven Ove Hansson<br>Division of Philosophy<br>Royal Institute of Technology (KTH)<br>Stockholm, Sweden

ISSN 1879-7202
ISSN 1879-7210 (electronic)
Philosophy of Engineering and Technology
ISBN 978-3-319-93778-6 ISBN 978-3-319-93779-3 (eBook)
https://doi.org/10.1007/978-3-319-93779-3
Library of Congress Control Number: 201895424270
© Springer International Publishing AG, part of Springer Nature $2018 \quad 71$
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 72 the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 73 broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 74 storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 75
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 77 does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 78 protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 80 are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 81 the editors give a warranty, express or implied, with respect to the material contained herein or for any 82 errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 83 claims in published maps and institutional affiliations.

This Springer imprint is published by Springer Nature, under the registered company Springer 85 International Publishing AG

## Author's Proof

## Preface

The relationship between mathematics and the natural sciences has been subject to 2 much discussion and investigation from both historical and philosophical points of 3 view. Since I work at a technological university whose major educational task is 4 to teach and train future engineers, I have plenty of opportunities to observe and 5 reflect on the equally interesting relationship between mathematics and technology. 6 But when searching the literature, I found very little on the topic. 7

It does not take much reflection to realise that this gap in the literature needs to 8 be filled. Already in pre-literate times, craftspeople depended on their mathematical 9 acumen. Early makers of bronze and other mixtures must have understood the notion 10 of proportions. The weaving of fabrics with beautiful symmetrical patterns required 11 considerable mastery of geometry, and so did many of the ancient and medieval 12 building projects. In modern times, the role of mathematics in technology has 13 been further strengthened. Since the nineteenth century, engineering relies heavily 14 on mechanics, electrodynamics, and other mathematics-based physical theories. 15 Conversely, mathematics depends increasingly on electronic computing. There have 16 been substantial philosophical discussions on computer-mediated proofs and, of 17 course, on the notion of computability, but the technological implications seem to 18 have gone largely unnoticed in these deliberations. 19

In this book, investigations of a wide range of aspects on the technology- 20 mathematics relationship have been brought together for the first time. Hopefully, 21 this can inspire further studies. There is much more to be done in this area! 22

I would like to thank the publisher and the series editor Pieter Vermaas for their 23 strong support and the contributing authors for their dedication and all the work they 24 have put into this project. ${ }_{2}$

Stockholm, Sweden
Sven Ove Hansson 26
February 9, 2018

## Author's Proof

## Contents

Part I Introductory
1 Introduction ..... 32
Sven Ove Hansson ..... 3
Part II The Historical Connection
2 Mathematics and Technology Before the Modern Era ..... 134
Sven Ove Hansson ..... 5
3 Computation in Medieval Western Europe ..... 336
Sara L. Uckelman ..... 7
4 Leibniz and the Calculus Ratiocinator ..... 478
Wolfgang Lenzen ..... 9
5 Mathematics and Mechanical Computation ..... 7910
Doron Swade ..... 11
6 The Mathematical Origins of Modern Computing ..... 10712
Mark Priestley ..... 13
7 Cryptology, Mathematics, and Technology ..... 137
Sandy Zabell ..... 15
Part III Technology in Mathematics
8 The Epistemology of Computer-Mediated Proofs ..... $165 \quad 16$
Selmer Bringsjord and Naveen Sundar Govindarajulu ..... 17
9 Mathematical and Technological Computability ..... 18518
Sven Ove Hansson ..... 19
10 On Explaining Non-dynamically the Quantum Correlations ..... 20
Via Quantum Information Theory: What It Takes ..... 235
Mauro Dorato and Laura Felline ..... 22

## Author's Proof

11 Universality, Invariance, and the Foundations of ..... 23
Computational Complexity in the Light of the Quantum ..... 24
Computer ..... 25325
Michael E. Cuffaro ..... 26
Part IV Mathematics in Technology
12 Mathematical Models of Technological and Social Complexity ..... 28527
Ronald Kline ..... 28
13 The Rise and Fall of the Anti-Mathematical Movement ..... $305 \quad 29$
Sven Ove Hansson ..... 30
14 Reflections on the Empirical Applicability of Mathematics ..... 3253
Tor Sandqvist ..... 32
15 What the Applicability of Mathematics Says About Its Philosophy ..... 345
Phil Wilson ..... 34

## Author's Proof

## AQ1 About the Authors

Selmer Bringsjord is professor of cognitive science, computer science, logic and 2 philosophy, and management and technology, at Rensselaer Polytechnic Institute $3^{3}$ (RPI), where he is director of the Rensselaer AI and Reasoning Laboratory. He 4 obtained the PhD in philosophy from Brown University and BA in Philosophy 5 at the University of Pennsylvania. He specialises in the logico-mathematical and 6 philosophical foundations of artificial intelligence (AI) and cognitive science, and 7 in collaboratively engineering AI systems with human-level cognition, where the 8 engineering is based on novel computational formal logics inspired in large part by 9 Leibniz. (His chief collaborator is co-author-here Naveen Sundar Govindarajulu.) 10 Bringsjord is the author of What Robots Can \& Can't Be, Artificial Intelligence 11 and Literary Creativity: Inside the Mind of Brutus, A Storytelling Machine (with 12 David Ferrucci), Superminds: People Harness Hypercomputation, and numerous 13 additional books and papers, most of which, alas, are unpublished. 14

[^0]Mauro Dorato teaches philosophy of science in the Department of Philosophy, 27 Communication and Media Studies at the Roma Tre University. He is member of 28 the Academy of Europe and of the Académie Internationale de Philosophie des 29 Sciences. He has served in the steering committee of the European Philosophy of 30

## Author's Proof

Science Association, was president of the Italian Society for History and Philosophy 31 of Science, and is currently co-editor of the European Journal for Philosophy 32 of Science and of the series College Publication. He is the author of over $100{ }_{33}$ publications in international and Italian journals and has published three books in 34 Italian and two books in English, Time and Reality (Clueb, Bologna, 1995) and The 35 Software of the Universe (Ashgate, 2005). In addition to the philosophy of time, he 36 has worked on scientific realism, the metaphysics of quantum mechanics, and laws 37 of nature.

Laura Felline is a postdoc in philosophy of science in the Department of Philoso- 39 phy, Communication and Media Studies at the Roma Tre University. She works on 40 mechanistic explanation, structural explanation and the foundations of physics.

Naveen Sundar Govindarajulu is senior research scientist at Rensselaer Poly- ${ }_{42}$ technic Institute (RPI) and assistant director of the Rensselaer AI and Reasoning ${ }^{43}$ Laboratory. He obtained his PhD in computer science from RPI and MSc in 44 physics and BE in electrical and electronics engineering from the Birla Institute 45 of Technology and Science, Pilani (BITS-Pilani). He has performed fundamental 46 research in a wide range of research labs. His experience includes natural- 47 language processing research done at Yahoo Research, image recognition at HP 48 Labs, prototyping fingerprint-recognition systems for the Indian Space Research 49 Organization, and modelling fundamental physics problems at the Tata Institute 50 for Fundamental Research (one of India's premier physics research institutes). His 51 research at RPI has focused on logic-based AI; achievements include a game for 52 crowd-sourcing the solving of computationally hard (specifically NP-complete and 53 $\boldsymbol{\Sigma}_{1}$ ) problems through easy-to-play games, and building real-time sophisticated 54 logic-based reasoning systems for robotic systems, including ethical reasoning 55 systems.

Sven Ove Hansson is professor of philosophy in the Department of Philosophy 57 and History at the Royal Institute of Technology, Stockholm. He is member of the 58 Royal Swedish Academy of Engineering Sciences (IVA) and was President of the 59 Society for Philosophy and Technology in 2011-2013. He is editor-in-chief of Theo- 60 ria and of the two book series Outstanding Contributions to Logic and Philosophy, 61 Technology and Society. He is the author of more than 350 refereed articles and book 62 chapters in logic, epistemology, philosophy of science and technology, decision 63 theory, the philosophy of risk, and moral and political philosophy. His recent books 64 include The Ethics of Risk (2013), The Role of Technology in Science. Philosophical 65 Perspectives (edited, 2015), The Argumentative Turn in Policy Analysis. Reasoning 66 About Uncertainty (edited with Gertrude Hirsch Hadorn, 2016), The Ethics of 67 Technology. Methods and Approaches (edited, 2017), and Descriptor Revision. 68 Belief Change Through Direct Choice (2017).

Ronald Kline is Bovay professor of history and ethics of engineering at Cornell 70 University, where he holds a joint appointment between the Science and Technology 71

## Author's Proof


#### Abstract

Studies Department and the School of Electrical Engineering. He is past president of 72 the Society for the History of Technology, which awarded him Leonardo da Vinci ${ }_{73}$ Medal in 2016, and past president of the IEEE Society for Social Implications of 74 Technology. He has published numerous articles on the intellectual, cultural, and 75 social history of technology, and three books: Steinmetz: Engineer and Socialist 76 (1992), Consumers in the Country: Technology and Social Change in Rural America 77 (2000), and The Cybernetics Moment: Or Why We Call Our Age the Information Age 78 (2015), all with Johns Hopkins University Press.


Wolfgang Lenzen was professor of philosophy at the University of Osnabrück, 80 Germany, from 1981 until his retirement in 2011. He has published books on 81 philosophy of science (Theorien der Bestätigung, 1972), philosophical logic (Recent 82 Work in Epistemic Logic, 1978; Glauben, Wissen und Wahrscheinlichkeit, 1980), 83 Leibniz (Das System der Leibnizschen Logik, 1990; Calculus Universalis, 2004), 84 and applied ethics (Liebe, Leben, Tod, 1999; Sex, Leben, Tod und Gewalt 2013). His 85 current fields of research are philosophy of mind and history of logic. In addition to 86 the academic works, he has published a collection of reports about his personal 87 experiences in long-distance running, bicycling, and mountaineering (Magische 88 Ziele, 2007) as well as a book about the adventures of bicycling around the world 89 (Das letzte magische Ziel, 2016).

Mark Priestley is an independent researcher in the history and philosophy of 9 computing. He has worked as a computer programmer and was a principal lecturer 9 at the University of Westminster, where he was head of the Department of Software ${ }_{93}$ Engineering for a number of years. He is currently on the editorial board of the 94 IEEE Annals of the History of Computing. He has written a number of papers on 95 the history of computing, and especially programming, including When Technology 96 Became Language (with David Nofre and Gerard Alberts, 2014), which was 97 awarded the inaugural SIGCIS Mahoney Prize in 2015 for an outstanding article 98 in the history of computing and information technology. His recent books include 99 A Science of Operations (2011), which was awarded a Special Commendation in 100 the 2013 Fernando Gil International Prize in Philosophy of Science, and ENIAC in 10 Action (with Tom Haigh and Cripsin Rope, 2016).

Tor Sandqvist is an associate professor of philosophy in the Department of 103 Philosophy and History at the Royal Institute of Technology, Stockholm. His 104 research publications include papers on proof theory, semantic justifications of 105 classical and intuitionistic logic, belief revision, and the analysis of counterfactuals. 106 He teaches logic, philosophy of mathematics, and philosophy of science, and also 107 takes an interest in meta-ethics and computability theory.

Doron Swade (PhD, C.Eng, FBCS, CITP, MBE) is an engineer, historian, and 109 museum professional. He is a leading authority on the life and work of Charles 110 Babbage and was responsible for the successful construction of the first complete 111 Babbage calculating engine built to the original nineteenth-century designs. He was 112

## Author's Proof

curator of computing at the Science Museum, London, and later assistant director 1 and head of collections. He studied physics, electronics, engineering, philosophy of science, machine intelligence, and history at various universities including Cambridge University and University College London. He has published three books (one co-authored) and many articles on the history of computing, curatorship, and museology. He is currently researching Babbage's mechanical notation at Royal Holloway University of London. He was awarded an MBE for services to the history of computing in 2009.

Sara L. Uckelman is lecturer in logic and philosophy of language at Durham University. She did her PhD in logic at the University of Amsterdam, writing on Modalities in Medieval Logic. Her logical research is focused on modern modal and dynamic logics and the ways in which these can be used to inform our understanding of developments in logic in the eleventh-fourteenth centuries. More philosophically, she is interested in questions of semantics and metaphysics arising from fictional discourse, especially the study of fictional languages. By night, she is a writer of speculative fiction, and her short stories have been published by Hic Dragones and Pilcrow \& Dagger. When not pursuing any of these activities, she can often be found doing medieval re-enactment with her husband and daughter, and serving as the Managing Editor of the Dictionary of Medieval Names from European Sources.

Phil Wilson is an applied mathematician and senior lecturer in the School of 132 Mathematics and Statistics, University of Canterbury, Aotearoa New Zealand. He has a PhD in mathematics from University College London, where he worked on theoretical fluid dynamics. Phil held two postdoctoral research positions at the University of Tokyo, working on mathematical modelling of red blood cells. He has been interested in the philosophical implications of applied mathematics for his entire career, and has combined this interest with his passion for popularising science by exploring philosophical issues in his published popular science writing. His recent research includes studies of the flow of wind in cities, the interaction between neuron metabolism and blood flow in the brain, the lift off and transport of dust on Mars, the clogging of diesel generators following volcanic eruptions, and the theory of detecting vortices in fluid flow.

Sandy Zabell is a professor of mathematics and statistics at Northwestern Univer-

## Author's Proof

## AUTHOR QUERIES

AQ1. Please confirm the heading.
AQ2. Please confirm the author name.

## Author's Proof

## Part I <br> Introductory ${ }_{2}$

## Author's Proof

## Metadata of the chapter that will be visualized online

| Chapter Title | Introduction |
| :---: | :---: |
| Copyright Year | 2018 |
| Copyright Holder | Springer International Publishing AG, part of Springer Nature |
| Corresponding Author | Family Name Hansson <br> Particle  <br> Given Name Sven Ove <br> Suffix  <br> Division Department of Philosophy and History <br> Organization Royal Institute of Technology (KTH) <br> Address Stockholm, Sweden <br> Email soh@kth.se |
| Abstract | This is a brief introduction to a multi-author book that provides both historical and philosophical perspectives on the relationship between technology and mathematics. It consists mainly in summaries of the chapters that follow. The books has three main parts: The Historical Connection, Technology in Mathematics, and Mathematics in Technology. |

## Author's Proof

# Chapter 1 <br> Introduction 


#### Abstract

Sven Ove Hansson


#### Abstract

This is a brief introduction to a multi-author book that provides both 4 historical and philosophical perspectives on the relationship between technology 5 and mathematics. It consists mainly in summaries of the chapters that follow. The 6 books has three main parts: The Historical Connection, Technology in Mathematics, 7 and Mathematics in Technology.


Mathematics and technology are closely knit together in several ways. Most obvi- 9 ously, modern technology would be unthinkable without mathematics. Engineers 10 receive a much more thorough mathematical education than most other professions, 11 and that is because they need it. Present-day technology is largely based on scientific 12 theories such as solid and fluid mechanics, electrodynamics, thermodynamics, 13 and quantum mechanics, all of which require considerable mathematical training. 14 Engineers often also need additional mathematical tools, for instance for simulation, 15 optimization, and statistical analysis.

The relationship between technology and mathematics is a reciprocal one. 17 Technology needs mathematics, but mathematics also needs technology. When 18 computing power has increased, so has the mathematical use of computers. Math- 19 ematicians use them not only for calculations, but also for numerous other tasks, 20 including the search for proofs and validations. Furthermore, the very notion of 21 computability has a central role at the foundations of mathematics. What we 22 can compute is in important respects a technological question. Therefore, issues 23 from the philosophy of technology come to light in studies of the foundations of 24 mathematics.

But in spite of all these connections, very few studies have focused on how 26 the two disciplines are related. This book is the first broad investigation of their 27 interrelations. The chapters that follow will show how mathematics and technology 28

[^1]
## Author's Proof

have influenced each other throughout human history, and continue to do so today. 29 They will also show that the technology-mathematics connection gives rise to a 30 multitude of philosophical issues in need of further investigations.

### 1.1 The Historical Connection

A series of six chapters puts focus on various aspects of the historical connections ${ }_{33}$ between mathematics and technology. Chapter 2, Mathematics and Technology 34 Before the Modern Era, reaches back to the Palaeolithic age, featuring a tally stick 35 about 11,000 years old that testifies to an early practice of the art of counting. In 36 many preliterate societies, the most advanced mathematical activities were carried 37 out by weavers, who were predominantly female. Cloths with intricate geometrical 38 patterns are known from indigenous cultures around the world. To produce them, 39 number series had to be constructed on the basis of geometrical insights. Consid- 40 erable geometrical knowledge was also involved in the great building projects of 41 ancient and medieval times. The complex geometrical patterns on the walls and 42 ceilings of medieval Islamic buildings bear witness to a high level of mathematical 43 proficiency, as do the rose windows of Gothic cathedrals from the same period. 44 In both cases, ruler-and-compass constructions were used. We do not know if 45 craftspeople picked up this technique from learned geometers, or if it was the other 46 way around. A few contacts between mathematicians and mathematically-minded 47 craftspeople have been documented, but the extent and contents of such contacts 48 cannot be inferred from the available sources.

In Chap. 3, Computation in Medieval Western Europe, Sara Uckelman introduces 50 the history of computation from the seventh century to the beginning Renaissance, 51 focusing on three major intellectual developments. The first of these is the calendar 52 calculations in the seventh to ninth centuries that we know from Irish and English 53 sources. In order to solve practical and ecclesiastical problems, such as ensuring 54 that Easter was celebrated at the right time, careful calculations were necessary, 55 and they had to be based on as precise astronomical observations as possible. 56 New developments in Arab astronomy were essential for the accuracy of these 57 calculations. In the thirteenth to fifteenth centuries, a new calculatory tradition was 58 developed by scholars studying physics in an Aristotelian tradition. Contrary to the 59 calendric calculations, these studies were not based in monasteries but in the more 60 secular environment of the universities. Scholars at Oxford (the Oxford Calculators) 61 took the lead. They developed precise notions of velocity, acceleration, and other 62 important concepts in mechanics, and showed how these concepts could be used 63 in mathematical accounts of natural phenomena. The third development described 64 in this chapter is Ramon Llull's (c.1232-c.1315) use of mathematical principles 65 for drawing logical conclusions from a set of premises. His basic ideas were 66 combinatorial, and he used templates with movable parts to perform his derivations. 67 His constructions may seem simplistic to a modern reader, but they were far from 68

## Author's Proof

trivial to his contemporaries, and they were highly influential in the Renaissance 69 and the early modern period.

Gottfried Leibniz's (1646-1716) impressive contributions to several aspects of 71 computation are the subject of Chap. 4 by Wolfgang Lenzen, Leibniz and the 72 Calculus Ratiocinator. Leibniz invented a "four species" calculating machine, i.e. a ${ }^{73}$ machine capable of all the four basic arithmetic operations: addition, subtraction, 74 multiplication and division. He also realized the potential of the binary system 75 of numbers, and invented two types of calculating machines for binary numbers. 76 Calculations had a central role in his philosophy. He believed that it would be 77 possible in principle to calculate infallibly the truth-value of any proposition. 78 This would require a universal language (characteristica universalis) in which all 79 concepts were expressed in a way that mirrored their logical interrelations. Leibniz 80 seems to have believed this to be possible; for instance he proposed that God could 81 have created the world by creating numbers that correspond to various properties 82 of the actual world. But in practice he came to focus on how logical validity 83 can be determined by calculative methods. Lenzen walks us through some of the 84 logical writings by Leibniz that precursed ideas to be developed in the centuries that 85 followed, including modal logic, quantifiers, and a rudimentary set theory. Many of 86 the ideas that have shaped modern computing are foreshadowed in various places in 87 his publications and manuscripts.

Doron Swade's Chap. 5, Mathematics and Mechanical Computation, begins with 89 a brief history of mechanical calculation, including the technical problems that 90 made it difficult even in the late nineteenth century to construct and manufacture 91 reliable calculating machines. His focus is on the pioneering work of Charles 92 Babbage (1791-1871), who invented two general-purpose computational machines, 93 the Difference Engine and the programmable Analytical Engine. Neither of these 94 impressive constructions was built until a Difference Engine was completed in 95 1991 under Swade's direction for the Science Museum in London. Babbage 96 promoted his machines as means to produce reliable mathematical tables, a task 97 of considerable practical importance at the time. However, he also outlined how 98 computing machines could be used to solve equations for which no analytical 99 solution was available. Babbage foresaw that computation by machine would lead 100 to the development of new forms of mathematical analysis. Many of the major 101 principles of modern computer programming can be found in his work and in that 102 of his friend and ally Ada Lovelace (1815-1852). Their achievements illustrate 103 what Swade calls a "two-way relationship between mathematics and machine": 104 On the one hand, the machine was based on mathematical principles that had been 105 developed previously to organize the work of human computists. On the other hand, 106 the technological principles inherent in the machine inspired new mathematical 107 ideas.

Modern computers are general-purpose machines. We usually take them to be 109 constructed as such, but that has not always been the case. In Chap. 6, The Mathe- 110 matical Origins of Modern Computing, Mark Priestley investigates the construction 111 of two key machines in the pioneering period of electronic computing, the ENIAC 112 and the EDVAC. They were both developed in the USA in the 1940s. The ENIAC 113

## Author's Proof

was made for calculating missile trajectories and the EDVAC for processing wind tunnel data. Both tasks require the solution of large systems of differential equations. This involves multiple repetitions of small sequences of mathematical operations, each of which employs numerical results from its predecessors. Priestley shows how these historical contingencies "deeply affected the ways in which computers could be deployed in areas outside of mathematics". In the design of hardware, 119 swift retrieval of stored intermediate results was more important than fast input or output operations. Both the hardware and the software were constructed to facilitate the use of techniques that had been established in the management of large-scale manual calculation tasks, namely the division of complex tasks into a large number of simple subtasks. (Charles Babbage had used the same strategy.) In the 1950s, when computers started to be used for other tasks than mathematical calculations, new programming methods had to be introduced for these new purposes.

Sandy Zabell begins Chap. 7, Cryptology, Mathematics, and Technology, by noting that cryptology provides "an ideal case study of the synergy between mathematics and technology". He divides the history of cryptology into four major phases. In the first of these, which lasted until the end of World War I, the vast majority of cryptographic systems were based on manual encrypting and decrypting. Only a very limited mathematical or technological competence was usually needed for either constructing or cracking a cipher or code. The second period was the era of encoding and decoding machines that were based on mechanical or electromechanical principles. The most famous of these was the German Enigma that was deciphered during the Second World War by ingenious Polish and British cryptanalysts, among the latter Alan Turing. In this period, cryptography became thoroughly mathematized. The third era, starting in the early 1970s, was marked by the introduction of digital computers for encryption and decryption. They made it possible to employ more advanced codes and to change cryptographic systems without having to replace physical equipment. In the same decade, cryptography shifted into the fourth and still on-going era, that of public key systems. These are cryptographic systems, based on number theory, that do not require prior exchange of a secret key over a secure means of communication. This is the mathematicsbased technology that is used today on a massive scale for financial transactions and secure messaging over the Internet.

### 1.2 Technology in Mathematics

Four chapters discuss the impact of computer technology on current and future

According to the four colour theorem, you never need more than four colours 15 to colour the regions of a map on a Euclidean plane so that no two regions with a common border (other than a corner) have the same colour. This was proved

## Author's Proof

was too long for a human to verify all its details. It triggered an extensive and 155 still on-going philosophical discussion on whether we can rely on such a proof 156 in the same way that we rely on a proof that is short enough for a human to 157 go through in detail. In Chap. 8, The Epistemology of Computer-Mediated Proofs, 158 Selmer Bringsjord and Naveen Sundar Govindarajulu generalize this discussion, 159 asking what level of belief a human is justified in having in a conclusion based on 160 some argument, if her access to the conclusion and the argument is mediated by 161 a computer. In this more generalized form, the question is accessible to a detailed 162 philosophical analysis that distinguishes between different types of proofs and other 163 arguments, different types of computers and computer mediation, and different types 164 of belief and knowledge. This results in a framework that makes it possible to answer 165 questions about the epistemic status of computer-mediated proofs in a more nuanced 166 way than previously.

The relationship between technological computations and the mathematical 168 concept of computability provides one of the best avenues to studies of the 169 technology-mathematics relationship. Chapter 9 by Sven Ove Hansson, Mathemat- 170 ical and Technological Computability, begins by showing how modern studies of 171 computability connect with a long tradition of attempts to convert all forms of 172 mathematical reasoning into routine manipulation of symbols. In the early twentieth 173 century, many mathematicians believed that sûch a conversion had been achieved 174 through recent advances in the rigorization and formalization of mathematical 175 proofs. In 1936 Alan Turing proposed a simple procedure - now called the Turing ${ }_{176}$ machine - which he claimed would be able to perform all symbol manipulations 177 (computations) that human beings can perform by strictly following a set of 178 unambiguous instructions. The chapter explains in some detail why this bold claim 179 is a highly plausible one. It also discusses some of the sketches that have been made 180 of technological devices with a computational capacity surpassing that of a Turing 181 machine. Many of these proposals refer to physical events that would not normally 182 be counted as computations. It is argued that computations are technological 183 processes into which an intelligent being enters an input, and receives an output. 184 This would exclude many of the schemes for computing devices that are said to 185 surpass the capacity of a Turing machine.

Quantum computation is based on information theoretical accounts of quantum 187 mechanics, and in order to understand the former we need to understand the latter. In 188 Chap. 10, On Explaining Non-Dynamically the Quantum Correlations via Quantum 189 Information Theory: What It Takes, Mauro Dorato and Laura Felline introduce 190 some of the major philosophical issues involved in quantum information. They do 191 this from the perspective of an influential information-theoretical axiomatization of 192 quantum theory that was proposed by Clifton, Bub, and Halvorson in 2003. This 193 approach describes the physical world in terms of how information is transferred 194 and transformed. The authors put focus on the concepts of an explanation and a 195 "structural explanation". For instance, Einstein's postulation of a curved space-time 196 makes gravity a part of the structure of the universe and therefore not subject to 197 truly causal explanations. Does quantum information theory make non-locality and 198

## Author's Proof

entanglement structural in the same sense? This is still an open question, but it is 199 clarified in important respects in this chapter.

In spite of significant progress, quantum computing is still far from practical use, 201 but it has given rise to extensive philosophical discussions. Previous speculations 202 that quantum computation could transcend the limits of Turing computability ${ }^{203}$ have not been substantiated in a more detailed analysis. Instead, discussions have 204 increasingly turned to issues of computational complexity, i.e. (to put it simply) 205 how fast the computational resources required to compute $f(n)$ for a given function 206 $f$ and a natural number $n$ increase with $n$. In Chap. 11, Universality, Invariance 207 and the Foundations of Computational Complexity in the Light of the Quantum 208 Computer, Michael Cuffaro discusses the possibility of a "quantum speed-up", 209 i.e. that quantum computers may outperform classical computers (technically: that 210 they may perform better in solving certain mathematically and technologically 211 significant problems). One of the implications of this would be that computational 212 complexity theory would have to pay more attention to machine-specific issues. Current discussions of computational complexity usually refer to a level of ab- 214 straction that makes all computational models equivalent, since each of them can efficiently simulate each of the others. Investigations of quantum computation may lead to an increased focus on questions concerning certain classes of computers, 217 rather than all computers. However, in Cuffaro's view this is not as radical a break with current computational complexity theory as some might think. As he sees it, complexity theory is "at its core, a practical science" that applies idealized 220 mathematical concepts to improve our understanding of actual operations performed 221 on real-world computers. The analysis of quantum computing serves to remind us
of the actual purpose of this "conceptual bridge between the study of mathematics and the study of technology".

### 1.3 Mathematics in Technology

The last section of the book consists of four chapters on the role of mathematics 226 in technology. The first of them highlights the differences between mathematical ${ }^{227}$ modelling in technology and in the social sciences by investigating a historical 228 example of transdisciplinary transfer of modelling techniques. It is followed by a 229 chapter that describes a conflict in the late nineteenth century over the extent and 230 nature of mathematics teaching in the education of engineers. The last two chapters ${ }_{23}$ discuss the "unreasonable effectiveness" of mathematics in empirical applications. ${ }^{232}$

Mathematical control theory and its engineering applications in servomech- 233 anisms have been essential for the control of steam and combustion engines, 234 airplanes, turbines, and many other technologies. In Chap. 12, Mathematical Models 235 of Technological and Social Complexity, Ronald Kline investigates the attempts 236 made in the decades following World War II to extend this engineering approach to ${ }_{237}$ complex social phenomena. Herbert Simon (1916-2001) applied servomechanism ${ }_{238}$ theory to the optimization and control of production in a manufacturing unit. 239

## Author's Proof

Others applied these ideas in economics, political science, sociology, anthropology, and psychology. The American engineer Jay Forrester (1918-2016) constructed large models of complex social phenomena, using techniques from engineering. He used a multitude of numerical variables, connected non-linearly with multiple loops, to describe the workings of a social system, such as a company or a city.
The resulting equation systems were way too complex for analytical treatment, 245 but with the new tools for computerized approximation, predictions could be made about the behaviour of these systems. The most famous application was the controversial Club of Rome report Limits to Growth in 1972. Forrester has received much criticism for oversimplifying social phenomena and not taking results 249 and models from the social sciences into account. As Kline himself notes, the chapter combines three approaches to the interconnectedness of mathematics and 251 technology: "the technological origins of mathematical modelling in cybernetics 252 and System Dynamics; the use of digital computers to create models in System 253 Dynamics; and the conception of scientific models, themselves, as technologies".

Mathematics has been a core discipline in engineering education since its 255 beginnings in the late eighteenth century. The introduction and early history of 256 mathematics teaching for engineers is the starting point of Chap. 13 by Sven Ove ${ }_{257}$ Hansson, The Rise and Fall of the Anti-Mathematical Movement. However, its 258 main focus is on a little known counter-reaction to modern mathematics among 259 German professors in the engineering disciplines in the 1890s. This was a short- 260 lived movement that hardly survived into the twentieth century, but it managed to 26 achieve reductions in the mathematical curricula of several German technological 262 colleges (now technological universities). Some members of this movement agitated for the dismissal of all mathematicians from the engineering schools. Instead, the 264 (reduced) courses in mathematics would be taught by engineers. The movement 265 denounced the use of abstract and rigorous methods in mathematics, preferring 266 traditional methods that were considered to be more intuitive. Such resistance to 267 precise methods reappeared in the 1920s and 1930s in the more ominous context of 268 the Nazi movement for "German mathematics". Its adherents pushed for allegedly 269 more intuitive methods in mathematics which they contrasted with the rigorous 270 "Jewish" mathematics that dominated in academia.

In a famous speech in 1959, Eugene Wigner voiced his bafflement over the 272 "unreasonable effectiveness of mathematics in the natural sciences". Again and 273 again, theories from pure mathematics have turned out to be eminently useful in 274 both science and technology. In Chap. 14, Remarks on the Empirical Applicability 275 of Mathematics, Tor Sandqvist attempts to demystify the empirical effectiveness of 276 mathematics. He focuses on what is arguably its most astonishing aspect, namely the 277 role of mathematics in successful predictions of future events. Sandqvist treats this 278 as a version of the philosophical problem of induction. It is amazing and possibly 279 inexplicable, he says, that the universe exhibits regularities that allow us to predict 280 the future on the basis of the past. However, the fact that we can use mathematics 28 to describe these regularities does not necessarily add to the amazement. It can be 282 explained by the observation that "the development of mathematics always takes 283

## Author's Proof

place under the influence of simplicity considerations similar to those guiding 284 human concept formation and inductive projections in general". 285

In Chap. 15, What the Applicability of Mathematics Says About Its Philosophy, 286 Phillip Wilson approaches the same issue from another angle. He turns the question 287 around and asks: What does the existence of applied mathematics teach us about the 288 philosophy of mathematics? To answer that question he explores the four dominant 289 traditions on the nature of mathematics: Platonism, logicism, formalism, and 290 intuitionism. They have all mostly been discussed in relation to pure mathematics. 291 In their modern forms, they are concerned with much the same key issues, such 292 as the nature of numbers and sets, the status of infinite structures, and what 293 constitutes a valid mathematical proof. Approaching these four standpoints from the 294 perspective of applied mathematics puts them in an uncustomary context, in terms 295 of both their ontological and their epistemological implications. Wilson concludes 296 that although the lens of applied mathematics cannot adjudicate between these 297 four major standpoints, it helps us to bring into focus the questions that have 298 to be addressed when formulating and defending philosophical standpoints about 299 mathematics. 300

## Author's Proof

Part II
The Historical Connection

## Author's Proof

## Metadata of the chapter that will be visualized online

| Chapter Title | Mathematics and Technology Before the Modern Era |  |
| :--- | :--- | :--- |
| Copyright Year | 2018 |  |
| Copyright Holder | Springer International Publishing AG, part of Springer Nature |  |
| Corresponding Author | Family Name | Hansson |
|  | Particle |  |
|  | Given Name | Sven Ove |
|  | Suffix |  |
|  | Division | Division of Philosophy |
|  | Organization | Royal Institute of Technology (KTH) |
|  | Address | Stockholm, Sweden |
|  | Email | soh@kth.se |


| Abstract | The use of technology to support mathematics goes back to ancient <br> tally sticks, khipus, counting boards, and abacuses. The reciprocal <br> relationship, the use of mathematics to support technology, also has <br> a long history. Preliterate weavers, most of them women, combined <br> geometrical and arithmetical thinking to construct number series that <br> give rise to intricate symmetrical patterns on the cloth. Egyptian <br> scribes performed the technical calculations needed for large building <br> projects. Islamic master builders covered walls and ceilings with <br> complex geometric patterns, constructed with advanced ruler-and- <br> compass methods. In Europe, medieval masons used the same tools to <br> construct intricate geometrical patterns for instance in rose windows. <br> These masters lacked formal mathematical schooling, but they developed <br> advanced skills in constructive geometry. Even today, the practical |
| :--- | :--- |
| mathematics of the crafts is often based on traditions that differ from |  |
| school mathematics. |  |
| Technology and mathematics - Counting - Weaving - Building |  |
| Keywords | construction - Masonry - Islamic geometric patterns - Gothic |
| cathedrals - Euclidean geometry - Ruler and compass - Practical |  |
| mathematics - Applied mathematics - Mathematical practitioners |  |

## Author's Proof

# Chapter 2 <br> Mathematics and Technology Before the Modern Era 

Sven Ove Hansson


#### Abstract

The use of technology to support mathematics goes back to ancient 5 tally sticks, khipus, counting boards, and abacuses. The reciprocal relationship, 6 the use of mathematics to support technology, also has a long history. Preliterate 7 weavers, most of them women, combined geometrical and arithmetical thinking 8 to construct number series that give rise to intricate symmetrical patterns on 9 the cloth. Egyptian scribes performed the technical calculations needed for large 10 building projects. Islamic master builders covered walls and ceilings with complex 11 geometric patterns, constructed with advanced ruler-and-compass methods. In 12 Europe, medieval masons used the same tools to construct intricate geometrical 13 patterns for instance in rose windows. These masters lacked formal mathematical 14 schooling, but they developed advanced skills in constructive geometry. Even today, 15 the practical mathematics of the crafts is often based on traditions that differ from 16 school mathematics.


Some human cultures appear to have very little mathematics. For instance, a few 18 indigenous communities do not have the practice of counting. Just like us, they can 19 easily distinguish between $1,2,3,4$ and 5 objects by direct visual impression, and 20 just like us they see directly that 20 objects are more in number than 12 objects. 21 However, they do not know the process of counting, and therefore their languages 22 do not contain numbers higher than those needed to report direct visual impressions 23 of number (Pica et al. 2004). This does not prevent them from having an otherwise 24 advanced culture, and studies in one such community show that its members can 25 deal with differences in numerosity in other ways than counting (Dehaene et al. 26 2008). The ability to count is not something we are born with. It had to be invented, 27 and now it has to be passed on from generation to generation.

[^2]
## Author's Proof

### 2.1 Technologies for Counting and Arithmetic

But the art of counting is known in the vast majority of human communities. We 30 often do it with the help of one-to-one correspondences with sets of small objects 31 such as stones, twigs, or pieces of wood. For instance, inhabitants of the Nggela 32 Islands (part of Solomon Islands) keep track the number of guests at a feast by 33 collecting a small item from each of them as they arrive. In many places, for instance 34 in Borneo, Melanesia and the Philippines, knots on a string are used for counting 35 and for keeping a record of numbers (Sizer 2000). The Incas used khipus, sets of 36 connected knotted strings, for book-keeping and the levy of taxation (Urton and 37 Brezine 2005; Gilsdorf 2010) (Fig. 2.1).

An even safer way to keep records of numbers is to make notches on durable 39 objects such as bones or pieces of wood. This method is known from many parts of 40 the world (Sizer 2000, p. 260), and it has a long history. A small bone the size of a 41 pencil that was excavated in Congo has three columns with in total 167 tally marks 42 (Fig. 2.2). It is about 11,000 years old, and bears witness to our ancestors' ability 43 to write down numbers long before they could write words (Huylebrouck 1996). 44 Other, much older, bones with notches have also been found, but their interpretation 45 as tally marks is controversial (Vogelsang et al. 2010, p. 197; d'Errico et al. 2012, 46 pp. 13216 and 13219; Cain 2006). In modern societies, more advanced tally sticks 47 using a positional system for higher numbers have been used to document debts. 48 Such tallies were still used in both England and France at the beginning of the 49 twentieth century (Stone 1975). The use of cuts on the body to record numbers has 50 also been reported (Lagercrantz 1973).

In the traditional Basque system for counting sheep, two of these technical means 52 for counting were combined in a most efficient way:

Counting invariably involves two men; one does the actual counting and one records the 54 hundreds. The counter carries 5 small stones (or nails, or some other small item that can be easily held in the hand) and counts either silently or aloud up to 20 . When he reaches 20 , he transfers a stone from one hand to another, and after transferring the 5th stone, he shouts ehun! [which means 'hundred'] and the recorder makes a mark by notching a stick or piece of wood. After the last rock has been transferred to the opposite hand, the counter begins again and shifts the rocks back to his original hand, not losing count of the moving sheep. When the last sheep has passed through the passage-way, he shouts the number aloud and counts the rocks in his hand. The number said aloud is one between $1-20$ and the rocks in his hand represent the multiples of 20. Thus, by combining these with the number of notches made by the other person, the total number of sheep in the band is obtained. (Araujo 1975, pp. 142-143)

These different means to record numbers - stones, knots and notches - have been 66 reported from indigenous cultures all around the world. Similar technologies for 67 simple arithmetic, adding and subtracting, are also widespread. Already in prelit- 68 erate societies, these operations were usually performed with small objects such 69 as stones or twigs that were moved around to represent the operation (Sizer 1991, 70 p. 54). In many cultures, special counting-boards for arithmetic were constructed. 71 For instance, the Incas used counting boards for their calculations (and khipus to 72

## Author's Proof

Fig. 2.1 An Inka khipu.
(From Meyers
Konversationslexikon, 1888)


Fig. 2.2 The Ishango bone, a Stonge Age tally stick found in Congo
record the outcome, when that was needed) (Gilsdorf 2010). In medieval Europe, 73 before cheap paper became available, calculations were performed on an abacus or 74 a counting-board, or in a sand tray (Acker 1994; Periton 2015). As late as the early 75 twentieth century, writing slates were used in schools instead of paper for economic 76 reasons (Davies 2005).

Thus, the use of tools to support arithmetic has a long history. The same is true 78 of the reciprocal relation, the use of mathematics to support technology.

## Author's Proof

### 2.2 The Mathematics of Weaving

One of the foremost early uses of mathematics belongs to a traditionally female 81 occupation, namely weaving. Textiles from about 10,000 BCE have been found in 82 the Guitarrero Cave in northern Peru (Jolie et al. 2011), and imprints of woven 83 material have been found in even older archaeological sites. We do not know much 84 about Stone Age weavers, but we can see from present-day hand weaving that 85 the craft of weaving provides excellent opportunities for developing mathematical 86 thinking. Indigenous women all around the world have woven elaborate geometrical 87 patterns with intricate symmetries. In order to do this, they have to combine 88 geometric and arithmetical thinking to construct the number series and numerical 8 relationships that give rise to the desired patterns on the fabric (Karlslake 1987, p. 9 394). In addition, weavers often have to calculate beforehand how much material 91 they need for a particular piece of fabric (Figs. 2.3 and 2.4).

In traditional cultures in Central and Southern Africa, cloths with complex 93 geometrical designs are highly valued. The women who weave them perform the 94 most advanced mathematical activities in these societies (Gerdes 2000; Harris 95 1987). Similarly, textiles with symmetrical patterns, both geometrical and figurative, 96 were much esteemed by the Incas. The construction of such patterns must have 97


Fig. 2.3 A Navaho weaver. (Photograph by Roland W. Reed)

## Author's Proof



Fig. 2.4 Cloth from the Shoowa people in what is now the Democratic Republic of Congo. (Courtesy of the Brooklyn Museum)
been one of the most advanced mathematical activities in their culture as well. The 98 tradition is still alive in some Andean communities:
[M]aster weavers called Mamas (a Quechua word, not the word for mother) . . are women 100 who most likely started weaving when they were girls and reached a high level of expertise. They are generally treated with special respect within their community. The Mamas' abilities in counting and understanding patterns of symmetry and in geometry are part of that expertise. The ethnomathematical aspect of this situation is this: if we asked one of these
women to explain geometric or symmetry properties in terms of lines, rotations, polygons, and so forth, they probably would not explain them in such textbook-like terms. Yet, they clearly understand these mathematical concepts. The difference is that their understanding comes from the perspective of a weaver who must create a cultural product and who wants

Mathematics is also involved in other textile-related activities such as braiding, 110 beadwork, basketry, and the traditionally male activity of rope-making (Chahine 2013; Albanese 2015; Albanese et al. 2014; Albanese and Perales 2014; HirschDubin 2009).

With larger societies came additional mathematical activities. Clay tablets from ancient Iraq testify to extensive accounting. Mesopotamian surveyors were tasked 115 with calculating the areas of fields with different geometric shapes (Robson 2000). 116 From ancient Egypt, several mathematical texts have been preserved. They are 117 actually textbooks for scribes, who seem to have received a considerable dose of 118 mathematics as part of their education (Ritter 2000). In addition to accounting they 119

## Author's Proof

had to perform the calculations needed in surveying and construction. Surveying was much in need due to the yearly flooding of the Nile. Each year, agricultural fields had to be reconstructed when the Nile receded. Since the area of arable land often changed after the inundation, it was often necessary to redistribute land, and then the areas of differently shaped fields had to be calculated. These calculations were also important for taxation (Barnard 2014).

Scribes were required to calculate the amount of stones and other building
material that was required in the pharaoh's big construction projects. They were trained to calculate the height of a pyramid, based on its edge and how much the side slanted. These and other calculations were probably used to guide the actual construction activities. Remaining marks on some Egyptian buildings indicate that the horizontal displacement of a sloped object was used as a form of angular measurement (Imhausen 2006, p. 21). The use of such measurements must have required some understanding of geometry. In addition, calculations relating to the133 workforce, such as the required quantities of food and beer, had to be performed.

Most technological operations in pre-modern societies were performed by craftspeople from whom we have no written evidence. In some cases, their mathematical abilities can be inferred from the archaeological evidence. For instance, the notion of proportionality is needed to produce alloys such as bronze with reliable quality, something that was achieved in several ancient civilizations (Malina 1983). Archaeological evidence from Raqqa in eastern Syria shows that glassmakers in the early Islamic period used a chemical dilution line to optimize the properties of glass (Henderson et al. 2004). However, we do not know how they performed the142 calculations behind these remarkable experiments.

### 2.3 Geometric Wonders of the Islamic World

Fortunately, there is one group of ancient craftspeople about whom we know more
than about the others, namely those engaged in building construction. This is because many of their most advanced building projects, such as the great churches and mosques, are still available for our study.

Geometrical knowledge has probably been used since preliterate times in the 149 construction of buildings. For instance, builders in several indigenous cultures have known how to make a small house rectangular (Each pair of opposite side beams should have the same length, and then the layout should be adjusted so that the diagonals have equal length.) (Sizer 1991, p. 56). But buildings from the High and Late Middle Ages in Europe, Northern Africa, and the Middle East reveal that their builders had access to a rich tradition of much more advanced geometrical knowledge. This is perhaps most obvious from the elaborate geometrical patterns displayed on the walls and ceilings of Islamic buildings. Many of these patterns exhibit mathematically advanced symmetries. The traditional way to construct them was by ruler and compass, an art that was passed over from master to apprentice (Hankin 1925; Thalal et al. 2011) (Fig. 2.5).

## Author's Proof



Fig. 2.5 God as a master mason, using a compass when creating the world. (From Codex Vindobonensis 2554, written in France around 1250, now in the Österreichische Nationalbibliothek)

Ruler-and-compass construction is well known from Euclid (fl. 300 BCE) and
other Greek geometers. It may have been a Greek invention. At any rate, the Egyptians do not seem to have known the compass (Shelby 1965). The origin of its use in the learned tradition is obscure. Plutarch claims that Plato (c.425-c. 348 BCE) sharply criticized mathematicians who tried to show the truth of geometrical
statements with "mechanical arrangements" that were "patent to the senses" rather than relying on pure thought (Plutarch 1917, p. 471). This has been interpreted as reprobation of constructions by means of other tools than ruler and compass (Evans
and Carman 2014, pp. 151-152).

## Author's Proof



Fig. 2.6 Geometric patterns on a house in Pyrgi, made by contemporary masons using ancient ruler-and-compass methods

Was ruler-and-compass construction an invention by learned geometers, who handed it over to craftsmen needing it for practical purposes? Or was it originally a practical work method, discovered and developed by craftsmen, which men of letters transformed from a practical way to use tools to a theoretical restriction on abstract mathematical reasoning? We will probably never know which of these hypotheses is true. ${ }^{1}$ What we do know, however, is that the method serves both purposes remark- 175 ably well. Contemporary Moroccan carpenters still construct complex geometrical patterns with the same ruler-and-compass methods that their predecessors used a 177 millennium ago (Aboufadil et al. 2013). And in the Greek village Pyrgi, house 178 façades are decorated with geometrical patterns made by traditional craftsmen who 179 have learned the ruler-and-compass methods by apprenticeship (Stathopoulou 2006) 180 (Fig. 2.6).

One of the best proofs of the mathematical proficiency of the Islamic master 182 builders can be found in the shrine of Darbi Imam in Isfahan, Iran, which 183 was constructed in 1453 (Fig. 2.7). It exhibits advanced tilings, which were not 184 understood mathematically until five centuries later. Like Penrose patterns, these 185 patterns are quasi-crystalline, which means that they fill the plane perfectly, but 186

[^3]
## Author's Proof



Fig. 2.7 Tesselations in the Darb-i Imam shrine
do not repeat themselves regularly like the more common types of tiling ${ }^{2}$ ( Lu
 and Steinhardt 2007). No documentation of the mathematical thinking behind this188 remarkable achievement seems to have been preserved. 189

### 2.4 Medieval Master Builders in Europe

The compass was as highly valued by Christian masons as by their Middle 191 East colleagues. European masons were often portrayed holding a compass. They 192 commonly used a large compass of the type that would now be called a pair of 193 dividers, with legs ending in needle points. Contrary to the compasses used in latterday technical drawing, it was not intended for drawing on paper. The master mason 195 made marks directly on the building site. The compass was a useful instrument for that purpose since the layout of large buildings such as churches was based on geometrical principles (Bucher 1972). Marks were also made on the raw material for structural components, such as pieces of timber to be sawn or stones to be cut (Shelby 1965). In a few cases, setting-out marks made with a compass on a stone are still preserved and visible in the building (Branner 1960). When several similar 20 stones or pieces of timber had to be prepared, the mason made his marks on a thin plank from which a template was cut. Large building sites such as a cathedral had a special place, a "tracing house", where these templates were kept (Shelby 1971). 204

[^4]
## Author's Proof



Fig. 2.8 The classical Euclidean construction of a regular hexagon. The construction begins with the horizontal line, followed by the circle in the middle and then the other two circles. This is an exact construction, i.e. any errors will depend on the physical execution, not the mathematical principles

In the early Middle Ages, master masons were usually illiterate, but beginning in the thirteenth century at least some of them learned how to read and write. 206 However, they had no formal mathematical schooling. Their geometrical skills 207 were transferred orally from masters to apprentices. Much of the most advanced knowledge in their craft seems to have been lost with the end of Gothic building, 208 but a couple of master masons wrote small books in which parts of it have been preserved. These books make it clear that in their own view, geometry had a 21 fundamental role in their craft (Shelby 1970, 1972). They explained how to construct a right angle, an equilateral triangle, a square, a pentagon, a hexagon or an octagon (Fig. 2.8). These geometrical procedures were components of the constructions used to set out marks on stones and other structures destined for various functions215 in a building. For instance, the construction of voussoirs (wedge-shaped stones in a vault) was particularly important, and close attention had to be paid to their geometrical proportions.

Most of these constructions were exact (in the Euclidean sense), but some were 218 approximations. One example of the latter can be found in the book Geometria 220 deutsch that was published by the German master builder Matthäus Roritzer, 22 (c.1435-c.1495) in the late 1480s. One of his constructions was a method to 222 draw a line equally long as the circumference of a circle (Fig. 2.9). At the time, 223 doing this exactly was an intriguing, unsolved mathematical problem. (400 years 224 later Ferdinand von Lindemann proved a theorem from which it follows that no 225 such construction is possible with ruler and compass.) The construction consists 226 essentially in marking the diameter of the circle three times in a row on a line, and 227 then adding a seventh of the diameter (which is easily constructible). This amounts 228 to approximating $\pi$ as $22 / 7$. Roritzer paid no attention to the small error (Shelby 229 1972). In fact, he had a good reason not to do so, namely that the error must have 230

## Author's Proof

2 Mathematics and Technology Before the Modern Era

Fig. 2.9 Matthäus Roritzer's (approximate) construction of a line with the same length as the circumference of a given circle. (From his Geometria deutsch.) Presumably, his readers knew how to divide a given line, such as the diameter of a circle, into seven equal parts with a ruler and a compass
been negligible in practical applications on a building site. ${ }^{3}$ For instance, if the task
was to cut a strip of some material to be fitted around a circular shape with a diameter of one meter, then the error caused by this approximation would make the strip about ${ }_{233}$ 1.3 mm too long, which would almost certainly be negligible in comparison with the 234 other uncertainties involved in such a work process.

The Gothic cathedrals had large rose windows, i.e. round windows with symmet- ${ }^{236}$ rically arranged rib-work of stone. They were constructed with ruler and compass, ${ }^{237}$ and some of them had quite advanced geometrical patterns. The cathedral in 238 Orvieto in central Italy has a large rose window in the form of a regular 22-sided polygon (icosikaidigon) on its façade (Fig. 2.10). The window was constructed in 240 the fourteenth century. The vast majority of Gothic rose windows were based on 241 a regular polygon that the mason could construct exactly with a compass and a242 straightedge, but no such construction of a 22 -sided polygon was known by them ${ }^{243}$ (and we now know that no such construction is possible). Detailed measurements of the window indicate that it may have been constructed with a fairly advanced approximate ruler-and-compass method (Ginovart et al. 2016).

### 2.5 Contacts with Mathematicians?

Euclidean geometry was part of the medieval learned tradition. The way in which Euclid deduced theorems from a few basic axioms was a model not only for mathe-
maticians but also for scholars working in other disciplines. We do not know to what 250 extent learned geometers communicated with the craftspeople who put geometry to ${ }^{251}$ practical use, but a few such contacts have been documented. In his autobiography, 252

[^5]
## Author's Proof



Fig. 2.10 Rose window from the Orvieto cathedral
the Syriac mathematician Ibrahim ibn Sinan (908-946) recounted that he once told a 253 technically clever craftsman how to construct a sundial (Saliba 1999, pp. 641-642). 254 The Persian mathematician and astronomer Abu al-Wafa' Buzjani (940-c.998), who 255 lived in Baghdad, wrote a book on the geometrical constructions that craftsmen had 256 use for. Ruler-and-compass constructions of regular polygons were prominently 257 featured in the book (Raynaud 2012). However, it is not know to what extent it 258 actually reached its intended audience.

The Iranian polymath Al-Biruni (973-1048) commented on the difference 260 between the arithmetical solutions to mathematical problems that scholars preferred 261 and the (presumably geometrical) methods used by most craftsmen. Interestingly, he mentioned that some artisans, in particular instrument makers, preferred the 263 arithmetical methods to those favoured by other craftspeople. If this was a common pattern, then such a minority of mathematically inclined artisans may have formed26 important links between learned and applied mathematics in this period. After 266 developing a fairly complicated method for calculating the qibla (direction of
prayer), Al-Biruni described an approximate method that should be good enough for people in the building trades who were not versed in mathematics (Saliba 1999, 269 p. 642).

## Author's Proof

In the next century, the Saxon philosopher Hugh of Saint Victor (c.1096-1141) 271 wrote a short treatise, Practica Geometriae, in which he introduced a division of 272 geometry into two parts, called "practical" and "theoretical". 273

The entire discipline of geometry is either theoretical, that is, speculative, or practical, 274 that is, active. The theoretical is that which investigates spaces and distances of rational 275 dimensions only by speculative reasoning; the practical is that which is done by means 276 of certain instruments, and which makes judgments by proportionally joining together one 277 thing with another. (Hugh of Saint Victor, quoted in Shelby 1972, p. 401). 278

In his discussion of practical geometry, Hugh referred to the application of 279 geometry to surveying. At the time, the trade of surveying seems to have been 280 less mathematically advanced than that of building construction. It was, at least 28 predominantly, based on straight lines and right angles (Price 1955). 282

The Spanish scholar Dominicus Gundissalinus (c.1115-c.1190) wrote a treatise 283 on the classification of knowledge, in which he broadened Hugh's description of 284 practical geometry. In his treatment, it covered two categories of practitioners, 285 namely surveyors and craftsmen: 286

Craftsmen are those who exert themselves by working in the constructive or mechanical 287 arts - such as the carpenter in wood, the smith in iron, the mason in clay and stones, 288 and likewise every artificer of the mechanical arts - according to practical geometry. 289 Each indeed forms lines, surfaces, squares, circles, etc., in material bodies in the manner appropriate to his art... The office of practical geometry is, in the matter of surveying, to determine the particular dimensions by height, depth, and breadth; in the matter of fabricating, it is to set the prescribed lines, surfaces, figures, and magnitudes according to which that type of work is determined. (Dominicus Gundissalinus, quoted in Shelby 1972, p. 403)

Other writers on practical geometry followed Hugh of Saint Victor in limiting their1446), who is today best known as the discoverer of the linear perspective. When

In 1486, the above-mentioned master mason Matthäus Roritzer published a book

## Author's Proof

### 2.6 Mathematics on the Offensive

In the sixteenth century, the use of mathematics increased in several sectors of
European societies. Perhaps most importantly, sea journeys to other continents required improvements in navigation that could only be achieved by mathematical means. Already in 1508, the Spanish Casa de Contratación, which oversaw overseas trade, introduced exams to make sure that navigators were proficient Church property was confiscated there was also an increased need of surveying. The introduction of triangulation made it possible to draw more accurate maps, but it also raised the demands on the mathematical skills of surveyors. (ibid, p. 358) In addition, several attempts were made to solve technical problems with the help of mathematics. For instance, new fortifications were increasingly based on geometrical design principles (Knobloch 2004).

To meet the increased demand for mathematics, a new group of professionals presented themselves in the early Renaissance: the mathematical practitioners. They were men with a university education and training in mathematics, who offered their services in all areas where mathematics was needed, including navigation, surveying, and fortification (Cormack 2006). Many of them wrote vernacular textbooks in arithmetic and geometry, at least in part intended for craftspeople and other members of what we would today call technological occupations. In the prefaces of such textbooks, as well as other publication venues, the usefulness of mathematics was proclaimed much more emphatically than what had been common previously.

In 1543, the Italian mathematician Niccolò Fontana Tartaglia (c.1499-1557) 334 published the first translation of Euclid into Italian. In the preface he offered a list of the applications of geometry, including building construction, surveying andgeography, painting, and the construction of war machines and fortifications (Keller1985, p. 350). Eight years later, Robert Recorde (c.1512-1558), who was one of337 the first mathematical practitioners in England, wrote a poem in praise of practical 339 geometry, which he included in the preface of his textbook in the subject (Fig. 2.11):
The Shippes on the sea with Saile and with Ore, ..... 341
were firste founde, and styll made, by Geometries lore ..... 342
Their Compas, their Carde their Pulleis, their Ankers, ..... 343
were founde by the skill of witty Geometers. ..... 344
To sette forth the Capstocke, and eche other parte, ..... 345
wold make a greate showe of Geometries arte. ..... 346
Carpenters, Caruers, Joiners and Masons, ..... 347
Painters and Limners with such occupations, ..... 348
Broderers, Goldesmithes, if they be cunning, ..... 349
Must yelde to Geometrye thanks for their learning (Stedall 2012, p. 65). ..... 350

## Author's Proof



Fig. 2.11 Wall tablet commemorating Robert Recorde in St. Mary's Church in Tenby, Wales, close to where he was born. In addition to being an eminent mathematics educator, he was the inventor of the equals sign $(=)$ and a prominent physician (Courtesy to Richard Hagen, Brisbane)

In an Italian treatise on geometry, published by Giovanni Peverone in 1558, a similar
list was offered of crafts employing mathematics. Peverone emphasized in particular
that without geometry, people would not be able to solve conflicts about the division of lands. (Keller 1985, p. 350) Writing in 1567, the French humanist and logician 354 Petrus Ramus (1515-1572) put much emphasis on the importance of mathematics in mining. He did not explain the nature of its importance, but he probably referred to the use of machines such as levers, pulleys, and screw pumps, which operate on

## Author's Proof

mathematical principles. The first English edition of Euclid was published in 1571358 with a preface by the mathematician John Dee (1527-c.1608), who emphasized the 359 usefulness of geometry in all kinds of trades:

$$
\begin{array}{ll}
\text { Besides this, how many a Common Artificer, is there, in these Realmes of England and } \\
\text { Ireland, that dealeth with Numbers, Rule, \& Cumpasse: Who, with their owne Skill and } & 361 \\
\text { experience, already had, will be hable (by these good helpes and informations) to finde } & 362 \\
\text { out, and deuise, new workes, straunge Engines, and Instrumentes: for sundry purposes in } & 364 \\
\text { the Common Wealth? or for priuate pleasure? and for the better maintayning of their owne } & 365 \\
\text { estate?. (Rampling 2011, p. 138) }
\end{array}
$$

Dee was anxious to point out that not only geometry, but also arithmetic, was usefulmetals, physicians when making compound medicines, officers when ordering the

One reason for this emphasis on the mundane practical uses of mathematics wasthe strange symbols and diagrams that mathematicians relished could easily be376interpreted as incantations of diabolic forces. In the 1550 s , zealous officials inEngland took mathematical books for occult treatises and consequently committed378them to the flames. Drawing attention to the practical usefulness of the mathematicalarts was a "rhetoric of utility", employed by advocates of mathematical education379who wanted to rid the subject of its sorcerous reputation (Neal 1999. Cf. Zetterberg1980).

When reading these panegyrics of practical mathematics, it is important to remember their rhetorical purpose. They do not necessarily convey the actual usage of mathematics in the various crafts. We should also keep in mind that these texts were written long before the introduction of universal education. Most members of the labouring classes were still illiterate, and few of them had received any formal schooling in arithmetic or other mathematical skills. The basic education in mathematics that the mathematical practitioners pleaded for is now - at least to a considerable extent - realized in most countries of the world through compulsory

### 2.7 Epilogue

But even today, in spite of school mathematics, the practical mathematics of the

## Author's Proof

the cloth with the help of what is essentially a coordinate system (Hancock 1996). 401 However, the mathematical nature of these skills is seldom fully recognized. Let 402 us give the last word to the mathematics educator Munir Fasheh. He once made an 403 interesting comparison between himself and his mother who was a seamstress: 404
While I was using math to help empower other people, it was not empowering for me. It was, 405 however, for my mother, whose theoretical awareness of math was completely undeveloped. 406 Math was necessary for her in a much more profound and real sense than it was for me. My illiterate mother routinely took rectangles of fabric and, with few measurements and no patterns, cut them and turned them into beautiful, perfectly fitted clothing for people. In 1976 it struck me that the math she was using was beyond my comprehension; moreover, while math for me was a subject matter I studied and taught, for her it was basic to the operations of her understanding. In addition, mistakes in her work entailed practical consequences completely different from mistakes in my math... She never wanted any of her children to learn her profession; instead, she and my father worked very hard to see that we were educated and did not work with our hands. In face of this, it was a shock to me to realize the complexity and richness of my mother's relationship to mathematics. Mathematics was integrated into her world as it never was into mine. (Fasheh 1989)

## References

Aboufadil, Y., Thalal, A., \& Raghni, M. A. E. I. (2013). Symmetry groups of Moroccan geometric 419 woodwork patterns. Journal of Applied Crystallography, 46(6), 1834-1841. 420
Acker, P. (1994). The emergence of an arithmetical mentality in Middle English literature. Chaucer 421 Review, 28, 293-302. 422
Albanese, V. (2015). Etnomatemática de una Artesanía Argentina: identificando etnomodelos de 423 trenzado. Bolema, 29, 493-507. 424
Albanese, V., \& Perales, F. J. (2014). Pensar matemáticamente: una visión etnomatemática 425 de la práctica artesanal soguera. Revista Latinoamericana de Investigación en Matemática 426 Educativa, 17(3), 261-288. 427
Albanese, V., Oliveras, M. L., \& Perales, F. J. (2014). Etnomatemáticas en artesanías de trenzado: 428 aplicación de un modelo metodológico elaborado. Bolema, 28, 1-20. 429
Araujo, F. P. (1975). Counting sheep in Basque. Anthropological Linguistics, 17(4), 139-145. 430
Barnard, H. (2014). Surveying in Ancient Egypt. In Encyclopaedia of the history of science, 431 technology, and medicine in non-western cultures. Dordrecht: Springer (online). 432
Branner, R. (1960). Villard de Honnecourt, Archimedes, and Chartres. Journal of the Society of 433 Architectural Historians, 19(3), 91-96. 434
Bucher, F. (1972). Medieval architectural design methods, 800-1560. Gesta, 11(2), 37-51. 435
Cain, C. R. (2006). Implications of the marked artifacts of the Middle Stone Age of Africa. Current 436 Anthropology, 47(4), 675-681. 437
Chahine, I. (2013). Juxtaposing form, function, and social symbolism: An ethnomathematical 438 analysis of indigenous technologies in the Zulu culture. Journal of Mathematics \& Culture, 439 5(1), 1-30.
Cormack, L. B. (2006). The commerce of utility: Teaching mathematical geography in Early 44 Modern England. Science \& Education, 15(2-4), 305-322. 442
d'Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., Higham, T. F. G., 443 Colombini, M. P., \& Beaumont, P. B. (2012). Early evidence of San material culture represented 444 by organic artifacts from Border Cave, South Africa. PNAS, 109(33), 13208-13213. 445
Davies, P. (2005). Writing slates and schooling. Australasian Historical Archaeology, 23, 63-69. 446
Dehaene, S., Izard, V., Spelke, E., \& Pica, P. (2008). Log or linear? Distinct intuitions of the number 447 scale in Western and Amazonian indigene cultures. Science, 320(5880), 1217-1220. 448

## Author's Proof

Evans, J., \& Carman, C. C. (2014). Mechanical astronomy: A route to the ancient discovery of 449 epicycles and eccentrics. In N. Sidoli \& G. Van Brummelen (Eds.), From Alexandria, through 450 Baghdad: Surveys and studies in the Ancient Greek and Medieval Islamic Mathematical 451 Sciences in Honor of J.L. Berggren (pp. 145-174). Heidelberg: Springer. 452
Fasheh, M. (1989). Mathematics in a social context: Math within education as praxis versus within 453 education as hegemony. In C. Keitel, P. Damerow, A. Bishop, \& P. Gerdes (Eds.), Mathematics, 454 education, and society: reports and papers presented in the fifth day special programme on 455 'Mathematics, Education and Society' at the 6th International Congress on Mathematical 456 Education, Budapest, 27 July - 3 August, 1988 (pp. 84-86). Paris: UNESCO. 457
Gerdes, P. (2000). On mathematical ideas in cultural traditions of central and Southern Africa. 458 In H. Selin (Ed.), Mathematics across cultures: The history of non-western mathematics (pp. 459 313-343). Dordrecht: Kluwer. 460
Gilsdorf, T. (2010). Inca Mathematics. In H. Selin (Ed.), Mathematics across cultures: The history 461 of non-western mathematics (pp. 189-203). Dordrecht: Kluwer. 462
Gilsdorf, Thomas E. (2014) Ethnomathematics of the Inkas. In Encyclopaedia of the history of 463 science, technology, and medicine in non-western cultures. Springer. (online). 464
Ginovart, J. L. i, Samper, A., Herrera, B., Costa, A., \& Coll, S. (2016). Geometry of the 465 Icosikaidigon in Orvieto Cathedral. Nexus Network Journal, 18(2), 419-438. 466
Hancock, S. J. C. (1996). The mathematics and mathematical thinking of seamstresses. Paper 467 presented at the Annual Meeting of the American Educational Research Association (New 468 York, N.Y., 8 Apr 1996). http://files.eric.ed.gov/fulltext/ED399176.pdf. 469
Hankin, E. H. (1925) The drawing of geometric patterns in saracenic art. Memoirs of the 470 Archaeological Survey of India, vol. 15. 471
Hansson, S. O. (2007). What is Technological Science? Studies in History and Philosophy of 472 Science, 38, 523-527. 473
Harris, M. (1987). An example of traditional women's work as a mathematics resource. For the 474 Learning of Mathematics, 7(3), 26-28. 475
Henderson, J., McLoughlin, S. D., \& McPhail, D. S. (2004). Radical changes in Islamic glass 476 technology: evidence for conservatism and experimentation with new glass recipes from early 477 and middle Islamic Raqqa, Syria. Archaeometry, 46(3), 439-468. 478
Hirsch-Dubin, F. P. (2009). Mayan Elders, Mayan mathematics, and the weaving of resistance in 479 Maguey Bag Production. Journal of Mathematics and Culture, 4(1), 63-83. 480
Huylebrouck, D. (1996). The bone that began the space odyssey. Mathematical Intelligence, 18(4), 481 56-60. 482
Imhausen, A. (2006). Ancient Egyptian mathematics: New perspectives on old sources. Mathemat- 483 ical Intelligencer, 28(1), 19-27. 484
Jolie, E. A., Lynch, T. F., Geib, P. R., \& Adovasio, J. M. (2011). Cordage, textiles, and the late 485 Pleistocene peopling of the Andes. Current Anthropology, 52(2), 285-296. 486
Karlslake, C. (1987). The language of woven images among the Tzotzil. Canadian Journal of 487 Native Studies, 7(2), 385-397. 488
Keller, A. (1985). Mathematics, mechanics and the origins of the culture of mechanical invention. 489 Minerva, 23, 348-361. 490
Knobloch, E. (2004). Mathematical methods in preindustrial technology and machines. In A. M. 491
Gasca, M. Lucertini, \& F. Nicolò (Eds.), Technological concepts and mathematical models in 492 the evolution of modern engineering system (pp. 3-20). Basel: Birkhäuser. 493
Lagercrantz, S. (1973). Counting by means of tally sticks or cuts on the body in Africa. Anthropos, 494 68(3-4), 569-588.
Lu, P. J., \& Steinhardt, P. J. (2007). Decagonal and quasi-crystalline tilings in medieval Islamic 496 architecture. Science, 315(5815), 1106-1110. 497
Malina, J. (1983). Archaeology and experiment. Norwegian Archaeological Review, 16(2), 69-78. 498
Masingila, J. O. (1994). Mathematics practice in carpet laying. Anthropology \& Education 499 Quarterly, 25(4), 430-462. 500
McLarty, C. (2005). 'Mathematical Platonism' versus gathering the dead: What Socrates teaches 501 Glaucon. Philosophia Mathematica, 13(2), 115-134. 502

## Author's Proof

2 Mathematics and Technology Before the Modern Era

Millroy, W. L. (1991). An ethnographic study of the mathematical ideas of a group of carpenters. 503 Learning and Individual Differences, 3(1), 1-25. 504
Moreira, D., \& Pardal, E. (2012). Mathematics in Masons' Workplace. Adults Learning Mathemat- 505 ics: An International Journal, 7(1), 31-47. 506
Neal, K. (1999). The rhetoric of utility: Avoiding occult associations for mathematics through 507 profitability and pleasure. History of Science, 37(2), 151-178. 508
Periton, C. (2015). The medieval counting table revisited: a brief introduction and description of 509 its use during the early modern period. BSHM Bulletin: Journal of the British Society for the 510 History of Mathematics, 30(1), 35-49. 511
Pica, P., Lemer, C., Izard, V., \& Dehaene, S. (2004). Exact and approximate arithmetic in an 512 Amazonian indigene group. Science, 306(5695), 499-503. 513
Plutarch. (1917). Lives. Loeb Classical Library (vol. 87) (trans: Perrin, B.) 514
Price, D. J. (1955). Medieval land surveying and topographical maps. Geographical Journal, 515 121(1), 1-7. 516
Rampling, J. M. (2011). The Elizabethan mathematics of everything: John Dee's 'Mathematicall 517 praeface' to Euclid's elements. BSHM Bulletin: Journal of the British Society for the History 518 of Mathematics, 26(3), 135-146. 519
Raynaud, D. (2012). Abu al-Wafa' Latinus? A study of method. Historia Mathematica, 39, 34-83. 520
Ritter, J. (2000). Egyptian mathematics. In H. Selin (Ed.), Mathematics across cultures: The history 521 of non-western mathematics (pp. 115-136). Dordrecht: Kluwer. 522
Robson, E. (2000). The uses of mathematics in ancient Iraq, 6000-600 BC. In H. Selin (Ed.), 523 Mathematics across cultures: The history of non-western mathematics (pp. 93-113). Dordrecht: 524 Kluwer.
Roriczer, M. ([1486] 1845). In A. Reichensperger (Ed.) Das Büchlein der fialen Gerechtigkeit. 526 Nach einem alten Drucke aus dem Jahre 1486 in die heutige Mundart übertragen und durch 527 Anmerkungen erläutert. Trier: Lintz. 528
Saliba, G. (1999). Review: Artisans and mathematicians in Medieval Islam. Journal of the 529 American Oriental Society, 119(4), 637-645. 530
Shelby, L. R. (1965). Medieval masons' tools. II. Compass and square. Technology and Culture, 531 6(2), 236-248. 532
Shelby, L. R. (1970). The education of medieval master masons. Mediaeval Studies, 32, 1-26. 533
Shelby, L. R. (1971). Mediaeval masons' templates. Journal of the Society of Architectural 534 Historians, 30(2), 140-154. 535
Shelby, L. R. (1972). The geometrical knowledge of mediaeval master masons. Speculum, 47(3), 536 395-421. 537
Sizer, W. S. (1991). Mathematical notions in preliterate societies. Mathematical Intelligence, 13(4), 538 53-60. 539
Sizer, W. S. (2000). Traditional mathematics in Pacific cultures. In H. Selin (Ed.), Mathematics 540 across cultures: The history of non-western mathematics (pp. 253-287). Dordrecht: Kluwer. 541
Stathopoulou, C. (2006). Exploring informal mathematics of craftsmen in the designing tradition 542 of 'Xysta' at Pyrgi of Chios. For the Learning of Mathematics, 26(3), 9-14. 543
Stedall, J. (2012). The pathway to knowledge and the English Euclidean tradition. In G. Roberts 544 \& F. Smith (Eds.), Robert Recorde. The life and times of a Tudor mathematician (pp. 57-72). 545 Cardiff: Wales University Press. 546
Stone, W. E. (1975). The tally: An ancient accounting instrument. Abacus, 11(1), 49-57. 547
Thalal, A., Benatia, M. J., Jali, A., Aboufadil, Y., \& Elidrissi Raghni, M. A. (2011). Islamic 548 geometric patterns constructed by craftsmen working on wood. Symmetry: Culture and Science, 549 22, 103-130. 550
Urton, G., \& Brezine, C. J. (2005). Khipu accounting in ancient Peru. Science, 309(5737), 1065- 551 1067.

Vogelsang, R., Richter, J., Jacobs, Z., Eichhorn, B., Linseele, V., \& Roberts, R. G. (2010). New 553 excavations of Middle Stone Age deposits at Apollo 11 Rockshelter, Namibia: Stratigraphy, 554 archaeology, chronology and past environments. Journal of African Archaeology, 8(2), 185-555 218.

Zetterberg, J. P. (1980). The mistaking of 'the Mathematicks' for magic in Tudor and Stuart 557 England. Sixteenth Century Journal, 11(1), 83-97. 558

## Author's Proof

## Metadata of the chapter that will be visualized online

| Chapter Title | Computation in Medieval Western Europe |
| :---: | :---: |
| Copyright Year | 2018 |
| Copyright Holder | Springer International Publishing AG, part of Springer Nature |
| Corresponding Author | Family Name Uckelman |
|  | Particle |
|  | Given Name Sara L. |
|  | Suffix |
|  | Division Department of Philosophy |
|  | Organization Durham University |
|  | Address Durham, UK |
|  | Email s.l.uckelman@durham.ac.uk |
| Abstract | Practices that fall under the broad umbrella of 'computation' in the western European Middle Ages tend to be goal-oriented and directed at specific purposes, such as the computation of the date of Easter, the calculation of velocities, and the combinatorics of syllogisms and other logical arguments. In spite of this practical bent, disparate computational practices were increasingly built upon theoretical foundations. In this chapter, we discuss the theoretical principles underlying three areas of computation: computistics and the algorithms employed in computistics, as well as algorithms more generally; arithmetic and mathematical calculation, including the calculation of physical facts and theorems; and (possible) physical implementations of computing mechanisms. |

## Author's Proof

# Chapter 3 <br> Computation in Medieval Western 2 Europe 

Sara L. Uckelman 4


#### Abstract

Practices that fall under the broad umbrella of 'computation' in the 5 western European Middle Ages tend to be goal-oriented and directed at specific 6 purposes, such as the computation of the date of Easter, the calculation of velocities, 7 and the combinatorics of syllogisms and other logical arguments. In spite of 8 this practical bent, disparate computational practices were increasingly built upon 9 theoretical foundations. In this chapter, we discuss the theoretical principles un- 10 derlying three areas of computation: computistics and the algorithms employed in 11 computistics, as well as algorithms more generally; arithmetic and mathematical 12 calculation, including the calculation of physical facts and theorems; and (possible) 13 physical implementations of computing mechanisms.


### 3.1 Introduction

One cannot begin a discussion of the history of computation in the Middle Ages 16 without first settling some definitions. What is 'computation'? What are 'the Middle 17 Ages'? (We could also ask "What is 'history of'?", but we will forego that in the 18 present context!) Typically, when one speaks of 'computation', one refers to the 19 activity of a computer, i.e., mechanical and impersonal activity: A computer is a 20 machine, and machines are (contra the hopes and dreams of some researchers in AI) 21 unthinking (at least currently). On such a narrow view, one should immediately 22 argue that there can be no history of computation prior to the invention of the 23 computer, the machine which does the computation on your behalf. That would 24 make for a very short chapter, so clearly we cannot accept this narrow view. 25

Instead, we do not take computation to be merely the activity of an unthinking 26 machine but rather to cover a broader range of activities and processes which 27 are united in their connections with calculation and reckoning. On such a view, a 28

[^6]
## Author's Proof

'computer' is not merely anything that computes, but indeed anyone who computes. ${ }^{29}$ Indeed, the word 'computer' was originally used in English to refer to people, as 30 opposed to machines. This usage is found as early as the early seventeenth century 31 (OED 2017b, s.v. computer). Earlier, the word for a 'person who computes' was 32 Middle English 'compotiste' or 'compotister', found as early as the fourteenth 33 century and deriving from Medieval Latin compotista (MED 2001-2014, s.v. 34 compotiste). The Latin word compotista was used generally to describe any person 35 who was a computer or calculator, as well as to pick out people doing a specific 36 type of computation or calculation, namely the computation of the calendar. This 37 discipline-calendar computation-was a branch of its own, known as computistics, 38 and was of crucial importance to a society dominated by a church that needed to 39 know when its movable feasts were to occur.

So much for computation; how about the Middle Ages? As with 'computation', 41 we can either take a narrow or a wide view of our temporal scope. Ultimately, we 42 do not wish to put any termini on our period of inquiry. Instead, we will pick out ${ }_{43}$ specific developments and aspects that are the most interesting for understanding 44 the history of computation, and trace these facets rather than attempt to give a 45 complete overview of the entire Middle Ages. Nevertheless, our temporal spread 46 is great: Our earliest references will be to the Anglo-Irish computistic tradition and 47 the Venerable Bede in the seventh to eighth century. We will spend extra time in the 48 late 13th and early fourteenth century acquainting ourselves with Ramon Llull and 49 the Merton Calculators, and then we will reach our terminus ad quem in algebraic 50 algorithms developed in the Renaissance. By taking a concept- and procedure- 51 oriented approach, we need not commit ourselves to a precise or exclusionary 52 definition of the 'Middle Ages'. 53

Medieval computation tended to be goal-oriented, directed at specific purposes, 54 such as the computation of the date of Easter, the calculation of velocities, 55 and the combinatorics of syllogisms and other logical arguments. There are, of 56 course, many reasons why one would prefer some sort of mindless method/ 57 mechanism/procedure/algorithm for such pragmatic ends: These mechanisms are 58 both easier to retain and remember, and they reduce the possibility of error. It will 59 come as no surprise, then, that many of our examples of 'computation' derive from 60 contexts of educational reform.

But in spite of this practical bent that disparate medieval developments in 62 computation shared, our interest throughout this chapter is primarily theoretical. We 63 are interested in the principles underlying computation, rather than in the practical 64 outcomes of computation or the tools used for performing them. As a result, we 65 will omit from our scope geometrical constructions; practical engineering; and 66 methods of reckoning and account - there will, alas, be rather a dearth of abacuses 67 in this chapter. Instead, our energies will be concentrated primarily on three facets 68 of computation: computistics and the algorithms employed in computistics, as 69 well as algorithms more generally (3.2); arithmetic and mathematical calculation, 70 including the calculation of physical facts and theorems (3.3); and (possible) 71 physical implementations of computing mechanisms (3.4), with an account of one 72 of the most important people in the history of computation prior to the invention of 73 the computing machine-Ramon Llull.

## Author's Proof

### 3.2 Algorithms and Computistics

The concept or procedure most straightforwardly associated with computation is the 76 algorithm. The word 'algorithm' is derived, via Latin algorismus + Greek $\alpha p \imath \vartheta \mu o ́ s ~ 77$ 'number', from 'al-Khwārizmī', the name of a ninth-century Persian algebraist, who 78 was responsible for many of the algorithms for solving algebraic equations that we 79 know of today, such as the following algorithm for solving the equation $x^{2}+21=80$ $10 x$ :

A square and 21 units equal 10 roots...The solution of this type of problem is obtained in 82 the following manner. You take first one-half of the roots, giving in this instance 5, which 83 multiplied by itself gives 25 . From 25 subtract the 21 units to which we have just referred 84 in connection with the squares. This gives 4 , of which you extract the square root, which is 85 2. From the half of the roots, or 5, you take 2 away, and 3 remains, constituting one root of 86 this square which itself is, of course, 9 (Tabak 2014, pp. 61-62).

However, 'algorithm' wasn't used to pick out the computational concept until the 88 nineteenth century (OED 2017a, s.v. algorithm). Earlier, an 'algorithm' was simply 89 the practice of using Arabic numerals. Johannes de Sacrobosco's Liber ysagogarum 90 Alchorismi, an introduction to al-Khwārizmī's algebras and one of the earliest 91 known Latin texts that used Hindu-Arabic numerals (Philipp and Nothaft 2014, 92 p. 36), transformed the nature of calculation in western Europe in the Middle Ages 93 and Renaissance. The text was written in the early part of the thirteenth century, and 94 became part of the standard quadrivial curriculum in the universities of England, 95 France, and northern Europe (Philipp and Nothaft 2013, p. 351).

Even though the word 'algorithm' didn't mean 'algorithm' until quite recently, 97 medieval and Renaissance mathematicians still employed algorithms in their numer- 98 ical computations. For example, Jordanus de Nemore, "one of the most important 99 writers on mechanics and mathematics in the Latin West" (Folkerts and Lorch 2007, 100 p. 2), wrote several algorismus treatises in the thirteenth century containing basic 101 arithmetic operations as well as a procedure for the extraction of square roots using 102 the Arabic number system (Folkerts and Lorch 2007, p. 5), although his treatises 103 lacked the generality and sophistication of Sacrobosco's. But despite the widespread 104 incorporation of algorithms into mathematical practice, in both the Middle Ages and 105 the Renaissance, "the algorithms developed ... were also difficult and sometimes 106 even counterintuitive. A lack of insight into effective notation, poor mathematical 107 technique, and an inadequate understanding of what a number is sometimes made 108 recognizing that they had found a solution difficult for them" (Tabak 2014, p. 60). 109

There is a tension between the practical or applied aspects of algorithms- 110 algorithms are generally developed for a purpose-and their difficulty and coun- 111 terintuitiveness (which was by no means restricted to the Renaissance algorithms!). 112 We can see this tension clearly in the discipline of computistics, or the calculation of 113 the calendar. The computi genre, outlining methods of computing the date of Easter, 114 originated in Ireland in the seventh century (Philipp and Nothaft 2013, p. 348), 115 stemming from controversies between the early Irish and English churches over 116 how to calculate the date (Hawk 2012, pp. 44-45). But the dating of Easter was not 117 merely an Anglo-Irish concern. As Nothaft puts it: 118

## Author's Proof

$\begin{array}{lll}\text { For most of the Middle Ages up to the Gregorian reform of the calendar of } 1582, \text { the } & 119 \\ \text { feasts and calendrical rhythms of Western Europe were governed by a single unified system } & 120 \\ \text { of ecclesiastical time reckoning, which took account of the courses of both the Sun and } & 121 \\ \text { the Moon...During the early Middle Ages, the practical necessity of instructing Christian } & 122 \\ \text { monks and clerics in the use of these reckoning tools led to the development of a specific } & 123 \\ \text { genre of learned text, the computus, which incorporated modules of knowledge from a wide } & 124 \\ \text { variety of fields, most importantly arithmetic and astronomy, but also theology, history, } & 125 \\ \text { etymology, medicine, and natural philosophy (Philipp and Nothaft 2014, p. 35). } & 126\end{array}$
Early calculations of Easter were based on the model of a 19-year lunar cycle 127 developed in the third to fourth century and adapted for the Julian calendar (Costa 2012, p. 300; Philipp and Nothaft 2014, pp. 35-36). This model was transmitted to the West in the sixth century by Dionysius Exiguus (Philipp and Nothaft 2014, pp. 35-36), and was refined as mathematics and astronomy improved. Eventually, the calendrical calculations were overhauled in the twelfth and thirteenth centuries with the integration of Jewish and Arabic calendrical sources that developed in Iberia independently of the Christian tradition (Costa 2012, p. 301; Philipp and Nothaft 2015).

According to many modern commentators, the genre reached its apex with the Venerable Bede's De temporum ratione of 725 (itself an enlargement of an earlier treatise, De temporibus, from 703). The book included chapters on both practical topics, such as the conversion between Greek and Latin numerals, ${ }^{1}$ as well as on more theoretical ideas, such as Bede's distinction between "the immutable cycles of natural time" and the linear time of human events (Costa 2012, p. 300). The linear time of human events requires accurate calendars founded upon astronomical observation, and thus this text can be seen as one of the first which displays computistics to be a science, including calculation as a central component. For many years Bede's text was "the undisputed milestone of Western computistics" (Philipp and Nothaft 2012, p. 14), and it significantly influenced later texts, such as Rabanus Maurus's Liber de computo (Hawk 2012, p. 37). But this view of Bede's texts, as the first real contribution to the field, has recently been challenged by the study of early Irish computists active in the era between Isidore and Bede (Graff 2010, p. 327). One such treatise is the Munich Computus (Warntjes 2010). This text was composed in 718-19, but was based "a substantial substratum" from 689 (Palmer 2010, p. 129). The Munich Computus is, like other texts of its type,

[^7][^8]
## Author's Proof

and Irish tables exemplified by Victorius of Aquitaine. ${ }^{2}$ Another such treatise is 159 a recently-discovered Irish computus which possibly pre-dates the Munich treatise 160 and contains a similar comparison between the Victorian and the Dionysiac methods 161 of reckoning (Warntjes 2005, p. 63).

From this we can see the range of application of computistics. Beyond the calculation of the date of Easter, computistics also incorporated specialized algorithms designed for computing other important aspects of the calendar, such as intervals between events. With these algorithms, not only could a skilled computist take data specific to a day and then "correctly locate a record in a long sequence of years [he] could also compute how many years had elapsed between two similarly dated events" (McCarthy 1994, p. 76). The algorithms the computist used were "mechanical but abstruse" and "well-suited to ensuring that the understanding and managing of historical records would remain the preserve of the privileged few who had been trained in the necessary computistic techniques" (McCarthy 1994, p. 76). Nothaft argues that "the Easter computus in which primitive algorithms (argumenta), memorised to perform various calendrical and chronological calculations, came to play a central role" was "the only major form of 'applied mathematics' known to early medieval scholars" (Philipp and Nothaft 2013, p. 348). Arabic astronomy were translated to the West; for example, two mid-twelfthcentury computus treatises written in southeastern Germany employ the Arabic lunar calendar (Philipp and Nothaft 2014, p. 36). The importation of the new Arabic material was necessary to rectify the defects of the 19 -year cycle, which caused the standard calendar to no longer be in sync with the actual lunar phases by the end of the eleventh century, and leading "the church to celebrate Easter on the technically wrong date" (Philipp and Nothaft 2014, pp. 36-37). The introduction of the new Arabic lunar calendar allowed for more accurate calendrical computations on the basis of more precise data (Costa 2012, p. 301).

What of our claim that new aspects of computation flourished in the contextin spite of this seeming obscurity, there is clear evidence that these treatises were

[^9]
## Author's Proof

(Hawk 2012, p. 44), and this is corroborated by the wide spread of computistical manuscripts across Europe (Philipp and Nothaft 2012; Warntjes 2010). This spread
is not only geographical but also temporal, with collections of computistic treatises being newly copied as late as the tenth century (Bisagni 2013-2014, p. 116).

### 3.3 Calculation

In this section we attend to the view of 'computation' that involves calculation. 205 Calculation itself is manifest in many different ways. On the one hand, it can cover 206 specific calculatory acts which result in a determinate outcome, for example, that 207 process by which we calculate that $2+2=4$. On the other hand, it can cover a 208 general methodological approach towards the solving of certain types of problems, 209 whether arithmetic, philosophical, physical, or astronomical. ${ }^{3}$

Our discussion here jumps forward a few hundred years from the computistical 211 texts of the previous section. The developments we cover are rooted in the 212 foundational bedrock of Aristotelian mechanics, which entered the Latin West in the twelfth century. The new Aristotelian translations were read, disseminated, and, eventually, criticised and modified, over the course of the thirteenth to fifteenth centuries. Two trends in the study of mechanics in this period can be identified: What216 Murdoch calls the dynamic, Pseudo-Aristotelian approach which was "basically 217 philosophical in character" and "dynamical in approach", but was "lacking a mathe218 matical procedure of proof", and the Archimedean approach, which was "rigorously 219 mathematical", but non-dynamical (Murdoch 1962, p. 122). Though the Islamic 220 philosophers and mathematicians had already been melding these two approaches, it 22 was not until the thirteenth century that such a mingling happened in the Latin West. 222 This mingling resulted in the combination of the (Pseudo-)Aristotelian dynamical 223 methods with the rigor of mathematics exhibited by the Archimedean approach. An 224 example of this is Jordanus de Nemore's mid-thirteenth century treatise on statics, 225 Elementa super demonstrationem ponderum, "in which the dynamical approach 226 of Aristotelian physics is combined with the abstract mathematical physics of 227 Archimedes" (Folkerts and Lorch 2007, p. 4). Texts such as Jordanus's provide the 228 foundation of the general application of calculatory methods for problem solving. 229

The locus of this transformation of Aristotelian logic and natural philosophy was 230 the universities, which were the primary site of the reception and dissemination of 23 the new Aristotelian translations. The thirteenth century saw the rise of doctrinal ${ }^{232}$ conflicts between Aristotle's views and orthodox catholic doctrine, with the result 233 that by the end of that century, the study of Aristotelian natural philosophy 234 was concentrated within the Arts masters, with the discussion of any question 235 theological in nature restricted to the theologians. (Thus, the secular nature of ${ }_{236}$ the computistic developments in the Aristotelian tradition can be distinguished

[^10]
## Author's Proof

with the ecclesiastical embedding of computistics.) By the fourteenth century, the $23 a$ secular study of Aristotle was well-embedded, and was clearly reflected in the works of a group of philosophers, logicians, and mathematicians working at the University of Oxford, known as the 'Oxford Calculators'. ${ }^{4}$ As a group, the works of the Calculators are marked by an approach to problems of velocity, infinity, continuity, proportion, movement, etc., that combines calculatory methods with logic. Their achievements include "exact definitions of uniform motion and uniform acceleration [and] a proper grasp of the notion of instantaneous velocity" (Murdoch 1962, p. 123). Among the people who were either members of the Calculators or associated with them are Richard Kilvington (c. 1302-1361), ${ }^{5}$ Thomas Bradwardine247 (c. 1295-1349), William Heytesbury (before 1313-1372/3), John Dumbleton (†c. 248 1349), Richard Swyneshed ( $\dagger 1355$ ), Richard Billingham (fl. 1340s-1350s), Thomas 249 Buckingham ( $\dagger 1349$ ), and Roger Swyneshed (c.1335-c.1365). 250

We do not at present have the opportunity to survey all of the relevant works 251 and results produced by these men, and so will content ourselves with highlighting some of their specific contributions to the mathematicization of physics and natural philosophy. In 1328, Thomas Bradwardine wrote a treatise De proportionibus velocitatum in motibus, which was later printed at Paris in 1495 and at Venice 255 in 1505. In this treatise, he "devised a mathematical formula to establish the relationship between the force applied to an object, the resistance to its motion, and the velocity that results" and he also "speculated that in a vacuum, objects of different weights would fall at the same speed" (Wagner and Briggs 2016, p. 173). 259 The same law appears, in more than 50 different mathematical versions, in Richard 260 Swyneshed's 1350 book on calculation, helpfully entitled Liber Calculationum 261 (printed at Padua in 1477 and at Venice in 1520). However, neither Bradwardine nor 262 Swyneshed determined exactly the correct form of the law; this was left to William ${ }^{263}$ Heytesbury, who first correctly articulated the 'mean speed theorem' or the 'Merton 264 rule of uniform acceleration' in 1335:

A moving body will travel in an equal period of time a distance exactly equal to that which it would travel if it were moving continuously at its mean speed (Hannam 2010, p. 180).

An arithmetic proof of this theorem was given by John Dumbleton (Freely 2013, 268 p. 159) 269 Interestingly, Heytesbury's statement of the mean speed theorem occurs not in 270 a treatise on physics or mathematics, but of philosophy, in his Regule solvendi ${ }_{271}$ sophismata (1335), a treatise giving methods for 'solving' sophisms. The sophis- 272

[^11]
## Author's Proof

mata genre is a specifically philosophical one, with a sophism being a logical or philosophical puzzle whose analysis is either difficult, fallacious, or inconsistent. Many of Heytesbury's rules for generating solutions to sophisms were calculatory in 275 nature, especially sophisms arising from the analysis of statements involving incipit 276 'it begins' and desinit 'it ceases', as well as those involving maximal and minimal 277 bounds of capacities as measured on a linear continuum. Heytesbury devotes a 278 chapter to each of these topics (incipit and desinit are treated in Chap. 4; maxima 279 and minima in Chap. 5). It is in Chap. 5 that the mean speed theorem can be found, 280 but the analysis of sophisms involving maxima and minima is closely related to 281 the analysis of beginning and ceasing, since both involve how we are to understand 282 limits.

The analysis of starting and stopping, given a continuous account of time, was a 284 typical issue that occupied many of the Calculators. It was a central topic because of 285 its relationship to change, as "every change...involves a beginning and a ceasing: 286 the ceasing of one state and the beginning of another" (Kretzmann 1977, p. 4). 287 Change itself is central phenomenon in Aristotelian natural philosophy, as it is 288 required to understand generation and corruption, the topic of Aristotle's treatise De generatione et corruptione. Many Calculators either wrote commentaries on this treatise or treatises specifically addressing the question of beginning and ceasing, 291 including Richard Kilvington's Quaestiones super De generatione et corruptione, 292 written before he obtained his Masters c. 1324-1325; Thomas Bardwardine's De ${ }^{293}$ incipit et desinit (Bradwardine 1982) and John Dumbleton's Summa Logica et 294 Philosophiae Naturalis (c. 1349?) which includes a commentary on De generatione 295 et corruptione.

In the parlance of the Calculators and their contemporaries, terms such as incipit 297 and desinit are called exponible, that is, sentences in which they are used can be 298 decomposed into conjunctions of sentences not containing those terms, and it is 299 these conjunctions which must be analysed in order to understand the terms. Often, a syncategorematic term can be expounded in more than one way, and that is why 300 sentences containing these words can provide puzzles. For example, a sentence of 302 the form $A$ incipit esse $B$ " $A$ begins to be $B$ " can be expounded in two ways: ${ }_{303}$

1. $A$ is now $B$ and now is the first moment where $A$ is $B$.
2. $A$ is now not $B$ and now is the last moment where $A$ is not $B$.

In the first way of expounding incipit, the limit is intrinsic; in the second, the limit 306 is extrinsic. The analysis of desinit is symmetric. Many of the sophisms rely on 307 conflating these two notions, or interpreting the word in one way in one premise 308 and in the other in another. Thus, every time that these words occur in Kilvington's 309 analyses, one must be careful to identify when the analysis is trading on this 310 ambiguity between the two readings of incipit and desinit.

The calculatory approach was not restricted to applications in physics and 312 metaphysics, but also merged with computistics in eschatology, the calculation of the timetable for the end times (Oberman 1981, p. 526), thus merging the 313

## Author's Proof

### 3.4 Mechanical Reasoning

In the previous sections, we have looked at aspects of computation that are on the mathematical side of the spectrum. In this section, we move away from mathematical reasoning or calculation to linguistic reasoning, specifically to computation as 319 a means of producing valid arguments. The most notorious medieval attempt to mechanize linguistic reasoning is that of Ramon Llull, one of the most eccentric men in the history of computation. But though Llull is the best known, he was notthe first to have such a lofty goal. Writing in the middle of the twelfth century, John of Salisbury tells us that his student, William of Soissons,

> invented a device (machinam) to revolutionize the old logic by constructing unacceptable conclusions and demolishing the authoritative opinions of the ancients (John of Salisbury and McGarry 1955, Bk. II, ch. 10, p. 98). ${ }^{6}$
Unfortunately, we do not have any of William's own writings, or any other references to his machina, making it difficult (perhaps impossible) to determine 329 what kind of mechanism is being referred to. According to the Kneales, "some330 people" have thought that it was an actual physical construction, akin to Jevon's ${ }_{33}$ logical machine (Kneale and Kneale 1984, p. 201). ${ }^{7}$ However, it is more likely that "machine" should be understood here in a metaphorical sense, and that William had in mind some particular method or sort of argument-construction which, given a 334 contradiction or an impossible statement, would return any other statement (Martin 1986, p. 565).

Whether William's machine was physically embodied or merely a procedure for a ${ }_{33}$ reasoner to follow, it is an interesting example of a computational method where the 338 user is no longer necessarily the reasoner; rather, it is the "machine" itself which is doing the reasoning. But there is no doubt that Ramon Llull's goal was a physically339 implemented mechanical computer.

Ramon Llull (1232/33-1315/16)'s early years were devoted to a secular life as a 342 courtier and troubadour-lyric writer. In 1263 he underwent a religious conversion and turned his attentions to theological and philosophical pursuits, including ${ }^{344}$ missionary travel. ${ }^{8}$ One of Llull's goals was to develop a mechanical system of 345 argumentation or demonstration which could be used to show the Jew and the 346 Muslim the error of their ways, and the correctness of Christian theology, and that could not be disputed. This mechanism is best witnessed in two of Llull's works: The Ars demonstrativa (c. 1283-1289, hereafter referred to as AD) and the Ars brevis 349 (1308, hereafter referred to as AB ), which was his single most influential work.

[^12]
## Author's Proof

|  | Fig. A | Fig. T | Questions \& Rules | Subjects | Virtues | Vices |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | goodness | difference | whether? | God | justice | avarice |
| C | greatness | concordance | what? | angel | prudence | gluttony |
| D | eternity | contrariety | of what? | heaven | fortitude | pride |
| E | power | beginning | why? | man | temperance | pride |
| F | wisdom | middle | how much? | imaginative | faith | accidie |
| G | will | end | of what kind? | sensitive | hope | envy |
| H | virtue | majority | when? | vegetative | charity | ire |
| I | truth | equality | where? | elementative | patience | lying |
| K | glory | minority | how? and with what? | instrumentative | pity | inconstancy |

Fig. 3.1 The alphabet of the Ars brevis (Llull and Bonner 1985, p. 581)

The AB both builds upon and simplifies the AD , and together these works are 351 referred to as simply the 'Art'. The Art is a mechanism for abstract reasoning in a 352 restricted domain based a system of constants, each representing different concepts. 353 In AD, the alphabet is two-tiered, with 16 symbols representing basic concepts 354 and seven symbols representing what we might call meta-concepts. This two-tiered 355 alphabet is simplified in AB to just nine symbols, whose meaning depends on their 356 usage. Figure 3.1 gives the interpretation of the alphabet of $A B$ in different contexts. 357

The Art consisted in combinatorial arrangements of these alphabets of letters, 358 resulting in the mechanistic computation of new combinations, and hence new 359 concepts or conclusions. The allowed combinations of the constant symbols in 360 the alphabet are illustrated by various tables and diagrams. ${ }^{9}$ Figure 3.2 of the Ars 361 brevis consisted in three concentric circles, the outermost of which was fixed to the 362 manuscript and the two inner ones being mobile (see Fig. 3.2 for a redrawing of 363 Fig. 3.2 as it occurs in one of the manuseripts (Llull and Bonner 1985, Plate XVIII). 364 For further reproductions of Llull's tables and diagrams, see Yates (1954), between 365 pages 117 and 118.). By rotating the moving circles in various ways, one can extract 366 all of the valid Aristotelian syllogisms, where the term on the middle circle is the 367 middle term relating the major and minor terms, located on the outer and inner 368 circles. This illustrates how the Art "became a method for 'finding' all the possible 369 propositions and syllogisms on any given subject and for verifying their truth or 370 falsehood" (Llull and Bonner 1985, p. 575).

The physical nature of the movable circles results in a crude mechanism for 372 computing new concepts (the output) on the basis of a given set of concepts (the 373 input). The mechanistic aspects of this computation cannot be overemphasized; 374 but the process was quite crude and primitive. Because the Art starts from a finite 375 alphabet, there are only finitely many combinations that can be computed, and it has 376 difficulty moving beyond the calculation of intersection (Styazhkin 1969, p. 12). But 377 we should not allow the primitiveness of the mechanism to detract from its novelty: 378

[^13]
## Author's Proof

Fig. 3.2 The fourth figure


It is the first known attempt in Western Europe to provide a physical implementation of a mechanistic method of reasoning. ${ }^{10}$

[^14]As with many figures whom history eventually identifies as ahead of their time,381 Llull's combinatorics were little appreciated in his own time, or in the succeeding 382 century. But by the end of the fifteenth century, Llullism was revived, especially 383 among the Franciscans, and by the early sixteenth century it had become quite 384 fashionable, especially in Paris where the Basque Franciscan Bernard de Lavinheta 385 was invited to introduce Llullism to the Sorbonne in 1514 (Mertens 2009, p. 513). 386 De Lavinheta's Explanatio compendiosaque applicatio artis Raymundi Lulli was 387 published in Lyon in 1523 (Bonner 1993, p. 65). In 1518, Pietro Mainardi published 388 the Opusculum Raymundinum de auditu kabbalistico, picking up on the link 389 between Llull's methods and the kabbalah that was originally asserted by Pico 390 della Mirandola 30 years earlier (Mertens 2009, p. 514), a link grounded in the 391 combinatory nature of both Llull's methods and the Hebrew mysticism. At the end 392 of the sixteenth century, Italian philosopher and mathematician Giordano Bruno 393 wrote a number of treatises both on Llull's views directly and incorporating Llullism 394 into his own views on memory. Llullism was one of the "major forces in the 395 Renaissance" and it remained "enthusiastically cultivated in Paris throughout the 396 seventeenth century", influencing Descartes and others (Yates 1954, p. 166). It was 397 revived again in Germany in the eighteenth-century, where its end product was 398 Leibniz's combinatorial systems (Yates 1954, p. 167). And thus, Llull's trajectory 399

[^15]
## Author's Proof

takes us out of the Middle Ages and into the Early Modern era, and it is time to draw 400 our discussion to an end.

### 3.5 Conclusion

In order to discuss the history of computing and computation in the Middle Ages, 403 we must widen what we mean by 'computation' to cover a broader conception than 404 mere mindless mechanistic practices. When we do so, we can see that medieval 405 Europe, far from being computer-less, was the site of a variety of developments 406 in computation ranging from the arithmetic to the linguistic, of which we have 407 focused on three: Irish and English computistics in the seventh to ninth centuries; 408 the calculatory and arithmetic turn in natural philosophy in the thirteenth and 409 fourteenth centuries; and the use of mechanical methods in linguistic reasoning 410 in the twelfth and thirteenth centuries. These developments are all closely tied to 411 advances in education more generally, both secular and ecclesiastical. We saw how 412 the insular computistic treatises were embedded into the Carolingian educational 413 structure and disseminated across the continent, as well as the importance of the 414 concentration of mathematical philosophers for the development of physics in 415 Oxford at the beginning of the fourteenth century. Llull's own project was less 416 concerned with formal education and more outward facing-taking the benefits 417 of traditional scholastic learning and using them to convert the heathens-but by 418 the end of the Middle Ages his developments were integrated into the university 419 education of Europe.

Adamson, J. W. (1919). A short history of education. Cambridge: Cambridge University Press. 422
Ashworth, E. J. (1992). New light on medieval philosophy: The Sophismata of Richard Kilvington. 423 Dialogue, 31, 517-521.
Bisagni, J. (2013-2014). A new citation of a work of Columbanus in BnF lat. 6400B. Peritia, 425 24-25, 116-122. 426
Bonner, A. (Ed.). (1993). Doctor illuminatus: A Ramón Llull reader. Princeton: Princeton 427 University Press. 428
Bonner, A. (2007). The art and logic of Ramon Llull: A user's guide (Studien und Texte zur 429 Geistesgeschichte des Mittelalters 95). Leiden/Boston: Brill. 430
Borst, A. (1993). The ordering of time: From the ancient computus to the modern computer. 431 Chicago: University of Chicago Press. 432
Borst, A. (2006). Schriften zur Komputistik im Frankenreich von 721 bis 818. Hannover: Hahnsche 433 Buchhandlung. 434
Bradwardine, T. (1982). De incipit et desinit. Cahiers de l'Institut du Moyen Age Grec et Latin, 42, 435 1-83 (Nielsen, L. O., Ed.). 436
Chabas, J., \& Goldstein, B. R. (Eds.). (2014). Essays on medieval computational astronomy. 437 Leiden: Brill. 438

## Author's Proof

Costa, D. (2012). Review of C. Philipp E. Nothaft. In Dating the passion: The life of Jesus and 439 the emergence of scientific chronology (200-1600) (Time, astronomy, and calendars: Texts and 440 studies, Vol. 2, x + 320 pp.). Leiden: Brill; Time's books/KronoScope, 13(2), 298-302 (2013). 441
Cróiní, D. (1982). Mo-Sinnu moccu Min and the computus of Bangor. Peritia, 1, 281-295. 442
Folkerts, M., \& Lorch, R. (2007). The Arabic sources of Jordanus de Nemore. Foundation for 443 Science, Technology, and Civilization, 1-15.
Freely, J. (2013). Before Galileo: The birth of modern science in medieval Europe. New York: 445 Overlook Press.
Graff, E. (2010). Review of Immo Warntjes. In The Munich computus: Text and translation. Irish 447 computistics between Isidore of Seville and the venerable Bede and its reception in Carolingian 448 times (Sudhoffs Archiv, Zeitschriften für Wissenschaftsgeschichte, heft 59, pp. ccxxi, 402). 449 Stuttgart: Franz Steiner Verlag; Journal of Medieval Latin, 22, 326-329 (2012). 450
Hannam, J. (2010). God's philosophers. Duxford: Icon Books. 45
Hawk, B. W. (2012). A Greco-Latin numerical list in a St. Gall fragment. Manuscripta, 56(1), 452 28-46.
John of Salisbury, \& McGarry, D. D. (Ed. and Trans.). (1955). The metalogicon of John of 454 Salisbury: A twelfth-century defense of the verbal and logical arts of the trivium. Berkeley: 455 University of California Press.
Kneale, W., \& Kneale, M. (1984). The development of logic (Revised ed.). Oxford: Clarendon. 457
Kretzmann, N. (1977). Socrates is whiter than Plato begins to be white. Noûs, 11(1), 3-15. 458
Kretzmann, N. (1988). Tu Scis Hoc Esse Omne Quod Est Hoc: Richard Kilvington and the logic 459 of knowledge. In Kretzmann, N. (Ed.), Meaning and inference in medieval philosophy (pp. 460 225-247). Dordrecht: Kluwer Academic Publishers. 46
Llull, R., \& Bonner, A. (Ed. and Trans.). (1985). Selected works of Ramon Llull (1232-1316) (Vols. 462 2). Princeton: Princeton University Press. 463

Martin, C. J. (1986). William's machine. Journal of Philosophy, 83(10), 564-572. 464
McCarthy, D. (1994). The chronological apparatus of the Annals of Ulster AD 431-1131. Peritia, 465 8, 46-79.

466
McCluskey, S. C. (1998). Astronomies and cultures in early medieval Europe. Cambridge: 467 Cambridge University Press.
MED. (2001-2014). Compotiste, n. In Middle english dictionary. University of Michigan. http:// quod.lib.umich.edu/cgi/m/mec/med-idx?type=idl\&id=MED8760, March 31, 2017.
Mertens, M. (2009). A perspective on Bruno's De compendiosa architectura et complemento artis Lullii. Bruniana \& Campanelliana, 15(2), 513-525.
Murdoch, J. E. (1959). Review of The science of mechanics in the middle ages by Marshall 473 Clagett (pp. xxix, 711; nine plates). Madison: University of Wisconsin Press; The Philosophical 474 Review, 71(1), 120-126 (1962).
Oberman, H. A. (1981). The reorientation of the fourteenth century. In A. Maierù \& A. P. Bagliani 476 (Eds.), Studi sul XIV Secolo in Memoria di Anneliese Maier (pp. 513-530). Edizioni di Storia 477 e Letteratura.

478
OED. (2017a), Algorithm, $n$. In Oxford English dictionary (March 2017 ed.). Oxford University 479 Press. http://www.oed.com/view/Entry/4959, March 29, 2017.
OED. (2017b). Computation, $n$. In Oxford English dictionary (March 2017 ed.). Oxford University 481 Press. http://www.oed.com/view/Entry/37968, March 29, 2017.
Palmer, J. (2010). Review of The Munich computus: Text and translation. Irish computistics 483 between Isidore of Seville and the Venerable Bede and its reception in Carolingian times. immo 484 warntjes (Sudhoffs Archiv, Beihefte lix, pp. ccxxii + 402). Stuttgart: Franz Steiner Verlag; 485 Journal for the History of Astronomy, 43(1), 129-131 (2012). 486
Philipp, C., \& Nothaft, E. (2012). Dating the passion: The life of Jesus and the emergence of 487 scientific chronology (200-1600) (Volume 2 of time, astronomy, and calendars: Texts and 488 studies). Leiden: Brill.
Philipp, C., \& Nothaft, E. (2013). Review of Mary Kelly and Charles Doherty (Eds.), Music and 490 the stars: Mathematics in medieval Ireland (xx + 249 pp.). Dublin: Four Courts. ISBN:978-1- 491 84682-392-3. Peritia (2014). 492

## Author's Proof

Philipp, C., \& Nothaft, E. (2014). The reception and application of Arabic science in twelfth- 493 century computistics: New evidence from Bavaria. Journal for the History of Astronomy, 45(1), 494 35-60.
Philipp, C., \& Nothaft, E. (2015). Roman vs. Arabic computistics in twelfth-century England: A 496 newly discovered source (Collatio Compoti Romani et Arabici). Early Science and Medicine, 497 20, 187-208. 498
Styazhkin, N. I. (1969). History of mathematical logic from Leibniz to Peano. Cambridge/London: 499 MIT Press. 500
Sylla, E. (1999). Oxford calculators. In R. Audi (Ed.), The Cambridge dictionary of philosophy 501 (2nd ed.). Cambridge/New York: Cambridge University Press. 502
Tabak, J. (2014). Algebra: Sets, symbols, and the language of thought. New York: Infobase 503 Publishing.
Uckelman, S. L. (2010). Computing with concepts, computing with numbers: Llull, Leibniz, \& 505 Boole. In F. Ferreira, B. Löwe, E. Mayordomo, \& L. M. Gomes (Eds.), Proceedings of the 6th 506 Conference on Computability in Europe Programs, Proofs, Processes, Ponta Delgada, Azores, 507 June 30-July 4, 2010 (Volume 6158 of lecture notes in computer science, pp 427-437). 508
Wagner, R., \& Briggs, A. (2016). The Penultimate curiosity: How science swims in the slipstream 509 of ultimate. Oxford: Oxford University Press. 510
Warntjes, I. (2005). A newly discovered Irish computus: Computus Einsidlensis. Peritia, 19, 61-64. 511
Warntjes, I. (2010). The Munich computus: Text and translation. Irish computistics between Isidore 512 of Seville and the Venerable Bede and its reception in Carolingian times (Volume 51 of Sudhoffs 513 Archiv). Stuttgart: Franz Steiner Verlag. 514
Wilson, C. (1956). William Heytesbury: Medieval logic and the rise of mathematical physics. 515 Madison: University of Wisconsin Press. 516
Yates, F. A. (1954). The Art of Ramon Lull: An approach to it through Lull's theory of the elements. 517 The Journal of the Courtald and Warburg Institutes, 17(1/2), 115-173. 518

## Author's Proof

## Metadata of the chapter that will be visualized online

| Chapter Title | Leibniz and the Calculus Ratiocinator |  |
| :--- | :--- | :--- |
| Copyright Year | 2018 |  |
| Copyright Holder | Springer International Publishing AG, part of Springer Nature |  |
| Corresponding Author | Family Name | Lenzen |
|  | Particle |  |
|  | Given Name | Wolfgang |
|  | Suffix |  |
|  | Division | Department of Philosophy |
|  | Organization | Osnabrück University |
|  | Address | Osnabrück, Germany |
|  | Email | lenzen@uos.de |

Abstract | This paper deals with the interconnections between mathematics, |
| :--- |
| metaphysics, and logic in the work of Leibniz. On the one hand, it touches |
| upon some practical aspects such as Leibniz's construction of a Four- |
| species calculating machine, a mechanical digital calculating machine, |
| and even a cipher machine. On the other hand, it examines how far |
| Leibniz's metaphysical dreams concerning the "calculus ratiocinator" |
| and its underlying "characteristica universalis" have in fact been realized |
| by the great philosopher. In particular it will be shown that Leibniz not |
| only developed an "intensional" algebra of concepts which is provably |
| equivalent to Boole's "extensional" algebra of sets, but that he also |
| discovered some basic laws of quantifier logic which allowed him to |
| define individual concepts as maximally-consistent concepts. Moreover, |
| Leibniz had the ingenious idea of transforming the basic principles of |
| arithmetical addition and subtraction into a theory of "real" addition and |
| subtraction thus obtaining some important building blocks of elementary |
| set-theory. |

Keywords
(separated by "-") Leibniz - Calculating machine - Metaphysic - Logic - Set-theory

## Author's Proof

# Chapter 4 

Wolfgang Lenzen


#### Abstract

This paper deals with the interconnections between mathematics, meta- 4 physics, and logic in the work of Leibniz. On the one hand, it touches upon 5 some practical aspects such as Leibniz's construction of a Four-species calculating 6 machine, a mechanical digital calculating machine, and even a cipher machine. 7 On the other hand, it examines how far Leibniz's metaphysical dreams concerning 8 the "calculus ratiocinator" and its underlying "characteristica universalis" have in 9 fact been realized by the great philosopher. In particular it will be shown that 10 Leibniz not only developed an "intensional" algebra of concepts which is provably 11 equivalent to Boole's "extensional" algebra of sets, but that he also discovered some 12 basic laws of quantifier logic which allowed him to define individual concepts 13 as maximally-consistent concepts. Moreover, Leibniz had the ingenious idea of 14 transforming the basic principles of arithmetical addition and subtraction into a 15 theory of "real" addition and subtraction thus obtaining some important building 16 blocks of elementary set-theory.


### 4.1 Introduction and Summary

The so-called calculus ratiocinator is a bit like the Loch Ness Monster Nessie. Many 19
people talk about it, but nobody seems to know whether it really exists or what it 20
exactly consists of. In a Wikipedia entry it is roughly described as follows:
The Calculus ratiocinator is a [...] universal logical calculation framework, a concept 22 described in the writings of Gottfried Leibniz, usually paired with his [...] characteristica 23 universalis, a universal conceptual language. The received point of view in analytic 24 philosophy and formal logic is that the calculus ratiocinator anticipates mathematical logic
[and that it ] is a formal inference engine or computer program which can be designed so

[^16]
## Author's Proof

is only a part [...] of the universal characteristic and a complete universal characteristic 28 includes a "logical calculus".

A contrasting point of view stems from synthetic philosophy and fields such as cybernetics $[\ldots]$ and general systems theory [...]. The synthetic view understands the calculus ratiocinator as a "calculating machine". The cybernetician Norbert Wiener considered Leibniz's calculus ratiocinator a forerunner to the modern day digital computer.

Hartley Rogers saw a link between the two, defining the calculus ratiocinator as "an algorithm which, when applied to the symbols of any formula of the characteristica universalis, would determine whether or not that formula were true as a statement of science". ${ }^{1}$

The aim of this paper is to unveil some of the mysteries surrounding the calculus 38 ratiocinator. First, as regards the "hardware" of such a calculus, it will be shown 39 in Sect. 4.2 that although Leibniz had not the slightest idea of a modern day 40 computer (nor, for that matter, of any other electronic device), he successfully 41 invented a mechanical computer in the form of a Four-Species Calculating Machine. 42 Furthermore he even made concrete plans for the construction of a (non-electronic) ${ }^{43}$ Dyadic Calculating Machine.

Second, as regards the "software", Leibniz thought it possible to determine the 45 truth-value of any proposition by mere calculation. More concretely he believed that 46 such a calculation had once been carried out by God when he set out to decide which 47 possible world - out of an infinite number of alternatives - should become realized. 48 In order to arrive at that decision, God used his infinitely powerful mind to calculate 49 in every detail the consequences which would result if a certain individual $X$ - rather 50 than any other out of an infinite number of alternative possible individuals - were 51 created. This metaphysical vision, which shall be analyzed in more detail in Sect. 52 4.3, has been summarized by Leibniz in the oft-quoted dictum "Cum Deus calculat 53 et cogitationem exercet fit mundus"

Third, Leibniz was hoping that mankind, although endowed by God only with 55 a finite mind, might eventually develop the tools for determining the truth-value 56 of arbitrary propositions by translating them into a precise universal language (the 57 "characteristica universalis") which allows calculating the truth in an infallible way. 58 This metaphysical dream, which shall be closer investigated in Sect. 4.4, lies behind 59 Leibniz's even more famous slogan "Calculemus!"60

In order to answer the question whether, or how much, of these dreams and 61 visions are realizable (or have in fact been realized by Leibniz himself), a survey 62 of the development of the "calculus ratiocinator" will be given in Sect. 4.5. In 63 Sect. 4.5.1 the background of early seventeenth century syllogistic will be sketched. ${ }^{6}$ In Sect. 4.5 .2 it will be shown how Leibniz gradually transformed the traditional 65 theory of the syllogism into a much more powerful logic which turned out to 66 be equivalent to so-called Boolean algebra. In Sect. 4.5.3 some expansions of 67 Leibniz's algebra of concepts will be considered; in particular it will be shown 68 that the introduction of "indefinite concepts", which function as quantifiers ranging 69

[^17]
## Author's Proof

over concepts, allows the definition of individual concepts as maximally-consistent 70 concepts. Section 4.5.4 describes Leibniz's ingenious transformation of some basic 71 laws of elementary arithmetic into a "Calculus of real addition and subtraction" 72 which forms a subsystem of modern set-theory.

### 4.2 Leibniz's Calculating Machines

In 1990, the main curator of the Astronomic-Physical Cabinet of the Hessian 75 State Museum, Ludolf von Mackensen, published an article about the prehistory of 76 calculating machines. After summarizing some early seventeenth century inventions 77 by Wilhelm Schickard and Blaise Pascal, he characterized the role that Leibniz 78 played in this connection as follows.

The third big universal scientist of the age of baroque, who decisively advanced the 80 invention of a Four-species Calculating Machine, was the philosopher and mathematician Gottfried Wilhelm Leibniz. [. . . ] [F]rom the very beginning Leibniz strived for surpassing Schickard and Pascal by creating a machine which was able to make multiplications and divisions. Guided by the idea that a multiplication is a repeated addition and a division a repeated subtraction, Leibniz aimed at a complete mechanization of the first two species so that they could be repeated many times in the shortest possible time. He solved this problem by separating the process of entering the numbers from the process of calculation, i.e. the movement of the counting wheels. Hence the machine was designed by Leibniz to work in two steps, which was achieved by putting special switchgear between the number entry and the calculation device. Such entry/calculation switchgear is a necessary component of each mechanical calculation machine, no matter whether driven by electricity or by means of a hand crank.

In the absence of any example of such switchgear which transmits the entered number into the calculating device, Leibniz invented a completely new element, a gear-wheel, whose effective number of teeth could be varied between 0 and 9 so that if, e.g., the number 5 was set, five teeth would become effective. Leibniz even devised two variants of such a device, a so-called sprocket wheel [...] and a so-called stepped drum, i.e. a cylinder which carries nine toothed rings on its circumference. [...]
[Therefore] Leibniz may be considered as the first ancestor of a whole line of development of stepped drum machines that ended in 1948 when Curt Herzstack's model "Curta" came to the market. ${ }^{2}$

Leibniz's inyention was mainly motivated by the consideration that it is "unworthy to waste the time of excellent people by servile work of calculating when, with the 103 help of a machine, everybody can get the result in a fast and secure way". ${ }^{3}$ Figure 104 4.1 shows the original machine built in 1693 .

[^18]
## Author's Proof



Fig. 4.1 Leibniz's Four-species calculating machine (© Niedersächsische Landesbibliothek Hannover)

Mackensen further pointed out that although Leibniz certainly was not the 106 inventor of the binary number system, in the 1679 paper "De progressione dyadica" 107 he had developed a clear idea of a binary calculating machine:

In the year 1974 [Mackensen] transformed Leibniz's ideas into a drawing and found out
that, if one knows his mechanical Four-species-machine and if one adds a few constructive
elements from the technique of the time of baroque to the description of Leibniz's dual
calculating machine, a functional model can be built. [ . . . ] This machine doesn't use wheels
or electric impulses but rolling balls. [...] In the calculation process and in the device
yielding the result the numbers are not represented by teeth of wheels but by balls: a ball 114
means 1 , no ball means 0 . Thus for the first time the binary principle is applied for the 115
mechanical representation of data. ${ }^{4}$
Figure 4.2 shows von Mackensen's model which allows to perform additions and 117 multiplications while "subtractions and divisions can only be performed quite 118 cumbersome by way of the complements of the numbers". ${ }^{5}$

Although the practical value of this machine was further restricted by the fact 120 that it presupposed the possibly laborious transformation of decimal numbers into dual numbers, the very idea of a "Machina arithmeticae dyadicae" remained so important for Leibniz that he later devised another version working with gear- 123 wheels rather than with balls. And he also invented a mechanical device to convert 124

[^19]
## Author's Proof



Fig. 4.2 Model of Leibniz's digital calculating machine (© Ludolf von Mackensen)
decimal numbers into dyadic numbers. Figure 4.3 shows a functional model built ..... 125
by Rolf Paland after the construction plans of Ludolf von Mackensen: ..... 126
To conclude this section let it be pointed out that Nicholas Rescher recently ..... 127
reconstructed Leibniz's ideas of a "Machina Deciphratoria", i.e. a cipher machine, ..... 128
as sort of a byproduct of his calculating machine. In a letter of February 1679 to the ..... 129
Duke of Hanover-Calenberg, Leibniz described his ideas as follows: ..... 130
This arithmetical machine led me to conceive another beautiful machine that would ..... 131
serve to encipher and decipher letters, and do this with great swiftness and in a manner ..... 132
indecipherable by others. For I have observed that the most commonly used ciphers are ..... 133
easy to decipher, while those difficult to decipher are generally difficult to use, so that busy ..... 134
people abandon them. But with this machine of mine an entire letter is almost as easy to ..... 135
encipher and decipher for one who uses it as it is to copy it. ${ }^{6}$ ..... 136
Eleven years later, in a memorandum for emperor Leopold I in Vienna, he revealed ..... 137
some further details of this machine: ..... 138
It is a smallish mechanism (machinula) that is easy to transport. [...] While both ..... 139
encipherment and decipherment is [ordinarily] laborious, there is now a facility enabling ..... 140
one to get at the requisite ciphers or alphabetic-letters as easily as though one were playing ..... 141

[^20]
## Author's Proof



Fig. 4.3 Leibniz's machine for converting decimal into binary numbers (© H. Gramann)
on a clavichord or other [keyboard] instrument. The requisite letters will immediately
emerge, and only need to be copied off.
On the basis of these and some other hints, Rescher developed a conjectural reconstruction of Leibniz's cryptographic machine which, with the assistance of several engineers, has meanwhile been physically realized. Figure 4.4 shows the result of this reconstruction.

### 4.3 Leibniz's Grand Vision of the Creation of the World

The Christian idea that God created the entire world literally out of nothing does not sound very reasonable. Yet Leibniz evidently did believe in this doctrine or, somewhat more exactly, in the slightly weakened claim that God created the world out of nothing plus one. In 1981 the "Stadtsparkasse Hannover" edited a 152 commemorative coin (Fig. 4.5):

In the middle of the coin there is a table with the beginning of the binary number 154 system, framed by samples of elementary arithmetical calculations. On top of the coin one can read "Omnibus ex nihilo ducendis sufficit unum", which may be translated as follows: "In order to produce everything out of nothing one [thing] is

[^21]
## Author's Proof



Fig. 4.4 Leibniz's cipher machine (© Nicholas Rescher)
sufficient". The whole picture is said to represent an "imago creationis", i.e. a picture of the creation. Now, a skeptic may want to object that the editors of the coin grossly misunderstood Leibniz's intentions. After all, the diagram mainly illustrates the fact 160 that the set of natural numbers can be built up from just two elements, namely from the numerals 0 and 1 . Moreover, since Leibniz used to refer to the number zero by the Latin word 'nihil', the quoted dictum can alternatively be translated as saying: "In order to produce every number from 0 , the number 1 is sufficient". 164 Thus one might suspect that the Hanover savings bank mistakenly charged Leibniz with holding the Christian view of the creation of the world while in fact he only wanted to put forward the much more modest claim that the world of numbers can 167 be created from zero plus one. In 1697, however, Leibniz himself had painted the 168 picture shown in Fig. 4.6.

Again we are told to see a "Bild der Schöpffung", a picture of the creation, which
contains drawings of the sun, the moon, and other celestial objects. On top one can
read "Einer hat alles aus nichts gemacht", which means 'One [namely God] has
made everything out of nothing'. The ambiguous statement at the bottom "Eins ist noht" can be interpreted as saying either that one thing or that the number one 174 is necessary. In what follows it will be argued that Leibniz did not only have the 175 trivial arithmetical interpretation in mind, but rather the Christian doctrine of the 176 creation of the world. Somewhat more exactly, Leibniz thought it possible for God

## Author's Proof



Fig. 4.5 Commemorative coin Stadtsparkasse Hannover
to construct the world - or better: the idea of the world - out of the ideas or the 178 concepts of Nothing and One in seven steps.

1. Starting with the numerals 0 and 1 , one obtains the set of natural numbers. 180
2. Each of these numbers is interpreted as representing, or being characteristic of, a 181 specific primitive concept. 182
3. By way of logical combination the larger set of general concepts is obtained. 183
4. Individual-concepts, i.e. the "ideas" corresponding to individuals, will then be 184 defined as maximally consistent concepts. 185
5. Among the set of all possible individuals the relation of compossibility is 186 introduced.
6. Possible worlds are defined as certain maximal collections of pairwise compos- 188 sible individuals. 189
7. The real world is distinguished from its rivals by being the richest, i.e. most 190 numerous and, perhaps, also in some other respect the best of all possible worlds.

## Author's Proof



Fig. 4.6 Leibniz's drawing of the creation (© Niedersächsische Landesbibliothek Hannover)

These seven steps try to capture what Leibniz had in mind with his famous remark "Cum Deus calculat et cogitationem exercet fit mundus", which means "While God is calculating and carrying out his deliberations the world comes into existence". ${ }^{8}$

In order to support this interpretation, step 2 of the "logical creation of the world", viz. the idea of assigning characteristic numbers to concepts, will be closer examined in Sect. 4.4. Steps 3 and 4, i.e. the construction of the algebra of concepts and the definition of individual concepts, will be outlined in Sects. 4.5.2 and 4.5.3. For reasons of space, the remaining steps which deal with the ontological ideas of compossibility, existence, and possible worlds, must stay out of consideration here. The reader is referred to the reconstruction of "The System of Leibniz's Logic" 201 given elsewhere. ${ }^{9}$

[^22]
## Author's Proof

### 4.4 Leibniz's Ambitious Dream of a Characteristica <br> Universalis and Its Modest Realization as a Semantics forSyllogistic Inferences

Top-ranking among famous quotes from Leibniz certainly is the slogan "Calcule- ..... 206 mus": ..... 207
[...] whenever controversies arise, there will be no more need of disputation between two ..... 208 philosophers than between two calculators. For it would suffice for them to take their pencils ..... 209 in their hand, to sit down at the abacus, and to say to one another [...]: Let us calculate! ${ }^{10}$ ..... 210
This vision of the computability of all (scientific) problems rests on two pillars: (i) ..... 211
the invention of a "characteristica universalis", into which the respective question ..... 212
can be translated in an unambiguous way; and (ii) the construction of a "calculus ..... 213
ratiocinator", which in application to this language yields a precisely determined ..... 214
result. ${ }^{11}$ This section is devoted to an explanation of task (i) while (ii) will be dealt ..... 215
with in Sects. 4.5.1, 4.5.2, and 4.5.3. ..... 216
Already in 1666, in his dissertation "De Arte Combinatoria", Leibniz mentioned ..... 217
the possibility of "a universal writing, i.e. one which is intelligible to anyone who ..... 218
reads it, whatever language he knows." ${ }^{12}$ More than 10 years later he explained in ..... 219
some more detail: ..... 220
Not long ago, some distinguished persons devised a certain universal language or char- ..... 221
acteristic in which all notions and things are nicely ordered, a language with whose help ..... 222
different nations can communicate their thoughts, and each, in its own language, read what ..... 223
the other wrote. But no one has put forward a language or characteristic which embodies, at ..... 224
the time, both the art of discovery and the art of judgment, that is, a language whose signs ..... 225
or characters perform the same task as arithmetic signs do for numbers. ${ }^{13}$ ..... 226
Leibniz was convinced ..... 227
[...] that one can devise a certain alphabet of human thoughts and that, through the ..... 228
combination of the letters of this alphabet and through analysis of words produced from ..... 229
them, all things can both be discovered and judged. [...] Once the characteristic numbers ..... 230
of most notions are determined, the human race will have a new kind of tool, a tool that will ..... 231
increase the power of the mind much more than optical lenses helped our eyes, a tool that ..... 232
will be as far superior to microscopes or telescopes as reason is to vision. ${ }^{14}$ ..... 233

[^23]
## Author's Proof

\(\begin{array}{lll}The application of the "true" characteristic numbers would allow reducing the ques- \& 234 <br>
tion whether an arbitrary state of affairs holds or not to a mere arithmetical issue. \& 235 <br>
However, as Leibniz soon came to realize, "due to the wonderful interconnection of \& 236 <br>
things, it is extremely difficult to produce the characteristic numbers". Therefore in \& 237 <br>
a series of essays of April 1679 he contented himself with the much more modest \& 238 <br>
task of developing a formal semantics by means of which the logical validity of \& 239 <br>
syllogistic inferences can be decided: \& 240 <br>

\)|  I have contrived a device, quite elegant, if I am not mistaken, by which I can show that  | 241 |
| :--- | :--- |
|  it is possible to corroborate reasoning through numbers. And so, I imagine that those  | 242 |
|  so wonderful characteristic numbers are already given, and, having observed a certain  | 243 |
|  general property that characteristic numbers have, I meanwhile assume that these numbers,  | 244 |
| $\begin{array}{ll}\text { whatever they might be, have that property. By using these numbers I can immediately } \\ \text { demonstrate through numbers, and in an amazing way, all of the logical rules and show how }\end{array}$ | 245 | \(\begin{array}{ll}246 <br>

one can know whether certain arguments are formally valid.\end{array} \& 247\end{array}\)
This semantics was guided by the idea that a term composed of concepts $A$ and $B \quad 248$ gets assigned the product of the numbers assigned to the components: 249

For example, since 'man' is 'rational animal', if the number of 'animal', $a$, is 2 , and the
number of 'rational', $r$, is 3 , then the number of 'man', $m$, will be the same as $a^{*} r$, in this
example $2 * 3$ or $6 .^{16}$
Now a universal affirmative proposition like 'All gold is metal' can be understood as maintaining that the concept 'gold' contains the concept 'metal' (because 'gold' can 254 be defined, e.g., as 'the heaviest metal'). Therefore it seems obvious to postulate that 255 in general 'Every $S$ is $P$ ' is true if and only if $s$, the characteristic number assigned to ${ }^{256}$ $S$, contains $p$, the number assigned to $P$, as a prime factor; or, in other words, $s$ must ${ }^{257}$ be divisible by $p$. In a first approach, Leibniz thought that the truth-conditions for the 258 particular affirmative proposition 'Some $S$ are $P$ ' might be construed analogously 259 by requiring that either $s$ can be divided by $p$ or conversely $p$ can be divided by $s .260$ But this was a mistake! ${ }^{17}$ After some trials and errors, Leibniz eventually found the 261 following more complicated solution ${ }^{18}$ :
(i) To every term $T$, a pair of natural numbers $<+t_{1} ;-t_{2}>$ is assigned such that $t_{1}$ and $t_{2}$ are relatively prime, i.e. they don't have a common divisor.

[^24]
## Author's Proof

(ii) 'Every $S$ is $P$ ' is true (relative to the assignment (i)) if and only if $+s_{1}$ is 265 divisible by $+p_{1}$ and $-s_{2}$ is divisible by $-p_{2}$. 266
(iii) 'No $S$ is $P$ ' is true if and only if $+s_{1}$ and $-p_{2}$ have a common divisor or $+p_{1} \quad 267$ and $-s_{2}$ have a common divisor. 268
(iv) 'Some $S$ is $P$ ' is true if and only if condition (iii) is not satisfied. 269
(v) 'Some $S$ isn't $P$ ' is true if and only if condition (ii) is not satisfied. 270
(vi) An inference from premises $P_{1}, P_{2}$ to the conclusion $C$ is logically valid if and 271 only if for each assignment of numbers satisfying condition (i), $C$ becomes true 272 whenever both $P_{1}$ and $P_{2}$ are true. ${ }^{19}$

As Leibniz himself proved in Theorems 1-8, the "simple" inferences of the theory 274 of the syllogism, i.e. the laws of opposition, subalternation and conversion, are 275 all satisfied by this semantics. Furthermore, as was first shown by Lukasiewicz 276 (1951), the semantics of characteristic numbers satisfies all (and only) those moods 277 which are commonly regarded as valid. Hence it is a model of a syllogistic 278 which dispenses with negative concepts. Although Leibniz repeatedly tried to 279 generalize his semantics so as to cover also negative concepts, he never found a 280 satisfactory solution. This problem has only been solved by contemporary logicians 281 like Sanchez-Mazas (1979) and Sotirov (1999). 282

Leibniz's much further reaching hope that mankind might once discover the 283 "true" characteristic numbers which enable to calculate the truth of arbitrary 284 propositions, must, however, be assessed as an illusion: 285

When we have the true characteristic numbers of things, we will be able to judge without 286
any mental effort or danger of error whether arguments are materially [!] sound. ${ }^{20}$
One reason why such "true" characteristic numbers are bound to remain a chimera

### 4.5 The Development of Leibniz's Universal Calculus

In the seventeenth century, logic was still dominated by syllogistic, i.e. the theory 293
of the four categorical forms:
Universal affirmative proposition (UA) Every $S$ is $P \quad S \mathrm{a} P$
Universal negative proposition (UN) No $S$ is $P \quad S \mathrm{e} P$
Particular affirmative proposition (PA) Some $S$ is $P \quad S i P$
Particular negative proposition (PN) Some $S$ isn't $P \quad S o P$

[^25]
## Author's Proof


#### Abstract

A typical textbook of that time is the well-known "Logique de Port Royal" ${ }^{21}$ which, apart from an introductory investigation of ideas, concepts, and propositions, basically consists of a theory of the so-called "simple" laws (of subalternation, 298 opposition, and conversion) and a theory of the syllogistic moods which are 299 classified into four different figures. The following summary of this theory does not 300 rely, however, on Arnaud \& Nicole's presentation but rather on Leibniz's reception 301 of the traditional logic. For the sake of preciseness, we use the modern symbols $\neg$, 302 $\wedge, \vee$ for the negation, conjunction, and disjunction of propositions and $\rightarrow$, $\leftrightarrow$ for 303 (strict) implication and (strict) equivalence.


### 4.5.1 Early Seventeenth Century Syllogistic

As Leibniz explains, "a subalternation takes place whenever a particular proposition is inferred from the corresponding universal proposition", 22 i.e.:

Sub $1 \quad S \mathrm{a} P \rightarrow S \mathrm{Si} P$
Sub $2 \quad \mathrm{Se} P \rightarrow S$ o $P$.
According to the modern analysis of the categorical forms in terms of first order logic, these laws are not strictly valid but hold only under the assumption that the
subject term $S$ is not empty. This problem of so-called existential import will be 311 discussed further below.

The theory of opposition first has to determine which propositions are contradic-
tories of each other in the sense that they can neither be together true nor be together
false. Clearly, the PN is the contradictory, or negation, of the UA, while the PA is the negation of the UN:

Opp $1 \quad \neg S \mathrm{a} P \leftrightarrow S \mathrm{So} P$
Opp $2 \neg \mathrm{Se} P \leftrightarrow S \mathrm{SiP}$.
The next task is to determine which propositions are contraries to each other in the sense that they cannot be together true, while they may well be together false.
As Leibniz states in C., p. 82: "Theorem 6: The universal affirmative and the universal negative are contrary to each other". Finally, two propositions are said to be subcontraries if they cannot be together false while it is possible that are together true. As Leibniz notes in another theorem, the two particular propositions, $\mathrm{Si} P$ and321 $S o P$, are logically related to each other in this way. The theory of subalternation and

[^26]
## Author's Proof

Fig. 4.7 Square of opposition


In the paper "De formis syllogismorum Mathematice definiendis" written around 1682 Leibniz tried to axiomatize the theory of the syllogistic figures and moods by reducing them to a small number of basic principles. The "Fundamentum 328 syllogisticum", i.e. the axiomatic basis of the theory of the syllogism, is the "Dictum de omni et nullo":

If a total $C$ falls within another total $D$, or if the total $C$ falls outside $D$, then whatever is in

These laws warrant the validity of the following "perfect" moods of the First Figure: ${ }^{33}$
Barbara $\quad C a D, B a C \rightarrow B a D$
Celarent $\quad C \mathrm{e} D, B \mathrm{a} C \rightarrow B \mathrm{e} D$
DARII $\quad C a D, B i C \rightarrow B i D$
Ferio $\quad C \mathrm{e} D, B \mathrm{i} C \rightarrow B \mathrm{o} D$.
On the one hand, if the second premise of the affirmative moods BARBARA and 335 DARII is satisfied, i.e. if $B$ is either totally or partially contained in $D$, then, according
to the "Dictum de Omni", also $B$ must be either totally or partially contained in $D$ since, by the first premise, $C$ is entirely contained in $D$. Similarly the negative moods ${ }_{338}$ Celarent and Ferio follow from the "Dictum de Nullo":
$B$ is either totally or partially contained in $C$; but the entire $C$ falls outside $D$; hence also $B \quad 340$
either totally or partially falls outside $D .{ }^{24}$
Next Leibniz derives the laws of subalternation from Darii and Ferio by substi-

Some $B \mathrm{i} B$.

[^27]
## Author's Proof

With the help of the laws of subalternation, Barbara and Celarent may be 347 weakened into

Barbari $\quad C \mathrm{a} D, B \mathrm{a} C \rightarrow B \mathrm{i} D$
Celaro $\quad C \mathrm{e} D, B \mathrm{a} C \rightarrow B o D$.
Thus the First Figure altogether has six valid moods, from which one obtains six

REGRESS If a conclusion $Q$ logically follows from premises $P_{1}, P_{2}$, but if $Q$ is false, then one of the premises must be false

When Leibniz carefully carries out these derivations, he presupposes the laws of opposition, Opp 1, Opp 2. Finally, six valid moods of the Fourth Figure can beconverted "simpliciter", while the UA can only be converted "per accidens":

Conv $1 \quad B \mathrm{i} D \rightarrow D \mathrm{i} B$
Conv $2 B \mathrm{e} D \rightarrow D \mathrm{e} B$
Conv $3 B \mathrm{a} D \rightarrow D \mathrm{i} B$.
As Leibniz shows, these laws can in turn be derived from some previously proven

All $B a B$.
Furthermore one easily obtains another law of conversion according to which the 363 UN can also be converted "accidentally":

Conv $4 \quad B \mathrm{e} D \rightarrow D$ ob.
The announced derivation of the moods of the Fourth Figure was not carried out in 366 the fragment "De formis syllogismorum Mathematice definiendis" which breaks off 367 with a reference to "Figura Quarta". It may, however, be found in the manuscript LH ${ }_{368}$ IV, $6,14,3$ which, unfortunately, was only partially edited by Couturat. At any rate, 369 Leibniz managed to prove that all valid moods can be reduced to the "Fundamentum 370 syllogisticum" in conjunction with the laws of opposition, the inference scheme "Regressus", and the "identical" propositions Some and All.

Now while ALL really is an identity or theorem of first order logic, $\forall \mathrm{x}(B x \rightarrow$

## Author's Proof

evaluated with reference to "the region of ideas", i.e. the larger set of all possible
individuals. Therefore all that is required for the validity of subalternation is that the

### 4.5.2 From the 1678 "Calculus Ratiocinator" to an Algebra of Concepts

In this section it will be shown how Leibniz's algebra of concepts gradually evolves from the traditional theory of the syllogism in four steps: First, by distilling an abstract operator of conceptual containment out of the informal proposition 'Every . $S$ is $P$ '. Second, by inventing or discovering the operator of conceptual conjunction inherent in the operation of juxtaposition of concepts like 'rational animal'. Third, by a thoroughgoing elaboration of the laws of conceptual negation, which goes hand in hand, fourth, with the invention of the operator of possibility, or self-consistency, of concepts.

### 4.5.2.1 Conceptual Containment and Conceptual Coincidence

By the end of the 1670s, Leibniz has come to realize that, in the traditional formulation of the UA, the quantifier expression 'every' is basically superfluous. Instead of 'Every $A$ is $B$ ' one may simply say ' $A$ is $B$ '. Thus in an early draft of a 398 "Calculus ratiocinator" he abbreviates 'Omnis homo est animal' by the formula ' $A$ est $B$ ' because "the subject is always supposed to be preceded by a universal sign". ${ }^{26}$ Similarly, in the "Specimen Calculi Universalis" of 1679, he explains:
(1) A universal affirmative proposition will be expressed here as follows: $A$ is $B$, or (every) man is an animal. We shall, therefore, always understand the sign of universality to be prefixed. ${ }^{27}$

$$
400
$$

Similarly, in the "Specimen Calculi Universalis" of 1679, he explains:
yy the year 1686 at the latest, when elaborating his "General Inquiries about the Analysis of Concepts and of Truths", Leibniz uses to express the UA not only with the help of the "copula" 'is' as ' $A$ is $B$ ', but alternatively also as ' $A$ contains $B$ ' or ' $B$ is contained in $A^{\prime}$ :
(28) I usually take as universal a term which is posited simply: e.g. ' $A$ is $B$ ', i.e. 'Every $A$ is 409
$B$ ', or 'In the concept $A$ the concept $B$ is contained'. ${ }^{28}$

[^28]
## Author's Proof

Leibniz's terminology is based upon the traditional distinction between the exten- 411sion and the "intension" (or comprehension) of a concept. Thus in the "Elementa 412Calculi" of April 1679 he wrote:413
(11) [...] For example, the concept of gold and the concept of metal differ as part and ..... 414
whole; for in the concept of gold there is contained the concept of metal and something ..... 415
else - e.g. the concept of the heaviest among metals. Consequently, the concept of gold is ..... 416
greater than the concept of metal. ..... 417
(12) The Scholastics speak differently; for they consider, not concepts, but instances ..... 418
which are brought under universal concepts. So they say that metal is wider than gold, since ..... 419
it contains more species than gold, and if we wish to enumerate the individuals made of ..... 420
gold on the one hand and those made of gold on the other, the latter will be more than the ..... 421
former, which will therefore be contained in the latter as a part in the whole. [ . . . However, ..... 422
I have preferred to consider universal concepts, i.e. ideas, and their combinations, as they ..... 423
do not depend on the existence of individuals. So I say that gold is greater than metal, since ..... 424
more is required for the concept of gold than for that of metal and it is a greater task to ..... 425
produce gold than to produce simply a metal of some kind or other. Our language and that ..... 426
of the Scholastics, then, is not contradictory here, but it must be distinguished carefully. ${ }^{29}$ ..... 427
Similarly, in the "New Essays on Human understanding" the two opposing points ..... 428 of view are explained as follows: ..... 429
The common manner of statement concerns individuals, whereas Aristotle's refers rather ..... 430
to ideas or universals. For when I say Every man is an animal I mean that all the men ..... 431
are included among all the animals; but at the same time I mean that the idea of animal ..... 432
is included in the idea of man. 'Animal' comprises more individuals than 'man' does, but ..... 433
'man' comprises more ideas or more attributes: one has more instances, the other more ..... 434
degrees of reality; one has the greater extension, the other the greater intension. ${ }^{30}$ ..... 435
From these considerations it follows quite generally that the extension of concept ${ }^{436}$ $A$ is contained in the extension of $B$ if and only if the intension of $A$ contains the ${ }_{437}$ intension of $B$ : ..... 438
REZI $1 \quad \operatorname{Ext}(A) \subseteq \operatorname{Ext}(B) \leftrightarrow \operatorname{Int}(A) \supseteq \operatorname{Int}(B)$. ..... 439
Leibniz defended this principle of reciprocity in a paper of August 1690 as follows: ..... 440
If I say 'Every man is an animal' I want the notion of animal to be contained in the idea ..... 441
of man. And the method of notions is contrary to the method of individuals: just as [...] ..... 442
all men are contained in all animals, so conversely the notion of animal is contained in the ..... 443
notion of man. And just like there are more animals besides the men, so something must ..... 444
be added to the idea of animal in order to get the idea of man. For by augmenting the ..... 445 conditions, the number decreases. ${ }^{31}$ ..... 446
Now the law ReZI 1 immediately entails that two concepts with the same extension ..... 447
must also have the same intension: ..... 448
REZI $2 \operatorname{Ext}(A)=\operatorname{Ext}(B) \rightarrow \operatorname{Int}(A)=\operatorname{Int}(B)$. ..... 449

[^29]
## Author's Proof

According to our modern understanding of "intensionality", this principle is clearly invalid because one can find concepts or predicates $A$ and $B$ which have the same ${ }_{451}$ extension but not the same "intension". To quote a famous example of Quine, it 452 seems biologically plausible to assume that all animals with a heart have a kidney, 453 and vice versa. ${ }^{32}$ Therefore the predicates 'animal with heart' and 'animal with 454 kidney' have the same extension, while their "intensions" or "meanings" differ 455 widely. However, "intension" in the sense of traditional logic must not be mixed ${ }_{456}$ up with "intension" in the modern sense. While for contemporary modal logic 457 the intension of an expression is always considered as something dependent of 458 the respective possible world, according to the traditional view the intension of a 459 concept $A$ is not to be taken relative to different possible worlds. Instead it only 460 mirrors the extension of $A$ in the actual world. Furthermore, in Leibniz's view, the 461 extension of concept $A$ is not just the set of actually existing individuals, but rather 462 the set of all possible individuals that fall under that concept. Anyway, in what 463 follows the containment-relation between concepts $A, B$ shall be symbolized as: ${ }_{464}$
$A \in B \quad$ " $A$ is $B$ "; " $A$ contains $B$ ".
The logical properties of this relation are easily determined. Already in "De 466 Elementis cogitandi" of 1676, Leibniz had put forward the "absolute identical 467 proposition $A$ is $A$ " together with the "hypothetical identical proposition: If $A$ is 468 $B$, and $B$ is $C$, then $A$ is $C{ }^{\prime \prime}{ }^{33}$ Hence the containment-relation is both reflexive and 469 transitive.

Cont $1 \quad A \in A$
Cont $2 A \in B \wedge B \in C \rightarrow A \in C$.
Furthermore Leibniz soon recognized that the identity or coincidence of concepts may be defined as mutual containment. Thus in the "Elementa ad calculum 473 condendum" of around 1678 he notes that "If $A$ is $B$ and $B$ is $A$, then one can be 474 substituted for the other salva veritate", where a few lines later he defines that " $A 475$ and $B$ are the same, if one can everywhere be substituted for the other". ${ }^{34}$ With the ${ }_{476}$ help of the symbol ' $=$ ', the former definition may be rendered as follows: 477

Iden $1 \quad A=B \leftrightarrow A \in B \wedge B \in A$.
The famous "Leibniz law of identity", i.e. the principle of the substitutivity of 479 identicals, can be formalized by the following inference scheme (where $\alpha$ is an 480 arbitrary proposition):

IDEN 2 If $A=B$, then $\alpha[A] \Longleftrightarrow \alpha[B]$.

[^30]
## Author's Proof

```
By means of these two basic principles, the subsequent corollaries, according to 483 which the identity-relation is reflexive, transitive, and symmetric, can easily be 484 derived:
IDEN \(3 A=A\)
Iden \(4 A=B \wedge B=C \rightarrow A=C\)
IDEN \(5 A=B \rightarrow B=A .{ }^{35}\)
```


### 4.5.2.2 Conceptual Conjunction

The operator of conceptual conjunction combines, e.g., 'animal' and 'rational' by 488 mere juxtaposition to 'rational animal'. More generally, two concepts $A$ and $B$ may 489 be conjunctively combined into $A B$. As Leibniz points out in an early draft of a 490 logical calculus, it follows from the very meaning of conjunctive juxtaposition that 491 $A B$ contains $A$ (and similarly $A B$ contains $B$ ) because " $A B$ wants to express just this, 492 namely that which is $A$ and which also is $B^{\prime, 36}$ :
Conj $1 \quad A B \in A$
Conj $2 A B \in B$.
In the "Addenda to the specimen of the Universal Calculus" of 1679, Leibniz noted 495 that the operation of conceptual conjunction is symmetric and idempotent: 496

It must also be noted that it makes no difference whether you say $A B$ or $B A$, for it makes no 497 difference whether you say 'rational animal' or 'animal rational'. 498

The repetition of some letter in the same term is superfluous, and it is enough for it to 499 be retained once; e.g. $A A$ or 'man man'. ${ }^{37} 500$

In our symbolism these laws take the form: 501
Conj $3 A B=B A$
Conj $4 \quad A A=A$.
Furthermore Leibniz recognized that in addition to principles ConJ 1, 2, which 503 show that a "compound predicate can be divided into several", also conversely: 504

Different predicates can be joined into one; thus if it is agreed that $A$ is $B$, and (for some 505 other reason) that $A$ is $C$, then it can be said that $A$ is $B C$. For example, if man is an animal, 506 and if man is rational, then man will be a rational animal. ${ }^{38}$

Hence one gets the further law of conjunction: 508
CONJ $5 A \in B \wedge A \in C \rightarrow A \in B C$. 509

[^31]
## Author's Proof

In Leibniz's riper calculi this law will usually be strengthened into an equivalence: 510 "That $A$ contains $B$ and $A$ contains $C$ is the same as that $A$ contains $B C$ " ${ }^{39}$ :

Conj $6 A \in B C \leftrightarrow A \in B \wedge A \in C$. 512
To conclude this section, let it be pointed out that just as the identity operator can be 513 defined by ' $\in$ ' (according to IDEN 1 ), so conversely the $\in$-operator might be defined
(with the additional help of the operator of conceptual conjunction) by ' $=$ ', namely 515
according to the following law which was put forward by Leibniz, e.g., in § 83 of 516
the "General Inquiries" ${ }^{40}$ :
Cont $3 A \in B \leftrightarrow(A=A B)$.

### 4.5.2.3 Conceptual Negation

Leibniz always used one and the same word, 'not' (in Latin 'non'), to designate 520 the negation either of a proposition or of a concept. Here we will use, however, 521 two different symbols, namely ' $\neg$ ' for the negation of a proposition, and ' $\sim$ ' ${ }_{522}$ for the negation of a concept. The logic of the propositional connective is quite straightforward. If one defines the negation of a proposition in the traditional way 524 such that these "two propositions neither can be together true, nor can be together 525 false", one obtains the following truth-conditions:

If the affirmation is true, then the negation is false; if the negation is true, then the affirmation 527 is false [...] If it is true that it is false, or if it is false that it is true, then it is false; if it is true

While Leibniz had an absolute clear understanding of the logic of propositional

NEG $1 \sim(\sim \mathrm{~A})=\mathrm{A}$.
Also Leibniz easily transformed the Scholastic principle of contraposition into a ${ }_{536}$ corresponding law of his "Universal calculus", viz.: "In general, ' $A$ is $B$ ' is the same ${ }_{537}$ as 'Not- $B$ is Not- $A$ '" ${ }^{43}$ :

NEG $2 A \in B \leftrightarrow \sim B \in \sim A$.

[^32]
## Author's Proof

Furthermore Leibniz discovered the following variants of the law of consistency 540 where the symbols ' $\neq$ ' and ' $\neq$ ', of course, are meant to abbreviate the negation of 541 ' $=$ ' and of ' $\epsilon$ ', respectively:

NEG $3 \quad A \neq \sim A$
NEG $4 \quad A=B \rightarrow A \neq \sim B$.
NEG 5* $A \notin \sim A$
NEG 6* $A \in B \rightarrow A \notin \sim B$. $^{44}$
Principles NEG 5, 6 have been marked with a '*' in order to indicate that the laws 544 are not absolutely valid. As will be explained below, they have to be restricted to 545 self-consistent terms.

The cardinal mistake of Leibniz's theory of negation, however, consists in the frequent assumption that the one-way implication NEG 6 might be strengthened into the equivalence:

NEG 7* $\quad A \notin B \leftrightarrow A \in \sim B .{ }^{45}$
This error is a bit surprising because in general Leibniz was well aware of the fact that the formula ' $A \in B$ ' expresses the universal affirmative proposition while, on the the universal negative proposition. In view of the laws of opposition, the negated formulae ' $A \notin B$ ' and ' $A \notin \sim B$ ' therefore represent the particular negative and the
(UA) $A \in B$
(UN) $\quad A \in \sim B$
(PA) $\quad A \notin \sim B$
(PN) $\quad A \notin B$.
From this it follows that the basically (but not entirely) correct principle NEG 6* is ${ }_{559}$ just the formal counterpart of the law of subalternation, SUB 1, and this inference 560 clearly must never be converted! Thus, e.g., in § 92 of the "General Inquiries", 561 Leibniz emphasized that the inference from $A \notin \sim B$ to $A \in B$ (or, similarly, from $A \notin B{ }_{562}$ to $A \in \sim B$ ) is invalid. ${ }^{46}$ On the other hand, a little bit earlier in the same work, namely 563

[^33]
## Author's Proof

in § 82 , he had maintained that "' $A$ isn't $B$ ' is the same [!] as ' $A$ is not- $B$ '", and this 564 error was repeated again and again in many other fragments. ${ }^{47}$

The root of Leibniz's notorious problem of mixing up ' $A \notin B$ ' and ' $A \in \sim B$ ' is closely connected with the distinction between singular and general terms! If $A$ is the name of some individual, or, as one could also say, if $A$ is an individual-concept, then the two propositions $\neg(A$ is $B)$ and $(A$ is $\sim B)$, though being syntactically 569 different, are semantically equivalent because it seems reasonable to assume that 570 for each individual $x, x$ has the negative property $\sim B$ iff $x$ fails to have the positive 571 property $B$. Thus in the "Calculi universalis investigationes" Leibniz explained: 572

Two terms are contradictory if one is positive and the other the negation of this positive, 573 as 'man' and 'not man'. About these the following rule must be observed: If there are two 574 propositions with exactly the same singular subject of which the first has the one and the 575 second the other of the contradictory terms as predicate, then necessarily one proposition is 576 true and the other false. But I say: exactly the same [singular] subject, for instance if I say 577 'Apostle Peter was a Roman bishop' and Apostle Peter was not a Roman bishop, ${ }^{48}$
The crucial law NEG $7 *$ is indeed valid for the special case where the subject $A$ 578 is an individual concept. Unfortunately, Leibniz failed to realize with sufficient 579
580 clarity that this principle may not be generalized to the case where $A$ is an arbitrary 581 concept. Thus, after the just quoted passage, he temporarily considered that of the pair of propositions 'Every man is learned', 'Every man is not learned', always 582 exactly one would be true and the other false, but soon afterwards he noticed this error and remarked that the generalized rule is wrong. ${ }^{49}$ However, a few lines later 585 he considered the rule once again in a more abstract way (omitting the informal 586 quantifier expression 'Every') and then he repeated the mistake of postulating not 587 only the (basically) correct principle NEG 6 : 'I If the proposition ' $A$ is $B$ ' is true, 588 then proposition ' $A$ is not- $B$ ' is false", but also the incorrect conversion: "III If the 589 proposition ' $A$ is $B$ ' is false, then the proposition ' $A$ is not- $B$ ' is true". ${ }^{50}$

### 4.5.2.4 Conceptual Possibility

Fortunately, the partial confusions and errors of Leibniz's theory of negation 592 (as described in the preceding section) are highly compensated by an ingenious 593 discovery, namely the invention of the operator of possibility or self-consistency of 594 concepts. This operator shall here be symbolized by

[^34]
## Author's Proof

4 Leibniz and the Calculus Ratiocinator

## $\mathrm{P}(A) \quad$ (" $A$ is possible").

Leibniz himself used many different locutions to express the self-consistency of 597 a concept. Instead of ' $A$ is possible' he often says ' $A$ is a thing' (" $A$ est res"), or 598 ' $A$ is being' (" $A$ est ens"), or simply ' $A$ is' (" $A$ est"). In the opposite case of an 599 impossible concept, he sometimes also calls $A$ a "false term". Now in Leibniz's 600 "Universal calculus", one can consider, in particular, the inconsistent concept $A \sim A \quad 601$ (" $A$ Not-A"), and therefore one may define that a concept $B$ is possible if and only 602 if $B$ doesn't contain a contradiction like $A \sim A$ :

Poss $1 \quad \mathrm{P}(B)={ }_{\mathrm{df}}(B \notin A \sim A) .{ }^{51}$
In order to get a clearer understanding of the truth-condition of the proposition 605 $\mathrm{P}(B)$, let it be noted that the extension of the negative concept $\sim A$ must always 606 be conceived as the set-theoretical complement of the extension of $A$, because an 607 object $x$ has the negative property $\sim A$ just in case that $x$ fails to have property $A .{ }_{608}$ Furthermore, the extension of a conjunctive concept $B C$ generally is the intersection 609 of the extension of $B$ and the extension of $C$, because $x$ has the property $B C$ if and 610 only if $x$ has both properties. From these conditions it follows that the extension of 611 $A \sim A$ is the intersection $\operatorname{Ext}(A)$ and its complement, i.e. the empty set! Hence a 612 concept $B$ is possible if and only if its extension is not contained in the empty set, 613 which in turn means that $\operatorname{Ext}(B)$ itself is not empty!

At first sight, this requirement appears inadequate, since there are certain 615 concepts - such as that of a unicorn - which happen to be empty but which may 616 nevertheless be regarded as possible, i.e. not involving a contradiction. However, 617 as Leibniz explained, e.g., in a paper on "Some logical difficulties", ${ }^{52}$ the universe 618 of discourse underlying the extensional interpretation of his logic should not be 619 taken to consist of actually existing objects only, but instead to comprise all possible 620 individuals. Therefore the non-emptiness of $\operatorname{Ext}(B)$ is both necessary and sufficient 621 for guaranteeing the self-consistency of $B$. Clearly, if $B$ is possible, then there must 622 be at least one possible individual $x$ that falls under concept $B$.

The following two laws describe some characteristic relations between the 624 possibility-operator P and other operators of the algebra of concepts: ${ }_{625}$

Poss $2 A \in B \wedge \mathrm{P}(A) \rightarrow \mathrm{P}(B)$
Poss $3 A \in B \leftrightarrow \neg \mathrm{P}(A \sim B)$.
Leibniz's own formulation of principle Poss 2: "If $A$ contains $B$ and $A$ is true, $B{ }_{627}$ also is true" prima facie sounds a bit strange, but he goes on to explain:

[^35]
## Author's Proof

$\begin{array}{ll}\text { By a false letter I understand either a false term (i.e. one which is impossible, or not-being) } & 629 \\ \text { or a false proposition. And in the same way by [a true letter] I understand either a possible } & 630\end{array}$

Hence, if the term (or concept) $A$ contains $B$ and if $A$ is "true", i.e. possible, then also 632 $B$ must be possible. This law, incidentally, might be proved as follows. Assume that $A \in B$ and that $\mathrm{P}(A)$; then also $\mathrm{P}(B)$ must hold, because otherwise $B$ would contain a 633 contradiction like $C \sim C$. But from $A \in B$ and $B \in(C \sim C)$ it would follow by Cont 2 that $A \in(C \sim C)$ which contradicts the assumption $\mathrm{P}(A)$.

The important law Poss 3, in contrast, cannot be derived from the remaining 636 laws for containment, negation, and conjunction, but has to be adopted as a fundamental axiom of the algebra of concepts. ${ }^{54}$ The systematic importance of POSS 3 is evidenced by the fact that in the "General Inquiries" Leibniz stated no less than six different versions of this law. Leibniz hit upon this crucial axiom by his investigation of propositions "secundi adjecti" vs. "tertii adjecti" which culminated in the discovery:
(151) We have, therefore, propositions tertii adjecti reduced as follows to propositions ..... 644
secundi adjecti: ..... 645
'Some $A$ are $B$ ' gives ' $A B$ is a thing' ..... 646
'Some $A$ are not $B$ ' gives ' $A$ not- $B$ is a thing' ..... 647
'Every $A$ is $B$ ' gives ' $A$ not- $B$ is not a thing' ..... 648
'No $A$ is $B$ ' gives ' $A B$ is not a thing'. ${ }^{55}$ ..... 649
With the help of the possibility-operator, the two (almost valid) laws of consistency ..... 650
NEG 5* and NEG 6* can be improved as follows: ..... 651

NEG $5 \quad \mathrm{P}(A) \rightarrow A \notin \sim A$
NEG $6 \quad \mathrm{P}(A) \rightarrow(A \in B \rightarrow A \notin \sim B)$.
As NEG 6 shows, the validity of the principle of subalternation, i.e. the inference 653 from the UA ' $A \in B$ ' to the PA ' $A \notin \sim B$ ', only presupposes that the subject term $A$ is self-consistent (and hence has a non-empty extension within the set of all possible 655 individuals).of what in propositional logic is called "ex contradictorio quodlibet":658

NEG $8 \quad(A(\sim A)) \in B .^{56} \quad 659$

[^36]
## Author's Proof

Just as the contradictory proposition $\alpha \wedge \neg \alpha$ entails any other proposition $\beta$, so the 660 contradictory concept $A(\sim A)$ contains any other concept $B!{ }^{57}$

It has often been criticized that Leibniz's logic lacks the operator of conceptual 662 disjunction. Although this is by and large correct, it doesn't imply any defect or any 663 incompleteness of his algebra of logic because the "missing" operator may simply 664 be introduced by definition:

DISJ $1 \quad A \vee B={ }_{\mathrm{df}} \sim(\sim A \sim B) .{ }^{58}$ 666

On the background of the above axioms of negation, the standard laws for 667 disjunction, e.g.

DisJ $2 A \in(A \vee B)$
Disj $3 \quad B \in(A \vee B)$
Disj $4 \quad A \in C \wedge B \in C \rightarrow(A \vee B) \in C$,
may easily be derived from corresponding laws of conjunction. More generally, as 670 was shown in Lenzen (1984), Leibniz's "intensional" logic of concepts turns out to 671 be provably equivalent, or isomorphic, to Boole's extensional algebra of sets, and 672 in this sense Leibniz really managed to transform the theory of the syllogism into a 673 complete and sound algebra of concepts.

### 4.5.3 Indefinite Concepts, Quantifiers, and Individual Concepts

Leibniz's quantifier logic emerges from the algebra of concepts by the introduction of so-called "indefinite concepts". These concepts are symbolized by letters from 678 the end of the alphabet $X, Y, Z \ldots$, and they function as quantifiers ranging over 679 concepts. Thus in the "General Inquiries" Leibniz explained:
(16) An affirmative proposition is ' $A$ is $B$ ' or ' $A$ contains $B$ ' [...]. That is, if we substitute the

[^37]
## Author's Proof

something undetermined, so that ' $B Y$ ' is the same as 'Some $B$ ', or 'a $\ldots$ animal' [...], or 'a ${ }^{684}$ certain animal'. So ' $A$ is $B$ ' is the same as ' $A$ coincides with some $B$ ', i.e. ' $A=B Y$ '. ${ }^{59}$

With the help of the modern symbol for the existential quantifier, $\exists$, the latter law 686 can be expressed more precisely as follows:

Cont $4 \quad A \in B \leftrightarrow \exists Y(A=B Y)$.
As Leibniz himself noted, the formalization of the UA according to Cont 4 is 689 provably equivalent to the simpler representation according to CONT $3 .{ }^{60}$ On the 690 one hand, according to the rule of existential generalization, $\quad 691$

Exist 1 If $\alpha[A]$, then $\exists Y \alpha[Y]$, 692
$A=A B$ immediately entails $\exists Y(A=Y B)$. On the other hand, if there exists some $Y{ }_{693}$ such that $A=Y B$, then according to IDEN $6, A B=Y B B$, i.e. $A B=Y B$ and hence (by 694 the premise $A=Y B) A B=A .{ }^{61}$

Next observe that Leibniz often used to formalize the PA 'Some $A$ is $B$ ' by means 696 of an indefinite concept as ' $Y A \in B$ '. In view of CONT 3, this representation might 697 be transformed into the (elliptic) equation $Y A=Z B$. However, both formalizations 698 are somewhat inadequate because they are theorems of Leibniz's quantifier logic! 699 According to Conj 4, $B A \in B$, hence by Exist 1: 700

Conj $6 \exists Y(Y A \in B)$.
Similarly, since, according to CONJ 3, $A B=B A$, a twofold application of EXIST 1702 yields:

Conj $7 \quad \exists Y \exists \mathrm{Z}(Y A=Z B)$.
These tautologies, of course, cannot adequately represent the PA which for an 705 appropriate choice of concepts $A$ and $B$ may become false! In order to resolve these 706 difficulties, consider a draft of a calculus probably written between 1686 and 1690, 707 where Leibniz proved principle:

NEG 9* $\quad A \notin B \leftrightarrow \exists Y(Y A \in \sim B) .{ }^{62}$
On the one hand, it is interesting to see that after first formulating the right hand side of the equivalence, "as usual", in the elliptic way ' $Y A$ is Not- $B$ ', Leibniz later 71 paraphrased it by means of the explicit quantifier expression "there exists a $Y$ such 712 that $Y A$ is Not- $B^{\prime \prime}$. On the other hand, Leibniz discovered that NEG 8* has to be 713 improved by requiring more exactly that there exists a $Y$ such that $Y A$ contains $\sim B 714$ and $Y A$ is possible, i.e. $Y$ must be compatible with $A$ :

[^38]
## Author's Proof

NEG $9 \quad A \notin B \leftrightarrow \exists Y(\mathrm{P}(Y A) \wedge Y A \in \sim B)$. ..... 716
Leibniz's proof of this important law is quite remarkable: ..... 717
(18) [...] to say ' $A$ isn't $B$ ' is the same as to say 'there exists a $Y$ such that $Y A$ is Not- $B$ '. If ..... 718
' $A$ is $B$ ' is false, then ' $A$ Not- $B$ ' is possible by [Poss 2]. 'Not- $B$ ' shall be called ' $Y$ '. Hence ..... 719
$Y A$ is possible. Hence $Y A$ is Not- $B$. Therefore we have shown that, if it is false that $A$ is $B$, ..... 720
then $Y A$ is Not- $B$. Conversely, let us show that if $Y A$ is Not- $B$, ' $A$ is $B$ ' is false. For if ' $A$ is ..... 721
$B$ ' would be true, ' $B$ ' could be substituted for ' $A$ ' and we would obtain ' $Y B$ is Not- $B$ ' which ..... 722is absurd. ${ }^{63}$723
To conclude the sketch of Leibniz's quantifier logic, let us consider some of thefew passages where an indefinite concept functions as a universal quantifier. In the725
above quoted draft, Leibniz put forward principle "(15) ' $A$ is $B$ ' is the same as 'If $L$ ..... 726
is $A$, it follows that $L$ is $B$ '", i.e.: ..... 727Cont $5 A \in B \leftrightarrow \forall Y(Y \in A \rightarrow Y \in B) .{ }^{64}$728
Furthermore, in § 32 GI , Leibniz at least vaguely recognized that just as $A \in B$ ..... 729
(according to CONJ 6) is equivalent to $\exists Y(A=Y B)$, so the negation $A \notin B$ means ..... 730
that, for any indefinite concept $Y, A \neq B Y$ : ..... 731
Cont $6 \quad A \notin B \leftrightarrow \forall Y(A \neq Y B)$. ..... 732
According to the text-critical edition, Leibniz had written: ..... 733
(32) The negative proposition ' $A$ does not contain $B$ ', or it is false that $A$ is (or contains) $B$, ..... 734 or $A$ does not coincide with $B Y .{ }^{65}$ ..... 735
Unfortunately, the passage 'or $A$ does not coincide with $B Y$ ' ("seu $A$ non coincidit ..... 736
$B Y^{\prime \prime}$ ) had been overlooked by Couturat and it is therefore also missing in Parkinson's ..... 737
translation! Anyway, with the help of ' $\forall$ ', one can formalize Leibniz's conception ..... 738
of individual concepts as maximally-consistent concepts as follows: ..... 739
Ind $1 \quad \operatorname{Ind}(A) \not \leftrightarrow_{\mathrm{df}} \mathrm{P}(A) \wedge \forall Y(\mathrm{P}(A Y) \rightarrow A \in Y)$. ..... 740
Thus $A$ is an individual concept iff $A$ is self-consistent and $A$ contains every concept ..... 741
$Y$ which is compatible with $A$. The underlying idea of the completeness of individual ..... 742
concepts had been formulated in § 72 of the "General Inquiries" as follows: ..... 743
So if $B Y$ is ["being"], and the indefinite term $Y$ is superfluous, i.e., in the way that 'a certain ..... 744
Alexander the Great' and 'Alexander the Great' are the same, then $B$ is an individual. If the ..... 745$B=C^{66}$746747

[^39]
## Author's Proof

# Note, incidentally, that InD 1 might be simplified by requiring that, for each concept 

$Y, A$ either contains $Y$ or contains $\sim Y$ : 749
Ind $2 \operatorname{Ind}(A) \leftrightarrow \forall Y(A \in \sim Y \leftrightarrow A \notin Y)$.
As a corollary it follows that the invalid principle NEG 7*, which Leibniz again and 751 again had considered as valid, in fact holds only for individual concepts:

Neg $7 \quad \operatorname{Ind}(A) \rightarrow(A \notin B \rightarrow A \in \sim B)$.
Already in the "Calculi Universalis Investigationes" of 1679, Leibniz had pointed out:
[...] if two propositions are given with exactly the same singular [!] subject, where the predicate of the one is contradictory to the predicate of the other, then necessarily one proposition is true and the other is false. But I say: exactly the same [singular] subject, for example, 'This gold is a metal', 'This gold is a not-metal'. ${ }^{67}$

The crucial issue here is that NEG 7 holds only for an individual concept like, 760 e.g., 'Apostle Peter', but not for general concepts as, e.g., 'man'. The text-critical apparatus of the Academy Edition reveals that Leibniz was somewhat diffident about this decisive point. He began to illustrate the above rule by the correct example "if I say 'Apostle Peter was a Roman bishop', and 'Apostle Peter was not a Roman bishop'" and then went on, erroneously, to generalize this law for arbitrary terms: "or if I say 'Every man is learned' 'Every man is not learned'." Finally he noticed this error "Here it becomes evident that I am mistaken, for this rule is not valid." ${ }^{68}$

### 4.5.4 "Real Addition and Subtraction": Some Building Blocks of Elementary Set-Theory

The so-called Plus-Minus-Calculus was mainly developed in the "Specimen Calculi Coincidentium et Inexistentium" and in the "Non inelegans specimen demonstrandi in abstractis" of around 1687. ${ }^{69}$ Strictly speaking, it is not a logical calculus but modern systems of set-theory, however, Leibniz's calculus has no counterpart of 776 the relation ' $x$ is an element of $A$ '; and it also lacks the operator of "negation", i.e. set-theoretical complement! The complement of set A might, though, be defined

[^40]
## Author's Proof

with the help of the subtraction operator as ( $U-A$ ) where the constant ' $U$ ' designates 779 the universe of discourse. But, in Leibniz's calculus, this additional logical element 780 is lacking.

Leibniz's drafts exhibit certain inconsistencies which result from the experimen- 782 tal character of developing the laws for "real" addition and subtraction in close 783 analogy to the laws of arithmetical addition and subtraction. The genesis of this 784 idea is described in detail in Lenzen $(1989,2000)$. The inconsistencies might be 785 removed basically in two ways. First, one might restrict $A-B$ to the case where $B$ is 786 contained in $A$; such a conservative reconstruction of the Plus-Minus-Calculus has 787 been developed in Dürr (1930). The second, more rewarding alternative consists in 788 admitting the operation of »real subtraction« $A-B$ also if $B$ is not contained in $A$. In 789 any case, however, one has to give up Leibniz's idea that subtraction might yield 790 "privative" entities which are "less than nothing". 791

In the following reconstruction, Leibniz's symbols ' + ' for the addition (i.e. 792 union) and '-' for the subtraction of sets are retained, while his informal expressions 793 'Nothing' ("nihil") and 'is in' ("est in") are replaced by the modern symbols 794 ' $\varnothing$ ' and ' $\subseteq$ '. Set-theoretical identity may be treated either as a primitive or as a 795 defined operator. In the former case, inclusion can be defined either by $A \subseteq B={ }_{\mathrm{df}} 796$ $\exists Y(A+Y=B)$ or simpler as $A \subseteq B={ }_{\mathrm{df}}(A+B=B)$. If, conversely, inclusion is 797 taken as primitive, identity can be defined as mutual inclusion: $A=B={ }_{\mathrm{df}}(A \subseteq B) 798$ $\wedge(B \subseteq A) .{ }^{70}$ Set-theoretical addition, of course, is symmetric, or, as Leibniz puts it, 799 "transposition makes no difference here" 71 : 800

## Plus $1 \quad A+B=B+A$.

The main difference between arithmetical addition and "real addition" is that the 802 addition of one and the same "real" thing (or set of things) doesn't yield anything 803 new:

Plus $2 \quad A+A=A$.

The "real nothing", i.e. the empty set $\varnothing$, is characterized as follows: "It does not 809 matter whether Nothing is put or not, i.e. $A+\mathrm{Nih} .=A^{" 73}$ : 810
Nihil $1 \quad A+\varnothing=A$. 811
In view of the relation $(A \subseteq B) \leftrightarrow(A+B=B)$, this law can be transformed into:

[^41]
## Author's Proof

NIHIL $2 \quad \varnothing \subseteq A . \quad 813$
"Real" subtraction may be regarded as the converse operation of addition: "If the 814 same is put and taken away [...] it coincides with Nothing. I.e. $A[\ldots]-A[\ldots]=815$ $N^{י 74}$ :

Minus $1 \quad A-A=\varnothing$.
Leibniz also considered the following principles which in a stronger form express 818 that subtraction is the converse of addition:

Minus 2* $\quad(A+B)-B=A$
Minus 3* $\quad(A+B)=C \rightarrow C-B=A$.
But he soon recognized that these laws do not hold in general but only in the 82 special case where $A$ and $B$ are "uncommunicating". ${ }^{75}$ The new operator of 822 "communicating" sets has to be understood as follows: 823

If something, $M$, is in $A$, and the same is in $B$, this is said to be 'common' to them, and they 824 will be said to be 'communicating' ${ }^{76}$

Hence two sets $A$ and $B$ have something in common if and only if there exists some 826 set $Y$ such that $Y \subseteq A$ and $Y \subseteq B$. Now since, trivially, the empty set is included in ${ }_{827}$ every set (cf. NiHIL 2), one has to add the qualification that $Y$ is not empty:

COMMON $1 \quad \operatorname{Com}(A, B) \leftrightarrow_{\mathrm{df}} \exists Y(Y \neq \varnothing \wedge Y \subseteq A \wedge Y \subseteq B)$.
The necessary restriction of Minus 2* and Minus 3* can then be formalized as 830 follows:

Minus $2 \neg \operatorname{Com}(A, B) \rightarrow((A+B)-B=A)$
Minus $3 \neg \operatorname{Com}(A, B) \wedge(A+B=C) \rightarrow(C-B=A)$.
Similarly, Leibniz recognized that from an equation $A+B=A+C, A$ may be 833 subtracted on both sides provided that $C$ is "uncommunicating" both with $A$ and 834 with $B$, i.e.:

Minus $4 \neg \operatorname{Com}(A, B) \wedge \neg \operatorname{Com}(A, C) \rightarrow(A+B=A+C \rightarrow B=C))^{77} \quad 836$
Furthermore Leibniz discovered that the implication in MinUS 2 may be 837 converted (and hence strengthened into a biconditional). Thus one obtains the 838 following criterion: Two sets $A, B$ are "uncommunicating" if and only if the result 839 of first adding and then subtracting $B$ coincides with $A$. Inserting negations on both 840 sides of this equivalence one obtains:

[^42]
## Author's Proof

## Common $2 \quad \operatorname{Com}(A, B) \leftrightarrow((A+B)-B) \neq \mathrm{A}$.

Whenever two sets $A, B$ are communicating or "have something in common", the ${ }^{843}$ intersection of $A$ and $B$, in modern symbols $A \cap B$, is not empty, i.e.: 844

Common $3 \quad \operatorname{Com}(A, B) \leftrightarrow A \cap B \neq \varnothing .{ }^{78}$
Furthermore, "What has been subtracted and the remainder are uncommunicat- 846 ing", ${ }^{79}$ i.e.:

Common $4 \neg \operatorname{Com}(A-B, B)$.
Leibniz further discovered the following formula which permits to "calculate" the 849 intersection or "commune" of $A$ and $B$ by a series of additions and subtractions:

InTER $1 \quad A \cap B=B-((A+B)-A)$.
In a small fragment (C., p. 250) he explained:
Suppose you have $A$ and $B$ and you want to know if there exists some $M$ which is in both of 853 them. Solution: combine those two into one, $A+B$, which shall be called $L[\ldots]$ and from $L$ one of the constituents, $A$, shall be subtracted [...] let the rest be $N$; then, if $N$ coincides with the other constituent, $B$, they have nothing in common. But if they do not coincide, they have something in common which can be found by subtracting the rest $N[\ldots]$ from $B$ [...] and there remains $M$, the commune of $A$ and $B$, which was looked for.
In this way Leibniz gradually transformed the theory of arithmetical addition and 859 subtraction into a fragment of the theory of sets. It is interesting to see how the 860 incompatibility between the characteristic axiom of set-theoretical union, PLUS 1, 861 and certain laws which hold only for numbers lead him to the discovery of new 862 operators like 'Com' and ' $\cap$ ' which have no counterpart in elementary arithmetic. ${ }^{863}$

## References

## Leibniz's Works and Manuscripts

(A) Deutsche Akademie der Wissenschaften (Ed.). Sämtliche Schriften und Briefe, quoted 866 according to series (I-VIII) and volume. Cf. in particular series VI, Philosophische Schriften. 867 Darmstadt 1930, Berlin 1962 ff.
(C.) Couturat, L. (Ed.). Opuscules et fragments inédits de Leibniz. Paris 1903, reprint Hildesheim 869 1961.
(GP) Gerhardt, C. I. (Ed.). Die philosophischen Schriften von Gottfried Wilhelm Leibniz, 7871 volumes, Berlin 1875-1890, reprint Hildesheim 1965; quoted according to volume and page.

[^43]
## Author's Proof

(GRUA) Grua, G. (Ed.). G. W. Leibniz - Textes inédits, Paris 1948 (2 volumes). 873
(LH) Bodemann, E. Die Leibniz-Handschriften der Königlichen öffentlichen Bibliothek zu Han- 874 nover, Hannover \& Leipzig 1895, reprint Hildesheim 1966.8875

## Secondary Literature

Ariew, R., \& Garber, D. (Eds.). (1989). G. W. Leibniz - philosophical essays. Indianapolis: Hackett. 877
Arnauld, A., \& Nicole, P (1683) La Logique ou L'Art de Penser (5th ed.), reprint Paris 1965. 878
Couturat, L. (1901). La Logique de Leibniz d'aprés des documents inédits. Paris, reprint 879 Hildesheim 1985.
Dürr, K. (1930). Neue Beleuchtung einer Theorie von Leibniz - Grundzüge des Logikkalküls. 881 Darmstadt: O. Reichl. 882
Lenzen, W. (1983). Zur extensionalen und >intensionalen<< Interpretation der Leibnizschen 883 Logik. Studia Leibnitiana, 15, 129-148. 884
Lenzen, W. (1984). Leibniz und die Boolesche Algebra. Studia Leibnitiana, 16, 187-203. 885
Lenzen, W. (1986). 'Non est' non est 'est non' - Zu Leibnizens Theorie der Negation. Studia 886 Leibnitiana, 18, 1-37. 887
Lenzen, W. (1989). Arithmetical vs. 'Real' addition - a case study of the relation between logic, 888 mathematics, and metaphysics in Leibniz. In N. Rescher (Ed.), Leibnizian inquiries - a group 889 of essays (pp. 149-157). Lanham: University Press of America. 890
Lenzen, W. (1990). Das System der Leibnizschen Logik. Berlin: de Gruyter. 891
Lenzen, W. (2000). Guilielmi Pacidii Non plus ultra - oder - Eine Rekonstruktion des Leibnizschen 892 Plus-Minus-Kalküls. Philosophiegeschichte und logische Analyse, 3, 71-118. 893
Lenzen, W. (2004). Logical criteria for individual(concept)s. In M. Carrara, A. M. Nunziante, \& 894 G. Tomasi (Eds.), Individuals, minds, and bodies: Themes from Leibniz (pp. 87-107). Stuttgart: 895 Franz Steiner Verlag.
Lukasiewicz, J. (1951). Aristotle's syllogistic - From the standpoint of modern formal logic. 897 Oxford: Clarendon Press. 898
Mackensen, L. v. (1990). Die ersten dekadischen und dualen Rechenmaschinen. In 899 Stein/Heinekamp, pp. 52-61. 900
Parkinson, G. H. R. (Ed.). (1966). Leibniz logical papers - A selection. Oxford: Clarendon Press. 901
Quine, W. V. O. (1953). From a logical point of view. New York: Harper and Row. 902
Rescher, N. (2012). Leibniz and cryptography - An account on the occasion of the initial exhibition 903 of the reconstruction of Leibniz's Cipher Machine. Pittsburgh: University Library System, 904 University of Pittsburgh.
Rogers, H., Jr. (1963). An example in mathematical logic. The American Mathematical Monthly, 906 70, 929-945.
Sanchez-Mazas, M. (1979). Simplification de l'arithmétisation leibnitienne de la syllogistique 908 par l'expression arithmétique de la notion intensionelle du > non ens<<. Studia Leibnitiana 909 Sonderheft, 8, 46-58. 910
Smith, D. E. (Ed.). (1929). A source book in mathematics (Vol. 1). New York: Dover Publications. 911
Sotirov, V. (1999). Arithmetizations of Syllogistic à la Leibniz. Journal of Applied Non-Classical 912 Logics, 9, 387-405.
Stein, E., \& Heinekamp, A. (1990). Gottfried Wilhelm Leibniz - Das Wirken des großen 914 Philosophen und Universalgelehrten als Mathematiker, Physiker, Techniker. Hannover: 915 Gottfried-Wilhelm-Leibniz-Ges. 916

## Author's Proof

## Metadata of the chapter that will be visualized online

| Chapter Title | Mathematics and Mechanical Computation |
| :---: | :---: |
| Copyright Year | 2018 |
| Copyright Holder | Springer International Publishing AG, part of Springer Nature |
| Corresponding Author | Family Name Swade <br> Particle  <br> Given Name Doron <br> Suffix  <br> Division Department of Computer Science <br> Organization Royal Holloway University <br> Address <br> Email doron.swade@ UK |
| Abstract | The interplay of mathematics and machine is explored through early physical aids from pebbles to the 'analytical machines' of the nineteenth century. The earliest speculations on the nature and potential of computing machines are traced through the work of Charles Babbage for whom calculating engines represented a new technology for mathematics. Babbage's Analytical Engine, a mechanical embodiment of mathematical analysis, and his Mechanical Notation, a universal language of signs and symbols, are described. Ideas prompted by the intersection of mathematics and machine are discussed: the physicalisation of memory and the implications for coding, algorithmic programming, machine solution of equations, heuristics, computation as systematic method, halting, and numerical analysis. A brief Epilogue links this material to the modern era. |
| Keywords (separated by "-") | History of computing - Charles Babbage - Analytical engine Mechanical notation - Nineteenth century |

## Author's Proof

# Chapter 5 1 <br> Mathematics and Mechanical <br> Computation 

Doron Swade


#### Abstract

what cannot be investigated and understood mechanically, cannot be investigated and understood at all - Thomas Carlyle 6 (1829)


#### Abstract

The interplay of mathematics and machine is explored through early 8 physical aids from pebbles to the 'analytical machines' of the nineteenth century. 9 The earliest speculations on the nature and potential of computing machines are traced through the work of Charles Babbage for whom calculating engines 11 represented a new technology for mathematics. Babbage's Analytical Engine, a 12 mechanical embodiment of mathematical analysis, and his Mechanical Notation, 13 a universal language of signs and symbols, are described. Ideas prompted by 14 the intersection of mathematics and machine are discussed: the physicalisation 15 of memory and the implications for coding, algorithmic programming, machine 16 solution of equations, heuristics, computation as systematic method, halting, and 17 numerical analysis. A brief Epilogue links this material to the modern era.


### 5.1 Introduction

Computing looks to its origins in early counting systems, and from earliest times 20 practitioners have sought, through the use of physical aids, to offset human 21 deficiencies of memory, computational ability, and trust. 22

As a medium of record physical aids have a long history. The use of knotted 23 cords dates back to Biblical times in Old Testament references to knots as religious 24 reminders as well as a record of dimensions of the temple to be. Roman tax 25 collectors used knotted strings to record tax liabilities and payments. A system of 26 knotted cords, quipu, were used by American Indians in the fifteenth and sixteenth ${ }^{27}$

[^44]
## Author's Proof

centuries to record numerical data and also as a prompt for the recollection of 28 historical events (Williams 1985: 35-6).

Material artefacts were enlisted to ensure accountability when trust and probity 30 were at issue. Notched Tally Sticks to record sums of money, usually debts, date 31 back some 8000 years. Such sticks were used in Medieval Europe to record tax 32 liabilities or the amount of a debt. Split Tally Sticks were adopted in the thirteenth ${ }_{33}$ to nineteenth centuries by the English exchequer to record tax liabilities. Notches 34 scored across the stick represented the sum owed or deposited, and the stick was split 35 lengthwise, along the grain, into two matching pieces similarly scored. The slimmer 36 piece was called the 'foil' and was held by the bank or Exchequer while the larger 37 piece, the 'stock' was held by the depositor or debtor. The device served not only 38 as a record of a loan and its partial repayments, but also as protection against one or 39 another of the parties swindling the other as fraudulently modifying the marks by 40 one party would create a mismatch when the two halves were later compared. The 41 words 'counterfoil' and 'stock holder' are legacies of this practice.

The transition from counting to calculation can be found in calculi, small 43 pebbles, used as markers or tokens freely placed on Roman counting boards. In 44 the abacus with beads threaded on wires in a frame we find incipient mechanism - 45 motion under mechanical constraint. Like the quipu and the counting board, the 46 abacus uses a positional system of value in which the placement of the bead 47 represents numerical value.

The European Enlightenment saw a surge in calculating aids. Analog devices 49 with graduated scales for calculation and measurement were the mainstay of calcu- 50 lation from the seventeenth century onwards. The quadrant, sector and proportional 51 compass are some. John Napier's eponymous Napier's Bones, described in 1617, 52 consisting of a set of inscribed slats or rods, was a device to aid mainly paper-and- 53 pen multiplication and division. There is nothing macabre in the name which derives 54 from the fact that upmarket versions of the device were made from bone, horn or 55 ivory, rather than wood.

Slide rules, with logarithmically graduated scales, were publicised in the 1630 s 57 following the introduction of logarithms by Napier in 1614. The most favoured 58 of these for general use were 'universal' slide rules for multiplication, division, 59 logarithmic and trigonometric functions. These had many variants some exotically 60 specific: estimating excise duties (conversions scales for cubic inches to bushels, 61 finding the mean diameter of a cask), calculating the volume of timber, the weight 62 of cattle, estimating varieties of interest rates, and scales for a host of specialised 63 engineering applications (Baxandall 1926). Slide rules offered the convenience of 64 portability and robustness, and were widely used for the next 350 years for rapid 65 calculation where accuracy of two to four digit places would suffice (Horsburgh 66 1914).

But the algorithmic rule still resided in the human operator upon whom the 68 execution of the calculation depended. The seventeenth century saw several early 69 stirrings to incorporate computational rule in mechanism. Savants in Continental 70 Europe sought to produce mechanical devices for simple arithmetic. Wilhelm 71 Schickard built his 'Calculating Clock' (1623), Blaise Pascal, his 'Pascaline' (1642), 72

## Author's Proof

and Gottfried Wilhelm Leibniz his 'Reckoner' (1674) (Martin 1925). The Leibniz's 73 Reckoner introduced an innovative stepped drum that was the basis of calculator 74 designs for the next two centuries. Decimal numbers were entered, sometimes using 75 a stylus, on circular dials or sliders, and results, the outcome mainly of simple 76 addition with carriage of tens, were displayed on engraved or annotated discs. The 77 Reckoner is celebrated more for its ambition than for any practical accomplishment: 78 the 'carriage of tens' failed to work as intended and only one, a largely unsuccessful 79 prototype, appears to have been made (Morar 2015). The Pascaline stimulated 80 philosophical debate about the mechanisation of mental process. Models were 81 paraded before royalty, and demonstrated in the drawing rooms of merchants, 82 government officials, aristocrats, and university professors. Most were ornate and 83 expensive, philosophical novelties, insufficiently robust for daily use, and not many 84 were made.

For all the ingenuity of their makers and their seriousness of purpose, mechanical 86 calculators prior to the nineteenth century were largely objets de salon, many 87 exquisite and delicate, sumptuous testaments to the instrument maker's art, but 88 unsuited to daily use in trade, finance, commerce, science or engineering.

The mechanical calculator that made a serious bid for widespread take-up was the 90 arithmometer, patented and made public by Thomas de Colmar in 1820, and became 91 the vanguard of mechanical calculator development in the nineteenth century 92 (Johnston 1997). This was a desk-top device with sliders for entering numbers, 93 numbered dials to display results, a moveable carriage for shifting decades, and 94 a rotary crank handle. While often described as the first successful commercial 95 calculator, the arithmometer was far from an instant success. It took over fifty 96 years of modification and improvement before commanding even a small market. 9 A contemporary government report evaluating utility of arithmometers records 98 that even in the 1870s, they were troublesome, noisy, subject to derangement, 99 imprecisely made, and in frequent need of repair (Mowatt 1893; Henniker 1893; 100 Swade 2003a: 35-9). Arithmometers went on to sell in the tens of thousands but 101 it had taken the better part of a century for them to mature as a product (Johnston 102 1997; Mounier-Kuhn 1999).

The function of these devices depends on the ability of the mechanism to 104 manipulate physical representations of numerical value, and their mathematical 105 capabilities were bounded by the state of contemporary mechanics. Unreliability 106 was one issue, digit precision another. Arithmometers, for example, typically 107 featured no more than six or eight digits. Here the limiting mechanism was the 108 carriage of tens. In the worst case of a 1, say, being added to a row of 9s, the carriage 109 of tens needed to propagate across each digit position as it altered 9s to 0s. The 110 action followed a digit-to-digit causal sequence and to effect this domino or ripple- 111 through carry the force required to advance all the digit wheels is derived from a 112 single motion - the addition of 1 to the least significant digit. With calculators made 113 of wood, ivory and soft workable metals digit precision was limited by the strength 114 of the material transferring force from the manual dial, knob, or handle to the all of 115 the digit positions in the same action.

## Author's Proof

There were other generic deficiencies in manual calculators that further inhibited their use. Multiplying two numbers using an arithmometer is accomplished by the accumulation of partial products. The operator enters the digits of the multiplier on sliding dials, rotates a handle the correct number of times for the current digit of the multiplier, lifts and correctly repositions the moveable carriage, and repeats this process for each next digit of the multiplier. Use of the device requires the continuous informed intervention of the operator and the correctness of the final result relies, not only on the repeated correct mechanical functioning of the device, but on the faultless execution by an operator of a sequence of physical manipulations. Only a limited part of the computational process is embodied in the mechanism (addition and the carriage of tens) with the overall computational algorithm provided not by the device but by the operator.

A further limitation was the absence of a permanent record of the outcome. Each new calculation replaces the last set of numbers in the mechanism, and the only way of retaining a record of prior or intermediate results is for the operator to note the contents of the registers by writing them down. Such transcription was again dependent on human agency with each manual operation in the sequence susceptible to error.

In the face of such constraints the mathematical ambitions of the calculator makers were modest confined as they were to four-function arithmetic at best, and while the struggle to produce viable devices that were more than aspirational novelties continued, practitioners, needing to perform other than elementary calculations relied for the most part on printed mathematical tables, or the slide rule. By a curious twist it was the reliance on printed tables that led to the game-changing episode. And it was the promise of mechanised mathematics that played a decisive role in subsequent change.

### 5.2 Mechanical Computation

The event that lifted the prospects for computational machines from the hands of

## Author's Proof

The technique of double computation was not foolproof: it was not unknown for 158 computers who, despite insulation from each other, produced the same incorrect 159 result, and these would elude detection using coincidence checks (Swade 2003b: 160 151-3).

Herschel and Babbage met to compare the two newly computed tables. During 162 the process, Babbage, increasingly dismayed by the many discrepancies, exclaimed 163 'I wish to God these calculations had been executed by steam' (Hyman 1988: 46). 164 'Steam' can be read as a metaphor for the infallibility of machinery, as well as for 165 the model of industrial production to solve the problem of supply. With machine as 166 factory and number as product, tables, like manufactured goods, could be produced 167 at will. In Babbage's invocation of steam we have an essential extension of the 168 model of industrial production from goods to information, from physical to mental, from matter to mind (Schaffer 1994).

There are three accounts by Babbage of the meeting with Herschel, dating 171 from 1822, 1834 and 1839 (Collier 1990: 14-8). The first account leaves it open as to whether it was Babbage or Herschel that made the suggestion of solution by machine. In the second and third accounts Babbage claims ownership of the suggestion for himself. The third account is the most dramatic and is the only one to include direct speech. All three accounts refer to steam. Babbage may well have dramatised the episode or aggrandised his role appropriating more credit with each retelling. But that the episode occurred, and was the jumping-off point for the half-century that followed in which Babbage's devoted the major part of his efforts to design and build automatic calculating engines, is well evidenced by published 179 accounts that Herschel, who was party to the original event, neither questioned nor contradicted.

Even with an automatic calculating engine the production of tables would not eliminate human agency in its entirety. The practices in the production of printed tables had remained unchanged for centuries and involved five essential stages: calculation by hand of each tabular result, the transcription of these results into a tabular format suitable for typesetting, typesetting in loose type by a compositor, printing copies in a conventional printing press and, finally, verification and 188 proof-checking results. In Babbage's aspirational world the 'unerring certainty 189 of mechanical agency' (Lardner 1834: 311) would ensure error-free calculation; 190 having the machine typeset results automatically would eliminate transcription 191 and typesetting errors; the automatic production of stereotype plates during the 192 calculating cycle would serve as moulds for the production of printing plates and 193 would eliminate printing errors - the displacement of loose type by adhesion 194 to sticky ink, for example - and automatically printing a checking copy would 195 assist proof reading. 'It is only by the mechanical fabrication of tables that such 196 [human] errors can be rendered impossible' asserted Dionysius Lardner in his 197 grandiloquent advocacy of Babbage's Engine (Lardner 1834: 282). So at least in 198 prospect Babbage's intended machine would, at a stroke, eliminate the risk of 199 human error to which each of the manual processes was prone, and error-free 200 tables would be available on demand. Astronomers were one group of potential 201 beneficiaries. No longer would they need to petition a reluctant Astronomer Royal 202

## Author's Proof

to compile tables for the trajectory of newly observed celestial bodies and incur 203 inevitable delay. They would be able to produce tables on demand. 204

Fired up by the meeting with Herschel, Babbage was seized by the idea of 205 automatic machine calculation, and he immediately began drafting exploratory 206 designs for his difference engine, so called because of the mathematical principle 207 on which it was based, the method of finite differences - an established method 208 of manual calculation used by table-makers. Rather than evaluating the required 209 function $a b$ initio for each successive value of the table by repeated substitution of 210 the argument uniformly incremented for each new entry, the method consisted of 21 first finding the value of the function for relatively widely space intervals of the 212 argument to yield a set of 'pivotal values', and then finding intermediate values by 213 interpolation. The favoured technique was interpolation by subtabulation using the 214 method of finite differences. The first use of the technique is not known. It may have 215 originated with Henry Briggs who described it in 1624 though the term 'method of 216 differences' appears not to have been adopted till the nineteenth century (Lindgren 217 1990: 311).

Examining more exactly the processes and division of labour involved in pre- 219 mechanised tabulation helps to clarify the role a difference engine was intended 220 to play. Tabulation by differences started with mathematicians who chose the 221 formulae for the function to be tabulated, chose the particular form (typically a series 222 expansion), fixed the range of the table (the start and end values of the independent 223 variable), decided the number of decimals to be worked to, and calculated the pivotal 224 values. The mathematicians also calculated the initial differences required to start 225 the process and these, together with the pivotal values, the starting line of initial 226 values, and a set of procedural instructions, were given to the human computers. 227 Starting with the first pivotal value the computers calculated each next tabular value 228 by the repeated addition of differences. The $n^{\text {th }}$ difference was added to the $(n-1)^{\text {th }}{ }_{229}$ difference, the $(n-1)^{\text {th }}$ to the $(n-2)^{\text {th }}$ and so on, until the first difference was added 230 to the last tabular result to yield the next tabular value. Each repetition of the train 231 of additions generated the next tabular value and the process of repeated additions 232 continued until the new pivotal value was reached. Subtabulation runs of as many 233 as one hundred to two hundred values between pivotal values were not uncommon. 234

The hierarchy of skills involved is exemplified by the great French cadastral 235 tables project led by Gaspard Francois de Prony in the late eighteenth century 236 (Grattan-Guinness 2003; Swade 2003a: 56-62). The tables project, directed by de ${ }_{237}$ Prony, which aimed, amongst other things, to monumentalise the French metric 238 system, was the most ambitious single tabulation project undertaken to that time. ${ }^{239}$ de Prony, France's leading civil engineer, was charged with preparing a set of 240 trigonometric and logarithmic tables of unprecedented scope, scale and precision. 241 He distributed the work to three groups reflecting the hierarchy of mathematical 242 skills involved. The preparatory mathematical work was split between two groups ${ }^{243}$ of mathematicians, five or six high ranking mathematicians notable amongst whom 244 were Legendre and Carnot, and seven or eight lesser mathematicians who calculated 245 the pivotal values and starting values for the computers. The third group was the 246 largest and consisted of sixty to eighty computers. These had no more than an 247

## Author's Proof

elementary knowledge of arithmetic and carried out the most laborious and repeti-
tive part of the process. The guillotining of the aristocracy had hit the hairdressing 249
trade and the market for elaborate coiffures was in recession. The hairstyles of the 250 aristocracy became a loathed symbol of the defunct pre-revolutionary regime and many of the computers were unemployed hairdressers who turned their hands to 252 rudimentary arithmetic (Grattan-Guinness 1990).253

Babbage was familiar with de Prony's project and greatly admiring of it. His 254 engine would be used exclusively for interpolation using the method of differences and he calculated that interpolation by machine would reduce de Prony's workforce from ninety five to twelve, the greatest savings being made by replacing the entire group of computers. The machine would replace only the largely 'mechanical' work of the human computers. The role of the mathematicians was largely unaffected.

While tabular errors feature prominently in the historical narrative of Babbage's 55 efforts it would be a mistake to take the elimination of error as the enduring motive 26 for Babbage's interest in machine computation let alone its sole purpose. There 262 is clear evidence that the primacy of errors in Babbage's motivational landscape 263 has been over-emphasised, and a close reading of his earliest writings on his 264 expectations for his machines demonstrates a parallel and possibly superordinate 265 interest in the mathematical potential of mechanised computation that has been largely overlooked (Swade 2003a: 164-173, 2011: 246-8).
(Swade 203a: 164 173,2011:2468).

### 5.3 Mathematics and Machines

By the spring of 1822 Babbage had made a small working model of a Difference Engine powered by a falling weight. The model has come to be known as 270 'Difference Engine 0' (DE0) as it predates the later Difference Engine No. 1. ${ }^{27}$ The machine has never been found but from Babbage's descriptions we know that 272 numerical value was represented by the rotation of geared wheels called 'figure 273 wheels' inscribed with decimal numbers 0 through 9, and that multi-digit numbers 274 were represented by figure wheels stacked in vertical columns. DE0 was capable 275 of automatically tabulating quadratics using a repeated cycle that added the second ${ }_{276}$ difference to the first, and the first to the current tabular value to generate the next 277 tabular value in the sequence, a mechanised version of the manual method practised 278 by the table makers.

The capacity of DE0 was modest featuring a three-digit tabular value, a two- 280 digit first difference and a single-digit second difference which was, in the case 28 of native polynomials, constant (Hyman 1988: 47). However, the little machine 282 has historical significance that transcends its modest capabilities. This was the first 283 automatic calculating device that incorporated mathematical rule in mechanism and 284 the computational algorithm was, for the first time, embodied in an autonomous 285 machine. Through the physical agency of a falling weight, results could be achieved 286 that up to that point in time were achievable only by mental effort.

## Author's Proof

Up to this point Babbage's main interest and experience had been in mathematics. He went up to Cambridge in 1810 at the age of seventeen, already a moderately 289 accomplished mathematician. His published output at the time of his mechanical epiphany consisted entirely of mathematical papers, some thirteen in all between 1813 and 1821, of which the most interesting to modern mathematicians are those on the calculus of functions (Dubbey 1978). So in 1822, when experimenting 293 with his new model, we have a mathematician aged twenty nine running the 294 first practical automatic computing machine and reflecting on the implications for 295 machine computation. With his first trials fresh in his mind he articulated these early 296 reflections in five papers written in between June and December that year. The ideas 297 and speculations contained in these writings are remarkable and evidence a two-way 298 relationship between mathematics and computational analysis.

While Difference Engine 0 has never been found, a larger demonstration piece, 300 completed in 1832, representing one-seventh of the calculating section of the 301 complete Difference Engine No. 1 (Illustration 5.1), has all the essential features 302 of its lost predecessor and is used here to illustrate Babbage's earliest recorded 303 reflections on machine computation. The 'beautiful fragment', as the piece was 304 referred to by Babbage's son, is the oldest surviving automatic computational 305 machine (Babbage 1889: Preface).

Here, as in the first small model, number values are represented by the rotation 307 of geared wheels inscribed with the decimal numbers 0-9 arranged in columns 308 with the least significant digit in the lowermost position. The right-most column 309 represents the tabular value, the middle column the first difference, and the left- 310 most column the second difference. Initial values from a table, precalculated for the 311 specific function being tabulated, are entered by rotating individual figure wheels by 312 hand to the required digit value in a fixed setting-up sequence. For a given function 313 the initial values fix the start value of the argument and the fixed increment of the 314 argument for each next result. The Engine is then operated by cranking to and fro the 315 handle above the top plate. Each cycle of the Engine produced, by repeated addition, 316 the next value of the mathematical expression in the table with the tabular appearing 317 on the on the right.

### 5.4 Computation as Systematic Method

New mathematical implications of machine computation are articulated in Bab-

## Author's Proof

5 Mathematics and Mechanical Computation
(a)

(b)


Illustration 5.1 (a) Difference Engine No. 1 demonstration piece (1832). (b) Top view showing crank handle

## Author's Proof

The roots or solutions of an equation are the values of the independent variable at which the function passes through zero. The standard analytical technique for solving equations was to equate the expression to zero and to solve for the unknown. There was no systematic process for doing this and the success of the process depends on ingenuity, creativity, and often an ability to manipulate the problem into a recognisable form that has a known class of solution. Not only was there no guarantee of solution using such techniques, but there was no way of determining 333 whether or not the equation in question was soluble in principle. If analytical methods failed, then trial and error substitution could be tried. This involves substituting trial values of the independent variable and repeating this process to see if values of the argument can be found for which the function converges to zero.338 But the technique was hit and miss, was regarded as 'inelegant' by mathematicians, 339 and did not guarantee success.

Starting with an initial value of the independent variable, each cycle of the engine 341 generates each next tabular value, and the machine has found a 'solution' when the 342 figure wheels giving the tabular result are all at zero. So finding a solution reduces to detecting the all-zero state, and the number of machine cycles taken to achieve this 343 represents the value of the independent variable, which is the solution sought. If two adjacent tabular results straddle zero (i.e. if the argument does not exactly coincide with the root but the value of the function passes through zero) the solution will be signalled by a change of sign. To remove the reliance on visual detection of the all zero state Babbage first incorporated a bell that would ring to alert the operator to the occurrence of specific conditions in the column of tabular values (Lardner 1834: 311). The operator would then halt the machine and read off the number of cycles the machine had run to give the first root of the equation (the machine had facilities for automatic cycle counting). If there were multiple roots the operator keeps cranking until the bell rings again. In the event that there are no roots, the machine continues 354 ad infinitum. To further remove reliance on a human operator, provision was later 355 made for the machines to halt automatically (Swade 2011: 249-50). Babbage wrote explicitly of the machine halting on finding a root.
Pree f Thi', 1936 paper 'On computabe numbere What later became known as the 'halting problem', though not explicitly referred 359 to as such by Turing, is inseparably associated with him. For those interpreting Turing's 'circular machine' halting became a logical determinant of whether ornot machines could decide whether a certain class of problems was soluble. While362
Babbage himself did not claim any special theoretical significance for the halting ..... 363 criterion the resonances with decidability and solubility are unmistakeable. 364

The internal organisation and spatial layout of the engine suggested to Babbage 365 new series for which there was a generative rule but no general expression for the 366 $n$th term and Babbage speculates on the heuristic value of machine computation to 367 mathematics (Babbage 1822: 312-3).

On considering the arrangements of its parts, I observed that a different mode of connecting

## Author's Proof

> been informed by the engine had it existed in this new shape and I was much surprised at discovering that no analytical method was yet known for determining its $n$th term.

372
373
Using external gearing any given figure wheel (representing units, tens, hundreds etc. of a given number) could add its value to a wheel in another column during the execution of a standard machine cycle. The technique allows feedback, feed-forward or cross-feeding of individual digits in a way that influences the step-wise generation of successive results. Cycling the machine would produce a new series for which there was a clear generative rule for each next value, but for which there was no known analytical formula: 'we are not in possession of methods of determining its $n$th term, without passing through all the previous ones' (Babbage 1823: 123). By cycling the machine to calculate each next value in turn, any requisite term can be reached. Machine computation offered solutions where formal analysis failed.

The portion of Difference Engine No. 1, assembled in 1832, shows additional axes and gearing that allow such cross-coupling and which were added when Babbage later returned to these ideas. He was intrigued by the general question of finding general laws for empirically generated series and he provides an example of how, using an inductive process, he derived a general expression for a new series suggested by the engine. Later he considered recurrence relationships in which each next term in the series is defined in terms of the current term and a few prior terms. In these cases there is a general expression for the $n$th term, but one that does not allow it to be calculated by direct substitution. A machine capable of iterating the requisite sequence of operations to calculate each new result in turn could again provide computational solutions that resisted analytical process.

This line of thinking fell outside the comfort zone of the traditions of the time. The appeal of analytical formulation derived from its generality, that is, the ability to represent, in a single symbolic statement, any and all specific instances of the relations expressed. A silent premise of contemporary mathematics and philosophy was that example was inferior to generalisation, induction inferior to deduction, empirical truths to analytical truths, and the synthetic to the analytic. Generality and universality were elevated above example and instantiation. Calculation, which involves specific numerical example was, in the prevailing culture, implicitly inferior to formal analysis. The existence of a series that could be produced by computational rule for which no formal law was known was at odds with prevailing attitudes. This was new territory and Babbage shows awareness that his enquiries were off piste when he wrote that he would desist from a general investigation of methods to determine general laws for series defined only by generative rules because the techniques involved (essentially induction) were 'not so much in unison with the taste which at present prevails in that science' (Babbage 1826b: 218). So computation and computational theory were cast as the methodological poor relation of mathematics and mathematical logic. The stigma of the contingent still rankles. Computer scientists still baulk at the imputation that their discipline might not be as well anchored intellectually as its elite campus neighbours, and they tend to shift in their seats at the suggestion that their subject has its historical roots in engineering rather than something more rarefied.

## Author's Proof

Babbage foresaw that computation by machine would give rise to new forms of 416 mathematical analysis. One such was what we would now call numerical analysis 417 that would precede computation by machine. In a manuscript unpublished in 418 his lifetime he predicted that the need for techniques to optimise efficiency by 419 tailoring the problem for computation by machine. He used as an example an 420 expression that required 35 multiplications and 6 additions to evaluate and showed 421 that manipulating it into an alternative but mathematically identical form reduced 422 the computational load to 5 multiplications and 1 addition. (Babbage 1837a). In ${ }^{423}$ the case of tabulation, new techniques included 'best fit' approximation methods, 424 and the preparatory analysis necessary to ensure that the approximation remains 425 valid to the requisite accuracy in the interval to be tabulated. While neither of these ${ }_{426}$ elements was new to table-makers, Babbage articulates the need for such analysis in 427 terms of the stimulus to mathematics to formalise and systematise computational 428 method, and the value of this analysis in rendering practically useful otherwise 429 abstract forms. 430

Early on Babbage anticipated that without machine computation, or an alterna- 431 tive, science would stultify: 432

I will yet venture to predict that a time will arrive, when the accumulating labour which 433
arises from the arithmetical applications of mathematical formulae, acting as a constantly 434 retarding force, shall ultimately impede the useful progress of the science, unless this or 435 some equivalent method is devised for relieving it from the overwhelming incumbrance of 436 numerical detail. (Babbage 1823: 128)

The need to evaluate mathematical formulae for practical purposes stimulated the 438 engine project and with it the development of mechanical logic. The detailed designs 439 of the Difference Engine contain the earliest embodiment of fundamental principles 440 of machine computation recognisable in the modern era. The use of terms familiar 441 to us in the list below is entirely anachronistic and is for expository purposes only. 442 Principles and features of mechanical logic explicitly detailed in the Difference En- 443 gine designs include: autonomy (transfer of rule from human to machine eliminating 444 the need for human intervention in algorithmic process); digital operation through 445 the discretisation of motion; parallel operation (the simultaneous operation on each 446 digit of multi-digit numbers); non-destructive addition; carriage of tens including 447 secondary carries; 'microprogramming'; 'pipelining'; 'pulse-shaping' (cleaning up 448 degraded transitions to ensure digital integrity); error prevention, error correction 449 and error detection; 'latching' (one-bit memory); 'polling' (sequenced interrogation 450 of a series of logical states); and manual input of initial values, printed and/or 451 stereotyped output (Swade 2005).

These earliest forays into machine computation evidence a two-way relationship 453 between mathematics and machine. In one direction, the need for reliable mathemat- 454 ical tables was the original stimulus for inventing automatic calculating machines, 455 pursuing their early development, and pioneering basic principles and potential of 456 computational engines. In the reverse direction, we have the earliest articulation of 457 some of the implications of machine computation for mathematics: computation 458

## Author's Proof

as systematic method, heuristic potential, and the need for new forms of analysis 459 tailored and contrived to serve new computational needs. 460

What is perhaps remarkable is that the springboard for the nineteenth-century 461 speculations mentioned so far was not a computer as we would now understand the 462 term but an automatic calculator. Difference engines are strictly calculators in that 463 they crunch numbers the only way they know how - by repeated addition according 464 the method of finite differences. They execute a single fixed algorithm on whatever 465 initial values are supplied. While they are capable of conditional action (whether or 466 not to execute a carriage of tens, for example, or whether to halt or not), they are not 467 capable of branching i.e. they cannot deviate from a default operational sequence 468 to pursue an alternative algorithmic trajectory. They have no generality even as a 469 four-function calculator.

The essential feature on which Babbage's speculations are founded was that 471 the machine was automatic. Mathematical rule was embodied in mechanism, the 472 algorithm was contained in wheelwork and, by physical effort, results could be 473 achieved which up to that point in time could only be achieved by mental effort. The 474 idea that the machine was 'thinking' was not lost on Babbage or his contemporaries. 475 In 1833 Lady Byron (Ada Lovelace's mother) referred to the 1832 demonstration 476 piece as 'the thinking machine' (Toole 1992: 51). A junior colleague of Babbage's 477 wrote that Babbage had 'taught wheelwork to think, or at least to do the office of 478 thought' (Hyman 1988: 48-9). The machine being autonomous was the first step 479 towards machine intelligence and it was this feature more than any other that served 480 as the basis for early speculation about the implications and potential of machine 48 computation.

### 5.5 From Computation to Computing

A practical advantage of the method of differences is that it requires only addition and this eliminates the need for multiplication and division that would ordinarily 485 be needed to evaluate terms in a series, and addition is significantly simpler to 486 realise in mechanism than direct multiplication and division. The method of finite 487 differences allowed the calculation and tabulation of polynomial functions, and 488 what generality this has to mathematics, science and engineering derives from the 489 capacity to express functions in the form of series expansions. For all the ingenuity 490 of its conception and design, difference engines are still calculators confined as they 491 are to a fixed cycle of unvarying mechanical operations.

By a series of undocumented steps Babbage was led from mechanised calculation 493 by differences to fully-fledged general purpose computing. His Analytical Engine, 494 incipiently conceived in 1834 and on which he worked for the best part of the 495 rest of his life, was a machine of unprecedented generality. Buxton, doubtless 496 ventriloquising Babbage, wrote that 'the powers of the Analytical Engine are 497 coextensive with analysis itself’ (Hyman 1988: 150). Babbage himself maintained 498 that two contemporary descriptions of his Analytical Engine (Lovelace 1843; 499

## Author's Proof



Illustration 5.2 Analytical engine, Plan 25 (1840)

Lardner 1834) demonstrated 'that the whole of the developments and operations 500 of analysis are now capable of being executed by machinery' (Babbage 1864: 136). 501

The design as it stood in 1840 is shown in Illustration 5.2. In this view the 502 circles represent registers (columns of figure wheels), stud-programmable 'barrels' 503 ('microprograms'), and other mechanisms as seen from above. The cluster of circles 504 around the central circle is the Mill (central processor) and the large central circle is 505 a parallel bus consisting of large toothed wheels that allow transfer of data within the 506 Mill. The Store (memory) is shown as two rows of registers extending indefinitely to 507 the right. Each register or Variable (annotated $\mathbf{V}_{\boldsymbol{n}}$ ), so called because the numerical 508 value of its contents is not fixed, consists of a vertical column of up to 50 decimal 509 figure wheels. Provision was made for double precision operation allowing for 100- 510 digit results. The strip between the two rows of Variables (annotated Rack) is a stack 511 of independently moveable toothed slats. The Racks act as a parallel data bus that 512 transfers information between the Store and the Mill via buffer registers (Ingress 513 axis (I), and Egress axis ("A) (Bromley 1982).

The machine described is physically massive. The central wheels of the Mill are 515 some 5 ft 6 in . in diameter and some 15 ft high and the engine as shown would 516 be about 10 ft long. However the Store is truncated in the drawing for reasons of 517 drafting convenience and only 17 Variables are shown. Babbage's minimum engine
which would have had some 100 Variables which would stretch it to over 20 ft long and he talks of talks of machines with 1000 Store Variables. A hundred-Variable 520 machine would call for an estimated 50,000 parts.

## Author's Proof



Illustration 5.3 Punched cards for analytical engine (1840). Smaller cards are operation cards. Larger cards are variable cards

The Analytical Engine (an abstraction of design, as it too was never built), offered the prospect of a new technology for mathematics, allowing as it did the evaluation of any definable function of arbitrary generality. At an operational 52 level the Engine was capable of conditional branching, iterative looping, and 525 microprogramming, though neither Babbage nor his contemporaries used these 526 terms. At systems level it had a separate Store and Mill, a serial fetch-execute cycle, 527 punched card input for data and instructions, output through print, punched card, or 528 graph plotter, an internal repertoire of automatically executed operations including 529 direct multiplication, division, addition and subtraction, parallel processing using 530 multiple processors, look-ahead carry, buffering, and pipelining. At user-level it 531 was programmable using punched cards of which there were several kinds, chief 532 amongst which were Operation Cards which contained instructions, Number Cards 533 contained input data, and Variable Cards specified where in the Store the operand 534 was to be found, and the destination location for the result. Cards were made from 535 paste-board and loosely stitched together with ribbon (Illustration 5.3). Repeating an 536 instruction sequence, invaluable for iterative processes in recurrence relationships, 537 was achieved by automatically winding back a pre-specified number of times 538 (determined at one stage of development by a Combinatorial Card) a fixed sequence ${ }_{539}$ of Operation Cards (Bromley 2000).

## Author's Proof

The internal architecture of the machine pre-echoes the signature features of von Neumann's model described in 1945 and which dominated computer design 542 since: the separation of memory and central processor, serial fetch-execute cycle, 543 and input/output. There is no internal stored program in the Analytical Engine. The sequence of operations is stored on and executed from the Operation Cards stitched 545 together in a sequential train.

Between 1836 and 1840 Babbage wrote 25 'programs' for the solution of a 547 variety of mathematical problems, and the nature and scope of these are revealing 548 (Babbage 1836, 1837b). The format of the programs is essentially tabular and 549 similar but not identical for all. Typically the first column features a line number 550 that indicates the order in which the sequence of operations is to be performed. 551 Other columns specify the operation to be performed at each step, the location in 552 store of the operands to be retrieved, which Store Variables are acted upon, where ${ }_{553}$ in the Store the results of each operation are to be placed and, for clarification, the 554 changing contents of each Store Variable at each step as the computation progresses. 555 These descriptions are not strictly programs as we now understand the term. For 556 one, there is no control information. Babbage called them Notations of Calculation. 557 'Traces' or 'walkthroughs' have been suggested as more appropriate descriptions 558 (Bromley 1991: L-1). But I hazard that they are sufficiently algorithmic in intention 559 to exempt us from censure should we continue to refer to them as programs though 560 it is admittedly anachronistic to do so.

Ten of Babbage's twenty four programs are concerned with the solution of 562 simultaneous equations. There are separate programs for the successive reduction ${ }_{563}$ of $n$ simultaneous equations in $n$ variables to find the solution for one variable, 564 with separate programs for $n=3,4$, and 5 . There are several programs for the 565 reduction of a number of $n$ simultaneous equations in $n$ variables to $n$ - 1 equations 566 in $n-l$ variables, as well as the direct solution of simultaneous equations for each of 567 the variables. Four of the programs are for tabulation by differences of quadratics, 568 cubics, and quartrics. There is a program for the computation of the coefficients of a 569 polynomial from those of another polynomial divided by a linear or quadratic term, 570 and for the coefficients in the product of two polynomials. There are three examples 571 of recurrence relationships requiring iterative looping. The most complex program 572 in the suite is for the solution of a problem in astronomy - computing the radius 573 vector of a body from the eccentricity and mean anomaly of its orbit. 574

The most celebrated program for the Analytical Engine is for the calculation 575 of Bernoulli numbers written by Ada, Countess of Lovelace and published in 576 1843 (Lovelace 1843). With the possible exception of Babbage's vector radius 577 calculation the Bernoulli calculation (Illustration 5.4) is the most complex program 578 written for the machine requiring as it does nested looping and a form of memory 579 addressing that allows all prior Bernoulli numbers to be retained and available for 580 the calculation of each next term in the series (Glaschick 2016), a requirement not 581 explicit in Babbage's examples of recurrence relations programs. These sample 582 walkthroughs were intended to demonstrate both the computational power and 583 generality of the machine.

## Author's Proof



Illustration 5.4 Ada Lovelace's 'walkthrough program' for calculation of Bernoulli numbers (1843)

Babbage's writing on the engines is largely technocentric and he offers little in 585 the way of speculation on the broader significance of his work. It was Giovanni 586 Plana, an Italian mathematician, who most clearly situated Analytical Engine and 587 machine computation in the context of mathematics. Plana, writing to Babbage in 588 1840, made the distinction between the 'legislative' and the 'executive' aspects of 589 analysis positing that 'hitherto the legislative department of our analysis has been 590 all powerful - the executive all feeble'. He goes on to say that the Analytical Engine 591 redressed this imbalance by giving us 'the same control over the executive which 592 we have hitherto only possessed over the legislative ...' (Babbage 1864: 129). 593 Babbage was much taken with this distinction as one that for him exactly conveyed 594 the role of machine computation in relation to mathematics. The distinction endured 595 till the end. In 1869 two years before he died, he set out finally to write a general 596 description of the Analytical Engine. He made three separate attempts none of which 597 was completed. Each opened with a statement of the purpose of the Analytical 598 Engine. The first of these (Babbage 1869: 134) dated 4 May 1869 reads: 599

The object of this Engine is to execute by machinery 600

1. All the operations of arithmetic 601
2. All the operations of Analysis 602
3. To print any or all of the calculated results. 603

The greatest generality here is contained in the reference to 'Analysis' which in 604 terms of the engine was a reference to symbolic algebra with number an instantiation 605

## Author's Proof

of quantity (Priestley 2011: 32). (Lovelace hints at the prospect of an engine capable 606 of implementing arbitrary rules for arbitrary symbols but the ideas are tantalisingly 607 undeveloped). The expressed purpose of the Analytical Engine as that of finding 608 the numerical value of algebraic formulae is, at face value, unexpectedly modest 609 but less so when viewed in the context of the times. In 1841 Lovelace wrote, 610 'Mathematical Science shows what is. It is the language of unseen relations between 611 things' (Huskey and Huskey 1980: 308). And Buxton, reflecting the rationalist credo 612 of the time, wrote:

There is in fact no question that can be conceived, which does not come within the category 614 of number, or which is not finally reducible to a question to be solved by the investigation 615 of quantities, by one another, according to certain relations . . . . all our ideas of quality are 616 reducible to the ideas of quantity. (Hyman 1988: 153)

Mathematics was seen to be uniquely privileged in its descriptive and explanatory 618 powers, and for the rationalists, the world was reducible to number. A generalised machine able to map abstract mathematical description into number was the essential instrument without which the 'language of unseen relations' would remain mute. What emerges from Lovelace's description of the Analytical Engine is the 621 idea that the potential utility of computing machines lies in its ability to manipulate according to rules representations of the world contained in symbols. The machine was the bridge between symbolic abstraction and contingency in the world. We have in these two statements (Lovelace's and Buxton's) a reflection of Plana's two departments of mathematics, legislative and executive. One was not the other's rival, but an essential complement, and Babbage was evidently more than content with this.

### 5.6 The Mechanical Notation

The unprecedented intricacy the mechanisms and long causal chains of action posed difficulties both for the design process and for modes of representation. Holding in one's mind the multitude of parts and long trains of action in the mechanisms 633 'would have baffled the most tenacious memory' wrote Babbage in 1864 (Babbage 634 1864: 113). The solution was his Mechanical Notation, a language of signs and 635 symbols devised to describe the complex mechanisms of his calculating engines. ${ }^{636}$ He described the genesis of the language in 1826: 637

The difficulty of retaining in the mind all the contemporaneous and successive movements of a complicated machine, and the still greater difficulty of properly timing movements which had already been provided for, induced me to seek for some method by which I might at a glance of the eye select any particular part, and find at any given time its state of motion or rest, its relation to the motions of any other part of the machine, and if necessary trace back the sources of its movement through all its successive stages to the original moving power. I soon felt that the forms of ordinary language were far too diffuse to admit of any expectation of removing the difficulty, and being convinced from experience of the

## Author's Proof

it employs, I was not long in deciding that the most favourable path to pursue was to have
recourse to the language of signs. (Babbage 1826a: 250 )
The importance of notation to mathematical reasoning is a running motif in 649 Babbage's mathematical work. He wrote that an advantage of symbolic language 650 over common language was lack of ambiguity between sign and signified: unlike 651 words 'an arbitrary symbol can neither convey, nor excite any idea foreign to 652 its original definition' (Babbage and Herschel 1813: i; Babbage 1827: 327-8). A ${ }_{653}$ further virtue was that of conciseness which he framed as a mental aid to keeping 654 track of long operational sequences (Babbage and Herschel 1813: i-ii; Babbage 655 1830: 395).

As a mathematics undergraduate at Cambridge (he graduated in 1814) Babbage 657 had been a vigorous advocate for the superiority of Leibniz's notation for differential 658 calculus over Newton's system of dots, this in defiance of the prevailing orthodoxy. 659 A suite of mathematical papers with the general title 'The Philosophy of Analysis' 660 includes a paper on notation that predates his involvement in the calculating engines 661 i.e. his ideas on notation are rooted in mathematics and were well developed before 662 his mechanical epiphany in 1821. Edward Bromhead, mathematician and friend of 663 Babbage, in a letter to Babbage commenting on the paper in March of that year, 664 endorsed the importance of notation: 'I have always considered Notation as the 665 Grammar of symbolic language' (Dubbey 1978: 93). The Mechanical Notation can 666 be seen as an extension to machines of his ideas on the role and importance of 667 notation in mathematics.

The Mechanical Notation provided an abstract form for the nature, timing and 669 causal action of parts, and Babbage used it to specify and describe the structural 670 complexity of mechanisms and their time-dependent behaviour. He also used it as 671 a design aid to optimise timing and eliminate redundancy (Babbage 1851b, 1855, 672 1856).

In its mature form there are three federated elements that combine to form the 674 Mechanical Notation, each indispensible to the whole. Forms refer to mechanical 675 drawings depicting the shape and size of parts and their organisation into mecha- 676 nisms. The drawings use familiar drafting conventions of plan views, front and end 677 elevations, and sectional views in mainly third angle projections. There is nothing 678 radical or revolutionary in these. They conform to contemporary representational 679 conventions and capture what are essentially spatial relations.

Trains are diagrams that describe the complete causal chain from the first mover 681 to the end result. They show the path of the transmission of motion by parts acting 682 on other parts (Illustration 5.5). Each part in the Forms was assigned a capital letter 683 of the alphabet in one of a number of typefaces - italicised letters for moving parts 684 and upright letters for fixed framing pieces, and a variety of typeface families were 685 used including Etruscan, Roman, and Script. Each letter identifying a part had up 686 to six indices - superscripts and subscripts (Swade 2017: 420). Four of the indices 687 were numerical (index of identity, index of circular position, of linear position, and 688 an index to extend the use of a typeface family in the event of running out of letters). 689 The four numerical indices indicated the spatial relationship to other parts and which 690 parts formed functional groups.

## Author's Proof



Illustration 5.5 Mechanical notation. Train for circular motion of figure wheels, Difference Engine No. 2 (detail) (1848)


Illustration 5.6 Mechanical notation, signs of form (detail) (1851)

The two non-numerical indexes are the Sign of Form, and Sign of Motion. 692 The Sign of Form gave functional specificity to an otherwise arbitrary symbol. 693 It indicated the species of part - rack, gear wheel, cam, pinion, arm, crank, 694 handle etc. - using symbols that are partial pictograms indicating generic function 695 (Illustrations 5.5 and 5.6). The specific purpose of this portrayal was to enable the 696 chain of action to be followed using mental images of parts without the distraction 697 of reference to the mechanical drawings (Forms). The Sign of Motion described the 698 nature of motion - circular, linear, curvilinear, or reciprocating - as depicted in a 699 particular view in the Forms, plan, elevation, or end view. Signs of Motion could be 700 used in combination in the annotation of a particular part. In 1851 Babbage proposed 701 ten symbols in the Alphabet of Motion and some eighty in the Alphabet of Form and 702 speculated that as many as 200 might be needed (Babbage 1851a: 138).

A Train is formed by combining these indexed letters into statements using 704 syntactical rules. Illustration 5.5 shows a portion of the Train for the circular motion 705 of the even difference figure wheels for Difference Engine No. 2. The lower case 706 letters indicate 'working points' - points or surfaces on a part that act on or are 707 acted upon by other parts.

## Author's Proof



Illustration 5.7 Mechanical notation. Cycle for addition and carriage, Difference Engine No. 2 (detail) (1848)

While the direction of flow in the Trains is generally from left to right (except 709 where there is feedback) neither the Forms nor the Trains describe time-dependent 710 behaviour in any detail. The third element in the triptych are Cycles, essentially 711 timing diagrams that depict at any point in the cycle what action each designated 712 part is performing, and its timed relation to all other contemporaneous motions 713 (Illustration 5.7).

Cycles show the orchestration of motions of individual parts into a functioning 715 whole. For this a new set of notational conventions was introduced. Annotationsits rest position. Other conventions indicate whether the motion is conditional or

## Author's Proof

Advocacy for the Mechanical Notation likened it to both geometry and algebra. 722 For Babbage the distinctive properties of geometry were certainty and demonstra- ${ }^{723}$ bility. He described geometry as 'a science of absolute certainty' in which 'signs are 724 pictures', and privileges it as 'almost the only demonstrative science'. He places his 725 Notation alongside it (Babbage 1860: 381-2). 726

By these aids the science of constructive machinery becomes simple. It is reduced to 727 mathematical certainty, and I believe now stands by the side of geometry as far as the nature 728 of its reasoning, and that these two sciences stand alone. 729

The Trains allowed one to visualise and trace consequential action, a virtual 730 equivalent to physical demonstration. 'By the aid of the Mechanical Notation the 731 Analytical Engine became a reality: for it became susceptible of demonstration' 732 (Babbage 1864: 113). Dionysius Lardner, a colourful populariser of science, em- ${ }^{733}$ phasises the generalised abstraction of the Notation: 'what algebra is to arithmetic, 734 the notation ... is to mechanism' (Lardner 1834: 315, 319). 735

Babbage used the Notation extensively in the design of his machines to optimise 736 timing, identify redundancy, derive new motions from existing ones, and marshal 737 long trains of action using a symbolic shorthand all his own. He ranked it as 738 his greatest contribution to knowledge - a universal language for the symbolic 739 description of anything at all from the physiology of animals, respiration, digestion, 740 to combat on land or sea (Babbage 1864: 145; Lardner 1834:319). He fully expected 741 it to be adopted as an essential tool in engineering training, and was aggrieved when 742 it failed, in 1826, to win him either of the two Royal Medals awarded annually by 743 the Royal Society. He records sulkily that he had received specimens of its use from 744 the United States and from the Continent, and two of his sons were fully conversant 745 with it. But it was used by few others and for all his faith in it merits its fate was one 746 of obscurity. 747

The Mechanical Notation can be seen as a response to the unprecedented levels of 748 complexity of the engines' mechanisms and is not unlike the 'hardware description 749 languages' (HDLs) the like of which emerged again in the early 1970s in computer 750 circuit and system design, and especially in the design of integrated circuits. HDLs 751 provide a higher-order representation to manage otherwise unmanageable detail at 752 component level - the same solution to the same need 150 years apart: 753

I succeeded in mastering trains of investigation so vast in extent that no length of years ever 754
allotted to one individual could otherwise have enabled me to control. (Babbage 1864: 113)


### 5.7 A Coding Problem

Machines compute by manipulating, according to rules, physical representations of 757 numbers. Logical relations in a mathematical statement can be seen as timeless or 758 even atemporal, but once 'physicalised' in a machine they are subject to physics and 759 mechanics in ways that logic is not: actions need to be phased in time, measures 760 taken to ensure the integrity of representation and control, and the algorithmic 761 sequence needs to be a correct encoding of the problem. The time-dependence 762

## Author's Proof

of computational process had unexpected implications for programming that were 763 evidenced in the earliest computer programs. As mentioned earlier, the Variables in 764 the Store are numbered sequentially, $\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3} \ldots$ and represent the locations 765 in memory for operands and results. Conventional mathematical notation was 766 immediately problematic. The statement $\mathbf{V}_{4}-\mathbf{V}_{2}=\mathbf{V}_{4}$ meant 'subtract the contents 767 of $\mathbf{V}_{2}$ from the contents of $\mathbf{V}_{4}$ and place the result in $\mathbf{V}_{4}$ '. The original value in ${ }_{768}$ $\mathbf{V}_{4}$ is overwritten by the result. The statement $\mathbf{V}_{4}-\mathbf{V}_{2}=\mathbf{V}_{4}$ was problematic for 769 mathematicians. At face value it appears to violate the notion of mathematical 770 identity being trivially true for $\mathbf{V}_{2}=0$, and manifestly false for non-zero $\mathbf{V}_{2}$. ${ }_{771}$ Babbage's solution was to add a leading index so the statement then read ${ }^{1} \mathbf{V}_{4}-772$ ${ }^{1} \mathbf{V}_{2}={ }^{2} \mathbf{V}_{4}$. The leading superscript, the 'index of alteration', indicated that the 773 contents of the Variable had changed during the operations. The trailing index, the 774 'index of location' remained as before denoting the location in the Store of the 775 Variable in question. Each reuse of the Variable incremented the index of alteration 776 and the history of the Variable's changing contents could be traced back through the 777 chain of programming steps.

The issue arose because memory, for the first time in a computing machine, in 779 virtue of being 'physicalised', had spatial location, and instructions expressed in 780 standard mathematical notation did not reflect time-dependence. One of the earliest 781 programs Babbage wrote, dated 4 August 1837, has a sequence of instructions for 782 the solution of two simultaneous equations and features the double index, though 783 he used Roman numerals for the index of alteration (Babbage 1837a: L-1), later 784 changed to more familiar Arabic numbers (Babbage 1864: 127). The need for a new 785 index to reflect time-dependence in an instruction sequence signalled a more general 786 finding - that coding would require new notational conventions. 787

### 5.8 Epilogue

The practical fate of Babbage's engines was a wretched one. Famed as he is for their 789 invention he is no less famed for failing to build any of them in their entirety. The 790 largest of the few experimental mechanisms he assembled was the demonstration 791 piece for Difference Engine No. 1, 'the finished portion of the unfinished engine' 792 (Babbage 1864: 150) which represents one-seventh of the calculating section of the 793 whole machine (Illustration 5.1). The first complete Babbage engine was built in 794 the modern era. Difference Engine No. 2, designed between 1847 and 1849 was 795 built to the original plans and completed 2002 (Illustration 5.8). It weighs 5 tonnes, 796 consists of 8000 parts, measures 11 ft long and 7 ft high, and calculates and tabulates 797 any seventh-order polynomial to 30 decimal places. It works exactly as Babbage 798 intended (Swade 2005).

The reasons for Babbage's failures are a cocktail of factors: fierce pride, poor 800 management, social organisation of labour, absence of production techniques with 801 inherent repeatability to make hundreds of near-identical parts, abrasive diplomacy 802 that alienated those whose support he needed, and loss of credibility through 803

## Author's Proof

102

delay, to name but some. Achievable precision in manufacture, and the availability 804 of funding, were indirectly relevant but not critical to the mix (Swade 2000). 805 Others built tabulating difference engines in the nineteenth century stimulated 806 by Babbage's work - Alfred Deacon in London, Martin Wiberg in Sweden, the 807 Scheutz father-and-son team also in Sweden, and Barnard Grant in the United 808 States (Lindgren 1990). Not all the machines were technically flawless. All were 809 commercial failures.

With Babbage's death in 1871 the movement to mechanise calculation lost its 811 most visible protagonist and its major impetus. Leslie Comrie, spoke of the 'dark 812 age of computing history that lasted 100 years' referring to the period between 813 the early 1830s and Comrie's revival in the early 1930s of automatic tabulation 814 by differences using commercial adding machines (Cohen 1988: 180). There were 815 sporadic flickers in the early twentieth century to design and build 'analytical 816 machines' (program controlled calculators) for general calculation, notably by Percy 817 Ludgate and by Torres y Quevedo (Randell 1971, 1982). These were isolated 818 episodes and developmental culs-de-sac.

The influence of Babbage's work on the modern era is tenuous at best. The engine 820 designs were not studied in technical detail until the 1970s (Bromley 1982, 1987, 821 2000) and while his exploits were known to almost all the pioneers of modern 822 computing, they effectively reinvented the principles of computation largely in 823 ignorance of the detail of Babbage's work.

Mechanical computation was not yet entirely defunct. Mechanical devices were 825 used in the transition to fully electronic systems. Konrad Zuse's early machines 826

## Author's Proof

from the late 1930s relied on mechanical memory in the form of sliding plates, and IBM's Harvard Mark I, completed in 1943, was a hybrid electromechanical 828 system with elements of mechanical logic. One of its early tasks was calculating 829 and printing mathematical tables.

Mechanical analog computation, routinely underrepresented in the canon, had 831 several significant successes in providing computational solutions to mathematically 832 modelled physical phenomena. The prediction of tidal behaviour using techniques 833 of harmonic analysis first introduced by William Thomson (later Lord Kelvin) 834 in the 1860s were the basis of several mechanical analog tide predictors. One 835 of these in service in the United States was not replaced until the 1960s by 836 an electronic computer. Michael Williams reports that using a 37 -term formula 837 the mechanical predictor could calculate the tidal heights to a tenth of a foot 838 for each minute of the year (Williams 1985: 209). In the late 1920s Vannevar 839 Bush, frustrated by the tedium and difficulty of analytical methods, developed 840 'differential analysers' for the solution of differential equations by integration. The 841 analysers were mechanical analog machines using wheel-and-disc integrators as 842 their essential computational element. Differential analysers were used extensively ${ }^{843}$ during WWII for the calculation of artillery firing tables.

Tide predictors and differential analysers are problem-specific calculators and 845 in this they are unlike the general purpose programmable 'analytical' machines 846 discussed earlier. But like the earlier machines they exemplify the idea that mathe- 847 matics and technology intersect where symbols and the rules of their manipulation 848 are physicalised in material form.

Acknowledgement This work is supported in part by the Leverhulme Trust. 850
Picture Credits: 851
Illustrations: 852
2, 5, 7 - Science Museum/Science and Society Picture Library 853
1a, 1b, 3, 6, 8 - Doron Swade 854
4 - Rainer Glaschick 855

## References

Babbage, C. (1822). A letter to Sir Humphrey Davy, Bart., President of the Royal Society, on 857 the application of machinery to the purpose of calculating and printing mathematical tables. 858 London: Cradock and Joy. Reprinted in, Campbell-Kelley (1989), Vol. 2, pp. 5-14. 859
Babbage, C. (1823). On the theoretical principles of the machinery for calculating tables. 860 Edinburgh Philosophical Journal, 8, 122-128. Reprinted in, Campbell-Kelley (1989), Vol. 2, 861 pp. 39-43.

862
Babbage, C. (1826a). On a method of expressing by signs the action of machinery. Philosophical 863 Transactions of the Royal Society, 2, 250-265. Reprinted in, Campbell-Kelley (1989), Vol. 3, 864 pp. 209-23. 865
Babbage, C. (1826b). On the determination of the general term of a new class of infinite series. 866 Transactions of the Cambridge Philosophical Society, 2, 217-225. Reprinted in, Campbell- 867 Kelley (1989), Vol. 2, pp. 61-68. 868

## Author's Proof

Babbage, C. (1827). On the influence of signs in mathematical reasoning. Transactions of the 869 Cambridge Philosophical Society, 2, 325-77. Reprinted in, Campbell-Kelley (1989), Vol. 1, 870 pp. 371-408. 871
Babbage, C. (1830). Notation. In The Edinburgh Encyclopaedia. 872
Babbage, C. (1836). Notations of the analytical engine [manuscript], Science Museum, The 873 Babbage Papers 1821-1905, BAB/F/57x. London. 874
Babbage, C. (1837a). On the mathematical powers of the calculating engine. Museum of the 875 History of Science, Oxford, Buxton MSS collection, in Campbell-Kelley (1989), 3, 15-61. 876
Babbage, C. (1837b). Notations of calculations for the analytical engine [manuscript], Science 877 Museum, The Babbage Papers 1821-1905, BAB/L London. 878
Babbage, C. (1851a). The exposition of 1851 or views on the industry, the science, and the 879 government of England. London: John Murray. Reprinted in, Campbell-Kelley (1989), Vol. 880 10.

Babbage, C. (1851b). Laws of mechanical notation. Privately printed. Reprinted in, Campbell- 882 Kelley (1989), 3, 224-8.
Babbage, H.P. (1855). On mechanical notation, as exemplified in the Swedish calculating machine 884 of Messrs. Scheutz. British Association. Glasgow. Reprinted in, Babbage, H. P. 1889. In 885 Babbage's calculating engines: A collection of papers by Henry Prevost Babbage, (pp. 246-886 247). London: Spon. 887

Babbage, H. P. (1856). Scheut's difference engine, and Babbage's mechanical notation. Minutes of 888 proceedings of Civil Engineers. Reprinted in, Babbage, H. P. 1889. In Babbage's calculating 889 engines: A collection of papers by Henry Prevost Babbage, (pp. 248-257). London: Spon. 890
Babbage, C. (1860). Contribution to the discussions. Proceedings of the Fourth International 891 Statistical Congress. London: Wiley. Reprinted in, Campbell-Kelley (1989), Vol. 5, pp. 169- 892 175.

Babbage, C. (1864). Passages from the life of a philosopher. London: Longman, Green, Longman, 894 Roberts \& Green. Reprinted in, Campbell-Kelley 1989, Vol. 11.
Babbage, C. (1869). Science museum library. London, The papers of Charles Babbage, S15, f. 896 134.


Babbage, H. P. (1889). Babbage's calculating engines: A collection of papers by Henry Prevost 898 Babbage. London: Spon. Reprinted in, Bromley, A. G. (ed.) 1982. Babbage's Calculating 899 Engines: a collection of papers by Henry Prevost Babbage, Los Angeles: Tomash. 900
Babbage, C., \& Herschel, J. F. W. (1813). Memoirs of the analytical society. Cambridge: Deighton 901 \& Sons et al. Preface, Reprinted in, Campbell-Kelley (1989), Vol. 1, pp. 37-60. 902
Baxandall, D. (1926). Catalogue of the collections in the science museum: Mathematics: Calcu- 903 lating machines and instruments. London: Her Majesty's Stationery Office (HMSO) 904
Bromley, A. G. (1982). Charles Babbage's analytical engine, 1838. Annals of the History of 905 Computing, 4, 196-217. 906
Bromley, A. G. (1987). The evolution of Babbage's calculating engines. Annals of the History of 907 Computing, 9, 113-136.


Bromley, A. G. (1991). The Babbage papers in the science museum: A cross-referenced list. 909 London: Science Museum. 910
Bromley, A. G. (2000). Babbage's analytical engine plans 28 and 28a - The programmer's 911 interface. IEEE Annals of the History of Computing, 22, 4-19. 912
Campbell-Kelly, M. (Ed.). (1989). The works of Charles Babbage. London: William Pickering. 913
Carlyle, T. (1829). Signs of the times. Edinburgh Review, 49, 439-459. 914
Cohen, I. B. (1988). Babbage and Aiken. Annals of the History of Computing, 10, 171-191. 915
Collier, B. (1990). The little engines that could've: The calculating engines of Charles Babbage. 916 New York: Garland. 917
Dubbey, J. M. (1978). The mathematical work of Charles Babbage. Cambridge: Cambridge 918 University Press. 919
Forbes, E. G. (1965). The foundation and early development of the Nautical Almanac. Journal of 920 the Institute of Navigation, 18, 391-401. 921

## Author's Proof

Glaschick, R. (2016). Ada Lovelac's calculation of Bernoulli's numbers [Online]. Available: http:/ ..... 922 /rclab.de/rclab/_media/analyticalengine/aal_noteg_glaschick_v1.1.pdf. Accessed 5 Feb 2017. 923
Grattan-Guinness, I. (1990). Work for Hairdressers: The production of de Prony's logarithmic and 924 trigonometric tables. Annals of the History of Computing, 12, 177-185.
Grattan-Guinness, I. (2003). The computation factory: de Prony's project for making tables in the 926 1790s. In Campbell-Kelly, M. Campbell-Kelly, M. Croarken, R. Flood, \& E. Robson (Eds.), 927 The history of mathematical tables: From sumer to spreadsheets (pp. 104-121). Oxford: Oxford 928 University Press.928
Henniker, B. (1893). Letter to treasury, 2 Feb. National Archive, Kew, RG29-3, Vol, 3, f. 300.930
Horsburgh, E. M. (Ed.). (1914). Napier tercentenary celebration: Handbook of the exhibition of 931 Napier Relics and of books, instruments, and devices for facilitating calculation. Edinburgh: 932 Royal Society of Edinburgh.
Huskey, V. R., \& Huskey, H. D. (1980). Lady Lovelace and Charles Babbage. Annals of the History 934 of Computing, 2, 299-329.
Hyman, A. (Ed.). (1988). Memoir of the life and labours of the late Charles Babbage Esq. F.R.S. 936 by H. W. Buxton. Cambridge, MA: Tomash. 937
Johnston, S. (1997). Making the arithmometer count. Bulletin of the Scientific Instrument Society, 938 52, 12-21.
Lardner, D. (1834). Babbage's calculating engine. Edinburgh Review, 59, 263-327. Reprinted in, 940 Campbell-Kelly (1989), Vol. 2, pp. 118-186. 941
Lindgren, M. (1990). Glory and failure: The difference engines of Johann Muller, Charles 942 Babbage, and Georg and Edvard Scheutz. Cambridge, MA: MIT Press. 943
Lovelace, A. A. (1843). Sketch of the analytical engine invented by Charles Babbage Esq. By L. 944 F. Menabrea, of Turin, officer of the Military Engineers, with notes upon the memoir by the 945 translator. Scientific Memoirs, 3, 666-731. Reprinted in, Campbell-Kelley (1989), Vol. 3, pp. 946 89-170.
Martin, E. (1925). The calculating machines (Die Rechensmashinen): Their history and devel- 948 opment. Translated and edited by Peggy Aldrich Kidwell and Michael R Williams. Charles 949 Babbage Institute Reprint Series for the History of Computing. Cambridge, MA: MIT Press, 950 1992.
Morar, F.-S. (2015). Reinventing machines: The transmission history of the Leibniz calculator. 952 British Journal for the History of Science (BJHS), 48(1), 125-146. 953
Mounier-Kuhn, P. (1999). L'informatique en France, de la Seconde Guerre mondiale au Plan 954 Calcul: Science, Industrie, Politiques publiques. PhD, Conservatoire national des arts et 955 métiers.
Mowatt, F. (1893). Letter to Henniker B, 14 January. National Archive, Kew, RG29-7, f. 80.
Priestley, M. (2011). A science of operations: Machines, logic and the invention of programming. 958 London: Springer.
Randell, B. (1971). Ludgate's analytical machine of 1909. Computer Journal, 14, 317-326. 960
Randell, B. (1982). From analytical engine to electronic digital computer: The contributions of 961 Ludgate, Torres, and Bush. Annals of the History of Computing, 4, 327-341. 962
Schaffer, S. (1994). Babbage's intelligence: Calculating engines and the factory system. Critical 963 Enquiry, 21, 203-227. 964
Swade, D. (2000). The Cogwheel brain: Charles Babbage and the quest to build the first computer. 965 London: Little, Brown. 966
Swade, D. (2003a). Calculation and tabulation in the 19th century: George Biddell Airy versus 967 Charles Babbage. PhD, University College London.
Swade, D. (2003b). The 'unerring certainty of mechanical agency': Machines and table making in 969 the nineteenth century. In M. Campbell-Kelly, M. Coarken, R. Flood, \& E. Robson (Eds.), The 970 history of mathematical tables: From sumer to spreadsheets. Oxford: Oxford University Press. 971
Swade, D. (2005). The construction of Charles Babbage's difference engine no. 2. IEEE Annals of 972 the History of Computing, 27, 70-88.

## Author's Proof

Swade, D. (2011). Calculating engines: Machines, mathematics, and misconceptions. In R. Flood, 974 A. Rice, \& R. Wilson (Eds.), Mathematics in Victorian Britain. Oxford: Oxford University 975 Press. 976
Swade, D. (2017). 'Photographing the footsteps of time': Space and time in Charles Babbage's 977 calculating engines. In G. G. Shyam Wuppuluri (Ed.), Space, time, and the limits of human 978 understanding. London: Springer. 979
Toole, B. A. (Ed.). (1992). Ada, the enchantress of numbers: A selection from the letters of Lord 980 Byron's daughter and her description of the first computer. Mill Valley: Strawberry Press. 981
Williams, M. R. (1985). A history of computing technology. Englewood Cliffs: Prentice-Hall. 982

## Author's Proof

## AUTHOR QUERY

AQ1. Reference Martin (1992) were not cited anywhere in the text. Please check.

## Author's Proof

## Metadata of the chapter that will be visualized online

| Chapter Title | The Mathematical Origins of Modern Computing |
| :---: | :---: |
| Copyright Year | 2018 |
| Copyright Holder | Springer International Publishing AG, part of Springer Nature |
| Corresponding Author | Family Name Priestley |
|  | Particle |
|  | Given Name Mark |
|  | Suffix |
|  | Organization Independent Researcher |
|  | Address |
|  | Email m.priestley@gmail.com |
| Abstract | Modern computing has been shaped by the problems and practices of mathematics to a greater extent than is often acknowledged. The first computers were built to accelerate and automate mathematical labour, not as universal logical machines. Very specific mathematical objectives shaped the design of ENIAC, the first general-purpose electronic computer, and its successor, EDVAC, the template for virtually all subsequent computers. As well as machine architecture, software development is firmly rooted in mathematical practice. Techniques for planning large-scale manual computation were directly translated to the task of programming the new machines, and specific mathematical practices, such as the use of tables in calculation, profoundly affected the design of programs. |

## Author's Proof

# Chapter 6 <br> The Mathematical Origins of Modern 2 Computing 

Mark Priestley


#### Abstract

Modern computing has been shaped by the problems and practices of 5 mathematics to a greater extent than is often acknowledged. The first computers 6 were built to accelerate and automate mathematical labour, not as universal logical 7 machines. Very specific mathematical objectives shaped the design of ENIAC, the 8 first general-purpose electronic computer, and its successor, EDVAC, the template 9 for virtually all subsequent computers. As well as machine architecture, software 10 development is firmly rooted in mathematical practice. Techniques for planning 11 large-scale manual computation were directly translated to the task of programming 12 the new machines, and specific mathematical practices, such as the use of tables in 13 calculation, profoundly affected the design of programs. 14


### 6.1 Introduction

If there is a truth universally acknowledged in the history of computing, it is this: 16 the "modern computer" was invented in the early 1940s and its design was first 17 described in the First Draft of a Report on the EDVAC (von Neumann 1945b). In 18 the preceding 3 years, a group at the University of Pennsylvania's Moore School of 19 Electrical Engineering had designed and built ENIAC, a giant machine that among 20 other things demonstrated the feasibility of large-scale electronic calculation. As 21 ENIAC's design neared completion in 1944, the team began to plan a follow-up 22 project, the EDVAC. They recruited the mathematician John von Neumann as a 23 consultant, and in early 1945 he wrote a report describing, in rather abstract terms, 24 the design of the new machine. This was the first systematic presentation of the new 25 ideas, and proved highly influential. By the end of the decade the first machines 26 based on the EDVAC design were operational, marking the first step on a ladder of 27 technological progress leading to the ubiquity of computational machinery today. 28

[^45]
## Author's Proof

Historian Michael Mahoney (2005) challenged such machine-centric views of 29 computer history. Mahoney urged historians to turn their attention to the history 30 of computing, not just the technical history of computers. He further argued that 31 the history of computing cannot be understood as a single unified narrative. The 32 computer can be many things to different people, generating a multitude of diverse ${ }_{33}$ stories. Mahoney supported his argument by appealing to a particular view of the 34 nature of the computer: while acknowledging that the first computers were built to 35 perform scientific calculations, he believed that the machines based on the EDVAC 36 design were something different, not just calculators but "protean machines" that 37 could be bent to any task.

But making it [the computer] universal, or general purpose, also made it indeterminate. 39 Capable of calculating any logical function, it could become anything but was in itself 40 nothing (well, as designed, it could always do arithmetic). (Mahoney 2005, 123) 41

A machine which is in itself nothing cannot have much of a history. Instead, 42 Mahoney urged, historians of computing should tell the stories of how the machine 43 was introduced to and transformed, and was itself transformed by, a wide range of 44 existing "communities": the people involved in areas of application such as data 45 processing, management, or military command and control systems (Fig.6.1). 46

It is striking that, despite Mahoney's revisionist intentions, this schema retains 47 a prominent place for the traditional origin story involving ENIAC and EDVAC. 48 On Mahoney's account, EDVAC has a dual nature. On the one hand, it is a room- 49 sized mathematical calculator, built for very specific purposes by a particular group 50

Business, Industry \& Government


Fig. 6.1 The communities of computing (Redrawn extract from Mahoney 2005, fig. 5, copyright © Institute of Materials, Minerals and Mining, reprinted by permission of Taylor \& Francis Ltd, http://www.tandfonline.com, on behalf of Institute of Materials, Minerals and Mining)

## Author's Proof

of people. But at the same time it is an abstract machine, "in concept a universal 51 Turing machine". According to Mahoney, it is this second, spectral machine which 52 moves between communities. Being universal and general-purpose, its potential for ${ }^{53}$ use in different fields can be taken for granted.

54
From this point of view, the computer's mathematical origins are little more than 55 an historical curiosity. Mahoney followed logician-turned-historian Martin Davis 56 (2000) in seeing the crux of the computer's evolution as being an injection of logic 57 between ENIAC and EDVAC that turned a brute calculator into an ethereal logic 58 machine with, incidentally, the capability to do "arithmetic". ${ }^{1}$

59
However, the idea that a new technology can transform many application areas is 60 not the novelty that Mahoney seems to suggest, and does not depend on the universal 61 nature of the technology being transferred, as two examples from the prehistory of 62 computing illustrate. In the 1920s, Leslie Comrie began an extended investigation 63 into the use of punched card machinery to support scientific calculation, work that 64 was continued by Wallace Eckert in the USA. Similarly, Tommy Flowers took with 65 him to Bletchley Park the experience that he had gained with electronic switching 66 before World War 2 in the British GPO, and deployed it very effectively in the 67 development of the Robinson and Colossus machines. In this perspective, the idea 68 that the invention of the computer might give rise to different histories of adoption 69 in different areas is simply another example of a regular historical pattern.

The computer remains a special case in its breadth of application, of course, 71 and this is a fact that calls out for explanation. In response, Mahoney appealed to 72 the modern computer's "protean" nature. But how does the computer come to have 73 such a nature? The conventional answer to this is technological: the "stored-program 74 concept", itself said to be derived from Turing's description of a universal machine, 75 is the particular feature that allows a single machine to perform an unlimited variety 76 of tasks. ${ }^{2}$ But there is an unsatisfying circularity in the suggestion that it is the 77 "universal" logico-technical properties of the computer that make it inevitable that 78 it will find universal application. It is more illuminating to start with a functional 79 characterization: if the computer is a technology of automation, what was it intended 80 to automate? In his proposal for the ACE, a machine to be built at the UK's National 81 Physical Laboratory, Turing suggested an answer to this question:

How can one expect a machine to do all this multitudinous variety of things? The answer is

The modern computer, in other words, is a machine that obeys orders. As a matter 86 of historical contingency, the first such machines were developed to automate the 87

[^46]
## Author's Proof

specific processes involved in large-scale mathematical calculation. This is far from 88 being the incidental detail that Mahoney suggests, however, and deeply affected 89 the ways in which computers could be deployed in areas outside mathematics, as 90 computer scientist Donald Knuth's comments on the problems of carrying out data 91 retrieval with electronic computers illustrate:

Computers have increased the speed of scientific calculations by a factor of $10^{7}$ or $10^{8}$, 93
but they have provided nowhere near this gain in efficiency with respect to problems of 94 information handling. [...] We shouldn't expect too much of a computer just because it 95 performs other tasks so well. (Knuth 1973, 551)

The first half of this chapter describes the effects of the mathematical context of 97 innovation on the ENIAC and EDVAC projects and the machines they developed. 98 The computer's mathematical origins are reflected in more than just its physical 99 characteristics, however. The modern computer automated a certain kind of human 100 labour, that of following a plan of computation in a more or less mechanical way. 101 Many of the established practices of manual calculation were transferred to the new 102 machines and profoundly shaped the ways in which they were used. The second 103 half of this chapter examines how two such practices, the social organization of 104 large-scale computation and the use of mathematical tables, were translated into the 105 context of the automatic computer and the consequences of this for the way the new 106 task of programming was conceived.

### 6.2 The Organization of Large-Scale Calculation

In the 1790 s, the French engineer Gaspard Riche de Prony embarked on a mammoth project to calculate a new set of tables of logarithmic and trigonometric functions (Grattan-Guinness 1990). The undertaking was industrial in scale, and to manage it de Prony employed the principle of the division of labour recently described by Adam Smith in The Wealth of Nations, first published in 1776.

De Prony divided his workforce into three sections. The first section consisted of a small number of leading mathematicians who derived the formulas that would be used to calculate the various functions. These formulas were passed on to a second section of skilled but less eminent mathematicians whose job was to work out how to calculate the values of the formulas using the method of differences.

## Author's Proof

The third section had little scope for the exercise of judgement or initiative. As 127 Smith had observed, the division of labour often broke a complex task down into 128 activities that were simple enough to be mechanized. Fully aware of de Prony's 129 approach, Charles Babbage took advantage of this when beginning the development 130 of his first Difference Engine in the 1820s:

If the persons composing the second section, instead of delivering the numbers they 132 calculate to the computers of the third section, were to deliver them to the engine, the whole 133 of the remaining operations would be executed by machinery. (Babbage 1822, 10)

More than a hundred years after Babbage, large-scale computation was still being the organization of the Math Tables Project (MTP), a Depression-era project aimed at providing jobs for unemployed office workers in New York. The work of the MTP was directed by a Planning Committee which "developed the mathematical 138 methodology, and prepared the computing instructions" that were passed onto the 140 Computing Floor Division. This consisted of two groups of trained mathematicians who could be trusted to work independently: the "Special Computing Unit", who among other responsibilities helped the project leaders to prepare the worksheets for the "Manual Unit", and the "Testing Section". The Manual Unit were unskilled workers who were trained to perform to perform specific operations, such as

Desk calculating machines were widely used in the 1930s to perform arithmetical operations, including multiplication and division. As the MTP grew, it acquired numbers of second-hand calculators and the size of the Manual Unit shrank as its suitably qualified members were promoted to the Machine Unit.

From the French revolution right through to the mid-twentieth century, then, the organization of large-scale calculation took the form of a pyramid resting on the base of a large group of mathematically unsophisticated (human) computers. The computers were expected to perform individual arithmetico-logical operations, with or without mechanical assistance, and to closely follow a plan telling them what operations to perform, in what order, and how and where to record the results. The ability to work independently and the exercise of initiative or judgement were not required.

It was precisely these characteristics that machine developers of the early 1940s 159 were hoping to automate and that George Stibitz, designer of an influential series of 160 machines at Bell Telephone Laboratories, made the defining property of computers 16 understood as machines rather than human beings. ${ }^{3}$

By "calculator" or "calculating machine", we shall mean a device (mechanical, electrical 163
or what not) capable of accepting two numbers, $A$ and $B$, and of forming some or any of
164

[^47]
## Author's Proof

# the combinations $A+B, A-B, A \times B, A / B$. By "computer", we shall mean a machine <br> capable of carrying out automatically a succession of operations of this kind and of storing the necessary intermediate results". (Stibitz 1945, 1-2) <br> In the 1830s Babbage had made the first attempt to design such a computer with 168 his work on the Analytical Engine. Around a hundred years later, Konrad Zuse in Germany and Howard Aiken in the USA independently began projects leading to theconstruction of the first machines capable of automatically carrying out a sequence 

### 6.3 Automating Calculation

In 1935, Zuse set up a workshop in his parents' Berlin apartment and began work.(Zuse 1936, 163). The operations to be performed were described by what Zusecalculating the determinant of a $3 \times 3$ matrix. This involved a total of 17 operations,each with two operands: 12 multiplications, two additions and three subtractions.182

Zuse developed a series of machines designed along these lines. The third of 183 these machines, the Z3, was completed in 1941 and is now considered to be the first programmable computer. The Z3 and its predecessors were destroyed in air raids, but Zuse's next machine, the Z4, survived and was moved to Zurich, where it played an important role in the post-war development of European computing.

In 1937, Harvard graduate student and physics instructor Howard Aiken wrote a proposal for "an automatic calculating machine specifically designed for the purposes of the mathematical sciences" (Aiken 1937). He observed that existing punched-card calculating machinery did "the reverse of that required in many mathematical operations", in that it allowed the evaluation of a limited range of formulas on sequences of data read from punched cards. By contrast, Aiken believed that the characteristic of scientific calculation was that it required long and varied sequences of operations to be carried out on relatively small amounts of data. In principle, this could be done on existing machinery by manually switching from one operation to another: it was precisely this manual switching that Aiken planned to automate.

Aiken managed to enlist the help of IBM in building his machine, officially called

## Author's Proof

Every aspect of Mark I was determined by its role in mathematical calculation. 204 Like Zuse's machines, it was equipped with a number of general purpose registers, 205 or counters, which stored results and allowed them to be retrieved when needed. 206 Aiken explained the need for storage registers as a consequence of the pragmatics 207 of conventional mathematical notation: 208

The use of parentheses and brackets in writing a formula requires that the computation 209 must proceed piecewise. [...] This means that a calculating machine must be equipped 210 with means of temporarily storing numbers until they are required for further use. Such 211 means are available in counters. (Aiken 1937, 198)

The counters stored incoming numbers by adding them to their existing contents, 213 thus enabling Mark I to carry out addition in general. Subtraction was carried out 214 using complements. There were specialized units for multiplication and division,
to compute the values of selected exponential and trigonometric functions, and to 216 interpolate between values read from a paper tape. But the heart of the machine was the sequence mechanism. This read a list of coded instructions that had been punched onto a paper tape and invoked the corresponding operations. By simply changing the tape, Mark I could be instructed to carry out any desired computation.

### 6.4 The Structures of Computation

The sequence of operations performed by the Z3 or Mark I was determined by the sequence of instructions read from the machines' tapes. To evaluate a simple formula, the tape would simply contain one instruction for each operation that thethe operations will be required and instead has to rely some property of the resultsobtained so far to determine when the calculation should stop.

The conditional branch instructions of modern programming languages address 232 these issues by allowing computations to diverge when necessary from the default

## Author's Proof

fully automate computation, allowing loops and conditional branches to be freely243 utilized, was ENIAC.

ENIAC was the brainchild of a physicist, John Mauchly, who had taken up 245 wartime employment at the Moore School. ${ }^{4}$ The school had a long-standing ${ }^{246}$ collaboration with the Army Ordnance Bureau's proving ground in Aberdeen, in 247 nearby Maryland, and in particular with its Ballistics Research Laboratory (BRL), 248 an important centre of calculation in the interwar years. BRL had supported the 249 Moore School's acquisition of a differential analyzer, with the understanding that in 250 the event of war it would be made available for BRL's use. Developed by Vannevar ${ }^{251}$ Bush (1931) at MIT, the analyzer was a cutting-edge analogue machine which used 252 mechanical integrators to solve differential equations. 253

When war broke out, BRL faced the challenging task of compiling firing tables 254 for a vast range of new ordnance and ammunition. These tables integrated large 255 amounts of experimental data and ballistic calculation, and told gunners how to 256 aim their weapons to hit a specific target. To compile a table, many trajectories- ${ }^{257}$ the predicted paths of projectiles fired from the gun-had to be calculated, each 258 requiring the solution of a set of differential equations that could take a human 259 computer several hours. Invoking the terms of the earlier agreement, BRL set up a 260 satellite computing centre at the Moore School overseen by Herman Goldstine, a ${ }^{26}$ mathematician whose wartime commission had seen him posted to BRL. Goldstine 262 and his wife Adele were responsible for training and supervising teams of computers 263 calculating trajectories. The Moore School's differential analyzer was extensively 264 used in these calculations.

Mauchly was not directly involved in the firing table work, but he supervised a 266 group carrying out manual computation and was familiar with the design and use of 267 the analyzer. He had a long-standing interest in the use of electronics for calculation, 268 and in August 1942 brought these interests and experience together in the form of a 269 brief proposal for an electronic analogue of the differential analyzer. He estimated 270 that the use of "high-speed vacuum tubes" would allow trajectories to be calculated 27 in a fraction of the time taken by the mechanical analyzer, let alone by manual 272 calculation. The proposal eventually came to the attention of Herman Goldstine, 273 who saw great potential in it. Mauchly and Presper Eckert, a talented electronic 274 engineer who had trained Mauchly when he first arrived at the Moore School, wrote 275 a more detailed outline and a collaboration was soon agreed whereby the Moore 276 School would build an electronic machine for BRL.

Although it was envisaged that the machine would spend a lot of its time 278 calculating trajectories, its design was not limited to that particular application. As 279 Mauchly had explained:

There are many sorts of mathematical problems which require calculation by formulas
which can readily be put in the form of iterative equations. [...] Since a sufficiently
approximate solution of many differential equations can be had simply by solving an
associated difference equation, it is to be expected that one of the chief fields of usefulness

[^48]
## Author's Proof

for an electronic computor [sic] would be found in the solution of differential equations. 285 (Mauchly 1942)

Mauchly's use of the phrase "electronic computer" seems very natural to modern- 287 day readers, but would have been quite unfamiliar in 1942. Mauchly had described 288 the new machine as an "electronic difference analyzer", but "computer" was soon 289 added to the machine's name to reflect its potential generality, as Grist Brainerd, the 290 Moore School academic in charge of the project, explained:

The electronic difference analyzer and computer is a proposed device never previously 292 built, which would perform all the operations of the present differential analyzers and would in addition carry out numerous other processes for which no provision is made on present analyzers. It is called a "difference" analyzer rather than a "differential" analyzer for technical reasons. (Brainerd 1943)

The new machine soon became terminologically independent of its predecessor, 297 being dubbed the "Electronic Numerical Integrator and Computer", or ENIAC. ${ }^{5}$ The 298 numerical solution of differential equations by iterative means became ENIAC's 299 signature application, but over the course of its working life it was applied to a much wider range of calculations than simply trajectories. Nevertheless, as late as the early 1950s, "artillery and bomb ballistics computation" made up a quarter of its workload (Reed 1952).

Mauchly may have used the term "computer" to emphasize that ENIAC, unlike a simple calculator, would be automatically sequenced and, like a human computer, able to work independently. In this respect, electronic speed was problematic, as it meant that the familiar technique of reading coded instructions from paper tape was simply too slow. Instead, the team adopted what they later described as a stopgap solution in response to the urgency of a wartime project and designed ENIAC as a collection of specialized calculating units. They shared with Zuse and Aiken the view that calculations could be specified as sequences of instructions, but they adopted a different technological approach to realizing the instruction sequences. Instructions were set up on "program controls" on each unit, and computations were sequenced by cabling these controls together in problem-specific configurations.
As it turned out, this gave ENIAC a flexibility that allowed a greater degree of automation than was possible on the tape-controlled machines.

The ENIAC team delivered their first progress report at the end of 1943, 6 months after the start of the contract funding the project. After extensive research into the existing state of the art, a new design for the machine's basic electronic counters had been decided on, but nothing had been constructed apart from a few test circuits.319 Plans for some units were fairly well advanced, but others had barely been started. There were many open questions about the design of the machine, and it had not yet been demonstrated that large numbers of unruly electronic valves could be
persuaded to collaborate reliably and work as required.

[^49]
## Author's Proof

Despite the provisional and incomplete state of the hardware design, however, 325 the report was accompanied by detailed plans showing how ENIAC could be set up 326 to calculate a ballistic trajectory. ${ }^{6}$ Acting as a kind of feasibility test, this exercise enabled the team to settle many aspects of ENIAC's design. Different algorithms 327 were investigated, the choice between them being governed by a variety of practical considerations. Would the numerical properties of the equations allow a reasonable degree of accuracy to be preserved throughout the calculation? Would the number of
operations to be carried out and intermediate values to be stored physically fit onto ENIAC? Analysis by the Moore School mathematician Hans Rademacher showed333 that the relatively unfamiliar Heun method would be suitable, and the problem was 334 reduced to a set of 24 simple difference equations. This analysis also enabled the 335 size of ENIAC's accumulators to be fixed: numbers had to be stored to a precision ${ }^{336}$ of ten decimal digits to enable the computed results to be sufficiently accurate for 337 BRL's purposes. 338

The analysis of the structure of the computation was just as significant as the 339 numerical work. The trajectory calculation was split into four basic sequences of 340 instructions: setting up the initial conditions, performing an integration step, printing
a set of results, and carrying out a check procedure. These sequences were combined
in a complex structure which included two nested loops: after the initial sequence 343 was complete, a loop would print a set of results and carry out the check procedure 40 times; each set of results was calculated by performing the integration step 50 345 times. ${ }^{7}$ In 1943, the team had little idea how a computation of such complexity would be controlled, and proposed a unit called the "master programmer" which346 would control the repetition of instruction sequences and move from sequence to 348 sequence when required.

In the following months, the team set to work on the master programmer. Central to its design was a multi-functional device known as a "stepper" which controlled the initiation of up to six program sequences, one after the other. Each stepper had a counter associated with it to keep track of how many times the current sequence had been executed. Once a sequence had been repeated a specified number of times, the 354 stepper would move the machine on to the next sequence. Conditional control was 355 enabled by routing pulses derived from the results already calculated into a special "direct input" socket which advanced the stepper independently of the number of 356 repetitions that had been counted.
ENIAC, then, was designed to solve a specific type of mathematical problem, but 359 it had to be able to do so completely automatically: if its operators had to change

[^50]
## Author's Proof

instruction tapes, as on Mark I, the advantages of its electronic speed would be lost. 361 The analysis of the trajectory calculation revealed the level of control flexibility 362 required and led to the design of the master programmer, a device capable of 363 controlling highly complex computations built up using the fundamental structures 364 of loops and conditional branches. As a result, ENIAC was capable of tackling a 365 wide range of problems, although in practice physical constraints such as its small 366 amount of high-speed storage limited its scope of application (Reed 1952).

### 6.5 The Computer as Mathematical Instrument

By the summer of 1944, ENIAC's design was virtually complete and the team were
beginning to think about the future. Anxious to secure a new contract before the

At around the same time, John von Neumann discovered ENIAC. Despite the 375 fact that he had been a member of BRL's Scientific Advisory Committee since 1940, he only found out about the machine, according to Herman Goldstine, thanksin a context where it was cutting back on long-term research projects, the Bureau ofneed to address shortcomings in a machine it was still in the process of paying for. 387As Babbage had discovered a century earlier, this is not a great strategy for winning 388a funding body's support.

Matters moved quickly. On August 29, at a meeting attended by both Goldstine 390 and von Neumann, BRL's Firing Table Reviewing Board decided to support a new 391 contract with the Moore School, to develop "a new electronic computing device". 392 The Board minuted that the new machine would be "cheaper and more practical to 393 maintain" than ENIAC, would be able to store large quantities of numerical data, 394 and would be easy to set up for new problems. The Board also noted that the new 395 machine would be "capable of handling many types of problems not easily adaptable 396 to the present ENIAC" (see Haigh et al. 2016, 134).

Von Neumann brought to the meeting the perspective of a user, not a computer 398 builder. Although he proved more than capable of engaging with the gritty details of 399 vacuum tubes, he was also engaged in a continent-wide search for raw computing 400 power for a variety of projects, including the Manhattan Project at Los Alamos. In 401

## Author's Proof

March he had used the IBM punched card machines at BRL to carry out some test 402
calculations on hydrodynamical shock problems, noting that:

The actual computations on each problem required 6-12 working hours net, and the entire 404 program (setting up, etc), insofar as these three problems were concerned, took less than 405 ten days. [...] In the truly many-dimensional cases the possibility of using other types of 406 machines will also have to be investigated. (von Neumann 1944b, 375, 379) 407

The possibility of using ENIAC for similar work was quickly investigated. By 408 August 21, as Goldstine reported: 409

Von Neumann is displaying great interest in the ENIAC [...] He is working on the 410 aerodynamical problems of blast and runs into partial differential equations of a very 411 complex character. By greatly simplifying his equations he is able to get a one dimensional 412 equation that is solvable in four hours on the IBM's. We calculate that it will take ten 413 seconds on the ENIAC counting the printing time. (Goldstine 1944b) 414

But not even ENIAC was powerful enough. The day after deciding to support 415 the new contract, the Firing Table Reviewing Board sent a detailed memo to Simon 416 outlining the rationale for their decision. Since the new machine would be more 417 flexible and capable of storing large amounts of numerical data: 418

It would make possible the solution of the complete system of differential equations of 419
exterior ballistics [...] these equations are too complicated in character to be handled by 420 the differential analyzer, the Bell Telephone machines, the IBM machines, or the present ${ }_{421}$ ENIAC in a reasonable length of time. (BRL 1944)

The Board also noted the application of the new machine to the "extensive and 423 unusual computations" needed to make use of the data produced by BRL's new wind 424 tunnel. Existing machines, including ENIAC, would be "most useful in extensive 425 but less complicated routine calculations". The wind tunnel played a prominent role 426 in selling the new proposal to BRL and its paymasters. In mid-September Brainerd ${ }_{427}$ wrote to Colonel Paul Gillon of the Bureau of Ordnance referring to: 428
some rather extensive discussions concerning the solution of problems of a type for 429 which the ENIAC was not designed. [...] Dr. Von Neumann is particularly interested in 430 mathematical analyses which are the logical accompaniment of the experimental work 431 which will be carried out in the supersonic wind tunnels. Unfortunately practically all of 432 these problems are tied up in non-linear partial differential equations, the solutions of which 433 is is impractical to obtain with any known equipment now existing or being built. (Brainerd 434 1944a)

Brainerd was now careful to suggest that ENIAC's perceived shortcomings were ${ }^{436}$ not defects, but rather adaptations to the particular type of problem it was designed ${ }_{437}$ to solve. These representations evidently had the required effect: towards the end of 438 October, a supplement to the ENIAC contract was signed authorizing a 9-month 439 contract on "an Electronic Discrete Variable Calculator", starting on January 1, 440

## Author's Proof

1945. ${ }^{8}$ Von Neumann's existing role at BRL was expanded, allowing him to act 441 as a consultant to the Moore School for the new project (Goldstine 1944a).

442
Simon received yet another memo on the subject, this time from von Neumann 443 himself, in January 1945. Von Neumann emphasized the importance of "general 444 aerodynamical and shock-wave problems" and the need to make "full and efficient 445 use of the Supersonic Windtunnel", and he pointed out that ENIAC and the Bell 446 Labs machines were not really suited to the kind of calculations required: 447

The differential equations are usually partial and 2 or 3 dimensional, and they are therefore 448 in the simplest cases just on the margin of what the present equipment can handle, and in 449 all other cases far outside its compass. [...] The EDVC [sic] is being designed with just this 450 type of problem in view. (von Neumann 1945a)

In the latter part of 1944, then, a rather vague aspiration to build a machine that 452 would address some of ENIAC's shortcomings was refined into a proposal for a 453 computer optimized to solve a class of problems of pressing concern to BRL, multi- 454 dimensional, non-linear, partial differential equations. Brainerd was quick to spell 455 out the connections between this application and the team's technical ambitions: ${ }_{456}$

If a two-dimensional problem is to be solved [...] many thousands of values of quantities 457 must be stored while the process is being carried on. It is on this point of the great amount 458 of storage capacity required that existing and contemplated machines fall down. There is 459 also a further point that the programming of the carrying out of the solutions is far more 460 complicated than permitted by existing or contemplated machines. (Brainerd 1944a) 461

EDVAC, then, needed a large high-speed store because the calculations it was 462 being built to carry out generated large amounts of numerical data. But this also ${ }_{463}$ suggested a solution to the problem of setting up the machine quickly: 464

To evaluate seven terms of a power series took 15 minutes on the Harvard machine of which 3 minutes was set up time, whereas it will take at least 15 minutes to set up ENIAC and about 1 second to do the computing. To remedy this disparity we propose a centralized programming device in which the program routine is stored in a coded form in the same type storage devices [sic] suggested above [to hold numerical data]. (Goldstine 1944c)

All previous automatic computers had used different storage media for numbers and program instructions: numbers were stored in counters of various kinds, while instructions were read from paper tape or, in the case of ENIAC, set up on dedicated pieces of hardware. If instructions were to be available at electronic speed, they 473 could not be read when needed from an external medium, but had to be placed on the 474 machine before the computation began. As Goldstine noted, a new device-mercury 475 delay lines-had been proposed for the cost-effective storage of large amounts of 476 numerical data. If instructions were coded as numbers, as on the Harvard and Bell 477 Labs machines, it would obviously be possible to use the same kind of device to 478 hold the instructions.

[^51]
## Author's Proof

At this point, Goldstine's proposal was that, instead of using different media to 480 store numbers and instructions, they could be held in storage devices of the same 481 type. What is often taken to be a defining characteristic of the modern computer, 482 storing data and instructions in a single device, was adopted rather cautiously. In the 483 First Draft, after carefully listing all the different types of information that EDVAC 484 would have to store, von Neumann commented: 485

While it appeared, that various parts of this memory have to perform functions which differ 486 somewhat in their nature and considerably in their purpose, it is nevertheless tempting 487 to treat the entire memory as one organ, and to have its parts even as interchangeable as 488 $\begin{array}{ll}\text { possible for the various functions enumerated above. (von Neumann 1945b, 6) } & 489\end{array}$

Some problems needed lots of programming instructions but used little numerical 490 data, while others were exactly the reverse. As Eckert explained the following year, 491 a single store would give EDVAC valuable flexibility:

Aside from simplifying the construction of the machine, this move eliminates for the 493 designer the problem of attempting to find the proper balance between the various types of memory [...] The proper subdivision of the memory, even for a restricted set of problems, such as the ENIAC is designed to handle, is too variable from problem to problem to permit an economical compromise. (Eckert 1946, 112)

However, the code proposed in the First Draft clearly distinguished numbers and 498 instructions, and treated the two kinds of data rather differently. EDVAC's memory 499 would still be explicitly partitioned, recreating on a problem-by-problem basis the 500 separate storage devices that Goldstine envisaged.

501
The tape of Alan Turing's universal machine of 1936 also held both data and 502 coded instructions, a fact that has led some writers to suppose that there is a simple 503 "stored program concept", invented by Turing and subsequently implemented by the 504 new machines of the mid-1940s. The complexities and confusions surrounding the 505 term "stored program" have been analysed by Haigh et al. (2014), and it is sufficient 506 here to note that EDVAC's unitary memory was not the result of the application of 507 an insight drawn from mathematical logic, but of a series of pragmatic engineering 508 decisions taken during the design of a machine requiring an unprecedentedly large 509 store in order to address a particular class of mathematical problem.

A more significant innovation of the First Draft was to give programs the 511 ability to modify their own instructions in certain ways as computations progressed. 512 This had profound consequences for EDVAC's mathematical capabilities, making it 513 feasible to write programs that operated on large vectors and matrices, not just on 514 a small number of individual variables. Without this, the machine would not have 515 been able to solve the partial differential equations of interest to von Neumann. 516 There is nothing like this in Turing's earlier logical work. 517

Like ENIAC, then, EDVAC was designed and sold to its sponsor as a math- 518 ematical instrument with a rather specific purpose. Designing a machine capable 519 of carrying out the required calculations led to a number of features that are now 520 considered definitional of the modern computer, such a large unitary memory and 521 code that allows programs to modify their own instructions. There is no need to 522

## Author's Proof

postulate an "injection of mathematical logic" in order to explain the origins of the 523 computer and little, if any, evidence in the archival record of such an injection.

### 6.6 Planning and Coding

The last two sections have examined some of the ways in which the computer's mathematical origins shaped its technological design. The influence of mathematics was not limited to hardware, however: the following sections will explore how the work practices within which automatic computers were situated profoundly affected early conceptions of computer programming.

The ENIAC progress report issued at the end of 1943 positioned the plans for the trajectory calculation in the context of a "general setup procedure" consisting of three phases. The first phase was mathematical, involving "the reduction of the given set of equations or relations to such a form that they can be solved by the ENIAC" (Moore School 1943, XIV (1)). This involved transforming the equations so that they only used the basic operations provided by ENIAC and ensuring that the computation would fit within the limits of its hardware, both in terms of the number of operations involved and the accuracy of the results that would be obtained. For the trajectory calculation, this phase resulted in a set of difference equations allowing a numerical solution of the equations of exterior ballistics to be calculated.

The second phase involved mapping these difference equations onto ENIAC's hardware. Variables were assigned to accumulators, and decisions were taken about numerical matters such as the number of decimal places and the position of the decimal point. Once this was done:
this phase of setup reduces to the somewhat routine task of scheduling the operations and the corresponding connections. There are many possible arrangements for each problem, however, so that some skill is involved in chasing a suitable and preferred one. (Moore School 1943, XIV (2))

The results of this phase were given in a "setup form" describing the sequencing of the operations and the numerical details, and a "panel diagram" giving details of exactly how switches would be set and connections plugged so that ENIAC would perform the operations in the required order. Plans for the trajectory calculation were attached to the report. Based on the information in the panel diagram, the third phase of the procedure was rather more routine, involving "the manual plugging in of the various conductor cables and the manual setting of the various program switches" (Moore School 1943, XIV (3)).

The report claimed no originality for this three-phase procedure, pointing out its similarity to the way equations were set up on the differential analyzer. But its roots go back much further than that: the three phases correspond quite clearly to the basic division of labour devised by de Prony in the eighteenth century. The first phase, putting "the given equations [...] in a form suitable for the machine", corresponds to the work of the mathematicians in de Prony's first section, and Adele Goldstine

## Author's Proof

and Arthur Burks, developing detailed computational plans that used only basic 563 arithmetical operations, would have been natural members of the second section. 564 The most significant change is a direct consequence of automation: the arithmetical 565 hairdressers of de Prony's third section have been replaced by ENIAC, and human 566 labour is only required to set up ENIAC to perform the calculation and supervise it 567 while in operation.

The similarity extends even to the checking of calculations. De Prony had called 569 for calculations to be carried out in two different ways, with the workers of the 570 second section checking that the results were consistent. Every time ENIAC printed 571 a set of results, a single integration step would be carried out with known data and 572 the results printed. These would be checked by the operators, and any discrepancies 573 with the expected results would indicate that a hardware fault had occurred. 574

Howard Aiken's group at Harvard employed a similar division of labour when 575 preparing computations for Mark I. The first step was taken by "the mathematician 576 who chooses the numerical method best adapted to computation by the calculator" 577 (Harvard 1946, 50). Relevant factors considered at this stage included the accuracy 578 and the speed of the calculation, and also the ease with which it could be checked. 579

The chosen method was then expressed in terms of Mark I's basic operations. A 580 variety of notations were used at this stage. Coding sheets (Harvard 1946, 49) were 581 used to define the basic sequence of operations to be punched onto instruction tapes, 582 and diagrams were prepared showing how to wire the plugboards that some of Mark ${ }_{583}$ I's more complex units possessed.

Mark I was not fully automatic, however, and its operators were a integral part 585 of computations, being required, for example, to change tapes when necessary. As 586 well as coded instructions for Mark I, therefore, detailed operating instructions had 587 to be drawn up for each calculation. In this context, the equivalent of de Prony's 588 third section was the cyborg assemblage of Mark I and its operators. The Harvard 589 group preserved the traditional status distinctions between the sections: operators 590 were "enlisted Navy personnel" (Bloch 1999, 87), whereas the mathematicians were 591 civilians or commissioned officers.

Historians have sometimes described the origins of programming as a secondary ${ }_{593}$ process that followed the development of the computing hardware. For example, 594 Nathan Ensmenger (2010, 34) writes that programming was "little more than an 595 afterthought in most of the pioneering wartime computing projects". At least in 596 the case of ENIAC and EDVAC, this is not true: detailed plans, or programs, were 597 prepared as part of the design process in both projects and directly influenced central 598 aspects of the machines' design, such as ENIAC's master programmer. 599

It would be more accurate to say that the participants in these wartime projects 600 did not view programming as being something particularly novel or problematic. 601 Machines were built to carry out specific mathematical tasks and their designers 602 assumed that existing well-understood procedures for planning and organizing 603 large-scale calculations could be straightforwardly applied to the new situation. 604 Moving from human to automatic computation led to changes in the way that the 605 accuracy of calculations was estimated and their results checked, but the overall 606 workflow of the planning process was unchanged. The biggest difference was that 607

## Author's Proof

instead of handing a computation sheet to a human, the instructions it contained had to be translated into machine-readable form, but once the sequence of low-level 609 operations had been decided on, this was thought to be a straightforward procedure. 610 The changes brought about by automation were localized at a late stage in the 611 overall planning process, as von Neumann pointed out when preparing a "tentative 612 computing sheet" for a Monte Carlo simulation. It was, he said,

In the first of an influential series of reports on Planning and Coding of Problems 616 for an Electronic Computing Instrument, Goldstine and von Neumann (1947) gave 617 a detailed account of how existing practices of large-scale calculation could be 618 adapted for use with automatic computers. Although the word "programming" was 619 being used in its modern sense as early as $1944,{ }^{9}$ Goldstine and von Neumann chose 620 not to use it. Instead, they split the overall workflow into the two major phases of 621 "planning" and "coding". The division between the two phases marked the point at 622 which techniques specific to automatic computers became important.

Goldstine and von Neumann described planning as a "mathematical stage of 624 preparations". Echoing the approach taken by the ENIAC and Mark I designers, 625 they explained that planning involved developing equations to model the problem at 626 hand, reducing these to "arithmetical and explicit procedures", and estimating the 627 "precision of the approximation process". They emphasized that all three steps in 628 the planning stage were "necessary because of the computational character of the 629 problem, rather than because of the use of a machine" (Goldstine and von Neumann 630 1947, 19).

The coding phase was less familiar and so discussed in much more detail. It was 632 divided into two stages. A "macroscopic" stage corresponded to the second phase 633 of the ENIAC setup procedure. It began by expressing the structure of the program 634 in diagrammatic form, using the new flow diagram notation that Goldstine and von 635 Neumann had developed, and drawing "storage tables" summarizing the data used 636 by the program. The subsequent "microscopic" stage corresponded more closely to 637 what in understood by "coding" today, and involved expressing the contents of the 638 various boxes in the flow diagram in machine code. Some routine manipulations of 639 the code were then carried out to turn it into its final machine-readable form. ${ }_{640}$

By 1948, two further Planning and Coding reports, containing a number of 641 worked examples, had been issued. The reports were highly influential and the flow 642 diagram notation was widely adopted. Ensmenger (2016) has pointed out that as 643 programming industrialized, flow diagrams came to function as boundary objects, 644 notations inhabiting "multiple intersecting social and technical worlds" and flexible 645 enough to enable communication between groups as disparate as managers, system 646 analysts and programmers. Initially, however, they sat on the boundary between 647

[^52]
## Author's Proof

the planning and coding stages of the program preparation process. As computers came to be used for tasks that were not exclusively mathematical, or where a 649 "mathematical stage of preparation" became less applicable, development began 650 with a stage of "analysis" whose results, documented as a flow diagram, became the 651 input for the more machine-oriented aspects of the workflow.

As experience with the new machines was gained, it quickly became apparent that planning and coding was not quite as straightforward as expected. The exercise of preparing instructions for a machine revealed the extent to which planners had 655 relied on the humans of the third section to display intuition and common sense, 656 even when they were supposedly acting "mechanically". The English mathematician 657 Douglas Hartree, one of ENIAC's first users, commented on a typical breakdown in 658 an automated calculation:

A human computor, faced with this unforeseen situation, would have exercised intelligence, 660
almost automatically and unconsciously, and made the small extrapolation of the operating 661
instructions required to deal with it. The machine without operating instructions for dealing 662 with negative values of $z$ could not make this extrapolation. (Hartree 1949, 92)

The moral that Hartree drew from this experience was that programmers needed 664 to take a "machine's-eye view" of the instructions being written, and this blurring 665 of the boundaries between human and machinic agency is nicely captured in the 666 image of the human "automatically" exercising intelligence. However, it was more 667 common to call for a more exhaustive and rigorous planning process. In what is 668 often described as the first programming textbook, the Cambridge-based team of 669 Maurice Wilkes, David Wheeler, and Stanley Gill explained that: 670

A sequence of orders [...] must contain everything necessary to cause the machine to 671 perform the required calculations and every contingency must be foreseen. A human 672 computer is capable of reasonable extension of his instructions when faced with a situation 673 which has not been fully envisaged in advance, and he will have past experience to guide 674 him. This is not the case with a machine. (Wilkes et al. 1951, 1)

As this indicates, Goldstine and von Neumann's view of computer programming 676 as a form of planning quickly became standard. The first challenge to the perceived limitations of this approach would not emerge until the mid-1950s, a development 678 outlined in the final section of this chapter.

### 6.7 From Tables to Subroutines

The influence of mathematical practice on the use of automatic computers is visible 68 not only in the organization of complete computations, but also in the details of 682 specific programming techniques. An interesting example of this is the relationship 683 between the use of tables in manual computation and the development of the idea of 684 the subroutine.

The use of tables was so engrained in mathematical practice that the Harvard 686 Mark I's designers put it on a par with the familiar operations of addition, subtrac- 687

## Author's Proof

tion, multiplication and division, writing that the machine was designed to carry out 688 computations involving "the five fundamental operations of arithmetic": the fifth 689 operation was described as "reference to tables of previously computed results" 690 (Harvard 1946, 10). Tables were a ubiquitous feature of manual computation. A 691 typical table would hold the precomputed values of a function, and when a value 692 was required the (human) computer would interrupt work on the main calculation, 693 take the appropriate volume of tables down off the shelf, look up the required value, 694 and copy it into the appropriate place on the worksheet. Interpolation was used to 695 obtain values for arguments that fell between those printed in the table.

696
Mark I contained dedicated hardware to support each arithmetic operation. Table 697 look-up was implemented by three "interpolation units". These units read numerical 698 data from tapes containing equally spaced values of the function argument, each 699 followed by the coefficients to be used in the interpolation routine (Harvard 700 1946, 38, 47). When a function value was required, the argument was sent to an 701 interpolation unit. The unit would then search the tape for the appropriate value of 702 the argument, read the interpolation coefficients, and carry out a hardwired routine 703 to calculate the required value. 704

Mark I also had special-purpose units to compute logarithms and values of the 705 exponential and sine functions. Unlike the interpolators, these units did not read 706 a tape, but executed a built-in algorithm to compute the required values directly. 707 Nevertheless, the units were described as "electro-mechanical tables" (Harvard 708 1946, 11), a terminological choice that makes clear that Mark I's designers were 709 not only transferring the use of mathematical tables in manual computation into the 710 world of automatic machinery, but also using the experience of the past as a way of 711 making sense of the new machine.

ENIAC's designers also considered table look-up to be one of their machine's 713 basic capabilities (Moore School 1943, XIV (1)), and took a similarly explicit 714 approach to supporting the use of tables. Numerical information was stored on three 715 "portable function tables", large arrays of switches on which a table of around 100716 values could be set up, indexed by a two-digit argument. This data was read by a 717 "function table" unit, the whole arrangement being optimized to make it convenient 718 to read the five values required for a biquadratic interpolation. Unlike Mark I, 719 however, ENIAC had no dedicated interpolation unit. It was left to the user to set 720 up an interpolation routine suitable for the problem at hand, and many examples of 721 such routines are presented in Adele Goldstine's 1946 manual and other reports. ${ }_{722}$

There is a tension apparent in Mark I and ENIAC between the alternatives of 723 looking up tabular data and computing values when needed. While mathematical 724 functions could be computed on demand, some applications, such as calculating a 725 trajectory, made use of empirical data for which no formula was available. There ${ }_{726}$ was no alternative to storing such tables explicitly. The volume of tabular data to ${ }_{727}$ be stored was one of the issues that the EDVAC team considered when estimating ${ }_{728}$ the size of memory the machine would need, and von Neumann summarized the 729 situation as follows:

## Author's Proof


#### Abstract

In many problems specific functions play an essential role. They are usually given in form of a table. Indeed in some cases this is the way in which they are given by experience [...], in other cases they may be given by analytical expressions, but it may nevertheless be simpler and quicker to obtain their values from a fixed tabulation, than to compute them anew (on the basis of the analytical definition) whenever a value is required. (von Neumann 1945b, 4-5)


He suggested that common functions such as log, sin and their inverses could be treated by table look-up rather than calculation. Interestingly, Mark I's designers had made precisely the opposite choice, providing the dedicated electromechanical tables to compute the values of these elementary functions on demand.

Large computations would typically have to look up many values, and so perform 741 multiple interpolations. On Mark I, this would simply require repeated calls to the interpolation units, but the situation was a bit more complicated on ENIAC where 742 the interpolation routine was set up by the programmer. Clearly, setting up the 743 instructions repeatedly would be a wasteful and ultimately infeasible approach. 745 To perform multiple interpolations, the designers had to find a way to return 746 to a different place in the main instruction sequence each time the interpolation 747 routine was carried out. This capability was provided by the versatile steppers, the 748 key components of ENIAC's master programmer. The mid-1944 progress report 749 explained how this could be done, making the connection with interpolation explicit:750
Thus within a given step of integration a certain interpolation process may be used several ..... 751
times. This sequence need be set up only once; by means of a stepper the same sequence ..... 752 can be used whenever needed. (Moore School 1944, IV-40)

This idea of "computation on demand" was naturally soon generalized, and it 754 was recognized that it would be useful to be able to easily reuse any sequence of instructions, not only those computing familiar mathematical functions. In August, 1944, von Neumann reported to Robert Oppenheimer on the progress of the Bell Labs machine. Like Mark I, this machine would read instructions from paper tape, 758 but unlike the Harvard machine, it would have more than one sequence unit. As von 759 Neumann (1944a) noted, it would employ "auxiliary routine tapes [...] used for 760 frequently recurring sub-cycles". There is no suggestion that these auxiliary tapes 761 would be limited to the purpose of interpolation or table look-up.

This turned out to be an issue even on Mark I: its electromechanical tables took 763 a long time to calculate a value, as they used the full numerical precision of the 764 machine. Programmers Richard Bloch and Grace Hopper soon found it necessary 765 to develop more efficient routines for specific problems. As Mark I only had one 766 sequence mechanism, however, they had no alternative to recording and reusing 767 these routines by hand, as Hopper recalled:

It quickly became clear that it would be useful to plan in advance, and to make 771 routines that were likely to be generally useful available for reuse. In 1945, to test 772 the usability of the EDVAC code he had designed, von Neumann wrote a program

## Author's Proof

to merge two sequences of data. After completing the code, he noted the potential ..... 774
generality of the procedure and commented that it could ..... 775
be stored permanently outside the machine, and it may be fed into the machine as a "sub ..... 776
routine", as a part of the instructions of any more extensi
more [merge] operations. (von Neumann 1945c, 25-6) ..... 777
Subroutines were extensively discussed by the EDVAC group in the summer of ..... 779
1945, and in September Eckert and Mauchly provided the following account in a ..... 780
progress report: ..... 781
It is by the use of "subsidiary chains" of orders, to be called into use from time to time, as ..... 782
they are needed, by a "higher" set of orders, that a computational routine can be compactly ..... 783
represented. What is more, this corresponds to the way in which mathematical processes ..... 784
are most easily and naturally thought about. The rule for interpolation is not written down ..... 785
anew each time it must be used, but is regarded as a "subsidiary routine" already known to ..... 786the computer, to be used when needed. (Eckert and Mauchly 1945, 40)787
Eckert and Mauchly made here the familiar connection between subroutines and ..... 788
interpolation, and hence the use of tables, but it is striking that the direction of the ..... 789
metaphor is now reversed and the terminology of automatic computing is used to ..... 790
characterize a familiar and long-established mathematical practice. ..... 791
The idea that subroutines would be recorded in a notebook already seemed ..... 792
outdated, and the benefits of more systematic ways of storing and sharing code ..... 793were becoming recognized. Herman Goldstine (1945) commented that "[e]vidently 794one would collect in his library tapes for handling standard types of problems such 795as integrations and interpolations", and even in Harvard sequence tapes of "general 796interest" were "preserved in the tape library" (Harvard 1946, 292).797
The idea of a subroutine library soon caught on and the developers and users ..... 798
of various machines began to plan standard libraries. As well as convenience, the ..... 799
promise of greater reuse made it economic to analyze the library routines to ensure ..... 800
that they were efficiently coded and would work correctly in a range of contexts. In ..... 801
a January 1947 report on EDVAC programming, Samuel Lubkin (1947, 20, 28) gave ..... 802
an example of a "standard subroutine" to compute square roots "in the form it would ..... 803
take in a library of subroutines", while at around the same time ENIAC operator Jean ..... 804
Bartik was contracted by BRL to run a programming group charged with developing ..... 805
"the technique of programming the production of trigonometric and exponential ..... 806functions" along with a number of other routines of interest to ballisticians. ${ }^{11}$ Some 807years later, the library concept and techniques for writing and using subroutines808

[^53]
## Author's Proof

were more widely disseminated in the textbook by Wilkes et al. (1951) which made, 809 as its subtitle promised, "special reference to the EDSAC and the use of a library of 810 subroutines". ${ }^{12}$

The metaphor of the "library" is telling. Authors working in libraries consult 812 reference books, but the texts they are writing do not form part of the library. At 813 best, they will be added to the shelves only after being completed, published and 814 found worthy of preservation. Similarly, a subroutine thought to be generally useful 815 might, after extensive checking, be placed in a library, but the main routines written 816 to solve specific problems were treated quite separately and were less likely to be 817 permanently stored. Work practices reinforced the distinction between the two types 818 of code. Wilkes et al. $(1951,43)$ described how EDSAC subroutines and master 819 routines were punched on separate tapes and only combined at the last minute to 820 form a program tape for an actual computation. The subroutines themselves were 821 punched on coloured tape and stored in a steel cabinet, while the master copies were 822 kept under lock and key. In contrast to these complex and bureaucratized procedures, 823 the master routine tapes could be treated very casually, as the story of Wilkes' Airy 824 program reveals (Campbell-Kelly 1992). At Harvard (1946, 292), there was also a 825 contrast between the care that would go into the preparation of a library tape for 826 Mark I and one intended to be run but once. 827

Subroutines, then, are a technique with roots in the mathematical practice of table 828 use that allowed programs to be efficiently structured and written. However, while 829 a mathematician carrying out a complex calculation would not normally develop 830 a new interpolation routine, say, programmers did identify new and unanticipated 831 subroutines while writing new programs. Among the first to notice this were 832 BRL mathematicians Haskell Curry and Willa Wyatt who in 1946 planned an 833 interpolation routine for ENIAC. They divided the program into a number of 834 "stages" and, noting that some stages could be reused to avoid having to recode 835 them, went on to make the methodological recommendation that programmers 836 identify reusable stages by looking for repeated code: "the more frequently recurring 837 elements can be grouped into a stage by themselves" (Curry and Wyatt 1946, 30). 838

However, other writers did not follow this lead. Subroutines were not explicitly 839 represented in the flow diagram notation, and in the Planning and Coding reports 840 Goldstine and yon Neumann offered no guidance on how to identify useful new 841 subroutines. Some of the library subroutines described by Wilkes et al. (1951), such 842 as those carrying out integration, made use of "auxiliary subroutines" which defined 843 the function being integrated, but more general uses of user-defined subroutines 844 were not considered.

As a result, perhaps, ad hoc subroutines were rather uncommon in practice. Of 846 the 30 stages in Curry and Wyatt's interpolation program, only four were identified 847 as being reusable. In the Monte Carlo programs run on ENIAC in 1948, there was 848 only one subroutine (to compute a pseudo-random number) in approximately 800849

[^54]
## Author's Proof

program instructions (Haigh et al. 2016, 183-6). Programming guidelines for the 850 Harvard Mark II even suggested that in general "the method which involves the 851 fewest routines [. . .] is the logical choice" (Harvard 1949, 266).

The emphatic distinction between master routines and subroutines had another 853 consequence, namely that calling hierarchies were rather flat. Typically, a master 854 routine would call a small number of subroutines, but it was rather rare for one 855 subroutine to call another. The techniques used for subroutine call and return further 856 meant that recursive calls, where a subroutine calls itself, were not possible.

The practices of subroutine use that emerged in the early years of automatic 858 computing, then, reflected the ways in which tables were used in manual calculation. 859 Like a set of tables, a subroutine library is a resource that is available in advance of 860 a computation, and subroutine use was largely restricted to calling routines from a 861 library. Looking up a table is an exceptional task that takes the computer away from 862 the normal process of working through a computation sheet and, similarly, calling a 863 subroutine is an exceptional occurrence. Looking up a table is a self-contained and 864 non-recursive operation: when looking up a value in a table, you rarely have to look 865 up a second table in order to complete the operation. Similarly, complex structures 866 of calling relationships between subroutines appear to be uncommon.

These assumptions were still in evidence 10 years later in the first widely-used 868 programming language, Fortran. Like the computer itself, Fortran was intended for 869 mathematical application. The source code was described as "closely resembling 870 the ordinary language of mathematics" and "intended to be capable of expressing 871 any problem of mathematical computation" (IBM 1956, 2). Subroutines were un- 872 derstood by analogy with mathematical functions. A formula containing a function, 873 such as $a-\sin (b-c)$, could be translated directly into Fortran as A-SINF (B-C) 874 (IBM 1956, 12). Fourteen functions were provided as "built-in subroutines" of the 875 language, but these were for rather simple operations such as returning the absolute 876 value of a number. Functions that would typically have been tabulated, such as the 877 trigonometric and exponential functions, were not built in and were left for users to 878 define.

However, new subroutines could not be defined in the Fortran language itself, but 880 had to be written in machine code, and then added to the library in rather a complex 881 and labour-intensive process.

Only with the arrival of Fortran II in 1958 did the language provide more general 887 support for the definition and use of functions and subroutines.

The FORTRAN II subprogram facilities are completely general; subroutines can in turn

## Author's Proof

### 6.8 Conclusions

This chapter began by considering the view expressed by Davis and Mahoney that 894 since EDVAC the computer has been intrinsically a universal logic machine, and 895 hence that its subsequent application to a host of application areas was, if not always 896 straightforward in practice, at least unproblematic in theory. A consequence of this 897 view is that the computer's origins as a technological innovation to automate specific 898 mathematical processes are reduced to the level of an incidental detail.

In contrast, this chapter has shown that EDVAC, like its predecessors, was 900 planned, promoted, designed and built for very specific mathematical purposes. 901 This perspective dominated much computer development throughout the rest of the 902 1940s, and I have argued elsewhere (Priestley 2011, 147-153) that the identification 903 of machines based on the EDVAC design with Turing's idea of a universal machine 904 was not widely made until the early 1950s. As Mahoney might have pointed out, the 905 story of the adoption of the computer by non-mathematical communities is often the 906 story of how the mathematical orientation of the early machines was overcome. As 907 Christopher Strachey, one of the first people to write substantial programs for non- 908 mathematical applications, commented:
the machines have been designed principally to perform mathematical operations. This 910 means that while it is perfectly possible to make them do logic, it is necessarily a rather 911 cumbersome process. (Strachey 1952)

What was invented in the 1940s was not just the automatic computer, however, 913 but modern computing. The machines were conceived as replacements for human 914 computers engaged in mathematical calculation. As Stibitz made clear, this is why 915 they are called computers. The computers' job was to carry out, in ways specified 916 by an explicit plan, a sequence of operations, and the central innovation of modern 917 computing was to automate the task of instruction following. Rather than describing 918 the take-up of a uniquely capable technology, Mahoney's "histories of computing" 919 were to be the stories of how different communities came to reformulate their 920 existing work practices in the form of computer programs.

The task of preparing instructions for the new machines to execute, the activity 922 that we now call programming, naturally became of central importance. Sections 6.6 923 and 6.7 showed how early thinking about programming was profoundly shaped 924 by the mathematical context in which the new computers were built. At the 925 organizational level, existing techniques for managing large-scale calculation were 926 preserved as far as possible. Goldstine and von Neumann's Planning and Coding 927 reports dealt largely with mathematical applications and were rooted in a division 928 of labour dating back to the late eighteenth century. Machine-specific techniques 929 were categorized as coding issues, and it was assumed that the overall planning of a computation could proceed along familiar lines. At a more detailed level, the ${ }_{93}$ particular ways in which subroutines were used to make programming more efficient ${ }_{932}$ reflected aspects of the use of mathematical tables in manual computation. This 933 is not to say, of course, that the use of subroutines was limited to mathematical 934 functions-the EDSAC library also included crucially important input and output 935

## Author's Proof

subroutines. The point is, rather, that the role of subroutines within programs and 936 the ways in which they were used were constrained by their association with existing ${ }_{937}$ practices of using mathematical tables.

These two aspects are characteristic of a general approach to programming that 939 was widely accepted in the late 1940s and early 1950s. Many of the developments 940 of the 1950s, such as the move to automate coding that led to the development of 941 high-level programming languages such as Fortran, were aimed at making technical improvements within this framework but did not break away from the overall model ${ }_{943}$ or the mathematically-oriented thinking that underlay it.

The first explicit reflection on and challenge to this approach emerged, perhaps 945 unsurprisingly, in a non-mathematical context. In 1955, Allen Newell and Herbert 946 Simon began to consider the prospects of writing programs to solve what they 947 called "ultracomplicated problems" such as chess playing and theorem proving. 948 They chose the latter as a testbed, and by 1956 had developed the Logic Theorist 949 (LT), a program capable of finding proofs in the propositional calculus. They found 950 existing programming technique inadequate for developing LT, developing instead 951 a notion of "heuristic programming". ${ }^{13}$

Newell and Simon's critique of current approaches to programming focused on 953 precisely the two issues that I have taken as being emblematic of the mathematical 954 approach to programming. They first addressed the belief that computations had to 955 be planned in advance in exhaustive detail.

But one of the sober facts about current computers is that, for all their power, they must be instructed in minute detail on everything they do. To many, this has seemed to be harsh reality and an irremovable limitation of automatic computing. It seems worthwhile to examine the necessity of the limitation of computers to easily specified tasks. (Newell and Simon 1956, 1)
Secondly, they noted that the design of LT made extensive use of subroutines. 962 Recognizing that "most current computing programs [. . .] call for the systematic use 963 of a small number of relatively simple subroutines that are only slightly dependent 964 on conditions", they argued for a view of program structure that was quite different 965 from the prevailing view of a program as a sequence of statements. Whereas "[a] 966 FORTRAN source program consists of a sequence of FORTRAN statements" (IBM 967 1956, 7), Newell and Simon held that: 968
$\begin{array}{ll}\text { a program }[\ldots] \text { is a system of subroutines [...] organized in a roughly hierarchical fashion. } & 969 \\ {[\ldots .] \text { The number of levels in the main part of LT is about } 10 \text {, ignoring some of the recursions }} & 970 \\ \text { which sometimes add another four or five levels. (Newell and Shaw 1957, 234-8) } & 971\end{array}$
This vision of the use of subroutines is quite different from the prevailing model 972 discussed in Sect. 6.7 of this chapter. Rather than corralling subroutines in libraries 973 that enforced limited and rather stereotypical patterns of use, Newell and Simon 974 viewed them as being fundamental programming structures on a par with loops 975

[^55]
## Author's Proof

and conditional branching. Their programming work was highly influential in the 976 late 1950s in the emerging field of artificial intelligence (Feigenbaum and Feldman 977 1963), and it is very striking that in applying automatic computers to this new area 978 of application they rejected two aspects of the traditional approach that directly 979 reflected the specific practices of mathematical computation.

Certain aspects of Newell and Simon's approach can be found in the personal 981 styles of earlier writers. In his proposal for the ACE, Turing gave some examples 982 of the "paper technique of using the machine", culminating in the definition of a 983 routine CALPOL to calculate the value of a polynomial. The program for CALPOL, 984 or "instruction table" in Turing's terminology, made use of eight subsidiary routines, 985 and its code bore out Turing's general comment that: 986

The majority of instruction tables will consist almost entirely of the initiation of subsidiary 987 operations and transfers of material. (Turing 1946, 28)

Turing was exceptional among the computer developers of the early 1940s in 989 having no significant experience of large-scale manual computing. The intellectual 990 roots of his famous 1936 paper on computable numbers were in the logical theory 991 of recursive functions, which proceeds by building up complex definitions from 992 simpler ones. Turing adapted this approach for his machine table notation, and the 993 table defining the universal machine is built up largely by combining many simpler 994 tables (Priestley 2011, 77-92). It is precisely this style of thought that is reflected in 995 his practical programming examples such as the table for CALPOL. 996

Curry and Wyatt's 1946 interpolation program for ENIAC was constructed by 997 combining a large number of small program fragments. Although he spent the war 998 as a BRL mathematician, Curry's background and interests were, like Turing's, in 999 mathematical logic rather than practical computation. In two later reports Curry 1000 developed this approach into a general theory of program construction, one that he 1001 explicitly opposed to the Goldstine/von Neumann model of subroutines and that 1002 bore more than a passing resemblance to his work in combinatory logic (De Mol 1003 et al. 2013).

1004
Neither Turing's example nor Curry's theory made an immediate impact, how- 1005 ever. Rather than developments in logical theory, it was the stimulus to develop 1006 programs for a new class of essentially non-mathematical problems that led, in 1007 the mid-1950s, to the establishment of an alternative to the prevailing approach to 1008 programming. 1009

Acknowledgements I would like to thank Martin Campbell-Kelly, Tom Haigh, and Sven Ove 1010 Hansson for their helpful comments on earlier versions of this chapter. 1011

## Author's Proof

## References

AWB-IUPUI Arthur W. Burks Papers, Institute for American Thought, Indiana 1013 University-Purdue University Indianapolis. 1014
ETE-UP ENIAC Trial Exhibits, Master Collection, 1964-1973, University of 1015
Pennsylvania Archives and Records Center, Philadelphia. 1016
MSOD Moore School of Electrical Engineering, Office of the Director Records, 1017 1931-1948, UPD 8.4, University Archives and Records, University of Pennsylvania, 1018 Philadelphia.

Aiken, H. H. (1937). Proposed automatic calculating machine. In Randell (1982) (pp. 195-201). 1020
Anonymous (1947). Problems 1947-1948. MSOD box 13.
Babbage, C. (1822). On the application of machinery to the purpose of calculating and printing mathematical tables. In M. Campbell-Kelly (Ed.), 1989, The works of Charles Babbage (Vol. 2, pp. 6-14). London: Pickering.
Bartik, J. J. (2013). Pioneer programmer. Kirksville: Truman State University Press. 1025
Bloch, R. M. (1999). Programming Mark I. In I. B. Cohen \& G. W. Welch (Eds.), Makin' numbers: 1026 Howard Aiken and the computer. Cambridge: The MIT Press. 1027
Brainerd, J. G. (1943). Letter to Dean Harold Pender. MSOD box 51. 1028
Brainerd, J. G. (1944a). Letter to Lt. Col. Paul N. Gillon. MSOD box 55a. 1029
Brainerd, J. G. (1944b). Letter to Lt. Thomas H. Bogert. AWB-IUPUI. 1030
BRL. (1944). Ballistics Research Laboratory firing table reviewing board, memorandum to Colonel 1031 Leslie E. Simon. AWB-IUPUI.
Bush, V. (1931). The differential analyzer: A new machine for solving differential equations. 1033 Journal of the Franklin Institute, 212(4), 447-488. 1034
Campbell-Kelly, M. (1992). The Airy tape: An early chapter in the history of debugging. IEEE 1035 Annals of the History of Computing, 14(4), 16-26. 1036
Curry, H. B., \& Wyatt, W. A. (1946). A study of inverse interpolation of the Eniac (BRL report 1037 No. 615). Aberdeen Proving Ground.

1038
Davis, M. (2000). The universal computer. New York: W. W. Norton \& Company. 1039
Daylight, E. G. (2015). Towards a historical notion of 'Turing-the father of Computer Science'. 1040 History and Philosophy of Logic, 36(3), 205-228. 1041
De Mol, L., Carlé, M., \& Bullynck, M. (2013). Haskell before Haskell: An alternative lesson in 1042 practical logics of the ENIAC. Journal of Logic and Computation, 25(4), 1011-1046. 1043
Eckert, J. P., Jr. (1946). A preview of a digital computing machine. In M. Campbell-Kelly \& M. R. 1044 Williams (Eds.), The Moore school lectures: Theory and techniques for design of electronic 1045 digital computers (Volume 9 of Charles Babbage Institute reprint series for the history of 1046 computing, pp 109-126). The MIT Press. 1047
Eckert, J. P., \& Mauchly, J. W. (1945). Automatic high speed computing: A progress report on the 1048 EDVAC. Moore School of Electrical Engineering. 1049
Ensmenger, N. (2010). The computer boys take over. Cambridge: MIT Press. 1050
Ensmenger, N. (2016). The multiple meanings of a flowchart. Information \& Culture, 51(3), 321- 1051 351.

1052
Feigenbaum, E. A., \& Feldman, J. (1963). Computers and thought. New York: McGraw-Hill. 1053
Goldstine, H. H. (1944a). Letter to John von Neumann. ETE-UP, Plaintiff's Trial Exhibit Number 1054 2512.

Goldstine, H. H. (1944b). Letter to Lt. Col. P. N. Gillon. ETE-UP, Plaintiff's Trial Exhibit Number 1056 2343.

Goldstine, H. H. (1944c). Letter to Lt. Col. P. N. Gillon. ETE-UP, Plaintiff's Trial Exhibit Number 1058 2395.

## Author's Proof

Goldstine, H. H. (1945). Letter to Haskell B. Curry. ETE-UP, Plaintiff's Trial Exhibit Number 1060 3556.

1061
Goldstine, H. H., \& von Neumann, J. (1947). Planning and coding of problems for an electronic 1062 computing instrument (Vol. 1). Princeton: Institute for Advanced Study. 1063
Grattan-Guinness, I. (1990). Work for the hairdressers: The production of de Prony's logarithmic 1064 and trigonometric tables. Annals of the History of Computing, 12(3), 177-185. 1065
Grier, D. A. (1998). The math tables project of the Work Projects Administration: The reluctant 1066 start of the computing era. IEEE Annals of the History of Computing, 20(3), 33-50. 1067
Haigh, T. (2014). Actually, Turing did not invent the computer. Communications of the ACM, 1068 57(1), 36-41.

1069
Haigh, T., Priestley, M., \& Rope, C. (2014). Reconsidering the stored-program concept. IEEE 1070 Annals of the History of Computing, 36(1), 4-17. 1071
Haigh, T., Priestley, M., \& Rope, C. (2016). ENIAC in action: Making and remaking the modern 1072 computer. Cambridge: MIT Press. 1073
Halsey, F. A. (1896). Some special forms of computers. Transactions of the American Society of 1074 Mechanical Engineers, 18, 70-74. 1075
Hartree, D. R. (1949). Calculating instruments and machines. Urbana: The University of Illinois 1076 Press.

1077
Harvard. (1946). A manual of operation for the Automatic Sequence Controlled Calculator. Vol. I 1078 of the Annals of the Computation Laboratory of Harvard University, Harvard University Press. 1079
Harvard. (1949). Description of a relay calculator. Vol. XXIV of the Annals of the Computation 1080 Laboratory of Harvard University, Harvard University Press. 1081
Hering, C. (1891). Universal wiring computer for determining the size of wires for incandescent 1082 electric light leads. New York: W. J. Johnston. 1083
Hopper, G. M. (1981). Keynote address. In R. L. Wexelblat (Ed.), History of programming 1084 languages (pp. 7-20). New York: Academic. 1085
Hurd, C. C. (1985). A note on early Monte Carlo computations and scientific meetings. Annals of 1086 the History of Computing, 7(2), 141-155. 1087
IBM. (1956). The FORTRAN automatic coding system for the IBM 704 EDPM: Programmer's ref- 1088 erence manual. New York: Applied Science Division and Programming Research Department, 1089 IBM.
IBM. (1958). Reference manual: FORTRAN II for the IBM 704 data processing system. New York: 1091 IBM Corporation. 1092
Knuth, D. E. (1973). The art of computer programming. (Vol. 3: Sorting and searching). Reading: 1093 Addison-Wesley. 1094
Lubkin, S. (1947). Proposed programmning for the EDVAC. MSOD, box 8.
Mahoney, M. S. (2005). The histories of computing(s). Interdisciplinary Science Reviews, 30(2), 1096 119-135. 1097
Mauchly, J. W. (1942). The use of high speed vacuum tubes for calculating. In Randell (1982) (pp. 1098 355-358).

1099
Mindell, D. A. (2002). Between human and machine: Feedback, control, and computing before 1100 cybernetics. Baltimore: John Hopkins University Press. 1101
Moore School. (1943). The ENIAC: A report covering work until December 31, 1943. Moore 1102 School of Electrical Engineering, University of Pennsylvania. 1103
Moore School. (1944). The ENIAC: Progress report covering work from January 1 to June 30, 1104 1944. Moore School of Electrical Engineering, University of Pennsylvania. 1105

Newell, A., \& Shaw, J. C. (1957). Programming the logic theory machine. In Proceedings of the 1106 Western Joint Computer Conference (pp. 230-240). 1107
Newell, A., \& Simon, H. A. (1956). Current developments in complex information processing 1108 RAND corporation report P-850. 1109
Priestley, M. (2011). A science of operations: Machines, logic and the invention of programming. 1110 London: Springer. 1111
Priestley, M. (2017). AI and the origins of the functional programming language style. Minds and 1112 Machines, 27(3), 449-472. 1113

## Author's Proof

Randell, B. (1982). The origin of digital computers: Selected papers (3rd ed.). Springer. 1114
Reed, H. L. (1952). Firing table computations on the ENIAC. In Proceedings of the 1952 ACM 1115 National Meeting, Pittsburgh (pp. 103-106). 1116
Stibitz, G. R. (1945). Relay computers (AMP Report 171.1R). Applied Mathematics Panel, 1117 National Defense Research Committee. 1118
Strachey, C. S. (1952). Logical or non-mathematical programmes. In Proceedings of the 1952 ACM 1119 National Meeting, Toronto (pp. 46-49). 1120
Turing, A. (1946). Proposed electronic calculator (DSIR 10/385). London: The National Archives. 1121
von Neumann, J. (1944a). Letter to Robert Oppenheimer (LA-UR-12-24686). Los Alamos 1122 National Laboratories. 1123
von Neumann, J. (1944b). Proposal and analysis of a new numerical method for the treatment of 1124 hydrodynamical shock problems. In A. H. Taub (Ed.) (1963) John von Neumann, collected 1125 works, volume VI: Theory of games, astrophysics, hydrodynamics and meteorology (pp. 361-1126 379). Princeton: Pergamon Press. 1127
von Neumann, J. (1945a). Memorandum on mechanical computing devices, to Col. L. E. Simon. 1128 Philadelphia: Herman Heine Goldstine Papers, box 21, American Philosophical Society. 1129
von Neumann, J. (1945b). First draft of a report on the EDVAC. Moore School of Electrical 1130 Engineering, University of Pennsylvania. 1131
von Neumann, J. (1945c). Untitled typescript containing discussion of EDVAC program. American 1132 Philosophical Society, Mss. 510.78.V89p. 1133
von Neumann, J. (1947). Letter to Robert Richtmyer, March 11, 1947. In Hurd (1985) (pp. 149- 1134 153). 1135

Wilkes, M. V., Wheeler, D. J., \& Gill, S. (1951). The preparation of programs for an electronic 1136 digital computer. Cambridge: Addison-Wesley Press, Inc. 1137
Zuse, K. (1936). Method for automatic execution of calculations with the aid of computers. In 1138 Randell (1982). (pp 163-170).

## Author's Proof

## Metadata of the chapter that will be visualized online

| Chapter Title | Cryptology, Mathematics, and Technology |  |
| :--- | :--- | :--- |
| Copyright Year | 2018 |  |
| Copyright Holder | Springer International Publishing AG, part of Springer Nature |  |
| Corresponding Author | Family Name | Zabell |
|  | Particle |  |
|  | Given Name | Sandy |
|  | Suffix |  |
|  | Division | Department of Statistics |
|  | Organization | Northwestern University |
|  | Address | Evanston, IL, USA |
|  | Email | zabell@math.northwestern.edu |

Abstract | Cryptology furnishes an ideal example of the synergy between |
| :--- |
| mathematics and technology. This is illustrated by events before, |
| during, and after World War II: manual methods of encryption were |
| replaced by faster and more secure methods of machine encryption; |
| these methods were then attacked during the war by mathematicians |
| using a combination of mathematics and machines; and after the war |
| machine encryption was in turn eventually supplanted by computers |
| and computer-based encryption algorithms. Random number generation |
| illustrates one aspect of this: physical randomization has been completely |
| replaced by the use of pseudo-random number generators. A particularly |
| striking example of the impact of mathematics on cryptography is the |
| development of public key encryption. |
| Tracing developments in cryptology can pose interesting challenges for |
| the historian because of a desire for secrecy, but it is occasionally possible |
| to see behind the veil; the last section of this chapter discusses some |
| interesting instances of this. |

## Author's Proof

# Chapter 7 <br> Cryptology, Mathematics, 2 and Technology 3 

Sandy Zabell


#### Abstract

Cryptology furnishes an ideal example of the synergy between mathe- 5 matics and technology. This is illustrated by events before, during, and after World 6 War II: manual methods of encryption were replaced by faster and more secure 7 methods of machine encryption; these methods were then attacked during the war 8 by mathematicians using a combination of mathematics and machines; and after 9 the war machine encryption was in turn eventually supplanted by computers and 10 computer-based encryption algorithms. Random number generation illustrates one 11 aspect of this: physical randomization has been completely replaced by the use of 12 pseudo-random number generators. A particularly striking example of the impact of 13 mathematics on cryptography is the development of public key encryption. 14

Tracing developments in cryptology can pose interesting challenges for the 15 historian because of a desire for secrecy, but it is occasionally possible to see behind 16 the veil; the last section of this chapter discusses some interesting instances of this. 17


### 7.1 Introduction

Cryptology is the science of secret communication. It has two branches: cryptog- 19 raphy, designing secret methods of communication; and cryptanalysis, developing 20 ways and means of attacking cryptographic systems. These two branches are arch- 21 rivals: cryptographers attempt to design their systems to be resistant to even the 22 most imaginative attacks; cryptanalysts attempt to circumvent such defenses by all 23 possible means.

Cryptology is an ideal case study of the synergy between mathematics and 25 technology: the cryptographer develops new methods of encryption, based on 26 advances in either technology or mathematics, to combat vulnerabilities in current 27 methods; the cryptanalyst in turn develops new technology and mathematics to 28

[^56]
## Author's Proof

attack such systems. Sometimes a new technology is found to be vulnerable as 29 a result of careful mathematical analysis; sometimes new mathematical methods 30 of encryption are attacked by developing new technologies (as was the case 31 at Bletchley Park during World War II in their attack on German methods of 32 encryption).

### 7.1.1 The Four Ages of Cryptology

Subdividing history into discrete periods necessarily involves an element of over- 35 simplification; but, suitably qualified, it does aid organizing material. In that spirit, 36 there are the four ages of cryptology:

1. The classical period: manual methods (up to the end of World War I). 38

Up until the end of the First World War, almost all cryptographic systems were 39 manual ("paper and pencil"). Herbert Yardley’s 1931 The American Black Chamber, 40 and Fletcher Pratt's 1939 Secret and Urgent convey a vivid picture of the subject 41 as it existed at that time. Mathematics (for example, in the guise of statistical 42 attacks) and technology (for example, secret inks) were both employed, but with ${ }_{43}$ few exceptions this was only at the most basic level (see, e.g., the book by Abraham 44 Sinkov 1968).
2. The middle ages: the rise of the machines (1918-1973).

The First World War made clear the limitations of hand methods. There were 47 two basic problems: speed and security. The rise of modern warfare and commerce 48 led to an unprecedented increase in wireless communication, and this in turn raised 49 the issue of secure communication using a method subject to interception by third 50 parties. The sheer volume of messages called for mechanization. Furthermore, after 51 the war it soon became clear just how vulnerable the traditional methods of manual 52 encryption were: the Germans learned that their naval codes had been compromised; 53 the Japanese that the US government had been reading their diplomatic messages 54 during sensitive negotiations after the war.

This led to the development of a variety of mechanical devices designed to 56 efficiently encrypt a large volume of messages while at the same time being 57 immune to classical cryptanalytical attacks. These included the commercial Hagelin 58 machines of the commercial firm Crypto A. G., the German Enigma, Japanese 59 "Red" and "Purple" machines, the British Typex, the US Sigaba, and so on.
3. The modern era: the advent of the computer (1973-present).

Although representing a great leap forward in sophistication, speed, and security, 62 these machines suffered from a number of disadvantages. Foremost of these were 63 the constraints arising from the use of a mechanical device to perform encryption. 64 Obvious theoretical improvements might be ruled out on the basis of practical 65 engineering considerations. And change was necessarily slow: replacing one system 66

## Author's Proof

by another meant recalling potentially thousands of devices world-wide. Using a 67 computer as the basis for encryption freed one from the limitations of a machine, 68 replacing hardware by software, and had the advantage that software updates could 69 be accomplished in days, not months or years.

Dating the start of this period is even more arbitrary than the preceding one. 71 But developments such as computer networking, the design of the Unix operating 72 system, the Unix utility crypt, and Feistel's Scientific American article (the last two ${ }_{73}$ in 1973), suggest the year 1973 as a reasonable point to date this change. 74
4. The postmodern era: public key encryption (1976-present).

75
All methods of cryptography - classical, mechanical, and computer - up to 76 1976 required a shared secret: a private key(s), shared by sender and receiver, that 77 enabled one to encrypt a message and the other to decrypt it. And this in turn 78 required some secure channel by which at least one party could communicate this 79 secret to the other. But in 1976 and 1977 a remarkable discovery was made: it was 80 possible to securely communicate between two parties without a prior secure key 81 exchange: a key could be sent from one party to the other over a public channel 82 without compromising any subsequent encrypted communication. This astounding 83 discovery - breaking with more than two millennia of past cryptographic theory - 84 we refer to as the postmodern era in cryptography.

### 7.2 Classical Cryptography

The role of both mathematics and technology in classical cryptology was relatively 87 limited; the existing literature on it is vast. Nevertheless, some brief discussion of it, 88 in order to set the stage for later developments, is necessary.

89
The need for and use of methods of secret communication is as old as man 90 himself. For example, during the Persian siege of the Greek city of Potidaea in the 91 winter of 480-79 BC, the Persian commander Artabazus exchanged messages with 92 Timoxenus, a military officer inside the city.

Whenever Timoxenus and Artabazus wished to communicate with one another, they wrote 94 the message on a strip of paper, which they rolled round the grooved end of an arrow, and 95
the arrow was then shot to some predetermined place. Timoxenus's treachery was finally 96
discovered when Artabazus, on one occasion, missed his aim, and the arrow, instead of 97
falling in the spot agreed upon, struck a Potidaean in the shoulder. As usually happens 98 in war, a crowd collected round the wounded man; the arrow was pulled out, the paper 99 discovered, and taken to the commanding officers. [Herodotus 8.128, Aubrey de Sélincourt 100 translation.]

Strictly speaking, this is an instance of steganography: the message is hidden 102 rather then encrypted. The Caesar cipher instead is a method of enciphering 103 messages that goes back to Gaius Julius Caesar (100-44 BC). The Roman historian 104 Suetonius tells us:

## Author's Proof

$$
\begin{array}{ll}
\text { There exist letters from Caesar to Cicero and acquaintances on topics in which Caesar, when } & \begin{array}{l}
106 \\
\text { he wished to transmit them confidentially, wrote in cipher. That is, he changed the order of } \\
\text { letters in such a way that no word could be made out. If somebody wanted to decipher it and }
\end{array} \\
\text { understand the content, then he had to insert the fourth letter of the alphabet, that is D, for } \\
\text { A, and so on. [Lives of the Caesars, 56; translation modified from that of Beutelspacher.] }
\end{array} \begin{aligned}
& 108 \\
& \text { 109 } \\
& \text { That is, one enciphers the message by substituting three letters back: } \\
& \qquad A \rightarrow X, \quad B \rightarrow Y, \quad C \rightarrow Z, \quad \ldots, \quad Z \rightarrow W \text {; } \\
& 1111
\end{aligned}
$$

and one deciphers the enciphered message by reversing this process:

$$
A \rightarrow D, \quad B \rightarrow E, \quad C \rightarrow F, \quad \ldots, \quad Z \rightarrow C
$$114

Thus if the message were
("I came, I saw, I conquered"), then Caesar would have enciphered this as:
SBKF SBAF SFZF.
(Strictly speaking, the Roman alphabet of Caesar's time was smaller than the 26 letter alphabet of today.)

The Caesar cipher is a special instance of what is termed a monoalphabetic substitution cipher: one replaces each letter of the alphabet by another letter (its cipher equivalent), each letter being used as a cipher equivalent precisely once. The result is a permutation of the 26 letters of the alphabet. The Caesar cipher is a very special permutation of the alphabet, a shift permutation. There are a total of 26 such permutations: if $\sigma_{k}$ represents a shift by $k$, then there are 26 shifts $\sigma_{k}(0 \leq k \leq 25)$. (Note a shift back by $k$ is equivalent to a shift forward by $26-k$.)

Other simple permutation methods are known; for example, one can step forward by a multiple $k$ of the position. For example, if $k=3$, then $A$ in position 1 is replaced by $C$ (the third letter in the alphabet), $B$ in position 2 is replaced by $F$ (the sixth letter in the alphabet), $C$ in position 3 is replaced by $I$ (the ninth letter in the alphabet), and so on. (The letter $H$ is replaced by $X$, and then one cycles around, so that $I$ is replaced by $A$.) It can be shown that the result is a permutation of the alphabet provided the multiplier $k$ is not divisible by either 2 or 13 (the factors of 26). The process is sometimes described as one of decimation, and the result a decimated substitution alphabet.

Of course, if one knows a monoalphabetic shift or decimation cipher is being used, such a system affords little security: one can use brute force to try out the 26 possible shifts or 12 possible decimations and (provided the message is long enough) only one shift or decimation will produce a meaningful message. But if one does not confine oneself to a shift or decimation, and chooses an arbitrary permutation of the alphabet, the system becomes much more secure: there are a total of 26 ! or

## Author's Proof

monoalphabetic substitutions. The brute force method is no longer feasible.
Monoalphabetic substitution, however, is still not a very secure method; one can 146 exploit, given a message of sufficient length, the statistical regularities present in a language to determine the particular permutation being used. There are a number of famous stories in literature illustrating the method; for example, Edgar Allan
Poe's short story "The Goldbug", and Sir Arthur Conan Doyle's "The Adventure of the Dancing Men". For reference, the approximate order of occurrence of the most 15 common letters in ordinary English is:

## ETAOIN SHRDLU

(Of course, frequency of occurrence depends on both context and language. Thus, for example, one would not particularly expect this order to hold for military German.)

Polyalphabetic substitution ciphers, in contrast, use a sequence of different 156 permutations for several successive letters. For example, in the so-called Vigenère cipher, one uses a key word (such as ISP), and each letter in the key word indicates the number of letters to shift forward in a Caesar cipher type substitution. (So if the key word is ISP, then $\mathrm{I}=9, \mathrm{~S}=19, \mathrm{P}=16$ shifts are employed, followed by another set of three such shifts, and so on.) Even these ciphers have their weaknesses, however: if the length of the keyword is guessed, say $k$, then one can divide the message into $k$ groups (each corresponding to a letter in the keyword) and subject each group to the classical attack used in the case of a monoalphabetic cipher. What one would need would be an encryption key as long as the message itself, and even here there are vulnerabilities if the key were itself some form of plaintext (say a passage from the Bible). In the end security would depend on a key consisting of a random string of letters as long as the message itself (a "one-time pad"). The exigencies of commerce, diplomacy, or defense seldom permit one such a luxury; what is needed is a compromise between the total security afforded by the one-time pad (or tape in the case of a mechanical implementation), and the essentially total insecurity of the monoalphabetic cipher.

The desire to avoid such vulnerabilities motivated the design of encryption 174 devices (such as the German military Enigma) in the years leading up to World War II.

### 7.3 The Rise of the Machines

The advent of mechanical or electromechanical methods of encryption posed novel

## Author's Proof

### 7.3.1 Mathematics Comes to the Fore

Apart from such basic statistical analyses such as frequencies of letters (or digraphs or trigraphs, and so on), classical attacks on encryption systems were basically linguistic in nature, and gifted cryptanalysts often came from the humanities. For example, during the First World War, Room 40, the cryptanalytic section of the British Admiralty's Naval Intelligence Division, employed a number of classical scholars such as Frank Adcock (1886-1968, Professor of Ancient History at the University of Cambridge from 1925 to 1951), Alfred "Dilly" Knox (1884-1943, Fellow of King's College from 1909), and John Beazley (1885-1970, Professor of Classical Archaeology and Art at the University of Oxford from 1925 to 1956), as well as Frank Birch (1889-1956, who after the war was a Fellow of King's College and Lecturer in History until he turned to the stage in the 1930s), and Walter Bruford (1894-1988, Professor of German at Edinburgh and the University of Cambridge). Adcock and Birch made sufficiently important contributions to the war effort that afterwards both were awarded the OBE (Order of the British Empire).

Although such skills remained valuable even during the Second World War (for example, Knox continued on in British Intelligence until 1943, and Adcock, Birch, and Bruford worked at Bletchley Park after the outbreak of war in 1939), it eventually became clear that mathematicians (or at least individuals of mathematical bent) were also needed. The intelligence services of various countries came to realize this sooner or later. The US and Poland were among the first.

### 7.3.1.1 US Mathematical Cryptologists

In 1930 the US Army established the Signal Intelligence Service, headed by William
Frederick Friedman (1891-1969). Although not a mathematician himself, Friedman had done graduate work in genetics and made extensive use of mathematical techniques in cryptology while at the Riverbank Institute from 1914 to 1921. In 204 1921 he was hired by the Army as a cryptographer and later became the Army's chief cryptanalyst. It was during this period (1923) that he wrote his Elements of Cryptanalysis, later expanded into the four-volume classic Military Cryptanalysis (Friedman 1938-1941).

In April 1930 the first three individuals Friedman hired for his fledgling orga- 210 nization were all mathematics teachers: Frank B. Rowlett (1908-1998), Solomon

## Author's Proof

### 7.3.1.2 Polish Mathematical Cryptologists

During the Polish-Soviet war of 1919-1921, Polish military intelligence em218 ployed several outstanding research mathematicians (Stanisław Leśniewski, Stefan219 Mazurkiewicz, and Wacław Sierpiński), who succeeded in breaking a number of 220 Soviet ciphers. Presumably because of this positive experience, after the German 221 military began to use the Enigma, an electromechanical device, to encrypt their 222 messages starting in the late 1920s, Poland hired three mathematicians in 1932 - 223 Marian Rejewski (1905-1980), Jerzy Różycki (1909-1942), and Henryk Zygalski (1908-1978) - to work on attacking the device. Using an approach grounded in group theory developed by Rejewski (and aided by information provided by French Intelligence), in 1933 the three were able to begin reading Enigma traffic. In doing so they were aided by a number of mechanical devices that were developed especially for the purpose. These included the cyclometer (c. 1934) and the bomba (1938), as well as other aids such as the Zygalski sheets; see Rejewski (1981).

The Polish contribution to the ability of the Allies to read the Enigma during the , Second World War was considerable. Up to July 1939 the UK had no success in attacking the military Enigma. But then, sensing the impending outbreak of war, the Poles convened a special meeting outside of Warsaw where they revealed to their234 British and French counterparts their success, even providing each with a copy of 235 the machine, including the internal wiring of its wheels. This, together with their 236 extensive knowledge of intercepts and how the machine was used, was to prove 237 invaluable; see Welchman (1986).

### 7.3.1.3 British Mathematical Cryptologists

The British were somewhat slower to exploit the skills and talents of mathemati-
cians. But when it became clear in 1938 that war was coming soon, GC \& CS (the Government Code and Cypher School) began to recruit "men of the professor class", including the phenom Alan Turing, who took training courses in cryptology prior to
the outbreak of war and reported to Bletchley Park on September 4, 1939 (the day 244 after war was declared). By the end of the war dozens of research mathematicians had been hired, including J. W. S. Cassels, I. J. ("Jack") Good, Philip Hall, Peter 246 Hilton, M. H. A. ("Max") Newman, David Rees, Derek Taunt, William Tutte, 247 Gordon Welchman, J. H. C. Whitehead, and Shaun Wylie. Many of these performed outstanding feats of cryptanalysis during the war.

### 7.3.1.4 German Mathematical Cryptologists

The Germans, although they were a towering presence in world mathematics 25 (at least until the Nazis came to power), were curiously late in coming to the 252 game. There were essentially no mathematicians in German signals intelligence ${ }_{253}$ prior to 1937. (Dr. Ludwig Föppl, 1887-1976, was a notable exception, serving 254

## Author's Proof

during World War I; see Brückner 2005 and Samuels 2016.) When Dr. Erich Hüttenhain (1905-1990) was hired that year, it was essentially by pure chance. 256 Dr. Hüttenhain, who was a mathematical astronomer, had become interested in 257 cryptography because of an interest in Mayan astronomical chronology (the Mayan 258 language then being largely unknown). Hüttenhain subsequently submitted a design 259 for a cryptographic system to the German military, and on the basis of this was 260 offered a job in 1937 in their cipher section, housed in the Reichskriegsministerium. ${ }^{261}$ In 1938 this cipher section was transferred to the newly formed OKW (Oberkom- 262 mando der Wehrmacht), and thenceforth called OKW/Chi (Oberkommando der ${ }^{263}$ Wehrmacht/Chiffrierabteilung).

Hüttenhain rose rapidly in the organization and was soon tasked with hiring 265 more mathematicians for it. The first of these was Wolfgang Franz (1905-1996), 266 who joined OKW/Chi on July 17, 1940. Other subsequent hires included Ernst 267 Witt (1911-1991), Otto Teichmueller (1913-1943), and Karl Stein (1993-2000). 268 Teichmueller was killed in action after rejoining his unit and appears to have 269 accomplished little, but the others all survived the war and in some cases went on to 270 careers of considerable distinction. Both Franz and Stein later became Presidents of 271 the DMV (Deutsche Mathematiker Vereinigung, or German Mathematical Society). 272 Indeed it appears that one of Hüttenhain's motivations in hiring the mathematicians 273 he did was to ensure their survival. But it is striking and telling that OKW/Chi only 274 began hiring new mathematicians in addition to Hüttenhain nearly a year after the 275 outbreak of war. 276

The one other branch of the German military that also began to hire math- 277 ematicians in considerable numbers for wartime cryptologic purposes was the 278 German Army proper (the Heer, as opposed to the Kriegsmarine or Luftwaffe) 279 housed in OKH (Oberkommando der Heeres). At least 14 Ph.D.s in mathematics, 280 from Berlin, Göttingen, and Dresden, among other universities, were eventually 281 hired, along with others working in statistics, economics, and actuarial science. 282 (The most distinguished of these was Willy Rinow, later to become yet another ${ }^{283}$ President of the DMV.) But here too these individuals were only brought in after the 284 outbreak of war, and this was to cost the Germans heavily on the defensive side of 285 ensuring the security of their encryption devices. For further information on German ${ }_{286}$ mathematical cryptologists during World War II, see Weierud and Zabell (2018).

### 7.3.2 The Enigma

During World War II, the German military used an encryption device called the 289 Enigma for sending enciphered messages. After one of 26 keys on a typewriter 290 keyboard was pressed, an electric current entered the machine from the right, passed 291 through a series of three moveable wheels (termed the right, middle, and left wheels) 292 while traveling from right to left, and entered a fourth, fixed wheel which reversed ${ }_{293}$ the direction of current. The current then passed in the opposite direction through 294

## Author's Proof

the left, middle, and right wheels, exited the machine, and one of 26 small lamps lit 295 up indicating the enciphered version of the input letter. 296

Each of the moveable wheels had 26 contacts on each side, so that current could 297 enter either side and exit on the other. Because of the internal wiring of the wheel, 298 current entering a contact on the right, say, would exit at a different contact on 299 the left. The result was a permutation of the alphabet. During the 1930s Polish 300 cryptanalysts were able to determine the internal wiring of the moveable and fixed 301 wheels of the German military Enigma. This was an impressive feat given that the 302 total number of possible wheel wirings (that is to say, possible permutations of the 303 26 letters of the alphabet) is, as previously noted, on the order of $4 \times 10^{27}$. $\quad 304$

In cryptography, Kerckhoffs's principle (named after Auguste Kerckhoffs, 1835- 305 1903, a Dutch linguist and cryptologist) states that a cryptographic system should 306 be secure (immune to attack) even if all aspects of the design of the system are 307 known except the key (a specific item of information needed to decipher a message, 308 preferably varying from message to message or day to day, or some relatively short 309 period of time). A system that relies for its security on a lack of knowledge of the 310 system by an opponent ceases to be secure when a copy of the device is obtained 311 or a spy provides its specifications or (as in the case of the Poles) a cryptanalyst 312 deduces it.

Thus the Germans did not rely on a lack of knowledge of the wiring of the wheels 314 of their Enigma to ensure its security. Instead they relied on the daily setting. When 315 the machine was set for sending messages on a given day, the three moveable wheels were chosen from a set of 5 . The wheel order (or Walzenlage) specified which 316 wheels were to be selected and how they were to be placed in the machine. (For 318 example, 253 means wheel 2 on the left, wheel 5 in the middle, wheel 3 on the 319 right.) There were therefore a total of ${ }_{5} P_{3}=5 \cdot 4 \cdot 3=60$ possible wheel orders on ${ }_{320}$ any given day. For extra security, the German Naval Enigma selected its 3 wheels 32 from an enlarged set of 8 , rather than just 5 . This increased the number of possible 322 wheel orders from 60 to ${ }_{8} P_{3}=8 \cdot 7 \cdot 6=336$.

In order to set the wheels on a given day, each wheel had a lettered ring attached 324 to its left side, the 26 letters of the alphabet appearing on the rim of the ring. If we 325 think of the 26 contacts on the wheel as numbered from 1 to 26 , the ring could be 326 rotated so that the letter A on its rim was next to contact 1 , or next to contact 2 , 327 and so on, up to contact 26 . Specifying how each of the three rings were set relative 328 to each of the three moveable wheels was called the ring setting (or Ringstellung). 329 Since each ring could be set in any of 26 different ways, the total number of ring 330 settings was

$$
26^{3}=17,576
$$

Before the current entered the wheels, it passed through a plugboard which ${ }^{333}$ subjected the letters of the alphabet to an initial permutation by interchanging 334 selected pairs of letters. (For example, the letters $a$ and $b$, and $c$ and $d$ might be 335 interchanged, and the remaining 22 letters left unchanged.) On a given day, the usual 336 practice was to cross-plug (or "stecker") 10 pairs of letters (for a total of 20), and 337

## Author's Proof

thus leave the remaining 6 letters unsteckered. If $n$ pairs of letters were steckered,
$\frac{26!}{2^{n} \cdot n!\cdot(26-2 n)!}$

The table below gives the number of Steckerverbindungen for anywhere from $n=1$ to $n=13$ letter pairs. (Curiously, the choice of 10 letter pairs does not 342 maximize the number of possible steckerings: the maximum is reached for $n=11$.)

| $\mathrm{n}=$ | Number of Steckerverbindungen |
| :---: | :---: |
| 1 | 325 |
| 2 | 44,850 |
| 3 | $3,453,450$ |
| 4 | $164,038,875$ |
| 5 | $5,019,589,575$ |
| 6 | $100,391,791,500$ |
| 7 | $1,305,093,289,500$ |
| 8 | $10,767,019,638,375$ |
| 9 | $53,835,098,191,875$ |
| 10 | $150,738,274,937,250$ |
| 11 | $205,552,193,096,250$ |
| 12 | $102,776,096,548,125$ |
| 13 | $7,905,853,580,625$ |



Thus, the total number of possible daily settings for the Army Enigma (Walzen- 344 lagen, Ringstellungen, Steckerverbindungen) was 345

$$
60 \cdot 17,576 \cdot 150,738,274,937,250=158,962,555,217,826,360,000
$$

Presumably for this reason the German authorities considered the Enigma to 347 be a highly secure encryption device. In reality the Allies were able to decipher 348 a substantial fraction of the Enigma messages that they intercepted. They were 349 able to do this in part because of a variety of errors on the part of the German 350 operators (insecure practices), but also because of the "Bombe", a special purpose ${ }^{351}$ mechanical device devised under the leadership of Alan Turing (1912-1954) and 352 Gordon Welchman (1906-1985).

The Bombe consisted of 36 replicas of the three-wheel Enigma. Each replica 354 consisted of 3 drums (one for each wheel), these would collectively spin through the 355 $26^{3}=17,576$ different settings of the three wheels in approximately 18 minutes. 356 Before a run, a тenu was prepared: a crib (conjectured plaintext) was identified, and 357 on the basis of it a graph was constructed summarizing relationships implied by the 358 crib between different letters being encrypted at different stages. (This process was 359 assisted by the fact that in the Enigma a letter could never encrypt to itself.) On the 360

## Author's Proof

basis of this graph, the Bombe was wired accordingly and a run begun. Whenever the drums came to a setting consistent with the menu, then current would flow and this setting would be noted; this was a stop. Although there could be "false stops" corresponding to an incorrect setting, Turing calculated early on that these would 363 be few enough given a menu of sufficient complexity. Further, his initial design was 365 considerably improved in 1940 by Welchman's invention of the diagonal board, which exploited the reciprocal nature of the Enigma (the same setting on the Enigma 366 was used to both encrypt and decrypt the same message).

Although some of the German cryptologists had some appreciation of the potential weakness of the Enigma, they viewed these as largely theoretical in nature, requiring rooms full of mechanical equipment to effect an attack. The willingness of the British to make precisely such an outlay was a key element in their success.

Some of the credit for the success of Bletchley Park is due to the then Prime ${ }_{373}$ Minister, Winston Churchill, who had a keen understanding of the value of science and technology in pursuit of Britain's war aims. On September 6, 1941, Churchill 375 had visited Bletchley Park, and expressed appreciation for their efforts. But, frustrated with then inadequate resources, 6 weeks later, on October 21, 1941, the heads and deputy heads of Hut 6 (cryptanalysis of the Army and Luftwaffe Enigma) and Hut 8 (cryptanalysis of the Naval Enigma) wrote a letter directly to 379 Churchill noting with frustration impediments to the cryptanalysts's work, such as the absurdity that some messages were not being decrypted due solely to a "shortage 381 of trained typists". The letter was hand-delivered to Churchill's private secretary at 10 Downing, who promised it would be given directly to Churchill. This was done 382 and Churchill promptly wrote a memo (headed "Action This Day") directing hisprincipal staff officer: "Make sure they have all they want on extreme priority and
report to me that this has been done". Not surprisingly, there were no problems after that.

### 7.3.3 Tunny

Tunny was the codename the British gave to another important German encryption

The Poles were familiar with the basic structure of the Enigma, in part because it 399 was a modified version of a commercially available device (and in part thanks to a 400 spy, Hans Thilo Schmidt). The SZ40, in contrast, had been designed by the German 401

## Author's Proof

military, and so there was no corresponding model to work from. In a tour-de-force 402 of cryptological skill, however, members of Bletchley Park were eventually able to 403 deduce the entire structure of the machine thanks to a single operational slip-up on 404 the part of the German operators, who had once sent two long and virtually identical 405 messages at the same setting (such messages are said to be "in depth"). 406

This was no mean feat, given the complexity of the device. Letters were 407 represented in it using the then standard five impulse Baudot code (so, for example, 408 $\mathrm{A}=00011, \mathrm{~B}=11001, \ldots$ ). The encryption used

- five "chi" wheels (employing regular motion)
- five "psi" wheels (employing irregular motion)
- two "mu" wheels (determining when irregular motion occurs)
(Here "irregular" means that sometimes the wheels moved, and sometimes did not.)
Despite its apparent complexity, the process of encryption may be simply and 414 schematically represented as:

$$
P \rightarrow P+\psi \rightarrow P+\psi+\chi=C
$$

( $P$ denoting "plaintext", $C$ "ciphertext").
Despite its impressive appearance, Tunny suffered from a serious design flaw: 418 when the five psi (irregularly moving) wheels did move, they did so simultaneously. 419 As a result, a crafty combination of the output of a pair of wheels (in the initial 420 stage of the attack, the $\psi_{1}$ and $\psi_{2}$ wheels) resulted in a biased stream of $0-1$ bits. ${ }^{42}$ This could be used as a test for the correct setting of the chi wheels for the given 422 message. Because there were $1271(=41 \cdot 31)$ possible settings for the $\chi_{1}$ and $\chi_{2}{ }_{423}$ wheels, respectively, if the correct setting was used to decrypt this test stream, this 424 would strip off the chi layer of encryption and the resulting $0-1$ stream would be 425 a biased sequence of 0 s and 1 s ; whereas if one of the other 1270 incorrect settings 426 were used to decrypt the test stream, the resulting $0-1$ stream would remain and ${ }_{427}$ appear as unbiased. Thus the task of setting the first two chi wheels was converted into the purely statistical task of finding the one biased stream among the 1271.

This required a vast amount of computing, and for this the Colossus was 430 constructed (see Copeland 2006, for a detailed discussion of this device from a ${ }_{43}$ variety of viewpoints). It has been argued that in many ways the Colossus was 432 the first programmable computer, not because it could store a program in memory, 43 but because it could be (relatively) easily rewired to perform different tasks. (This ${ }_{43}$ was in contrast with the Bombe, which was a special purpose device, designed and ${ }_{435}$ constructed for the sole task of attacking the Enigma.)

Once one pair of chi wheels had been set, then by a similar process other pairs 437 of chi wheels could be set, eventually resulting in setting all five wheels. This 438 work was performed in the Newmanry, named after its head, M. H. A. ("Max") 439 Newman, who although a pure mathematician had initially proposed the feasibility 440 of such an attack. After the chi wheels had been set by primarily statistical means, 441 the message and settings were sent to the Testery (named after Major Ralph 442 Tester, who headed it), where the psi wheel layer of encryption was then stripped ${ }_{443}$

## Author's Proof

off by primarily linguistic means of attack. Thus the attack on Tunny combined 444 technology, mathematics, and linguistics, and rooms of equipment, but was most 445 certainly worth it. See Reeds et al. (2015) and Zabell (2015).

Of course both the Allies and the Axis powers used a wide variety of devices for 447 encryption and decryption; see Pröse (2006) for a detailed scholarly discussion. For 448 a general overview of the cryptologic war, 1939-1945, see Budiansky (2000). For a 449 discussion of Turing's Bayesian viewpoint in his own words, see Turing (2012) and 450 a commentary on it, Zabell (2012).

### 7.4 The Modern Era: Computers

One of the impediments the Germans encountered was that their methods of 453 encryption were limited by purely mechanical considerations (as well as the 454 difficulty in replacing old equipment by new if a new method of encryption were 455 thought to improve on an old one). This changed with the advent of the computer: now there was no purely physical limitation on the length (number of bits that could be set) of a wheel, or the number of wheels, or the algorithm used to combine different inputs from different components at any stage in the process of encryption.
Eventually highly secure, publicly available algorithms such as DES (the Data Encryption Standard, first published in 1975) and AES (the Advanced Encryption 46 Standard, first published 1998) became available. Obviously the rise of computer 462 networks was a factor in this development.

This subject could easily be the subject of a book, so in this chapter we focus on 464 one particular aspect of the use of computer algorithms.

### 7.4.1 Generating Random Numbers

We have already seen the importance of generating random numbers in cryptogra- 467 phy, in its role in producing one-time pads. 468

The resort to random selection was already widespread in the ancient world. 469 Aristotle, for example, in his Athenian Constitution, describes an elaborate two- 470 stage procedure that the Athenians used for selecting members of a jury (Moore 471 1975, pp. 303-307); and during the Roman Republic lots were commonly used 472 to assign provinces to the consuls and other major state officials. The use of 473 randomization for scientific and mathematical purposes is of course much more 474 recent. Stigler (1999, Chapter 7) discusses a number of nineteenth century examples. 475

True physical randomization, however, is often difficult to achieve (and in the 476 hands of the unwary is often not achieved). One celebrated example is the famous 477 1970 draft lottery debacle (Fienberg 1971). One remedy for this is the construction 478 of tables of random numbers that researchers can use with confidence. The earliest 479 of these was L. H. C. Tippett's table of random numbers published in 1927, prepared 480

## Author's Proof

at the suggestion of Karl Pearson, to facilitate carrying out random sampling 481 experiments for simulation studies; see Pearson (1990, pp. 88-95). The culmination 482 of such efforts was the construction of the Rand Corporation's "A Million Random ${ }^{483}$ Digits With 100,000 Normal Deviates" (Rand 1955).

In the last several decades such physically generated tables have been entirely 485 supplanted by algorithmic random number generators executed by computer code. 486 Strictly speaking, of course, sequences of numbers generated this way are only 487 "pseudo-random", although this typically suffices for almost all practical purposes. 488 Nevertheless, there are challenges here too; see Knuth (1997, Chapter 3). To 489 appreciate just what a change this represents, consider that the following two lines 490 of R (a statistical programming language) code will generate the entire contents of 491 the Rand Tables in only a fraction of a second:

```
rand.rd <- sample(0:9, 10^6, replace = TRUE)
rand.nd <- rnorm(10^5)

The failure to enforce randomness in a cryptographic protocol can have serious 495 consequences. For example, in the Naval Enigma, a trigram "message indicator" 496 was encrypted using one of 9 bigram tables. The sender chose a pair of trigrams, 497 say \(L Q R\) and C PY, from a Kenngruppenbuch, added a pair of "haphazard" letters, 498 say \(G\) and \(O\), and then encrypted each column of the resulting two-by-four array 499 using the bigram table:


Then TALI UHSU was sent.
The receiver of TALI UHSU, who knew the bigram table in use that day, 503 reversed this process, to find the message indicator \(C P Y\). (Strictly speaking, \(C P Y 504\) was not the actual message indicator: using the Grundstellung or general daily 505 setting, \(C P Y\) was in turn encrypted and the resulting trigram was the final setting 506 used to encrypt the message.)

This apparently impressive procedure had, however, two fatal weaknesses. The 508 first was that the trigrams were not selected randomly by the operators from 509 the Kenngruppenbuch: there was a tendency to pick trigrams from the tops of 510 pages. Turing devised an attack that exploited this (using a "sampling of species" 51 approach). The other weakness was that humans are also very poor at randomly 512 selecting individual letters. As Good later related: 513

I noticed on one night shift that about 20 messages were enough to identify which digraph table was in use, because the 'haphazard' letters ( \(G\) and \(O\) in the example) were not 'flatrandom'. This discovery then provided the routine method for identifying the table. [Good

For such reasons experienced cryptographers go to great lengths to ensure 518 genuinely random selection is employed. For example, in a code book one replaces 519 letters, words, and phrases by, say, groups of five digits. If the purpose of the

\section*{Author's Proof}
encoding is not just data compression (as was sometimes the case for commercial code books) but also secure communication, then two books must be used: one listing in alphabetic order the letters, words, and phrases next to randomly assigned five-digit numbers; and another listing in numerical order the five-digit numbers next to the corresponding letters, words, and phrases.

In the 1930s the Signal Intelligence Service of the US Army attempted to 526 construct such a code book, and encountered great difficulty in randomly assigning
the code equivalents to the letters, words, and phrases. They were faced with the challenge of "scrambling" 60,000 cards. At first they dumped drawers of the cards onto the floor and attempted to mix them by hand, but found it did not mix the cards enough. Then they started throwing handfuls of cards into the air, and even turned on the wall fans to maximum speed; "the results were still far from satisfactory". It was only after in addition to all this when they began placing cards on cleared desktops in an irregular way and repeated the entire process several times that they were "at last able to achieve an acceptable randomization of all the plaintext cards" (Rowlett 1998, pp. 53-54).
Here is an instructive illustration of the importance of randomness in cryptology,

\subsection*{7.4.2 The One-Time Pad}

In many cryptographic systems the goal is to transform a given plaintext into a ciphertext that is indistinguishable from a "flat random" (that is, uniformly distributed) sequence. For example, suppose a plaintext \(P=\left(P_{1}, P_{2}, \ldots P_{n}\right)\) is written in a \(t\)-letter alphabet (for instance \(t=2\) for bits, \(t=26\) for letters, and so on). Suppose that an additive key sequence \(K=\left(K_{1}, K_{2}, \ldots, K_{n}\right)\) is flat random (in the sense that every \(n\)-long sequence in the \(t\)-letter alphabet has a probability of \(t^{-n}\) of occurring). Then it is not hard to see that (addition being \(\left.\bmod t\right)\) that the cipher text sequence \(C=\left(C_{1}, C_{2}, \ldots, C_{n}\right)\) defined by
\[
C_{j}=P_{j}+K_{j}
\]
is itself flat random. That is, whatever statistical regularities may have been present 549 in the plaintext \(P\) have been entirely obliterated by addition of the flat random key sequence \(K\). This is the theoretical basis for the use of the "one-time pad" (a pad

In principle the use of the one-time pad is the basis of a theoretically unbreakable encipherment if carried out in a correct and secure manner.

One famous example of its misuse was the subject of the NSA's Venona 556 Project. During World War II, some Soviet agents in the US used one-time pads to 557 communicate with their masters in Moscow. But for reasons that are not understood 558 (but presumably reflected wartime conditions in the Soviet Union) pages from the

\section*{Author's Proof}
pads were reprinted and the same sequences of numbers reused. The upshot was 560 that as a result of a monumental effort on the part of US cryptanalysts a substantial 561 fraction (more than \(10 \%\) ) of the content of these highly secret messages were in 562 fact read, giving insight for example into the Soviet atomic spy ring. See generally \({ }_{563}\) Haynes and Klehr (2000).

\subsection*{7.5 Postmodern Era: Public Key Encryption}

Three may keep a secret if two are dead - Benjamin Franklin.
In classical, private-key crypto-systems, \(A\) and \(B\) securely communicate over a 567 channel in which a third party \((C)\) may be eavesdropping.


They do this by means of a private key that has been previously sent via a secure 570 channel. Classical examples of this include DES (the data encryption standard) and 571 the more recent AES (advanced encryption standard). 572

In the 1970s cryptography was revolutionized by the introduction of public 573 key systems, where no prior exchange of a private key over a secure channel is 574 necessary. This possibility is the basis of the https protocol, which enables you and 575 Amazon (say) to securely exchange information about credit cards even if someone 576 is "listening in".577

How is this possible? The key lies in the use of "trap-door" functions: a 578 function, say \(E\), which is easy to compute, but whose inverse \(D=E^{-1}\) is hard 579 to compute (unless additional, private information is available). For example, think 580 of computing \(x^{2}\) vs. \(\sqrt{x}\).

\subsection*{7.5.1 RSA Encryption}

RSA (for Rivest et al. 1978) is an early and still very important example. In the 583 following, \(\phi(n)\) is the Euler phi function, the number of integers \(k, 1 \leq k \leq n, 584\) relatively prime to \(n\), that is, \((k, n)=1\). (A good reference for the number theory 585 that appears in RSA encryption is Kraft and Washington 2014.) 586
Encryption method:
1. Choose \(n\) and \(e\) : here \(n=p q\) ( \(p, q\) two large primes, private), and \(e\) is an 588 exponent such that \((e, \phi(n))=1\). Here both \(n\) and \(e\) are public.

\section*{Author's Proof}
2. Translate letters into their numerical equivalents, forming blocks \(P\) of the 590 largest permissible size; for example, MATH \(\rightarrow\) 12001907. (In this example, 591 the encoding is \(\mathrm{A} \rightarrow 00, \mathrm{~B} \rightarrow 01, \ldots, \mathrm{Z} \rightarrow 25\).) 592
3. Encrypt: \(C:=E(P) \equiv P^{e}(\bmod n), 0 \leq C<n\). 593

Now comes the clever part, which appeals to Euler's theorem. Recall that Euler's 594 theorem tells us that \(a^{\phi(n)} \equiv 1(\bmod n)\) provided \((a, n)=1\). Suppose \((P, n)=1.595\) Because \((e, \phi(n))=1\),
\[
d:=e^{-1}(\bmod \phi(n))
\]
exists, hence \(e d \equiv 1(\bmod \phi(n))\), hence
\[
e d=k \phi(n)+1 .
\]

So to decrypt, if you know \(d\), you just compute 600
\[
C^{d}=\left(P^{e}\right)^{d}=P^{e d}=P^{k \phi(n)+1}=\left(P^{\phi(n)}\right)^{k} P=P(\bmod n) .
\]

In order for this to be secure, one needs \(d\) to be difficult to find given just \(n\) and 602 \(e\) (which are public), but easy to compute given \(p\) and \(q\) (which are to be private). \({ }^{603}\)

Now if we know \(\phi(n)\), then solving \(e x \equiv 1(\bmod \phi(n))\) (to invert \(e\) and find 604 \(d\) ) is easy, because it is equivalent to solving the first order Diophantine equation 605 \(e x+\phi(n) y=1\), for which the (extended) Euclidean algorithm is available. The 606 relevance to RSA is this: in order to find \(d\), we need to know \(\phi(n)\). Now if we know 607 the factorization \(n=p q\), then it is easy to find \(\phi(n)\), since \(\phi(n)=(p-1)(q-1) .608\) But

\title{
so it is easy to go in one direction (use the private \(p\) and \(q\) to find \(n\) and \(\phi(n)\) ), but
}

Objection: maybe there is some other way of finding \(\phi(n)\) without factoring \(n=p q .615\)
Response: no, given \(n=p q\), factoring \(n\) is equivalent to computing \(\phi(n)\). 617

\section*{Author's Proof}

In one direction this is immediate, given the factorization \(n=p q\), just use the 619 formula \(\phi(n)=(p-1)(q-1)\). For the other direction, since \(n=p q\) and \(\phi(n)=620\) \((p-1)(q-1)\), observe that
\[
p+q=n-\phi(n)+1 .
\]

Thus we know the sum \(p+q\) as well as the product \(p q\) if we know both \(n\) and \({ }^{623}\) \(\phi(n)\). Thus the question reduces to the

Problem: given \(p q\) and \(p+q\), find \(p\) and \(q\). In general, given the sum and product 626 of two numbers, find the two numbers. \({ }_{627}^{627}\)

Solution: If the numbers are \(a\) and \(b\), consider
\[
f(x)=(x-a)(x-b)=x^{2}-(a+b) x+a b .
\]

We know the sum and product, \(a+b\) and \(a b\), so we are given a quadratic equation, 6
 and our mission is to find \(a, b\), the roots of \(f(x)\) ! This is easy: just use the quadratic 632
 formula. (Computing square roots is easy for a computer.) \({ }_{633}\)

The bottom line: given \(n\) and \(\phi(n)\), it is easy to find \(p, q\). \({ }_{635}\)

Note: This does not prove that factoring is hard; only that it is equivalent to 637
 computing \(\phi(n)\). Note also that "hard" is a function of current technology. (Some
 things that were hard 50 years ago are easy today; and some things that are hard 639
 today may be easy 50 years from now.)

\subsection*{7.5.2 Key Exchange Protocols}

In key exchange or key establishment protocols, the goal is for two parties to arrive 642 at a common, secret key for use in a cryptosystem, doing this while communicating over an insecure channel. The original idea for this goes back to back to Whitfield Diffie and Martin Hellman in 1976, and is an attractive application of primitive 645 roots.

\subsection*{7.5.2.1 Diffie-Hellman Key Exchange}

In Diffie-Hellman key exchange, Alice and Bob communicate over a public (and 648 potentially insecure) channel. The two agree on a large prime number \(p\), and a fixed 649 number \(q<p\). (Technically, \(q\) is a primitive root \(\bmod p\).) Alice has private key \(a, 650\)

\section*{Author's Proof}

Bob has private key \(b\). Alice sends \(q^{a}(\bmod p)\) to Bob, and Bob sends \(q^{b}(\bmod p){ }^{651}\) to Alice. Then Bob computes \(\left(q^{a}\right)^{b}(\bmod p)\) and Alice computes \(\left(q^{b}\right)^{a}(\bmod p) .652\) The two numbers agree because
\[
\left(q^{a}\right)^{b}=q^{a b}=q^{b a}=\left(q^{b}\right)^{a}(\bmod p) .
\]

The security of the method resides in the fact that even if a third party (Carol) 655 intercepts \(q^{a}\) or \(q^{b}\), she cannot find the values of \(a\) or \(b\) even if she knows \(q\) and \(p ;{ }^{656}\) this involves the computationally challenging task of finding the discrete logarithms \({ }_{657}\)
\[
a=\log _{q}\left(q^{a}\right), \quad b=\log _{q}\left(q^{b}\right)
\]

Note the two clever ingredients of the Diffie-Hellman method. First, Alice and 659 Bob exchange information that enables each to construct a common key: Alice gives 660 \(\operatorname{Bob} q^{a}(\bmod p) ;\) Bob gives Alice \(q^{b}(\bmod p)\).

The potential insecurity in the key exchange arises from the fact that the 662 information Alice sends Bob obviously has to bear some relation to the use Alice makes of the information Bob sends her. The common element is her private key \(a\) : Alice uses it both to compute \(q^{a}\) and \(q^{b a}\). If Carol could learn the value of \(a\) and intercept \(q^{b}\), she could figure out \(q^{b a}\). But the only public glimpse of Alice's private key \(a\) is when Alice sends \(q^{a}\) to Bob. Thus it is essential that this step not compromise the security of the private key \(a\). This is the second clever element of the method: the use of a mathematical procedure that is readily computable in one direction (otherwise the method would be impractical), but computationally intractable in the other.

\subsection*{7.5.2.2 Massey-Omura Key Exchange}

In this scheme just a single large prime \(p\) is public; Alice has private keys \(e_{a}\) and 673 \(d_{a}\) (such that \(e_{a} d_{a} \equiv 1(\bmod p-1)\) ), Bob has private keys \(e_{b}\) and \(d_{b}\) (such that 674 \(\left.e_{b} d_{b} \equiv 1(\bmod p-1)\right)\). The following exchange from Alice to Bob then takes 675 place:
\[
q^{e_{a}} \rightarrow q^{e_{a} e_{b}} \rightarrow q^{e_{a} e_{b} d_{a}} \rightarrow q^{e_{a} e_{b} d_{a} d_{b}}=\left(q^{e_{a} d_{a}}\right)^{e_{b} d_{b}} \equiv q(\bmod p)
\]

Think of this as follows: Alice puts a lock on a box \(\left(e_{a}\right)\) and sends it to Bob; Bob 678 puts a second lock on the box \(\left(e_{b}\right)\) and sends it back to Alice. Alice then removes 679 her lock using her key \(\left(d_{a}\right)\), and sends the box back to Bob. Finally, Bob removes 680 his lock using his key \(\left(d_{b}\right)\), and opens the box, revealing the shared secret \(q\).

\section*{Author's Proof}

\subsection*{7.6 Through a Glass Darkly}

Signals intelligence organizations are often quite chary of revealing their secrets or 683 successes. This presents challenges - but also opportunities - for the historian. \({ }_{684}\)

One might expect former employees would want to publicize their past exploits, 685 but there can be serious disincentives here. The history of signals intelligence 686 contains a number of celebrated instances of old hands feeling free to publicize their \({ }_{687}\) cryptologic exploits, only to suffer serious consequences. Two cautionary tales here 688 are those of Herbert Yardley (1889-1958) and Gordon Welchman (1906-1985). 689

Yardley had been the head of the "American Black Chamber", a highly- 690 successful code-breaking organization having its origins in the World War I Cipher 691 Bureau MI-8, and which later became a joint operation run by the US Army and 692 Department of State. But when, in 1929, administrations changed and the new 693 Secretary of State Henry L. Stimson met with Yardley and was briefed on its 694 operations, the American Black Chamber was promptly shut down. "Gentlemen", 695 Stimson declared, "do not read each other's mail". (Twelve years later, in the 696 aftermath of the attack on Pearl Harbor, Stimson, now Secretary of War, presumably 697 came to feel differently.) Now out of work, in the middle of the Great Depression, 698 and informed that his operation was no longer worth while, Yardley went on to write 699 his fantastic book The American Black Chamber (1931), narrating with gusto the 700 many exploits of that organization. But although the Department of State many have 701 looked down on Yardley's reading of gentlemen's mail, the Department of the Army 702 did not: they were furious with Yardley for revealing so many of their secrets and he 703 became persona non grata for the rest of his life. (When the Canadians hired Yardley 704 several years later to help run their own fledging signals intelligence organization, 705 he was dismissed after less than a year at the insistence of the US and UK.) For an 706 outstanding account of Yardley's life, see Kahn (2004).

Gordon Welchman provides another cautionary tale. Welchman had headed 708 Hut 6 (Army and Luftwaffe cryptanalysis) at Bletchley, and was responsible for many important advances during the war. (He was also the moving force behind the letter to Churchill in late 1941 that resulted in Bletchley Park being given virtual carte blanche in obtaining personnel and materiel.) Welchman emigrated 712 to the US in 1948, and spent the rest of his life working primarily for the US 713 defense establishment. He kept scrupulously quiet for more than 35 years about 714 his outstanding contributions to the Allied war effort. But in the late 1970s, as more 715 and more revelations about Bletchley Park came out, Welchman concluded that total 716 silence was no longer required. And so he came to write his highly informative The \({ }_{717}\) Hut Six Story, which detailed the many successes in the attack on the Enigma, the 718 devices (such as the Bombe and diagonal board used in its attack), and Alan Turing's 719 crucial role in all this. But he made a fatal error: he failed to submit his book for 720 prepublication review. He was promptly stripped of his security clearance, forbidden \({ }^{72}\) to speak to the press, and remained under a cloud for the (sadly short) remainder of 722 his life. For a recent biography of Welchman, see Greenberg (2014).

\section*{Author's Proof}

Silence about technical achievements would seem particularly important. Nev- 724 ertheless it is possible from time to time to identify individuals who were able to 725 publish technical results - stripped of their cryptographic origins - before their \({ }_{726}\) involvement on the dark side became known. Here are two case studies.

\subsection*{7.6.1 Case Study 1: I. J. Good}
I. J. (Irving John, "Jack") Good (1916-2009) was an undergraduate at Jesus College, 729 Cambridge (1934-1938) before receiving his Ph. D. at Cambridge in 1941, under 730 the supervision of G. H. Hardy and A. S. Besicovitch. Shortly after, he reported to 73 Bletchley Park on May 27, 1941 (the day the Bismarck was sunk). He was fortunate 732 in this: he spent his first 2 years (1941-1943) at Bletchley working in Hut 8 (Naval 733 cryptanalysis) under Alan Turing, from whom he learned the Bayesian approach to 734 statistics; and his last 2 years (1943-1945) working in the Newmanry (recall this was 735 one of two sections devoted to cryptanalysis of the SZ40/42, an online teleprinter \({ }_{736}\) system) under M. H. A. ("Max") Newman, using an attack centered on the use of 737 the "Colossus". 738

After the war Good spent a few years at the University of Manchester (1945-739 1948), and then returned to GCHQ (Government Communications Headquarters, 740 the postwar successor to GC \& CS), where he remained for 11 years (1948-1959). 741 After visiting several institutions for 2-3 year stints (Admiralty Research Labo- 742 ratory, 1959-1962; Institute for Defense Analyses, 1962-1964; Trinity College, 743 Cambridge, 1964-1967), he became a Professor at Virginia Polytechnic Institute, 744 where he remained for the rest of his life.

After the war Good wrote a classic book, Probability and the Weighing of 746 Evidence (1950), espousing the subjective, Bayesian viewpoint (but with a strong pragmatic streak running throughout). But even though the book appeared in 1950, 748 a first draft had been written in 1946, immediately after Good left Bletchley. In 749 retrospect it is clear that the book advances a view of the subject that Good had acquired directly from Turing. In its preface, Good thanks Turing, Newman, and 75 Donald Michie (that is, his two bosses at Bletchley and his closest collaborator in 752 the Newmanry) for reading the first draft.

But Good's Bletchley Park-inspired contributions to statistics in the years 754 immediately after the war were not confined to just a general advocacy of the 755 Bayesian viewpoint. He proceeded to publish (always scrupulously crediting Tur- 756 ing) developments and refinements of a number of technical advances Turing had 757 developed during the war. As Good later explained: \({ }_{758}\)

Turing did not publish these wartime statistical ideas because, after the war, he was too

\section*{Author's Proof}
to empirical Bayes, to Markov chains, to decision theory, to electronic computers. These 764 extreme standards of secrecy only gradually abated after the war [Good 2001, p. 211].

Up until 1976, however, Good remained entirely silent about his actual wartime 766 work. At this point in time it is hard to appreciate the total silence up to then 767 regarding Allied successes in attacking German encryption devices; one illustration 768 among many is provided by David Kahn's pathbreaking book The Codebreakers 769 (1967): although it contains an entire chapter about the US success in reading the 770 Japanese "Purple" cipher, and several chapters on German signals intelligence, it is 771 entirely silent about Bletchley and Ultra.

All this changed in 1973, when General Gustave Bertrand (1896-1976) wrote 772 Enigma, ou la plus grande énigme de la guerre 1939-1945 ("Enigma, or the 774 Greatest Enigma of the War of 1939-1945"). This revealed that since 1932 the Poles had been reading the Enigma, as well as the Polish-French collaboration. This apparently served as an inducement to the British to lift a year later (1974) their total embargo on any discussion of their cryptologic successes during the war; the 778 first beneficiary of this change in policy was F. W. Winterbotham's The Ultra Secret 779 (1974). After this the floodgates opened, and an ever-increasing succession of books and papers appeared; a small (but significant) sampling of these include Hinsley (1979-1990), Rejewski (1981), Welchman (1982), Hinsley and Stripp (1993), and 782 Reeds et al. (2015). I. J. Good has returned to this subject many times (in what might 783 be termed the "dance of the seven veils"); see Good (1976, 1979, 1993, 2000, 2001, 784 2006).

For further information on Good's life, see the outstanding interview by David 786 Banks (1996).

\subsection*{7.6.2 Case Study 2: Aleksandr Alekseevich Borovkov}
A. A. Borovkov (1931-) is a prominent Russian mathematician, working in the 789 areas of probability and statistics. He did his undergraduate work at the University 790 of Moscow, graduating in 1954. After completing his graduate studies under the 791 great A. N. Kolmogorov, he then moved to Novosibirsk in 1960 to become "head 792 of the recently created probability theory and mathematical statistics section of 793 the Institute of Mathematics of the Siberian Branch of the Academy of Sciences 794 of the USSR" (Borisov et al. 2001, p. 1009). He has remained there since. He 795 is perhaps best known for his work in the field of large deviations, for example 796 boundary crossing probabilities for random walks, the subject of his thesis. This 797 was an interesting (if risky) choice of topic: although large deviation theory is 798 currently one of the most active areas of research in mathematical probability, it 799 was a relatively unexplored area at the time and virtually nothing had been done in 800 Borovkov's particular area of study. What led him to his interest in this field? 801

Borisov et al. (2001) discretely tell us that after the completion of his undergrad- 802 uate studies in 1954, Borovkov "worked for several years in an organization doing 803

\section*{Author's Proof}
applied research" (p. 1009). Borovkov himself was willing just a few years later 804 (2004) to be much more explicit:
I began to study this problem under the following circumstances. After graduating from 806 Moscow State University in 1954 I was assigned to a covert organization (despite the 807 recommendation of Kolmogorov for graduate work) that solved cryptography problems 808 by using computers. For this purpose, one of the most powerful computers of the time was 809 created. The approach was based on exhaustion of diverse versions of decoding, which 810 produces a great number \(N\) of variants of decoding on the output, that is, sequences of 811 letters \(a_{1}, a_{2}, \ldots, a_{n}\). Among them one should recognize the true 'decoded' text (that is, a 812 text in English corresponding to the correct version of decoding). Since the number \(N\) was \(\quad 813\) very large (say, of order \(10^{8}-10^{10}\) ), it was impossible to perform this work 'manually', \(\quad 814\) and a 'computer algorithm' for recognition of the decoded text was used. This algorithm 815 was based on the statistical criterion of sequential analysis that was to distinguish between \(\quad 816\) two hypotheses: \(H_{1}=\left\{\right.\) the text is chaotic, that is, the \(a_{i}\) are independent, \(P\left(a_{i}=k\right)=817\) \(q(k)=1 / 26, k=1, \ldots, 26\}\) and \(H_{0}=\) \{the text is decoded\}. In the latter case, diverse 818 simplest models were used, for example, \(\left\{a_{i}\right\}\) was assumed to be a sequence of independent 819 variables with the known probabilities \(p(k)=P\left(a_{i}=k\right)\) or a Markov chain with the 820 known probabilities \(p_{j k}=P\left(a_{i}=k / a_{i-1}=j\right)\). 821
So Borovkov's public work in large deviations was a direct consequence of his 822 working for a "covert organization" interested in cryptography! 823
What is particularly interesting (and impressive) about Borovkov's work on this 824 subject is that it was not encouraged by Kolmogorov - quite the contrary: 825
At that time I was successful in enrolling in the correspondence graduate programme with 826 the support of Kolmogorov, and I decided to take the problem as a thesis project. This was 827 quite risky, because nothing was known at the time about the problem, and Kolmogorov 828 told me at once that he had no ideas about it. (He even suggested that I choose another 829 problem, but I declined.) The risk turned out to be serious, because I could not get anything 830 for almost three years. The solution in the case of bounded lattice variables \(\xi_{i}\) (this was the 831 very case we needed) was found in 1958 in a purely analytic way.

\subsection*{7.7 Discussion}

Modern methods of communication involve the transmission of massive amounts of 834 information over channels that are either insecure or potentially insecure (subject to 835 interception). The early part of the twentieth century saw this in the case of wireless 836 transmissions over long distances; the last several decades with the rise of computer 837 networks, LANs and WANs, and the internet. This gave rise in turn to the need 838 for rapid methods of ensuring privacy, authentication of sender, and guaranteeing 839 integrity of message. 840
In the era before computers this was accomplished by the constructing of 841 machines, often impressive by the standards of their day, used to encrypt an 842 increasing volume of military, diplomatic, and commercial information; these were \({ }_{843}\) in turn often attacked by methods devised by mathematicians and implemented 844 by the construction of new and sophisticated machines. In the modern computer 845 era encryption has, not surprisingly, become the output of computers rather than 846

\section*{Author's Proof}

\begin{abstract}
special purpose mechanical, electronic, or electromechanical devices. These modern 847 methods of encryption now almost exclusively call upon the resources of modern 848 mathematics, as do the efforts of cryptanalysts to defeat them.

Documenting the evolution of modern encryption is a challenging one for the 850 historian: it is in the nature of the subject that the more successful one is, the less 851 one wants others to know about it. The career of I. J. Good illustrates this: it took 852 decades before his part in Allied successes during World War II became known 853 even in outline; and a number of statistical advances that arose out of his war work 854 became public knowledge only after their cryptanalytic origins were hidden.
\end{abstract}

\section*{References}

Banks, D. L. (1996). A conversation with I. J. Good. Statistical Science, 11, 1-19. 857
Borisov, I. S., et al. (2001). Aleksandr Alekseevich Borovkov (on his 70th birthday). Russian 858 Mathematical Surveys, 56, 1009-1012. 859
Borovkov, A. A. (2004) Kolmogorov and boundary problems of probability theory. Russian 860 Mathematical Surveys, 59, 91-102. 861
Brückner, H.-D. (2005). Germany's first cryptanalysis on the Western Front: Decrypting British 862 and French naval ciphers in World War I. Cryptologia, 29, 1-22. 863
Budiansky, S. (2000). Battle of wits: The complete story of codebreaking in World War II. New 864 York: Free Press. 865
Copeland, B. J. (Ed.). (2006). Colossus: The secrets of Bletchley Park's codebreaking computers. 866 Oxford: Oxford University Press. 867
Feistel, H. (1973). Cryptography and computer privacy. Scientific American, 228(5), 15-23. 868
Fienberg, S. E. (1971). Randomization and social affairs: The 1970 draft lottery. Science, 171, 869 255-261. 870
Friedman, W. F. (1938-1941). Military cryptanalysis. Washington, DC: US Government Printing 871 Office. [Several subsequent editions, later expanded in collaboration with Lambros D. Callima- 872 hos, under the title Military Cryptanalytics.]. 873
Good, I. J. (1950). Probability and the weighing of evidence. New York: Hafner Publishing 874 Company. 875
Good, I. J. (1976). Early work on computers at Bletchley. Cryptologia, 3, 65-77. Reprinted with 876 an addendum in Annals of the History of Computing, 1, (1979), 38-48. 877
Good, I. J. (1979). Studies in the history of probability and statistics. XXXVII A. M. Turing's 878 statistical work in World War II. Biometrika, 66, 393-296. 879
Good, I. J. (1993). Enigma and Fish. In Hinsley and Stripp (Eds.) (pp. 149-166). 880
Good, I. J. (2000). Turing's anticipation of Empirical Bayes in connection with the cryptanalysis 881 of the Naval Enigma. Journal of Statistical Computing and Simulation, 66, 101-111. 882
Good, I. J. (2001). Introductory remarks for the article in Biometrika, 66 (1979). A. M. Turing's 883 Statistical Work in World War II. In J. L. Britton (Ed.), Collected works of A. M. Turing (Vol. 884 2, pp. 211-223). Elsevier. 885
Good, I. J. (2006). From Hut 8 to the Newmanry. In Copeland (2006) (pp. 204-222). 886
Greenberg, J. (2014). Gordon Welchman: Bletchley Park's architect of Ultra intelligence. London: 887 Frontline Books. 888
Haynes, J. E., \& Klehr, H. (2000). Venona: Decoding Soviet espionage in America. New Haven: 889 Yale University Press. 890
Hinsley, F. H. (1979-1990). British intelligence in the Second World War (5 Vols.). London: Her 891 Majesty's Stationery Office. 892

\section*{Author's Proof}

7 Cryptology, Mathematics, and Technology

Hinsley, F. H., \& Stripp, A. (1993). Codebreakers: The inside story of Bletchley Park. Oxford: 893 Oxford University Press.

894
Kahn, D. (1967). The codebreakers: The comprehensive history of secret communication from 895 ancient times to the Internet. New York: Macmillan. 896
Kahn, D. (2004). The reader of gentlemen's mail: Herbert O. Yardley and the birth of American 897 codebreaking. New Haven: Yale University Press. 898
Knuth, D. E. (1997). The art of computer programming (Volume 1: Fundamental algorithms, 3rd 899 ed.). Reading: Addison-Wesley. 900
Kraft, J. S., \& Washington, L. C. (2014). An introduction to number theory with cryptography. 901 Boca Raton: CRC Press. 902
Moore, J. M. (1975). Aristotle and Xenophon on democracy and oligarchy. University of California 903 Press.
Pearson, E. S. (1990). 'Student': A statistical biography of William Sealey Gosset. Oxford: Oxford 905 University Press/Clarendon Press. 906
Pratt, F. (1939). Secret and urgent: The story of codes and ciphers. New York: Bobbs-Merrill. 907
Pröse, M. (2006). Chiffriermaschinen und Entzifferungsgeräte im Zweiten Weltkrieg: Tech- 908 nikgeschichte und informatikhistorische Aspekte. Munich: Martin Meidenbauer Verlagsbuch- 909 handlung. 910
Rand. (1955). A million random digits with 100,000 normal deviates. Illinois: Rand Corporation, 911 Munich; Reissued 2001. 912
Reeds, J., et al. (2015). Breaking teleprinter ciphers at Bletchley Park: An edition of I.J. Good, D. 913 Michie and G. Timms: General report on Tunny with emphasis on statistical methods (1945). 914 Piscataway: IEEE Press. 915
Rejewski, M. (1981). How Polish mathematicians deciphered the Enigma. Annals of the History of 916 Computing, 3, 213-234. 917
Rivest, R., Shamir, A., \& Adelman, L. (1978). A method for obtaining digital signatures and public- 918 key cryptosystems. Communications of the ACM, 21, 120-126. 919
Rowlett, F. B. (1998). The story of Magic: Memoirs of an American cryptologic pioneer. Laguna 920 Hills: Aegean Park Press. 921
Samuels, M. (2016). Ludwig Föppl: A Bavarian cryptanalyst on the Western front. Cryptologia, 922 40, 355-373. 923
Sinkov, A. (1968). Elementary cryptanalysis: A mathematical approach. New York: New Mathe- 924 matical Library, Random House. 925
Stigler, S. M. (1999). The statistics on the table: The history of statistical concepts and methods. 926 Cambridge: Harvard University Press. 927
Turing, A. M. (2015). The applications of probability to cryptography. unpublished paper, 928 c. 1941. UK National Archives, HW 25/37, 2012. For a typeset version, see Ian Taylor, 929 arXiv:1505.04714v2 [math.HO]. 930
Weierud, F., \& Zabell, S. (2018). German mathematicians and cryptology during World War II. 931 Submitted to Cryptologia. 932
Welchman, G. (1982). The Hut six story: Breaking the Enigma codes. New York: McGraw-Hill. 933
Welchman, G. (1986). From Polish bomba to British bombe: The birth of Ultra. Intelligence and 934 National Security, 1, 71-110. 935
Winterbotham, F. W. (1974). The Ultra secret. London: Weidenfeld and Nicolson. 936
Yardley, H. O. (1931). The American Black Chamber. Indianapolis: Bobbs-Merrill. 937
Zabell, S. L. (2012). Commentary on Alan M. Turing: The applications of probability to 938 cryptography. Cryptologia, 36, 191-214. 939
Zabell, S. L. (2015). Statistics at Bletchley Park. In Reeds et al. (2015) (pp. lxxv-ci). 940

\section*{Author's Proof}

\section*{Part III Technology in Mathematics \({ }_{2}\)}

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{|c|c|c|}
\hline Chapter Title & \multicolumn{2}{|l|}{The Epistemology of Computer-Mediated Proofs} \\
\hline Copyright Year & \multicolumn{2}{|l|}{2018} \\
\hline Copyright Holder & \multicolumn{2}{|l|}{Springer International Publishing AG, part of Springer Nature} \\
\hline \multirow[t]{8}{*}{Corresponding Author} & Family Name & Bringsjord \\
\hline & Particle & \\
\hline & Given Name & Selmer \\
\hline & Suffix & \\
\hline & Division & \begin{tabular}{l}
Rensselaer AI \& Reasoning (RAIR) \\
Lab, Department of Computer Science, Department of Cognitive Science, Lally School of Management
\end{tabular} \\
\hline & Organization & Rensselaer Polytechnic Institute (RPI) \\
\hline & Address & Troy, NY, USA \\
\hline & Email & selmer.Bringsjord@gmail.com \\
\hline \multirow[t]{7}{*}{Author} & Family Name & Govindarajulu \\
\hline & Particle & \\
\hline & Given Name & Naveen Sundar \\
\hline & Suffix & \\
\hline & Division & \begin{tabular}{l}
Rensselaer AI \& Reasoning (RAIR) \\
Lab, Department of Computer Science, Department of Cognitive Science, Lally School of Management
\end{tabular} \\
\hline & Organization & Rensselaer Polytechnic Institute (RPI) \\
\hline & Address & Troy, NY, USA \\
\hline
\end{tabular}

Abstract
Epistemology includes in large part investigation of the conditions by which rational human knowledge and belief, of the propositional variety, can be secured. Our particular instance of this investigation arises from the stipulation that a human (a) receives a partial or complete formal argument/proof \((\mathcal{A})\) for/of a conclusion \(\phi\), where some computing machine \(\mathcal{M}\) "stands between" or mediates a's receiving \(\mathcal{A}\) and \(\phi\). The mediation can take any number of forms, ranging from the simple and mundane (e.g., \(a\) is a teacher who types in to a text-editing system a proof of some easy theorem for a math class, and then prints out the proof for subsequent study and presentation to the class) to the exotic and famous (e.g., \(a\) receives a too-big-to-survey printout of a computergenerated proof of the four-color theorem). Under what conditions is it rational for \(a\) to believe \(\phi\) ? Once we have erected at least a reasonably precise framework for understanding the structure of arguments and proofs, classifying computing machines, ranking strength of knowledge and belief, and distinguishing at least roughly between types of computer

\section*{Author's Proof} of questions (and other, related ones) can eventually be answered.

\section*{Author's Proof}

\title{
Chapter 8 \\ 1 \\ The Epistemology of Computer-Mediated 2 Proofs
}

\author{
Selmer Bringsjord and Naveen Sundar Govindarajulu
}

\begin{abstract}
Epistemology includes in large part investigation of the conditions by 5 which rational human knowledge and belief, of the propositional variety, can be 6 secured. Our particular instance of this investigation arises from the stipulation 7 that a human (a) receives a partial or complete formal argument/proof \((\mathcal{A})\) for/of a 8 conclusion \(\phi\), where some computing machine \(\mathcal{M}\) "stands between" or mediates a's 9 receiving \(\mathcal{A}\) and \(\phi\). The mediation can take any number of forms, ranging from the 10 simple and mundane (e.g., \(a\) is a teacher who types in to a text-editing system a proof 11 of some easy theorem for a math class, and then prints out the proof for subsequent 12 study and presentation to the class) to the exotic and famous (e.g., \(a\) receives a too- 13 big-to-survey printout of a computer-generated proof of the four-color theorem). 14 Under what conditions is it rational for \(a\) to believe \(\phi\) ? Once we have erected at 15 least a reasonably precise framework for understanding the structure of arguments 16 and proofs, classifying computing machines, ranking strength of knowledge and 17 belief, and distinguishing at least roughly between types of computer mediation, 18 this result, as we indicated, is a framework in which this pair of questions (and 19 other, related ones) can eventually be answered.
\end{abstract}

\subsection*{8.1 Introduction}

Epistemology includes in large part investigation of the conditions by which 22 rational human knowledge and belief, of the propositional variety (a.k.a. learning 23 of declarative content), can be secured. Our particular instance of this investigation

\footnotetext{
We are deeply grateful for the vision (and patience!) of, and guidance provided by, editor Sven Ove Hansson. We are also indebted to both ONR and AFOSR for support that has made the investigation of forms of advanced logicist learning (of conclusions of proofs and arguments) possible.
S. Bringsjord ( \(\boxtimes\) ) • N. S. Govindarajulu

Rensselaer AI \& Reasoning (RAIR) Lab, Department of Computer Science, Department of Cognitive Science, Lally School of Management, Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
}

\section*{Author's Proof}
arises from the stipulation that a human (a) receives a partial or complete formal 25 argument/proof \((\mathcal{A})\) for/of a conclusion \(\phi\), where some computing machine \(\mathcal{M}{ }_{26}\) "stands between" or mediates \(a\) 's receiving \(\mathcal{A}\) and \(\phi\). The mediation can take any 27 number of forms, ranging from the simple and mundane (e.g., \(a\) is a high-school 28 math teacher who types in to a text-editing system a proof of Euclid's Theorem for 29 a math class, and then prints out or displays the proof for subsequent study and 30 presentation to the class) to the exotic and famous (e.g., a receives a too-big-to- 31 survey printout of a computer-generated proof of the four-color theorem). In this 32 context, here is the most-general form of the question that drives our investigation: \(\quad 33\)
\(\begin{array}{lll}\text { (QB) Where } \mathcal{M} \text { mediates as provisionally described above, under what conditions is it } & 34 \\ \text { rational for } a \text { to believe } \phi ?^{1} & 35\end{array}\)
Once we have erected at least a reasonably precise framework for understanding 36 the structure of arguments and proofs, classifying computing machines, ranking 37 strength of knowledge and belief, and distinguishing between some types of 38 computer mediation, the result is a framework in which (QB) can be answered. \({ }^{2}\) We 39 try herein to provide some evidence for this optimism, by applying the framework 40 in somewhat concrete ways, and by pointing toward next-steps concretization in 41 connection with proof systems more exotic and powerful than standard extensional 42 ones associated with first- and second-order logic.

43
The sequel unfolds in accordance with this plan: In the next section (Sect. 8.2), 44 we provide a brief but serviceable clarification of the mediating machine \(\mathcal{M}\) in \({ }_{45}\) our overarching framework. This section also includes a rapid discussion of what 46 we take proofs (and also, for reasons to be given, arguments) to be. We next 47 (Sect. 8.3) present a "high-altitude" view of the overarching process with which 48 we are concerned, one going from the ingredients being given to \(\mathcal{M}\) by a human, \({ }_{4}\) eventually to a final epistemic attitude (specifically, as we have said, belief) on 50
\({ }^{1}\) We are sorry to disappoint those readers who will wish to have this different question addressed as well or instead:
(QK) Where \(\mathcal{M}\) mediates as provisionally described above, under what conditions does \(a\) in our instance really know that \(\phi\) ?

We leave ( QK ) aside in favor of \((\mathrm{QB})\) and its variants because the conditions under which rational belief becomes knowledge have been notoriously difficult to set out to the satisfaction of most, let alone nearly all, thinkers. The most efficient way to confirm this is to read any decent overview of the "Gettier Problem" (GP) a problem generated by consideration of ingenious thought-experiments from Gettier (1963) in which an agent seems to know some proposition, but by any of the traditional accounts of knowledge as justified (= rational) true belief going back to Plato, doesn't. E.g. see this cogent overview: (Ichikawa and Steup 2012). Plato's original defense can be found in the Theaetetus, which can in turn be found in (Hamilton and Cairns 1961). A final word related to the GP conundrum: We encourage readers to join us in resisting the affirmation of any such principle as that if an agent \(a\) believes but doesn't know \(\phi\), the agent can't have learned \(\phi\)-this being resistance that protects the position that \(a\) learns \(\phi\) in the computer-mediated arrangement considered in the present paper, at least in cases in which the strength of the belief that \(\phi\) on the part of \(a\) is high.
\({ }^{2}\) And eventually ( QK ) as well.

\section*{Author's Proof}
the part of that human. Next, in Sect.8.4, we infuse our overarching framework 51 with gradations of belief, which allows us to refine the framework in such a way 52 that nuanced sub-questions under the umbrella of question ( QB ) can be sensibly \({ }_{53}\) addressed. For example, this sub-question becomes expressible:
\(\begin{array}{lll}\left(\mathrm{QB}_{6}\right) & \begin{array}{l}\text { Where } \mathcal{M} \text { mediates as provisionally described above, under what conditions is it } \\ \text { rational for } a \text { to believe } \phi \text { with certainty? }\end{array} & 55 \\ & 56\end{array}\)
In Sect. 8.5, we spend some time exploring some concrete instantiation of our 57 framework, using some proof-oriented technology in our laboratory (for standard, 58 extensional logic), and featuring some real proofs. We wrap the paper up by 59 spending a bit of time explaining the next steps that can be taken in order to 60 achieve further concretization of our framework (Sect. 8.6); we include discussion 61 here of situations rather more exotic than those arising from use of straightforward 62 extensional logic: viz., the cases of infinitary logic, and intensional logic.

\subsection*{8.2 Computing Machines, Arguments/Proofs}

Computing machines in the present discussion shall range across pretty much 65 everything one might consider to be a candidate, from a device or process that 66 simply prints out the input it receives, to a computer program for discovering and 67 checking a proof, to all the abstractions at and below a standard Turing machine 68 (e.g., abaci, register machines, etc.), to so-called "hypercomputers" (which are 69 formally specified machines capable of computing functions beyond Turing-level 70 machines). \({ }^{3}\) In all cases, we refer simply to the computing machine in our analysis 71 as \(\mathcal{M}\) (and we use subscripts and superscripts to refer to more than a single such 72 machine; e.g. we can ask the reader to consider two machines \(\mathcal{M}_{1}\) and \(\mathcal{M}_{2}\) ). \({ }^{73}\)

Next, note that an argument or proof \(\mathcal{A}\) is what we can harmlessly call an 74 abstract type. The basis for this generic terminology is the same as what allows 75 various thinkers to refer to, say, "Henkin's completeness proof" without any relevant 76 physical object in play. The same thing is going on when people refer (successfully) 77 to, say, Gödel's proof of the completeness theorem, rather that any particular 78 inscriptions of it upon paper, or a computer display, etc. (It's the tokens of Gödel's 79 proof that vary considerably across textbooks, classrooms, notebooks, etc.) We 80 denote a physical token of this type as \(\widehat{\mathcal{A}}\). Argument/proof tokens are physical 81 instantiations of the corresponding abstract arguments/proof; they can be written 82 down on paper and other media, read, inspected, erased, copied, transmitted, and 83 so on. We follow the same notation and simple ontology for machines as well, and 84 hence distinguish between \(\mathcal{M}\) and \(\widehat{\mathcal{M}}\).

\footnotetext{
\({ }^{3}\) An elegant example is infinite-time Turing machines; see (Hamkins and Lewis 2000). For a list of hypercomputing devices (in the context of a case, entirely separate from purposes driving the present chapter, for the proposition that human persons can hypercompute), see (Bringsjord and Arkoudas 2004).
}

\section*{Author's Proof}

168

As to what an argument for our investigation is, we let \(\mathcal{A}=\left(\Gamma, \vdash^{*}, \phi\right)\) denote 86 an arbitrary argument, which usually \({ }^{4}\) has finitely many premises \(\Gamma\) and proceeds 87 by inferential steps \(\vdash_{1}, \vdash_{2}, \ldots, \vdash_{n}\) to the conclusion, \(\phi\left(\vdash^{*}\right.\) refers simply to all the 88 inferences collected together). But why do we refer to arguments, not proofs, given 89 that the title of the present chapter of course revolves around the phrase 'Computer- 90 Mediated Proofs'? The explanation is simply that the arguments with which we 91 concerned are formal arguments, and the only difference between them and what 92 are customarily classified as proofs is that the latter are usually distinguished by \({ }^{93}\) appearing in a particular context (e.g., one in which the community uses 'proof' \({ }_{94}\) instead of 'argument'), whereas that isn't necessary for arguments. We recognize 95 that some will wish to count our formal arguments as proofs. That is fine; nothing we 96 say hinges on the absence of this conflation. And a final point: Just as some computer 97 programs can be invalid, so some proofs can be invalid-despite the fact that they 98 are still proofs. It's an odd fact, but a fact nonetheless, that some harbor the notion 99 that a "proof is a proof"; that is, that by definition a proof is a valid progression of 100 reasoning. This is an odd notion, because undeniably we can and often do speak 101 of defective computer programs, and we are perfectly entitled to likewise speak 102 sensibly of defective proofs. In light of this situation, computer-mediated proofs 103 certainly can suffer from the mediation in question. Indeed, computer-mediation 104 can turn a valid proof into an invalid one. This possibility, and related ones, is what 105 makes the epistemology of computer-mediated proofs interesting, important, and 106 "real-world."

\subsection*{8.3 The Compu-Mediated Epistemological Framework}

In our opening paragraph we provided a provisional account of mediation, to which the questions \((\mathrm{QB})\) and \(\left(\mathrm{QB}_{6}\right)\) referred. Now we get a bit more precise. Our framework for systematizing the epistemology of computer-mediated arguments/proofs is a generalization and expansion of what is presented in (Arkoudas and Bringsjord 2007) for analysis of proof-checking (in connection with e.g. proofs of the FourColor Theorem) and what is presented in (Bringsjord 2015) in connection with a defense of a particular approach to program verification. \({ }^{5}\) The diagram shown in Fig. 8.1 sums up in end-to-end fashion the entire framework that anchors the present chapter, and we explain this framework now.

First, a quick point regarding notation: \(\rightarrow\) is the material conditional, while \(\rightsquigarrow\) denotes the causal production of what is to the right from what is to the left. Next, note that there is an important temporal dimension to the framework: time is

\footnotetext{
\({ }^{4}\) Not invariably. See our coverage of infinitary logic in Sect. 8.6.1.
\({ }^{5}\) The second of these papers uses a scheme that generalizes, expands, and relaxes the scheme set out and employed in the first.
}

\section*{Author's Proof}


Fig. 8.1 Overarching diagrammatic depiction of the proof-mediation flow
basically flowing from the left to the right, and also from the top down to the bottom 12 when we see the column of formulae on the right side of the picture in question:
- \(\mathbf{P}[a, \widehat{\mathcal{M}}(\widehat{\mathcal{A}}) \widehat{\sim}\langle\widehat{\mathcal{A}}, \widehat{\varphi}\rangle]\)
- \(\mathbf{B}\left[a, \widehat{\mathcal{M}}(\widehat{\mathcal{A}}) \widehat{\sim}\left\langle\widehat{\mathcal{A}_{\mathcal{M}}}, \widehat{\varphi}\right\rangle\right]\)
- \(\mathbf{B}\left[a, \mathcal{M}(\mathcal{A}) \rightsquigarrow\left\langle\mathcal{A}_{\mathcal{M}}, \varphi\right\rangle\right]\)
- \(\mathbf{B}\left[a, \mathcal{T}\left(\mathcal{A}_{\mathcal{M}}\right) \wedge \mathcal{T}(\varphi)\right]\)

Hence, at the final timepoint in the progression, our agent \(a\) believes that the so as well. Notice that at this concluding moment the agent's belief is directed not at a particular token, but at the abstract types in question. The topmost formula in Fig. 8.1 is a crucial one and is "applied" to the output produced by \(\mathcal{M}\); it says
that the agent \(a\) believes that what the machine gives as output is worthy of assent. Specifically, the \(\mathcal{M}\)-mediated argument is believed true/valid, and the conclusion of this argument is believed true as well. We view the situation as one in which our agent has learned \(\phi\). 135
We now explain what happens as time flows on. The overall progression starts 136 with an argument token as input given to the mediating machine for processing of some kind. The output token consists of a pair composed, first, of an argument137 \(\widehat{\mathcal{A}_{\mathcal{M}}}\) token that is an argument causally related to the one in the original input, and, second, the conclusion \(\widehat{\varphi}\) corresponding in turn to the original, earlier input conclusion \(\widehat{\phi}\). This output pair from \(\mathcal{M}\), given the agent's belief in the general principle that is the topmost formula (discussed above), is combined with the factthat the agent \(a\) perceives ( \(\mathbf{P}\) is a perception operator) that pair is so produced (i.e., combined with the fact that \(\left.\mathbf{P}\left[a, \widehat{\mathcal{M}}(\widehat{\mathcal{A}}) \widehat{\rightsquigarrow}\left\langle\widehat{\mathcal{A}_{\mathcal{M}}}, \widehat{\varphi}\right\rangle\right]\right)\), leads to the state-of-affairs expressed by the next formula in the column on the right, which simply reflects the 145 move from perception to belief. Belief targeting tokens then move to belief targetingpropositions (types), and then finally we come to the concluding formula in the147

column, which we have already explained.

With our framework now in hand, the questions we have isolated thus far can 149 be refined. For example, the general question driving our inquiry now becomes 150 this one:

\section*{Author's Proof}

\subsection*{8.4 The Epistemological Framework Infused with Graded Belief}

Despite the foregoing, we do not assume belief to be simply an "on versus off" matter. On the contrary, belief, at least of the human variety, is modulated by at least some version of strength, confidence, likelihood, or probability. Therefore the framework we have presented above, and diagramed in Fig. 8.1, is objectionably simplistic, and hence must be refined. We have already hinted at this via question \(\left(\mathrm{QB}_{6}\right)\), which refers to "believing with certainty."

Let's consider some simple examples to start. You surely believe that in ordinary base-10 arithmetic \((\tau) 2+2=4\). You also believe that \((\pi)\) the objects you currently perceive in front of you (the characters composing this parenthetical in this sentence, e.g.) are actually in front of you. And you also believe that \((\mu)\) some humans have in the past landed on the Moon. But these are very different beliefs, strength-wise. In the case of \(\tau\), you are, we can safely say, certain that this proposition holds. What about \(\pi\), that those characters really exist in the physical world? Here things aren't certain. You might be a brain in a vat, or you might be dreaming, or Descartes' "evil demon" might be deceiving you. Nonetheless, unless you have evidence that your senses are compromised by such exotica, we can say that while your belief that \(\pi\) holds isn't at the level of certainty, it's as close as a cognizer of our kind can get to certainty without getting all the way there. We shall say that \(\pi\) is at the level of the evident.

From here, we can continue to work down to a point where a proposition that is the target of belief is a "toss up"; in this case, we say that the belief that \(\phi\) (where \(\phi\) expresses the proposition in question) is counterbalanced. In between evident and counterbalanced are four strength factors; the gist of what they mean should be clear from the words selected to express them. These words, and the entire spectrum of six (positive) values, are shown in Fig. 8.2. For what it's worth, we suspect that in most real-world cases in which relevant professionals in the formal sciences consider computer-mediated arguments/proofs with the aim of accepting or rejecting some statement \(\varphi\), if they do accept, their corresponding belief that \(\varphi\) holds is at the level of overwhelmingly likely.
Please note that we intentionally dodge having to deal in the present chapter with probability and inductive logic, and hence employ the minimalist scheme of Fig. 8.2 in order to articulate a basic foundation for the epistemology of computer-mediated proof, upon which our successors can perhaps build. Trying to use probability with epistemic operators would make for very heavy and controversial going, and the situation would be made all the worse by the brute fact that we haven't here the

\section*{Author's Proof}

Fig. 8.2 Positive epistemic values
```

certain (6)
evident (5)
overwhelmingly likely (4)
beyond reasonable doubt (3)
likely (2)
more likely than not (1)
counterbalanced (0)

```
space of a monograph at hand. In this regard, nothing much, alas, has changed since the early days of modern inductive logic, 50 odd years ago. To take in the situation then, one can start with the seminal (Hintikka and Hilpinen 1966). In addition, Kyburg (1970) sums up the "chaos of non-consensus" regarding what probability is, and the implications of this state-of-affairs for inductive logic, as of a half-century back. That things haven't changed all that much in the half-century since Kyburg's survey is why we believe the circumspect move to make, in the present chapter, is to employ a scheme that is extremely general, and skirts the still-buzzing hornet's nest of probability and inductive logic. \({ }^{6}\)

Of course, ultimately the truly mature epistemology of computer-mediated proof 202 will need to include, minimally, some determinate stand regarding probability 203 and its role (or possibly its lack thereof) in this epistemology. \({ }^{7}\) Given this, we 205 volunteer only that presumably the most natural interpretation of probability to

\footnotetext{
\({ }^{6}\) Sanguine, skeptical readers can see some very recent publications which reveal that even today the role of probability in supporting rational belief, whether or not that belief is about arguments, proofs, and the conclusions therefrom, is highly controversial. E.g., the recently released Argument \& Inference: An Introduction to Inductive Logic (Johnson 2016) divides the non-deductive basis for rational belief and decision-making into one part that leaves probability (in any guise) aside, and then another side that embraces and employs probability-and yet on the other hand, other overviews of this non-deductive basis assume that it must be probabilistic in nature (e.g. see Hawthorne 2004/2012).
\({ }^{7}\) There are purely technical reasons for opting herein to use a streamlined multi-valued continuum for graded belief, given the current state of inductive logic, and for that matter of contemporary fields that also draw directly from probability, such as artificial intelligence (AI). (Bayesian reasoning in the AI of today is central to the field. For an overview, see Russell and Norvig 2009.) One reason is that today inductive logic, AI , and other probability-infused fields invariably make use of formal languages that are too inexpressive in the context of real-world proofs. Real-world proofs routinely make use of constructions that are infinitary in nature, and hence, taken at face value, these proofs, in the context of computer-mediation and epistemology, explode the bounds of formal languages that are the bases for probabilistic processing today. This is true because these languages are rooted in the space running from the propositional calculus to fragments of simple extensional logics like first-order logic (FOL) to FOL itself. This is despite seminal work long ago in the assignment of probabilities to formulae in infinitary formal languages of logics; (e.g. see Scott and Krauss 1966).
}

\section*{Author's Proof}

\begin{abstract}
investigate in connection with the epistemology of computer-mediated proof would presumably be the epistemological interpretation of probability. An early but lucid 207 and still-informative summary is the chapter "The Epistemological Interpretation of 208 Probability" in Kyburg (1970). \({ }^{8} 209\)

It's worth noting that while the multi-valued scheme we employ here, as we have 210 cheerfully confessed, is intended to avoid explicit alliances with persistently murky and controversial concepts and interpretations of probability, it can nonetheless be 212 shown that this scheme is in conformity with at least the vast majority of the generic \({ }_{213}\) frameworks for so-called plausibility relations (Friedman and Halpern 1995), and 214 hence is a scheme far from idiosyncratic. More specifically, the binary relation 215 in question must satisfy four axioms (with additional axioms serving to regiment 216 further, more-specific constraints), and it can be proved that these axioms, suitably 217 instantiated, hold for our scheme. For instance, where ' \(\phi \preceq \psi\) ' is read as ' \(\phi\) is of 218 less or equal plausibility to \(\psi\),' the first axiom proposed by Friedman and Halpern 219 (1995) says that
if \(\phi\) is a tautology and \(\psi\) includes a contradiction, then \(\phi \npreceq \psi, \quad 221\)
\end{abstract}
and it's an easily obtained theorem that this axiom, appropriately rendered more precise, \({ }^{9}\) holds for our ordering (which is of course generated by letting \(\leq\) for the \({ }^{223}\) natural numbers be \(\preceq\) ).

We are now in position to appreciate that every occurrence of a belief operator 225 B in Fig. 8.1 carries a strength parameter in its superscript. We don't present a new 226 overarching picture with these parameters to supplant the one given in Fig. 8.1, but \({ }^{227}\) rest content with a single example to fix the situation for the reader: Consider again 228 the final moment in the progression, corresponding to this formula: 229
\[
\mathbf{B}\left[a, \mathcal{T}\left(\mathcal{A}_{\mathcal{M}}\right) \wedge \mathcal{T}(\varphi)\right]
\]

The question here is: What is the level of confidence in this belief? Parameterized, we have:
\[
\mathbf{B}^{k}\left[a, \mathcal{T}\left(\mathcal{A}_{\mathcal{M}}\right) \wedge \mathcal{T}(\varphi)\right]
\]
where \(k\) is the parameter; and of course the parameter is instantiated with some
\[
\mathbf{B}^{3}\left[a, \mathcal{T}\left(\mathcal{A}_{\mathcal{M}}\right) \wedge \mathcal{T}(\varphi)\right]
\]

\footnotetext{
\({ }^{8}\) Terminology used to denote competing interpretations of probability has evolved. In the modern survey (Hájek 2002/2011), 'logical probability' is essentially used instead. Kyburg's (1970) terminology is sustained, and modernized, in the excellent (Galavotti 2011).
\({ }^{9}\) Specifically, for the proof, take \(\phi\) to be a theorem established by some valid proof known to be valid by an arbitrary agent \(a\), and stipulate that the second conjunct of the antecedent in this axiom is cashed out as both that \(\{\psi\} \vdash \perp\), and that \(a\) knows this.
}

\section*{Author's Proof}

\subsection*{8.5 Some Concretization of the Framework}

In order to present the promised concretization, we start by looking at standard239 first-order logic (FOL), which as is well-known is purely extensional. \({ }^{10}\) FOL is 240 in the literature associated with many different proof calculi. Among these, one 21 family is resolution-based, and another is natural-deduction-based; these are the two most commonly used kinds of proofs systems in question. Resolution-based242 proof calculi are made up of a few simple inference schemata, and require formulae to be in a clausal form. Such calculi are primarily used by automated theorem provers (e.g. by SNARK (Stickel et al. 1994), one of our personal favorites), as it is quite easy to optimize, relative to other automated proof systems for FOL. On the247 other hand, natural deduction has more inference schemata/rules than resolution. Natural deduction's schemata are more complex, and they correspond to the kind of supposition-based reasoning that humans use in the formal, deductive sciences.
At any point in a natural-deduction proof in progress, there are a large numberof choices. Natural-deduction systems are primarily used in pedagogy, in proofsthat have to be authored manually, and in proofs that are supposed to be read by252humans. That said, natural-deduction provers, though fewer in number, have beenbuilt (Pelletier 1998). \({ }^{11}\)

Before we go further, we first announce two definitions of what it means in our 255 framework for a human to understand a proof in first-order logic: 257

\section*{\(a\) strongly understands \(\widehat{A}\)}

Understanding a proof, \(\widehat{\mathcal{A}} \equiv \Gamma \vdash \phi\), requires checking it for its accuracy firsthand and verifying that for all models \(m\) and interpretations \(\mathcal{I}\), if \(m \models_{\mathcal{I}} \Gamma\) then \(m \models \mathcal{I} \phi\).

The above definition requires checking through possibly an infinite number of closely what non-logicians (mathematicians, students, etc.) do when they encounter 260 a formal proof or argument.

\footnotetext{
\({ }^{10}\) A readable overview can be found in (Boolos et al. 2003). An overview more suitable for consumption by those with some mathematical maturity, and wonderfully economical, is provided in (Ebbinghaus et al. 1994).
\({ }^{11}\) One still in existence and available is OSCAR, created by John Pollock, and revived after his passing by our laboratory's Kevin O'Neill. Resurrected (and improved) OSCAR can be obtained here: http://rair.cogsci.rpi.edu/projects/automated-reasoners/oscar.
}

\section*{Author's Proof}

\section*{\(a\) weakly understands \(\widehat{A}\)}

Understanding a proof, \(\widehat{\mathcal{A}} \equiv \Gamma \vdash \phi\), requires checking it for its accuracy firsthand, and verifying that in the intended model \(m\) and interpretation \(\mathcal{I}\), if \(m \models_{\mathcal{I}} \Gamma\) then \(m \models_{\mathcal{I}} \phi\).

These definitions are supposed to reflect the fact that humans have a semantic picture of what a proof says before saying that they understand the proof. Now, 263 given a human \(a\) and a proof \(\widehat{\mathcal{A}}\) from a resolution or natural-deduction system \(\mathcal{M},{ }^{264}\) there are a few different possibilities that can ensue; they are shown below. Assume 265 that \(a\) believes with strength \(c_{1} \in \mathcal{E}\) that \(\mathcal{M}\) is implemented correctly as \(\widehat{\mathcal{M}}\).

\section*{Possibilities}
\(P_{1} a\) (strongly/weakly) understands the proof.
\(P_{2} a\) does not (strongly or weakly) understand the proof, but can check the proof first-hand without deploying a proof checker.
\(P_{3} a\) neither understands the proof nor can check it manually, but can deploy a proof-checker or proof-verifier \(v\) that \(a\) knows is built correctly.
\(P_{4} a\) neither understands the proof nor can check it manually, but can deploy a proof-checker or proof-verifier \(v . a\) has belief with some confidence \(c_{2} \in \mathcal{E}\) that \(v\) is built correctly, but does not know that it is built correctly.
\(P_{5} a\) can neither understand nor check the proof.

Given the above five overarching cases, we now walk through what could happen.
In the first case, the proof is fully understood and fully checked by the human, 268 firsthand. In this case, the machine's role could be to "merely" discover an unknown proof or present a proof that the human has not seen before (this would e.g. be 270 natural in a class). One instance of the former case is the theorem in algebra "All271 Robbins algebras are Boolean algebras." This statement was conjectured in the 272 1930s and the proof was finally (and, for theorem-proving aficionado, famously) 273 completed by a machine in 1996 (Wos 2013). The proof in question was simple and 274 understandable. \({ }^{12}\)

\footnotetext{
\({ }^{12}\) The proof can be obtained from http://www.cs.unm.edu/~mccune/papers/robbins/
}

\section*{Author's Proof}


Fig. 8.3 A complex resolution proof. (The resolution proof is obtained by SNARK after a call from higher-level, manually crafted, hypergraphical natural deduction that is unique to Slate)

Case \(P_{1}\)
There are two sub-possibilites:
1. If \(a\) strongly understands the proof \(\widehat{\mathcal{A}}, a\) 's strength of belief in the proof is certain.
2. If \(a\) only weakly understands the proof \(\widehat{\mathcal{A}}, a\) 's strength of belief in the proof is evident.

In the second case, \(a\) does not understand the proof, but can check the proof 276 manually. For example, \(a\) could be a student getting acquainted with the process of formal theorem-proving. For instance, in the Slate (Bringsjord et al. 2008; 278 Bringsjord and Taylor 2017) proof-engineering system used in Bringsjord's formal- 279 logic classes, in one standard setup students are asked to prove a conclusion from a

\section*{Author's Proof}
set of given premises using natural deduction. Before they embark on this process, 281 students can summon a resolution prover as an oracle, and examine the fruit of its 282 effort. The resolution prover's individual steps are usually quite simple, but it can 283 be rather hard to understand the proof generated by the prover. For example, see 284 the proof from Slate shown in Fig. 8.3. The proof simply shows that the relation 285 SameSpecies is symmetric.

\section*{Case \(P_{2}\)}

Agent \(a\) 's belief is at the level of overwhelmingly likely.

In the third case, \(a\) is given a proof \(\widehat{\mathcal{A}}\) that is quite difficult to understand and
\(\widehat{\mathcal{A}}\) is correct or not. Agent \(a\) also fully understands and knows that the proof-verifier 289 is correct. The proof enterprise of the Four-Color Theorem by Appel and Haken falls into this category (for details, see Arkoudas and Bringsjord 2007). To get a sense of the scale of the proof, here are Appel and Haken describing it:
> "This leaves the reader to face 50 pages containing text and diagrams, 85 pages filled with almost 2500 additional diagrams, and 400 microfiche pages that contain further diagrams and thousands of individual verifications of claims made in the 24 lemmas in the main sections of text. In addition, the reader is told that certain facts have been verified with the use of about twelve hundred hours of computer time and would be extremely time-consuming to verify by hand. The papers are somewhat intimidating due to their style and length and few mathematicians have read them in any detail."

It is obviously not possible for a human to fully understand such a proof in any

Case \(P_{3}\)
\(a\) 's belief is at the level of beyond reasonable doubt.

Now onto the fourth case. When might we have a proof in first-order logic that we

\section*{Author's Proof}
a set of oracles \(\left\{o_{R_{1}}, o_{R_{2}}, \ldots, o_{R_{n}}\right\}\) for the set of predicates \(\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}\). For 301 example, if we are seeking a proof about ancestry and lineages, a computer program 302 motherOf could be supplied as an oracle for the motherOf predicate symbol. \({ }^{13}{ }^{303}\) Then any proof will contain, in addition to the standard set of proof steps, calls to 304 \(\mathrm{an} /\) the oracle/s. In such situations, the strength \(c_{2}\) of our belief in the correctness of 305 the proof checker is limited to how effective the proof checker is in validating the 306 oracles' behavior. Even if we have full confidence in the verifier, we should not be 307 more confident of the overall proof than we are in the third case above. Hence the 308 assignment below:

Case \(P_{4}\)
\(a\) 's belief is at the level of the lower of beyond reasonable doubt and \(c_{2}\).

In the final case, we are looking at proofs that are neither fully understandable nor fully verifiable. What could give rise to such a situation? While this situation may at first thought seem exotic, ordinary mathematics in fact frequently gives rise312 to such states-of-affairs. For example, when faced with a challenging conjecture, mathematicians commonly use analogies with other simpler situations and mathematical domains to construct a hope-filled proof-sketch rather than a full, conclusive 315 proof. A well-known example of this is Gödel's first incompleteness theorem (GI), \({ }^{14}{ }_{316}\) the proof of which is usually presented in analogy with the much simpler liar paradox (= The Liar). \({ }^{15}\) In a formalized version of this approach in which analogical \({ }_{31}\) inference is itself allowed, the machine would present, rather than a full proof, an 319 analogy and a corresponding partial proof-sketch. For instance, see Licato et al. (2013), in which an intelligent machine generates just such a formal argument for 32 GI. In this case, we have the following:

\footnotetext{
\({ }^{13}\) Many theorem provers also support what are called rewrite codes. These are computer functions that rewrite complex function expressions to simpler forms. Since function expressions can be written using just relation symbols, our discussion covers this too. See SNARK's documentation for examples of procedural attachments and rewrite codes in action: http://www.ai.sri.com/~stickel/ snark.html.
\({ }^{14}\) Wiles' proof of Fermat's Last Theorem is a more-recent case in point; see (Wiles 1995) and (Wiles and Taylor 1995).
\({ }^{15}\) A fully technical, elegant version of GI based explicitly on The Liar can be found in (Ebbinghaus et al. 1994).
}

\section*{Author's Proof}

\section*{Case \(P_{5}\)}
\(a\) 's belief is at the likely level.

Given our coverage of the above possibilities, we have provided at least preliminary answers to a number of questions that are instances of \(\left(\mathrm{QB}_{k}\right)\).

\subsection*{8.6 Next Steps}

All serious readers will have realized early in their study of the present essay that we have contributed but a prolegomenon for sustained investigation of the epistemology of computer-mediated proofs. We do maintain, however, that the framework we have erected will serve as a firm foundation on which to build future analyses of scenarios beyond those we entertained above. Even so, there is much work to be done; here, in particular, are the next two steps we will be taking.

\subsection*{8.6.1 Infinitary Proof Systems}

First, given some of our earlier work devoted to systematic consideration of
infinitary formal reasoning and infinitary computation (e.g. Govindarajulu et al.

One particularly interesting non-finitary inference schema is the \(\omega\)-rule. This rule
\(\omega\)-rule
\[
\frac{\phi(\overline{0}), \phi(\overline{1}), \phi(\overline{2}), \ldots, \phi(\bar{n}), \ldots}{\forall x: \phi(x)} \omega \text {-rule }
\]

Readers familiar with Gödel's first incompleteness theorem will know that any

\footnotetext{
\({ }^{16}\) See Footnote 7 if you haven't done so already.
}

\section*{Author's Proof}
troublesome \(\phi\) such that \(\Gamma \nvdash \phi\) and \(\Gamma \nvdash \neg \phi .{ }^{17}\) These \(\phi\) can be tamed one way or 344 another if we add the \(\omega\)-rule to the proof calculus in question (that is \(\Gamma \vdash_{\omega} \phi\); or \({ }_{345}\) \(\left.\Gamma \vdash_{\omega} \neg \phi\right) .{ }^{18}\) Unfortunately, and this can be obviously seen, the \(\omega\)-rule is not that \({ }_{346}\) useful in standard practice as it has an infinite number of premises. This is where the 347 restricted \(\omega\)-rule steps in. In this rule, instead of an infinite number of formulae, 348 we provide a computer program \(m_{\phi}\) which takes in as input \(n \in \mathbb{N}\) and provides a proof of \(\phi(\bar{n})\) from \(\Gamma\). We use this finite computer program as a premise.

\section*{Restricted \(\omega\)-rule}
\[
\frac{m_{\phi}}{\forall x: \phi(x)} \text { restricted } \omega \text {-rule }
\]

Obviously, checking a proof that has the restricted \(\omega\)-rule can be a quite difficult task. Such checking involves verifying whether a computer program always behaves according to a certain set of requirements. This is not always possible, but can be possible in some set of cases. It should be noted that in such a case, we could have a finite proof that is correct but still uncheckable, not due to any practical circumstances, but rather due to strong fundamental limits. The resultant strength of the belief in the proof would be then strongly tied to the strength of the belief in the computer program \(m_{\phi}\). (For a rigorous proof that any system that uses the restricted \(\omega\)-rule is not even semi-decidable, see our Govindarajulu and Bringsjord 2014.)

\subsection*{8.6.2 Intensional Systems}

Plain first-order logic (and indeed, for that matter, \(n\)-order logic) is not capable of correctly modeling knowledge, beliefs, and other internal states of informationprocessing agents. This can be most easily demonstrated by simply trying one's level best to model knowledge. For example, consider an agent \(a\) investigating a murder. The agent does not know that jack is the murderer, when in fact jack is the murderer. The agent does trivially know that ( \(j a c k=j a c k\) ). The agent's knowledge could be derived from the agent knowing a stronger statement such \(\forall x .(x=x)\), which is a simple theorem in first-order logic. Straightforward modeling in first-order logic quickly leads to a contradiction, as can be seen below. In fact, other sophisticated

\footnotetext{
\({ }^{17} \mathrm{~A}\) nice theory \(\Gamma\) is one that allows representations (it can prove facts about the primitive-recursive relations and functions), is decidable (for any \(\phi\), it is decidable whether \(\Gamma \vdash \phi\) ) and is consistent. See Smith (2013) for a good introduction to the two Gödelian incompleteness theorems.
\({ }^{18}\) For a more in-depth discussion of the \(\omega\)-rule and its uses, see Baker et al. (1992) and Franzén (2004). For a proof that deploys it "brazenly" (i.e., in a manner that simply takes it to be wholly legitimate) see Bringsjord and van Heuveln (2003).
}

\section*{Author's Proof}
schemes also quickly disintegrate, as we show in (Bringsjord and Govindarajulu 370 2012).

\section*{Modeling Knowlege in First-order Logic}

Knows \((a\), jack \(=\) jack \() \quad\) jack \(=\) murderer
Knows \((a\), jack \(=\) murderer \() \quad \neg\) Knows \((a\), jack \(=\) murderer \()\)
\(\phi \wedge \neg \phi\)

It is well-known that any sophisticated cognitive modeling requires at the least a quantified modal logic. For example, see our modeling of the false-belief task in 373 (Arkoudas and Bringsjord 2008), modeling of akrasia in Bringsjord et al. (2014), 374 and self-consciousness in Bringsjord et al. (2015). In addition, rigorous semantics 375 of natural language calls for modal logic (Govindarajulu et al. 2013b). Common 376 to all these investigations is a family of systems that we have termed cognitive 377 calculi. \({ }^{19}\) Unlike traditional logics that deal with intensional operators, cognitive 378 calculi eschew the use of possible-worlds semantics and instead opt for proof379 theoretic semantics. That is, \(\Gamma \models \phi\) is defined via a function \(\mu\left(\Gamma, \phi, \rho_{1}, \ldots, \rho_{n}\right)\), 380 where \(\rho_{i}\) are proofs in the system. We feel that proof-theoretic semantics is not only more cognitively plausible but also more feasible computationally, if we have 382 to build agents that understand proofs and arguments. For example, see (Francez and Dyckhoff 2010) for a proof-theoretic semantics of natural language that is also trivially mechanizable. There are two major questions in this domain. The first 385 question, of the same structure as the questions isolated and presented above, is: 386 Given a computer-mediated proof \(\rho\), what ought to be the strength of our belief in the proof? The second question is this: What ought to be the strength of belief in a 388 computer-mediated proof \(\rho\) for an agent \(a\), given we have at hand what the agent 389 knows, believes, etc.?

Wrapping up with a concession, we do admit that our framework is currently 391 somewhat limited by the system of "graded belief" we have employed, even though 392 that system is substantially more nuanced than Chisholm's (1966). \({ }^{20}\) We are in the \({ }^{393}\) process of generalizing our multi-valued epistemic logic so that it incorporates the 394 epistemological interpretation of probability (recall our remarks above regarding 395 probability and inductive logic).

\footnotetext{
\({ }^{19}\) One specimen in the family is the Deontic Cognitive Event Calculus. See http://www.cs.rpi.edu/~ govinn/dcec.pdf for an overview.
\({ }^{20}\) Including frameworks presented in subsequent, revamped-and-expanded editions of his epistemological theory, given in (Chisholm 1977, 1987).
}

\section*{Author's Proof}

\section*{References}
Arkoudas, K., \& Bringsjord, S. (2007). Computers, justification, and mathematical knowledge. ..... 398
Minds and Machines, 17(2), 185-202. http://kryten.mm.rpi.edu/ka_sb_proofs_offprint.pdf ..... 399
Arkoudas, K., \& Bringsjord, S. (2008). Toward formalizing common-sense psychology: An ..... 400analysis of the false-belief task. In T.-B. Ho \& Z.-H. Zhou (Eds.), Proceedings of the Tenth 401Pacific Rim International Conference on Artificial Intelligence (PRICAI 2008) (Lecture notes 402in artificial intelligence (LNAI), Vol. 5351, pp. 17-29). Springer. http://kryten.mm.rpi.edu/KA_ 403SB_PRICAI08_AI_off.pdf404
Baker, S., Ireland, A., \& Smaill, A. (1992). On the use of the constructive omega-rule within ..... 405
automated deduction. In A. Voronkov (Ed.), Logic programming and automated reasoning ..... 406
(Lecture notes in computer science (LNCS), Vol. 624, pp. 214-225). Berlin: Springer. ..... 407
Boolos, G. S., Burgess, J. P., \& Jeffrey, R. C. (2003). Computability and logic (5th ed.). Cambridge: ..... 408
Cambridge University Press. ..... 409
Bringsjord, S. (2015). A vindication of program verification. History and Philosophy of Logic, ..... 410
36(3), 262-277. This URL goes to a preprint. http://kryten.mm.rpi.edu/SB_progver_selfref_ ..... 411
driver_final2_060215.pdf ..... 412
Bringsjord, S., \& Arkoudas, K. (2004). The modal argument for hypercomputing minds. Theoreti- ..... 413
cal Computer Science, 317, 167-190. ..... 414
Bringsjord, S., \& Govindarajulu, N. S. (2011). In defense of the unprovability of the church-turing ..... 415
thesis. Journal of Unconventional Computing, 6, 353-373. Preprint available at the URL given ..... 416
here. http://kryten.mm.rpi.edu/SB_NSG_CTTnotprovable_091510.pdf ..... 417
Bringsjord, S., \& Govindarajulu, N. S. (2012). Given the web, what is intelligence, really? ..... 418
Metaphilosophy, 43(4), 361-532. This URL is to a preprint of the paper. http://kryten.mm. ..... 419
rpi.edu/SB~NSG~Real~Intelligence~040912.pdf ..... 420
Bringsjord, S., \& Taylor, J. (2017). Logic: A modern approach: Beginning deductive logic, ..... 421
advanced. Troy, Motalen. This is an e-book edition of 23 Jan 2017. The book is accompanied ..... 422
by the Slate software system, ISBN of 978-0-692-60734-3, and version of 25 Jan 2016. ..... 423
Bringsjord, S., \& van Heuveln, B. (2003). The mental eye defense of an infinitized version of ..... 424
Yablo's paradox. Analysis, 63(1), 61-70. ..... 425
Bringsjord, S., Taylor, J., Shilliday, A., Clark, M., \& Arkoudas, K. (2008). Slate: An argument- ..... 426
centered intelligent assistant to human reasoners. In F. Grasso, N. Green, R. Kibble, \& ..... 427
C. Reed (Eds.), Proceedings of the 8th International Workshop on Computational Models of ..... 428
Natural Argument (CMNA 8) (pp. 1-10). Patras, University of Patras. http://kryten.mm.rpi.edu/ ..... 429
Bringsjord_etal_Slate_cmna_crc_061708.pdf ..... 430
Bringsjord, S., Govindarajulu, N., Thero, D., \& Si, M. (2014). Akratic Robots and the compu- ..... 431
tational logic thereof. In Proceedings of ETHICS 2014 (2014 IEEE Symposium on Ethics ..... 432
in Engineering, Science, and Technology), Chicago (pp. 22-29). IEEE Catalog Number: ..... 433
CFP14ETI-POD. Papers from the Proceedings can be downloaded from IEEE at URL provided ..... 434
here. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6883275 ..... 435
Bringsjord, S., Licato, J., Govindarajulu, N., Ghosh, R., \& Sen, A. (2015). Real robots that pass ..... 436
tests of self-consciousness. In Proceedings of the 24th IEEE International Symposium on Robot ..... 437
and Human Interactive Communication (RO-MAN 2015) (pp. 498-504). New York: IEEE. ..... 438
This URL goes to a preprint of the paper. http://kryten.mm.rpi.edu/SBringsjord_etal_self-con_ ..... 439
robots_kg4_0601151615NY.pdf ..... 440
Chisholm, R. (1966). Theory of knowledge. Englewood Cliffs: Prentice-Hall. ..... 441
Chisholm, R. (1977). Theory of knowledge (2nd ed.). Englewood Cliffs: Prentice-Hall. ..... 442
Chisholm, R. (1987). Theory of knowledge (3rd ed.). Englewood Cliffs: Prentice-Hall. ..... 443
Ebbinghaus, H. D., Flum, J., \& Thomas, W. (1994). Mathematical logic (2nd ed.). New York: ..... 444
Springer. ..... 445
Francez, N., \& Dyckhoff, R. (2010). Proof-theoretic semantics for a natural language fragment. ..... 446Linguistics and Philosophy, 33, 447-477.447

\section*{Author's Proof}

Franzén, T. (2004). Transfinite progressions: A second look at completeness. Bulletin of Symbolic 448 Logic, 10, 367-389.
Friedman, N., \& Halpern, J. (1995). Plausibility relations: A user's guide. In Proceedings of the 450 Eleventh Conference on Uncertainty in AI (pp. 175-184). https://www.cs.cornell.edu/home/ 451 halpern/papers/plausibility_manual.pdf
Galavotti, M. C. (2011). The modern epistemic interpretations of probability: Logicism and 453 subjectivism. In D. Gabbay, S. Hartmann, \& J. Woods (Eds.), Handbook of the history of logic 454 (Inductive logic, Vol. 10, pp. 153-203). Amsterdam: Elsevier. 455
Gettier, E. (1963). Is justified true belief knowledge? Analysis, 23, 121-123. http://www.ditext. 456 com/gettier/gettier.html
Govindarajulu, N. S., \& Bringsjord, S. (2014). Proof verification can be hard! In Presented at 458 the 10th Conference of Computability in Europe ( CiE ). http://www.naveensundarg.com/papers/ 459 ProofVerificationCanBeHard.pdf
Govindarajulu, N., Licato, J., \& Bringsjord, S. (2013a). Small steps toward hypercomputation via 461 infinitary machine proof verification and proof generation. In M. Giancarlo, A. Dennuzio, 462 L. Manzoni, \& A. Porreca (Eds.), Unconventional computation and natural computation 463 (Lecture notes in computer science, Vol. 7956, pp. 102-112). Berlin: Springer. 464
Govindarajulu, N. S., Bringsjord, S., \& Licato, J. (2013b). On deep computational formalization 465 of natural language. In A. M. H. Abdel-Fattah \& K.-U. Kühnberger (Eds.), Proceedings of 466 the Workshop: "Formalizing Mechanisms for Artificial General Intelligence and Cognition" 467 (Formal MAGiC) at Artificial General Intelligence 2013. http://cogsci.uni-osnabrueck.de/~ 468 formalmagic/FormalMAGiC-Proceedings.pdf
Hájek, A. (2002/2011). Interpretations of probability. In E. Zalta (Ed.), The stanford encyclopedia 470 of philosophy. https://plato.stanford.edu/entries/probability-interpret
Hamilton, E., \& Cairns, H. (Eds.). (1961). The collected dialogues of plato (including the letters). 472 Princeton: Princeton University Press. 473
Hamkins, J. D., \& Lewis, A. (2000). Infinite time turing machines. Journal of Symbolic Logic, 474 65(2), 567-604. 475
Hawthorne, J. (2004/2012). Inductive logic. In E. Zalta (Ed.), The stanford encyclopedia of 476 philosophy. https://plato.stanford.edu/entries/logic-inductive 477
Hintikka, J., \& Hilpinen, R. (1966). Knowledge, acceptance, and inductive logic. In P. Suppes \& 478 J. Hintikka (Eds.), Aspects of inductive logic (pp. 1-20). Amsterdam: North-Holland. 479

Ichikawa, J., \& Steup, M. (2012). The analysis of knowledge. In E. Zalta (Ed.), The Stanford 480 encyclopedia of philosophy. http://plato.stanford.edu/entries/knowledge-analysis 481
Johnson, G. (2016). Argument \& inference: An introduction to inductive logic. Cambridge: MIT 482 Press.
Kyburg, H. (1970). Probability and inductive logic. London: Macmillan. 484
Licato, J., Govindarajulu, N. S., Bringsjord, S., Pomeranz, M., \& Gittelson, L. (2013). Analogico- 485 deductive generation of Gödel's first incompleteness theorem from the liar paradox. In F. Rossi 486 (Ed.), Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI- 487 13) (pp. 1004-1009). Beijing: Morgan Kaufmann. Proceedings are available online at http:// 488 ijcai.org/papers13/contents.php. The direct URL provided below is to a preprint. The published 489 version is available at http://ijcai.org/papers13/Papers/IJCAI13-153.pdf, http://kryten.mm.rpi. 490 edu/ADR_2_GI_from_LP.pdf 491
Pelletier, J. (1998). Automated natural deduction in thinker. Studia Logica, 60(1), 3-43. 492
Russell, S., \& Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle 493 River: Prentice Hall.
Scott, D., \& Krauss, P. (1966). Assigning probabilities to logical formulas. In P. Suppes \& 495 J. Hintikka (Eds.), Aspects of inductive logic (pp. 219-264). Amsterdam: North-Holland. 496

Smith, P. (2013). An introduction to Gödel's theorems. Cambridge: Cambridge University Press. 497 This is the second edition of the book. 498

\section*{Author's Proof}

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., \& Underwood, I. (1994). Deductive 499 composition of astronomical software from subroutine libraries. In Proceedings of the Twelfth 500 International Conference on Automated Deduction (CADE-12), Nancy (pp. 341-355). SNARK 501 can be obtained at the url provided here. http://www.ai.sri.com/~stickel/snark.html 502
Wiles, A. (1995). Modular elliptic curves and Fermat's last theorem. Annals of Mathematics, 503 141(3), 443-551. 504
Wiles, A., \& Taylor, R. (1995). Ring-theoretic properties of certain Hecke algebras. Annals of 505 Mathematics, 141(3), 553-572. 506
Wos, L. (2013). The legacy of a great researcher. In M. P. Bonacina \& M. E. Stickel (Eds.), 507 Automated reasoning and mathematics: Essays in memory of William McCune (pp. 1-14). 508 Berlin: Springer.

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{lll}
\hline Chapter Title & Mathematical and Technological Computability \\
\hline Copyright Year & 2018 & \\
\hline Copyright Holder & Springer International Publishing AG, part of Springer Nature \\
\hline Corresponding Author & Family Name & Hansson \\
& Particle & \\
& Given Name & Sven Ove \\
& Suffix & \\
& Division & Department of Philosophy and History \\
& Organization & Royal Institute of Technology (KTH) \\
& Address & Stockholm, Sweden \\
& Email & soh@kth.se \\
\hline
\end{tabular}
Abstract \begin{tabular}{l} 
The study of algorithms, computations, and computability offers a \\
major contact point between mathematics, technology, and philosophy. \\
This chapter begins with a brief history of computations and the \\
technical means used to support them. Summary accounts are given \\
of two scholarly developments that provided much of the intellectual \\
background for modern computation: attempts to express all reasoning \\
as mathematics and attempts to reduce all of mathematics to simple, \\
rule-bound symbol manipulation. This is followed by a discussion \\
of the Turing machine, including a detailed explanation of why it \\
can be said to cover all systems of rule-bound symbol manipulation. \\
The universal Turing machine and its philosophical implications are \\
also discussed. A two-dimensional classificatory scheme is offered for \\
proposed constructions of computing devices with stronger computing \\
powers than a Turing machine. This categorization serves to highlight \\
the weaknesses of current proposals for such devices. In conclusion, it \\
is emphasized that computation has to be understood as an intentional \\
input-output process with high demands on reliability and lucidity. The
\end{tabular}

\section*{Author's Proof}

\title{
Chapter 9 \\ Mathematical and Technological \\ Computability
}

\author{
Sven Ove Hansson
}

\begin{abstract}
The study of algorithms, computations, and computability offers a major 5 contact point between mathematics, technology, and philosophy. This chapter 6 begins with a brief history of computations and the technical means used to support 7 them. Summary accounts are given of two scholarly developments that provided 8 much of the intellectual background for modern computation: attempts to express all 9 reasoning as mathematics and attempts to reduce all of mathematics to simple, rule- 10 bound symbol manipulation. This is followed by a discussion of the Turing machine, 11 including a detailed explanation of why it can be said to cover all systems of rule- 12 bound symbol manipulation. The universal Turing machine and its philosophical 13 implications are also discussed. A two-dimensional classificatory scheme is offered 14 for proposed constructions of computing devices with stronger computing powers 15 than a Turing machine. This categorization serves to highlight the weaknesses of 16 current proposals for such devices. In conclusion, it is emphasized that computation 17 has to be understood as an intentional input-output process with high demands on 18 reliability and lucidity. The study of computations and algorithms has much to 19 learn from other studies of intentional human action, not least in the philosophy 20 of technology.
\end{abstract}

\subsection*{9.1 Introduction}

Computations, as we perform them today, provide an obvious connection between 23 mathematics and technology. We all use technology - if nothing else an app in the 24 phone - for our everyday calculations. Large computations, such as those underlying 25 weather forecasts and complex scientific models, are performed on computers that 26 do routinely what was practically impossible a generation or two ago. But is not 27 all this rather trivial from a mathematical point of view? One might believe so, but

\footnotetext{
S. O. Hansson (凶)

Department of Philosophy and History, Royal Institute of Technology (KTH), Stockholm, Sweden
e-mail: soh@kth.se
}

\section*{Author's Proof}
in fact some of the deepest problems at the very foundations of the mathematical 29 enterprise emanated from careful investigations of seemingly trivial routines that 30 can be executed by a machine.

In Book XI of his Metamorphoses, Ovid tells us of king Midas who gained the 32 golden touch, so that everything he put his hand on turned into gold. Mathematicians 33 do not have that ability, but they possess another, almost equally stupendous faculty: 34 every object they touch is transformed into an abstract, purely conceptual entity. 35 When the ancient geometers studied straight lines, the lines lost all their width 36 but became infinitely long. When studying numbers, mathematicians constructed 37 abstract numbers such as \(\sqrt{-1}\), a figment of mathematical imagination that has the 38 convenient property of yielding -1 when squared, but lacks the obvious connection 39 to the real world that ordinary numbers such as 7 and \(\frac{22}{7}\) have. Unsurprisingly, when 40 mathematicians turned to machines, they transformed them as well into abstract 41 contrivances. Mathematicians cannot put up with arbitrary limits, so just as the lines 42 of geometry are infinitely long, the machines of mathematics have infinite capacity. \({ }^{43}\) On the other hand, mathematicians cannot resist an opportunity to simplify, so their 44 machines are extremely simple as compared to the complex machines constructed 45 by engineers.

We are going to have a close look at the Turing machine, foremost among math- 47 ematical machines, which was proposed by Alan Turing in 1937. It is astonishingly 48 simple, but nevertheless reputed to be able to compute everything that can at all 49 be computed. Some say that its powers are even greater than that; allegedly, it can 50 prove every mathematical statement that it is at all possible to prove. Some have even 51 claimed that a Turing machine can think, just like one of us. These are controversial 52 claims, but one thing is sure: Studies of fundamental issues in both mathematics 53 and philosophy have taken new directions through the discussions that this highly 54 abstract machine has given rise to.

To introduce the subject we are first going to explore the nature of computation 56 (Sect. 9.2). After that we turn to two scholarly developments that provided much 57 of the intellectual background for Alan Turing's construction: attempts to express 58 all reasoning as mathematical (Sect. 9.3) and to express all mathematical reasoning 59 as computations (Sect. 9.4). We will then have a close look at the Turing machine 60 (Sect. 9.5). We will attend to the common claim that it can compute and prove 61 everything that can at all be computed or proved, and then consider the contrary 62 assertion that machines can be constructed that are capable of computing what the 63 Turing machine cannot (Sect. 9.6). Some final remarks are presented in Sect. 9.7.

\subsection*{9.2 The Art of Calculation}

We usually see mathematics as concerned with concepts and arguments that are 66 totally independent of material reality. Mathematics should be equally accessible 67 to a "brain in a vat" as it is to our own embodied brains. But in practice, we rely 68 heavily on aide-mémoires in the form of papers, blackboards, and computer screens 69 that we fill with mathematical symbols, equations, and diagrams. This applies to 70 all forms of mathematical activities, including elementary arithmetic. Most of us 71

\section*{Author's Proof}
are able to make a calculation such as \(35 \times 75\) reliably with paper and pencil, but 72 performing it mentally is more difficult. This seems always to have been so. In \({ }_{73}\) ancient civilizations, calculations were performed with the help of physical objects 74 such as pebbles, marks in sand or dust, or beads on counting boards and abacus 75 frames (Chabert 1999). At least in some cultures, the use of marks or movable 76 objects as aide-mémoires for numbers seems to have preceded written language. 77

Obviously, the reliability of calculations depends crucially on the stability and 78 durability of the devices used to support them. Outdoors on a windy day you are 79 well advised to use stones rather than leaves to perform your calculations. In this 80 very elementary sense, all non-trivial calculations depend - along with the vast 81 majority of mathematics - on our access to technology for storing information. 82 This is a feature that mathematics shares with other expressions of human culture. 83 For instance, literature unsuitable for learning by heart, such as novels, is equally 84 dependent on the devices we have constructed for storing information.

85
Until fairly recently, the role of technology in calculations was restricted to 86 that of recording the intermediate and final outcomes of the process. The actual 87 operations were performed by human minds. From the eighteenth century until 88 well into the second half of the twentieth century, large calculations were entrusted 89 to what were then called "computers", namely people hired to perform large 90 numbers of arithmetic operations. Logarithmic and other mathematical tables as 91 well as astronomical tables for nautical use were obtained in this way, and so 92 were calculations for business, administrative, and engineering purposes. A large 93 French project in the 1790 s employed three sections of workers in the calculation 94 of mathematical tables. The first section was a small group of mathematicians who 95 decided the exact contents of the tables and chose the mathematical formulas to 96 be used in calculating and checking them. The second section was a handful of 97 experts who converted these instructions into exact numerical tasks, usually series 98 of additions and subtractions. The third section consisted of between 60 and 80 99 "computers" who, following these instructions, performed the large number of 100 elementary numerical operations that were required. Many of them were unem- 10 ployed female hairdressers who had left their former trade when the grandiose and 102 ostentatious hairstyles of the Ancien Régime nobility were not longer in demand 103 (Grattan-Guinness 1990; Grier 2005).

\subsection*{9.2.1 Instructions and Algorithms}

A computation (or calculation \({ }^{1}\) ) performed by a human being is an activity 106 following some procedure. If you guess what \(35 \times 75\) is, and happen to give the 107 right answer, then you did not perform a computation. Similarly, if you knew the 108 answer because you have learned it by heart, you did not compute it. In neither case 109

\footnotetext{
\({ }^{1}\) The word "calculation" is commonly used for elementary operations, and "computation" for more advanced and complex ones. There is no sharp delimitation in usage between the two terms.
}

\section*{Author's Proof}
was the answer obtained by means that can also be used to solve, independently, 110 other, similar problems. The standard way to perform this calculation is to use one 111 of the methods taught in primary school (such as long multiplication) that can be 112 used to multiply any two numbers. (Alternatively, some method can be used that is 113 only applicable to a smaller class of pairs of numbers. \({ }^{2}\) ) 114
To see how essential it is that a calculation covers more than one case, consider 115 the following instruction to "calculate" \(333 \times 999\) : 116
Write: 332667.1117
Although this instruction yields the right answer, it cannot be used to multiply any 118 other numbers. Therefore, this is not a calculation. \({ }^{3} 119\)
Furthermore, for a procedure to count as a calculation, it must be expressible with 120 an instruction that specifies exactly what to do at each stage of the operation. For \({ }_{121}\) instance, the following instruction for finding the square root of a positive number \({ }_{122}\) \(x\) does not count as a calculation since it does not tell us exactly what to do: \({ }_{123}\)
Guess a number. Determine its square. If the square is larger than \(x\), then \({ }_{124}\) replace your guess by a smaller number, and if is smaller than \(x\) then replace \({ }_{125}\) it by a larger number. Determine the square of the new guess. Continue in 126 this way, guessing and squaring, until you find a number whose square is very \({ }_{127}\) close to \(x\). This is your approximation of \(\sqrt{x}\). 128
Surely, you can find the square root of a number by applying this rule in combination with some good, improvised mathematical thinking. However, we would not call this a computation due the element of intelligent improvisation that is required. A computation should be based on an instruction that prescribes exactly and unambiguously what to do at each stage of the process (Cleland 2002, pp. 160161). There is an interesting parallel with the standard requirement on scientific experiments that they should be repeatable. If you have performed a well-conceived scientific experiment, and others repeat it, then they should obtain the same result. Similarly, if you have performed a calculation and someone else repeats it, then the result should be the same (and so should the whole series of operations, step by step). In both cases, repeatability ensures intersubjectivity (Hansson 1985, p. 96).
There is one more requirement on computations that needs to be mentioned: We expect a computational procedure to be sure to yield a result. An operation that can go on for ever without providing us with the answer we want would not qualify as a method for calculation.

\footnotetext{
\({ }^{2}\) For instance, the following rule can be used to multiply two two-digit numbers that both end in 5 and whose first digits are either both odd or both even: Add the first digits. Divide by 2. Add their product. Write 25 afterwards. In this case, \((3+7) / 2+(3 \times 7)=26\), so \(35 \times 75=2625\). (I.e., \((10 a+5)(10 b+5)=((a+b) / 2+a b) \times 100+25\).
\({ }^{3}\) The set of problems that can be solved with a method of calculation will have to be mathematically "natural". For instance, the above instruction can also be used to make each of the additions \(332666+1,332665+2,332664+3\), etc., but such an ad hoc collection of problems does not make it a calculation.
}

\section*{Author's Proof}

For example, a "perfect number" is a number that is equal to the sum of its proper 144 divisors. The first perfect number is 6 (equal to \(1+2+3\) ), and the second is 28 (equal 145 to \(1+2+4+7+14\) ). It is not difficult to construct a procedure for finding the \(n\)th 146 perfect number: just go through the whole series of positive integers, testing each of 147 them. However, it is currently not known whether the number of perfect numbers is 148 finite or infinite. If it is finite, then we will reach a point when our procedure will 149 go on for ever, without yielding an outcome and without signalling that it is useless 150 to continue. Such a procedure would lack the property of effectiveness, by which 151 is meant the ability to yield (within a finite number of steps) an output for every 152 input. \({ }^{4}\)

Effective procedures are also called algorithms. This word derives from the 154 name of the prominent Persian mathematician Muhammad ibn Musa al-Khwarizmi 155 (c.780-c.850), who wrote an influential treatise on calculations. His last name was 156 latinized "Algoritmi". According to modern usage of the term, an algorithm does 157 not have to operate on numerical expressions. It can operate on other mathematical 158 symbols as well, and the output can also be a symbolic expression other than a 159 number. Generally speaking, an algorithm is an effective procedure on symbols, 160 expressed in an instruction that describes each step in precise terms that do not 161 leave any scope for doing in more than one way. 162

Textbox 9.1 shows one of the most famous algorithms in the history of mathemat- 163 ics, namely Euclid's (fl. 300 BCE) algorithm for finding the greatest common divisor 164 of two integers (i.e. the largest number that is a divisor of them both). This algorithm 165 has two features that are prominent in most algorithms of later date as well. First, 166 one of its steps comprises a conditional rule, i.e. an instruction that depends on 167 the outcome of the previous step, in this case whether or not the two numbers are 168 equal. Secondly, it contains a cyclic iteration, i.e. a part of the procedure (in this 169 case the single step of subtraction) that has to be performed again and again until a 170 conditional rule requires the cycle to be broken.

These two components can also be found in the algorithms described in ancient Chinese and Indian mathematical texts (Li 2015, p. 324). The presentation of a 173 "shu" for a problem has a central role in ancient Chinese mathematics. A shu is a 174 method for solution, usually close to what we today call an algorithm. Similarly, 175 many Indian mathematical works focus on presenting a "pericarma", a rule that can 176 be used to solve a problem (Li 2015, pp. 321-322 and 327). In the ancient Orient, 177 including Babylonian, Egyptian, Indian, and Chinese mathematical traditions, the 178 construction of algorithms was a more prominent mathematical activity than the 179 proving of theorems (Li 2015; Ritter 2000). In contrast, mathematicians in ancient 180 Greece focused on proving theorems, which they regarded as the most prestigious

\footnotetext{
\({ }^{4}\) At the time of writing, it is not known if the procedure for finding perfect numbers sketched out here is effective or not. If there are infinitely many perfect numbers, then the procedure is effective, otherwise not.
}

\section*{Author's Proof}


Textbox 9.1 Euclid's algorithm for finding the greatest common divisor of two integers
activity (but excellent algorithms were also produced, as exemplified by Euclid's 181 algorithm and several algorithms by Archimedes, (c.287-c. 212 BCE)). As we will 182 see in Sect. 9.4.3, in the 1930s the two activities of algorithm construction and 183 theorem proving were united in new and surprising ways.

\section*{Author's Proof}

\subsection*{9.2.2 The First Computing Machines}

As mentioned above, the use of aide-mémoires for calculations has a long history. The use of technological means for other parts of calculatory procedures is of much later origin (depending on how we view the abacus). The Scottish mathematician John Napier (1550-1617) invented so-called calculating bones, staves based on tables for multiplication and other operations that simplified many types of calcu189 lations. He also discovered logarithms, which were implemented on slide-rules to simplify multiplication and division. In the seventeenth century, several calculating machines using rotating wheels to register numbers were introduced. Wilhelm Schickard (1592-1635) was probably the first inventor to propose such a machine and Blaise Pascal (1623-1662) and Gottfried Wilhelm Leibniz (1646-1716) the most famous ones. However, due to technical problems these machines remained 195 rarities without much practical usage. Commercial production and widespread use of mechanical calculators only began in the second half of the nineteenth century (Swade 2011b, 2018; Lenzen 2018).

By far the most advanced computing machines to be conceived in the pre- 200 electronic era were two constructions invented by Charles Babbage (1791-1871), 201 the difference engine which he invented in the early 1820s and the analytical engine 202 which he conceived in 1834. Both would have been huge mechanical constructions, 203 and neither was completed in his life-time. The difference engine was constructed 204 to calculate series of values for instance for logarithmic tables. The analytical machine was a general-purpose computational machine. It would be controlled with punched cards, a technology already in use for the control of automatic looms. The 207 instructions on the punched cards - what we would now call the program - were 208 to be based on the subdivision of complex mathematical tasks into a large number 209 of small, simple tasks that had been developed for the organization of large-scale 210 calculations by human computists mentioned in Sect. 9.2. (See Swade 2018 for 211 details on Babbage's two machines.) 212

In the public discourse, and when applying for funding, Babbage strongly empha- 213 sized that his machines would eliminate error in the production of mathematical and 214 astronomical tables. Error-prone humans would be replaced by what the influential 215 science popularizer Dionysius Lardner (1793-1859) called "the untiring action and 216 unerring certainty of mechanical agency" (Lardner [1834] 1989, p. 169). But the 217 analytical machine had capacity for much more. The person who expressed this 218 best was probably the mathematician and computer visionary Ada Lovelace (1815- 219 1852) (Swade 2010). 220

\section*{Author's Proof}

\subsection*{9.2.3 Ada Lovelace's Vision}

Being a woman in an environment hostile to female scholarship, Lovelace only222 published her thoughts as notes to a translation that she made of a text by the 223 Italian engineer Luigi Menabrea (1809-1896). His text described the principles and operations of Babbage's analytical engine. Lovelace's notes are three times longer than the original article, but published under her initials rather than her full name225 in order not to draw attention to the fact that they were written by a woman. These \({ }^{22}\) notes are remarkable in many ways, for instance they contain the first published computer programs, written by herself (Lovelace [1834] 1989, pp. 158-170). But228 what is most interesting for our present purposes are her reflections on the machine \({ }_{230}\) and its powers.

She emphasized that although the analytical machine's operations were based on the four basic arithmetic operations, its powers were immensely extended233 by "the subsequent combination of these in every possible variety" (Lovelace 234 [1834] 1989, p. 93n). She referred explicitly to the two mechanisms mentioned in Sect.9.2.1, iterations and conditional instructions. She described iterations as "cycles of operations" (p. 150), and defined what we would today call nested cycles: "A cycle that includes \(n\) other cycles, successively contained one within another, is called a cycle of the \(n+1\) th order." (p. 151n). In addition, the machine was capable of following conditional instructions or, in her own words, it was able to "discover which of two or more possible contingencies has occurred, and of then shaping its future course accordingly" (p. 98n). She realized the powerfulness of 242 such computational structures, and made the following remarkable statements:

The Analytical Engine. . . is not merely adapted for tabulating the results of one particular 244 function and of no other, but for developing and tabulating any function whatever. In fact the engine may be described as being the material expression of any indefinite function of any degree of generality and complexity (p. 115)
[T]here is no finite line of demarcation which limits the powers of the Analytical Engine. These powers are co-extensive with our knowledge of the laws of analysis itself, and need be bounded only by our acquaintance with the latter. Indeed we may consider the engine as the material and mechanical representative of analysis, and that our actual working powers in this department of human study will be enabled more effectually than heretofore to keep pace with our theoretical knowledge of its principles and laws, through the complete control which the engine give us over the executive manipulation of algebraical and numerical symbols. (p. 121)

These passages give the impression that she was prescient enough to have a sense 256 of the notion of a universal computer, which was precisely defined only about a 257 century later. In fact, her assessment of the analytical engine was essentially correct; 258 we now know that it is indeed a universal machine. \({ }^{5}\) Perhaps even more remarkably, 259 she also saw something that not even Babbage himself appears to have realized 260

\footnotetext{
\({ }^{5}\) Gandy (1988, p. 57) showed that the functions computable with the analytical engine "are precisely those which are Turing computable."
}

\section*{Author's Proof}
(Swade 2010), \({ }^{6}\) namely that the powers of his machine were not limited to numerical 261 calculations. It could also be used to obtain "symbolical results" which are "not less 262 the necessary and logical consequences of operations performed upon symbolical 263 data, than are numerical results when the data are numerical." (p.119): 264

It may be desirable to explain, that by the word operation, we mean any process which 265 alters the mutual relation of two or more things, be this relation of what kind it may. This 266 is the most general definition, and would include all subjects in the universe. In abstract 267 mathematics, of course operations alter those particular relations which are involved in the 268 considerations of number and space, and the results of operations are those peculiar results 269 which correspond to the nature of the subjects of operation. But the science of operations, \(\quad 270\) as derived from mathematics more especially, is a science of itself, and has its own abstract 271 truth and value, just as logic has its own peculiar truth and value, independently of the 272 subjects to which we may apply its reasonings and processes.
...The operating mechanism might act upon other things besides number, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine. Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent. (pp. 117-118)

The engine can arrange and combine its numerical quantities exactly as if they were letters
or any other general symbols; and in fact it might bring out its results in algebraical notation, were provisions made accordingly... [I]t would be a mistake to suppose that because its results are given in the notation of a more restricted science, its processes are therefore restricted to those of that science. (p. 144)
Interestingly, and again much ahead of her time, she ascribed this generality of the 287 analytical engine to logic. "[T]he processes used in analysis form a logical system 288 of much higher generality than the applications to number merely." (p. 152).

There were people at the time who believed that the analytical engine, once 290 constructed, would be able to "think". \({ }^{7}\) Ada Lovelace was more careful about this. 291
In her view, the machine would be able to do "whatever we know how to order 292 it to perform". It had "no power of anticipating any analytical relations or truth". 293 She believed that it would be able to "follow analysis", but conceded that this could 294 not be known for sure "excepting the actual existence of the engine, and actual 295 experience of its practical results" (p. 156).

Babbage and Lovelace anticipated ideas and constructions that would not rise 297 into prominence until well into the twentieth century. Before exploring how they 298 were then developed, we need to have a look at two major mathematical endeavours 299 that were instrumental in moving the art of calculation from a peripheral position 300 in applied mathematics to a central role in the foundations of mathematics. One 301

\footnotetext{
\({ }^{6}\) Lovelace said (p. 119) that she did not know "[w]hether the inventor of this engine had any such views in his mind whilst working out the invention."
\({ }^{7}\) One of them was Ada Lovelace's mother, Lady Byron (1792-1869), who described it as a "thinking machine". (Quoted in Swade 2011a, p. 246.)
}

\section*{Author's Proof}
of these endeavours was the conversion of non-mathematical to mathematical

\subsection*{9.3 The Formalization of Reasoning}

This story cannot be told without mentioning Ramon Llull (c.1232-c.1315), an
excentric Majorcan theologian and philosopher who developed a method that would allegedly generate all the truths in each area of inquiry by combining the basic truths of that area. For this to be possible, all knowledge in each subject area had to be derivable from what we would now call a limited set of axioms. Today, this appears to be a strange assumption, but it seemed much more plausible at a time when Euclid's axiom-based geometry was seen as a paragon to be followed by scholars in all other disciplines. For instance, Llull assumed that all properties of God could be derived from a limited number of obvious properties, such as goodness, greatness, wisdom etc. In order to find all of God's properties, one would therefore have to systematically search for all combinations of these basic properties, and draw adequate conclusions from each such combination. The same approach could be used in all other subject areas. To obtain all the required combinations from a set of basic ideas he invented devices consisting of rotating, concentrically arranged circles that contained representations of all the basic concepts.

Llull's system and devices were immensely popular well into the eighteenth century. Jonathan Swift (1667-1745) satirized them in his Gulliver's Travels (1726), where he described how scholars in the academy of Lagado created new knowledge with an engine constructed to move around bits of wood with words written on them to create ever new combinations. When they found words in a row that seemed to make sense, they wrote them down. In this way, "the most ignorant person at a reasonable charge, and with a little bodily labour, might write books in philosophy,poetry, politics, law, mathematics, and theology, without the least assistance from genius or study". (ch. III:5) But others took Llull's ideas much more seriously. 329 His ideas were among the main sources of speculations that all forms of (valid) reasoning should be reducible to some form of calculation. 331

Thomas Hobbes (1588-1679) repeatedly equated reasoning and computation. (It 332 is not clear whether he was influenced by Llull, but he had access to some of his \({ }_{33}\) writings in the Hardwick library. \({ }^{8}\) ) In his Leviathan he wrote: 334

\footnotetext{
When man reasoneth, he does nothing else but conceive a sum total, from addition of parcels; or conceive a remainder, from subtraction of one sum from another: which, if it be done by words, is conceiving of the consequence of the names of all the parts, to the name of the whole; or from the names of the whole and one part, to the name of the other
}

\footnotetext{
\({ }^{8}\) Forteza (1998). Cf. Hamilton (1978).
}

\section*{Author's Proof}
can be added together, and taken one out of another. . Out of all which we may define, that is to say determine, what that is which is meant by this word reason, when we reckon it amongst the faculties of the mind. For reason, in this sense, is nothing but reckoning that is, adding and subtracting, of the consequences of general names agreed upon for the marking and signifying of our thoughts; I say marking them, when we reckon by ourselves, and signifying, when we demonstrate or approve our reckonings to other men. (Hobbes [1651] 1839, pp. 29-30) \({ }^{9}\)

It does not take much reflection to realize that natural languages are unsuited for 347 such reasoning by simple addition and subtraction of concepts. Therefore, scholars 348 striving to formalize reasoning proposed the construction of an artificial language 349 that should reflect the structure of concepts and ideas much better than natural languages. Such a language would facilitate all scholarly pursuits, and it should therefore replace Latin as the learned language. Francis Bacon (1561-1626) was the first major proponent of such a language. He had many followers, some of whom published fairly detailed proposals for the construction of a universal language (Cram 1985; Singer 1989).

These ideas were further developed in the work of Gottfried Wilhelm Leibniz (1646-1716) (Lenzen 2018; Pombo 2010). Beginning in his youthful Dissertio de arte combinatoria (1666) he applied Llull's combinatorial method to characterize exhaustively the conclusions that could be drawn through traditional syllogisms from given premises. He envisaged a universal language for science and philosophy, his "characteristica universalis", that would be perfectly aligned with the structure of ideas.

Thus I assert that all truths that can be demonstrated about things expressible in this 363 language with the addition of new concepts not yet expressed in it - all such truths, I say, can be demonstrated solo calculo, or solely by manipulation of characters according to a certain form, without any labour of the imagination or effort of the mind, just as occurs in arithmetic and algebra. (Quoted in Mates 1986/1989, p. 185n.)

With the help of such a language, scholarly controversies could easily be solved: between two philosophers than between two calculators. For it would suffice for them to take their pencils in their hands and to sit down at the abacus, and say to each other (and if they so wish also to a friend called to help): Let us calculate. \({ }^{10}\)

In his correspondence with Damaris Masham (1659-1708), Leibniz even speculated on machines that could "imitate reason" (Jones 2014, pp. 194-195; cf. Widmaier 374 1986). However, not even Leibniz, one of the most prolific and inventive scholars of his times, managed to produce anything like the universal language that would be 375 376

\footnotetext{
\({ }^{9}\) See also de Jong (1986) and MacDonald Ross (2007).
\({ }^{10}\) Quo facto, quando orientur controversiae, non magis disputatione opus erit inter duos philosophos, quam inter duos computistas. Sufficiet enim calamos in manus sumere sedereque ad abacos, et sibi mutuo (accito si placet amico) dicere: calculemus." (Leibniz 1890, vol. 7, p. 200).
}

\section*{Author's Proof}
necessary for anyone - human or machine - to perform the calculations that would 377 replace ordinary reasoning and argumentation.

In a much more modest form, these ideas were revived by the English logician 379 George Boole (1815-1864). In his The Laws of Thought (1854) he developed an 380 algebraic analysis of properties. For instance, if \(w\) denotes white things, and \(s 381\) denotes sheep, then \(w s\) denotes those objects that are both white and sheep, \(w+s{ }_{382}\) those objects that are either white or sheep, \(w-s\) those that are white but not sheep, \({ }^{383}\) etc. 1 denotes "everything", and thus \(1-w\) denotes everything that is not white. 384 Boole proposed "laws of thought" such as:
\[
\begin{aligned}
& x y=y x \\
& x x=x \\
& z(x+y)=z x+z y \\
& z(x-y)=z x-z y, \text { etc. }
\end{aligned}
\]

This is the origin of the logical language that is now taught as sentential (proposi- 390 tional) logic. Boole's major achievement was to extend the application of algebra 391 to objects other than numbers. As noted by Michèle Friend (2010), Boole "started 392 to really develop the technical machinery needed to make an algebra of natural 393 language terms, where propositions are one sort of term, amongst others." In his 394 system, relations and functions that are expressible in natural language can be 395 included in the formal apparatus. "When we allow symbolic representations of 396 predicates[,] relations and functions, we can calculate out thoughts, much as we 397 calculate out numbers." (Friend 2010, p. 174. See also Uckelman 2010). This was 398 a major achievement, but, of course, there was still no universal language in place. 399 Ordinary reasoning could only be replaced by calculations in the few and rather 400 trivial cases in which simple combinations of properties were sufficient to represent 401 the argument. It was possible to conclude that "the sheep that are not white" are the 402 same as "the sheep that are not white sheep" (since \(s(1-w)=s-w s)\), but two sheep \({ }_{403}\) farmers arguing about the best way to manage their farms would not be much helped 404 by Boole's algebra. Boole was himself aware of this, and in the last chapter of his 405 great book he emphasized the need for empirical observations to acquire knowledge 406 about the physical world; "as the cultivation of the mathematical or deductive faculty 407 is a part of intellectual discipline, so truly is it only a part" (p. 327). In spite of 408 these limitations, Boole's achievement was considerable. It provided a much more 409 versatile way to represent arguments in mathematical language than what had been 410 available previously. 411

In 1869 another English logician, William Stanley Jevons (1835-1882), con- 412 structed a "logical piano" that was based on Boole's logic. It had a keyboard that 413 looked much like a piano with only white keys. By pressing the keys you could 414 introduce premises indicating logical relations among up to four terms. Mechanical 415 levels and pulleys made the appropriate changes on a screen, showing what these 416 premises add up to. For instance, we can use three terms, interpreted as iron, metal, 417 and element. If we introduce the two premises that iron is a metal and metals are 418

\section*{Author's Proof}
elements, then the screen will show that iron is an element (Barrett and Matthew 419 2005). The logical piano has been hailed as "the first machine to solve Boolean 420 logic problems faster than was possible by hand" (Gent and Walsh 2000, p. 1). 421

Another major achievement in the mathematization of reasoning was made 422 by the German logician Gottlob Frege (1848-1925). In 1879, he published the 423 Begriffsschrift, a book that opened up new avenues for logic. His most important 424 innovation was predicate logic, a new formal representation of predicates, relations, 425 and the words "all" (denoted \(\forall\) ) and "some" (denoted \(\exists\) ). Today, it is a standard 426 exercise in elementary logic courses to translate natural language sentences into 427 predicate logic. We can easily express sentences in Frege's predicate logic that had 428 no representation in previous logical systems, with a translation process such as the 429 following:

Every successful team has a hardworking coach.
For all \(x\), if \(x\) is a successful team, then there is some \(y\) that is its coach and is 432 hardworking.
For all \(x\), if \(S x\) and \(T x\), then there is some \(y\) such that \(C y x\) and \(H y\). 434
\((\forall x)(S x \wedge T x \rightarrow(\exists y)(C y x \wedge H y)) \quad 435\)
Frege's predicate logic is a huge advance over previous logical languages, none of \({ }^{436}\) which has the versatility exhibited in the above example. However, there are many everyday expressions that it cannot render, for instance adverbs ("he drove slowly"), 438 modal sentences ("I might have come but I didn't"), and quantities intermediate 439 between all and some ("most of his ideas go wrong"). The construction of a 440 language in which all relations between concepts are mirrored in their logical 441 properties is as far-fetched as ever, even with the (considerable) resources of 442 predicate logic.

But still, predicate logic gave rise to a revolution in logic. Although it is insuf- 444 ficient for translating large parts of natural language, it is sufficient for expressing 445 much - some would say all - of the natural language that is needed in mathematics. 446 The vast majority of mathematical definitions and theorems can be expressed in 447 predicate logic, and even more importantly: If we perform mathematical proofs 448 very carefully in the smallest possible steps, then each step can be expressed as 449 a statement in predicate logic, and it can be seen to follow from its predecessors 450 according to the rules of predicate logic. Such proofs in small steps are not much 45 liked by mathematicians - they share some of the disadvantages of looking down 452 at your feet all the time while trying to find your way in an unknown terrain. 453 However, predicate logic arrived at a time when mathematics was in a crisis. 454 The possibility of appealing to such meticulous proofs rather than to intuitions 455 expressed in natural language seemed to offer a chance to secure the foundations of 456 mathematics.

\section*{Author's Proof}

\subsection*{9.4 Mathematics as Symbol Manipulation}

In the nineteenth century, mathematicians attended increasingly to the foundations of their discipline. Most of the foundational work was prompted by problems in two areas of mathematics, namely analysis and geometry.

\subsection*{9.4.1 The Arithmetization of Analysis}

Analysis is the branch of mathematics that studies differentiation, integration, and 463 infinite series. (The near-synonym "calculus" usually refers to the less advanced parts of analysis.) Since its modern beginnings in the seventeenth century, analysis was largely based on reasoning that referred to infinitesimals, i.e. fictional numbers that were supposed to be larger than zero but smaller than all positive 467 numbers. Pierre de Fermat (c.1607-c.1665) has been credited with their invention. 468 Mathematicians used them in many ways. For instance, a continuous curve was 469 described as consisting of straight line segments of infinitesimal length. Leibniz 470 put infinitesimals to efficient use in differential calculus. We still use his notation 47 \(d y / d x\), which was originally thought of as the ratio between an infinitesimal change in the projection to the \(y\)-axis and an infinitesimal change in the projection to the 473 \(x\)-axis. Some mathematicians interpreted infinitesimals as fixed quantities. Others, 474 including Jean le Rond d'Alembert (1717-1783) interpreted them as a shorthand 475 for a limit concept. But even with that interpretation, the concept was far from fully 476 precise. \({ }^{11}\)

Studies of discontinuous functions made mathematicians increasingly aware of 478 the precarious nature of the concept of infinitesimals. In 1829, Peter Lejeune- 479 Dirichlet (1805-1859) showed that a function could easily be constructed that is 480 discontinuous everywhere: Let \(c\) and \(d\) be constants, and let \(f(x)=c\) whenever 481 \(x\) is rational and \(f(x)=d\) whenever \(d\) is irrational. In 1861 Karl Weierstraß 482 (1815-1897) constructed a function that is continuous everywhere but nowhere 483 differentiable. These discoveries contributed much to the development of more 484 rigorous foundations for calculus, using limits to define concepts such as continuity, 485 integral, and derivative in a much more precise way. Important contributions to 486 this development were made by Augustin-Louis Cauchy (1789-1857), Bernhard 487 Riemann (1826-1866), and Karl Weierstraß. Perhaps the single most important step 488 was Weierstraß's introduction of a concept of limit that replaced infinitesimals and 489 spatial intuitions by mathematical reasoning based entirely on numbers (Edwards 490 1979, pp. 301-334).

In order to make calculus more rigorous, a precise account of the continuum of 492 real numbers was crucially needed. The rational numbers can easily be "reduced"

\footnotetext{
\({ }^{11}\) Much later, infinitesimals were introduced in nonstandard analysis, but now rigorously defined. This was largely the work of Abraham Robinson (1918-1974).
}

\section*{Author's Proof}
to the natural numbers, since each rational number is by definition the ratio between 494 two natural numbers. It was much more difficult to define the real numbers in terms 495 of the natural numbers, but in the early 1870 s several mathematicians, including 496 Richard Dedekind (1831-1916) and Georg Cantor (1845-1918) showed viable ways 497 to do this. These constructions all made use of infinite sets of rational numbers. For 498 instance, to define \(\sqrt{2}\) we can make use of (1) the set of positive rational numbers 499 \(x\) such that \(x^{2}<2\), and (2) the set of positive rational numbers \(x\) such that \(2<x^{2}\). 500 All positive rational numbers belong to one of these two sets. 501

Since these reconstructions of analysis redefined it in terms of numbers, they 502 were said to "arithmetize" the subject. \({ }^{12}\) In 1900, the French mathematician and 503 philosopher Henri Poincaré (1854-1912) said: 504

The vague idea of continuity, which we owe to intuition, resolved itself into a complicated 505 system of inequalities referring to whole numbers. 506

In this way, the difficulties arising from passing to the limit, or from consideration of 507 infinitesimals, are found to be definitely clarified. 508
Today nothing remains in analysis but integers and finite or infinite systems of integers, 509 interrelated by a net of relations of equality or inequality. 510

Mathematics, as it is said, has been arithmetized. \({ }^{13} 511\)
In spite of the term "arithmetization" and the use of natural numbers, mathemati- 512 cians of the time seem to have viewed this development not as a reduction of 513 mathematics to the numbers \(1,2,3 \ldots\), but rather as a reduction to operations on 514 arbitrary symbols (Jahnke and Otte 1981). We saw above that already in 1843, Ada 515 Lovelace realized that operations on an arbitrary (finite) set of symbols could be 516 represented as operations on natural numbers. \({ }^{14}\) The German physicist Hermann 517 von Helmholtz (1821-1894) expressed this insight very clearly in 1887: 518

I regard arithmetic, the doctrine of the pure numbers, as a method, based on purely 519 psychological facts, that serves to teach the consistent application of a system of signs (namely numbers) of unlimited extent and unlimited potential for refinement. To wit, arithmetic explores the question which different ways of combining these signs (calculating operations) will lead to the same final result. (Helmholtz 1887, p. 20) \({ }^{15}\)

\footnotetext{
\({ }^{12}\) This term is usually attributed to the German mathematician Felix Klein (1849-1925) who used it in a speech in 1895 (Klein 1895).
13"L'idée vague de continuité, que nous devions à l'intuition, s'est résolue en un système compliqué d'inégalités portant sur des nombres entiers.

Par là les difficultés provenant des passage à la limite, ou de la considération des infiniments petits, se sont trouvées définitivement éclaircies.

Il ne reste plus aujourd'hui en Analyse que des nombres entiers ou des systèmes finis ou infinis de nombres entiers, reliés entre eux par un réseau de relations d'égalité ou d'inégalité.

Les Mathématiques, comme on l'a dit, se sont arithmétisées." (Poincaré 1902, p. 120).
\({ }^{14}\) This representability of symbols as numbers was used in masterly fashion by Kurt Gödel (1931) when he assigned a unique number to each sentence that is expressible in a logical language (Gödel numbering).
15"Ich betrachte die Arithmetik, oder die Lehre von den reinen Zahlen, als eine auf rein psychologischen Thatsachen aufgebaute Methode, durch die die folgerichtige Anwendung eines Zeichensystems (nämlich der Zahlen) von unbegrenzter Ausdehnung und unbegrenzter Möglichkeit der Verfeinerung gelehrt wird. Die Arithmetik untersucht namentlich,
}

\section*{Author's Proof}

\begin{abstract}
The term "arithmetization" has not been used for long. Today, we see the reduction of analysis to sets of numbers as a reduction to sets rather than to numbers. 525 This is probably because set theory is now a much more established discipline and it is now well-known that the natural numbers can be developed within set theory (for instance using the series \(\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\{\{\varnothing\}\}\}, \ldots\) ). But what was once 528 called "arithmetization" is still the standard method to ensure sufficient precision in 529 mathematical analysis.
\end{abstract}

\subsection*{9.4.2 A New Approach to Geometry}

The other area of mathematics that engendered foundational work was geometry. 532 Non-Euclidean geometry was discovered in the 1830s, but did not catch the attention 533 of mainstream mathematicians until the late 1860s (Freudenthal 1966). Euclid 534 (fl. 300 BCE ) derived a large number of theorems for two- and three-dimensional 535 geometry from a small set of seemingly self-evident axioms. For more than two 536 millennia, this had been taken as the epitome of mathematical rigour. Now it 537 had to be accepted that even these axioms were not self-evident. This led to 538 attempts to reformulate Euclid's geometry with more rigour. In 1882 the German 539 mathematician Moritz Pasch (1843-1930) published a new and considerably more 540 rigorous axiomatization of Euclidean geometry. He pointed out several seemingly 541 self-evident assumptions made by Euclid that apparently no one had noted before 542 him, and replaced them by explicit axioms (Pasch 1882). 543

However, Pasch was still anxious that his axioms should be intuitively appealing. 544 The German mathematician David Hilbert (1862-1943) took a radical new depar- 545 ture in an axiomatization of Euclidean geometry that he published in 1899 (Hilbert 546 1899). Instead of searching for axioms that expressed evident truths he wanted 547 his axioms to be independent of any associations with intuition. The fundamental 548 requirement was that the axioms should form a consistent system. In other words, if 549 a statement could be derived from the axioms, the negation of that statement should 550 not be derivable from them.

The difference between these approaches to axiomatization can be illustrated 552 with how basic geometrical concepts such as point, line, and plane, were introduced. 553 Euclid's Elements begin with these definitions: 554
1. A point is that which has no part. 555
2. A line is length without breadth. 556
3. The extremities of a line are points. 557
4. A straight line is a line which lies evenly with the points on itself. (Euclid 1939, pp. 436- 558
439) 559

\footnotetext{
welche verschiedene Verbindungsweisen dieser Zeichen (Rechnungsoperationen) zu demselben Endergebniss führen."
}

\section*{Author's Proof}
Although remarkably precise, these definitions refer to spatial intuitions with words ..... 560
such as "part", "breadth", "extremity", and "lie evenly". These intuitions are also ..... 561
invoked in various ways in Euclid's proofs. Pasch found this approach to be ..... 562
unsatisfactory, and expressed his axiomatic ideal as follows: ..... 563
The axioms should completely include the empirical material to be dealt with mathemat- ..... 564
ically, so that after the axioms have been set up there should be no need to refer back to ..... 565
perceptions. \({ }^{16}\) ..... 566
Hilbert went one step further. Not even when the axioms were set up should there ..... 567
be any appeal to empirical perceptions or spatial intuitions: ..... 568
We imagine three different systems of things: we call the things of the first system points ..... 569
and denote them \(A, B, C, \ldots\); we call the things of the second system lines and denote them ..... 570
\(a, b, c, \ldots ;\) we call the things of the third system planes and denote them \(\alpha, \beta, \gamma\) ..... 571
We think of the points, lines, and planes as being in certain relations with each other ..... 572
and we denote these relations with words such as "lying on", "between", "parallel", ..... 573
"congruent", "continuous"; the exact and complete description of these relations follows ..... 574
from the axioms of geometry. \({ }^{17}\)575
This passage is most notable for what it does not contain. There is no reference ..... 576
to spatial intuitions. Points, lines, and planes are presented as undefined entities, ..... 577
and what can be proved about them is entirely determined by the rules specifying ..... 578
how they relate to each other. Possibly the clearest expression of this approach was ..... 579
uttered by Hilbert while waiting with two colleagues for a train in a railway station ..... 580
in Berlin: "It should always be possible to say 'tables, chairs and beer mugs' instead ..... 581
of 'points, lines and planes"' (Blumenthal 1935, p. 403). ..... 582
9.4.3 Can All Mathematical Problems Be Solved in One Fell Swoop?

At the time, Hilbert's axiomatization of Euclidean geometry must have been seen 585 as severing geometry from empirical science. In actual fact it had the very opposite 586 effect. Discoveries in physics in the following decades made it clear that physical 58 space is non-Euclidean. After describing how the new view of geometry opened up 588

\footnotetext{
16"Die Grundsätze sollen das von der Mathematik zu verarbeitende empirische Material vollständig umfassen, so daß man nach ihrer Aufstellung auf die Sinneswahrnehmungen nicht mehr zurückzugehen braucht" (Pasch 1882, p. 17, quoted from Contro (1976) p. 286).
\({ }^{17}\) "Wir denken drei verschiedene Systeme von Dingen: die Dinge des ersten Systems nennen wir Punkte und bezeichnen sie mit \(A, B, C, \ldots\); die Dinge des zweiten Systems nennen wir Gerade und bezeichnen sie mit \(a, b, c, \ldots\); die Dinge des dritten Systems nennen wir Ebenen und bezeichnen sie mit \(\alpha, \beta, \gamma, \ldots \ldots\).

Wir denken die Punkte, Geraden, Ebenen in gewissen gegenseitigen Beziehungen und bezeichnen diese Beziehungen durch Worte wie "liegen", "zwischen", "parallel", "kongruent", "stetig"; die genaue und vollständige Beschreibung dieser Beziehungen erfolgt durch die Axiome der Geometrie" (Hilbert 1899, p. 2).
}

\section*{Author's Proof}
the geometrical properties of physical space as an issue for empirical investigation,
Albert Einstein wrote: "I attach special importance to the view of geometry which 590 I have just set forth, because without it I should have been unable to formulate the 591 theory of relativity." \({ }^{18}\)

Hilbert's Foundations of Geometry was also important in another respect. He 593 did not look for the foundations of geometry in arithmetic. Instead, he provided 594 geometry with a fundamental axiomatization of its own. In the same way, other 595 mathematical disciplines could be provided with independent foundations in the 596 form of a set of axioms and precise rules for deriving theorems from these axioms. 597 Hilbert changed his terminology and started to talk about axiomatization instead of 598 arithmetization (Petri and Norbert 2007). A new picture of mathematics emerged, 599 namely as the science of strictly rule-bound symbol manipulations. \({ }^{19}\) Frege's logical 600 language had a crucial role in this new approach, since all ordinary mathematical 601 statements could be expressed with it. For instance, instead of writing 602

For all \(x\) and \(y, x+y=y+x\).
we can write
\[
(\forall x)(\forall y)(x+y=y+x),
\]
thus eliminating natural language. Some of these fully formalized mathematical 606 statements would be axioms, some would be definitions of new symbols in terms 607 of those previously introduced, others steps in proofs, and yet others the outcomes 608 of proofs. It would then, according to Hilbert, be "natural and consistent" to treat 609 logical symbols, such as \(\forall\) and the symbols for conjunction and negation, "just 610 like the numerals and letters in algebra and to consider them, too, as signs that 611 in themselves mean nothing, but are merely building blocks for ideal propositions." 612 They are "just objects for the application of our rules". \({ }^{20}\) For instance, the following 613 proof step:
\[
(\forall x)(\forall y)(x+y=y+x)
\]
\[
3+7=7+3
\]
follows from a rule of substitution that is included among the rules for sym- 617 bol manipulation in this system. In this way, proofs would be reduced to the 618 manipulation of logical and mathematical symbols. Mathematics would become 619 symbol manipulation. Although the construction of mathematical proofs would 620

\footnotetext{
18"Dieser geschilderten Auffassung der Geometrie lege ich deshalb besondere Bedeutung bei, weil es mir ohne sie unmöglich gewesen wäre, die Relativitätstheorie aufzustellen" (Einstein 1921, p. 6).
\({ }^{19}\) Arguably, this was the realization of Ada Lovelace's above-mentioned "science of operations" that could apply to "letters or any other general symbols" as well as numbers (Lovelace [1843] 1989, pp. 117 and 144).
20 "naturgemäß und konsequent. .. den Zahlzeichen und den Buchstaben in der Algebra gleichstellen und ebenfalls als Zeichen auffassen, die an sich nichts bedeuten, sondern nur Bausteine für die idealen Aussagen sind", "nur Objekte für die Anwendung unserer Regeln" (Hilbert 1928, p. 8).
}

\section*{Author's Proof}
continue to require mathematical acumen, checking them would be a simple routine 621 procedure.

Hilbert raised three fundamental questions about such rigorously axiomatized 623 mathematical systems. One of the questions was whether a mathematical system 624 such as common arithmetic is consistent, by which is meant that one cannot derive 625 both a statement and its negation from the axioms. \({ }_{626}\)

To introduce the other two problems we need the concept of validation. Suppose 627 that we have a formula containing variables (such as \(x, y \ldots\) ) and some structure 628 containing elements that can be assigned to these variables. Let the formula be as 629 follows:
\[
(\forall x)(\forall y)(x>y \rightarrow(\exists z)(x>z>y))
\]

We can apply this formula to a structure in which we interpret the variables \(x, y \ldots 632\) as rational numbers and \(>\) as "greater than". Then the formula says that if \(x\) is 633 greater than \(y\), then there is some number that is smaller than \(x\) but larger than \(y .634\) This is obviously the case, and consequently our axiom is satisfied in this structure. \({ }^{635}\) But if we instead use a structure containing only natural numbers, and still interpret 636 \(>\) as "greater than", then the axiom is not satisfied, as we can see by letting \(x=3637\) and \(y=2\).

Now suppose that we have an axiom system, we can call it \(\mathcal{A}\), and some formula 639 \(\mathfrak{f}\). If every structure that satisfies \(\mathcal{A}\) also satisfies \(\mathfrak{f}\), then we can say that \(\mathcal{A}\) validates \({ }_{640}\) \(\mathfrak{f}\). This is conceptually quite different from saying that \(\mathfrak{f}\) can be proved from \(\mathcal{A}\); the \({ }_{641}\) former claim refers to comparisons of structures, and the latter to the constructibility 642 of step-by-step proofs. We can therefore ask whether the formulas that can be \({ }_{643}\) validated from a set of axioms are the same as those that are provable from it. This 644 question naturally divides into two. First, can all the provable formulas be validated? \({ }_{645}\) This is called soundness. And secondly, are all the formulas that can be validated 646 provable? This is called completeness. Soundness is usually the easy part. It was 647 not difficult to prove the soundness of Frege's predicate logic and mathematical 648 systems expressible in it. The completeness part was much more difficult, and it 649 was one of Hilbert's three questions. In 1929 Kurt Gödel (1906-1978), then a PhD 650 student in Vienna, proved that a particular axiom system \({ }^{21}\) is sufficient for deriving 651 all formulas that are valid in predicate logic. Since validity is usually equated with 652 mathematical truth, this result can be interpreted as unifying truth and provability \({ }_{653}\) (in predicate logic).

Hilbert's third question took another approach to validity. Suppose that we are 655 presented with a formula (sentence) in predicate language. Is there a way to find out 656 whether that formula is valid or not? Is there "a procedure" 22 that answers this ques- 657 tion for all formulas that we apply it to? This is the Entscheidungsproblem (decision 658 problem) which Hilbert did not hesitate to call "the main problem of mathematical 659 logic". \({ }^{23}\) Its importance was further enhanced by Gödel's completeness theorem. 660

\footnotetext{
\({ }^{21}\) More precisely: a deductive system, i.e. the combination of a set of axioms and a set of rules for making derivations based on them.
22"ein Verfahren". Hilbert and Ackermann (1938), p. 91.
23"das Hauptproblem der mathematischen Logik", Hilbert and Ackermann (1938), p. 90.
}

\section*{Author's Proof}

Due to that theorem, a formula in predicate logic is valid if and only if it can be 661 proved from the axioms. Therefore, a solution of the Entscheidungsproblem would 662 also provide a way to determine whether a given formula is provable or not.

It was reasonable to assume that a positive solution of the Entscheidungsproblem 664 would have an unprecedented effect on mathematics as a whole. It seemed possible 665 to axiomatize in principle all of mathematics in predicate logic. Therefore, a method 666 to determine the validity (truth) of everything expressible in that system would 667 amount to a decision procedure for all mathematical statements. It would have 668 been a philosopher's stone for mathematicians, and its discovery would have over- 669 shadowed all previous achievements in mathematics. The English mathematician 670 Godfrey Hardy (1877-1947) denounced the idea that some system of rules could 671 be shown to determine for any formula whether it was provable or not. "There is 672 of course no such theorem" he said (without much argument), "and this is very \({ }^{673}\) fortunate, since if there were we should have a mechanical set of rules for the 674 solution of all mathematical problems, and our activities as mathematicians would 675 come to an end" (Hardy 1929, p. 16). He said that negative theorems were more to 676 be expected, and that is also what happened.

In 1931 Kurt Gödel published what have come to be called his two incomplete- 678 ness theorems. The first of them showed that if a consistent axiom system contains 679 basic arithmetic, then there are statements in its language that can neither be proved 680 nor disproved in the system itself. The second theorem showed that in such an axiom 681 system, it is not possible to prove the consistency of the system itself. Gödel's proofs 682 were based on what might be called the ultimate arithmetization of mathematics: he 683 developed a method to code all formulas and sets of formulas as integers. Since the 684 system generates proofs about numbers, it can then also generate proofs about (the 685 number representing) itself. A sentence can be constructed that "says" about itself 686 that it is not provable in this system, and obviously such a sentence can neither be 687 proved nor disproved on pain of inconsistency.

Before Gödel published his incompleteness theorems, the best hope to solve the 689 Entscheidungsproblem seemed to be that some method could be found to derive a 690 given formula from the axioms if it was true and to derive its negation if it was 691 not true. (Gödel's previous completeness theorem had, if anything, kindled hopes 692 that this was possible.) Gödel's new results made it clear that such a straightforward 693 solution was not possible. It was still possible that the Entscheidungsproblem had 694 some solution that involved a rigorous routine other than a proof. But clearly, 695 it was now much more urgent than before to look for ways to show that the 696 Entscheidingsproblem was insolvable.

If the Entscheidungsproblem had a solution, it would have to be a specified and 698 well-determined routine that could be applied to all formulas in predicate logic. In 699 other words, it would have to be an algorithm. A proof that the Entscheidingsprob- 700 lem was insolvable would have to show that there exists no such algorithm. But 701 in order to prove that, it was necessary to have a precise specification of what an 702 algorithm is. No such specification was available, so it would have to be constructed. 703 This is how a rather mundane problem area in applied mathematics, namely 704 how algorithms can be constructed, became a pivotal issue in the foundations of 705 mathematics.

\section*{Author's Proof}

\subsection*{9.5 Alan Turing's Machine}

This brings us to the centrepiece of this chapter, namely Alan Turing's (1912-1954)
708 paper "On Computable Numbers, with an Application to the Entscheidungsproblem". It was first presented in 1936 and then published the year after (Turing 1937a,b). It is based on an exceptional specimen of philosophical analysis. By carefully analyzing what one does when executing an algorithm, and combining this analysis with a good dose of mathematical idealization, Turing developed a simple procedure intended to cover everything that can be done with an algorithm. \({ }^{24}\) Importantly, Turing's article was devoted to clarifying the notion of a computation that can be performed as a routine task by human beings. This resulted in tasks so well-defined that they could be performed by a certain type of machine, but his analysis was not an attempt to find out what types of symbolic operations can, in general, be performed by machines. The Turing machine appears "as a result, as a codification, of his analysis of calculations by humans" (Gandy 1988, pp. 83-84). \({ }^{25}\) This is somewhat obscured to the modern reader by his frequent usage of the word "computer", which at that time referred to a human computist but is today easily misinterpreted as referring to an electronic computer. \({ }^{26}\)

\subsection*{9.5.1 An Example}

Before we delve into Turing's analysis in its full generality, it may be helpful to introduce some of its major components with the help of a simple example. Consider the addition of two numbers, such as \(589+135\). This is how I learned to perform that operation:

\footnotetext{
\({ }^{24}\) In many accounts of Turing's work, this analytical work is not adequately described. Robin Gandy (1919-1995), who was Turing's graduate student, rightly called it a "paradigm of philosophical analysis" (Gandy 1988, p. 86).
\({ }^{25}\) See for instance Turing (1937a, p. 231, [1948] 2004, p. 9), Cleland (2002, p. 166), Israel (2002, p. 196), and Sieg (1997, pp. 171-172, 2002, pp. 399-400). Misunderstandings on this are not uncommon, for instance Arkoudas (2008, p. 463) claims that "the term 'algorithm' has no connotations involving idealized human computists" and that Turing just "referred to human computers as a means of analogy when he first introduced Turing machines (e.g., comparing the state of the machine to a human's 'state of mind,' etc.)". A careful reading of Turing's 1936-7 article will show that Arkoudas's interpretation cannot be borne out by the textual evidence.
\({ }^{26}\) Turing still used the word "computer" in this sense a decade later, see Turing ([1947] 1986, p. 116) Gandy (1988, p. 81) proposed that we use "computer" for a computing machine and "computor" for a computing human. Some authors have adopted this practice, e.g. Sieg (1994). However, the difference between the two spellings is easily overlooked. To make the difference more easily noticeable, I propose that we revive the word "computist" for a human performing calculations.
}

\section*{Author's Proof}
\(\underline{11} 729\)
589 730
\(\underline{135} 731\)
724 732
This is a step-by-step process such that in each step, you only have to look at a part 733 of what is recorded on the paper. In the first step, you only have to consider the 734 column furthest to the right. You add the two numbers ( 9 and 5) and write down 735 the outcome in the way indicated. Then you turn to the next column, etc. Once you 736 know this procedure you can use it to add in principle any two numbers, even if 737 they are very large. All you need is an instruction for what to do when you are in a 738 column, before you proceed to the next column.

A detailed instruction for this algorithm will have to be rather long since it 740 must cover all cases of what you can find in a column (all possible combinations 741 such as \(9+5,1+8+3\), and \(1+5+1\) in this example). For simplicity, we can instead 742 consider the corresponding instruction for adding two numbers in binary notation. 743 Mathematically, this is of course a trivial change of notation. In fact, any finite set of 744 symbols can be encoded as series of 0 and 1, and consequently all forms of symbol 745 manipulation can be expressed as manipulation of strings of these two (or any other 746 two) symbols. \({ }^{27}\)

Essentially the same algorithm can be used in binary notation. The addition 589+ 748 135 comes out as follows: 749
\(\underline{1111} \quad 750\)
1001001101
10000111
1011010100
753
Just as in the decimal system, we begin in the right-most column, and go stepwise 754 to the left. Each column has four spaces for symbols. When we arrive in a column, 755 we have to look at the top three spaces, since they determine what we will have to do. We can use a simple notation for these three spaces. Then

represent the two columns furthest to the right in our example. In the rightmost 760 column, we have to write 0 in the bottom row, move one step left and then write \(1{ }_{76}\) in the top row. This be is summarized in the following short form: 762

\footnotetext{
\({ }^{27}\) In this example, there are in fact three symbols, since the empty space and 0 are not treated in the same way, as can be seen from rules 1 and 18 in Textbox 9.2. It is perfectly feasible to use only two symbols; we can for instance replace each symbol space with two adjacent symbol spaces such that 00 represents an empty space, 01 represents 0 and 11 represents 1 . See Sect. 9.5.2.
}

\section*{Author's Proof}
\(\left[\begin{array}{l}1 \\ 1\end{array}\right]\) : bottom 0, go left, top 1.
The 18 commands in Textbox 9.2 contain all the instructions we need to add any 764 two binary numbers of arbitrary size. Importantly, this set of instructions can be 765 followed by a person who does not know what the symbols 0 and 1 stand for, let 766 alone what the binary number system is or what it means to add two numbers. You 767 might object at this stage that someone who follows these instructions mechanically 768 without understanding them probably runs a higher risk of making a mistake than 769 someone who knows what she is doing. But that does not concern us here since we 770 can allow ourselves the idealization of an error-free execution. We are not trying 771 to find some practical way to add two numbers. Our business is to decompose the 772 algorithm into as simple operations as possible. 773

From that point of view, there are still significant simplifications that can be 774 performed in our set of instructions. Perhaps most importantly, we have required 775 that three symbol spaces be read at the same time. This is not necessary, since we 776 can divide the instructions into even smaller parts. Each of the rules in Textbox 9.2777 can be replaced by a small series of even simpler rules, neither of which requires 778 that we read more than one symbol space at a time. For instance, we can begin in 779 the top row of each column (the row for carries) and read the number there. If it 780 contains a 1 , then the algorithm enters one state (with memory 1 from the top row), 781 otherwise it goes into another state (with memory 0 from the top row). In both cases, 782 we are instructed to go down one step. Suppose that we are performing the operation 783 in the above example. We then have to follow the second of these instructions, i.e. 784 we leave the top row in a state representing memory 0 .

We are now in the second row of the rightmost column (and in a state with 786 memory 0 ). We read the symbol in the new symbol space. What it contains 787 determines what we will do next and what new state we will enter. In this case, 788 since we read 1 we will be instructed to enter a state corresponding to "being on the 789 second row and having memory 1 ". This state instructs us to go one step downwards, 790 to the third row from the top in the same column. At the same time we are instructed 791 to enter a new state that (informally speaking) carries the information that we have 792 1 in memory.
When we arrive in the third row, we read the symbol there, which is 1 . This 794 determines the new state (which, informally speaking, ensures that we behave as we 795 should when we have 2 in memory). The instruction associated with this new state 796 requires that we go one step down and write the symbol 0 in the bottom row. \({ }_{797}\)

After this we have to go to the top row in the column to the left and write the 798 symbol 1 there. However, instead of doing this in one step, we can do it in five: First 799 we take one step to the left, then three separate steps up, and finally we write the 1800 in the appropriate place.

It is a fairly easy exercise to transform the instructions in Textbox 9.2 into a new 802 set of instructions based entirely on suboperations that are so small that we only read 803 one symbol space at a time and only move one step at a time. (It is a much more 804

\section*{Author's Proof}
(1) \(\left[\begin{array}{l} \\ 0 \\ 0\end{array}\right]\) : bottom 0, go left.
(10) \([1]\) : bottom 1, go left.
(2) \(\left[\begin{array}{l}0 \\ 1\end{array}\right]\) : bottom 1, go left.
(11) \(\left[\begin{array}{l} \\ 0\end{array}\right]\) : bottom 0, go left.
(3) \(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\) : bottom 1, go left.
(12) \(\left[\begin{array}{l}1\end{array}\right]\) : bottom 1, go left.
(4) \(\left[\begin{array}{l}1 \\ 1\end{array}\right]\) : bottom 0, go left, top 1 .
(13) \(\left[\begin{array}{l}1 \\ 0\end{array}\right]\) : bottom 1, go left.
(5) \(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\) : bottom 1, go left.
(14) \(\left[\begin{array}{l}1 \\ 1\end{array}\right]\) : bottom 0, go left, top 1 .
(6) \(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\) : bottom 0 , go left, top 1 .
(15) \(\left[\begin{array}{l}1 \\ 0\end{array}\right]:\) bottom 1 , go left.
(7) \(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\) : bottom 0, go left, top 1 .
(16) \(\left[\begin{array}{l}1 \\ 1\end{array}\right]\) : bottom 0 , go left, top 1 .
(8) \(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\) : bottom 1, go left, top 1 .
(17) \([1]\) : bottom 1, go left.
(9) \([0]\) : bottom 0 , go left.
(18)
[]\(:\) stop.

Textbox 9.2 An algorithm for adding two binary numbers

\section*{Author's Proof}
difficult exercise to do this in a way that requires as few states as possible.) From 805 the viewpoint of practical application, this division into extremely small subtasks 806 makes the addition of two numbers unnecessarily complicated. Since we are capable 807 of perceiving three symbols simultaneously, it is obstructive to only be allowed to 808 consider one symbol at a time. But again, what we are trying to achieve is not 809 practical convenience but a set of suboperations that are as simple as possible. And 810 we have now taken considerable steps in that direction. All that the computist needs 811 to be able to do is now to (1) read (only) the symbol in her present location, (2) 812 move one step, and (3) enter a new stage according to a simple rule that is based on 813 the previous state and the symbol that was read in it. Could it be done simpler? 814

Yes, it can. One major important simplification remains. As we have presented 815 it, this algorithm can be implemented on a checked paper that is only four squares 816 (symbol spaces) wide. Unlimited length is required so that we can add numbers of 817 unlimited length, but do we really need four rows? 818

One of the rows can easily be dispensed with. The top row, which contains the 819 carries, is not needed since the carries are "remembered" by the states anyhow. But 820 we can do even better than that. As shown in Fig. 9.1, if we tilt the columns then 821 we can represent the same operation on a strip of paper that has a width of only one 822 symbol space. It is not difficult to modify the instructions so that the operation can 823 be performed on only one row. (In this particular case, the operation will even be 824 simplified in this transformation, since we will only have to move in one direction, 825 from right to left.) 826

We have now arrived at a mechanism with the following components: 827
- A tape of unlimited length with linearly ordered symbol spaces, each of which 828 can contain a symbol from a finite alphabet (usually 0 and 1 ). 829
- A computist who always adheres to one of a finite set of specified states, and has 830 access to ("reads") only one symbol space at each time. 831
- Instructions that tell the computist at each stage what to do next. Given the 832 present state and the symbol in the accessed symbol space, (s)he is instructed 833 (1) to write a specified symbol in the presently accessed symbol space, or to 834 move one step to the left, or to move one step to the right, or to halt \({ }^{28}\); and (2) 835 what new state to enter. 836

After all these simplifications, the tasks of the computist are now so "mechanical" 837 that they can be performed by a machine. The mechanism described above is what 838 we now call a Turing machine. We have just seen that it can be used to add any two 839 numbers. What other algorithms can be executed by such a machine? Turing had a 840 simple answer to that question: All algorithms. Let us now have a close look at his 841 arguments for this bold claim.

\footnotetext{
\({ }^{28}\) Halting is dealt with in different ways in different versions of Turing machines. A common construction is to let there be a combination of a state and an accessed symbol for which there is no instruction. When the computist arrives at that combination (s)he is assumed to halt since she has no instruction on how to proceed.
}

\section*{Author's Proof}


Fig. 9.1 How to represent a workspace with three rows in a workspace with only one row

\subsection*{9.5.2 Turing's Analysis}

Alan Turing's analysis of computation was rather brief, and most of his article 844 was devoted to its mathematical development. Quite a few additions are needed to 845 make the picture complete. In the following presentation I will refer to supplements 846 offered in particular in work by Robin Gandy (1980) and Wilfried Sieg (1994, 2002, 847 2009), and also add some details that do not seem to have appeared previously in 848 the literature.

To understand Turing's analysis it is important to keep in mind that he was 850 not concerned with actual computability, which depends on our resources and our 851 mathematical knowledge. For instance, the 12 trillionth digit of \(\pi\) (digit number 852 \(12 \times 10^{12}\) ) was not actually computable in Turing's lifetime, but it seems to be so 853 today (Yee and Kondo 2016). Mathematicians stay away from such ephemeral facts, 854 and look beyond trivialities such as practical limitations. Like his colleagues, Turing 855 was interested in effective computability. \({ }^{29}\) A mathematical entity is effectively 856 computable if it would be computable if we had unlimited resources, such as time 857

\footnotetext{
\({ }^{29} \mathrm{Cf}\). Section 9.2.1. This term was apparently introduced by Alonzo Church (1936).
}

\section*{Author's Proof}
and paper. (The established term "effective" may be a bit confusing; the term 858 "potential" might have been better.)

Consider a function \(f\) that takes natural numbers as arguments. If we are 860 discussing actual computability, then we are concerned with the combination of 861 \(f\) and a number. Suppose that we have a procedure for calculating \(f(x)\) for 862 any \(x\). Then \(f(5)\) may be actually computable whereas \(f\left(10^{100}\right)\) is not since 863 its computation would require too extensive resources. (Currently this seems 864 to be the case if \(f(x)\) denotes the \(x\) th prime number.) In contrast, effective 865 calculability is a property of the function \(f\) itself. The difference between cal- 866 culating \(f(5)\) and \(f\left(10^{100}\right)\) is a matter of practical resources, and when dis- 867 cussing effective computability, we should assume unlimited resources. Similarly, 868 a mathematical statement that could only be proved with a proof that has more 869 symbols than there are particles in the universe would still be a provable statement 870 (Shapiro 1998, p. 276).
"Computing is normally done", said Turing, "by writing certain symbols on 872 paper." Turing (1937a, p. 249) In saying so he implicitly acknowledged that due 873 to limitations in human memory, we need aide-mémoires such as notes on paper 874 to support our computations. (Cf. above, Sect. 9.2.) He did not mention that other 875 (technological) devices than pencil and paper can be used for the same purpose, 876 for instance an abacus or pebbles on a counting-board. However, all such devices 877 provide us with a visual representation of symbols, and we can depict the same 878 symbols, standing in the same relationships to each other, on paper. It therefore 879 seems reasonable to assume that if we can perform a computation, then we can 880 perform it with symbols on paper as the only aide-mémoire.

He continued: "We may suppose this paper is divided into squares like a 882 child's arithmetic book." (Turing 1937a, p. 249) He did not explain why this is 883 a reasonable assumption, but it is not difficult to justify. When we make notes to 884 support a calculation, it is important not only which symbols we write but also in 885 what relations they stand to each other. These relations are largely represented by 886 their relative spatial positions. For instance, it makes a big difference if we write 887 " \(10+10=20\) " or " \(200+10=1\) " on the paper, although the symbols are the same. 888 The spatial relations between the symbols determine how we interpret them. Of 889 course we could have other arrangements on the paper than the traditional checked 890 pattern. Why not perform calculations on hexagon (honeycomb-patterned) paper? 891 Or some other more complex tessellation? Or on two or more papers that we move 892 over each other?

The answer is that we have no reason to believe that computing capabilities 894 could be increased in that way. For the computational procedure to be well-defined, 895 the impact of the relations between symbols will also have to be well-defined, and 896 therefore these relations must be unambiguously describable. The spatial relations 897 between symbols on a checked paper can be specified by saying that one symbol is 898 positioned for instance " 3 steps to the right and 1 step down", as compared to some 899 other symbol. Analogous (but perhaps more complex) descriptions will have to be 900 available for the spatial relations between symbols placed in some other pattern, if 901 these spatial relations should be usable in a computation. Such descriptions can be 902

\section*{Author's Proof}
written down, for instance in a long list on a checked paper. Although it may be 903 more time-consuming to base computations on such descriptions than on a more 904 visually appealing representation, it is difficult to see why it should not be feasible. 905 We can therefore conclude that Turing's assumption of a checked paper does not 906 restrict what calculations can be performed.

How large should the paper be? The answer to that question is quite simple, 908 provided that we are concerned with effective (not actual) computability. We must 909 be "able" (as a thought experiment) to deal with numbers of unlimited size, and 910 therefore we must follow Turing in assuming that there is no limit to the number of 911 squares on the tape.

Figure 9.1 showed how an operation on three rows in a squared exercise book 913 can be squeezed into a single row. Turing took a similar step, claiming that it can 914 always be taken:

Turing took the step from two- to one-dimensional calculation space in a rather 921 easy-going way, and this part of the argument is still in need of elucidation. As 922 Robert Gandy noted, it is "not totally obvious that calculations carried out in two (or 923 three) dimensions can be put on a one-dimensional tape" without losing any capacity 924 (Gandy 1988, pp. 82-83). The following argument may perhaps show why this has 925 usually not worried mathematicians: We saw above how an operation performed in 926 three rows can easily be transferred to only one row. We have to make sure that the 927 "states of mind" of our computist always, informally speaking, keep track of which 928 row is currently scanned. All instructions for moving around will have to be adjusted 929 accordingly. For instance, when we would move one step to left in the three-row 930 system we have to move three steps to the left on the tape. Now suppose instead 931 that we had an operation that used all the rows in a big exercise book with 60 rows. 932 This operation could be made one-dimensional in the same way as in Fig. 9.1. The 933 columns tilted to horizontal position would be sixty squares high, and the operation 934 of moving one step to the left would have to be replaced by sixty moves to the left. 935 But again, this is quite feasible, and the fact that it is impracticable does not matter 936 in a discussion of effective computability. The same applies to an "exercise book" \({ }_{937}\) with, say, a thousand or a million rows. 938

Turing also wrote:
I shall also suppose that the number of symbols which may be printed is finite. (Turing

By "symbols" he meant here types of symbols. He gave two reasons why there 942 should only be finitely many types of symbols. First, he claimed that if there is an 943 infinity of symbols, then there will be symbols that differ to an arbitrarily small 944 extent and, presumably, are therefore indistinguishable. Given the limitations of 945 human vision, this is a plausible argument, provided that there is a limit to the size 946

\section*{Author's Proof}
of the symbols. For instance, we can require that each symbol be small enough to 947 fit within one of the squares (symbol spaces) of the tape. We can divide each square 948 into so many pixels that human vision cannot distinguish between two symbols if 949 they coincide on the pixel level. And clearly, there cannot be an infinite number of 950 pixel combinations. However, this argument refers to physical limitations, which are 951 not preferred arguments in a mathematical context. If we presume that there are no 952 limits to the time available to the computist, why cannot we also assume that there 953 are no limits to her powers of perception?

Turing's second argument is much stronger. He observed that it is "always 955 possible to use sequences of symbols in the place of single symbols" (Turing 956 1937a, p. 249). Thanks to the positional system we can write arbitrarily large 957 numbers with just a few symbols (such as the ten digits \(0,1,2, \ldots, 9\) in the decimal 958 positional system). We can also introduce an unlimited number of variables in 959 a mathematical language, for instance denoting them \(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\). Turing 960 pointed out that strings of symbols "if they are too lengthy, cannot be observed at 961 one glance". For instance, "[w]e cannot tell at a glance whether 9999999999999999962 and 999999999999999 are the same". However, there is no need to tell this at a 963 glance. It is sufficient that a computist can compare the two numbers digit by digit 964 and thereby determine if they are the same. 965

As mentioned already in Sect. 9.5.1, when we have a finite number of symbols, 966 then we can encode them all in binary notation (but that is a step Turing did not 967 take in this article). Today's computers use ASCII, Unicode and other codings that 968 assign a digital number to each symbol. It has been rigorously shown that whatever 969 calculation can be performed by some Turing machine can also be performed by 970 a Turing machine that only has the two symbols 0 and 1 , one of which is also the 971 symbol for a blank square (Shannon 1956, pp. 163-165). 972

Turing seems to have taken it for granted that only one symbol at a time can 973 be written in a square (Turing 1937a, p. 231). That is a sensible restriction. Since 974 there can only be a finite number of distinguishable symbols, there can only be a 975 finite number of distinguishable combinations of symbols in a symbol space. \({ }^{30}\) We 976 can then treat each of these combinations as a symbol of its own. In a second step, 977 we can encode each of these "new" symbols in a binary code with one symbol per 978 square, as just described.

We have now, following Turing's analysis, established a minimal workspace that 980 is sufficient for the performance of all (effective) computational procedures: An 981 infinite tape consisting of squares in a row, each of which contains one of the two 982 available symbols. Let us now turn our attention to the work that will be performed 983 in that workspace. There are essentially four things that you do when computing: 984 You read symbols, write symbols, move your attention (and then typically also the 985 tip of your pen) between parts of the paper, and you keep track of what the rules of 986

\footnotetext{
\({ }^{30}\) This argument presupposes that there is only a finite number of different positions that a symbol can have within a symbol space. This is a reasonable assumption, given the function of symbol spaces, as explained above.
}

\section*{Author's Proof}
this particular calculation require you to do next. Before we consider each of these 987 activities in turn, two more general comments are in place.

In order to make his machine as simple as possible, Turing proposed that we 989 describe the actions of the computist as "split up into 'simple operations' which 990 are so elementary that it is not easy to imagine them further divided" (Turing 991 1937a, p. 250). In this style of analysis, the simplicity of the individual operations is 992 always the top priority. A long series of small and very simple operations is always 993 considered better than a single, somewhat more complex operation. This should be 994 kept in mind in the discussion of all four of these activities. \({ }^{31}\)

The other comment concerns an assumption that Turing seems to have made 996 implicitly, namely that the operations performed by the computist take time. If each 997 component of a computation could follow immediately upon its predecessor, so that 998 an unlimited number of them could be performed "in no time", then we would be 999 able to complete an infinite number of operations. This would make a big difference 1000 for what mathematical problems we could solve. \({ }^{32}\) In fact, it would be sufficient for 1001 the operations to go successively faster in the way described by R.M. Blake in 1926: 1002 The first in an infinite series of operations takes half a second, the second operation 1003 \(1 / 4 \mathrm{~s}\), the third \(1 / 8\) etc. Then the whole infinite series will be finished in one second 1004 (Blake 1926, p. 651). Or, as Bertrand Russell said the year before Turing published 1005 his article: "Might not a man's skill increase so fast that he performed each operation 1006 in half the time required for its predecessor? In that case, the whole infinite series 1007 would take only twice as long as the first operation.' (Russell 1936, p. 144). Turing's 1008 analysis tacitly excludes such unlimited acceleration of activities (although it would 1009 seem like the epitome of "effective computation"). We should assume that there is 1010 some non-zero stretch of time that each step in the calculation takes as a minimum. 1011

Reading: Humans can perceive several symbols simultaneously. This is how we 1012 read a text; only a novice reader spells her way through a text letter by letter. But 1013 there is a limit to how much we can take in at the same time. You are just now 1014 perceiving whole words at a time in this text (and it would be very difficult to follow 1015 it if you had only one letter at a time presented to you). However, neither you nor 1016 anyone else can ingest whole pages at a time. The situation is similar for someone 1017 reading inputs or intermediate results in a computation. Turing wrote: 1018

We may suppose that there is a bound \(B\) to the number of symbols or squares which the 1019 computer can observe at one moment. If he wishes to observe more, he must use successive 1020 observations. (Turing 1937a, p. 250)

Suppose that the computist can simultaneously read at most ten adjacent symbols. 1022 Then we can just as well assume that she can only read one symbol at a time, but 1023

\footnotetext{
\({ }^{31}\) One aspect of this priority for simplicity is that each operation is assumed to affect only a minimal part of the tape. This feature can be described as a locality condition or, better, a set of locality conditions for reading, writing, and moving (Sieg 2009, pp. 584-587).
\({ }^{32}\) Based on this omission in Turing's text, Copeland (1998) claims that Turing machines can compute Turing-incomputable functions, namely if they perform infinitely many operations in finite time.
}

\section*{Author's Proof}
moves across ten squares and remembers the pattern. (We will return below to how memory can be organized in a Turing machine.) The same applies to any number of adjacent symbols. Therefore, without much ado, we can assume that only one symbol space at a time can be read.
\[
\begin{array}{lll}
\text { At any moment there is just one square... which is 'in the machine'. We may call this } & 1028 \\
\text { square the 'scanned square'. The symbol on the scanned square may be called the 'scanned } \\
\text { symbol'. The 'scanned symbol' is the only one of which the machine is, so to speak, } & 1029 \\
\text { syme } & & \\
\text { 'directly aware'. (Turing 1937a, p. 231) }
\end{array}
\] 1027

Turing was well aware that sometimes, in a calculation, you need to read something that is far away from the symbols you are currently working on. You may for instance have to pick up an intermediate result that you obtained several pages ago. But Turing pointed out that this can easily be done if we introduce a special symbol sequence adjacent to the information that may have to be retrieved later. The information can then be found by going back step by step, searching for that1032 1033 1034 1035 sequence (Turing 1937a, p. 251).

Writing: As a child I was much amused by a comic strip in which Goofy, who had for some reason temporarily become a genius, wrote poems in Sanskrit with one hand and at the same time mathematical proofs with the other. But that was a truly 1040 superhuman feat. Although we typically read more than one symbol simultaneously, it is uncommon for us humans to write more than one symbol at a time. The established procedure for writing a sequence of symbols is to write them one at a time. Unsurprisingly, Turing chose to restrict writing to one symbol at a time, just as he had done for reading. His arguments for restricting reading in this way applies to writing as well:
\(\begin{array}{ll}\text { We may suppose that in a simple operation not more than one symbol is altered. Any other } & 1048 \\ \text { changes can be split up into simple changes of this kind. (Turing 1937a, p. 250) } & 1049\end{array}\)
Since the spatial relations between symbols are important, it is essential to write 1050 each new symbol in the right place. Turing wrote: 1051

The situation in regard to the squares whose symbols may be altered in this way is the same 1052 as in regard to the observed squares. We may, therefore, without loss of generality, assume 1053 that the squares whose symbols are changed are always 'observed' squares. (Turing 1937a, 1054 p. 250)

Since he also assumed that there is at each moment only one observed square, it follows that writing will have to take place in that square. Should there be reason to write in another square than that which is observed, then that can be achieved by moving first and then writing.

In the last quotation Turing used the term "alter" for writing. This means that writing need not consist only of filling in blank squares. Overwriting is also allowed. In other words, the ideal computist performing an effective computation does not 1057 1058 1059 1060 only have a pencil, she has an eraser as well. \({ }^{33}\)

\footnotetext{
\({ }^{33}\) The option of erasing a symbol to replace it by a blank square was not included in Turing's account, and it does not either seem to have had any role in later versions of the Turing machine.
}

\section*{Author's Proof}

Moving: Although only one symbol space at a time can be attended to, it must 1064 be possible to move around so that different symbol spaces can be read and written 1065 into.

There are at least two ways in which longer moves can be performed in a precise 1069 manner. First, a series of instructions can, in combination, specify the number of 1070 steps in a movement. For instance, moving three steps to the right can be achieved 1071 with a series of three instructions:
(i) move one step to the right and then enter a state encoding that two steps to the right remain to be made,right remains to be performed, and
(iii) move one step to the right.

Secondly, an iterated move can be limited by a sequence of symbols that, if read in that order, will put an end to the movement. For instance, a series of moves to the right can be discontinued as soon as three 1's in a row have been scanned.

Keeping track: We have now described the actions that a Turing machine can perform. It remains to describe how these actions are controlled. Turing wrote several years later:

This was not meant as an endorsement of a deterministic view of the universe.

\section*{Author's Proof}

\section*{The behaviour of the computer at any moment is determined by the symbols which he is}

We therefore need a set of instructions, one for each combination of a state of mind 1103 and a scanned symbol. The instruction should tell us what to do, and what state of 1104 mind to enter after having done it. For simplicity, we can assign numbers to the 1105 states of mind so that they can easily be referred to. An instruction can then have 1106 the following form:

If in state 12 reading 0 , then write 1 and enter state \(14 . \quad 1108\)

\section*{In Textbox 9.3, a simple Turing machine is presented that subtracts the number 1 1109} from any positive integer in digital notation. 1110

How many states of mind are needed? The more complex a computation is, the 1111 more states may be required. But Turing put a limit to their numerosity: 1112

We will also suppose that the number of states of mind which need be taken into account is 1113 finite. (Turing 1937a, p. 250)

For this he gave two reasons. First:
The reasons for this are of the same character as those which restrict the number of symbols. 1116 If we admitted an infinity of states of mind, some of them will be 'arbitrarily close' and will 1117 be confused. (Turing 1937a, p. 250)

This is not a very strong argument. Suppose that we have an infinite series of states of mind. We can call them \(S_{1}, S_{2}, S_{3}, \ldots\) They can be constructed so that they all 1120 behave differently. This would make them distinguishable. And although it would take an enormous amount of time to find a state with a very high number in a table of the states, such a search task is well within the presumed capacity of a Turing 1121 machine. Turing's second argument was much stronger.

In order to keep track of how many times a specific operation has been performed, we may introduce a series of states, one for having done it once, another for having 1129 done it twice, etc. However, if we want the operation to be performable an unlimited 1130 number of times, then that solution is impossible unless we allow an infinite number of states of mind. But there is another solution. We can introduce a "counter" on the 1132 tape together with a mechanism that adds 1 to the counter each time the operation 1133 has been performed. In this way, we can keep track of an unlimited number of times 1134 that the operation has been performed, while still having a finite number of states of 1135 mind.

\footnotetext{
\({ }^{34}\) As we saw above, Turing argued that the process could be so constructed that only one symbol at a time is observed. Consequently, "symbols" can be replaced by "symbol" in this statement. Cf. Turing (1937a), pp. 231-232, 251 and 253-254.
}

\section*{Author's Proof}

The machine has three states and the following instructions:
If in state 1 reading 0 , then write 1 and enter state 2 .
If in state 1 reading 1 , then write 0 and enter state 3 .
If in state 2 reading 1 , then move left and enter state 1 .
If in state 3 reading 0 , then move left and enter state 3 .
If in state 3 reading 1 , then move left and enter state 3 .
The machine starts in state 1 , reading the rightmost digit of the number. It halts when it reaches a condition for which it has no instruction. (Alternatively,we can add instructions making it halt when reading a blank.) In this example, it subtracts 1 from 20.


Textbox 9.3 A simple Turing machine that subtracts 1 from a number in binary notation

\section*{Author's Proof}

\begin{abstract}
Another interesting argument for allowing only a finite number of states of mind 1137 was introduced by Stephen Kleene (1909-1994):

Let us have a try at making sense out of there being a potential infinity of states of mind by a
\end{abstract}

According to Kleene, the very notion of an algorithm or an effective computation 1149 "involves its being possible to convey a complete description of the effective 1150 procedure or algorithm by a finite communication, in advance of performing computations in accordance with it" (Kleene 1987, p. 493). \({ }^{35}\) This is certainly an essential component of what we mean by an algorithm: it must be possible to apply unambiguously, and therefore it must also be possible to specify and communicate.

Hopefully, the arguments in this section - most of them Turing's own, but some added later on - are sufficient to show that he provided a highly convincing account of what it means for a mathematical entity to be computable, or obtainable by performing an algorithm. It should again be emphasized that Turing's analysis was aimed at determining what a human can do by following an algorithm, i.e. a fully rule-bound and deterministic procedure for symbol manipulation. The hypothetical machine that emerged from this analysis showed, as he saw it, that anything a human computist can do by just following instructions, can also be performed by a certain type of machine. Later, after several years' experience of the development of digital computers, he referred to human computing as the model on which they were based:

\subsection*{9.5.3 The Universal Machine}

In addition to his path-breaking analysis of the notion of a computation, Turing's 1173 article contained another equally important achievement, namely the construction of 1174 a "universal" Turing machine that can perform all calculations performable by any 1175

\footnotetext{
\({ }^{35}\) Cf. Hofstadter (1979), p. 562.
}

\section*{Author's Proof}
other Turing machine. To see how this is possible, we can begin by noting that in order to specify a Turing machine it is sufficient to provide a list of all the rules that govern its performance. For instance, the Turing machine presented in Textbox 9.3 is specified by the five rules that are given in the box. Each of these rules can easily be converted into a list of four numbers. If we use 0 to denote "write 0 ", 1 for "write 1 ", and 2 for " \(g o\) left", then the five rules in the example can be rewritten as follows: 1181
\begin{tabular}{ll}
\(\langle 1,0,1,2\rangle\) & 1182 \\
\(\langle 1,1,0,3\rangle\) & 1183 \\
\(\langle 2,1,2,1\rangle\) & 1184 \\
\(\langle 3,0,2,3\rangle\) & 1185 \\
\(\langle 3,1,2,3\rangle\) & 1186
\end{tabular}

It is fairly easy to encode these rules in binary notation and put them on a tape in 1187 such fashion that the rule what to do in a specific situation (such as "in state 2, 1188 reading 1") can be retrieved unambiguously. The same tape can also contain the 1189 input sequence that we want to run on this machine (such as 10100 in our example). 1190 A universal Turing machine reads the first symbol of the input and then searches the 1191 tape for the instruction that is applicable in this case, executes that instruction, reads 1192 the symbol in the symbol space where it is now located, searches for the appropriate 1193 instruction, executes it, etc. Turing showed in detail how a universal machine can be 1194 constructed, providing a list of the rules determining its operations (Turing 1937a, 1195 pp. 243-246). A couple of years later, when he had experience of building digital 1196 computers, he described the universal machine as follows: 1197

If we take the properties of the universal machine in combination with the fact that machine 1198 processes and rule of thumb processes are synonymous we may say that the universal 1199 machine is one which, when supplied with the appropriate instructions, can be made to 1200 do any rule of thumb process. This feature is paralleled in digital computing machines such 1201 as the ACE. They are in fact practical versions of the universal machine. (Turing [1947] 1202 1986, pp. 112-113) \({ }^{36}\)

The construction of a universal machine makes it possible to use one and the same 1204 machine for all computations. As we saw above, this was a step essentially foreseen 1205 by Charles Babbage and Ada Lovelace, but it was nevertheless an important 1206 achievement. Turing wrote in 1948: 1207

The importance of the universal machine is clear. We do not need to have an infinity 1208 of different machines doing different jobs. A single one will suffice. The engineering 1209 problem of producing various machines for various jobs is replaced by the office work of 'programming' the universal machine to do these jobs. (Turing [1948] 2004, p. 414)

In his 1937 paper, Turing used the universal machine to prove that the Entschei- 1212 dungsproblem is unsolvable. In order to do so he had to come up with a problem 1213 that cannot be solved by any algorithm. Note that with his encoding, every algorithm 1214 corresponds to a Turing machine that can in its turn be represented by a set of 1215 instructions on a tape (which can be run on the universal machine). 1216

\footnotetext{
\({ }^{36}\) Cf. Turing ([1947] 1986, p. 107, 1950, p. 436).
}

\section*{Author's Proof}

For any Turing machine we can ask the question: If we run this machine, starting with an empty tape, will it ever halt, or will it go on running for ever? Is there 1218 some algorithm for solving this problem for any Turing machine? If there is, then 1219 that algorithm must itself be representable as a Turing machine. Let us call that 1220 machine \(H\). If we feed a tape representing some Turing machine into \(H\), then (we \({ }_{1221}\) can presume) it gives us the answer 1 if that machine halts, and 0 if it does not. \({ }_{1222}\)

We can now construct another machine \(H^{+}\)that is actually \(H\) with an extra 1223 feature at the end of the process. Whenever \(H\) prints 1 , then \(H^{+}\)enters a loop. Whenever \(H\) prints 0 , then \(H^{+}\)halts. Or, more succinctly: \({ }_{1225}\)
- When \(H^{+}\)is fed with the code for a Turing machine that halts, then \(H^{+}\)does not \({ }_{1226}\) halt. \({ }_{1227}^{1227}\)
- When \(H^{+}\)is fed with the code for a Turing machine that does not halt, then \(H^{+}{ }_{1228}\) halts. 1229

Like all other Turing machines, \(\mathrm{H}^{+}\)can be represented by a code on a tape. Let us 1230 now feed the code of \(H^{+}\)into itself. What will happen? It follows directly that if 1231 \(H^{+}\)halts, then it does not halt, and if it does not halt, then it halts. Thus it is logically 1232 impossible to build a machine like \(H^{+}\). But if \(H\) could be built, then it would be \({ }_{1233}\) very easy to build \(H^{+}\). We can therefore conclude that \(H\) cannot either be built. If there was some algorithm for solving the halting problem, then it would be possible to build \(H\). Consequently, there is no algorithm for solving the halting problem.

\subsection*{9.5.4 The Reception}

Alan Turing was far from the only logician in search of a precise specification of effective computability. Already in early 1934, the American logician Alonzo Church (1903-1995) speculated that a general class of number-theoretical functions, called the \(\lambda\)-definable functions, might coincide with the effectively computable functions (Sieg 1997). His PhD student Stephen Kleene was convinced "overnight" that this must be correct (Kleene 1981, p. 59), but others were less easily convinced.
considered the proposal to be quite unsatisfactory. In spite of Gödel's resistance,
Church presented his proposal to the American Mathematical Society in April 1935 and published it the following year (Church 1936). But Gödel remained unconvinced.

In an appendix to his 1937 paper, Turing showed that his and Church's definitions coincided. In other words, the \(\lambda\)-computable functions coincided with the functions 1248 computable on a Turing machine. This meant that there were in fact three equivalent characterizations of computability, since the \(\lambda\)-computable functions were already

\section*{Author's Proof}
known to coincide with the generally recursive functions, a class defined by Jacques \({ }_{1253}\) Herbrand (1908-1931) and Gödel. \({ }^{37} 1254\)
Colleagues immediately realized that Turing's analysis was superior to the 1255
other proposals in terms of its intuitive plausibility. Kurt Gödel, who had not 1256
been convinced by Church's proposal, was persuaded by Turing's argument. \({ }^{38}{ }_{1257}\)
Alonzo Church wrote that Turing's proposal had, in comparison with his own, 1258 "the advantage of making the identification with effectiveness in the ordinary (not 1259 explicitly defined) sense evident immediately - i.e. without the necessity of proving 1260 preliminary theorems." \({ }^{39}\) (Church 1937, p. 43). He also wrote: 1261
[A] human calculator, provided with pencil and paper and explicit instructions, can be 1262
regarded as a kind of Turing machine. It is thus immediately clear that computability, 1263
so defined, can be identified with (especially, is no less general than) the notion of 1264
effectiveness as it appears in certain mathematical problems (various forms of the Entschei- 1265
dungsproblem, various problems to find complete sets of invariants in topology, group 1266
theory, etc., and in general any problem which concerns the discovery of an algorithm). 1267
(Church 1937, pp. 42-43) 1268

In a textbook published in 1952, Stephen Kleene introduced the term "Church's 1269 Thesis" for the identification of effective computability with \(\lambda\)-computability, Tur- 1270 ing computability and the other equivalent definitions (Soare 2007, p.708). It is now 1271 more commonly called the Church-Turing thesis. Its formal status in mathematics 1272 is not entirely clear, but a proposal by Robert Soare is worth mentioning. He \({ }_{1273}\) compares the Church-Turing thesis to other precise mathematical explications of 1274 vague concepts that have become generally accepted, such as the definition of a 1275 continuous curve and that of an area. Soare notes that these are now "simply taken 1276 as definitions of the underlying intuitive concepts", thus indicating that we might 1277 think similarly of the Church-Turing thesis (Soare 1996, p. 297). 1278

The thesis specifies what can be achieved by following exact instructions. As 1279 Kurt Gödel was eager to point out, mathematics is much more than that: 1280

Turing's work gives an analysis of the concept of 'mechanical procedure' (alias 'algorithm' 1281
or 'computation procedure' or 'finite combinatorial procedure'). This concept is shown 1282
to be equivalent with that of a 'Turing machine'.. Note that the question of whether 1283
there exist finite non-mechanical procedures not equivalent with any algorithm, has nothing 1284
whatsoever to do with the adequacy of the definition of 'formal system' and of 'mechanical 1285
procedure'.. Note that the results mentioned. . . do not establish any bounds for the powers 1286
of human reason, but rather for the potentialities of pure formalism in mathematics. (Gödel 1287
1964, pp. 72-73) \({ }^{40}\)

\footnotetext{
\({ }^{37}\) Several other equivalent characterizations have been added to the list, first of them Emil Post's (1936) proposal that had some elements in common with Turing's but was conceived independently. As clarified by Soare (1996, p. 300), Post's ideas were much less developed than those presented by Turing.
\({ }^{38} \mathrm{He}\) wrote later that he was "completely convinced only by Turing's paper". (Letter from Gödel to Georg Kreisel, May 1, 1968, quoted by Sieg (1994, p. 88)).
\({ }^{39}\) The reference about the necessity of proving preliminary theorems refers to a technicality clarified by Sieg (1994, p. 112).
\({ }^{40}\) See also Gödel (1958).
}

\section*{Author's Proof}

\subsection*{9.6 What Machines Can Do}

When Turing wrote his famous paper, computation was still a process performed by humans. Even if the computist used a mechanical desk calculator, (s)he was always involved in every step of the process. Today, large calculations are almost invariably performed on machines. It is therefore appropriate to ask whether Turing's characterization of (effective) computations is still valid. It applies to common electronic computers as we know them, since their capacities are in principle those of a (fast) Turing machine with a finite tape. But what about other types of machines? Can we construct a machine that is capable of making computations that a Turing machine cannot perform?

\subsection*{9.6.1 Two Elementary Insights}

Many discussions on what computations can be performed by machines have gone wrong due to the lack (or neglect) of two rather elementary insights.

First, the notion of an effective computation by a machine is an idealization, just as the notion of an effective computation by a human (Shapiro 1998, p. 275). In fact, no physical machine can even perform all the computations performable by a Turing machine, since the latter is an idealized machine that can operate on (finite) numbers so large that they cannot be represented in the universe. \({ }^{41}\) Therefore, a machine with greater computing powers than a Turing machine cannot be an actual physical machine. It will have to be a hypothetical machine, although it may be describable as an idealized version of some type of physical machine. As illustrated in Fig. 9.2, the hypothetical machine will then stand in the same relationship to that physical machine as a Turing machine to an actual electronic computer. (It will, for instance, have to be absolutely error-free and provided with unlimited memory.) Importantly, even if this "idealized other machine" has greater computing powers than an "idealized electronic computer" (i.e. a Turing machine), it does not follow that the actually existing other machine has greater computing powers than the actually existing electronic computer. 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

The following proposal for an extension of the Church-Turing thesis to computation by machines is not untypical:

Physical Church-Turing thesis: The class of functions that can be computed by any physical
system is co-extensive with the Turing computable functions. (Timpson 2007, p. 740)
This proposed thesis is followed by a discussion of how it could be falsified by the construction of various powerful computing devices. But that is an unnecessary discussion. As it stands, the thesis is obviously false since no physical device can

\footnotetext{
\({ }^{41}\) According to one estimate, the universe can register up to \(10{ }^{90}\) bits (Lloyd 2002). Obviously, the practical limitations for a computing device ever to be built are much stricter.
}

\section*{Author's Proof}


Fig. 9.2 The relationships between physical computers and idealized computers with unlimited capacities. A machine that transcends the powers of a Turing machine cannot be a physical "other computing device" but must be an "idealized other computing device" that cannot be physically realized
have the capacity of a Turing machine to produce and operate on symbol sequences of unlimited size.

The second elementary fact is that computation is a technological operation, 1326 not just a physical event. In technology, contrary to physics, human agency and intention are indispensable. Leaving them out can have absurd consequences, as can be seen from the so-called pancomputationalist standpoint, according to which every physical system implements every computation. (Shagrir 2012) For instance, the A4 sheet that I have in front of me represents a calculation of \(\pi\), since if its long side is measured in a unit corresponding to about 9.45 cm , then it is 3,14 units long. (Pancomputationalism does not get better than this, and is not worth being taken seriously.)

Computation is a process into which an intelligent agent enters an input, and receives an output. The process has to be reliable, repeatable, and as Piccinini (2015, p. 253) pointed out, settable in the sense that "a user sets the system to its initial state and feeds it different arguments of the function being computed", and then receives the appropriate outputs.1327

\section*{Author's Proof}

\subsection*{9.6.2 Computativeness}

We can categorize proposed methods for exceeding Turing computatibility accord1341 ing to two dimensions. One of these is computativeness, the degree to which the 1342 operation in question is or at least resembles a computation. I propose that we \({ }_{1343}\) distinguish between three degrees of computativeness. 1344

The highest degree requires that the process is exactly characterized in predeter- \({ }^{1345}\) mined, consecutive small steps, just like an ordinary mathematical algorithm. This 1346 is a property that ordinary digital computers have, as noted by Turing in \(1950 . \quad 1347\)

The digital computers considered in the last section may be classified amongst the 'discrete 1348 state machines'. These are the machines which move by sudden jumps or clicks from 1349 one quite definite state to another. These states are sufficiently different for the possibility 1350 of confusion between them to be ignored. Strictly speaking there are no such machines. 1351 Everything really moves continuously. But there are many kinds of machine which can 1352 profitably be thought of as being discrete state machines (Turing 1950, p. 4394) 1353

There is an obvious problem with the idea of a machine that performs Turing1354 incomputable operations with this high degree of computativeness: If its operations are performed step by step in this way, then they can be checked but a human computist, and then why cannot they also be performed by a computer or by a Turing machine?

One possibility would be that the machine has capacities for parallel computing 1358

One possibility would be that the machine has capacities for parallel computing 1359 that human computists lack. This option was carefully investigated by Robin Gandy (1980). He assumed that a hypothetical physical computing device performs its operations in discrete and uniquely determined steps. Massively parallel operations are allowed, but the machine must satisfy two physical conditions: There is a lower limit on the size of its smallest parts, and there is also a limit (such as the speed of light) on the speed of signal transmission between its parts. Gandy concluded that whatever can be computed by such a machine, working on finite data according to a finite set of instructions, is Turing computable.

The second degree of computativeness is represented by an input-output device that does not operate in describable discrete steps. Such a device could be called a "black box", but in order to rely on it we would have to know how it works and have very good reasons to believe that it performs the computation accurately.
The major problem with such a device would be that if we rely on it, then our reliance is based on physical rather than mathematical knowledge. According to the traditional view, mathematics cannot be based on empirical observations, since mathematical knowledge must have a type of certainty that cannot be achieved in empirical science. If a mathematical result relies on a computation that we cannot follow in detail, then it may not be possible to check its validity with mathematical means. Our reliance on it would have to depend on some physical theory, and this would add a component of uncertainty that is outside of the purview of mathematics

\footnotetext{
\({ }^{42}\) Charles Babbage put much effort into making his computing machines operate by switching reliably between discrete states (Swade 2011b, pp. 67-70).
}

\section*{Author's Proof}
\begin{tabular}{l} 
- unless that theory has been "certified as being absolutely correct, unlike any 1380 \\
existing theory, which physicists see as only an approximation to reality" (Davis 1381 \\
\hline 1300
\end{tabular} 2006, p. 130).

But on the other hand, traditional belief in mathematical certainty is arguably a 1383 chimera. There is ample historical evidence that published work by highly respected 1384 mathematicians sometimes contains serious mistakes (Grcar 2013). For all that we 1385 know, the probability of a mistake in a very complex mathematical proof may be so \({ }_{1386}\) high that its veracity is more uncertain than that of some of our physical theories. 1387 Whether we would be prepared to rely on a device with the second degree of 1388 computativeness will therefore depend on our standpoint in a highly contentious 1389 philosophical issue: Should the reliability of mathematical theorems be judged 1390 according to our best estimates of the probability of error, or should we uphold 1391 the traditional separation between mathematical and empirical knowledge? 1392

The third and lowest degree of computativeness is represented by physical events 1393 that cannot be harnessed in an input-output computational device. As argued in the 1394 previous section, such a physical event is not, properly speaking, a computation or a 1395 computational event. However, much of the discussion on computations beyond the 1396 bounds of Turing computability has referred to such events. The following quotation 1397 is far from unrepresentative of the discussion: 1398

I can now state the physical version of the Church-Turing principle: 'Every finitely 1399 realizable physical system can be perfectly simulated by a universal model computing 1400 machine operating by finite means.' (Deutsch 1985, p. 99)

On this interpretation, any physical phenomenon which we cannot (currently) 1402 describe adequately with Turing computable functions would refute the physical 1403 version of the Church-Turing thesis. However, simulation and modelling are very 1404 different from computation. That we lack means for simulating a natural process 1405 certainly does not imply that we can use that process for making a calculation. We 1406 should therefore regard this type of events as (at most) raw material from which a 1407 computing device can be constructed.

\subsection*{9.6.3 Corroboration}

The second dimension is corroboration, the degree to which the actual functioning of the potential computing device has been demonstrated. Here, again, three levels are appropriate. The highest degree of corroboration is an actually working computer. The next highest degree is a device for which there is a proof of concept, but still no working prototype. In such cases, the physical principles underlying the device are well-known and have been sufficiently demonstrated, but significant work remains to harness them in a practically useful device. Currently, quantum computation is an example of this. (It is expected to speed up some 1417 computations, but not to transcend Turing computability. See Hagar and Korolev

\section*{Author's Proof}


Fig. 9.3 Two dimensions for the evaluation of proposed computational devices. Computativeness is represented on the vertical and corroboration on the horizontal dimension. The white square represents actual computing devices. The light grey area represents hypothetical computing devices. The dark grey area represents vague speculations about such devices
without sufficient knowledge of the physical conditions that have to be satisfied for the device to be realizable. As was noted by Itamar Pitowsky (2007, p. 625), compatibility with a single physical theory, such as relativity theory, is "a very weak notion of physical possibility". However, since it is often referred to in these \({ }_{1423}\) discussions we have to include it in our deliberations.1421

In Fig. 9.3, the two dimensions for evaluating computational devices have been 1425 combined. Let us now have a look at two of the hypothetical devices that have most frequently been discussed in the debate on whether computation transcending 1426 Turing computability is possible.

\subsection*{9.6.4 Two Examples}

Mark Hogarth (1994) proposed what is probably the most discussed computational method intended to transcend Turing computability. Under certain conditions that are compatible with the laws of general relativity, there can be two trajectories from one point in space-time to another. One of these trajectories - we may call it the 1432 Endless Road - takes infinitely long time, whereas the other - we may call it the Shortcut - takes only finitely long time. You can then, or so it is said, start a Turing 1434 machine and send it along the Endless Road. Having done that, you take the Shortcut

\section*{Author's Proof}
to the place where the two trajectories meet. There you will find out what the Turing machine achieved in infinite time. This would seem to be a nice way to solve the halting problem and a host of other problems that cannot be solved in the usual way since we cannot compute for ever and yet receive the outcome.

But does it work? Well, there are a few problems. For instance, a machine that is run for infinite time will need an infinite supply of energy. Like all other machines it will have a non-zero and possibly increasing probability of failure, which means that it is sure to malfunction within infinite time (Button 2009, pp. 778-780). There are also some additional trifles to deal with, such as locating the particular type of region in space-time (if it exists), and finding a reliable carrier that brings the machine along the Endless Road to the meeting place that was decided an infinitely long time ago.

1440

This construction is a clear case of the lowest degree of corroboration: mere compatibility with one particular physical theory, namely, in this case, relativity theory. But if it worked, it would operate through a discrete, stepwise process, so we should place it in the rightmost square in the top row in Fig. 9.3.

Another often discussed example is based on the so-called three-body problem in classical mechanics. The problem is very simple to state: Suppose that we have three physical bodies in space. We know their masses, and we also know what positions, velocities, and directions of movement they have at a particular point in time. The three-body problem is to predict the positions of all three bodies at all future points in time. In its general form the problem has no known solution. Georg Kreisel (1923-2015) proposed that some cases of the three-body problem may lack a Turing computable solution (Kreisel 1974, p. 24). \({ }^{43}\) But here it is essential to distinguish between the Newtonian model of mechanics, in which bodies are represented by point masses and velocity is unlimited, and the real physical world. For instance, Zhihong Xia has shown that in the corresponding five-body problem, one of the bodies could be sent off at infinite speed (Saari and Xia 1995). This will of course not happen in real life. It is an anomaly of the model. More generally speaking, mathematical representations of physical systems should not be confused with these systems themselves. Notably, "incomputability is just a property of the mathematical way of representing physical systems", not a property of the actual physical systems (Cotogno 2003, p. 186).

No practically realizable many-body constellation with uncomputable properties 1469 appears to have been presented. Furthermore, if such a constellation were to 1471 be brought about, it would not be an input-output device but just a physical 1472 phenomenon which could not be simulated by a computable function. We must 1473 therefore put this type of example in the right-most square at the bottom line of 1474 Fig. 9.3.

These are just two examples, but they are among the most promoted ones. Most 1476 of the proposals for computations beyond the limit of Turing computability fail in 1477 a very elementary respect: No other proof is given of their realizability than that 1478

\footnotetext{
\({ }^{43}\) Cf. Smith (2006).
}

\section*{Author's Proof}
they are compatible with a particular physical theory. In addition, most of them lack the input-output relationship and the settability that are characteristic of anything that anyone, outside of this debate, would call a computer. Whether more promising proposals will come up in the future is, of course, an open issue.1480

1482

\subsection*{9.7 Conclusion}

Let us summarize some of the main themes discussed in this chapter. Mathemati1484 cians in ancient civilizations were engaged in two major pursuits. One was to prove \({ }_{1485}\) theorems, i.e. general statements about mathematical subject matter. The other was 1486 to construct algorithms, procedures for solving various classes of problems. An 1487 algorithm is a rule-bound and completely determinate procedure on symbols that 1488 can be performed "mechanically". Algorithms were invented for simple tasks such 1489 as the basic arithmetic operations, but also for a wide variety of more advanced 1490 tasks. In a sense, algorithms are the technology of mathematics. 1491

Beginning in ancient Greece, theorem-proving became the dominant activity in 1492 European mathematics. The construction of algorithms was a subsidiary and less 1493 esteemed activity. But at least since the thirteenth century, scholars have worked 1494 hard to find ways to reduce all form of human reasoning to simple procedures in 1495 the style of an algorithm. Major intellectuals such as Francis Bacon and Gottfried Wilhelm Leibniz were deeply engaged in these activities, and considerable efforts - including the construction of logic-friendly artificial languages - were spent on the project. But not much success was registered until scholars turned to the more limited task to encode mathematical reasoning, rather than reasoning in general, in a strictly formalized system. 501
In the second half of the nineteenth century, logicians developed new and more 1502 powerful logical languages. Although still insufficient for most forms of human reasoning, the new languages were sufficient to encode mathematical reasoning. Mathematical axioms and theorems could be expressed as logical formulas, without any need for natural language. Proofs could take the form of lists of such logical statements, beginning with the axioms and ending with the theorem. Each item on the list would have to follow from its predecessors according to a set of derivation rules. These rules carried instructions for simple, rule-bound symbol manipulations, just like classical algorithms.

These achievements came at a most timely occasion since two of the foremost mathematical disciplines, analysis and geometry, had severe foundational problems. The new logic offered a way to put these and other mathematical disciplines on firm foundations. The problem how to construct algorithms moved from the periphery of mathematical research to a central role in the foundations of the discipline.

In 1937 Alan Turing provided a characterization of routine symbol manipulations. Every such operation that a human can perform can be reduced to a set of very simple, truly "mechanical" operations. These operations were in fact also

\section*{Author's Proof}
mechanical in another sense: They can be performed by a machine. A digital computer can do everything that a human can do routinely (and do it much faster).

Mathematical operations such as computations and proofs have important fea- 1521 tures in common with technological processes. They are intentional, contrary to 1522 most other physical events. If a storm brings together a pile of six pebbles with 1523 another pile that has eight pebbles, it has not performed a computation - and neither 1524 have I if I just raked together two piles of pebbles without reflecting on their 1525 numbers. A physical process that takes place independently of anyone's intentional 1526 action is neither a technological nor a mathematical process. Unfortunately, physical events involving no one's intentions have often been confounded with computations.

Furthermore, both mathematical and technological processes are required to be reliable. This requirement is usually stricter in mathematics than in technology. A mathematical process such as a computation has to yield the right result on each and 1531 every occasion when it is implemented according to the instructions.

1532
A third property of interest is lucidity. It is an advantage if we know how a 1533 technological process works, not only that it works. However, this is not an absolute criterion in technology, and reliable technologies have been used without much understanding of why and how they work (Norström 2013). In mathematics, to the contrary, lucidity is considered to be an absolute criterion. We expect to have full access to computations and proofs so that we can check them. This creates problems for proposals to perform computations in physical systems that we cannot follow stepwise as we can with ordinary digital computers.

Criteria such as intentionality, reliability, and lucidity have to be taken into account in the analysis of devices that may potentially be used for computational and other mathematical purposes. Although mathematics and technology are distinctly different activities, the study of algorithms and computations has much to learn from studies of intentional human action that have been performed not least in the philosophy of technology.

\section*{References}

\footnotetext{
Arkoudas, K. (2008). Computation, hypercomputation, and physical science. Journal of Applied 1548 Logic, 6, 461-475.
Barrett, L., \& Connell, M. (2005). Jevons and the logic 'piano'. The Rutherford Journal, 1. http:// www.rutherfordjournal.orgBlake, R. M. (1926). The paradox of temporal process. Journal of Philosophy, 23(24), 645-654.1551
Blumenthal, O. (1935). Lebensgeschichte. In D. Hilbert (Ed.), Gesammelte Abhandlungen (Vol. 3, ..... 1553
pp. 388-429). Berlin: Springer. ..... 1554
Boole, G. (1854). The laws of thought. London: Walton and Maberly. ..... 1555
Button, T. (2009). SAD computers and two versions of the Church-Turing thesis. British Journal ..... 1556
for the Philosophy of Science, 60(4), 765-792. ..... 1557
Chabert, J.-L. (Ed.). (1999). A history of algorithms: From the pebble to the microchip. New York: ..... 1558
Springer Science \& Business Media. ..... 1559
Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of ..... 1560
}

\section*{Author's Proof}

Church, A. (1937). [Review of] A.M. Turing. On computable numbers, with an application to the 1562 Entscheidungsproblem. Journal of Symbolic Logic, 2(1), 42-43. 1563
Cleland, C. E. (2002). On effective procedures. Minds and Machines, 12(2), 159-179. 1564
Contro, W. S. (1976). Von Pasch zu Hilbert. Archive for History of exact Sciences, 15(3), 283-295. 1565
Copeland, B. J. (1998). Even Turing machines can compute uncomputable functions. In C. S. 1566 Calude, J. Casti, \& M. J. Dinneen (Eds.), Unconventional models of computation (pp. 150- 1567 164). Singapore: Springer. 1568

Cotogno, P. (2003). Hypercomputation and the physical Church-Turing thesis. British Journal for 1569 the Philosophy of Science, 54(2), 181-223. 1570
Cram, D. (1985). Universal language schemes in 17th-century Britain. Histoire Epistémologie 1571 Langage, 7(2), 35-44. 1572
Davis, M. (2006). The Church-Turing thesis. Consensus and opposition. In A. Beckmann, U. 1573 Berger, B. Löwe, \& J. V. Tucker (Eds.), Logical Approaches to Computational Barriers. Second 1574 Conference on Computability in Europe, CiE 2006, Proceedings, Swansea, June 30-July 5, 1575 2006 (Lecture notes in computer science, Vol. 3988, pp. 125-132). Springer. 1576
de Jong, W. R. (1986). Hobbes's logic: Language and scientific method. History and Philosophy 1577 of Logic, 7(2), 123-142.
Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum 1579 computer. Proceedings of the Royal Society A, 400, 97-117. 1580
Edwards, C. H. (1979). The historical development of the calculus. New York: Springer. 1581
Einstein, A. (1921). Geometrie und Erfahrung. Berlin: Springer. 1582
Euclid. (1939). Elements. In I. Thomas (Ed. and Transl.) Greek mathematical works, volume I. 1583 Thales to Euclid (Loeb classical library, Vol. 335). Cambridge, MA: Harvard University Press. 1584
Forteza, B. (1998). La influencia de Francisco Suárez sobre Thomas Hobbes. Convivum, 11, 40-79. 1585
Frege, G. (1879). Begriffsschrift, eine der aritmetischen nachgebildete Formelsprache des reinen 1586 Denkens. Halle: Louis Nebert. 1587
Freudenthal, H. (1966). The main trends in the foundations of geometry in the 19th century. Studies 1588 in Logic and the Foundations of Mathematics, 44, 613-621. 1589
Friend, M. (2010). Boole: From calculating numbers to calculating thoughts. In F. Ferreira, B. 1590 Löwe, E. Mayordomo, \& L. M. Gomes (Eds.) Programs, proofs, processes (Lecture notes in 1591 computer science, Vol. 6158, pp. 172-179). Berlin/Heidelberg: Springer. 1592
Gandy, R. (1980). Church's thesis and principles for mechanisms. In J. Barwise, H. J. Keisler, \& 1593 K. Kunen (Eds.), The Kleene symposium (pp. 123-148). Amsterdam: North-Holland Publishing 1594 Company.
Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The universal Turing 1596 machine: A half-century survey (pp. 55-111). Oxford: Oxford University Press. 1597
Gent, I. P., \& Walsh, T. (2000). Satisfiability in the year 2000. Journal of Automated Reasoning, 1598 24(1-2), 1-3.

1599
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter 1600 Systeme I. Monatshefte für Mathematik und Physik, 38, 173-198. 1601
Gödel, K. (1958). Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. 1602 Dialectica, 12, 280-287.

1603
Gödel, K. (1964). Postscriptum. In M. Davis (Ed.), The undecidable: Basic papers on undecidable 1604 propositions, unsolvable problems and computable functions (pp. 71-73). Hewlett: Raven 1605 Press. 1606
Grattan-Guinness, I. (1990). Work for the hairdressers: The production of de Prony's logarithmic 1607 and trigonometric tables. Annals of the History of Computing, 12(3), 177-185. 1608
Grcar, J. F. (2013). Errors and corrections in mathematics literature. Notices of the AMS, 60(4), 1609 418-425. 1610
Grier, D. A. (2005) When computers were human. Princeton: Princeton University Press. 1611
Hagar, A., \& Korolev, A. (2007). Quantum hypercomputation-hype or computation? Philosophy 1612 of Science, 74, 347-363. 1613
Hamilton, J. J. (1978). Hobbes's study and the Hardwick library. Journal of the History of 1614 Philosophy, 16 (4), 445-453.

\section*{Author's Proof}

Hansson, S. O. (1985). Church's thesis as an empirical hypothesis. International Logic Review, 16 (2), 96-101.

Hardy, G. H. (1929). Mathematical proof. Mind, 38(149), 1-25. 1618
von Helmholtz, H. (1887). Zählen und Messen, erkenntnisstheoretisch betrachtet. In Philosophis- 1619 che Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet (pp. 17-52). 1620 Leipzig: Fues.
Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner.
Hilbert, D. (1928). Die Grundlagen der Mathematik. Hamburger Mathematische Einzelschriften 1623 (Heft 5). Wiesbaden: Springer. 1624
Hilbert, D., \& Ackermann, W. (1938). Grundzüge der theoretischen Logik (2nd ed.). Berlin: 1625 Springer. 1626
Hobbes, T. ([1651] 1839). The English works of Thomas Hobbes of Malmesbury (Vol. 3, Leivathan, 1627 W. Molesworth, Ed.). London: Bohn.

1628
Hofstadter, D. R. (1979). Gödel, Escher, Bach: An eternal golden braid. New York: Basic Books. 1629
Hogarth, M. (1994). Non-Turing computers and non-Turing computability. PSA, 1994(1), 126-1630 138.

1631
Israel, D. (2002). Reflections on Gödel's and Gandy's reflections on Turing's thesis. Minds and 1632 Machines, 12(2), 181-201.
Jahnke, H. N., \& Otte, M. (1981). Origins of the program of 'Arithmetization of Mathematics'. In 1634 H. Mehrtens, H. Bos, \& I. Schneider (Eds.), Social history of nineteenth century mathematics 1635 (pp. 21-49). Boston: Birkhäuser.

1636
Jones, M. L. (2014). Reflection: Reason, calculating machines, and efficient causation. In T. M. 1637 Schmalz (Ed.), Efficient causation. A history (pp. 192-197). New York: Oxford University 1638 Press.
Kleene, S. C. (1981). Origins of recursive function theory. Annals of the History of Computing, 1640 3(1), 52-67.

1641
Kleene, S. C. (1987). Reflections on Church's thesis. Notre Dame Journal of Formal Logic, 28(4), 1642 490-498.
Klein, F. (1895). Über Arithmetisirung der Mathematik. In Nachrichten von der Königl. 1644 Gesellschaft der Wissenschaften zu Göttingen. Geschäftliche Mitteilungen (Heft 2, pp. 82-91). 1645
Kreisel, G. (1974). A notion of mechanistic theory. Synthese, 29, 9-24.
Lardner, D. ([1834] 1989). Babbage's calculating engine. Edinburgh Review, 59, 263-327. 1647 Reprinted In: M. Campbell-Kelly (Ed.), The works of Charles Babbage (Vol. 2, pp. 118-186). 1648 London: William Pickering.

1649
Leibniz, G. W. (1890). Undated manuscript. In C. I. Gerhardt (Ed.), Die philosophischen Schriften 1650 von Gottfried Wilhelm Leibniz (Vol. 7, p. 200). Berlin: Weidmannsche Buchhandlung. 1651
Lenzen, W. (2018). Leibniz and the calculus ratiocinator. In S. O. Hansson (Ed.), Technology and 1652 mathematics. Cham: Springer.
Li, W. (2015). On the algorithmic tradition in the history of mathematics. In D. E. Rowe \& W.- \({ }^{1653}\) S. Horng (Eds.), A delicate balance: Global perspectives on innovation and tradition in the history of mathematics (pp. 321-341). Cham: Springer.
Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901.
Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901. 1657
Lovelace, A. A. ([1843] 1989). "Notes by the translator", appendix in "Sketch of the analytical 1658 engine. Scientific Memoirs, 3, 666-731. Reprinted on In M. Campbell-Kelly (Ed.), The works of Charles Babbage (Vol. 3, pp. 89-179). London: William Pickering.
MacDonald Ross, G. (2007). Leibniz's debt to Hobbes. In P. Phemister \& S. Brown (Eds.), Leibniz 1661 and the English-speaking world. Activity, passivity and corporeal substances in Leibniz's philosophy (pp. 19-33). Dordrecht: Springer. 1663

1653
1655
1656
1657
1658
1659
1659

Mates, B. (1986/1989). The philosophy of Leibniz: Metaphysics and language. New York: Oxford 1664 University Press.

1665
Norström, P. (2013). Engineers' non-scientific models in technology education. International 1666 Journal of Technology and Design Education, 23, 377-390. 1667
Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig: Teubner. 1668

\section*{Author's Proof}

9 Mathematical and Technological Computability

Petri, B., \& Schappacher, N. (2007). On arithmetization. In C. Goldstein, N. Schappacher, \& J. 1669 Schwermer (Eds.), The shaping of arithmetic after C.F. Gauss's Disquisitiones Arithmeticae 1670 (pp. 343-374). Berlin: Springer.

1671
Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University 1672 Press.
Pitowsky, I. (2007). From logic to physics: How the meaning of computation changed over time.
In S. B. Cooper, B. Löwe, \& A. Sorbi (Eds.), Computation and Logic in the Real World. Third Conference on Computability in Europe, CiE 2007, Proceedings, Siena, June 18-23, 2007 (Lecture notes in computer science, Vol. 4497, pp. 621-631). Berlin: Springer.
Poincaré, H. (1902). Du rôle de l'intuition et de la logique en mathématiques. In E. Duporcq (Ed.), 1678 Compte-rendu du deuxième Congrès international des mathématiciens tenu à Paris du 6 au 121679 août 1900 (pp. 115-130). Paris: Gauthier-Villars.
Pombo, O. (2010). Three roots for Leibniz's contribution to the computational conception of reason. In F. Ferreira, B. Löwe, E. Mayordomo, \& L. M. Gomes (Eds.), Programs, proofs, processes (Lecture notes in computer science, Vol. 6158, pp. 352-361). Berlin/Heidelberg: Springer.
Post, E. L. (1936). Finite combinatory processes - Formulation 1. Journal of Symbolic Logic, 1(3), 103-105. 1674
1675
1676
1677
août 1900 (pp. 115-130). Paris: Gauthier-Villars. 1680 ter, J. (2000). Egyptian mathmatics. In H. Selin (Ed.), Mathematics across cultures: The history of non-Western mathematics (pp. 115-136). Dordrecht: Kluwer Academic. 1688
Russell, B. (1936). The limits of Empiricism. Proceedings of the Aristotelian Society, 36, 131-150. 1689
Saari, D. G., \& Xia, Z. (1995). Off to infinity in finite time. Notices of the American Mathematical 1690 Society, 42, 538-546.
Shagrir, O. (2012). Computation, implementation, cognition. Minds and Machines, 22, 137-148. 1692
Shannon, C. E. (1956). A universal Turing machine with two internal states. In C. E. Shannon \& J. 1693 McCarthy (Eds.), Automata studies (pp. 157-165). Princeton: Princeton University Press. 1694
Shapiro, S. (1998). Incompleteness, mechanism, and optimism. Bulletin of Symbolic Logic, 4(3), 1695 273-302.
Sieg, W. (1994). Mechanical procedures and mathematical experience. In A. George (Ed.), 1697 Mathematics and mind (pp. 71-117). New York: Oxford University Press. 1698
Sieg, W. (1997). Step by recursive step: Church's analysis of effective calculability. Bulletin of 1699 Symbolic Logic, 3(2), 154-180.

1700
Sieg, W. (2002). Calculations by man and machine: Conceptual analysis. In W. Sieg, R. Sommer, 1701 \& C. Talcott (Eds.), Reflections on the foundations of mathematics: Essays in honor of Solomon Feferman (Lecture notes in logic, Vol. 15, pp. 390-409). Natick: A. K. Peters.
Keferman (Lectue nos ing. Vo. pp. 390-40). Natick. A. K. Setrs. 1703
Sieg, W. (2009). On computability. In A. D. Irvine (Ed.), Philosophy of mathematics (pp. 536-630). 1704 Amsterdam: Elsevier. 1705
Singer, T. C. (1989). Hieroglyphs, real characters, and the idea of natural language in English 1706 seventeenth-century thought. Journal of the History of Ideas, 50(1), 49-70. 1707
Smith, W. D. (2006). Church's thesis meets the N-body problem. Applied Mathematics and 1708 Computation, 178, 154-183.
Soare, R. I. (1996). Computability and recursion. Bulletin of Symbolic Logic, 2(3), 284-321. 1710
Soare, R. I. (2007). Computability and incomputability. In S. B. Cooper, B. Löwe, \& A. Sorbi 1711 (Eds.), Computation and Logic in the Real World. Third Conference on Computability in 1712 Europe, CiE 2007, Proceedings, Siena, June 18-23, 2007 (Lecture notes in computer science, 1713 Vol. 4497, pp. 705-715). Berlin: Springer. 1714
Swade, D. (2010). Pioneer profile: Ada Lovelace. Resurrection. The bulletin of the computer 1715 conservation society, 53 2010/11.
Swade, D. (2011a). Calculating engines: Machines, mathematics, and misconceptions. In R. Flood, 1717 A. Rice, \& R. Wilson (Eds.), Mathematics in Victorian Britain (pp. 239-259). Oxford: Oxford 1718 University Press.

1719
Swade, D. (2011b). Pre-electronic computing. In C. B. Jones \& J. L. Lloyd Dependable and 1720 historic computing. Essays dedicated to Brian Randell on the occasion of his 75th birthday 1721 (Lecture notes in computer science, Vol. 6875, pp. 58-83). Berlin: Springer. 1722

\section*{Author's Proof}

Swade, D. (2018). Mathematics and mechanical computation. In S. O. Hansson (Ed.), Technology 1723 and mathematics. Cham: Springer. 1724
Timpson, C. G. (2007). What is the lesson of quantum computing? In S. B. Cooper, B. Löwe, \& A. 1725 Sorbi (Eds.) Computation and Logic in the Real World. Third Conference on Computability in 1726 Europe, CiE 2007, Proceedings, Siena, June 18-23, 2007 (Lecture notes in computer science, 1727 Vol. 4497, pp. 739-741). Berlin: Springer. 1728
Turing, A. (1937a). On computable numbers, with an application to the Entscheidungsproblem. 1729
Proceedings of the London Mathematical Society, 42, 230-265. 1730
Turing, A. (1937b). On computable numbers, with an application to the Entscheidungsproblem. A 1731
Correction. Proceedings of the London Mathematical Society, 43, 544-546. 1732
Turing, A. ([1947] 1986). Lecture to the London mathematical society on 20 February 1947. In 1733
B. E. Carpenter \& R. W. Doran (Eds.), A.M. Turing's ACE report of 1946 and other papers 1734 (pp. 106-124). Cambridge: MIT Press.

1735
Turing, A. ([1948] 2004). Intelligent machinery. In B. Jack Copeland (Ed.), The essential Turing: 1736
Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life plus 1737
the secrets of Enigma (pp. 410-432). Oxford: Oxford University Press. 1738
Turing, A. (1950). Computing machinery and intelligence. Mind, 59, 433-460. 1739
Uckelman, S. L. (2010). Computing with concepts, computing with numbers: Llull, Leibniz, and 1740
Boole. In F. Ferreira, B. Löwe, E. Mayordomo, \& L. M. Gomes (Eds.), Programs, proofs, 1741 processes (Lecture notes in computer science, Vol. 6158, pp. 427-437). Berlin/Heidelberg: 1742 Springer. 1743
Widmaier, R. (1986). Korrespondenten von GW Leibniz: 8. Damaris Masham, geb. Cudworth geb. 1744 18. Januar 1658 in Cambridge-gest. 20. April 1708 in Oates. Studia Leibnitiana, 18(2), 211- 1745 227.

Yee, A. J., \& Kondo, S. (2016). 12.1 Trillion Digits of Pi. And we're out of disk space. . . . http:// 1747 www.numberworld.org/misc__runs/pi-12t/. Downloaded June 26, 2017.

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{|c|c|}
\hline Chapter Title & On Explaining Non-dynamically the Quantum Correlations Via Quantum Information Theory: What It Takes \\
\hline Copyright Year & 2018 \\
\hline Copyright Holder & Springer International Publishing AG, part of Springer Nature \\
\hline \multirow[t]{8}{*}{Corresponding Author} & Family Name Dorato \\
\hline & Particle \\
\hline & Given Name Mauro \\
\hline & Suffix \\
\hline & Division Department of Philosophy \\
\hline & Organization Communication and Media studies \\
\hline & Address Rome, Italy \\
\hline & Email mauro.dorato@uniroma3.it \\
\hline \multirow[t]{8}{*}{Author} & Family Name Felline \\
\hline & Particle \\
\hline & Given Name Laura \\
\hline & Suffix \\
\hline & Division Department of Philosophy \\
\hline & Organization Communication and Media studies \\
\hline & Address Rome, Italy \\
\hline & Email Ifelline@uniroma3.it \\
\hline Abstract & In this paper, we argue that quantum information theory can provide a kind of non-causal explanation ("causal account" here stands quite generally both for dynamical and for mechanistic account of causal explanation) of quantum entanglement. However, such an explanation per se does not rule out the possibility of a dynamical explanation of the quantum correlations, to be given in terms of some interpretations (or alternative formulations) of quantum theory. In order to strengthen the claim that it can provide an explanation of the quantum correlations, quantum information theory should inquire into the possibility that the quantum correlations could be treated as "natural", that is, as phenomena that are physically fundamental. As such, they would admit only a structural explanation, similarly to what happened in crucial revolutionary episodes in the history of physics. \\
\hline
\end{tabular}

\section*{Author's Proof}

\title{
Chapter 10 \\ On Explaining Non-dynamically 2 the Quantum Correlations Via Quantum \({ }^{3}\) Information Theory: What It Takes
}

\author{
Mauro Dorato and Laura Felline
}

\begin{abstract}
In this paper, we argue that quantum information theory can provide 6 a kind of non-causal explanation ("causal account" here stands quite generally 7 both for dynamical and for mechanistic account of causal explanation) of quantum 8 entanglement. However, such an explanation per se does not rule out the possibility 9 of a dynamical explanation of the quantum correlations, to be given in terms of 10 some interpretations (or alternative formulations) of quantum theory. In order to 11 strengthen the claim that it can provide an explanation of the quantum correlations, 12 quantum information theory should inquire into the possibility that the quantum 13 correlations could be treated as "natural", that is, as phenomena that are physically 14 fundamental. As such, they would admit only a structural explanation, similarly to 15 what happened in crucial revolutionary episodes in the history of physics.
\end{abstract}

\subsection*{10.1 Introduction}

On the wake of the remarkable success enjoyed by quantum theory in its application 18 to computation theory and cryptography, many philosophers and physicists have 19 recently explored the idea that information can also play a privileged foundational 20 role. Such thesis has been articulated in a variety of ways, starting from the claim 21 that an analysis of the information-processing capabilities of quantum systems can 22 provide a deeper understanding of some of the most puzzling quantum phenomena, \({ }_{2}\) to the claim that Quantum Information Theory is the right framework for the 24 formulation of quantum theory, to the claim that such a theory is about quantum 25 information. With respect to the wave-particle duality, for instance, Bub has 26 argued that: "quantum mechanics [ought to be regarded] as a theory about the 27 representation and manipulation of information constrained by the possibilities and 28

\footnotetext{
M. Dorato ( \(\boxtimes\) ) L L. Felline

Department of Philosophy, Communication and Media studies, Rome, Italy
e-mail: mauro.dorato@uniroma3.it; lfelline@uniroma3.it
}

\section*{Author's Proof}
impossibilities of information-transfer in our world (a fundamental change in the 29 aim of physics), rather than a theory about the behavior of non-classical waves and 30 particles." (Bub 2005, 542).

Bub, together with many other philosophers and physicists, relied in particular 32 on axiomatic reconstructions of quantum theory in terms of information-theoretic 33 principles as the right framework for the reformulation of quantum theory in 34 terms of information. In view of the many progresses axiomatic reconstructions 35 of quantum theory achieved in the study of nonlocality, in fact, it is natural to raise 36 the question whether such theories can somehow explain the kind of nonlocality 37 displayed by the quantum correlations. In this paper, we investigate this question 38 by discussing and evaluating a remarkable theorem by Clifton, Bub and Halvorson 39 (2003) (CBH henceforth).

In addition, we argue that, on the one hand, axiomatic reconstructions of quantum 41 theory can provide a genuine explanation of one aspect of nonlocality, in virtue 42 of its counterfactual dependence on the core principles of quantum theory. On the 43 other hand, however, this explanation per se does not account for the occurrence 44 of quantum correlations. As we will show, explaining quantum correlations in 45 terms of quantum information theory would require a structural explanation (Dorato 46 and Felline 2011), which rules out the possibility of other causal or dynamical 47 accounts of the quantum correlations. A fully structural explanation of nonlocality 48 could therefore only be achieved if the quantum correlations turned out to be 49 fundamental or "natural", in the sense of being non-caused or non-dynamically 50 explainable. In this sense of natural, vertical motion was natural in Aristotelian 51 physics, inertia became natural in Newtonian physics, length contractions and free 52 fall became natural in special and general relativity respectively, in virtue of a 53 replacement of previous dynamical explanations by explanations given in terms of a 54 new spatiotemporal structure providing a structural explanation (Dorato 2014). Our 55 conclusion will be that (at least so far) axiomatic reconstructions of quantum theory 56 cannot show that quantum correlations are fundamental or natural in this sense. 57

In the first section of the paper we analyze axiomatic reconstructions of quantum 58 theory's account of nonlocality in terms of CBH's characterization theorem. In the 59 second section, we illustrate the sense in which CBH's approach can provide an 60 explanation of nonlocal entangled states by showing how they are counterfactually 61 dependent on the core principles of quantum theory. In Sect. 10.3 we introduce 62 the notion of structural explanations as explanations that render a causal/dynamical 63 account superfluous. We finally evaluate CBH's claim that axiomatic reconstruc- 64 tions of quantum theory makes a dynamical interpretation of quantum theory 65 explanatorily irrelevant by translating it into the question whether their explanations 66 can be equated to structural explanations in the sense discussed in the first two 67 sections.

\section*{Author's Proof}

\subsection*{10.2 Quantum Entanglement and Axiomatic 69 Reconstructions of Quantum Theory}

\begin{abstract}
Axiomatic reconstructions aim at finding few physical principles from which it is 71 possible to derive the Hilbert structure of quantum theory:
\end{abstract}

By default, the principles at the basis of axiomatic reconstructions of a physical 76 theory do not have a foundational role within the theory, nor are they required to 77 be ontologically prior to its theorems. Their only role is to provide an axiomatic 78 basis for the deduction of the theory: "nothing can be generally said about their 79 ontological content or the ontic commitments that arise from these principles." 80 (Grinbaum 2007, 391). The same, of course, is valid in the specific case of ax- 81 iomatic reconstructions of quantum theory and its information-theoretic principles 82 about the possibilities and impossibilities of information transfer. Within quantum 83 information theory in general, and in axiomatic reconstructions of quantum theory 84 specifically, information is meant in the physical sense, a notion of quantity of 85 information cashed out in terms of the resources required to transmit messages - 86 measured classically by Shannon entropy or, in quantum theory, by Von Neumann 87 entropy.

Some of the advocates of axiomatic reconstructions of quantum theory interpret 89 its success as evidence for the fact that information technologies and therefore 90 information-theoretic principles possess a central role also in the ontology of 91 quantum theory. In different forms, this position is held by some of the philoso- 92 phers/physicists working in this field, defending the claim that quantum theory is 93 about the epistemological state of the observer or about the claim that the world is, at its bottom, just information, while offering different ontological interpretations 95 of what is meant by information. Timpson (2013) calls such contributions to the 96 foundations of quantum theory the 'direct' approaches to quantum information 97 theory and contrasts it to the 'indirect' approach, which, more humbly, aims at 98 learning something useful about the structure or axiomatics of quantum theory 99 by reflecting on quantum information-theoretic phenomena. In this paper, we shall 100 mainly discuss the indirect approach.

CBH prove a theorem that characterizes quantum theory by proposing three 103 "fundamental information theoretic laws of nature" (CBH 2003, 1562) or, less 104 ambitiously, three principles concerning the impossibility of information transfer:

\section*{Author's Proof}
1. No superluminal information transfer via measurement. It states that merely 106 performing a local (non-selective) operation \({ }^{1}\) on a system \(A\) cannot convey any 107 information to a physically distinct system.
2. No broadcasting. This constraint states the impossibility of perfectly broadcast- ..... 109 ing the information contained in an unknown physical state. Broadcasting is a 110 generalization of the process of cloning which, in turn, is a process that starts 111 with a system in any arbitrary state \(|\alpha\rangle\) and ends up with two systems, each in 112 the state \(|\alpha\rangle\). While cloning applies only to pure states, broadcasting generalizes 113 also to mixed states. In quantum mechanics, broadcasting is possible for a set of 114 states \(\rho_{\mathrm{i}}\) iff they are commuting.
3. No bit-commitment. The bit commitment is a cryptographic protocol in which 116 one party, Alice, supplies an encoded bit to a second party, Bob, as a warrant for 117 her commitment to the value 0 or 1 . The information available in the encoding should be insufficient for Bob to ascertain the value of the bit at the initial 119 commitment stage. However, such information should be sufficient, together with120
further information supplied by Alice at a later stage - the 'revelation stage', ..... 121 when she is supposed to "open" the commitment by revealing the value of the 122 bit - for Bob to be convinced that the protocol does not allow Alice to cheat by123 encoding the bit in a way that leaves her free to reveal either 0 or 1 at will. As 124 an illustration of how this cheating strategy should work, consider this example 125 from (Timpson 2013): 126

Consider a spin- \(1 / 2\) system: a \(50 / 50\) mixture of spin-up and spin-down in the z -direction \(\quad 127\) is indistinguishable from a \(50 / 50\) mixture of spin-up and spin-down in the \(x\)-directionboth give rise to the maximally mixed density operator \(1 / 2 \mathbf{1}\). Alice might associate the
first type of preparation with a 0 commitment and the second with a 1 commitment.
Bob, when presented with a system thus prepared will not be able to determine which
procedure was used. Alice also needs to keep a record of which preparation procedure she employed, though, to form part of the evidence with which she will convince Bob of her probity at the revelation stage. Thus, for a 0 commitment, Alice could prepare a

0 commitment: (1)
135
whilst for a 1 commitment, she could prepare a state 137
1 commitment: (2)
System 2 is then sent to Bob.
At the revelation stage, Alice declares which bit value she committed to, and hence

\footnotetext{
\({ }^{1}\) Selective measurements operations are here obviously not considered, given that in such operations the statistics in general changes due to a change of the ensemble under study.
}

\section*{Author's Proof}
\[
\begin{array}{ll}
\text { prepare an entangled state, such as the Bell state } \mid \varphi^{+}>_{12} \text {. The reduced density operator } & 151 \\
\text { for Bob's system will still be } 1 / 2 \mathbf{1} \text {, but Alice can now simply wait until the revelation } & 152 \\
\text { stage to perform a suitable measurement on her half of the entangled pair and prepare } & 153 \\
\text { Bob's system at a distance in whichever of the two different mixtures she chooses (pp. } & 154 \\
212-213) .^{2} & 155
\end{array}
\]

By asserting the impossibility of such a secure cryptographic protocol, the no bitcommitment principle assures the stability of entangled states also in macroscopic 157 or nonlocal processes and forbids that entangled states decay in macroscopic or nonlocal states. Schrödinger contemplated the possibility of such a theory in (1936).
Within this kind of theory (which, following Timpson, we shall call Schrödingertype theory), the EPR cheating strategy would not be applicable (given that entangled states would not be stable enough) and the secure bit-commitment would 161 be in general possible.

The CBH Characterization Theorem, therefore, demonstrates that the basic kinematic features of a quantum-theoretic description of physical systems (i.e. noncommutativity and entanglement) can be derived from the three informationtheoretic constraints.

The formal model utilized by quantum information theory in order to derive such a result is the \(\mathrm{C}^{*}\)-algebra. This is an abstract representation of the algebra of observables which can represent both classical (particle and field) and quantum mechanical theories.

As far as quantum mechanics is concerned, the algebra \(\mathscr{B}(\mathscr{H})\) of all bounded 171 operators on a Hilbert space \(\mathscr{H}\) is a \(C^{*}\)-algebra. A quantum system A is therefore represented by a \(\mathrm{C}^{*}\)-algebra \(\mathscr{Z}\) and a composite system \(\mathrm{A}+\mathrm{B}\) is represented by the \(\mathrm{C}^{*}\)-algebra \(\mathscr{\mathscr { Z }} \mathrm{v}{ }_{\circ} \mathcal{B}\). Obseryables are represented by self-adjoint elements of the algebra and a quantum state is an expectation-valued functional over these observables, with the constraint that two systems A and B are physically distinct when "any state of \(\mathscr{\mathscr { t }}\) is compatible with any state of \(\mathscr{\mathscr { B }}\), i.e., for any state \(\rho_{\mathrm{A}}\) of \(\mathscr{\mathscr { Z }}\) and for any state \(\rho_{\mathrm{B}}\) of \(\mathscr{B}\), there is a state \(\rho\) of \(\mathscr{Z} \mathrm{V} \mathscr{B}\) such that \(\left.\rho\right|_{\mathbf{A}}=\rho_{\mathrm{A}}\) and \(\left.\rho\right|_{\mathbf{B}}\) \(=\rho_{B} "(\) Bub 2004 p. 5).

The CBH theorem proves that quantum theory - which they take to be a 18 theory formulated in \(\mathrm{C}_{*}\)-algebraic terms in which the algebras of observables 182 pertaining to distinct systems commute, the algebra of observables on an individual 183 system is noncommutative, and which allows space-like separated systems to be in entangled states - can be derived from the assumption of the three information184 theoretic constraints. More exactly, it is demonstrated that (see e.g. Bub 2004, 186 pp. 246-247): (1) the commutativity of distinct algebras follows from the first 187 constraint (no superluminal information transfer via measurement) it follows the 188 commutativity of distinct algebras: if the observables of distinct algebras commute, 189 then the no superluminal information transfer via measurement constraint holds (the 190 converse result is proved in (Halvorson 2003)). Commutativity of distinct algebras 191 is meant to represent no-signalling; (2) cloning is always allowed by classical (i.e. 192

\footnotetext{
\({ }^{2}\) In the following we follow closely CBH's and Timpson's treatments.
}

\section*{Author's Proof}
commutative) theories and, if any two states can be (perfectly) broadcast, then the algebra is commutative. Therefore, from the second constraint, no broadcasting, follows the noncommutativity of individual algebras. (3) if \(\mathscr{A}\) and \(\mathscr{B}\) represent two quantum systems (i.e., if they are individually noncommutative and mutually commuting), there are nonlocal entangled states on the \(\mathrm{C}^{*}\)-algebra \(\mathscr{\mathscr { Z }} \mathrm{v} \mathscr{\mathscr { B }}\) they generate.

However, Bub argues, we still cannot identify quantum theories with the class of noncommutative \(\mathrm{C}^{*}\)-algebras. It is at this point that the third informationtheoretic constraint, the no unconditionally secure bit-commitment, is introduced, 'to guarantee entanglement maintenance over distance'.

It has been argued that the role of no bit-commitment is in this sense somewhat 203 ambiguous (see e.g. Timpson 2013). The first suggested motivation for the need 204 of the no bit-commitment is in fact the following: in the account so far provided, 205 the existence of nonlocal entangled states follows directly from the choice of the 206 \(\mathrm{C}^{*}\)-algebra and from its formal properties. On the other hand, "in an information- 207 theoretic characterization of quantum theory, the fact that entangled states can be 208 instantiated nonlocally, should be shown to follow from some information-theoretic 209 principle." (Bub 2004, p. 6). It seems, in other words, that the role of the no 210 bit-commitment is to provide an information-theoretic ground, in the context of 21 C*-algebra, to the origin of entanglement, which, otherwise, would be a mere consequence of the choice of the mathematical machinery used by the theory. This 213 suggestion is made clearer in (Clifton et al. 2003):

So, at least mathematically, the presence of nonlocal entangled states in the formalism is guaranteed, once we know that the algebras of observables are nonabelian. What does not follow is that these states actually occur in nature. For example, even though Hilbert space quantum mechanics allows for paraparticle states, such states are not observed in nature. In terms of our program, in order to show that entangled states are actually instantiated, andcontra Schrödinger-instantiated nonlocally, we need to derive this from some informationtheoretic principle. This is the role of the 'no bit-commitment' constraint. (p. 10)

But if the mathematical structure of reference is a C*-algebra, it would seem that 222 the function of the third principle would be to reassess the occurrence of entangled 223 states. But, as Timpson argues, the idea of positing a principle in order to "rule 224 in" something which is already part of the theory is quite peculiar: "ruling states 225 in rather than out by axiom seems a funny game. Indeed, once we start thinking \({ }^{226}\) that some states may need to be ruled in by axiom then where would it all end?

In other occasions Bub suggests a slightly different role for the no bit- 235 commitment. We have already seen that the no bit-commitment is incompatible

\section*{Author's Proof}
via measurement and no broadcasting principles, eliminate nonlocal entanglement by assuming, for instance, its decay with distance. About this, Timpson argues that 239 also this argument is anyway dubious, since "a Schrödinger-type theory is only 240 an option in the sense that we could arrive at such a theory by imposing further \({ }^{241}\) requirements to eliminate the entangled states that would otherwise occur naturally 242 in the theory's state space." (Timpson 2013, p. 207).

In (Hagar and Hemmo 2006, n. 12 and 19) the no bit-commitment is interpreted 244 as a dynamical constraint, meant to rule out dynamical theories (such as GRW) 245 which, while coherent with the first two principles, implies a decay of entanglement 246 at the macroscopic level. Timpson also considers this option (2004, Ch. 9) and 247 rejects it as in evident contrast with CBH's explicit ambitions of being concerned 248 only with the "kinematic features of a quantum-theoretic description of physical 249 systems" (Bub 2004, p. 1). Anyway, as noticed by Hagar and Hemmo, also in this 250 interpretation the no bit-commitment has a controversial status. The problem lies in 25 the fact that if the no bit-commitment applies merely to cryptographic procedures 252 where the entangled states utilized are states of microsystems, then it is redundant 253 (since also GRW complies with it); otherwise (i.e., if it also applies to situations 254 where the entanglement concern also massive systems) it would be unwarranted, 255 and quantum information theory would end up being a no-collapse theory. To see \({ }_{256}\) why, recall the previous illustration of the bit-commitment procedure. In standard 257 quantum mechanics, the no bit-commitment holds since entanglement is stable also 258 at a distance, so that Alice can always cheat by sending to Bob a particle in entangled 259 state. Given the well-known result of the Aspect experiment, we know that in 260 such a situation a Schrödinger type theory (postulating a decay of the entangled 261 state) is not empirically adequate. This is the reason why, in such a case, the no 262 bit-commitment is justified. On the other hand, in this kind of situation the no \({ }^{263}\) bit-commitment is respected also by the GRW theory, since the entangled state is 264 stable at microscopic scale (also when the particles are far). GRW violates the no 265 bit-commitment just in case the entangled state concerns a massive system, since 266 in this case the entanglement decays very quickly. In other words, a secure bit- 267 commitment shall always be possible in principle via a set up that requires Alice 268 to encode her commitment in the position state of a massive enough system (Hagar 269 and Hemmo 2006, §3.2). But in this case, also standard quantum mechanics implies 270 an effective decay of the system (and therefore an effective violation of the no bit- 271 commitment), due to decoherence. And at the moment there is no empirical ground 272 for deciding which of the two approaches (GRW's collapsed state or standard 273 quantum theory with decoherence) is the correct one. But then it follows that 274 if the no bit-commitment is meant to ensure the stability of entanglement also 275 at a distance, then it is uninformative; if it is meant to ensure the stability of 276 entanglement also for massive bodies, then it is not supported by empirical grounds. 277 (Hagar and Hemmo 2006, §3.2). 278

Finally, there is another feature that seems to testify against the interpretation of 279 the no bit-commitment as a dynamical principle. So far, we have utilized Hagar and 280 Hemmo's treatment of the no bit-commitment in order to show how, even if taken 281 as a dynamical principle, it is not able to provide an information-theoretic ground 282

\section*{Author's Proof}
to the occurrence of entangled states. But another obvious consequence of taking 283 the no bit-commitment seriously in virtue of its active role in ruling out dynamical 284 reduction models à la GRW would mean to forbid collapse not only for nonlocal 285 entangled states, but also in massive bodies. In other words, what we would end up 286 with would be a genuine no-collapse theory, which is clearly not what CBH had in 287 mind with their third information-theoretic principle.

In a word, the conclusions that we have reached with respect to the effectiveness 289 of the no bit principle in providing an information-theoretic ground to entanglement 290 are as follows: as a kinematic principle, the no bit-commitment has a dubious role: 291 either it is redundant (in the context of the \(\mathrm{C}^{*}\)-algebra); or it is unconvincing. As 292 a dynamical principle, either it applies merely to cryptographic procedures where 293 the entangled states utilized are states of microsystems, in which case it is, again, 294 redundant, or it also applies to situations where massive systems are concerned, in 295 which case it would be unfounded, and it would make quantum information theory 296 correspond to a no-collapse theory. 297

Given the dubious role of the no bit-commitment principle, and for reasons of 298 illustrative simplicity and clarity, in the rest of this paper we follow Timpson's 299 analysis and consider non-locality as following from the first two principles only. 300

In sum, the fundamental three theses defended by Bub on the significance of the 301 CBH theorem are as follows:
- A quantum theory is best understood as a theory about the possibilities and impossibili- 303 ties of information transfer, as opposed to a theory about the mechanics of non-classical 305 waves or particles.
- Given the information-theoretic constraints, any "mechanical" theory of quantum
- Assuming that the information-theoretic constraints are in fact satisfied in our world,
no mechanical theory of quantum phenomena that includes an account of measurement interactions can be acceptable, and the appropriate aim of physics at the fundamental level then becomes the representation and manipulation of information. (Bub 2004)

\subsection*{10.3 How Do Axiomatic Reconstructions of Quantum Theory Explain?}

We are now in the position of presenting CBH's explanation of non-locality and 317 to show that this derivation provides the basis for an explanation of (an aspect of) 318 quantum nonlocality, i.e. of the existence of nonlocal entangled states. \({ }^{3}\) Following 319 the results illustrated in the previous section, the explanation of non-locality follows 320 three steps: 32

\footnotetext{
\({ }^{3}\) Part of the results of this section are exposed in more details in (Felline 2016).
}

\section*{Author's Proof}
1. The 'no superluminal information transfer' principle entails the commutativity of \({ }_{322}\)
distinct algebras: if the observables of distinct algebras commute, then the 'no- \({ }_{323}\) superluminal information transfer' constraint holds. Commutativity of distinct 324 algebras is meant to represent 'no signalling'. A theory violating this principle 325 would display strong non-locality and superluminal signalling; 326
2. The 'no broadcasting' principle entails the non-commutativity of individual 327 algebras. Cloning is always allowed by classical theories and if any two states can 328 be (perfectly) broadcast, then the algebra is commutative. A theory violating this 329 principle is therefore a classical theory with commutative individual algebras; \(\quad 330\)
3. If \(\mathbf{A}\) and \(\mathbf{B}\) are two individually non-commutative sub-algebras but mutually \({ }_{33}\) commuting algebras, there are nonlocal entangled states on the \(\mathbf{C}^{*}\)-algebra \(\mathbf{A}{ }_{332}\) VB that they generate.

It has been sometimes argued that axiomatic reconstructions of quantum theorys 334 explain by providing Deductive-Nomological explanations or explanations by 335 unifications, as they unify the laws of quantum theory under the few principles 336 that play the role of axioms. For instance, Flores (1999) characterizes explanations \({ }_{337}\) in theories of principle \({ }^{4}\) (and therefore in axiomatic reconstructions of quantum 338 theory) as providing explanations by unification.

As a first reaction to these claims, we must stress that a logical derivation of 340 \(P\) from laws of nature is not always explanatory in science. This is exactly why 341 the conjecture that principle theories provide Deductive-Nomological explanations 342 allows Brown and Pooley (2006) to conclude that Special Relativity, as a principle 343 theory, lacks explanatory power (Felline 2011). In the same way, the claim that 344 axiomatic reconstructions of quantum theorys provide Deductive-Nomological 345 explanations hides the real explanatory contribution of these theories. On the other 346 hand, it is clear that the explanatory power of axiomatic reconstructions of quantum 347 theory is deeply entangled with the highly unifying power of the theories that they 348 aim to achieve; however, according to the view we propose, unification is one 349 virtue of explanations rather than its essence. As we will argue, the most distinctive 350 contribution of axiomatic reconstructions of quantum theory in understanding the 351 quantum world can be captured neither by the Deductive-Nomological, nor by the 352 unificationist approaches.

Felline (2016) proposes an alternative account of explanation in axiomatic 354 reconstructions of quantum theory and in particular of quantum entanglement. 355 In order to account for the explanation of quantum entanglement, she borrows 356 from Mark Steiner's account of explanation in mathematics. Steiner's central idea 357

\footnotetext{
4"We can distinguish various kinds of theories in physics. Most of them are constructive. They attempt to build up a picture of the more complex phenomena out of the materials of a relativity simple formal scheme from which they start out. Along with this most important class of theories there exists a second, which I will call 'principle-theories.' These employ the analytic, not synthetic, method. The elements which form their basis and starting-point are not hypothetically constructed but empirically discovered ones, general characteristics of natural processes, principles that give rise to mathematically formulated criteria which the separate processes or the theoretical representations of them have to satisfy" (Einstein 1919, p. 228).
}

\section*{Author's Proof}
is that "to explain the behavior of an entity, one deduces its behavior from its 358 characterizing property, \({ }^{5}\) i.e. a "property unique to a given entity or structure within 359 a family or domain of such entities or structures." (Steiner 1978, p. 143) According 360 to Steiner's account, an explanatory proof 361
makes reference to a characterizing property of an entity or structure mentioned in the 362 theorem, such that from the proof it is evident that the result depends on the property. It 363 must be evident, that is, that if I substitute in the proof a different object of the same domain, 364 the theorem collapses; more, I should be able to see as I vary the object how the theorem 365 changes in response. In effect, then, explanation is not simply a relation between a proof 366 and a theorem; rather, a relation between an array of proofs and an array of theorems, where \(\quad 367\) the proofs are obtained from one another by the 'deformation' prescribed above. (Steiner 368 1978, 144)

According to Felline's account, the definition of a "characterizing property" 370 applies also to the principles of the axiomatic reconstructions of quantum theory. 371 The principles' function, in fact, is to "isolate" quantum theory from a family of 372 other physical theories representable by \(C^{*}\) algebra. More precisely, the CBH's 373 principles isolate quantum theory from the family of all theories that can be 374 represented with a \(C^{*}\)-algebra. 375

Moreover, CBH's explanation of nonlocality consists, as in Steiner's account, in 376 the derivation of the explanandum from the principles 'no superluminal signals' and 377 'no broadcasting'.

Third, a crucial part of CBH explanation consists in showing that, and how, the 379 theorem/explanandum changes when the characterizing property is changed. CBH show that if the no broadcasting condition is dropped, then one has a classical 381 phase space theory while, if the no-superluminal signals principle is dropped, one 382 has a theory where distinct and distant physical systems are not kinematically 383 independent, i.e. a strongly nonlocal theory. 384

Let us scrutinize more in depth the epistemic content of this kind of explanation. 385 A central concern of axiomatic reconstructions of quantum theory is the question 386 "How does the quantum world differ from the classical one?". 387

Many physicists have faced this question and provided their answer (the dis- 388 cretization of the energy levels of oscillators for Planck, the discretization of angular 389 momentum and the Principle of Complementarity according to Bohr, while for 390 de Broglie the characterizing feature of quantum theory was the wave nature of 391 matter, and for Schrödinger it was entanglement, for Dirac it is superposition and 392 so on). Axiomatic reconstructions of quantum theory addresses the question 'how 393 does the quantum differ from the classical?' with a new perspective, i.e. with the 394 axiomatization approach. Thanks to this formal approach, the explanations just seen 395 show how the mathematical structure of the theory constrains the kind of properties 396 that are admissible within the theory and that the explanandum is a consequence of 397 such constraints. In order to understand why this kind of explanation is especially 398 powerful in axiomatic reconstructions of quantum theory, it is first of all useful to 399

\footnotetext{
\({ }^{5}\) The objection that this is really a form of Hempelian derivation will be dealt with below.
}

\section*{Author's Proof}
resort in more details to Einstein's (1919) well-known dichotomy between theories 400 of principle and constructive theories already mentioned in note 1 . 401

As illustrated by the well-known case of the special theory of relativity, theories 402 of principle often provide a more general picture of the structural features of the 403 world. This is due in general to their analytic method, which starts from general 404 phenomenological laws, leading to conclusions that are both independent of the 405 details of the constituents of the physical systems under study, and of wider, more 406 general application.

In the same way, according to CBH, the three information-theoretic principles 408 "constrain the law-like behavior of physical systems" (Clifton et al. 2003, p. 24) 409 and quantum theory "can now be seen as reflecting the constraints imposed on the 410 theoretical representations of physical processes by these principles" (pp. 24-25). \({ }^{411}\)

With respect to this constraining function, the notion of Shannon information 412 (or von Neumann entropy) is especially useful, as it allows to abstract away from 413 assumptions about the constitution of bodies and the dynamical details underlying 414 the occurrence of the correlations. By singling out the axiomatic structure of 415 the theory from the details that a constructive theory would require, axiomatic 416 reconstructions of quantum theorys make explicit the connections and relations of 417 dependence between the elements of the theory, and between quantum theory and 418 the rest of our scientific theories. For instance, according to CBH reconstruction, 419 nonlocal entanglement depends on non-commutativity and kinematic independence. 420

To sum up, axiomatic reconstructions of quantum theory searches for an answer 421 to the above question: "how does the quantum world differ from the classical one?" 422 in the different constraints on quantum and classical information processing. The \({ }_{423}\) information-theoretic approach invites us to look at physical systems as tools for 424 the transfer and manipulation of information, and the difference between quantum 425 and classical systems, more specifically, lies in the different resources that quantum 426 systems provide for information processing tasks.

Before we conclude this section, let us notice that the explanations provided 428 by reconstructions of quantum theory in terms of information-theoretic principles 429 might be seen as a particular case of 'what-if-things-had-been-different' expla- 430 nations, with a counterfactual dependence structure that is made explicit by the 43 deformation of the principles and the derivation of its consequences. This fact 432 suggests that the model of explanation presented here naturally fits those kinds of 433 general accounts of explanation that attribute a central role to the counterfactual 434 dependence between explanans and explanandum (See Morrison 1999, but also 435 Reutlinger 2012; Pincock 2014) and that include as special cases also causal or 436 mechanistic theories of explanations that attribute a central role to counterfactual 437 dependence in their definition of "mechanism" (Craver 2007; Glennan 2010). 438

Finally, notice that such a counterfactual approach is distinct from a Deductive- 439 Nomological model of explanation. Of course, logical/mathematical derivations are 440 involved also in counterfactual explanations and are therefore necessary, but they 441 are not sufficient to grasp the essence of this approach. There are at least two 442 distinguishing elements: the Deductive-Nomological model neglects the specific 443 role of laws as characterizing properties, and the fact that the explanation is not 444

\section*{Author's Proof}
constituted by one, but by an array of derivations, which provide the counterfactual 445 information referred to above.

\subsection*{10.4 Are Explanations in Axiomatic Reconstructions of Quantum Theory Structural?}

In this section, we are going to see what it takes for an axiomatic reconstructions of quantum theory to provide a complete explanation of quantum non-locality -i.e. not only an explanation of the existence of entangled quantum states, but also of the occurrence of non-local quantum correlations. In order to investigate this issue, we 451 first introduce the notion of structural explanation and show that an informationtheoretic explanation of quantum phenomena must belong to this variety; then 453 we argue that the explanations provided by axiomatic reconstructions of quantum theory per se do not yet provide structural explanations of quantum correlations and discuss what additional assumptions will be required to provide such a kind of explanation.

In the literature, we find other kinds of non-causal explanations of physical phenomena, namely structural explanation (Hughes 1989; Bokulich 2009; Clifton 1998; Dorato and Felline 2011). As a first approximation, a structural explanation is an explanation of a physical phenomenon in terms of its "representative" in the mathematical model. This representative is linked by a set of relations to 463 other members of the model, and the phenomenon is an exemplification of the 464 network. The often discussed, paradigmatic example of a structural explanation is 465 the geometrical explanation of length-contraction in special relativity. Not only is 466 such an explanation independent of metaphysical assumptions about the nature of 467 Minkowski's spacetime - and therefore of the substantivalism/relationism dispute - 468 but also of any assumption about the mechanical details and physical composition 469 of the systems underlying the phenomena to be explained (Lange 2013a, b; Janssen 470 2002a, b, 2009). A structural explanation, if successful, renders a dynamical \({ }^{6}\) account of length contraction not just superfluous, but also wrongheaded. 472

Dorato and Felline (2011) have argued that the formal structure of quantum 473 theory provides a structural explanation of quantum nonlocality in terms of the 474 Hilbert structure that is used to represent quantum states.

What distinguishes a structural explanation of quantum nonlocality from other 476 non-causal (mathematical) explanations of the kind given by axiomatic reconstruc- 477 tions of quantum theory is that the former consists in showing that the explanandum 478 (the quantum correlations in our case) could not be possibly explained by any causal 479 explanation because it is part of the "causally fundamental" structure of the world. 480 By "causally fundamental" structure of the world we intend to refer to phenomena \({ }_{48}\)

\footnotetext{
\({ }^{6}\) See note 1 .
}

\section*{Author's Proof}
or relations thereof that are to be regarded as "natural", i.e., as such that cannot be 482 in turn accounted for, or inferred by, the behavior or laws of "underlying" entities. \({ }^{483}\)

Some historical considerations may help us to formulate an alternative account 484 of a non-causal explanation, in which the quantum correlations could be regarded 485 as natural in this sense. In fact, there exist often neglected but deep analogies 486 between the discovery of quantum correlations and previous major transitions that 487 characterized the history of physics.

As is well-known, in Kuhn's view, scientific revolutions are accompanied by 489 radical shifts in the kind of phenomena that are regarded as in need of an explanation 490 (Kuhn 1970, p. 104). In our case, the ongoing debates in the interpretation of 491 quantum theory could be usefully described in terms of the different fundamental 492 commitments about what one should take as explanatory primitive and what instead should be explained. This shift may apply both to the measurement problem and to 494 nonlocal quantum correlations, the two major conceptual innovations with respect 495 to classical physics. If these correlations were to be regarded as natural in virtue 496 of their fundamentality vis à vis the quantum world - rather than an explanandum 497 to be accounted for by dynamical laws - they would become an explanans, i.e. the 498 fundamental ground for explaining why the macroscopic world does not appear to 499 be entangled, something that classical physics had been taking for granted! 500

The same radical switch of explanatory perspective took place when inertial 501 motion replaced previous dynamical explanations of Aristotle's "violent motions", 502 when Einstein's kinematical treatment of the relativistic effects replaced previous 503 attempts to derive them from the Lorentz covariance of dynamical laws governing 504 the inner behavior of rods and clocks, and when Einstein's postulation of a curved 505 spacetime superseded previous explanations of gravity involving a force. In fact, 506 while one of the main problems of Aristotelian physics was to give some sort of 507 dynamical account that could explain why bodies continue in their motion despite 508 the absence of a "motor", in Newtonian physics the continuation of motion became 509 the natural, primitive state of bodies and forces have been introduced to explain 510 deviation from rectilinear, inertial motion. Later, the introduction of affine spaces 511 codified in a geometrically precise way the new role given by the principle of 512 inertia to rectilinear motion. Likewise, dynamical attempts to explain contractions 513 and dilations were superseded by geometrical explanations in terms of Minkowski 514 fourdimensional geometry and in the case of general relativity the gravitational 515 force was geometrized away thanks to the introduction of Riemannian manifold 516 with a variable curvature. Explanations like these count as structural because they 517 show how the explanandum is the manifestation of a fundamental structure of the 518 world that is accounted for only by the different geometrical structures defining the 519 appropriate spacetimes. \({ }^{7}\)

If this pattern of scientific change could also be extended to the nonlocal quantum 521 correlations, what kind of structural explanation could we advance in order to 522 replace actual or possible causal models of nonlocal correlations and treat them 523 as we now treat inertia, the speed of light and free fall? Can we regard the axiomatic 524

\footnotetext{
\({ }^{7}\) For more details, see Dorato (2014).
}

\section*{Author's Proof}
reconstructions of quantum theory explanation of entanglement depicted above as 525 a form of structural explanation that can also explain the occurrence of quantum 526 correlations?

In order to answer this question, one should keep in mind that the most puzzling 528 issues related to quantum phenomena emerge when the attempt is made to account 529 for how such phenomena occur. The same applies to quantum nonlocality, when the 530 latter is understood as the occurrence of nonlocal correlations: how do such correlations occur? Or, in other words, what are the entities and processes that "underlie" 532 or produce their occurrence? Notice that the traditional, minimal interpretation of Shannon (and von Neumann), in which information is a measure of the amount of 533 correlation between systems, does not rule out such a (possibly causal) account, 535 which is therefore also compatible with the axiomatic reconstructions of quantum \({ }_{536}\) theory.

To defend the stronger claim that quantum information theory's explanation 538 of non-locality is the only game in town, a further argument is required. For 539 instance, information immaterialism (Zeilinger 1999, 2005) adds to the claim that 540 the quantum state is about quantum information the radical metaphysical view that 541 information (the "immaterial") is the fundamental subject matter of physics.

Under this assumption, other mechanical explanations of quantum phenomena are ruled out. In fact, in this case, the information-theoretic structure is not an epistemic tool for measuring the amount of correlation between unknown systems regarded as black boxes, but is all there is. In virtue of its fundamentality, it is the 545 complete description of the world, since in principle there is no "reality" underlying 547 these correlations. Such a description would therefore also automatically provide 548 the basis for a structural explanation of quantum phenomena.

Admittedly, the ontological picture behind information immaterialism is controversial to say the least (e.g. Timpson 2010, 2013). While here we cannot discuss it 551 in details, this immaterial ontology may not be so lethal to the explanatory power 552 of quantum information theory. Structural explanations are independent of the on- 553 tology "underlying" the explanandum, and this independence includes as a special 554 case the "software-without-hardware" ontology of information immaterialism: the 555 explanatorily relevant facts here are part of the mathematical properties of the 556 structure of which the explanandum is a manifestation. This, of course does not rescue Zeilinger's information immaterialism from its independent problems but, under a structural account of explanation, the explanatory power of the theory might remain intact.

By avoiding the complications of Zeilinger's bold immaterialism, also CBH argue that the conceptual problems of quantum theory dissolve as soon as one 562 interprets the quantum state as quantum information. However, within Zeiliger's 563 immaterialism, the rejection of a deeper explanation of quantum phenomena follows 564 from the fact that immaterialism itself provides an information-based explanation 565 of such phenomena. CBH, instead, ground their epistemological analysis on the 566 claim that, exactly as special relativity regarded as a theory of principle made 567 Lorentz's theory (a constructive theory) explanatorily superfluous, in the same way 568 their theorem render any alternative interpretation of quantum theory explanatorily 569

\section*{Author's Proof}
superfluous. As a consequence, they argue that quantum theory is best understood as a theory of principle in Einstein's sense (1919), involving just the possibilities and impossibilities of information processing. In this sense, although the ontology 572 at the basis of quantum information theory and quantum theory is still uncertain, 573 we can still endorse a structural explanation of quantum phenomena, since - for 574 epistemological reasons - information is to be considered a fundamental physical 575 quantity.

In any case, for the success of their project it is crucial to show that, as a 577 consequence of the CBH theorem, information must be taken as a physical primitive. 578 The way CBH argue for this conclusion is to conjecture that the CBH theorem 579 makes any constructive mechanical interpretation of quantum theory in principle 580 empirically underdetermined.

You can, if you like, tell a mechanical story about quantum phenomena (via Bohm's theory,
for example) but such a story, if constrained by the information-theoretic principles, can have no excess empirical content over quantum mechanics, and the additional non-quantum structural elements will be explanatorily superfluous. (Bub 2005, p. 14)

As a first comment, note that a structural explanation of the quantum correlations 586 is stronger than the account provided by axiomatic reconstructions of quantum 587 theory. In such theories, and in Bub (2005) in particular, possible mechanical or 588 dynamical accounts of the quantum correlations are not excluded but only deemed 589 in principle empirically equivalent to whatever is derived in terms of the quantum 590 informational principles. According to a structural explanation of the quantum 591 correlations instead, no explanation deriving from theories that are empirically 592 equivalent to standard quantum theory is possible, for the simple reason that 593 the quantum correlations do not need in principle any dynamical or mechanical 594 explanation. 595

An even more serious problem, though, derives from the premise of CBH argu- 596 ment stating that all constructive interpretations of quantum theory are empirically 597 equivalent. Many criticisms to the quantum information theory's reconstruction 598 program hinge exactly on this point. Hagar and Hemmo (2006), for instance, argue 599 that quantum information theory is not sufficient and a further account in terms of a 600 constructive and mechanical quantum theory is instead necessary.

For instance, in principle collapse and no-collapse theories have incompatible 602 empirical predictions. In the case of GRW-type theories, such an incompatibility 603 is at the moment practically untestable but it could become testable sooner than 604 expected. The problem is that such predictions concern the detection of superposi- 605 tions in macrosystems - and in these cases even collapse theories predict an effective 606 collapse due to environmental decoherence. However, the fact that so far we have not 607 been able to properly isolate a macrosystem in such a way as to control decoherence, 608 does not make the two kinds of theories in principle empirically equivalent. On 609 these assumptions, a mechanical story about the dynamics of quantum systems is 610 therefore still possible and, according to Hagar's and Hemmo's, is still needed to 611 explain the unobserved.

\section*{Author's Proof}

\subsection*{10.5 Conclusions}

In conclusion, we want to suggest that Bub's approach can be reconciled with Hagar 614 and Hemmo's more constructive account. On the one hand, considering the nonlocal correlations as wholly natural in the stronger sense suggested in Sect. 10.3 sounds rather plausible to us (and it is plausible even to a Bohmian rejecting the formulation of the theory in terms of a quantum potential). But a conceptual move consisting in considering quantum correlations as fundamental as inertia, the speed of light and free fall, renders an account as to why the macroscopic world is not an entangled mess even more indispensable. In Newtonian mechanics, forces are introduced to explain a "deviation" from natural inertial motion and in the general theory of relativity the geodesic deviation equation is introduced to explain "deviation" 623 from the naturally local inertial trajectories. What explains a "deviation" from the 624 naturally entangled states of the microworld, in such a way that the macroworld 625 appears to be non-entangled?

\section*{References}

Bokulich, A. (2009). How scientific models can explain. Synthese, 180(1), 33-45. 628
Brown, H., \& Pooley, O. (2006). Minkowski space-time: A glorious non-entity. In D. Dieks (Ed.), 629 The ontology of Spacetime (pp. 67-89). Amsterdam: Elsevier. 630
Bub, J. (2000). Quantum mechanics as a principle theory. Studies in the History and Philosophy of 631 Modern Physics, 31B, 75-94. 632
Bub, J. (2004). Why the quantum? Studies in the History and Philosophy of Modern Physics, 35B, 633 241-266 arXiv:quant-ph/0402149 v1. 634
Bub, J. (2005). Quantum theory is about quantum information. Foundations of Physics, 35(4), 635 541-560 arXiv:quant-ph/0408020 v2. 636
Bub, J. (2015). Quantum entanglement and information, Edward N. Zalta (ed.). The stanford en- 637 cyclopedia of philosophy (Summer 2015 Edition). http://plato.stanford.edu/archives/sum2015/ 638 entries/QM-entangle/ 639
Clifton, R. (1998). Structural explanation in quantum theory. Eprint: http://philsci-archive.pitt.edu/ 640 archive/00000091/00/explanation-in-quantumtheory.pdf, unpublished. 641
Clifton, R., Bub, J., \& Halvorson, H. (2003). Characterizing quantum theory in terms of infor- 642 mation theoretic constraints. Foundations of Physics, 33(11), 1561 Page refs. to arXiv:quant- 643 ph/0211089. 644
Craver, C. F. (2007). Explaining the brain. Oxford: Oxford University Press. 645
Dorato, M. (2014). Causal versus structural explanations in scientific revolutions. Synthese, 2014, 646 1-21, https://doi.org/10.1007/s11229-014-0546-7 647
Dorato, M., \& Felline, L. (2011). Scientific explanation and scientific structuralism. In A. Bokulich 648 \& P. Bokulich (Eds.), Scientific structuralism (pp. 161-176). Dordrecht: Springer. 649
Einstein, A. (1919). Time, space, and gravitation. The London Times, November 28. Page 650 references to reprint (under the title: What is the theory of relativity?) In A. Einstein (Ed.), 651 Ideas and ppinions (pp. 227-232). New York: Crown Publishers, 1954.
Flores, F. 1999, "Einstein's Theory of Theories and Types of Theoretical Explanation", Interna- 653 tional Studies in the Philosophy of Science, 13, 2, (pp. 123-134). 654
Felline, L. (2011). Scientific explanation between principle and constructive theories. Philosophy 655 of Science, 78(5), 989-1000.

\section*{Author's Proof}

10 On Explaining Non-dynamically the Quantum Correlations Via Quantum. . .

Felline, L. (2015). Mechanisms meet structural explanation. Synthese, 1-16. 657
Felline, L. (2016). It's a matter of principle: Scientific explanation in information-theoretic 658 reconstructions of quantum theory. Dialectica, 70(4), 549-575. 659
Felline, L. (2018). Mechanisms meet structural explanation. Synthese, 195(1), 99-114. 660
Flores, F. (1999). Einstein's theory of theories and types of theoretical explanation. International 661 Studies in the Philosophy of Science, 13(2), 123-134. 662
Glennan, S. (2010). Mechanisms, causes, and the layered model of the world. Philosophy and 663 Phenomenological Research, 81(2), 362-381. 664
Grinbaum, A. (2007). Reconstruction of quantum theory. British Journal for the Philosophy of 665 Science, 58(3), 387-408. 666
Hagar, A., \& Hemmo, M. (2006). Explaining the unobserved-Why quantum mechanics ain't only 667 about information. Foundations of Physics, 36(9), 1295-1324 Page refs. to http://arxiv.org/abs/ 668 quant-ph/0512095.
Hughes, R. I. G. (1989). Bell's theorem, ideology, and structural explanation. In J. Cushing \& 670 E. McMullin (Eds.), Philosophical consequences of quantum theory (pp. 195-207). Indiana: 671 Notre Dame.
Janssen, M. (2002a). Reconsidering a scientific revolution, the case of Einstein versus Lorentz. 673 Physics in Perspective, 4, 421-446. 674
Janssen, M. (2002b). COI stories: Explanation and evidence in the history of science. Physics in 675 Perspective, 10, 457-520. 676
Janssen, M. (2009). Drawing the line between kinematics and dynamics in special relativity. In 677 Studies in history and philosophy of modern physics, 40(1) 26-52. 678
Körner, S. (1969). Fundamental questions of philosophy. Harmondsworth: Penguin Books. 679
Kuhn, T. (1970). The structure of scientific revolutions (Second Enlarged ed.). Chicago: Chicago 680 University Press. 681
Lange, M. (2013a). How to explain the Lorentz transformations. In S. Mumford \& M. Tugby 682 (Eds.), Metaphysics and science. Oxford: Oxford University Press. 683
Lange, M. (2013b). What makes a scientific explanation distinctively mathematical? British 684 Journal for the Philosophy of Science, 64, 485-511. 685
Morrison, M. (1999). Models as autonomous agents. In M. Morgan \& M. Morrison (Eds.), Models 686 as mediators: Perspectives on natural and social science (pp. 38-65). Cambridge: Cambridge 687 University Press. 688
Pincock, C. (2014). Abstract explanations in science. The British Journal for the Philosophy of 689 Science 66(4), 857-882. axu016. 690
Reutlinger, A. (2012). Getting rid of interventions. Studies in History and Philosophy of Science 691 Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(4), 787- 692 795.

Schrödinger, E., \& Born, M. (1935). Discussion of probability relations between separated systems. 694 Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), 555-563. 695
Steiner, M. (1978). Mathematical explanation. Philosophical Studies, 34(2), 135-151. 696
Timpson, C. G. (2010). Information, immaterialism, instrumentalism: Old and new in quantum 697 information. In A. Bokulich, G. Jaeger, (Eds.) Philosophy of quantum information and 698 entanglement, 208-227. Cambridge: Cambridge University Press. 699
Timpson, C. G. (2013). Quantum information theory and the foundations of quantum mechanics. 700 Oxford: Oxford University Press. 701
Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 702 29(4), 631-643. 703
Zeilinger, A. (2005). The message of the quantum. Nature, 438, 743 . 704

\section*{Author's Proof}

\section*{AUTHOR QUERY}

AQ1. Please confirm the corresponding author.

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{|c|c|}
\hline Chapter Title & Universality, Invariance, and the Foundations of Computational Complexity in the Light of the Quantum Computer \\
\hline Copyright Year & 2018 \\
\hline Copyright Holder & Springer International Publishing AG, part of Springer Nature \\
\hline Corresponding Author & \begin{tabular}{ll} 
Family Name & Cuffaro \\
Particle & \\
Given Name & Michael E. \\
Suffix & \\
Division & Rotman Institute of Philosophy \\
Organization & University of Western Ontario \\
Address & London, ON, Canada \\
Email & mcuffar@uwo.ca
\end{tabular} \\
\hline Abstract & Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding what is feasible. In this chapter I argue that the science of quantum computing illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For model-independence never has been essential to those foundations. The fundamental aim of complexity theory is to describe what is achievable in practice under various models of computation for our various practical purposes. Reflecting on quantum computing illuminates complexity theory by reminding us of this, too often under-emphasised, fact. \\
\hline
\end{tabular}

\section*{Author's Proof}

\title{
Chapter 11 \\ Universality, Invariance, and the 2 \\ Foundations of Computational \({ }_{3}\) \\ Complexity in the Light of the Quantum s Computer \\ Michael E. Cuffaro
}

\begin{abstract}
Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding what is feasible. In this chapter I argue that the science of quantum computing illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For modelindependence never has been essential to those foundations. The fundamental aim of complexity theory is to describe what is achievable in practice under various models of computation for our various practical purposes. Reflecting on quantum computing illuminates complexity theory by reminding us of this, too often underemphasised, fact.
\end{abstract}

\subsection*{11.1 Introduction}

Computational complexity theory is a branch of computer science that is dedicated 20 to classifying computational problems in terms of their difficulty. Unlike com- 21 putability theory, whose object is to determine what we can compute in principle, the object of complexity theory \({ }^{1}\) is to inform us with regards to which computational \({ }_{23}\) problems are actually feasible. It thus serves as a natural conceptual bridge

\footnotetext{
\({ }^{1}\) There are a number of sciences (for example: complex systems theory, the study of Kolmogorov complexity, and so on) which are referred to as complexity theories. Unless otherwise noted, any occurrence of 'complexity theory' in what follows should be understood as referring in particular to computational complexity theory, and any conclusions made should be taken as pertaining only
M. E. Cuffaro ( \(\triangle\) )

Rotman Institute of Philosophy, University of Western Ontario, London, ON, Canada e-mail: mcuffar@uwo.ca
}

\section*{Author's Proof}
between the study of mathematics and the study of technology, in the sense that 25 computational complexity theory informs us with respect to which computational 26 procedures may reasonably be expected to be technologically realisable. \({ }_{27}^{27}\)

Quantum computer science is the study of algorithms and other aspects of 28 computer systems whose construction involves an explicit appeal to various features 29 of quantum physical theory. Strikingly, there are quantum algorithms that appear 30 to significantly outperform algorithms which do not take advantage of quantum 31 resources. What distinguishes, quantitatively, quantum from classical computation 32 is not the number of problems that can be solved using one or the other model. \({ }_{3}\) Rather, what distinguishes the quantum from the classical model of computation 34 is that the number of problems solvable efficiently-i.e. the number of problems 35 whose solution is feasibly realisable-in the former model appears to be larger than 36 the number of problems solvable efficiently in the latter. The study of quantum 37 computer science therefore advances the goal of complexity theory in the sense 38 that it adds to our knowledge of the class of feasibly realisable computational 39 procedures.

More generally, as I will argue below, the study of quantum computation 41 illuminates the very nature and subject matter of complexity theory. Yet it does not 42 do so in a way that is often claimed. In particular it is not uncommon to come \({ }_{43}\) across statements in the philosophical and scientific literature to the effect that 44 advances in quantum computing force a fundamental revision of the foundations 45 of complexity theory (Hagar 2007; Nielsen and Chuang 2000; Bernstein and 46 Vazirani 1997). According to this view it is the traditional aim of complexity 47 theory to understand the nature of concepts such as that of a 'tractable problem' 48 in themselves; i.e., apart from the manner in which they are implemented under 49 particular models of computation. Model-independence, in turn, is taken to rest upon 50 an 'extended' or 'strong' version of the Church-Turing thesis, or alternately, upon an 51 'invariance' thesis. And because quantum computers seemingly violate these theses, 52 it is concluded that complexity theory's foundations must be somehow rebuilt. \({ }_{53}\)

As I will argue, however, model-independence is not and never has been at the 54 core of computational complexity theory. Its foundations are therefore not shaken by 55 the advent of quantum computing. Complexity theory is fundamentally a practical 56 science, whose aim is to guide us in making distinctions in practice among tractable 57 and intractable problem sets. The model-independence of complexity-theoretic 58 concepts is not a necessary condition for realising this aim. Quantum computation 59 indeed illuminates the subject matter of complexity theory. But it does not do so 60 by overturning its foundations. Rather, quantum computing illuminates complexity 61 theory by reminding us of its practical nature.

This is both a virtue of the theory as well as a reason for increased philosophical 63 attention to it. Science does not always or only, or perhaps ever, progress through 64 the absolute identification of fundamental entities, be they abstract or concrete. 65

\footnotetext{
to it. See Müller (2010) for a discussion of the difficulties associated with formulating machineindependent concepts in the context of Kolmogorov complexity.
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .
Complexity theory furnishes us with a particularly striking illustration that sci- 66 entific progress-even in the mathematical sciences-is, in fact, often built upon 67 pragmatically justified foundations and conceptual structures. \({ }^{2}\) There is a general 68 philosophical lesson in this, which in different contexts has been profitably analysed 69 by some (for example, Carnap 1980 [1950], 1962, ch. 1), though in my view too few, 70 philosophers.

In the next section we will briefly review, from a historical perspective, the 72 foundations of computability theory. Section 11.3 will then connect the foregoing \({ }^{73}\) discussion to the foundations of computational complexity theory, and will intro- 74 duce the theory's basic concepts. In Sect. 11.4 we will discuss the 'universality 75 of Turing efficiency' thesis, as well as the closely related 'invariance thesis'. 76 Section 11.5 will introduce the basic concepts of quantum computing. In Sect. 11.677 we will discuss quantum computing's significance for the conceptual foundations of 78 complexity theory. We will then conclude.

\subsection*{11.2 The Entscheidungsproblem and the Origins of the Church-Turing Thesis}

With his second incompleteness theorem, Gödel demonstrated that any \(\omega\)-consistent 82 formalisation of number theory, whose formulas are primitively recursively defin- 83 able, and which is rich enough to permit arithmetisation of syntax, cannot prove 84 its own consistency. \({ }^{3}\) For such a capability would be incompatible with Gödel's 85 first incompleteness theorem, by which he demonstrated that within any such 86 formalisation there are sentences neither provable nor refutable from the axioms. 87 Finding a general and effective procedure for determining whether a given formula 88 in such a system is one of these sentences, however, remained an open question. 89

This was the Decision Problem-in German: the Entscheidungsproblem-for 90 validity, originally posed for first-order logic by Hilbert and Ackermann (1928, Pt. 91 III); that is, to describe an 'effective procedure' by which one can decide whether 92 an arbitrarily given expression of first-order logic is provable from the axioms. \({ }^{4}{ }_{93}\)

\footnotetext{
\({ }^{2}\) See also Dean (2016a), who reviews the arguably insurmountable problems that face any attempt to regard an algorithm as a mathematical object in the light of computer science practice.
\({ }^{3} \mathrm{An} \omega\)-consistent theory is such that it is both consistent and satisfies a syntactic analogue of soundness (see Dawson 2007, p. 504). A primitively recursively definable formula is such that it can be built up from a finite number of successive basic operations. Arithmetisation of syntax refers to a procedure by which every sentence in a formal system is encoded uniquely into a natural number (called its 'Gödel number').
\({ }^{4}\) The reason for Hilbert and Ackermann's focus on the special case of first order logic is that it is the most restricted example of a general logic adequate for representing higher arithmetic, i.e. number theory. Its study was to constitute the first step in the development of a more encompassing logical framework for mathematics (Dawson 2007, p. 500). Note that Hilbert and Ackermann additionally posed a parallel Decision Problem for satisfiability. In the sequel, unless otherwise indicated, I
}

\section*{Author's Proof}

Informally, an effective computational procedure consists of a finite number of 94 precise finite-length instructions guaranteed to produce some desired result in a 95 finite number of steps if followed exactly by a human being using nothing other than 96 paper and pencil. An example of an effective procedure is the truth-table method as 97 applied to sentential logic. Famously, Church and Turing were independently able 98 to show that the Entscheidungsproblem for first-order logic could not be solved; i.e., 99 no effective calculational procedure for determining the validity of an arbitrarily 100 given expression in first-order logic exists.

Turing, to whom we will restrict our attention, showed this partly by means 102 of a penetrating philosophical analysis of the notion of effective computation. \({ }^{5}{ }^{103}\) Turing (1936-7, pp. 249-51) argued that it is essential to the idea of carrying out a 104 computation that the computer uses a notebook from which she reads, and onto 105 which she writes, various symbols related to her work. These symbols, as they 106 must be distinguishable from one another, are chosen from a finite alphabet. At any 107 given moment during a computation, the computer will find herself in one of a finite 108 number of relevant states of mind which summarise her memory of the actions she 109 has performed up until that point along with her awareness of what she must now 110 do (pp. 253-4). The actions that are available to her are characterised by a finite 111 set of elementary operations, such as 'read the next symbol' from the notebook, 112 'write symbol \(a\) ' to the notebook, and so on. Turing then argued that one could 113 design an automatic machine, which he called an \(\alpha\)-machine, to instantiate each 114 of these essential features of the practice of human computation (see Fig. 11.1). 115 In doing so he identified the extension of the concept 'effectively calculable' with 116 that of 'computable by \(\alpha\)-machine'. This identification is known as Turing's thesis, 117 which he proved (p. 263ff) to be equivalent with Church's independently arrived at 118 thesis that the class of effectively calculable functions is identical with the class of 119 \(\lambda\)-definable functions (Church 1936). For this reason it is also called the Church- 120 Turing thesis.

Turing then addressed the Entscheidungsproblem in an indirect way (Turing 122 1936-7, pp. 259-63, 1938). He first showed that it is impossible to determine, \({ }^{123}\) for a given \(\alpha\)-machine, whether it is 'circle-free'; i.e. whether it is not the case 124 that it never outputs more than a finite number of symbols. He then showed that \({ }_{125}\) if the Entscheidungsproblem were solvable, one could determine, for any given 126 \(\alpha\)-machine, whether it is circle-free. Since this contradicts the first result, the \({ }_{127}\) Entscheidungsproblem is unsolvable.

\footnotetext{
will take the Decision Problem or Entscheidungsproblem to refer exclusively to the problem for validity.
\({ }^{5}\) In what follows it must be kept in mind that computation, at the time of the publication of "On Computable Numbers," generally referred to an activity performed by human beings; a computer was a person employed to carry out computations.
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. ..


Fig. 11.1 A version of what is now called a 'Turing machine'. The control unit houses the machine's 'state of mind', which in general changes after every operation of the read-write head. The read-write head reads, writes, and moves back and forth along portions of a one-dimensional tape (the machine's 'notebook'). Such a machine is an idealised representation of the components involved in human computation

\subsection*{11.3 Efficient Computation}

The period just discussed, during which the seminal papers by Church, Gödel, Turing, and others were published, is the period of the birth of computer science in the modern sense. It was to be nearly three more decades before the particular branch of modern computer science that furnishes the subject matter for this chapter, computational complexity theory, took shape with the work of Cobham (1965), Edmonds (1965), Hartmanis and Stearns (1965), and others. Yet one of its key questions was anticipated significantly earlier by none other than Gödel. Revisiting the Entscheidungsproblem in a letter he wrote to von Neumann in 1956, Gödel asked for von Neumann's opinion concerning the number, \(\varphi(l)\), of steps needed, in the worst case, to decide whether some arbitrarily given formula of first-order logic

If there actually were a machine with \(\varphi(l) \sim K l\) (or even only with \(\sim K l^{2}\) ), this would have \({ }_{143}\) consequences of the greatest magnitude. That is to say, it would clearly indicate that, despite the unsolvability of the Entscheidungsproblem, the mental effort of the mathematician in the case of yes-or-no questions could be completely [Gödel's Footnote: Apart from the postulation of axioms] replaced by machines. One would indeed have to simply select an \(l\) so large that, if the machine yields no result, there would then also be no reason to think further about the problem (Gödel 1956, p. 10).

To illustrate: take some proposition \(F\) of first-order logic and consider testing tocould survey them all relatively quickly. Gödel's point is that, from the machine's153

\footnotetext{
\({ }^{6}\) In the following quotations I have replaced the variable \(n\) with \(l\).
}

\section*{Author's Proof}
perspective, the \(K l\) (or perhaps \(K l^{2}\) ) steps needed to discover whether \(\Psi\) exists is 154 not very much greater than the \(l\) steps that would be needed to survey it. We would expect, therefore, that the machine will give us an answer to the question of whether \(F\) has a proof of length \(l\) in a reasonable amount of time. By assumption, however, surveying a proof of length \(\geq l\) is beyond the practical capabilities of any human being. So if the machine yields a negative result, then we can conclusively say that, for the practical purposes of unaided human computation, \(F\) is unprovable. Indeed there would be no reason to bother with the practical computational purposes of unaided human mathematicians at all; if such a machine existed we could henceforth consider such questions exclusively with respect to it.

There is an additional, deeper, point that is implicit here as well. Gödel's question to von Neumann is stated in the context of the Entscheidungsproblem, where it is assumed that the procedure to be used by a human mathematician to answer the question of whether \(F\) can be proved is an effective one, in the sense described in the previous section. Recall that following an effective procedure requires no ingenuity on the part of the person doing the following; it is a purely mechanical procedure which, if followed exactly, is guaranteed to give one a result in a finite number of steps. It is precisely for this reason that we can model it with a machine. In general, however, theorem proving is an activity which we do take to require insight and ingenuity. We take there to be more to the process of discovering a proof of a particular theorem than blindly following a set of rules; we need insight into the 'essential nature' of the problem at hand in order to guide us to the most 174 likely route to a solution, and we need ingenuity to proceed along this route in a skillful, efficient, way. Or so one could object. Be that as it may, if we could in fact build a machine to discover, in only \(K l\) (or \(K l^{2}\) ) steps, whether any given proposition of first-order logic has a proof of length \(l\), it would make, not just human178 beings themselves, but the ingenuity and insight associated with their activities in 180 this context, dispensable.

Implicit in the above considerations is the idea that neither \(\varphi(l) \sim K l\) nor 182 \(\varphi(l) \sim K l^{2}\) yields a significantly greater number than \(l\) from the point of view 183 of a machine. This is consistent with the ideas of modern complexity theory, where 184 in fact any decision problem (i.e., yes-or-no question) for which a solution exists 185 whose worst-case running time is bounded by as much as a polynomial function 186 of its input size, \(n\), is considered to be a 'tractable' (a.k.a. 'feasible', 'efficiently 187 solvable', 'easy', etc. \({ }^{7}\) ) problem. Indeed, these ideas are not just consistent; one 188 way to motivate the modern complexity-theoretic identification is to begin with 189 essentially Gödel's assertion that problems which require only \(K n\) or \(K n^{2}\) steps 190 to solve are tractable. \({ }^{8}\) Combine this with the computer programmer's intuition that 191 an efficient program, to which one adds a call to an efficient subroutine, should 192

\footnotetext{
\({ }^{7}\) I will be using these terms interchangeably below.
\({ }^{8}\) Note that although Gödel's letter to von Neumann anticipates this and other ideas of modern complexity theory, I am not claiming that it actually influenced the theory's development. As far as I am aware, Gödel's letter was unknown prior to its translation and publication in Sipser (1992).
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .
continue to be thought of as efficient (Arora and Barak 2009, p. 27), and we naturally arrive at the conclusion that the set of efficiently solvable problems just is the set of problems solvable in a polynomial number of time steps. This 'polynomial principle' is generally considered to be at the heart of the theory of computational complexity. We will discuss it in more detail (and critically) in Sect. 11.6.

In the context of the Turing machine (TM) model, the set of decision problems solvable in polynomial time is referred to as the class P. \({ }^{9}\) More formally, we can conceive of a decision problem as one whose goal is to yield a yes-or-no answer to the question of whether a given string \(x\) of length \(n\) is a member of the 'language' \(L\). For example, the decision problem for determining whether a given number is prime can be represented as the problem to determine, for an arbitrarily given binary string, whether it is a member of the language \(\{10,11,101,111,1011,1101,10001\), \(10011, \ldots\}\) (the set of binary representations of prime numbers). Now call a given language \(L\) a member of the class \(\operatorname{DTIME}(T(n))\) if and only if there is a Turing machine \({ }^{10}\) for deciding membership in \(L\) whose running time, \(t(n)\), is 'on the order of \(T(n)\) ', or in symbols: \(O(T(n))\). Here, \(T(n)\) represents an upper bound for the growth rate of \(t(n)\) in the sense that, by definition, \(t(n)\) is \(O(T(n))\) if for every sufficiently large \(n, t(n) \leq k \cdot T(n)\) for some constant \(k .{ }^{11}\) So for any language \(L\) in, for example, \(\operatorname{DTIME}\left(n^{2}\right)\), there is a TM that will take no more than \(k n^{2}\) steps to decide membership in \(L\). We can now formally characterise P as (Arora and Barak 211 2009, p. 25):
\[
\begin{equation*}
\mathrm{P}=\bigcup_{k \geq 1} \mathrm{DTIME}\left(n^{k}\right) \tag{11.1}
\end{equation*}
\]

Note that the class \(\operatorname{DTIME}(\boldsymbol{T}(n))\) is defined, strictly speaking, to be a set of 214 languages. Below I will sometimes use statements of the form: '(decision) problem \(R\) is in \(\operatorname{DTIME}(T(n))^{\prime}\), which is shorthand for the assertion that the language \(L_{R}\), associated with \(R\), is decidable in \(O(T(n))\) steps. 217

We have just seen that \(L\) is in P if and only if one can construct a polynomial- 218 time TM that will decide, for any given \(x\), whether \(x \in L\). Now suppose that one is presented with a proof that \(x \in L\). If one can verify this proof using a polynomialtime TM \(M\), then we say that \(L\) is a member of the complexity class NP. \({ }^{12}\) More \({ }^{221}\) formally (Arora and Barak 2009, p. 39),
\[
\begin{equation*}
L \in N P \text { whenever: } \quad x \in L \Leftrightarrow \exists u \text { s.t. } M(x, u) \stackrel{\text { poly }}{=} \text { 'yes', } \tag{11.2}
\end{equation*}
\]

\footnotetext{
\({ }^{9}\) It is also sometimes referred to as PTIME, in order to emphasise the distinction between it and PSPACE, the class of problems solvable using space resources bounded by a polynomial function of \(n\).
\({ }^{10}\) The ' \(D\) ' in DTIME stands for 'deterministic'. It contrasts with 'nondeterministic time', which I will introduce later.
\({ }^{11}\) The qualification 'for every sufficiently large \(n\) ' can be rephrased as the assertion that there exists some finite \(n_{0} \geq 1\) such that \(t(n) \leq k \cdot T(n)\) whenever \(n \geq n_{0}\).
\({ }^{12}\) NP stands for nondeterministic polynomial time. The reason for this name will become clear shortly.
}

\section*{Author's Proof}
where \(u\) is string (usually called a 'certificate') whose length is given by a 223 polynomial function of the length, \(n\), of \(x\), and \(M(x, u) \stackrel{\text { poly }}{=}\) 'yes' asserts that the 224 machine \(M\) accepts \(x\), given \(u\), in polynomial time. \({ }^{13}\)

The restricted form of the Entscheidungsproblem described above by Gödel is certainly in NP; given a proposition \(x\), and a proof \(u\) of \(x\) whose length is \(\leq l,{ }_{227}\) one can obviously verify this in polynomial time. Indeed, the problem also happens 228 to be 'NP-complete' (Hartmanis 1993). \({ }^{14}\) NP-complete problems are the hardest 229 problems in NP, in the sense that if we have in hand a solution to an NP-complete problem, we can easily convert it into a solution to any other problem in NP. That 231 is, a language \(L \in\) NP is in the class NP-complete if and only if a procedure for \({ }^{232}\) deciding \(L\) can be converted, in polynomial time, into a procedure for deciding \(L^{\prime},{ }^{23}\) for any \(L^{\prime} \in \mathrm{NP}\). More concisely, \(L \in \mathrm{NP}\) is NP-complete if and only if \(\forall L^{\prime} \in N P,{ }^{234}\) \(L^{\prime}\) is polynomial-time reducible, in the above sense, \({ }^{15}\) to \(L\) (Arora and Barak 2009, 235 p. 42).

The proposition that there exists a general solution to the restricted Entschei- \({ }^{237}\) dungsproblem which requires no more than \(K l^{2}\) steps to carry out-call this 238 the 'Gödelian conjecture' \({ }^{16}\) - does not amount merely to the proposition that this 239 decision problem is in NP. Recall that the restricted Entscheidungsproblem is the 240 problem to decide whether an arbitrarily given formula \(x\) has a proof of length \({ }^{241}\) \(l\); it is not merely the problem of verifying this fact about \(x\) given a certificate 242 \(u\). The Gödelian conjecture, therefore, amounts to the claim that the restricted 243 Entscheidungsproblem is in P. But since this problem is known to be NP-complete, 244 the Gödelian conjecture, if correct, amounts to the claim that \(\mathrm{P}=\mathrm{NP} .{ }^{17} \quad 245\)

Interestingly, there has been no proof or disproof to date of the statement 246 that \(\mathrm{P}=\mathrm{NP}\). Partly due to the intuitive implausibility of its consequences-that 247 "the mental effort of the mathematician in the case of yes-or-no questions could 248 be completely replaced by machines" (Gödel 1956)-the statement is generally 249 believed to be false. Besides this there are further, mathematical, reasons to believe 250 that \(\mathrm{P} \neq \mathrm{NP}\) (Aaronson 2013a, p. 67). I will not mention these here as the \(\mathrm{P}=\mathrm{NP}{ }_{251}\) question is not our focus. I will only say that the project to prove or disprove \(\mathrm{P}=\mathrm{NP}{ }_{252}\) is a worthwhile one, not so much because the outcome is in doubt, but because a \({ }^{253}\) formal proof would likely enlighten us with regards to just what it is that insight and 254 ingenuity contribute to the practice of mathematics.

\footnotetext{
\({ }^{13} u\) must be of polynomial length in \(n\) to ensure that \(M\) can read \(u\) in polynomial time.
\({ }^{14}\) Gödel himself gives no indication that he realises this in his letter.
\({ }^{15}\) What I have described above is actually called a Karp reduction. It is a weaker concept than the related one of Cook reduction. We will not discuss the distinction here. For more on this, see Aaronson (2013a, p. 58).
\({ }^{16}\) Gödel does not himself actually conjecture this, although he comes close to doing so: "it seems to me ... to be totally within the realm of possibility that \(\varphi(l)\) grows slowly." (Gödel 1956, p. 10). \({ }^{17}\) Strictly speaking it only entails that \(\mathrm{NP} \subseteq P\). But since obviously \(\mathrm{P} \subseteq \mathrm{NP}\), it would follow that \(\mathrm{P}=\mathrm{NP}\).
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .

Our discussion of the Turing machine model of computation has thus far focused 256 on the standard, i.e., deterministic, case. A standard TM is such that its behaviour 257 at any given moment in time is wholly determined by the state that it finds itself 258 in plus whatever input it receives. The machine can be fully characterised, that 259 is, by a unique transition function over the domain of states and input symbols. 260 One can, however, generalise the TM model by allowing the machine to instantiate 261 more than one transition function simultaneously. \({ }^{18}\) Upon being presented with a 262 given input in a given state, a nondeterministic Turing machine (NTM) is allowed to 263 'choose' which of its transition functions to follow (see Fig. 11.2). Exactly how this 264 choice is made is left undefined, and for the purposes of the model can be thought 265 of as arbitrary. We say that an NTM accepts a string \(x\) if and only if there exists 266 a path through its state space that, given \(x\), leads to an accepting state. It rejects \(x \quad 267\) otherwise. We define the class \(\operatorname{NTIME}(T(n))\), analogously to \(\operatorname{DTIME}(T(n))\), as the 268 set of languages for which there exists an NTM that will decide, in \(O(T(n))\) steps, 269 whether a given string \(x\) of length \(n\) is in the language \(L\). 270

Recall that above I characterised NP as the set of languages for which one 271 can construct a polynomial-time TM to verify, for any \(x\), that \(x \in L\), given a 272 polynomial-length certificate \(u\) for \(x\). One can alternatively characterise NP as the 273 set of languages for which there exists a polynomial-time NTM for determining 274 membership in \(L\) :
\[
\begin{equation*}
\mathrm{NP}={ }_{d f} \bigcup_{k \geq 1} \operatorname{NTIME}\left(n^{k}\right) \tag{11.3}
\end{equation*}
\]

This definition is the source of the name NP, in fact, which stands for 'nondetermin- 276 istic polynomial time'.

Definitions (11.2) and (11.3) are equivalent. Given a language \(L\) and a 278 polynomial-time NTM that decides it, then for any \(x \in L\), there is by definition 279 a polynomial-length sequence of transitions of the NTM which will accept \(x .280\) One can use this sequence as a certificate for \(x\), and verify it in polynomial-time 281 using a (deterministic) TM. Conversely, suppose there is a TM \(M_{D}\) that, given a 282 polynomial-length certificate \(u\) for \(x\), can verify in polynomial time that \(x \in L .{ }_{2} 83\) Then one can construct a polynomial-time NTM \(M_{N}\) that will 'choose' certificates 284 from among the set of possible polynomial-length strings (e.g., by randomly writing 285 one down). Upon choosing a certificate \(u, M_{N}\) then calls \(M_{D}\) to verify \(x\) given \(u,{ }_{286}\) and transitions to 'yes' only if \(M_{D}\) outputs 'yes' (Arora and Barak 2009, p. 42). \({ }_{287}\)

For an NTM, no attempt is made to define how such a computer chooses, at 288 any given moment, whether to follow one transition function rather than another. In 289 particular, it is not assumed that any probabilities are attached to the machine's 290 choices. Indeed, under Turing's original conception (1936-7, p. 232), these are 291

\footnotetext{
\({ }^{18}\) The idea of a machine with an ambiguous transition function can be found in Turing (19367). Turing calls this a 'choice machine' (p. 232), and notes its extensional equivalence with the automatic (i.e. deterministic) machine (p. 252, footnote \(\ddagger\) ).
}

\section*{Author's Proof}

\(\delta_{1}(\) Start, 0\()=(\) a, \(0, R)\)
\(\delta_{1}(\) Start, 1\()=(\) Start \(, 1, R)\)
etc.
\[
\begin{gathered}
\delta_{2}(\text { Start }, 0)=(b, 0, R) \\
\delta_{2}(\text { Start }, 1)=(\text { Start }, 1, R) \\
\text { etc. } .
\end{gathered}
\]

Fig. 11.2 A nondeterministic Turing machine (NTM) is such that, for a given state and a given input, the state transitioned to is not predetermined; at any given step the machine is able select from more than one transition function (in this case, \(\delta_{1}\) and \(\delta_{2}\) ). The machine depicted accepts binary strings ending in ' 00 ', since there exists a series of transitions for which, given such a string, the machine will end in the 'Accept' state. But it is not guaranteed to do so. The machine additionally is guaranteed to reject any string not ending in ' 00 '. In the diagram, an edge from \(s_{1}\) to \(s_{2}\) with the label \(\alpha, \beta, P\) is read as: In state \(s_{1}\), the machine reads \(\alpha\) from its tape, writes \(\beta\) to the tape in the same position, moves its read/write head along the tape to the position \(P\) with respect to the current tape position ( \(\mathrm{L}=\) to the left, \(\mathrm{R}=\) to the right, \(\mathrm{S}=\) same ), and finally transitions to state \(s_{2}\)
thought of as the choices of an external operator. They are thus arbitrary from the machine's point of view. In a probabilistic Turing machine (PTM), on the other hand, we characterise the computer's choices by associating a particular probability with each of its transitions (see Fig. 11.3).

Like TMs and NTMs, PTMs have associated with them a number of complexity 296 classes. The most important of these is the class BPP (bounded-error probabilistic 297 polynomial time). This is the class of languages such that there exists a polynomial- 298 time PTM that, on any given run, will correctly determine whether or not a string 299 \(x\) is in the language \(L\) with probability \(\geq 2 / 3\). The particular threshold value of 300 \(2 / 3\) is inessential to this definition. It is chosen in order to express the idea of a 301 'high probability'. \({ }^{19}\) But any threshold probability \(p_{\min } \geq 1 / 2+n^{-k}\), where \(k{ }^{302}\) is a constant, will suffice for the definition of BPP. For given a polynomial-time \({ }_{303}\) PTM that correctly determines whether or not \(x \in L\) with probability \(p_{\text {min }}\), re- 304

\footnotetext{
\({ }^{19}\) Note that the high probability requirement constitutes a key conceptual difference between BPP and NP. The latter demands only that it is possible for an NTM to arrive at a correct solution.
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .


Fig. 11.3 One node in a PTM. Given an input of 1 in the state a, the machine will write 1 to the tape and move right with probability \(4 / 5\), or write 0 and move left with probability \(1 / 5\). On an input of 0 it will write 0 and move right with probability \(3 / 8\), or write 0 and move left with probability \(5 / 8\). For a given state and a given input, edge probabilities must add up to 1 . We can imagine that the machine's choices are made in accordance with these probabilities by repeatedly 'flipping a coin'
running it a number of additional times that is no more than polynomial in \(n\) and taking the majority answer will yield a correct result with probability close to 1 (Arora and Barak 2009, p. 132). Since, as I mentioned above, the time it takes to run a polynomial-time algorithm a polynomial number of times is still polynomial, 307 varying \(p_{\text {min }}\) in this way will do nothing to alter the set of languages contained in BPP.

\subsection*{11.4 The Universality and Invariance Theses}

The Church-Turing (C-T) thesis claims nothing about the efficiency of any particular 312 model of computation. Nor does it carry with it any implications concerning
physically possible computing machines in general (see Turing 1950, §§3, 5, 6.7). Both Church's and Turing's theses are, as we saw earlier, theses concerning the 315 limits of effective procedures. Despite this, the C-T thesis is often misrepresented in this regard in the philosophical and even in the scientific literature (for further discussion of the reasons for the confusion, see Copeland 2015; Timpson 2013; 318 Pitowsky 1990). In more informed literature, however, these re-interpretations of 319 the C-T thesis are explicitly distinguished from it. The thesis (I) that any reasonable 320 model of computation can be simulated with at most a polynomial number of extra \({ }_{32}\) time steps by a PTM is often called the 'strong' C-T thesis (see, e.g., Nielsen and \({ }^{322}\)

\section*{Author's Proof}

Chuang 2000, p. 140). \({ }^{20,21}\) The thesis (II) that a physical instantiation of a TM can simulate any physically possible machine that realises a finite instruction set and323 that works on finite data is often called the 'physical' C-T thesis (Andréka et al. 2018; Piccinini 2011). But confusingly, (II) is also sometimes called the 'strong' thesis (Goldin and Wegner 2008), and (I) is sometimes called the 'physical' thesis (Hagar 2007).

So as not to contribute to the confusion arising from this ambiguous labelling, and more importantly, to discourage any erroneous inferences to the intended scope of Church's and Turing's original theses themselves, I will, following Copeland (2015), refer to (II) as 'Thesis M'. I will refer to (I), the subject of this section, as the 'universality of Turing efficiency thesis'. For it follows from the truth of (I) that the set of problems efficiently solvable in general, i.e., on any reasonable digital machine model \(\mathfrak{M}\), is identical with the set of problems efficiently solvable on a PTM. Formally this can be expressed as:
\[
\begin{equation*}
\bigcup \text { Poly }_{\mathfrak{M}}=\mathrm{BPP} \tag{11.4}
\end{equation*}
\]

In other words, the thesis implies that the set of problems solvable in polynomial time does not grow beyond BPP if we allow ourselves to vary the underlying model. \({ }^{22}\)

A further closely related notion is what van Emde Boas (1990, p. 5) has called 340 the 'invariance thesis'. This states that any reasonable machine model can simulate any other reasonable machine model with no more than a polynomial slowdown.

\footnotetext{
\({ }^{20}\) Some textbooks state (I) as a thesis about the TM rather than the PTM model (see, e.g., Arora and Barak 2009, p. 26). I will follow Nielsen and Chuang (2000), in order to leave open the possibility that \(\mathrm{P} \subsetneq \mathrm{BPP}\), and also because BPP constitutes a more natural contrast (see Footnote 22 below) with its quantum analogue, BQP , which we will introduce in the next section. Until recently, P \(\subsetneq\) BPP was thought to be very likely true, however evidence (e.g., Agrawal et al. 2004) has been mounting in favour of the conjecture that in fact \(\mathrm{P}=\mathrm{BPP}\). Whether (I) is formulated with respect to TMs or PTMs makes little difference to what follows. A TM can be thought of as a special case of a PTM for which transition probabilities are always either 0 or 1 .
\({ }^{21}\) The qualification 'reasonable' will be explained shortly.
\({ }^{22}\) There is a slight complication that I am glossing over here, namely that what it means for a machine to constitute a solution to a problem varies across computational models. In particular a TM solution to a problem is required to yield a correct answer with certainty, whereas (as I mentioned previously) a PTM solution in general need only yield a correct answer with high probability. Implicit in (11.4), therefore, is an appeal to the more general criterion for solvability corresponding to that appropriate to a PTM rather than to a TM. This subtle distinction regarding what it means to solve a problem under various models of computation is one reason, that I alluded to in Footnote 20 above, for expressing the universality thesis in terms of BPP rather than P. For as we will see in the next section, a quantum computer, like a PTM, is a probabilistic machine and is subject to the same criterion for success. Expressing the universality thesis in terms of BPP thus allows for a more straightforward analysis of the quantum model's significance for the thesis. A similar remark applies to the invariance thesis, which I now introduce.
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. ..
(See also: Goldreich 2008, p. 33, who names it differently. \({ }^{23}\) ) The invariance thesis \({ }_{34}\) implies the universality thesis, but not vice versa. Note that in the context of both the 34 universality and invariance theses, 'reasonable' is typically understood as physically 345 realisable. Reasonable models include variants of the TM model, for example, \({ }^{346}\) but do not include models which employ unbounded parallelism. \({ }^{24}\) This will be 347 discussed further in Sect. 11.6.

There are reasons for believing in the truth of both the universality and invariance 349 theses. Neither the standard variations on the Turing model, such as adding more tapes, increasing the number of squares readable or writable at a given moment, and so on (Arora and Barak 2009), nor the alternative reasonable universal (classical) models of computation that have been developed since Turing's work, are faster than PTMs by more than a polynomial factor, and all appear to be able to simulate
\[
354
\] one another efficiently in this sense (van Emde Boas 1990).

Over the last three decades, however, evidence has nevertheless been mounting 356 against universality and invariance, primarily as a result of the advent of quantum computing (Aaronson 2013a, chs. 10, 15). We will discuss quantum computing in more detail in the next section.

\subsection*{11.5 Quantum Computation}

Consider the (non-quantum) machine depicted in Fig. 11.4. This simple automaton has two possible states: \(\{0,1\}\). It has one possible input (omitted in the statetransition diagram), which essentially instructs the machine to 'run'. This can be implemented, for example, by a button connected to the machine's inner mechanism. At the end of any given run, the machine will either remain in the state it was previously in or else transition to the opposite state, with equal probability. One can imagine that the machine also includes a small door which, when opened, reveals a display indicating what state the machine is in. A typical session with the machine consists in: (a) opening the door to record the machine's initial state; (b) pushing the 'run' button one or more times; (c) opening the door to reveal the machine's final state.

Let us suppose that between the initial and final opening of the door, our
experimenter pushes the button twice. Given that the initial reading was 0 , what is the probability that the final reading is 0 as well? This is given by:

\footnotetext{
\({ }^{23}\) For the purposes of our discussion of the invariance thesis we will not be distinguishing between TMs and PTMs but will be taking the former to be a special case of the latter (this is motivated in Footnote 20 above). We will understand the thesis, then, as asserting that any reasonable probabilistic machine model is efficiently simulable by any other reasonable probabilistic machine model. PTMs and quantum computers are both examples of probabilistic models.
\({ }^{24}\) The parallel random access machine (PRAM) model, for example, is excluded.
}

\section*{Author's Proof}


Fig. 11.4 A simple automaton which, when run, randomly transitions to one of two possible states. In the state-transition diagram at the left, edge labels represent probabilities for the indicated transitions
\[
\begin{align*}
\operatorname{Pr}\left(C^{2} 0 \rightarrow 0\right) & =\operatorname{Pr}(C 0 \rightarrow 0) \times \operatorname{Pr}(C 0 \rightarrow 0) \\
& +\operatorname{Pr}(C 0 \rightarrow 1) \times \operatorname{Pr}(C 1 \rightarrow 0) \\
& =1 / 2 \tag{11.5}
\end{align*}
\]
where \(C^{n} \psi \rightarrow \phi\) signifies that the computer is run \(n\) times after beginning in the 375 state \(\psi\), and ends in \(\phi\). Equation (11.5) illustrates that there are two possible ways 376 for the computer to begin and end in the state 0 after two runs. Either it remains in 0377 after each individual run, or else it first flips to 1 and then flips back. From Fig. 11.4, 378 one can easily see that:
\[
\begin{equation*}
\operatorname{Pr}\left(C^{2} 0 \rightarrow 0\right)=\operatorname{Pr}\left(C^{2} 0 \rightarrow 1\right)=\operatorname{Pr}\left(C^{2} 1 \rightarrow 0\right)=\operatorname{Pr}\left(C^{2} 1 \rightarrow 1\right)=1 / 2, \tag{11.6}
\end{equation*}
\]
and indeed we have that \(\operatorname{Pr}\left(C^{n} \psi \rightarrow \phi\right)=1 / 2\) for any \(n\).
The internal state (what is revealed by opening the door) of the simple machine 381 pictured in Fig. 11.4 is describable by a single binary digit, or 'bit'. In general the internal state of any classical digital computer is describable by a sequence of \(n{ }^{383}\) bits, and likewise for its inputs and outputs. A bit can be directly instantiated by any 384 two-level classical physical system, for example by a circuit that can be either open or closed. In a quantum computer, on the other hand, the basic unit of representation 386 is not the bit but the qubit. To directly instantiate it, we can use a two-level quantum 387 system such an electron (specifically: its spin). The qubit generalises the bit. Like 388 a bit, it can be 'on', i.e. in the state \(|0\rangle\), or 'off', i.e. in the state \(|1\rangle\). In general, 389 however, the state of a qubit can be expressed as a normalised linear superposition: 390
\[
\begin{equation*}
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \tag{11.7}
\end{equation*}
\]
where the 'amplitudes' \(\alpha\) and \(\beta\) are complex numbers such that \(|\alpha|^{2}+|\beta|^{2}=1\). We 391 refer to \(|\psi\rangle\) as the 'state vector' for the qubit. \({ }^{25}\)

\footnotetext{
\({ }^{25}\) The modulus squared (or 'absolute square'), \(|c|^{2}\), of a complex number \(c\) is given by \(c \bar{c}\), where \(\bar{c}\) is the complex conjugate of \(c .|\psi\rangle\) is normalised when \(|\alpha|^{2}+|\beta|^{2}=1\).
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .

An important difference between qubits and bits is that not all states of a qubit can be observed directly; in particular, one never observes a qubit in a linear superposition (aside from the trivial case in which one of \(\alpha, \beta\) is 0 ). \({ }^{26}\) According to the Born rule, a qubit in the state (11.7), when measured, will be found to be 396 in the state \(|0\rangle\) with probability \(|\alpha|^{2}\), and in the state \(|1\rangle\) with probability \(|\beta|^{2}\). 397 For example, consider a simple one-qubit quantum machine that implements the following transitions:
\[
\begin{align*}
Q|0\rangle & \rightarrow \frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \equiv|\chi\rangle,  \tag{11.8}\\
Q|1\rangle & \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle \equiv|\xi\rangle . \tag{11.9}
\end{align*}
\]

If the machine begins in the state \(|0\rangle\), and the button is pushed once, it will transition 400 to \(|\chi\rangle\). Then with probability \(\left|\frac{i}{\sqrt{2}}\right|^{2}\), opening the door will reveal \(|0\rangle\), and with 401 probability \(\left|\frac{1}{\sqrt{2}}\right|^{2}\) it will reveal \(|1\rangle\).

Since \(\left|\frac{i}{\sqrt{2}}\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|^{2}=1 / 2\), a series of 'one-push' experiments with this 403 quantum machine will produce identical statistics as will a series of one-push 404 experiments with the classical machine depicted in Fig. 11.4. Things become more 405 interesting when we consider two-push experiments. If the machine is in the initial 406 state \(|0\rangle\), then after the first push the machine will effect the transition (11.8). If, 407 before opening the door, we push the button again, the machine will make the 408 following transition:
\[
\begin{align*}
& Q\left(\frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{i}{\sqrt{2}} Q|0\rangle+\frac{1}{\sqrt{2}} Q|1\rangle \\
& =-\frac{1}{2}|0\rangle+\frac{i}{2}|1\rangle+\frac{1}{2}|0\rangle+\frac{i}{2}|1\rangle=i|1\rangle . \tag{11.10}
\end{align*}
\]

Since \(|i|^{2}=1\), opening the door will find the machine in the state \(|1\rangle\) with certainty. 410 Likewise, if the machine begins in \(|1\rangle\), a two-push experiment will find it in the state 411 \(|0\rangle\) with certainty. A state transition diagram for the quantum machine is given in 412 Fig. 11.5. \({ }^{27}\)

\footnotetext{
\({ }^{26}\) To be more precise: one never observes a qubit in a linear superposition with respect to a particular measurement basis. Generally, in quantum computing, measurements are carried out in the computational, i.e. \(\{|0\rangle,|1\rangle\}\), basis. In this basis the superposition \((|0\rangle+|1\rangle) / \sqrt{2}\), for example, can never be the result of a measurement. If one measures in the \(\{|+\rangle,|-\rangle\}\) basis, however, then such a result is possible, since \(|+\rangle=(|0\rangle+|1\rangle) / \sqrt{2}\). On the other hand, a measurement in the
 possible in the computational basis.
\({ }^{27}\) Note that overall phase factors have been abstracted away from in Fig. 11.5. Two normalised state vectors which differ only in their overall phase factor yield all of the same probabilities for outcomes of experiments and are considered as equivalent according to quantum theory. For
}

\section*{Author's Proof}


Fig. 11.5 A simple quantum computer. With each button push, the machine deterministically oscillates, via the transition \(Q\), between the states \(|0\rangle,|\chi\rangle,|1\rangle,|\xi\rangle\) in the manner depicted. When the door is opened, the machine undergoes the 'measurement' transition \(M\). This results, when the computer is in one of the states \(|\chi\rangle\) and \(|\xi\rangle\), in a reading of \(|0\rangle\) or \(|1\rangle\) with equal probability. Opening the door when the machine is in either \(|0\rangle\) or \(|1\rangle\) has no effect on the computer's state

The probabilities for outcomes of two-push experiments with the quantum com-
puter \(Q\) are significantly different from those associated with two-push experiments on \(C\). This is despite the fact that if one performs two (or in general \(n\) ) repetitions 416 of a one-push experiment (i.e. in which one opens the door after every button 417 push), the resulting statistics will be identical for both \(C\) and \(Q\). One can think of a one-push experiment with \(C\) or \(Q\) as instantiating a 'maximally noisy' (i.e. 419 completely useless) NOT-gate. With a two-push experiment on \(Q\), however, we have \({ }_{420}\) instantiated a perfect NOT-gate. We cannot do anything analogous with \(C\).

The foregoing was a simple-almost trivial-illustration of some of the basic 422 differences between classical and quantum computation. But by taking advantage \({ }_{423}\) of these and other differences, researchers have been able to develop quantum \({ }_{424}\) algorithms to achieve results that seem impossible for a classical computer. Quan- 425 tum computers cannot solve non-Turing-computable problems (see Hagar and \({ }_{426}\) Korolev 2007). However, as we will discuss shortly, quantum computers are able 427 to efficiently solve problems that have no known efficient classical solution. This 428 apparent ability of quantum computers to outperform classical computers is known 429 as 'quantum speedup'.

A fascinating question, assuming that they indeed have this ability, \({ }^{28}\) regards \({ }_{431}\) exactly which physical features of quantum systems are responsible for it. We \({ }^{432}\) will not be discussing this question further here. \({ }^{29}\) Rather, let us return to Gödel's 433
example, all of these express the same physical state: \(|\psi\rangle,-|\psi\rangle, i|\psi\rangle,-i|\psi\rangle\). Local phase factors, however, are important; \(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\) and \(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\), for example, are different states.
\({ }^{28}\) There is strong evidence (some of which we will discuss shortly), however there is still no proof, that quantum computers can efficiently solve more problems than classical computers can.
\({ }^{29}\) In (11.10), the partial amplitudes contributing to the \(|0\rangle\) component of the state vector cancel each other out. Many quantum algorithms include similar transitions, leading some to view quantum interference as the source of quantum speedup (Fortnow 2003), although others have questioned

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .
question regarding the resources required to solve the restricted form of the 434 Entscheidungsproblem. Could a quantum computer be used to solve NP-complete 435 problems such as this one efficiently? It turns out that a quantum computer can yield 436 a performance improvement over a standard TM with respect to such problems. \({ }^{437}\) Recall (see Definition 11.2) that a language \(L\) is in NP if there is a TM, \(C\), such that 438 \(x \in L\) if and only if there is a certificate \(u\) whose length is polynomial with respect 439 to the length of \(x\), that if fed to \(C\) can be used by \(C\) to verify \(x\) 's membership in \(L 440\) in polynomial time. If in addition, in polynomial time, for any given \(x, C\) can itself 441 either find such a suitable certificate, or determine that one does not exist, then \(L\) is 442 also in P .

Let the question be, 'Does the string \(x\) of length \(n\) have a "proof", i.e. a certificate, 444 of length \(\leq n^{k}\) ?', for some constant \(k\). The number of possible certificates \(u_{i}\) is 445 \(N=2^{n^{k}}\). Assuming the space of certificates is unstructured, \(C\) will need \(O(N)\) steps 446 to decide whether \(x\) is in \(L\); the computer will run through the possible certificates 447 \(u_{i}\) one by one, testing each in turn to see if it is a valid certificate for \(x\), moving on 448 to the next certificate if it is not. Using a quantum computer and Grover's quantum 449 search algorithm (Grover 1996), however, only \(O(\sqrt{N})\) steps are required. It turns 450 out that this is the best we can do (Bennett et al. 1997). But while this quadratic 451 speedup is impressive, the overall running time of the quantum computer remains 452 exponential in the length, \(n\), of \(x\). Quantum computers, therefore, do not appear to 453 allow us to affirm the Gödelian conjecture. \({ }^{30} 454\)

However there is evidence that the class of languages efficiently decidable by 455 a quantum computer is larger than that corresponding to either a deterministic 456 or probabilistic classical computer. To be more precise, define the class BQP, 457 analogously to the class BPP, as the class of languages such that there exists a 458 polynomial-time quantum computer that will correctly determine, with probability 459 \(\geq 2 / 3\), whether or not a string \(x\) is in the language \(L\). The question of whether 460 a quantum computer can outperform a classical computer amounts to the question 461 of whether BQP is larger than BPP. It is clear that BPP \(\subseteq\) BQP; one invocation 462 of the transition (11.8), for example, followed by a measurement, can serve to 463 simulate a classical 'coin flip', and in polynomial time this procedure can be used
whether interference is a truly quantum phenomenon (Spekkens 2007). The fact that some quantum algorithms appear to spawn parallel computational processes has led to the idea of 'quantum parallelism' as the primary contributing mechanism (Duwell 2007, 2018), and to the related but distinct idea that this processing occurs in parallel physical universes (Hewitt-Horsman 2009; for a criticism see Aaronson 2013b; Cuffaro 2012). Others view quantum entanglement (Cuffaro 2017a,b; Steane 2003), or quantum contextuality (Howard et al. 2014), as providing the answer. Still others view the structure of quantum logic as the key (Bub 2010).
\({ }^{30}\) Note that above it was assumed that the space of certificates is unstructured. However it is possible that a given NP-complete language \(L\) possesses non-trivial structure that can be exploited to yield further performance improvements (Cerf et al. 2000). Therefore we cannot rule out that \(L\) is efficiently decidable by a classical computer, let alone by a quantum one.

\section*{Author's Proof}
to simulate any of a given PTM's transition probabilities. \({ }^{31}\) As for the evidence \({ }_{464}\) for strict containment-i.e. for BPP \(\subsetneq \mathrm{BQP}\)-this comes mainly from the various 465 quantum algorithms that have been developed.

Shor's quantum algorithm (Shor 1997) for integer factorisation is a spectacular 467 example. The best known classical factoring algorithm is the number field sieve 468 (Lenstra et al. 1990), which requires \(O\left(2^{(\log N)^{1 / 3}}\right)\) steps to factor a given integer 469 \(N\). Popular encryption mechanisms such as RSA (Rivest et al. 1978) rely on the 470 assumption that factoring is hard. Yet Shor's algorithm requires only a number 471 of steps that is polynomial in \(\log N\)-an exponential speedup over the number 472 field sieve. There are also provable 'oracle' separations between the classical and 473 quantum computational models. An oracle is a kind of imaginary magic black box, 474 to which one puts a question chosen from a specified set, and from which one 475 receives an answer in a single time step. For example, Simon's problem (Simon 476 1994) is that of determining the period of a given function \(f\) that is periodic under 477 bitwise modulo-2 addition. One can define an oracle \(\mathcal{O}\) for evaluating arbitrary 478 calls to \(f\). Relative to \(\mathcal{O}\), Simon's quantum algorithm requires \(O(n)\) steps, while 479 a classical algorithm requires \(O\left(2^{n}\right)\). This is an exponential speedup. 480

None of these results are absolutely conclusive. On the one hand, not 481 every complexity-theoretic proposition relativises to an oracle. The result that 482 IP \(=\) PSPACE, for example, does not hold under certain oracle relativisations 483 (PSPACE is the class of problems solvable using polynomially many space 484 resources; IP is the class of problems for which an affirmative answer can be verified 485 using an interactive proof). Further, there are oracles relative to which \(P=N P\), as 486 well as oracles relative to which \(\mathrm{P} \neq \mathrm{NP}\). Oracles are important tools that, among 487 other things, help to simplify and clarify the conceptual content of complexity- 488 theoretic propositions, however they cannot be used to resolve these and other 489 questions (for a discussion, see Fortnow 1994). Nor can they definitively show that 490 BPP \(\subsetneq\) BQP. Simon’s problem, for instance, might contain some hitherto unknown 491 structure, obscured by the relativisation of the problem to an oracle, that could be 492 exploited by a classical algorithm. Regarding Shor's algorithm, on the other hand, 493 unlike Simon's, it does not make essential use of an oracle. Yet this nevertheless 494 does not conclusively demonstrate that \(\mathrm{BPP} \subsetneq \mathrm{BQP}\), for it is still an open question 495 whether factoring is in BPP. While most complexity theorists believe this to be false, 496 their conviction is not as strong as their conviction, for example, that \(\mathrm{P} \neq \mathrm{NP}\) - for 497 the factoring problem does have some internal structure, which is in fact exploited 498 by the classical number field sieve algorithm (Aaronson 2013a, 64-66). 499

While none of the individual pieces of evidence are conclusive, taken together 500 they nevertheless do lend a great deal of plausibility to the thesis that quantum 501 computers can solve more problems efficiently than can classical computers. That 502 said, it is not the place here to evaluate this evidence. For the purposes of our 503 discussion we will assume that this thesis is true. In the next section we will consider 504 its consequences.
\({ }^{31}\) Rather than \(Q\), one typically uses a 'Hadamard gate' (H) for this purpose, which acts as follows:
\[
H|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle, \quad H|1\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle .
\]

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .

\subsection*{11.6 Quantum Computing and the Foundations of Computational Complexity Theory}

\begin{abstract}
If \(\mathrm{BPP} \subsetneq \mathrm{BQP}\), then it follows that the universality of Turing efficiency thesis is false.
508
Some authors view the consequences of this for complexity theory to be profound. Bernstein and Vazirani (1997), for example, take it that the theory "rests upon" this 510 thesis (p. 1411), and that the advent of quantum computers forces us to "re-examine 511 the foundations" (p. 1412) of the theory. The sense in which complexity theory rests 512 upon universality is expressed by Nielsen and Chuang (2000), who write that the 513 failure of the universality thesis implies that complexity theory cannot achieve an 514 "elegant, model independent form" (p. 140). Of this, Hagar (2007) writes: 515
\end{abstract}

To my mind, the strongest implication [of the violation of universality] is on the autonomous 516 character of some of the theoretical entities used in computer science, ... given that quantum 517 computers may be able to efficiently solve classically intractable problems, hence re- 518 describe the abstract space of computational complexity, computational concepts and even 519 computational kinds such as 'an efficient algorithm' or 'the class NP', will become machine 520 dependent, and recourse to 'hardware' will become inevitable in any analysis of the notion 521 of computational complexity. (pp. 244-5).

Given that the universality of Turing efficiency thesis states that any reasonable 523 model of computation can be simulated with at most a polynomial number of 524 extra time steps by a (probabilistic) Turing machine, however, the reader may 525 be understandably confused by the claim that this thesis grounds the model526 independence of complexity-theoretic concepts to begin with. At most, it seems that 527 only a very weak sense of model-independence follows from universality. The truth of (11.4), that is, implies that any assertion, of the form 'language \(L\) is decidable efficiently by an instance of the reasonable machine model \(\mathfrak{M}\) ', is replaceable by the assertion that 'language \(L\) is decidable efficiently by a PTM'. And since 'by a 530 PTM' is thus made universally applicable, it can be omitted from all such statements 531 in the knowledge that it is implicit (cf. Nakhnikian and Salmon 1957). But while 533 this yields a kind of model-independence in the sense that one need not explicitly mention the PTM model when speaking of the complexity-theoretic characteristics of \(L\), it remains the case, nevertheless, that a reference to the PTM model is implicit in one's assertions about \(L\).

To illustrate just how weak such a notion of model-independence is, note that, 538 based on it, one could argue that, although quantum computing refutes the modelindependence consequent upon the universality of Turing efficiency, it at the same 540 time provides a replacement for it (cf. Deutsch 1985, Bernstein and Vazirani 1997, p. 1413). Nielsen and Chuang (2000) write that if the universality of Turing efficiency 542 thesis were true, that it would be

\footnotetext{
great news for the theory of computational complexity, for it implies that attention may be restricted to the probabilistic Turing machine model of computation. After all, if a problem has no polynomial resource solution on a probabilistic Turing machine, then
the [universality of Turing efficiency] implies that it has no efficient solution on any computing device. Thus, the [universality of Turing efficiency] implies that the entire theory of computational complexity will take on an elegant, model-independent form if the notion of efficiency is identified with polynomial resource algorithms (p. 140).
}

\section*{Author's Proof}

Putting aside for the moment the somewhat strange comment that an expansion 551 of our knowledge of the extent of the space of efficiently decidable languages 552 is 'bad news' for complexity theory, note that quite the same argument could be \({ }_{553}\) made if one replaces 'probabilistic Turing machine' with 'quantum computer' and 554 'universality of Turing efficiency' with 'universality of quantum efficiency'. For 555 although BPP in (11.4) is now replaced with BQP, we have analogously given 556 a characterisation, in terms of a single machine model, of \(\bigcup\) Poly \(_{\mathfrak{M}}\). And yet if \({ }_{557}\) a computer based on the principles of quantum physics can be taken to ground 558 an absolute model-independent characterisation of complexity-theoretic concepts, 559 then the right conclusion to draw is that this is not a satisfactory notion of model- 560 independence. \({ }^{32} 561\)

One could, perhaps, counter that the model-independence consequent on the 562 universality thesis actually stems from the nature of the Turing model itself. 563 Assuming that one is convinced by Turing's philosophical analysis, the Turing 564 model does, after all, represent the conceptual essence of effective computation (cf. 565 Hartmanis and Stearns 1965, p. 285). Be that as it may, there is no reason to think 566 that such a model must also be the most efficient one. \({ }^{33}\) The model-independence 567 of complexity theory thus would turn out to be a contingent fact. This in itself is not 568 a criticism. Nevertheless in that case it is not clear just what model-independence 569 would contribute to the ground of complexity theory in the theoretical sense. A 570 'universality of quantum efficiency thesis' would be, perhaps, less metaphysically 571 satisfying from the point of view of a computer scientist, but in itself would do just 572 as much theoretical work as the universality of Turing efficiency thesis. 573
\(\mathrm{BPP} \subsetneq \mathrm{BQP}\) also implies the failure of the invariance thesis. Because of its 574 supposed relation to the Church-Turing thesis, it is universality and not invariance 575 that has received the lion's share of attention from philosophers (an exception is 576 Dean). But unlike the universality thesis, there is a sense of model-independence 577 built right into the very statement of invariance. After all, it amounts to a direct claim 578 that the particular machine model under consideration, since it can be efficiently 579 simulated by any other reasonable model, is irrelevant for the purposes of providing 580 a characterisation of the complexity of a problem. Note also that the statement of 581 invariance itself makes no reference to the Turing model, so it is not susceptible to 582 the same sort of criticism I directed at the universality thesis above. It is true that 583 the domain of 'reasonable' or physically realisable models does not, for example, 584 include the 'unreasonable' parallel computational models, thus the invariance thesis 585 cannot provide model-independence in a truly absolute sense. Still, the study of 586 efficient algorithms in particular is mainly concerned with reasonable models. So 587

\footnotetext{
\({ }^{32}\) One could, however, ground a relative notion of model-independence based on quantum principles. I will discuss this further below.
\({ }^{33}\) For a discussion of some possible justifications, and the problems that go along with them, for the choice of the multi-tape TM as the benchmark for complexity-theoretic analyses, see Dean (2016c).
}

\section*{Author's Proof}
invariance, if true, arguably provides absolute model-independence in the only sense 588 that matters. \({ }^{34}\)

Van Emde Boas takes the invariance thesis (he does not mention the universality 590 thesis) to, as a consequence, constitute a foundational thesis for complexity theory: 591
\(\begin{array}{ll}\text { The fundamental complexity classes P and NP became part of a fundamental hierarchy: } & 592 \\ \text { LOGSPACE, NLOGSPACE, P, NP, PSPACE, EXPTIME, .. And again theory faced the } & 593 \\ \text { problem that each of these classes has a machine-dependent definition, and that efficient } & 594 \\ \text { simulations are needed before one can claim that these classes are in fact machine- } & 595 \\ \text { independent and represent fundamental concepts of computational complexity. It seems } & 596 \\ \text { therefore that complexity theory, as we know it today, is based on the [assumption that the } & 597 \\ \text { invariance thesis holds] (van Emde Boas 1990, p. 5, ellipsis in original). } & 598\end{array}\)
I will be criticising this statement. Before I do, however, it is important to note 599 that it is clear that the simplifying assumption of invariance can be profoundly 600 useful; its truth would imply that one can restrict one's attention to the (reasonable) 601 model of one's choice when inquiring into the complexity-theoretic characteristics 602 of particular problems. Further, and independently of this, studies such as van 603 Emde Boas's, of the extent to which one model can simulate another, illuminate 604 the structure of complexity theory by allowing one to characterise the space of 605 machine models in terms of various 'equivalence classes'. Van Emde Boas, for 606 instance, defines the models comprising the 'first machine class' as those for which 607 the invariance thesis holds. The 'second machine class' is defined with respect to a 608 different 'parallel computation thesis' (1990, p. 5), which I will not further describe 609 here. Note that van Emde Boas is careful to point out the partly conventional and 610 partly empirical (he does not use these words) nature of such theses:

The escape in defending the Invariance Thesis ... is clearly present in the word reasonable ...For example, when in 1974 it was found that a RAM model with unit-time multiplication and addition instructions (together with bitwise Boolean operations) is as powerful as a parallel machine, this model (the MBRAM) was thrown out of the realm of reasonable (sequential) machines and was considered to be a "parallel machine" instead. The standard strategy seems to be to adjust the definition of "reasonable" when needed. The theses become a guiding rule for specifying the right classes of models rather than absolute truths and, once accepted, the theses will never be invalidated. This strategy is made explicit if we

There is much to commend in this statement. But note first that it is not clear 621 that the 'standard strategy' will work in the face of quantum computing. On the one 622 hand, one would be hard-pressed to argue that quantum computers are not physically 623 realisable machines. On the other hand, the 'quantum parallelism thesis' (Duwell 624 2007, 2018; Pitowsky 1990, 2002) is quite controversial (Cuffaro 2012; Steane 625 2003), so it is not obvious that quantum computers should be classed as parallel 626 rather than sequential computers. This said, even if one takes the invariance thesis 627 to be violated by quantum computing, the idea of it, not as an absolute truth but 628 as a 'guiding rule'-a sort of intensional principle for characterising the extensions 629

\footnotetext{
\({ }^{34}\) See Dean (2016c) for a discussion of ways to circumscribe the space of operations that should be allowable in a reasonable model.
}

\section*{Author's Proof}
corresponding to different equivalence classes of models-remains, and it remains 630 a highly illuminating methodological principle for studying the relations between 631 computational models.

To illustrate what I mean by this, \({ }^{35}\) note that 'quantum computer' is actually \({ }^{633}\) an umbrella term for a number of (universal) computational models: the quantum 634 Turing model (Deutsch 1985), the quantum circuit model (Deutsch 1989), the 635 cluster-state model (Briegel et al. 2009), the adiabatic model (Farhi et al. 2000), and 636 many others. To date, all of these models have been found to be computationally 637 equivalent in the sense that they all yield the same class of problems, BQP (see, 638 for example, Aharonov et al. 2007; Raussendorf and Briegel 2002; Nishimura and 639 Ozawa 2009). Thus it seems as though a third quantum machine class, in addition 640 to van Emde Boas's first and second machine classes, exists. Fascinatingly, the 641 differences between the first and this third machine class turn out to be related to 642 the differences in the physics used to describe the machines which comprise them. \({ }^{643}\) The physics, in turn, informs our judgements regarding which of these equivalence 644 classes should be deemed as 'reasonable'. On the basis of these judgements we are 645 then enabled make conclusions with regards to what is feasible for us to accomplish \({ }_{646}\) in the real world (cf. Dean 2016a, pp. 30, 56). If it were not for the existence 647 of quantum computers, one would be warranted in the belief that only a single 648 reasonable machine class exists. Quantum computing teaches us that there are at 649 least two.

Invariance, thought of as a guiding rule or methodological principle, rather than 651 as a thesis, is what is driving these investigations; through the search for equivalence 652 classes we carve out and illuminate the structure of the space of computational \({ }_{653}\) models. This yields a notion of relative model-independence among the machine 654 models comprising a particular class. To be clear, the existence of relative model- 655 independence within the conceptual structure of complexity theory is itself not 656 strictly speaking necessary for the theory. It is true that the theory would arguably be 657 far less interesting if every abstract model of computation were different from every 658 other; for one thing there would be no unified notion of 'classical computation' to 659 compare quantum computation with-a quantum computer would be just another 660 model among many. Yet one can still imagine what such a complexity theory 661 would look like: a theory describing the computational power of various abstract 662 models of computation and their interrelations. This is not so alien that it would 663 be unrecognisable from our modern point of view. \({ }^{36}\) In fact the early period 664

\footnotetext{
\({ }^{35}\) I am indebted to Scott Aaronson and to Sona Ghosh for independently prompting the discussion in this and the next two paragraphs.
\({ }^{36}\) The very notion of an abstract model of computation presupposes some notion of complexitytheoretic invariance, of course, without which it would be impossible to unify various physical instantiations of a model under a single concept. I am perfectly ready to concede that if complexitytheoretic invariance failed to hold in this minimal sense then this would be disastrous for modern complexity theory. But then I cannot see how it would be possible to revise complexity theory in light of this; it would seem impossible to have a theory of complexity, or indeed any theory of any subject, if even basic abstraction were not possible.
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .
of complexity theory, before the introduction of the polynomial principle (to be 665 discussed below) looked much like this. Representative of this period are results 666 such as that by Hartmanis and Stearns (1965), for example, who prove that the 667 multi-tape TM model is capable of a quadratic speedup with respect to the single- 668 tape TM model. Such analyses are indeed still present in the modern theory. 669

The fact that relative model-independence does exist, on the other hand, arguably 670 tells us something deep, or anyway something, about how computer science 671 connects up with the world. The invariance principle (rather than thesis) is a vitally 672 important part of computational complexity theory partly for this reason. And as 673 a methodological principle, it fulfils this role whether it is successful in its search 674 for equivalence classes of computational models or not. For the lack of any relative 675 model-independence within the theory would arguably also tell us something about 676 computer science's relation to the physical world. A further, still methodological, 677 role of invariance is as a simplifying principle. For from a practical perspective the 678 theory would be exceedingly unwieldy, even if it would not strictly speaking be 679 impossible to develop, if no equivalence classes of abstract computational models 680 existed.

And yet none of this seems to imply or depend upon model-independence in the 682 sense of the first of my quotes of van Emde Boas above. Indeed it is not clear what 683 one gains from model-independence in that sense. LOGSPACE, NLOGSPACE, P, 684 NP, PSPACE, EXPTIME, and other complexity classes are each of them classes 685 of languages, after all. To compare any two of them is to compare one class of 686 languages with another; they are thus already machine-independent in that sense. 687 For this reason it is a meaningful question to ask whether the class P is large enough 688 to include all of the languages in NP, irrespective of how one defines either of them 689 in terms of an underlying machine model. On the other hand, one can define P as 690 the class of languages which are efficiently decidable by a TM. And one can define 691 NP as the class of languages which are efficiently decidable by an NTM. And to 692 be sure, deeper insight is gained by reflecting on how one translates the definition 693 of NP given in terms of the NTM model (11.3), into the alternative definition of 694 NP given in terms of the standard TM model (11.2). For then one sees clearly that 695 the statement that \(\mathrm{P}=\mathrm{NP}\) amounts to the assertion that the restricted form of the 696 Entscheidungsproblem is efficiently solvable. But in this case it is by reflecting on 697 the characteristics of a particular model that one gains this insight, namely, the 698 Turing machine model insofar as it represents the conceptual essence of human 699 digital computation. \({ }^{37}\) 700
I am not alone in my skepticism. The idea that it is the fundamental goal 701 of complexity theory to get at some metaphysical notion of an independently 702 existing thing called 'efficient computation' is certainly not shared by all complexity 703 theorists. For example, Fortnow (2006) writes: 704

By no means does computational complexity "rest upon" a [universality of Turing effi- 705 ciency] thesis. The goals [sic.] of computational complexity is to consider different notions

\footnotetext{
\({ }^{37}\) This is one reason why the question whether \(\mathrm{P}=\mathrm{NP}\) remains interesting even if \(\mathrm{P} \subsetneq \mathrm{BQP}\).
}

\section*{Author's Proof}
> of efficient computation and compare the relative strengths of these models. Quantum computing does not break the computational complexity paradigm but rather fits nicely within it.

> 707
> 708
> 709

Fortnow's statement refers to the universality thesis; however it can clearly 710 equally well be asserted as a counter to the claimed foundational status of the 71 invariance thesis. A quick glance at the practice of complexity theorists seems to confirm that Fortnow is right, for since the advent of quantum computing in the mid-1990s, complexity theory appears to have continued on in much the same way as before. Classic textbooks such as Papadimitriou's (1994) excellent reference, written before Shor's (1994) breakthrough in quantum factoring, continue to be cited frequently in modern scholarly work; more modern textbooks such as Arora and Barak's (2009) book include a chapter on quantum computation but otherwise present the subject in much the same way as similar textbooks always have done; BQP is just one of many classes in Aaronson's (2016) 'complexity zoo'. Despite the fact that the prospects for a practicable and scalable quantum computer are improving significantly every year (Veldhorst et al. 2015), and despite the fact that most computer scientists believe that BPP \(\subsetneq \mathrm{BQP}\) and thus that the universality and invariance theses are false, complexity theory-as a discipline-does not appear to be in crisis. Complexity theory as a whole has grown-many new and important questions have arisen regarding exactly how BQP relates to other complexity classes-but the basic conceptual framework within which we ask these questions remains much the same as before.

But if model-independence is not constitutive of complexity theory, what is? 728 Built into the definition of both the universality and invariance theses is the more basic idea that an algorithm is efficient if and only if it requires no more than a polynomial number of steps to complete. As we have seen, the roots of this idea go back at least as far as Gödel's letter to von Neumann, although from the modern perspective, its main sources are the seminal articles of Cobham (1965) and Edmonds (1965). I will call it the 'polynomial efficiency principle' or 'polynomial principle' for short. \({ }^{38}\) Unlike either the universality or invariance theses, there is no question that the polynomial principle is de facto foundational with respect to the modern framework of complexity theory, in the sense that the conceptual structure of the theory-the definitions of and relations between its most important complexity classes such as P, NP, BPP, BQP, and so on-depend crucially upon the principle.

And yet there is a different sense in which it can be said to be controversial. The 742 goal of the polynomial principle is to capture our pre-theoretic notion of what it 743 means for an algorithm to be efficient. Expressing this, Edmonds writes:

\footnotetext{
\({ }^{38}\) Forms of this principle are often referred to as the Cobham-Edmonds thesis (e.g., see Dean 2016b). Unfortunately, this terminology is not always consistent. In Goldreich (2008, p. 33), for example, the Cobham-Edmonds thesis is the name given to what we have here called the invariance thesis.
}

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .
\[
\begin{array}{lll}
\text {. . my purpose is ... to show as attractively as I can that there is an efficient algorithm [for } & 745 \\
\text { maximum matching]. According to the dictionary, "efficient" means "adequate in operation } & 746 \\
\text { or performance." This is roughly the meaning I want-in the sense that it is conceivable for } & 747 \\
\text { maximum matching to have no efficient algorithm. Perhaps a better word is "good." } & 748 \\
\text { I am claiming, as a mathematical result, the existence of a good algorithm for finding a } & 749 \\
\text { maximum cardinality matching in a graph. (Edmonds 1965, p. } 420 \text {, emphasis in original). } & 750
\end{array}
\]

One could argue, however, that the polynomial principle fails to achieve this goal. 751 For example, a problem for which the best algorithm requires \(O\left(n^{1000}\right)\) steps to 752 complete is considered to be tractable according to the principle, while a problem for 753 which the best algorithm requires \(O\left(2^{n / 1000}\right)\) steps is considered to be intractable. 754 Yet despite these labels, the 'intractable' problem will take fewer steps to solve 755 for all but very large values of \(n\). Strictly speaking, of course, since it is defined 756 asymptotically, the principle does not yield an incorrect answer even in such cases. However problems we are faced with in practice are invariably of bounded size, 758 and an asymptotic measure-the preceding example illustrates this-seems to at 759 least sometimes be ill-suited for their analysis. A further reason for doubting the 760 polynomial principle is that it is a measure of worst-case complexity. Yet it does not 761 seem implausible that an average-case measure might give us better insight into just 762 how 'good' a given algorithm is.

All of this may be granted. And yet growth rates such as the above are extremely 764 rare in practice. Generally speaking, polynomial-time algorithms have growth rates 765 with small exponents, and the simplification made possible by the use of an 766 asymptotic measure generally does more good than it does harm; "For practical 767 purposes the difference between algebraic and exponential order is often more 768 crucial than the difference between finite and non-finite." (Edmonds 1965, p. 451). 769 We also generally do not know in adyance how the inputs to a particular problem will be distributed, and in such circumstances average case complexity analyses are impracticable (see Papadimitriou 1994, pp. 6-7).

What the arguments for and against the polynomial principle illustrate is that 772 its goal is not so much to provide an absolute or metaphysical distinction between good and bad algorithms. What these arguments show us is that the purpose of the 774 principle is to guide us in making such distinctions in practice. In particular, what the 776 arguments for the principle amount to is the-empirical-claim that the polynomial principle has been highly successful, in the sense that it has tended to provide us 778 with extraordinarily good guidance for the problems with which we are generally 779 faced. Aaronson sums this up as follows:

Of the big problems solvable in polynomial time-matching, linear programming, primality that we think take exponential time-theorem-proving, circuit minimization, etc.-most of them really don't have practical algorithms. So, that's the empirical skeleton holding up our

The precise way in which the polynomial principle aids us in the search for 786 good algorithms is by providing us with a mathematical explication of 'good' in 787 the context of complexity theory. In doing so it provides us with a mathematical 788 framework for our inquiries, within which we can express precise questions, and 789 generate precise answers.

\section*{Author's Proof}
> ... if only to motivate the search for good, practical algorithms, it is important to realise that it is mathematically sensible even to question their existence. For one thing the task can then be described in terms of concrete conjectures. (Edmonds 1965, p. 451).

> 791
> 792
> 793

And yet, while the principle is generally a good guide, it is we who must 794 ultimately decide, in every case upon which we bring it to bear, whether or not 795 to follow its advice.

It would be unfortunate for any rigid criterion to inhibit the practical development of 797 algorithms which are either not known or known not to conform nicely to the criterion. Many of the best algorithmic ideas known today would suffer by such theoretical pedantry. ... And, on the other hand, many important algorithmic ideas in electrical switching theory are obviously not "good" in our sense. (Edmonds 1965, p. 451).

Just as the polynomial principle is a practical principle, so is complexity theory a 802 practical science, in the sense that its fundamental aim is to inform us with regards 803 to the practical difficulty of computing different classes of problems-i.e. with 804 regards to the things we would like to do-on our various machines. Principles 805 such as the polynomial and even the invariance principle (insofar as it serves as a 806 methodological principle for carving out equivalence classes of machine models) 807 illuminate the structure of this space of possible tasks. But they, and the structure 808 with it, are ultimately guides which should be set aside whenever they cease to be 809 useful. To some extent this is true in every science-the principles of Newtonian 810 mechanics, say, must give way to the principles of modern spacetime theories. But principles such as the polynomial principle, and the theory of complexity that is built 812 upon it, do not claim for themselves universal validity as Newtonian mechanics at 813 one time did-nor do they even claim to have a well-defined sphere of application 814 (how large must an exponent be before a polynomial-time algorithm is no longer 815 considered to be 'really' efficient?). The polynomial principle, and complexity 816 theory with it, are intrinsically practical in nature; they claim to be useful only 'most of the time' and for most of our practical purposes. This is the theory's core.

This said, if, with the development of the theory, the polynomial principle 819 somehow ceased to be useful even in merely the majority of cases of practical 820 interest, this would certainly require a substantial revision of much of the theory's 821 framework, for so much of the conceptual structure of complexity theory is built upon the assumption of the polynomial principle. And yet even in this case the essential nature and subject matter-the metaphysical foundation, if you willof the theory-a theory of what we are capable of doing in practice-would not change.

\subsection*{11.7 Conclusion}

Cobham (1965) took complexity theory to be a science concerned with three general 828 groups of questions: those related (i) to "specific computational systems", (ii) to 829 "categories of computing machines", and (iii) to those questions which "are inde- 830

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .
pendent of any particular method of computation" (pp. 24-5). The third subdivision 831 will always remain a part of complexity theory. In fact, machine-independent results 832 can be had in the theory-though no one would argue that these provide a foundation for it-if one uses a very general and amorphous notion of a complexity measure 834 (Seiferas 1990). Indeed studies such as these suggest that further reflection may 835 be needed on precisely what is meant by the notion of 'intrinsic complexity'. But 836 model-independence is not all of the theory; nor is it a foundation for the other 837 two groups of questions mentioned by Cobham. Computational complexity theory 838 is, at its core, a practical science. As a mathematical theory, it employs idealised 839 concepts and methods, and appeals to formal principles which are justified insofar 840 as they are useful in providing us with practical advice regarding the problems we 841 aim to solve. Our solutions to such problems are implemented on particular machine 842 models. Computational complexity theory studies the various notions of efficiency 843 associated with these different models, and studies how these notions relate to one 844 another. "Quantum computing", to quote Fortnow once again, "does not break the 845 computational complexity paradigm but rather fits nicely within it." Indeed, far from 846 breaking the complexity-theoretic paradigm, quantum computing serves to remind 847 us of the point of it all.
Acknowledgements This project was supported financially by the Foundational Questions 849 Institute (FQXi) and by the Rotman Institute of Philosophy. I am grateful to Scott Aaronson, 850 Walter Dean, William Demopoulos, Armond Duwell, Laura Felline, Sona Ghosh, Amit Hagar, 851 Gregory Lavers, and Markus Müller for their comments on a previous draft of this chapter. This 852 chapter also benefited from the comments and questions of audience members at the Montreal 853 Inter-University Workshop on the History and Philosophy of Mathematics, and at the Perimeter 854 Institute for Theoretical Physics.

\section*{References}

Aaronson, S. (2013a). Quantum computing since Democritus. New York: Cambridge University 857 Press. 858
Aaronson, S. (2013b). Why philosophers should care about computational complexity. In B. J. 859 Copeland, C. J. Posy, \& O. Shagrir (Eds.), Computability: Turing, Gödel, Church, and beyond 860 (pp. 261-327). Cambridge, MA: MIT Press. 861
Aaronson, S. (2016). Complexity zoo. https://complexityzoo.uwaterloo.ca/Complexity_Zoo 862
Agrawal, M., Kayal, N., \& Saxena, N. (2004). PRIMES is in P. Annals of Mathematics, 160, 781- 863 793.

Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., \& Regev, O. (2007). Adiabatic 865 quantum computation is equivalent to standard quantum computation. SIAM Journal on 866 Computing, 37, 166-194.
Andréka, H., Madarász, J. X., Németi, I., Németi, P., Székely, G. (2018). Relativistic computation. 868 In M. E. Cuffaro \& S. C. Fletcher (Eds.), Physical perspectives on computation, computational 869 perspectives on physics. Cambridge: Cambridge University Press. 870
Arora, S., \& Barak, B. (2009). Computational complexity: A modern approach. Cambridge: 871 Cambridge University Press. 872
Bennett, C. H., Bernstein, E., Brassard, G., \& Vazirani, U. (1997). Strengths and weaknesses of 873 quantum computing. SIAM Journal on Computing, 26, 1510-1523. 874

\section*{Author's Proof}

\title{
Bernstein, E., \& Vazirani, U. (1997). Quantum complexity theory. SIAM Journal on Computing, 875
} 26, 1411-1473.
Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R., \& den Nest, M. V. (2009). Measurement- 877 based quantum computation. Nature Physics, 5, 19-26.
Bub, J. (2010). Quantum computation: Where does the speed-up come from? In A. Bokulich 879 \& G. Jaeger (Eds.), Philosophy of quantum information and entanglement (pp. 231-246). 880 Cambridge: Cambridge University Press.
Carnap, R. (1962). Logical foundations of probability (2nd ed.). Chicago: The University of 882 Chicago Press.
Carnap, R. (1980 [1950]). Empiricism, semantics, and ontology. In H. Morick (Ed.), Challenges to 884 empiricism (pp. 28-45). Indianapolis: Hackett Publishing Company.
Cerf, N. J., Grover, L. K., \& Williams, C. P. (2000). Nested quantum search and structured 886 problems. Physical Review A, 61, 032303.
Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of 888 Mathematics, 58, 345-363.
Cobham, A. (1965). The intrinsic computational difficulty of functions. In Y. Bar-Hillel (Ed.), 890 Logic, methodology and philosophy of science: Proceedings of the 1964 international congress, 891 North-Holland (pp. 24-30).
Copeland, B. J. (2015). The Church-Turing thesis. In E. N. Zalta (Ed.), The Stanford encyclopedia 893 of philosophy (Summer 2015 ed.). https://plato.stanford.edu/archives/sum2015/entries/church- 894 turing/.
Cuffaro, M. E. (2012). Many worlds, the cluster-state quantum computer, and the problem of the 896 preferred basis. Studies in History and Philosophy of Modern Physics, 43, 35-42. 897
Cuffaro, M. E. (2017a). On the significance of the Gottesman-Knill theorem. The British Journal 898 for the Philosophy of Science, 68, 91-121.
Cuffaro, M. E. (2017b). Reconsidering no-go-theorems from a practical perspective. The British 900 Journal for the Philosophy of Science. Advance access version. https://doi.org/10.1093/bjps/ 901 axw038.
Dawson, J. W., Jr. (2007). Classical logic's coming of age. In D. Jacquette (Ed.), Philosophy of 903 logic (pp. 497-522). Amsterdam: Elsevier. 904
Dean, W. (2016a). Algorithms and the mathematical foundations of computer science. In L. 905 Horsten \& P. Welch (Eds.), Gödel's disjunction: The scope and limits of mathematical 906 knowledge (pp. 19-66). Oxford: Oxford University Press.
Dean, W. (2016b). Computational complexity theory. In E. N. Zalta (Ed.), The Stanford ency- 908 clopedia of philosophy (Winter 2016 ed.). https://plato.stanford.edu/archives/win2016/entries/ 909 computational-complexity/.
Dean, W. (2016c). Squeezing feasibility. In A. Beckmann, L. Bienvenu, \& N. Jonoska (Eds.), 911 Pursuit of the Universal: Proceedings of the 12th conference on computability in Europe (pp. 912 78-88). Cham: Springer International Publishing.
Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum 914 computer. Proceedings of the Royal Society of London Series A Mathematical and Physical 915 Sciences, 400, 97-117.
Deutsch, D. (1989). Quantum computational networks. Proceedings of the Royal Society of London 917 Series A Mathematical and Physical Sciences, 425, 73-90. 918
Duwell, A. (2007). The many-worlds interpretation and quantum computation. Philosophy of 919 Science, 74, 1007-1018. 920
Duwell, A. (2018). How to make orthogonal positions parallel: Revisiting the quantum parallelism 921 thesis. In M. E. Cuffaro \& S. C. Fletcher (Eds.), Physical perspectives on computation, 922 computational perspectives on physics. Cambridge: Cambridge University Press. 923
Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17, 449-467. 924
Farhi, E., Goldstone, J., Gutmann, S., \& Sipser, M. (2000). Quantum computation by adiabatic 925 evolution (Technical report MIT-CTP-2936), MIT. arXiv:quant-ph/0001106. 926
Fortnow, L. (1994). The role of relativization in complexity theory. Bulletin of the European 927 Association for Theoretical Computer Science, 52, 229-244. 928

\section*{Author's Proof}

11 Universality, Invariance, and the Foundations of Computational. . .

Fortnow, L. (2003). One complexity theorist's view of quantum computing. Theoretical Computer 929 Science, 292,597-610. 930
Fortnow, L. (2006). The efficient Church-Turing thesis. http://blog.computationalcomplexity.org/ 931 2006/12/efficient-church-turing-thesis.html. Posted: Thursday, December 07, 2006. Retrieved: 932 Monday, April 26, 2010.933

Gödel, K. (1956). Private letter to John von Neumann, March 20, 1956. Translated by Wensinger. 934 In Sipser (1992).
Goldin, D., \& Wegner, P. (2008). The interactive nature of computing: Refuting the strong Church- 936 Turing thesis. Minds \& Machines, 18, 17-38. 937
Goldreich, O. (2008). Computational complexity: A conceptual perspective. Cambridge: Cam- 938 bridge University Press. 939
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of 940 the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC'96 (pp. 212-219). 941 New York: Association for Computing Machinery. 942
Hagar, A. (2007). Quantum algorithms: Philosophical lessons. Minds \& Machines, 17, 233-247. 943
Hagar, A., \& Korolev, A. (2007). Quantum hypercomputation—hype or computation? Philosophy 944 of Science, 74, 347-363. 945
Hartmanis, J. (1993). Gödel, von Neumann and the \(\mathrm{P}=\) ? NP problem. In G. Rozenberg \& A. 946 Salomaa (Eds.), Current trends in theoretical computer science (pp. 445-450). River Edge: 947 World Scientific. 948
Hartmanis, J., \& Stearns, R. E. (1965). On the computational complexity of algorithms. Transac- 949 tions of the American Mathematical Society, 117, 285-306. 950
Hewitt-Horsman, C. (2009). An introduction to many worlds in quantum computation. Foundations 951 of Physics, 39, 869-902.


Hilbert, D., \& Ackermann, W. (1928). Principles of mathematical logic. Berlin: Springer. 953
Howard, M., Wallman, J., Veitch, V., \& Emerson, J. (2014). Contextuality supplies the 'magic' for 954 quantum computation. Nature, 510, 351-355. 955
Lenstra, A. K., Lenstra, H. W., Jr., Manasse, M. S., \& Pollard, J. M. (1990). The number field 956 sieve. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, 957 STOC'90 (pp. 564-572). New York: Association for Computing Machinery. 958
Müller, M. (2010). Stationary algorithmic probability. Theoretical Computer Science, 411, 113-959 130.

Nakhnikian, G., \& Salmon, W. C. (1957). Exists as a predicate. Philosophical Review, 66, 535-542. 961
Nielsen, M. A., \& Chuang, I. L. (2000). Quantum computation and quantum information. 962 Cambridge: Cambridge University Press. 963
Nishimura, H., \& Ozawa, M. (2009). Perfect computational equivalence between quantum Turing 964 machines and finitely generated uniform quantum circuit families. Quantum Information 965 Processing, 8, 13-24.
Papadimitriou, C. H. (1994). Computational complexity. New York: Addison-Wesley. 967
Piccinini, G. (2011). The physical Church-Turing thesis: Modest or bold? The British Journal for 968 the Philosophy of Science, 62, 733-769. 969
Pitowsky, I. (1990). The physical Church thesis and physical computational complexity. Iyyun: The 970 Jerusalem Philosophical Quarterly, 39, 81-99. 971
Pitowsky, I. (2002). Quantum speed-up of computations. Philosophy of Science, 69, S168-S177. 972
Raussendorf, R., \& Briegel, H. J. (2002). Computational model underlying the one-way quantum 973 computer. Quantum Information and Computation, 2, 443-486. 974
Rivest, R. L., Shamir, A., \& Adleman, L. (1978). A method for obtaining digital signatures and 975 public-key cryptosystems. Communications of the ACM, 21, 120-126. 976
Seiferas, J. I. (1990). Machine-independent complexity theory. In van Leeuwen J (Ed.), Handbook 977 of theoretical computer science, volume A: Algorithms and complexity (pp. 165-186). Cam- 978 bridge, MA: MIT Press/Elsevier. 979
Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 980 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science (pp. 124-981 134). 982

\section*{Author's Proof}

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on 983 a quantum computer. SIAM Journal on Computing, 26, 1484-1509. 984
Simon, D. R. (1994). On the power of quantum computation. In 1994 Proceedings of the 35th 985 Annual Symposium on Foundations of Computer Science (pp. 116-123). Los Alamitos: IEEE 986 Press. 987
Sipser, M. (1992). The history and status of the P versus NP question. In Proceedings of the Twenty- 988 Fourth Annual ACM Symposium on Theory of Computing, STOC'92 (pp. 603-618). New York: 989 Association for Computing Machinery. 990
Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical 991 Review A, 75, 032110 . 992
Steane, A. M. (2003). A quantum computer only needs one universe. Studies in History and 993 Philosophy of Modern Physics, 34, 469-478. 994
Timpson, C. G. (2013). Quantum information theory \& the foundations of quantum mechanics. 995 Oxford: Oxford University Press. 996
Turing, A. M. (1936-7). On computable numbers, with an application to the Entscheidungsprob- 997 lem. Proceedings of the London Mathematical Society Second Series, s2-42, 230-265. 998
Turing, A. M. (1938). On computable numbers, with an application to the Entscheidungsproblem. 999 A correction. Proceedings of the London Mathematical Society Second Series, s2-43, 544-546. 1000
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433-460. 1001
van Emde Boas, P. (1990). Machine models and simulations. In J. van Leeuwen (Ed.), Handbook 1002 of theoretical computer science, volume A: Algorithms and complexity (pp. 1-66). Cambridge, 1003 MA: MIT Press/Elsevier. 1004
Veldhorst, M., Yang, C. H., Hwang, J. C. C., Huang, W., Dehollain, J. P., Muhonen, J. T., Simmons, 1005 S., Laucht, A., Hudson, F. E., Itoh, K. M., Morello, A., \& Dzurak, A. S. (2015). A two-qubit 1006 logic gate in silicon. Nature, 526, 410-414.

\section*{Author's Proof}

\section*{Part IV Mathematics in Technology \({ }_{2}\)}

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{|c|c|}
\hline Chapter Title & Mathematical Models of Technological and Social Complexity \\
\hline Copyright Year & 2018 \\
\hline Copyright Holder & Springer International Publishing AG, part of Springer Nature \\
\hline \multirow[t]{8}{*}{Corresponding Author} & Family Name Kline \\
\hline & Particle \\
\hline & Given Name Ronald \\
\hline & Suffix \\
\hline & \begin{tabular}{ll} 
Division & \begin{tabular}{l} 
Science and Technology Studies \\
Department
\end{tabular}
\end{tabular} \\
\hline & Organization Cornell University \\
\hline & Address Ithaca, NY, USA \\
\hline & Email rrk1@cornell.edu \\
\hline Abstract & This chapter recounts part of the history of mathematical modeling in the social sciences in the United States and England in the 1950s and 1960s. It contrasts the modeling practices of MIT engineer Jay Forrester, who developed the field of System Dynamics, with that of English cybernetician Stafford Beer, and American social scientist Herbert Simon, in regard to the contested issues of prediction and control. The analysis deals with the topic of mathematics and technology in three senses: the technological origins of mathematical modeling in cybernetics and System Dynamics in the fields of control and communications engineering; the use of digital computers to create models in System Dynamics; and the conception of scientific models, themselves, as technologies. The chapter argues that the different interpretations of Forrester, Beer, and Simon about how models should serve as technologies help explain differences in their models and modeling practices and criticisms of Forrester's ambitious attempts to model the world. \\
\hline Keywords (separated by "-") & Modeling in the social sciences - Cybernetics - System dynamics Stafford Beer - Jay Forrester - Herbert Simon \\
\hline
\end{tabular}

\section*{Author's Proof}

\title{
Chapter 12 \\ Mathematical Models of Technological and Social Complexity
}

\author{
Ronald Kline
}

\begin{abstract}
This chapter recounts part of the history of mathematical modeling in 5 the social sciences in the United States and England in the 1950s and 1960s. It 6 contrasts the modeling practices of MIT engineer Jay Forrester, who developed 7 the field of System Dynamics, with that of English cybernetician Stafford Beer, 8 and American social scientist Herbert Simon, in regard to the contested issues 9 of prediction and control. The analysis deals with the topic of mathematics and 10 technology in three senses: the technological origins of mathematical modeling 11 in cybernetics and System Dynamics in the fields of control and communications 12 engineering; the use of digital computers to create models in System Dynamics; 13 and the conception of scientific models, themselves, as technologies. The chapter 14 argues that the different interpretations of Forrester, Beer, and Simon about how 15 models should serve as technologies help explain differences in their models and 16 modeling practices and criticisms of Forrester's ambitious attempts to model the 17 world.
\end{abstract}

In 1948, Warren Weaver, chief of the natural sciences division of the Rockefeller 19 Foundation in the United States, issued a challenge to scientists in an article 20 entitled "Science and Complexity." An applied mathematician who had headed 21 the government's research and development program on gunfire control systems 22 in World War II and now consulted for the RAND Corporation on the military 23 science of operations research, Weaver said that scientists in the first half of the 24 twentieth century had learned to solve the problem of "disorganized complexity" 25 by using statistical mechanics and probability theory to analyze random events 26 occurring among a large number entities, such as the movements of gas molecules 27 in thermodynamics. The challenge in the second-half of the twentieth century was 28 to solve the problem of "organized complexity" in biology and the social sciences. 29 That problem could not be analyzed with pre-war methods, Weaver maintained, 30

\footnotetext{
R. Kline ( \(\triangle\) )

Science and Technology Studies Department, Cornell University, Ithaca, NY, USA
e-mail: rrk1@cornell.edu
}

\section*{Author's Proof}
because structured systems such as living organisms and social organizations 31 exhibited purposeful rather than random behavior. Weaver predicted that scientists 32 would utilize two innovations coming out of World War II (the digital computer and 33 the interdisciplinary approach of operations research) to solve the "complex, but 34 essentially organic, problems of the biological and social sciences." \({ }^{1}\)

In this chapter, I discuss two new scientific disciplines that contemporaries 36 thought were well-suited to solve the problem of organized complexity in the 37 social sciences - cybernetics and System Dynamics. I contrast the work of engineer 38 Jay Forrester, who developed the field of System Dynamics at the Massachusetts 39 Institute of Technology (MIT), with that of American social scientist Herbert Simon 40 and English cybernetician Stafford Beer. I discuss why contemporaries thought 41 cybernetics and System Dynamics could meet Weaver's challenge, how Forrester 42 and his competitors mathematically modeled social systems using theories from 43 control-systems engineering, and criticisms about the validity of Forrester's models. 44 I focus on the contested issues of prediction and control in modeling practice in 45 order to draw out wider issues about the mathematization of the social sciences in 46 this period.

My analysis deals with the topic of mathematics and technology in three senses: 48 the technological origins of mathematical modeling in cybernetics and System 49 Dynamics; the use of digital computers to create models in System Dynamics; 50 and the conception of scientific models, themselves, as technologies. For the 51 latter theme, I draw on recent work in the history and philosophy of science that 52 analyzes the construction and use of scientific models as technologies. \({ }^{2}\) Although 53 Forrester and his contemporaries used similar principles from control-systems 54 engineering, they created much different sorts of models. I argue that their different 55 interpretations of how models should serve as technologies help explain differences 56 in their models and modeling practices, criticisms of Forrester, and Forrester's 57 ambitious attempts to model first the industrial firm, then the city, and finally the 58 world.

\footnotetext{
\({ }^{1}\) Warren Weaver, "Science and Complexity," American Scientist, 36 (1948): 536-544, on 542. On his work in World War II and later at RAND, see David A. Mindell, Between Human and Machine: Feedback, Control, and Computing before Cybernetics
(Baltimore: Johns Hopkins University Press, 2002), Chap. 7; and Martin Collins, Cold War Laboratory: RAND, the Air Force, and the American State, 1945-1950 (Washington, DC: Smithsonian Institution press, 2002), Chap. 4.
\({ }^{2}\) Margaret Morrison and Mary S. Morgan, "Models as Mediating Instruments," in Models as Mediators: Perspectives on Natural and Social Science, edited by Morgan and Morrison (Cambridge: Cambridge University Press, 1999): 10-37.
}

\section*{Author's Proof}

\subsection*{12.1 The Technological Basis of Cybernetics and System Dynamics}

The technological basis of modeling in cybernetics and System Dynamics came 62 from the engineering fields of control systems and communications. From the late \({ }_{63}\) nineteenth century to the 1930s, inventors and engineers devised numerous types 64 of small regulating units to control the operation of much larger, often unruly 65 machines. These control systems steered ships, stabilized the motion of ships and 66 airplanes by means of gyroscopes, enabled airplanes to fly with a minimal amount of 67 human control, and aimed large artillery at distant targets on land, sea, and in the air. 68 The control systems worked on the principle of the servomechanism, in which the 69 outputs of the machine to be regulated (e.g., its position, direction, or motion) were 70 fed back in a closed loop and compared to the desired settings in order to generate 71 error signals that would eventually move the machine to the desired goal (see Fig. 72 12.1). In the field of communications, engineer Harold Black and his colleagues 73 at the American Telegraph and Telephone Company (AT\&T) invented a negative- 74 feedback amplifier in the 1920s that stabilized the transmission of long-distance 75 telephone signals by using feedback to cancel out the distortions that came from 76 temperamental vacuum tubes used in the repeater amplifiers.

Cybernetics and System Dynamics drew on the mathematical theories that 78 engineers and scientists developed between the wars to analyze and improve the 79 design of these feedback control systems. At MIT, Harold Hazen created a general 80 theory of servomechanisms while working on the differential analyzer, an influential 81 mechanical analog computer used to solve complex differential equations. At 82 AT\&T's Bell Telephone Laboratory, Harry Nyquist and Henrik Bode created 83 mathematical theories and graphical techniques to design stable negative feedback 84 amplifiers for the Bell System. During World War II engineers combined the fields 85 of control and communication by recognizing that any servomechanism operated 86 like a negative feedback amplifier and thus could be analyzed using the Nyquist 87 Diagram and the Bode Plot. This merger of control and communication theory 88 occurred when the National Defense Research Committee's (NDRC) division of 89 Fire Control, headed by Warren Weaver, let contracts to MIT's Servomechanisms 90 Laboratory and to Bell Labs to design anti-aircraft fire-control systems. \({ }^{3}\)

Fig. 12.1 Control-system diagram. Wiener, Cybernetics, 1948, p. 132


\footnotetext{
\({ }^{3}\) Mindell, Between Human and Machine, Chaps. 3-5, 7-9, 11; and Stuart Bennett, A History of Control Engineering, 1800-1930 (London: Peter Peregrinus, 1979), Chap. 4.
}

\section*{Author's Proof}

It was while working on a sophisticated anti-aircraft project for the NDRC that 92 MIT mathematician Norbert Wiener created a theory of prediction and control, as 93 well as a theory of information, that served as the basis for founding the new science 94 of cybernetics in 1948. And it was while working at MIT's Servomechanisms Lab- 95 oratory during the early Cold War that Jay Forrester learned the theory of feedback 96 control and communication that would form the basis of System Dynamics.

\subsection*{12.2 Mathematical Modeling of Social Systems in the Cold War}

The work of Forrester and other modelers was part of a larger movement to quantify the social sciences in the Cold War by replacing qualitative and physical models with equation-based mathematical models. \({ }^{4}\) Although several scientists had created mathematical models of the economy in the 1920s and 1930s that consisted of linked differential equations, difference equations, or inferential statistics - most 104 notably Dutch economist Jan Tinbergen - this endeavor did not gain ground outside 105 of economics in the U.S. until after World War II. \({ }^{5}\) In 1956, the first volume of 106 General Systems, the journal of General System Theory, a field founded by biologist 107 Ludwig von Bertalanffy, reprinted a 1951 article by economist Kenneth Arrow at 108 Stanford University that surveyed mathematical models in the social sciences. The 109 editors of the journal explained that physicists and, increasingly biologists, did not have to be convinced of the utility of mathematical models; social scientists did. Furthermore, the universal claims of mathematics were "put to a severe test in the evaluation of the role of mathematical models in social science.," \({ }^{6}\)

The social scientists and engineers who worked in cybernetics and systems 114 dynamics did not have to be convinced because mathematical modeling had been 115 central to those fields since their founding after the war. Both interdisciplines were 116 part of a larger systems movement that grew to prominence in the 1960s with the 117 rise of systems analysis, systems engineering, operations research, game theory, 118

\footnotetext{
\({ }^{4}\) See Max Black, Models and Metaphors: Studies in Language and Philosophy (Ithaca: Cornell University Press, 1962), 223-226.
\({ }^{5}\) George P. Richardson, Feedback Thought in Social Science and Systems Theory (Philadelphia: University of Pennsylvania Press, 1991, Chap. 2; and Adrienne van de Bogaard, "Past Measurement and Future Prediction," in Models as Mediators, edited by Morgan and Morrison, Chap. 10.
\({ }^{6}\) Ludwig von Bertalanffy and Anatol Rapoport, "Preface," General Systems: Yearbook of the Society for the Advancement of General Systems Theory, 1 (1956): v; and Kenneth Arrow, "Mathematical Models in the Social Sciences," ibid., 29-47, which was reprinted from The Policy Sciences: Recent Developments in Scope and Method, edited by Daniel Lerner and Harold D. Lasswell (Stanford: Stanford University Press, 1952), 129-154.
}

\section*{Author's Proof}
and General Systems Theory. \({ }^{7}\) All of these fields, as well as economic input-output 119 analysis and linear programming, were related to what Philip Mirowski has called 120 the "cyborg sciences" of the Cold War and Hunter Heyck has called the "age of 12 system" in the social sciences. \({ }^{8}\)

The central analogy of cybernetics, popularized by Wiener, who gave the field its name, was that both animals and machines could be analyzed using mathematical theories from control and communications engineering. A favorite analogy was to compare the central nervous system in humans - consisting of the brain, nerve net, effectors, and sensors - with control systems run by digital computers, popularly known as "electronic brains." Cyberneticians claimed they could model living organisms, intelligent machines, and society as systems structured by causal information-feedback loops, because such systems exhibited purpose, learning, and adaptation to the environment. \({ }^{9}\) Early researchers in cybernetics created physical and mathematical models of human behavior and the brain. \({ }^{10}\) Although Wiener had stated that the mathematics of cybernetics could not be applied to the social sciences because of the lack of sufficient runs of quality data in those fields, \({ }^{11}\) several social scientists in the United States applied cybernetics in their work. These included such prominent figures as Talcott Parsons in sociology, Herbert Simon in management science, Karl Deutsch in political science, George Miller in psychology, Roman Jakobson in linguistics, and Gregory Bateson in anthropology. \({ }^{12}\)

Sociologist Walter Buckley at the University of California, Santa Barbara, noted in 1967 that cybernetic and general system models were not simply a fashionable analogy based on the latest technology. "There is a difference between analogizing and discerning fundamental similarities of structure," Buckley stated. "The newer system view is building on the insight that the key to substantive differences in systems lies in the way they are organized, in the particular mechanisms and dynamics of the interrelationships among the parts with their environment."

\footnotetext{
\({ }^{7}\) Ronald R. Kline, The Cybernetics Moment, Or Why We Call Our Age the Age of Information (Baltimore: Johns Hopkins University Press, 2015), 190-195.
\({ }^{8}\) Philip Mirowski, Machine Dreams: Economics Becomes a Cyborg Science (Cambridge: New York: Cambridge University Press, 2002), Chap. 1; and Hunter Heyck, The Age of System: Understanding the Development of Modern Social Science (Baltimore: Johns Hopkins University Press, 2015).
\({ }^{9}\) Steve J. Heims, The Cybernetics Group (Cambridge, MA: MIT Press, 1991); Geoffrey C. Bowker, "How to be Universal: Some Cybernetic Strategies, 1943-1970," Social Studies of Science 23 (1993): 107-127; and Kline, Cybernetics Moment, Chap. 3.
\({ }^{10}\) See., e.g., Andrew Pickering, "Ross Ashby: Psychiatry, Synthetic Brains, and Cybernetics," in The Cybernetic Brain: Sketches of Another Future (Chicago: University of Chicago Press, 2010), Chap. 4; and Lily E. Kay, "From Logical Neurons to Poetic Embodiments of Mind: Warren S. McCulloch's Project in Neuroscience," Science in Context, 14 (2001): 591-614.
\({ }^{11}\) Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine (Cambridge, MA, and New York: Technology Press and John Wiley, 1948), 33-34, 189-191.
\({ }^{12}\) Richardson, Feedback Thought in Social Science and Systems Theory, Chaps. 3-5; and Kline, Cybernetics Moment, Chap. 5.
}

\section*{Author's Proof}

Thus, contemporaries believed that cybernetics and systems theory could solve the problem of organized complexity because purposeful systems (living and nonliving) were governed by actual, casual information-feedback loops assumed by cybernetics. \({ }^{13}\)

\subsection*{12.3 Prediction and Control}

Those who employed cybernetics and systems theory to model social processes often parted ways when it came to the issues of prediction and control, even though they relied on the same control-system theory and practices described above. By the 1930s, engineers had worked out how to use Laplace transforms to solve the linear differential equations that described such a system. Prediction and control are intimately related in such an analysis. By finding a general solution to the equations and plotting the results in a Nyquist diagram, engineers could predict the performance of the system under various inputs and determine its stability, while automatically controlling the system in the desired manner. More complex systems containing multiple information-feedback loops, non-linearities, and positive as well as negative feedback were considered to be mathematically intractable. \({ }^{14}\)

To illustrate the application of this theory to the social sciences, consider the work of Herbert Simon. A polymath social scientist at the newly established Graduate School of Industrial Administration at the Carnegie Institute of Technology (now Carnegie-Mellon University), Simon was a strong advocate of mathematical modeling in the social sciences. \({ }^{15}\) In 1952, he published an extensive paper that applied servomechanism theory to the problem of optimizing production control in manufacturing. Saying his method came under the rubric of "cybernetics," Simon gave a tutorial for social scientists on the mathematics of servo theory, which was common in electrical engineering. He explained how to use Laplace transforms to solve the linear differential equations of control systems by converting them to complex-number algebraic equations. He also showed how to use the Nyquist criteria to decide whether or not the system was stable by plotting the roots of the algebraic equations in the frequency domain. Simon acknowledged that the results of his mathematical analysis of the production problem were known intuitively by experienced managers, but he concluded that servomechanism theory provided a 176

\footnotetext{
\({ }^{13}\) Walter F. Buckley, Sociology and Modern Systems Theory (Englewood Cliffs, NJ: Prentice Hall, 1967), 3 (quotation), 38-39. On systems theory and organized complexity, see Ludwig von Bertalanffy, General System Theory: Foundations, Development, Applications (New York: George Braziller, 1968), 34, 68.
\({ }^{14}\) See, e.g., Gordon S. Brown and Donald P. Campbell, Principles of Servomechanisms (New York: Wiley, 1948).
\({ }^{15}\) Hunter Crowther-Heyck, Herbert A. Simon: The Bounds of Reason in Modern America (Baltimore: Johns Hopkins University Press, 2005).
}

\section*{Author's Proof}
rigorous and precise methodology on which to base decision rules. \({ }^{16}\) As noted by his biographer, Simon combined the science of control (cybernetics) with the 178 science of choice (decision theory) to come up with his celebrated theory of bounded rationality. \({ }^{17}\)

Prediction and control entered into Simon's model in several ways. The general solution of the differential equations precisely predicts future states of the system. Determining whether a system is stable or not is another form of prediction. The model represents how a system is controlled, and the modeler can indirectly control a system by recommending changes to it based on experiments done with the model. At this time, economists often associated prediction of future states with what they called "descriptive models" and indirect control with what they called "prescriptive models." \({ }^{18}\) In both senses, these models are themselves technologies.

A third form of control can be seen in the work of Stafford Beer. An operationsresearch consultant in the British steel industry, Beer turned from the mathematical techniques of OR, such as linear programming, to cybernetics in the 1950s. Beer laid out the new approach in Cybernetics and Management (1959), and in several subsequent books, culminating in the ill-fated scheme to build a cybernetic system to control the economy of socialist Chile in the early 1970s. \({ }^{19}\) Beer's proposal for a Cybernetic Factory, which is analogous to a biological model, illustrates his approach. The main idea behind the system (Fig. 12.2) is that the 195 cybernetician designs a control system that homeostatically couples the Company 197 to its Environment. The control system consists of the boxes in the bottom half of the diagram. The main feedback loop, running from the output of the Company's 199 Homomorphic Model to the Company, controls the Company's operations. This 200 is not a traditional, negative feedback control loop. The homomorphic models enable the two-part system (Company and Environment) to achieve ultrastability, 202 a concept Beer adapted from British cybernetician W. Ross Ashby. Ultrastability 203 ensures the survival of the Company, which is the main goal of Beer's cybernetic 204 management. \({ }^{20}\) Although Beer, like Simon, relied on information-feedback loops, 205 his purpose was to directly control systems not to create models to make predictions. He did this by designing automatically adaptable software models of the system and its environment - the Homomorphic Models - and embedding them physically into 208 an actual control system.

\footnotetext{
\({ }^{16}\) Herbert Simon, "On the Application of Servomechanism Theory in the Studies of Production Control," Econometrica, 20 (1952): 247-268, on 258.
\({ }^{17}\) Crowther-Heyck, Herbert A. Simon, Chap. 9.
\({ }^{18}\) Mary S. Morgan, "Simulation: The Birth of a Technology to Create "Evidence" in Economics," Revue d'histoire des sciences, 57 (2004): 341-377, on n. 16, 348, and 365-366.
\({ }^{19}\) Pickering, Cybernetic Brain, \(\quad\) Chap. \(\quad 6 ; \quad\) and
Cybernetic Revolutionaries: Technology and Politics in Allende's Chile \begin{tabular}{c} 
Eden \\
(Cambridge,
\end{tabular} \begin{tabular}{c} 
Medina, \\
MA:
\end{tabular} MIT Press, 2011).
\({ }^{20}\) Stafford Beer, Cybernetics and Management (New York: John Wiley, 1959), Chap. 1; W. Ross Ashby, Design for a Brain: The Origin of Adaptive Behaviour (New York: John Wiley, 1952); and Pickering, Cybernetic Brain, Chaps. 4 and 6.
}

\section*{Author's Proof}


Fig. 12.2 Cybernetic factory. Beer, Cybernetic Management, 1959, p. 150

\subsection*{12.4 Jay Forrester and System Dynamics}

These multiple meanings of prediction and control are evident in the work of Jay other social scientists, and tried to model the complexity Beer thought could not 213 be represented. Forrester developed his method of modeling from his experience214 designing control systems and digital computers at MIT during World War II and 215 the early Cold War. He worked on an analog flight simulator at Gordon Brown's 216 Servomechanisms Laboratory during the war, then turned to digital computing after

\section*{Author's Proof}
the war and led the group that developed the Whirlwind computer and magnetic-core memory. Whirlwind formed the basis for SAGE, the real-time, computer-controlled
anti-aircraft radar system that was deployed across the northern United States during 220 the 1950s. \({ }^{21}\) Upon moving to the newly established Sloan School of Industrial 221 Management at MIT in the mid-1950s, Forrester brought his experience with 222 control systems and digital computers to bear on the solution of management 223 problems. He embarked on a 5-year program - supported by the Ford Foundation, 224 the Digital Equipment Corporation, and MIT's Computation Center - to develop 225 his first modeling program, "Industrial Dynamics," whose main purpose was to 226 train managers at the Sloan School. Forrester expanded his modeling technique to 227 analyze the growth and decay of cities in Urban Dynamics (1969), then the world's 228 population and natural resources in World Dynamics (1971). In all of these projects, 229 which eventually came under the rubric of "System Dynamics," Forrester designed 230 models to be learning tools, that is, technologies for policy makers. \({ }^{22} \quad 231\)

Forrester explained the purpose and practices of his modeling technique, which 232 remained remarkably constant over the years, in his first book on the subject, \({ }^{233}\) Industrial Dynamics (1961). At the Sloan School, Forrester established a "manage- 234 ment laboratory," in which he and his group created mathematical models to serve as 235 "tools for 'enterprise engineering,' that is for the design of an industrial organization \({ }^{236}\) to meet better the desired objectives." Enterprise engineering consisted of four steps. \({ }^{237}\) First, Forrester and his group interviewed managers to identify the goals of the 238 organization, problem areas to be investigated, and factors and decision policies 239 to include in the model. Second, they created an information-feedback model on 240 a digital computer to simulate the observed behavior of the organization. Third, 241 they revised the computer model until it gave an "acceptable" representation of 242 the organization's behavior (i.e., one agreed to by the modelers and their clients). \({ }^{243}\) Fourth, managers used these results to modify the organization to improve its 244 performance. \({ }^{23}\) Forrester and his followers defined the boundaries of their closed- 245 system models so that the "behavior modes of interest [to their clients] are generated within the boundaries of the defined system. \({ }^{24}\)

\footnotetext{
\({ }^{21}\) Mindell, Between Human and Machine, Chap. 8; Paul N. Edwards, Closed World: Computers and the Politics of Discourse in Cold War America (Cambridge, MA: MIT Press, 1996); Chap. 3; and Thomas P. Hughes, Rescuing Prometheus: Four Monumental Projects that Changed the Modern World (New York: Pantheon, 1998), Chap. 2.
\({ }^{22}\) Brian P. Bloomfield, Modeling the World: The Social Construction of Systems Analysis (London: Basil Blackwell), 1986; and William Thomas and Lambert Williams, "The Epistemologies of Non-Forecasting Simulations, Part I: Industrial Dynamics and Management Pedagogy at MIT," Science in Context, 22 (2009): 245-270.
\({ }^{23}\) Jay W. Forrester, Industrial Dynamics (Cambridge, MA: MIT Press, 1961), Chaps. 1-2, quotation on 56.
\({ }^{24}\) Jay W. Forrester, "Industrial Dynamics - After the First Decade," Management Science, 14 (1968): 398-415, on 406.
}

\section*{Author's Proof}

After a decade developing his program at MIT, modeling firms, and training 248 modelers, Forrester could boast that industrial dynamics had spread to many U.S. 249 companies, including Kodak, RCA, IBM, and the Coca-Cola company, and overseas 250 to the Philips Lamp Works in the Netherlands. In 1968, Forrester maintained that 251 industrial dynamics was not merely a modeling technique, but a profession. "Like 252 the recognized professions," Forrester said, "there is an underlying body of principle \({ }_{253}\) and theory to be learned, applications to be studied to illustrate the principles, cases 254 to build a background on which to draw, and an internship to develop the art of 255 applying theory." 25

In Industrial Dynamics, Forrester argued that six networks - handling flows of 257 materials, orders, money, personnel, capital equipment, and information - could 258 be interconnected to model any economic or company activity. Forrester modeled 259 each network with the basic structure shown in the diagram in the top right section 260 of Fig. 12.3. Levels accumulate flows of that network's activity (e.g., the flow of 261 materials in production). Decision functions (shown by a valve symbol) regulate the 262 flow rates between the levels (shown by a solid line) based on the information fed to them from the levels (shown by a dotted line). Forrester noted that this was a 263 continuous rather than a discrete mathematical representation (i.e., an analog rather 265 than a digital form of modeling, even though it was done on a digital computer). The symbols, in fact, resembled those used to set up equations on the analog Differential 267 Analyzer invented by Vannevar Bush at MIT in the 1930s. \({ }^{26}\) In mathematical terms, 268 levels indicate integration, rates differentiation.

Consider the simplified model of a production-distribution system shown in the 270 top left section of Fig. 12.3, which includes only three interconnected networks: 271 materials, orders, and information. \({ }^{27}\) To put this non-linear system into tractable 272 mathematical form, Forrester wrote difference equations that related levels to rates, 273 which the digital computer calculated at discrete time intervals. A level equation for 274 this system is shown in the bottom section of Fig. 12.3. The equation states a simple 275 accounting relationship: present retail inventory equals the previous retail inventory, 276 plus the difference between the inflow shipment rate and the outflow shipment rate 277 during the previous time interval, the difference in rates being multiplied by the 278 computing time interval. As Forrester said, "In short, what we have equals what we 279 had plus what we received less what we sent away." 28

\footnotetext{
\({ }^{25}\) Jay W. Forrester, "Industrial Dynamics - A Response to Ansoff and Slevin," Management Science, 14 (1968): 601-618, on 617. For an early list of industrial-dynamics clients, most of whom were modeled by consultants trained at MIT, see Edward B. Roberts, "New Directions in Industrial Dynamics," Industrial Management Review, vol. 6, no. 1 (Fall 1964): \(5-14\), on 11. On the experience of the Sprague Electric Company, which was the first firm to have its operations modeled by Forrester's group, see Bruce R. Carlson, "An Industrialist Views Industrial Dynamics," ibid., 15-20.
\({ }^{26}\) Forrester, Industrial Dynamics, 67-71.
\({ }^{27}\) Forrester added the other networks in modeling companies for his clients.
\({ }^{28}\) Industrial Dynamics, 76. An example of a rate equation is OUT.KL \(=\) STORE.K/DELAY. See p. 78 .
}

\section*{Author's Proof}


Fig. 12.3 Principles of industrial dynamics. Forrester, Industrial Dynamics, 1961, pp. 67, 139

The industrial dynamics software, written in the language of the DYNAMO soft- 281 ware compiler, created by Forrester's colleagues Phyllis Fox and Alexander Pugh to 282 run on the IBM 700 series of digital computers, solved the level equations first, then 283 the rate equations in each time interval DT. The difference equations were solved 284 independently because the information-feedback channels were uncoupled from the 285 rest of the model during the computing time interval. As Forrester explained, "The 286 model traces the course of the system through time as the environment (levels) leads 287 to decisions and actions (rates) that in turn affect the environment." \({ }^{, 29}\)

Forrester's method differs substantially from the techniques employed by Simon 289 and other modelers, who solved simultaneous, linked differential equations to obtain 290 a general solution describing system behavior in a precise manner. \({ }^{30}\) Forrester's use 291 of the technology of the digital computer enabled him to model multiple-loop, non- 292 linear systems, containing both positive and negative feedback, whose differential 293 equations were intractable. The computer simulation for actual systems often ran 294 to more than 100 equations. Forrester stated that "When we no longer insist that

\footnotetext{
\({ }^{29}\) Ibid., 75.
\({ }^{30}\) Richardson, Feedback Thought in Social Science and Systems Theory, 153-155.
}

\section*{Author's Proof}
we must obtain a general solution that describes, in one neat package, all possible

In effect, Forrester traded the ability to model realistic, non-linear systems for 298 the ability to make precise predictions of less realistic, linear systems. Forrester 299 explained that he did not use the digital computer to do precise numerical integration 300 of the difference equations as was common in scientific calculation. \({ }^{32}\) These 301 "elaborate numerical methods," Forrester argued, were not justified in industrial 302 dynamics. "We are not working for high numerical accuracy. The information- 303 feedback character of the systems themselves make the solutions insensitive to 304 round-off and truncation errors." To complicate the model further, Forrester added 305 an element of random noise to the rates, simulating actual conditions. The solution 306 interval, DT, needed to be small to enable an accurate characterization of the overall 307 performance of the system, but not so small that it led to excessive use of expensive 308 computer time, which was a concern at the time, even at MIT. He empirically 309 adjusted the solution interval "to observe whether or not the solutions are sensitive 310 to the simplified numerical methods that are being used."33

Forrester addressed the issues of prediction and control under the topic of model 312 validity. In line with the pedagogical goals of his program at the Sloan School, \({ }^{34}{ }_{313}\) Forrester developed industrial models as a technology to train managers how to redesign (i.e., control) industrial systems, Forrester thus related prediction and 315 control to policy making (in this case management policy). Forrester argued that a \({ }^{316}\) model was valid if it predicted the general results that would "ensue from a change in organizational form or policy," especially the "direction of the major changes in system performance." It should also indicate the "approximate extent of the system 319 improvements that will follow." The model could not predict precisely the future 320 state of a system. Forrester thought such a prediction was "possible only to the \({ }_{321}\) extent that the correctly known laws of behavior predominate over the unexplained 322 noise."35

Two response curves generated by the model of the production-distribution \({ }^{324}\) system discussed earlier illustrate Forrester's approach. Figure 12.4 shows the 325

\footnotetext{
\({ }^{31}\) Forrester, Industrial Dynamics, 51 (quotation), Appendix B (list of equations for models). For a similar statement, see Forrester, Urban Dynamics (Cambridge, MA: MIT Press, 1969), 108.
\({ }^{32} \mathrm{He}\) explained the relationship between difference equations and differential equations, for example, as \(\mathrm{IAR}=\mathrm{IAR}_{\mathrm{t}}=0+\int(\mathrm{SRR}-\mathrm{SSR}) \mathrm{dt}\). See Forrester, Industrial Dynamics, n, 8, p, 76. Numerical integration by the digital computer has a long history; see Thomas Haigh, Mark Priestly, and Crispin Rope, ENIAC in Action: Making and Remaking the Modern Computer (Cambridge, MA: MIT Press, 2016).
\({ }^{33}\) Forrester, Industrial Dynamics, 80. DT was usually determined by the exponential delay (p. 79). He also says that statistical analysis probably cannot model non-linear, noisy, information-feedback systems. See p. 130.
\({ }^{34}\) On this point, see, especially, Thomas and Williams, "The Epistemologies of Non-Forecasting Simulations, Part I."
\({ }^{35}\) Forrester, Industrial Dynamics, 116, 124, his emphasis.
}

\section*{Author's Proof}


Fig. 12.4 Response of production-distribution system to a sudden \(10 \%\) increase in retail sales. Forrester, Industrial Dynamics, 1961, p. 24
response of the model to a sudden and sustained increase of \(10 \%\) in retail sales. 326 The values for retail inventory, distribution inventory, factory production, factory 327 inventory, and so forth fluctuate, then reach stability at higher values over a year 328 after the step increase. \({ }^{36}\) Figure 12.5 shows the response of the same production- \({ }^{329}\) distribution system to a \(10 \%\) unexpected rise and fall in retail sales over a 1-year 330 period. The periodic disturbance produces large swings in system values, showing \({ }_{33}\) that the "system, by virtue of its policies, organization, and delays, tends to amplify 332 those retail sales changes to which the system is sensitive." \({ }^{37}\) The effects of other \({ }^{333}\) disturbances are suppressed.

These curves illustrate how Forrester engaged in a policy form of prediction and 335 control. He experimented with the model as a technology to investigate (predict) 336 how the system responded in general to standard inputs. The next step was to 337 "determine ways to improve management control for company success." Forrester 338 altered the design of the system by changing the model's feedback-loop structure 339 and policies (rates), such as the way orders were handled and inventory managed, to 340 see the effects on system response. The mathematical models allowed experimental

\footnotetext{
\({ }^{36}\) In this case, modeling showed that factory warehouse orders were not due to an industry increase in business volume, but to a transient.
\({ }^{37}\) Industrial Dynamics, 28.
}

\section*{Author's Proof}


Fig. 12.5 Response of production-distribution system to \(10 \%\) unexpected rise and fall in retail sales. Forrester, Industrial Dynamics, 1961, pp. 26-27
computer simulations to be conducted in Forrester's "management laboratory" in his program of "enterprise engineering." 38 The models in Industrial Dynamics were thus management technologies of policy prediction and control, in which representation served the interventionist purpose of redesigning industrial systems.

Forrester's engineering experience informed his modeling of social complexity. One of the foundations of industrial dynamics was that the "experimental model 347 approach to the design of complex engineering and military systems can be applied to social systems." \({ }^{39}\) The response curves generated by the model to various inputs answer the kinds of questions regarding prediction and control that would be posed 350 by a control-system engineer: Is the system stable? How does it respond to standard types of inputs? How can the responses be improved to avoid disastrous results such as system oscillation and run away? These considerations outweighed those of precisely predicting future system states in the culture of the control engineer, as they did for Forrester when he trained managers in Industrial Dynamics at the Sloan School.

This technological approach is also present in Forrester's analysis of the complexity of social systems. In contrast to Beer, Forester believed that realistic, multiple-loop, feedback systems exhibited a complexity that had definable behaviors. He discussed these characteristics in Urban Dynamics (1969) under seven 360 headings: Counterintuitive Behavior; Insensitivity to Parameter Changes; Resistance to Policy Changes; Control through Influence Points; Corrective Programs 362 Counteracted by the System; Long-term vs. Short-Term Response; and Drift to 363 Low Performance. Forrester argued that the interaction of non-linear feedback loops

\footnotetext{
\({ }^{38}\) Ibid., 31, 43, 56.
\({ }^{39}\) Ibid., vi. The other three foundations were the theory of information-feedback systems, military decision making, and the digital computer.
}

\section*{Author's Proof}
led to many of these behaviors. \({ }^{40}\) As pointed out by critics, it was probably no 365 coincidence that the conservative nature of Forrester's model of urban systems - in 366 which government programs such as public housing produce ineffective or counterproductive results - matched Forrester's conservative worldview. \({ }^{41}\)

\subsection*{12.5 Criticism of Forrester's Models}

Forrester's models came under heavy criticism from social scientists in the 1960s and 1970s. Here, I focus on critiques relating to the contested issues of prediction and control. Management scientists criticized Forrester for his unbending views on prediction and model validity. Liberal social scientists criticized his models and
those of Stafford Beer as technocratic technologies of authoritarian control. \({ }^{42}\) The fact that Forrester was an outsider to the culture of mathematical modeling in the postwar social sciences helps explain these criticisms and his responses to them.

The most substantial critique of industrial dynamics came from management scientists Igor Ansoff and Dennis Slevin at the Graduate School of Industrial Administration at the Carnegie Institute of Technology, a rival institution to the Sloan School at MIT. In 1968 Ansoff and Slevin published a lengthy, supposedly non-partisan evaluation of industrial dynamics in Management Science, the main journal of that new field, as part of a series of expository papers commissioned by the Office of Naval Research and the Army Research Office. The paper appeared alongside an account by Forrester of the first decade of industrial dynamics, a response by Forrester to Ansoff and Slevin, and their brief reply. Writing from the point of view of management science, Ansoff and Slevin criticized many aspects of Forrester's modeling practices. They objected to the requirement to quantify all variables, which left out management judgment, that the DYNAMO complier dictated modeling practices, Forrester's ignorance of previous models of industrial systems, that the costs of industrial dynamics outweighed its benefits, and the inability of Forrester's models to predict system outcomes. The last complaint led Ansoff and Slevin to question the validity of Forrester's models, and, by implication,392 the validity of industrial dynamics itself. \({ }^{43}\)

Ansoff and Slevin related the issue of prediction to model validity at several 394 points. To them, ascertaining the validity of a model meant devising a "test

\footnotetext{
\({ }^{40}\) Forrester, Urban Dynamics, Chap. 6. In contrast, Beer categorized systems in terms of two dimensions: complexity (as being "Simple," "Complex," or "Exceedingly Complex"); and determinism (as being "Deterministic" or "Probabilistic"). See Beer, Cybernetics and Management, 12, 18.
\({ }^{41}\) See, for example, S. I. Schwartz and T. C. Foin, "A Critical Review of the Social Systems Models of Jay Forrester," Human Ecology, 1 (1972): 161-173, on 166; and Bloomfield, Modeling the World, 40-47.
\({ }^{42}\) See, e.g., Robert Lilienfeld, The Rise of Systems Theory: An Ideological Analysis (New York: John Wiley, 1978); and Medina, Cybernetic Revolutionaries, Chap. 6.
\({ }^{43}\) H. Igor Ansoff and Dennis P. Slevin, "An Appreciation of Industrial Dynamics," Management Science, 14 (1968): 383-397.
}

\section*{Author's Proof}
which establishes, first, that a model is capable of describing (and predicting) the 3 behavior of the system with satisfactory accuracy; second, and more important 397 for a management scientist, that changes in the model which produce desired 398 improvements will produce closely similar improvements when applied to the 399 real world systems." They thought Forrester's practice of developing models by 400 adjusting the computer simulation to achieve dynamic characteristics - such as 401 stability, oscillation, and growth - that were acceptable to modelers and their 402 clients, was "largely subjective." They thought such tinkering was even more 403 subjective than other forms of modeling in "prescriptive management science." For 404 an exemplary model of management decision-making, Ansoff and Slevin pointed 405 to the work of Herbert Simon, their colleague at Carnegie Tech, whose 1952406 paper on servomechanism theory generated testable generalities for a production- 407 control system. "What one gets instead [from Forrester] are prescriptions of how to 408 construct models for individual situations; but no unifying insights are apparent." \({ }^{44} 409\)

Although Simon had also based his model on control-system theory (the theory 410 of servomechanisms), Ansoff and Slevin attributed some of Forrester's problems 411 to that very field of engineering. They observed that Forrester's preference for 412 modeling behavioral characteristics "has a strong resemblance to the typical 413 typological techniques used in servomechanism design," e.g., Nyquist diagrams. 414 More generally, they found the unreflective, imperial program of Forrester, an 415 interloper from engineering, to be galling. They ended their essay, ironically titled 416 "An Appreciation of Industrial Dynamics," by quoting Forrester to the effect that 417 industrial dynamics should replace the failed program of mathematical modeling 418 in management science. "This was written in 1961," Ansoff and Slevin concluded, 419 "after a fifteen year period which many people, disagreeing with Forrester, would 420 describe as a period of revolutionary advances in management science." \({ }^{45}\)

This sort of reaction to Forrester left such an impression that Herbert Simon 422 voiced a similar complaint a quarter of a century later in his autobiography, 423 Models of My Life (1991). Simon wrote about the advice he had given the U.S. 424 President's Science Advisory Committee (PSAC) about the Club of Rome's report 425 Limits to Growth (1972), which relied on Forrester's model of world dynamics. \({ }^{426}\) Simon recalled that "My reaction was one of annoyance at this brash engineer \({ }^{427}\) who thought he knew how to predict social phenomena. In the discussion, I pointed \({ }_{428}\) out a number of naïve features of the Club of Rome model, but the matter ended, 429 more or less, with that." \({ }^{36}\) Simon was more caustic in private. In early 1972, he 430 wrote PSAC that "My objection, of course, is not to system studies, but to the 431 cavalier way that Forrester does them, and his complete ignorance of the relevant 432 theoretical and empirical literature." He thought that Dennis Meadows, a co-author 433 of Limits to Growth whom he had met, was "less doctrinaire about what he is 434 doing than is Forrester, but apparently lives as a satellite to the latter." That spring, 435

\footnotetext{
\({ }^{44}\) Ibid, quotations on \(387,388,390,395\).
\({ }^{45}\) Ibid., quotations on 386, 396.
\({ }^{46}\) Herbert Simon, Models of My Life (New York: Basic Books, 1991), 307.
}

\section*{Author's Proof}

Simon wrote the director of the Brookhaven National Laboratory about using linear 436 programming to model energy policies: "Meanwhile the hullaballoo about the rather 437 silly Club of Rome model of everything-in-the-world has had at least the good effect (so far) of stirring up some positive attitudes toward models. I don't know why it 439 should take a bad model to convince people that modelling is a good thing, but I 440 will not look this gift horse in the teeth." \({ }^{47}\)

Many reviewers of Forrester's World Dynamics (1971), on which the Club of 442 Rome model was based, were just as critical. Martin Shubick at the Department of 443 Administrative Sciences at Yale, voiced many of the same criticisms Ansoff and 444 Slevin had made, including satirizing Forrester's ignorance of the social sciences. 445 In regard to Forrester's method of testing a model's validity via consensus, Shubick 446 harshly said, "Most behavioral scientists even when they want to be 'relevant' are 447 not completely satisfied with a criterion of validation that amounts to no more than 448 acceptance by top decision makers or use by those in power. Such a criterion can 449 fast lead to a Lysenko style of science. And it appears to be the one that Forrester 450 accepts." Simon told the PSAC that he agreed with Shubick's review. One of 451 Forrester's main defenders was Denis Gabor at Imperial College, a physicist who 452 had turned to cybernetics to model social systems and thus rigorize the supposedly 453 "soft" social sciences. \({ }^{48}\)454

Yet some critics apparently did not understand that Forrester had gone beyond 455 Simon and other modelers to use servo theory to model nonlinear social systems. 456 Shubick missed this point, as did Simon. In fact, Simon had to apologize in 1989 to 457 Donella Meadows, another co-author of Limits to Growth, that he had mistakenly 458 described Forrester's model as being linear in a manuscript Meadows was reviewing 459 for OR Forum. Simon corrected the error, but he did not change his statement that 460 it was not news that the Club of Rome model, like earlier ones of prey-predator 461 relationships, would "explode" and show "large limit cycles of booms and busts of 462 population and other variables." Simon concluded that this result "could have been 463 inferred from textbook treatments of dynamic systems without any computation 464 at all." \({ }^{49}\)

Forrester responded to these criticisms by defending the tests of model validity 466 he gave in Industrial Dynamics, charging that critics (usually, non-engineers) did 467

\footnotetext{
\({ }^{47}\) Herbert Simon to David Beckler, Jan. 27, 1972; and Simon to Kenneth Hoffman, May 3, 1972, both in Herbert Simon Papers, Carnegie-Mellon University, box 51, Consulting, PSAC correspondence, available on-line at http://diva.library.cmu.edu/Simon
\({ }^{48}\) Martin Shubick, "Modeling on a Grand Scale," Science, n.s., 174 (1971): 1014-1015, on 1014; Simon to Beckler (note 47 above); Denis Gabor, "World Modeling," Science, n.s., 176 (1972): 109. On Gabor's approval of cybernetic modeling of social systems, see, e.g., Gabor, "Cybernetics and the Future of Our Industrial Civilization," Journal of Cybernetics, 1, no. 2 (April-June 1971): 1-4.
\({ }^{49}\) Donella Meadows to Herbert Simon, August 26, 1989; Simon to Meadows, Sep. 6, 1989, both in Simon Papers, box 79, Publications, "Prediction and Prescription of Systems Modeling"; and Simon, "Prediction and Prescription of Systems Modeling," OR Forum, 38, no. 1 (Jan.-Feb. 1990): \(7-14\), on 9 . On Shubick not understanding the non-linearity of Forrester's approach, see Harold Hemond, et al. "World Modeling," Science, n.s., 176 (1972): 109.
}

\section*{Author's Proof}
not understand his modeling practices, and promising that further development 468 of his program would answer all charges. \({ }^{50}\) Forrester's responses had become 469 so predictable that a reviewer of his collected papers in a British operations- 470 research journal in 1975 remarked, "Throughout the twenty years of I.D. and S.D. 471 [Industrial Dynamics and System Dynamics], it is repeatedly stated that the subject 472 is just beginning, that much research remains to be done, and that there are as 473 yet few people sufficiently trained and competent to understand the conceptual 474 and theoretical background necessary to apply the work. None of the published 475 S. D. work to date - least of all 'World Dynamics' or 'Limits to Growth' - can be 476 said to substantiate these claims for intellectual profundity." The reviewer thought 477 Forrester's papers were "an attempt to place an MIT-exclusive brand name on a 478 product which is an already widely available commodity." \({ }^{51}\)

\subsection*{12.6 Discussion}

What do my examples from cybernetics and System Dynamics tell us about the 481 relationship between technology, mathematics, and modeling in the social sciences 482 during the Cold War? In attempting to solve the problem of organized complexity, 483 Simon, Beer, and Forrester drew on a successful technological theory (the theory of 484 servomechanisms) to mathematically model complex social systems in a variety of 485 ways using dynamic information-feedback loops in order to predict their behavior 486 (Simon) or control them, either directly (Beer), or by prescribing improvements to 487 the system (Forrester).

They debated at length the question of how well their adaptations of servomech- 489 anism theory modeled social systems. The question of whether or not it was 490 permissible to borrow a highly mathematical model from engineering was not of 491 concern to them because it had become the norm in such areas as Operations 492 Research. \({ }^{52}\) The question was how well the models worked in practice, how good a \({ }^{493}\) technology they were.

In England, Beer staked his claim on his ability to control extremely complex 495 systems using an unconventional control theory derived from Ross Ashby. He 496 succeeded in the field of operations research by designing systems that worked on 497 the basis of performative control, rather than prediction. \({ }^{53}\)

In the United States, social scientists in the related field of management science 499 critiqued engineer Jay Forrester for creating a modeling technique at MIT's 500

\footnotetext{
\({ }^{50}\) See, e.g., Forrester, "Industrial Dynamics - A Response to Ansoff and Slevin"; and Forrester, "World Modeling," Science, n.s., 176 (1972): 109-110.
\({ }^{51}\) Mark Cantley, "[Review of] ‘Collected Papers of Jay W. Forrester’ . . .," Operations Research Quarterly, 28 (1977): 111-113, on 112-113.
\({ }^{52}\) William Thomas, Rational Action: The Sciences of Policy in Britain and America, 1940-1960 (Cambridge, MA: MIT Press, 2015).
\({ }^{53}\) Pickering, Cybernetic Brain, Chap. 16.
}

\section*{Author's Proof}
business school outside the culture of social science. Ansoff, Slevin, and Shubick 50 criticized Forrester for not knowing the social-science literature on mathematical 50 modeling. Simon called him a "brash engineer" who had the audacity to model
social systems. Forrester's reliance on servomechanism theory was not the issue because they viewed Simon's work in that area as a paragon of modeling practice. 505 Instead, they criticized Forrester for slavishly abiding by the culture of control- 506 system engineering to privilege behavioral characteristics over precise results - for 507 valuing indirect control over prediction, prescription over description. Ironically, 508 they upheld a representative ideal of scientific research more so than did the 509 highly-respected physicist Denis Gabor. The conflict between these engineering and 510 social-science cultures apparently did not encourage Forrester to read the social- 511 system modelers, nor did they read Forrester very carefully either. 512

Ever the evangelist, Forrester acted in a manner that his critics called hubris and 513 his disciples called leadership. He and his followers worked hard to establish System 514 Dynamics as an autonomous field. They imitated the famous MIT summer studies 515 at the Sloan School, made a fetish out of computer simulation, relied on corporate 516 sponsors rather than peer-review scientific agencies for support, and established 517 their own journal and professional society. \({ }^{54}\) These efforts further insulated System 518 Dynamics from mathematical modeling in the social sciences, which set the stage 519 for the severe criticisms of the Club of Rome report.

In the end, it was Herbert Simon's theory of rational choice, derived from 521 cybernetics, that prevailed in the social sciences. By combining the science of choice 522 (decision theory) with the science of control (servomechanisms theory), Simon 523 created a hybrid that was not so closely tied to the closed-loop feedback systems 524 of engineering and technology. 525

\footnotetext{
\({ }^{54}\) Forrester, "The Beginning of System Dynamics," Banquet Talk at the International Meeting of the System Dynamics Society, Stuttgart, Germany, July 13, 1989, available at http://leml.asu.edu/ jingle/Web_Pages/EcoMod_Website/Readings/SD+STELLA/Forrester-Begin'g-SD_1989.pdf
}

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{lll}
\hline Chapter Title & The Rise and Fall of the Anti-Mathematical Movement \\
\hline Copyright Year & 2018 & \\
\hline Copyright Holder & Springer International Publishing AG, part of Springer Nature \\
\hline Corresponding Author & Family Name & Hansson \\
& Particle & \\
& Given Name & Sven Ove \\
& Suffix & \\
& Division & Division of Philosophy \\
& Organization & Royal Institute of Technology (KTH) \\
& Address & Stockholm, Sweden \\
& Email & soh@kth.se \\
\hline
\end{tabular}

Ever since the beginnings of modern engineering education at the end of the eighteenth century, mathematics has had a prominent place in its curricula. In the 1890 s, a zealous "anti-mathematical" movement emerged among teachers in technological disciplines at German university colleges. The aim of this movement was to reduce the mathematical syllabus and reorient it towards more applied topics. Its members believed that this would improve engineering education, but many of them also had more ideological motives. They distrusted modern, rigorous mathematics, and demanded a more intuitive approach. For instance, they preferred to base calculus on infinitesimals rather than the modern ("epsilon delta") definitions in terms of limits. Some of them even demanded that practically oriented engineers should replace mathematicians as teachers of the (reduced) mathematics courses for engineers. The anti-mathematical movement was short-lived, and hardly survived into the next century. However calls for more intuitive and less formal mathematics reappeared in another, more sinister context, namely the Nazi campaign for an intuitive "German" form of mathematics that would replace the more abstract and rigorous "Jewish" mathematics.

Keywords
(separated by "-")

Anti-mathematical movement - Engineering education -
Mathematics teaching - Anschauung - Ludwig Bieberbach Deutsche Mathematik

\section*{Author's Proof}

\title{
Chapter 13 \\ The Rise and Fall 2 \\ of the Anti-Mathematical Movement
}

\author{
Sven Ove Hansson
}

\begin{abstract}
Ever since the beginnings of modern engineering education at the end 5 of the eighteenth century, mathematics has had a prominent place in its curricula. 6 In the 1890s, a zealous "anti-mathematical" movement emerged among teachers in 7 technological disciplines at German university colleges. The aim of this movement 8 was to reduce the mathematical syllabus and reorient it towards more applied 9 topics. Its members believed that this would improve engineering education, but 10 many of them also had more ideological motives. They distrusted modern, rigorous 11 mathematics, and demanded a more intuitive approach. For instance, they preferred 12 to base calculus on infinitesimals rather than the modern ("epsilon delta") definitions 13 in terms of limits. Some of them even demanded that practically oriented engineers 14 should replace mathematicians as teachers of the (reduced) mathematics courses for 15 engineers. The anti-mathematical movement was short-lived, and hardly survived 16 into the next century. However calls for more intuitive and less formal mathematics 17 reappeared in another, more sinister context, namely the Nazi campaign for an 18 intuitive "German" form of mathematics that would replace the more abstract and 19 rigorous "Jewish" mathematics.
\end{abstract}

\subsection*{13.1 Introduction}

Technological work has always required calculations. Alloys, mortars, and paints 22 have to be mixed in the right proportions, the sizes of building elements and machine 23 parts have to fit in with the construction as a whole, and in most crafts the required 24 amounts of raw materials have to be determined before the work begins. But the 25 use of more advanced mathematics, in particular mathematical analysis, to solve 26 technological problems did not get off the ground until the eighteenth century 27 (Klemm 1966). The French military engineer Bernard Forest de Bélidor (1698-

\footnotetext{
S. O. Hansson ( \(\boxtimes\) )

Division of Philosophy, Royal Institute of Technology (KTH), Stockholm, Sweden
e-mail: soh@kth.se
}

\section*{Author's Proof}
1761) published a famous four-volume book, L'architecture hydraulique (1737, 29 1739,1750 , and 1753) that represents the first extensive use of integral calculus to 30 solve engineering problems. In 1773, the physicist Charles-Augustin de Coulomb 31 (1736-1806), who is now best known for his work on electricity, published his 32 Essai sur une application des règles de maximis et de minimis à quelques problèmes \({ }_{33}\) de Statique relatifs à l'Architecture in which he applied mathematical analysis in 34 innovative ways to what is now called structural mechanics. In 1775, the Swedish 35 ship builder Fredrik Henrik af Chapman published a treatise on naval architecture 36 that made use of Thomas Simpson's method for the approximation of integrals 37 (Harris 2001). The technological use of mathematics has continued to develop ever 38 since.

39
The new profession of engineering was established in the late eighteenth and 40 early nineteenth centuries. From the beginning, applied mathematics was one 41 of its hallmarks. Mathematics has retained its central role in the education of 42 engineers, but its role has sometimes been subject to heated controversies in \({ }_{43}\) engineering schools. In the 1890s a movement that called itself anti-mathematical 44 flourished among German professors in the engineering disciplines. This chapter 45 traces the activities and concerns of that rather short-lived movement. A particularly 46 interesting aspect is its denunciation of abstract methods in mathematics and its 47 promotion of Anschauung (apperception) at the expense of mathematical rigour. In 48 the 1920s and 1930s this ideal was relaunched for entirely different purposes in the 49 Nazi "German mathematics" movement that will also be briefly discussed. But let 50 us first have a look at how it all started.

\subsection*{13.2 The French Connection}

The word "engineer" derives from the Latin ingenium, which was used in the 53 classical period for a person's talent or inventiveness, but could also refer to a 54 clever device or construction. In the Middle Ages, ingenium was a general term 55 for catapults and other war machines for sieges. A constructor or master builder of 56 such devices was called ingeniarius or ingeniator (Bachrach 2006; Langins 2004). 57

In the eighteenth century, "engineer" was still a military category. Engineering 58 officers worked with war machines, but they also drew maps and built fortifications, 59 roads and bridges. Several European countries had schools for engineering officers 60 where these skills were taught along with considerable doses of mathematics 61 (Langins 2004). Outside of the military, advanced technological tasks were still 62 performed by master craftsmen without any theoretical education. It was not until 63 1794 that the first civilian school for engineering was founded in Paris under the 64 name École polytechnique (Grattan-Guinness 2005). It was led by Gaspard Monge 65 (1746-1818), an able mathematician and a Jacobin politician. He was determined 66 to use mathematics and the natural sciences, including mechanics, as the foundation 67 of engineering education (Hensel 1989a, p. 7). About a third of the curriculum 68 hours were devoted to mathematics (Purkert and Hensel 1986, pp. 27 and 30-35). 69

\section*{Author's Proof}

Monge himself developed a new discipline, descriptive geometry. Largely based on 70 perspective drawing, it provided a mathematical basis for technical drawing. It was 71 put to use in machine construction in the École polytechnique, and it spread rapidly 72 to other countries as an important part of the mathematical education of engineers 73 (Lawrence 2003; Klemm 1966).

In addition to the practical usefulness of mathematics, the emphasis on mathe- 75 matical knowledge was well in line with the meritocratic, anti-aristocratic ideology 76 of the young republic. Mathematical proficiency was an objectively verifiable 77 standard that provided a non-arbitrary and decidedly non-aristocratic criterion 78 for selection and promotion, and it was therefore perceived as democratic. This 79 approach was largely modeled from the education of artillery engineers, which had 80 a strong mathematical component in addition to extensive technical training (Alder 81 1999).

The École polytechnique became the paragon of polytechnical schools in other 83 countries in Europe and also in the USA. A sizable number of polytechnical 84 schools were founded in the 1820s and 1830s in the German-speaking countries, 85 and a similar development took place in other parts of Europe (Purkert 1990, p. 86 180; Schubring 1990, p. 273; Scharlau 1990). The new schools all followed the 87 example of the École polytechnique in providing their students with a high level of 88 mathematical and natural science education. Initially, most of them fell far behind 89 the École polytechnique, but they tried to catch up. Beginning in the 1860s, they 90 modelled their education after the established universities (Hensel 1989a, pp. 6-7; 91 Grayson 1993).

\subsection*{13.3 Heightened Mathematical Ambitions}

The use of mathematical methods for various practical engineering tasks increased throughout the nineteenth century. One prominent example is the use of Karl 9 Culmann's graphic statics in the construction of the Eiffel Tower (Gerhardt et al. 96 2003). In consequence, treatises and textbooks were published on the application of 97 mathematics to technological topics such as optics, structural mechanics, building 98 construction, machine construction, shipbuilding, and engineering thermodynamics 99 (Klemm 1966). The number of mathematical teaching positions in the technological 100 colleges increased rapidly, and they provided a large part of the new academic 10 positions in mathematics \({ }^{1}\) (Schubring 1990, p. 273; Scharlau 1990, 264-279; 102 Hensel 1989b). Several prominent mathematicians started their academic career in 103 technological colleges. One of the foremost among them was Richard Dedekind 104

\footnotetext{
\({ }^{1}\) The advanced polytechnical schools in the German-speaking countries were called "Technische Hochschulen". Most of them were renamed "Technische Universitäten" in the 1960s-1980s. In this chapter, these terms are translated as "technological college" respectively "technological university".
}

\section*{Author's Proof}
(1831-1916), who taught first at what is now the ETH in Zurich and then at 105 what became the Braunschweig University of Technology. He is still known for 106 his path-breaking studies on real numbers, set theory and abstract algebra, but his 107 strict methods were sometimes considered impractical for engineers (Purkert 1990, 108 p. 188).

Around the middle of the nineteenth century, professors in mechanical engi- 110 neering increasingly emphasized new and more stringent mathematical approaches to their discipline. This put higher mathematical demands on their students. 112 Consequently, mathematics teaching expanded on the curricula, and more advanced 113 mathematics was introduced. However, the heightened mathematical ambitions were not always easy to implement. Many of the students had a rather weak mathematical background from their previous education.

In 1865, the influential Association of German Engineers (Verein Deutscher 117 Ingenieure, VDI) adopted a new policy for the education of engineers. It was based on a committee report that emphasized the difference between the German engineering schools with their "proclivity for an extensive scientific education" and the "more immediate and empirical introduction" to the engineering profession in the corresponding English institutions. \({ }^{2}\) The commission was aware that the English system had proponents among German engineers, but their own opinion was favourable to extensive studies of mathematics and the natural sciences, which they described as the "foundations" of technology. In contrast, the historical, aesthetic, and economic disciplines had more limited roles as "auxiliary sciences" \({ }^{3}\) (Anon. 1865, pp. 706, 716, 721). Based on this report, the VDI adopted a resolution that recommended "the teaching of mathematics and the natural sciences to an extent and intensity not inferior to the universities". \({ }^{4}\) It was also emphasized that these sciences should be studied "for their own sake, not just as a preparation to make it possible to study the special courses" \({ }^{5}\) (Hensel 1989a, pp. 14-15). This should be read against the background that at this time, the technological colleges were striving to achieve the same status as the traditional universities. The VDI's policy seems to have contributed to the continued recruitment of prominent mathematicians to technological colleges in the 1870s and 1880s. These recruitments were based primarily on excellence in pure mathematics (Hensel 1989a, pp. 16-21 and 240243).

\footnotetext{
2"Neigung zu einer umfassenden wissenschaftlichen Ausbildung", "mehr unmittelbare und empirische Einführung".
3"Grundlage", "Hülfswissenschaften".
4"die Mathematik und die Naturwissenschaften in einer den Universitäten nicht nachstehenden Ausdehnung und Intensität gelehrt werden sollen".
5 "diese Wissenschaften an der polytechnischen Schule um ihrer selbst willen, nicht nur als Vorbereitung für die Fachcurse studiren zu können".
}

\section*{Author's Proof}

\subsection*{13.4 The Counterreaction}

The expansion of mathematical teaching and research at technological universities was largely driven by professors in mechanical engineering who were engaged in the introduction of new, more mathematically advanced models in their disciplines. One of them was Franz Grashof (1826-1893). He was president of the VDI, and instrumental in developing its pro-mathematical policy of 1865 . But many representatives of other technological subjects had a different opinion. They did not see the need for more mathematics, but they were worried that the new mathematics courses would infringe on their own subjects. This led to a growing tension that sometimes gave rise to open conflicts, in particular in decisions on recruitments and appointments. In the technological college in Munich such conflicts broke out already in the 1870 s. The director of the school, Karl Maximilian von Bauernfeind (1818-1894), used his influence to recruit practically oriented mathematicians who put little emphasis on the more abstract and foundational issues in mathematics. He was actively opposed by the young mathematician Walther von Dyck (18561934), who wanted to recruit mathematicians with excellent research qualifications (Hashagen 1998, p. 174).

Contacts with educators in other countries fuelled the conflicts over the role of mathematics. Those favouring an extended mathematical curriculum looked to France and in particular the École polytechnique, whereas their opponents turned their eyes to the more practically oriented education of engineers in Britain with its strong focus on on-the-job training (Hensel 1989a, p. 6). Increasingly, their focus shifted to America, whose engineering education was quite similar to that in Britain. The world exhibition in Philadelphia in 1876 led to a vivid discussion in Germany about technological education (Manegold 1970, pp. 146-147).

However, it was another world exhibition, namely that in Chicago in 1893, that triggered an intensified and often outright hostile discussion about the teaching of mathematics in technological colleges (Manegold 1970, pp. 146-147). Once again, the VDI was the main forum of the discussions. The organization had organized German participation in the exhibition, and afterwards it also provided forums for discussions on what could be learned from the transatlantic visit. Considerable concerns were vented about Germany's competitiveness in comparison to the US, both in terms of actual engineering achievements and the education of new generations of engineers (Hensel 1989a, pp. 54 and 56-58). In consequence of these discussions the VDI decided to develop a new policy for higher technological education. A report published in 1894 by Alois Riedler (1850-1936), professor in mechanical engineering, had a central role in the society's deliberations. In this report, Riedler described in detail the educational laboratory facilities of the best American engineering schools. These laboratories were much superior to anything seen in Germany. The educational methods were equally impressive. "Value is attached not only to the use of instruments and equipment, but primarily to methods

\section*{Author's Proof}
of scientific investigation and independent work as means to learning" \({ }^{6}\) (Riedler 179 1894 , p. 512). He put much emphasis on the difference between such scientific laboratories and workshops for learning practical work methods. Such workshops "have no place in higher education"" (p. 635). Riedler recognized that the American engineering schools were largely modeled after the English ones (p. 612), but the latter had much less resources and had not reached the same level as their American counterparts (p. 630). In order to catch up with the Americans, the German educational institutions would need resources for building laboratories, but they also had to make room for laboratory work in their curricula. The major obstacle to increased laboratory work was in his view "an excess of mathematical education" (p. 632) in the German schools that could not be found on the other side 188 of the Atlantic \({ }^{8}\) :

> The mischief that subjects such as physics, mechanics, etc. that should be exclusively devoted to knowledge about natural science, are represented and treated as mathematical, cannot be found there . . . In our schools the interest and efforts of the students are consumed by an overabundance of a farreaching and onesided "theoretical" education. There, the students' interest is stimulated by the superior means of education in laboratories and independent work in these laboratories. \({ }^{9}\) (Riedler 1894, p. 632) 190

In an additional article, published in 1895, Riedler accused the mathematics teachers at technological colleges of "an unmeasurable overestimation of analyticalmethods" (Riedler 1895, p. 954). He saw it as imperative to remove "the theoretical199 speculations of modern university mathematics" from the syllabus (p. 955). \({ }^{10}\) Since 200 mathematicians could not be trusted to implement these changes, they would have 201 to be replaced by teachers with another background:

The technological colleges should themselves educate the teachers in mechanics, physics,from working themselves in these sciences, can satisfy the demands of these teaching

\footnotetext{
\({ }^{6 " E s}\) wird nicht nur auf Handhabung der Instrumente und Apparate sondern vor allem auf wissenschaftliche Untersuchungsmethoden und auf das selbschaffende Arbeiten als Mittel des Lernens Wert gelegt."
7 "gehören überhaupt nicht an die Hochschulen".
8 "ein Übermaß von mathematischer Ausbildung".
9"Der Unfug, dass Fächer, wie Physik, Mechanik usw., die ausschließlich der naturwissenschaftlichen Erkenntnis gewidmet sein sollen, als mathematische ausgegeben und behandelt werden, besteht dort nicht... Bei uns werden das Interesse und die Kraft der Schüler durch das Übermaß eines weitläufigen und einseitigen 'theoretischen' Unterrichts verbraucht, dort wird das Interesse durch das hervorragende Mittel der Unterweisung in Laboratorien und durch selbständige Arbeit in diesen angeregt."
10"eine maßlose Überschätzung der analytischen Methoden", "die theoretischen Spekulationen der modernen Universitäts-Mathematik".
\({ }^{11}\) "Die technischen Hochschulen müssten die Lehrer der Mechanik, Physik und Mathematik selbst ausbilden, den nur derjenige, der Bedürfnisse und Ziele der Fachwissenschaften aus eigener fachwissenschaftlicher Arbeit kennt, vermag dem genannten Lehrerberufe zu genügen."
}

\section*{Author's Proof}

\subsection*{13.5 The Anti-mathematical Movement}

Riedler's attacks on the teaching of abstract mathematics found resonance among many of his colleagues. As the mathematician Felix Klein wrote a few years later, 209 "what had long been slumbering under the surface broke out with elemental force: 210 the conflict between the engineers and the mathematicians on the amount and nature of the preparative mathematical education that is necessary for an engineer" \({ }^{12}\) (Klein 1898, p. 1092). For instance, in a speech in 1894 at a meeting in the VDI,
Adolf Ernst (1845-1907), who was professor in the Stuttgart technological college, 214 went even further than Riedler and attacked not only the teaching methods but also 215 the validity and relevance of modern mathematics:

It is a fact that a too extensive mathematical apparatus is used to develop a whole series of hypotheses whose conditions are not satisfied and whose conclusions therefore lead to false results . . . The overemphasis on purely theoretical studies and lectures also [leads] to an overestimation of a prioristic thinking and to a highly detrimental underestimation of the value that perceptive ability has for our discipline, since our professional practice always deals with concrete rather than abstract cases. \({ }^{13}\) (Ernst 1894, p. 1352)

Riedler's report was vigorously discussed in the local and regional branches of 228 the VDI. Most of them were in favour of a reduction of higher mathematics in engineering schools (Anon. 1895d, p. 1214). However, this standpoint was far from 230 unanimous. For instance, the branch in Aachen adopted a statement according to 231 which they could "by no means endorse a limitation of education in mathematics", in particular considering the "uneven and often inadequate" mathematical skills of 233

\footnotetext{
12"[W]as lange unter der Oberffäche geschlummert hatte, das brach mit elementarer Gewalt hervor: der Gegensatz zwischen den Ingenieuren und den Mathematikern inbezug auf das Maß und die Art der für den Ingenieur erforderlichen mathematischen Vorbildung".
\({ }^{13}\) "Sodann ist es Tatsache, dass eine ganze Reihe von Hypothesen mit weitschweifigen mathematischen Apparat verarbeitet wird, deren Voraussetzungen nicht zutreffen, und deren Schlussfolgerungen deshalb auch zu falschen Ergebnissen führen... [D]as Übergewicht der rein theoretischen Studien und Vorlesungen [führt] auch zu einer Überschätzung des a prioristischen Denkens und zu einer höchsts nachteiligen Unterschätzung des Wertes, der dem reinen Beobachtungsvermögen gerade für unser Fach unbedingt zuzuerkennen ist, weil wir es in der Ausübung unseres Berufes stets mit konkreten, nie mit abstrakten Fällen zu thun haben."
14"Hilfswissenschaft".
15 "weit über die Grenzen des Notwendigen".
\({ }^{16}\) According to Hensel, this movement was in its own time called the "antimathematische Bewegung" (Hensel 1989a p. 1). The earliest use of the term that I have been able to find is in a speech that Felix Klein held in 1904 (Klein 1905, p. 37).
}

\section*{Author's Proof}

\begin{abstract}
the students \({ }^{17}\) (Anon. 1895b, p. 753). Similarly, the branch in Franken-Oberpfalz \({ }_{234}\)
warned against a reduction of the mathematical curriculum, emphasizing that "the mathematical sciences as a whole contribute primarily to strengthening the engineering student's abilities in logical thinking" \({ }^{18}\) (Anon. 1895a, pp. 721-722).

Based on Riedler's report and the recommendations of the local and regional238 branches, the 1895 Congress of the VDI, meeting in Aachen, adopted a policy 239 in favour of the creation of educational laboratories. The policy specifically 240 endorsed reductions in mathematics teaching as a means to make room for the 241 new experimental studies. The use of abstract methods in mathematics should bereduced, and the focus of the (reduced) mathematics curriculum should be on the243
mathematical tools that were necessary for the technological disciplines. ..... 244
Therefore education in the auxiliary sciences should be kept within the limits of what is ..... 245
necessary for understanding the engineering sciences. It is in particular desirable that the ..... 246
mathematical education, while not being restricted in the achievement of these goals, is ..... 247restricted in the use of abstract methods. Through vivid connections with the applicationareas the students will be led faster and more safely to sufficient mastery of the mathematicaltools. \({ }^{19}\) (Anon. 1895c, p. 1095)250
This was followed up in a report from the board of the VDI in which the teaching ..... 251
of mathematics in technological colleges was explicitly criticized. According to the ..... 252report, the education as a whole had become too abstract; "to put it briefly, it has 253become an end in itself and has neglected the constant contact with the practical254
tasks that it should serve" \({ }^{20}\) (Anon. 1895d, p. 1214). ..... 255
\end{abstract}

\subsection*{13.6 The Nature of the Controversy}

The anti-mathematical movement combined several concerns, and its participantsseem to have had in part different motives. There were at least three lines of conflict.First, there was competition for space in the curriculum. For some time, mathematics259 had expanded, and teachers in the more practically oriented subjects felt a need to 260 defend their own disciplines. Although theoretically uninteresting, this was probably a major component in the conflict.

\footnotetext{
17 "eine Beschränkung des mathematischen Unterrichtes durchaus nicht gutheißen können", "ungleichmäßigen und häufig ungeeignete Vorbildung".
18 "die Gesamtheit der mathematischen Wissenschaften in erster Linie dazu beiträgt, die logische Denkkraft des Studirenden der Technik zu schärfen".
19"Deshalb muss dieser Unterricht in den Hilfswissenschaften das zum Verständnis der Ingenieurwissenschaften erforderliche Maß einhalten; insbesondere ist es wünschenswert, den mathematischen Unterricht nicht in diesen Zielen, aber in der Benutzung abstrakter Methoden zu beschränken und durch lebendige Beziehung zu den Anwendungsgebieten die Studirenden schneller und sicherer als bisher zu ausreichender Beherrschung der mathematischen Hilfsmittel zu führen."
20"der Unterricht im ganzen zu sehr abstrakt gestaltet worden; er ist mit einem Worte zu sehr Selbstzweck geworden und hat die stete Berührung mit den praktischen Aufgaben, denen er dienen soll, vernachlässigt."
}

\section*{Author's Proof}

A second line of conflict concerned the nature of technological science. The 263 technological colleges had begun as schools for craftsmen. They fought a long battle 264 to achieve academic status, a battle that was finally to be won in the twentieth 265 century, when they received the right to confer doctorate degrees and most of 266 them changed their names to "technological universities". However, although the 267 professors in technological colleges agreed on the goal to achieve academic status, 268 they were divided on how this should be done. There were two competing strategies. 269 The original strategy was closely connected with a view of technological science as 270 applied mathematics and natural science. Formulas from mechanics could be used 271 to characterize the movements of machine parts, and electromagnetic theory could 272 be used to design electrical machines and appliances. In this way, technological 273 science could be based on mathematics, physics, and chemistry. Consequently, the 274 obvious way to obtain academic status was to excel in these foundational sciences. 275 If the students of engineering schools learned as much physics and mathematics as 276 those of the established universities, then what reason could there be to deny the 277 technological schools the status of universities? Above, we saw this strategy at play 278 in the VDI's policy document from 1865.

But there was also another opinion on the nature of technological science, namely 280 that it consisted primarily in the use of scientific methods in direct investigations 281 of the subject matter of technology, namely machines and other constructions 282 by engineers. According to this approach, the empirical basis of technological 283 science consisted in experiments with machines and other technological objects. 284 Many of the teachers in engineering disciplines conducted this type of research. 285 They built machines and machine parts and tested the functionality of alternative 286 constructions in order to optimize the construction (Faulkner 1994; Kaiser 1995). 287 In many cases this was the only way to solve the problems of practical engineering, 288 for the simple reason that available physics-based theories either did not cover all 289 aspects of the problems to be investigated or required calculations that were too 290 large to be performed (Hendricks et al. 2000). German researchers who promoted 291 this form of science were much encouraged by what they saw in American 292 laboratories. Unsurprisingly, they regarded mathematics and physics as auxiliary 293 rather than foundational sciences for the study of technology. With this approach 294 to technological science, it was not necessary to compete with the universities in 295 physics and mathematics in order to justify an academic status. Instead, that status 296 could be based on a type of research that was unique to the technological colleges, 297 namely empirical studies of technology.

There is an interesting parallel with developments in medical faculties in the late 299 nineteenth century. Although these faculties were already parts of the university 300 system, they did not have the high status that the natural sciences were increasingly 301 favoured with. Here as well, there were two competing strategies for achieving a 302 higher status. One was to develop medicine as an application of the natural sciences. 303 Through laboratory studies of sick and healthy organs, the causes of diseases could 304 be discovered and remedies developed. Claude Bernard (1813-1878) was a leading 305 proponent of this strategy. The other strategy was based on treatment experiments 306 in the clinic, i.e. what we today call clinical trials. By systematic evaluations of 307

\section*{Author's Proof}
the outcomes of different treatment methods, the most beneficial methods could
be identified (Booth 1993; Wilkinson 1993; Feinstein 1996; Hansson 2014). Today
these approaches are seen as complementary, but in the late nineteenth century they 310 were considered to be in conflict, in much the same way as the two strategies of 311 technological educators just referred to.

The third line of conflict concerns two different views of mathematics. This was 313 a dividing line with interesting philosophical implications. The major target of the anti-mathematical movement was the teaching of "higher mathematics", by which was meant differential and integral calculus and analytic geometry (Hensel 1989a, p. 25). The anti-mathematical activists were particularly hostile to the new, more stringent methods that mathematicians introduced into their teaching in this field (Purkert 1990, pp. 179, 188). Previously, the calculation of integrals was based on infinitesimals (hypothetical objects that are larger than zero but smaller than any319 positive number). Infinitesimals had been used successfully for many years, but 32 mathematicians had discovered cases in which they give the wrong answers. They were therefore replaced by new more stringent methods that were based on limits. This transformation was largely based on work by Karl Weierstraß (1815-1897), who showed how geometrical reasoning about infinitesimals could be replacedby more precise reasoning expressed in formulas. This was commonly called the326
"arithmetization" of analysis, but that designation is somewhat misleading since the ..... 327new method was based on a much more sophisticated manipulation of formulas 328than that of common arithmetic. Felix Klein provided an excellent explanation in a329popular lecture:

A glance at the more modern textbooks of the differential and integral calculus suffices to 331 show the great change in method; where formerly a diagram served as proof, we now find continual discussions of quantities which become smaller than, or which can be taken to be smaller than, any given quantity. The continuity of a variable, and what it implies, or

Many teachers in engineering subjects were highly critical of the new methods.(1844-1914) in which he denounced the "purely abstract theory of sizes that340
completely refrains from geometrical illustrations", and proposed a return to the ..... 341old geometrical methods in which "spatial means of apperception, especially 342geometrical presentations" were used \({ }^{21}\) (Holzmüller 1896, p. 108).

Holzmüller used the word "Anschauung"; in translations I have followed the 344 tradition and rendered it as "apperception". The term is strongly connected withImmanuel Kant's epistemology. In his Kritik der reinen Vernunft (Critique of PureReason), Kant distinguished between two forms of apperception, namely empirical347 apperceptions that are provided by the sense organs and pure apperceptions that are 348

\footnotetext{
21 "eine rein abstrakte Größenlehre, die auf geometrische Veranschaulichungen vollständig verzichtet", "räumliche Anschauungsmittel, besonders die geometrische Darstellung".
}

\section*{Author's Proof}
a priori, i.e. independent of sensory experiences. These pure apperceptions referred
to time and space which we can, according to Kant, conceptualize independently of
our perceptions. Holzmüller and others proposed that students should develop their
abilities to apperceive geometrical objects in space. This, in his view, was the right road to mathematical knowledge, rather than the precisely defined operations on \({ }^{353}\) formulas that followers of Weierstraß recommended as a means to achieve sufficient 354 stringency.

In 1896, Alois Riedler published a new series of articles in the journal of the 356 VDI, in which he defended the old approach to calculus. He accused modern, 357 abstract mathematics of a "one-sided lack of apperception" that led to "fear of reality and escape from it""2 (Riedler 1896a, p. 305). Instead, all teaching should "stand 359 on the foundation of apperception and, as its highest task, strive for apperceptive 360 logical thinking without formulas, that is thinking and operating with apperceptive
concepts" \({ }^{23}\) (p. 305). He did not trust academic mathematicians to perform such mathematics teaching "without formulas", and therefore proposed to put an end to their teaching at the technological colleges. Instead, engineering students should363 be taught a reduced mathematics curriculum by teachers who were themselves 365 engineers (pp. 342-343). He polemicized against the mathematician Felix Klein 366 who had spoken in conciliatory terms about the important tasks that mathematicians 367 had in making their subject relevant and useful for students of engineering. \({ }^{368}\) Mathematicians did not have any such task at all, said Riedler. Instead, the students should encounter "mathematics as an indispensable tool in the hands of those who 370 are educated in technology or at least the natural sciences" \({ }^{24}\) (Riedler 1896b, p. 37 990). His choice of Klein as the main target of this attack on mathematicians may have been injudicious; among the leading mathematicians of his time Klein was one of those who most emphasized the prudent use of geometrical intuitions (Klein 1896b, p. 246).

\subsection*{13.7 The End of the Movement}

With this escalation of the rhetoric against them, it is no surprise that the mathemati- \({ }^{377}\) cians at the German technological colleges felt obliged to respond. In December 378 1896, all the 33 professors in mathematical subjects made a joint statement. (One 379 of the signatories was Richard Dedekind who taught at the technological college 380 in Braunschweig.) They pointed out that mathematics was a foundational science,

\footnotetext{
22"anschauungslose Einseitigkeit", "Furcht und Flucht vor der Wirklichkeit".
\({ }^{23}\) "auf dem Boden der Anschauung stehen und gerade das anschauliche logische Denken ohne Formeln, das Denken und Operiren in anschaulichen Begriffen, als die höchste Aufgabe erstreben". 24"der Mathematik als unerlässlichem Werkzeug in den Händen technisch oder mindesten naturwissenschaftlich Gebildeter".
}

\section*{Author's Proof}
not an auxiliary one. \({ }^{25}\) They also made it clear that a reduction in the time 382 spent on mathematics was impossible due to "the difficulty and the size of the 383 material that is necessary to put forward, given the previous education that the 384 students currently receive in the secondary schools". \({ }^{26}\) The teachers should have 385 a complete mathematical eduction, and it was "out of the question that a technician 386 can hold mathematical lectures even for beginners". \({ }^{27}\) But on the other hand, they \({ }^{387}\) emphasized that as mathematicians at technological colleges, they had a particular 388 obligation to pay close attention to the technological uses of mathematics. They also 389 conceded that "extensive references to apperceptive methods" were pedagogically 390 useful \(^{28}\) (von Braunmühl et al. 1897). 391

This was followed by a sharp retort from the anti-mathematical movement, 392 signed by 57 teachers in engineering disciplines. They said: 393

In the education of engineers, mathematics does not have the importance of an essential 394 foundation, but that of a tool. The contrary standpoint of the mathematicians explains the errors that are made in the mathematical education at [technological] colleges ... The education in higher mathematics currently exceeds the actual needs, is a too heavy load in the first four terms and should therefore be reduced in favour of a better preparatory technological education during these terms. At the same time it should be strengthened technologically through as much applications as possible for instance in technological calculation exercises. Those parts of the mathematical sciences that are suitable for enhancing spatial conception and graphical representation of quantities deserve to be favoured... The current educational programme for mathematicians does not make them able to correctly judge the needs of technology, which they misconstrue to the benefit of mathematics. Therefore teachers with an education essentially based in technology should be found for the mathematical education. \({ }^{29}\) (Arnold et al. 1897)

\footnotetext{
25 "grundlegende Wissenschaft", "Hülfswissenschaft".
26"der Schwierigkeit und dem Unfang des nothwendig voranzutragenden Stoffes, wie bei der von den Mittelschulen gegenwärtig gegebenen Vorbildung der Schüler".
27"kann keine Rede davon sein, dass ein Techniker mathematische Vorlesungen auch nur für Anfänger halte!"
28 "ausführliche Heranziehung anschauungsmässiger Methoden".
\({ }^{29}\) "[D]ie Mathematik hat für die Ausbildung des Technikers nicht die Bedeutung einer wesentlichen Grundlage, sondern die eines Hülfsmittels; der entgegengesetzte Standpunkts der Mathematiker erklärt die Fehler, welche im mathematischen Unterrichte an den Hochschulen begangen werden . . . Der Unterricht in der höheren Mathematik geht heute über die thatsächlichen Bedürfnisse hinaus, belastet die ersten vier Semester zu schwer und ist daher zu Gunsten einer bessern technischen Vorbildung in diesen Semestern einzuschränken, zugleich aber durch möglichst weitgehende Anwendung - etwa in technischen Rechenübungen - technisch zu vertiefen. Bevorzugung verdienen diejenigen Theile der mathematischen Wissenschaften, welche geeignet sind, die Fähigkeit der räumlichen Vorstellung und der bildlichen Darstellung der Größen zu fördern. ... Der heutige Ausbildungsweg der Mathematiker befähigt diese nicht zu richtiger Erkenntnis der Bedürfnisse der Technik, welche sie nach der mathematischen Seite überschätzen. Deshalb müssen für den mathematischen Unterricht Lehrer mit wesentlich technischer Grundlage ihrer Ausbildung gewonnen werden."
}

\section*{Author's Proof}

In the short run, the anti-mathematical movement had some success. In 1896, the 407 mathematics curriculum was considerably reduced in the technological college in 408 Berlin, where Alois Riedler was himself was professor. Such reductions were also 409 made in several other technological colleges (Hensel 1989a, pp. 78-81). But some 410 members of the movement were still not satisfied. In an article published in April 411 1899, Paul von Lossow (1865-1936) who was professor in mechanical engineering 412 at the technological college in Munich, extended his attacks and denounced not 413 only all mathematicians, but all teachers with a university background. Such people 414 "seriously overestimate the impact of education on later achievements" 30 (von 415 Lossow 1899, p. 361). His description of university teachers was far from friendly: 416

After the end of their studies they remain stuck to the school, become assistants and later 417 Privatdozenten - the worst possible career path for a teacher in the art of engineering. Such a man, who has spent his whole life in school and never broke free from the spell of one-sided theoretical speculations, can do an infinite amount of harm when he later, as a professor,

on Lossow's article was the last major expression of the anti-mathematical 42 movement. In the last years of the nineteenth century, the mathematicians managed \({ }_{423}\) to calm down the conflict by adjusting their teaching to the needs of engineers, 424 for instance by giving examples from engineering a more prominent role in their \({ }_{425}\) lectures (Hensel 1989a, pp. 84-86; Purkert 1990, p. 192; Schubring 1990; Scharlau 426 1990, pp. 264-279). Felix Klein seems to have had an important role as a mediator \({ }_{427}\) in these developments. He said already in 1898 that "an actual, though not formal 428 agreement" had been reached \({ }^{32}\) (Klein 1898, p. 1092). On the one hand it was agreed \({ }_{429}\) that the teaching of mathematics should be better adapted to the needs of engineers, 430 on the other hand that engineers needed a broad base in mathematics (Cf.: Klein \({ }^{43}\) 1896a, 1905). One of the reasons why the movement lost its momentum may have 432 been that mathematics and other theoretical disciplines had an important role in the 433 argumentation for conferring on the technological colleges the right to grant doctor's 434 degrees (Manegold 1970, p. 157). The decline of the movement was so fast that the 435 technological college in Munich decided already in 1904 to increase its mathematics 436 curriculum, which had been cut down in the previous decade (Otte 1989, p. 177). \({ }^{437}\) In 1903 Arnold Sommerfeld (1868-1951), a physicist and mathematician at the 438 technological college in Aachen, described the fight between theoreticians and 439 engineers as a conflict that had been "still lively a few years ago" but had now 440 been replaced by "an unhesitant appreciation of the different fields of research" \({ }^{33}{ }_{44}\) (Sommerfeld 1903, p. 773). In 1919 the mathematician Eugen Jahnke characterized 442 the anti-mathematical movement as belonging entirely to the past (Jahnke 1919). \({ }_{443}\)

\footnotetext{
30"überschätzen den Einfluss der Schulung auf die späteren Leistungen des einzelnen arg".
31 "Sie bleiben nach Abschlus ihrer Studienzeit an der Schule kleben, werden Assistenten und später Privatdozenten - der verkehrteste Werdegang für einen Lehrer der Ingenieurkunst. Wenn solch ein Mann, der sein ganzes Leben lang nicht aus der Schulstube und nicht aus der Banne einseitig theoretischer Spekulationen herausgekommen ist, später als Professor Jahrzehnte lang auf hunderte von Studirenden seinen Einfluss äußert, so kann er undendlich viel Unheil anrichten."
32 "eine allerdings nicht formelle, wohl aber thatsächliche Uebereinstimmung".
33 "noch vor weningen Jahren lebhaft", "eine bereitwillige Würdigung der verschiedenen Forschungsrichtungen".
}

\section*{Author's Proof}

\subsection*{13.8 Aftermath: A Nazi Movement Against Abstract Mathematics}

The anti-mathematical movement's attacks on the abstract and strictly rule-bound methods of modern mathematics had a brief resurgence in a much more sinister context, namely attempts to align mathematics with Nazi ideology.

Although the new, more stringent, methods in mathematics had acquired a 449 dominant role in the 1930s, some mathematicians defended a traditional approach that assigned a central role to intuition and apperception in validating mathematical statements. The most influential among them was the Dutch mathematician L.E.J. Brouwer (1881-1966). One of its most prominent German proponents was Ludwig Bieberbach (1886-1982). In his inaugural lecture in Basel in 1914 he took a formalistic view, but in the twenties he became a proponent of mathematical apperception, in particular in geometry (van Dalen 2013, p. 496; Mehrtens 1987, 456 p. 166; Segal 2003, p. 348).

Like all other parts of German intellectual life, mathematics suffered great losses 458 during the Nazi regime. Between 1933 and 1937, about 30\% of the mathematicians at German universities lost their jobs due to racial or political persecution (Schappacher 1998, p. 127; Mehrtens and Kingsbury 1989, p. 49). One example is the statistician Emil Julius Gumbel (1891-1966) who was severely persecuted already in the 1920s and had to emigrate in 1932. He was the only mathematician on the Nazi regime's first list of persons who were deprived of their citizenship in 1934 (Remmert 2004; Mehrtens and Kingsbury 1989, p. 49) (Albert Einstein was on the same list.) Another was Emmy Noether (1882-1935), one the principal founders of modern abstract algebra. In spite of strong support from David Hilbert (18621943) and other prominent colleagues, her career was hampered first by Prussian antifemale legislation and then by Nazi persecutions that targeted her because she was a Jew and a socialist. She was expelled from the university and had to emigrate (Segal 2003 p. 15).

Many German mathematicians took a clear stand against these persecutions. For instance, David Hilbert, who was arguably the most influential mathematician of his time, wrote in 1928:

However, there were also mathematicians who sided with the Nazis and tried to 480 obtain support from the regime for their own strivings. One of them was Ludwig 48 Bieberbach, who joined the Nazis in 1933 (Remmert 2004). In 1933 the prominent

\section*{Author's Proof}

In two articles published in 1934, Bieberbach divided mathematicians into two major styles, which he attributed to different races. Basically, he associated 488 axiomatic and formal work with Jewish and French national character, and a more 489 intuitive or apperceptive approach with German character. However, he twisted 490 the classification in order to avoid classifying axiomatically oriented Germans like 491 David Hilbert and Richard Dedekind along with the Jews. Even Karl Weierstraß 492 who explicitly criticized reliance on intuition was classified among the intuitively 493 oriented mathematicians, for the simple reason that he was a German (Segal 1986, 494 2003, pp. 360-368).

Bieberbach took the lead in a movement for so-called German mathematics, 496 centring around the journal Deutsche Mathematik ("German mathematics") that 497 appeared from 1936 to 1943 (Schappacher 1998; Remmert 2004). To put it mildly, 498 the contents of the journal did not do much to corroborate the supposed superiority 499 of German mathematics.

In this period, mathematicians who emphasized formal rigour and deductive 501 reasoning were mostly opponents of the Nazi regime, whereas many proponents 502 of apperceptive and intuitive mathematics went in the other direction. However, 503 there is certainly no necessary connection between intuition-based mathematics and 504 this or any other political ideology. There was, and still is, a highly respectable 505 intuitionist standpoint in mathematics. It sees mathematical intuitions as common to 506 humankind, which is of course very different from the Nazi view that mathematical 507 intuitions differ between the "races" (Segal 2003, pp. 33-34; Mehrtens 1987 p. 171). 508

There was a parallel Nazi movement in physics, the Deutsche Physik (German 509 Physics). Its members were opponents of relativity theory due to its unintuitive 510 nature. The term apperception (Anschaung) was used in this context as well. 511 So-called "Jewish" physics was accused of being too abstract and lacking in 512 apperception (Wazeck 2009). One of the leaders of Deutsche Physik was the Nobel 513 laureate in physics Phillip Lenard (1862-1947), who joined the Nazi party already 514 in the early 1920s. He rejected relativity theory due to its, as he saw it, non- 515 apperceptive nature. On a physics conference in 1920 he debated this with Einstein, 516 who retorted:

I want to say that what appears apperceptive to the human, and what does not, has changed.
The way of thinking about apperceptiveness is in a way a function of the time. I would say that physics is conceptual, not apperceptive. \({ }^{34}\) (Quoted in Wazeck 2009, pp. 183-184)

Lenard went even further than Bieberbach in his criticism of abstract mathematics. 521 In an article in 1936 he denounced in principle all mathematics from the last century 522 or so, claiming that it had lost contact with the real world: 523

Gradually, presumably from approximately Gauss' time on, and in connection with the 524 penetration of Jews into authoritative scientific positions, however, mathematics has in 525
continually increasing measure lost its feeling for natural research to the benefit of a
526

\footnotetext{
34"Ich möchte sagen, daß das, was der Mensch als anschaulich ansieht, und was nicht, gewechselt hat. Die Ansicht über Anschaulichkeit ist gewissermaßen eine Funktion der Zeit. Ich meine, die Physik ist begrifflich, nicht anschaulich."
}

\section*{Author's Proof}

\title{
development separated from the external world and playing itself out only in the heads of mathematicians, and so this science of the quantitative has become completely a humanities subject [Geisteswissenschaft]. Since the role of the quantitative in the world of the spirit is, however, only a subordinate one, so this mathematics is presumably to be designated as the most subordinate humanities subject... It is certainly not good to allow this humanities subject with all its newest branches any large space in the school curriculum. (Quoted in Segal 2003, p. 375) \\ 527 \\ 528 \\ Fortunately, the influence of Bieberbach, Lenard and their collaborators ended with 534 the defeat of the Nazi regime.
}

\subsection*{13.9 Conclusion}

The proper extent and form of mathematics in engineering education has not 537 ceased to be contentious. The issues debated are much the same. Proposals are 538 still being made to reduce the mathematical rigour, to focus more on applications from engineering subjects, and to let engineers rather than mathematicians teach the subject (Barry and Steele 1993; Cardella 2008; Flegg et al. 2012; Ahmad et al. 2001; Klingbeil et al. 2004). Hopefully, something can be learned from the history of the anti-mathematical movement of the 1890s. The old methods in calculus that were promoted by its adherents have since long been given up in mathematics education. This can be seen as an indication that Einstein was right in his answer to Lenard: What we consider to be intuitive changes with time. Demands for apperceptiveness, or immediate intuitive appeal, can be counterproductive since they tend to hamper progress in both fundamental and applied mathematics.

And we should not take it for granted that there is a conflict between applicability and rigour. The purpose of mathematical rigour is to make sure that one's conclusions are valid, and that is certainly a paramount concern in engineering.

\section*{References}

\footnotetext{
Ahmad, J., Appleby, J., \& Edwards, P. (2001). Engineering mathematics should be taught by engineers! In P. Egerton (Ed.), Proceedings of the 27th Undergraduate Mathematics Teaching Conference, (pp. 33-40). Birmingham, England, September 3-6, 2001. Downloaded from http:/ /files.eric.ed.gov/fulltext/ED482954.pdf.
Alder, K. (1999). French engineers become professionals; or, how meritocracy made knowledge objective. In W. Clark, J. Golinski, \& S. Schaffer (Eds.), The sciences in enlightened Europe (pp. 94-125). Chicago: University of Chicago Press.
}

\section*{Author's Proof}

13 The Rise and Fall of the Anti-Mathematical Movement

\title{
Anon (1895c). Beschlüsse der 36. Hauptversammlung. Zeitschrift des Vereines deutscher Inge- 566
} nieure 39:1095-1096.
Anon. (1895d). Bericht über die Ingenieurlaboratorien und die Gestaltung des Unterrichts and den 568 technischen Hochschulen. Zeitschrift des Vereines deutscher Ingenieure, 39, 1212-1216. 569
Arnold, et al. (1897). Der mathematische Unterricht an den technischen Hochschulen. Zeitschrift 570 für Arkitektur und Ingenieurwesen, 3, 609-611.
Bachrach, D. S. (2006). English artillery 1189-1307: The implications of terminology. English 572 Historical Review, 121(494), 1408-1430. 573
Barry, M. D. J., \& Steele, N. C. (1993). A core curriculum in mathematics for the European 574 engineer: An overview. International Journal of Mathematical Education in Science and 575 Technology, 24(2), 223-229.
Booth, C. C. (1993). Clinical research. In W. F. Bynum \& R. Porter (Eds.), Companion 577 encyclopedia of the history of medicine (pp. 205-229). London: Routledge. 578
Cardella, M. E. (2008). Which mathematics should we teach engineering students? An empirically 579 grounded case for a broad notion of mathematical thinking. Teaching Mathematics and its 580 Applications, 27(3), 150-159. 581
Ernst, A. (1894). Maschinenbaulaboratorien. Zeitschrift des Vereines deutscher Ingenieure, 38, 582 1351-1365.


Faulkner, W. (1994). Conceptualizing knowledge used in innovation: A second look at the science- 584 technology distinction and industrial innovation. Science, Technology and Human Values, 19, 585 425-458. 586
Feinstein, A. (1996). Two centuries of conflict-collaboration between medicine and mathematics. 587 Journal of Clinical Epidemiology, 49, 1339-1343. 588
Flegg, J., Mallet, D., \& Lupton, M. (2012). Students' perceptions of the relevance of mathematics 589 in engineering. International Journal of Mathematical Education in Science and Technology, 590 43(6), 717-732.
Gerhardt, R., Kurrer, K.-E., \& Pichler, G. (2003). The methods of graphical statics and their relation 592 to the structural form. In S. Huerta (Ed.), Proceedings of the First International Congress on 593 Construction History, Madrid, 20th-24th January 2003. Madrid. 594
Grattan-Guinness, I. (2005). The Ecole Polytechnique, 1794-1850: Differences over educational 595 purpose and teaching practice. American Mathematical Monthly, 112, 233-250. 596
Grayson, L. P. (1993). The making of an engineer: An illustrated history of engineering education 597 in the United States and Canada. New York: Wiley. 598
Hansson, S. O. (2014). Why and for what are clinical trials the gold standard? Scandinavian 599 Journal of Public Health, 42(Suppl 13), 41-48. 600
Harris, D. G. (2001). Fredrik Henrik af Chapman: The first naval architect and his work (revised 601 ed.). Stockholm: Literatim. 602
Hashagen, U. (1998). Mathematik und Technik im letzten Drittel des 19. Jahrhunderts - eine 603 bayerische Perspektive. In F. Naumann (Ed.), Carl Julius von Bach (1847-1931). Pionier- 604 Gestalter-Forscher-Lehrer-Visionär (pp. 169-184). Stuttgart: Konrad Wittwer. 605
Hempel, C. G. (1991). Hans Reichenbach remembered. Erkenntnis, 35, 5-10. 606
Hendricks, V. F., Jakobsen, A., \& Pedersen, S. A. (2000). Identification of matrices in science and 607 engineeering. Journal for General Philosophy of Science, 31, 277-305. 608
Hensel, S. (1989a). Die Auseinandersetzungen um die mathematische Ausbildung der Ingenieure 609 an den Technischen Hochschulen in Deutschland Ende des 19. Jahrhundert. In S. Hensel, K.-N. 610 Ihmig, \& M. Otte (Eds.), Mathematik und Technik im 19. Jahrhundert in Deutschland. Soziale 611 Auseinandersetzung und Philosophische Problematik (pp. 1-111 and 215-305). Göttingen: 612 Vandenhoeck \& Ruprecht. 613
Hensel, S. (1989b). Zu einigen Aspekten der Berufung von Mathematikern an die Technischen 614 Hochschulen Deutschlands im letzten Drittel des 19. Jahrhunderts. Annals of Science, 46(4), 615 387-416.


Holzmüller, G. (1896). Bücherschau. Zeitschrift des Vereines deutscher Ingenieure, 40, 108-109. 617
Jahnke, E. (1919). Die Mathematik als Grundlage der Technik. Dinglers polytechnisches Journal, 618 100(15), 161-165.

\section*{Author's Proof}

Kaiser, W. (1995). Die Entwicklung der Elektrotechnik in ihrer Wechselwirkung mit der Physik. 620 In L. Schäfer \& E. Ströker (Eds.), Naturauffassungen in Philosophie, Wissenschaft, Technik, 621 Band III; Aufklärung und späte Neuzeit (pp. 71-120). München: Verlag Karl Alber Freiburg. 622
Klein, F. (1896a). Die Anforderungen der Ingenieure und die Ausbildung der mathematischen 623 Lehramtskandidaten. Zeitschrift des Vereines deutscher Ingenieure, 40(1896), 987-990. 624
Klein, F. (1896b). The arithmetization of mathematics. Bulletin of the American Mathematical 625 Society, 2(8), 241-249 [Translation by Isabel Maddison of a speech held in German in 626 November 1895.]. 627
Klein, F. (1898). Universität und technische Hochschule. Zeitschrift des Vereines deutscher 628 Ingenieure, 42(1898), 1091-1094. 629
Klein, F. (1905). Bericht an die Breslauer Naturforscherversammlung über den Stand des 630 mathematischen und physikalischen Unterrichts an den höheren Schulen. Jahresbericht der 631 Deutschen Mathematiker-Vereinigung, 14, 33-47.
Klemm, F. (1966). Die Rolle der Mathematik in der Technik des 19. Jahrhunderts. Tech- 633 nikgeschichte, 33, 72-90.
Klingbeil, N. W., Mercer, R. E., Rattan, K. S., Raymer, M. L., \& Reynolds, D. B. (2004). 635 Rethinking engineering mathematics education: A model for increased retention, motivation 636 and success in engineering. In Proceedings of the 2004 American Society for Engineering 637 Education Annual Conference \& Exposition. 2004. Downloaded from https://peer.asee.org/ 638 13166. 639

Langins, J. (2004). Conserving the enlightenment: French military engineering from Vauban to the 640 revolution. Cambridge, MA: MIT Press. 641
Lawrence, S. (2003). History of descriptive geometry in England. In S. Huerta (Ed.), Proceedings 642 of the First International Congress on Construction History, Madrid, 20th-24th January 2003643 (pp. 1269-1281). Madrid: Instituto Juan de Herrera. 644
Manegold, K.-H. (1970). Universität, Technische Hochschule und Industrie: Ein Beitrag zur 645 Emanzipation der Technik im 19. Jahrhundert unter besonderer Berücksichtigung der Bestre- 646 bungen Felix Kleins. Berlin: Duncker \& Humblot. 647
Mehrtens, H. (1987). The social system of mathematics and national socialism: a survey. 648 Sociological Inquiry, 57(2), 159-182. 649
Mehrtens, H., \& Kingsbury, V. M. (1989). The Gleichschaltung of mathematical societies in Nazi 650 Germany. Mathematical Intelligencer, 11(3), 48-60. 651
Otte, M. (1989). Die Auseinandersetzungen zwischen Mathematik och Technik als Problem der 652 historischen Rolle und des Typus von Wissenschaft. In S. Hensel, K.-N. Ihmig, \& M. Otte 653 (Eds.), Mathematik und Technik im 19. Jahrhundert in Deutschland. Soziale Auseinanderset- 654 zung und Philosophische Problematik (pp. 149-214). Göttingen: Vandenhoeck \& Ruprecht. 655
Purkert, W. (1990). Infinitesimalrechnung für Ingenieure-Kontroversen im 19. Jahrhundert. In D. 656 D. Spalt (Ed.), Rechnen mit dem Unendlichen. Beiträge zur Entwicklung eines kontroversen 657 Gegenstandes (pp. 179-192). Basel: Birkhäuser. 658
Purkert, W., \& Hensel, S. (1986). Zur Rolle der Mathematik bei der Entwicklung der Technikwis- 659 senschaften. Dresdener Beiträge zur Geschichte der Technikwissenschaften, 11, 117-128. 660
Remmert, V. R. (2004). Die Deutsche Mathematiker-Vereinigung im 'Dritten Reich': Krisenjahre 661 und Konsolidierung. Mitteilungen der Deutschen Mathematiker-Vereinigung, 12(3), 159-177. 662
Riedler, A. (1894). Amerikanische technische Lehranstalten. Zeitschrift des Vereines deutscher 663 Ingenieure, 38, 405-409 507-514, 608-615, 629-636. 664
Riedler, A. (1895). Zur Frage der Ingenieurerziehung. Zeitschrift des Vereines deutscher Inge- 665 nieure, 39, 951-959. 666
Riedler, A. (1896a). Die Ziele der Technischen Hochschulen. Zeitschrift des Vereines deutscher 667 Ingenieure, 40, 301-309 337-346, 374-375. 668
Riedler, A. (1896b). Sehr geehrte Redaktion! Zeitschrift des Vereines deutscher Ingenieure, 40, 669 989-990. 670
Schappacher, N. (1998). The Nazi era: the Berlin way of politicizing mathematics. In H. Begehr, H. 671 Koch, J. Kramer, N. Schappacher, \& E.-J. Thiele (Eds.), Mathematics in Berlin (pp. 127-136). 672 Basel: Birkhäuser. 673

\section*{Author's Proof}

Scharlau, W. (1990). Mathematische Institute in Deutschland 1800-1945. Braunschweig: Friedr. 674 Vieweg \& Sohn.
Schubring, G. (1990). Zur strukturellen Entwicklung der Mathematik an den deutschen 676 Hochschulen 1800-1945. In W. Scharlau (Ed.), Mathematische Institute in Deutschland 1800-677 1945 (pp. 264-279). Braunschweig: Friedr. Vieweg \& Sohn 1990.
Segal, S. L. (1986). Mathematics and German politics: The national socialist experience. Historia 679 Mathematica, 13(2), 118-135. 680
Segal, S. L. (2003). Mathematicians under the Nazis. Princeton: Princeton University Press. 681
Siegmund-Schultze, R.. (2016) 'Mathematics Knows No Races': A political speech that David 682 Hilbert planned for the ICM in Bologna in 1928. Mathematical Intelligencer, 38(1):56-66. 683
Sommerfeld, A. (1903). Die naturwissenschaftligen Ergebnisse und die Ziele der modernen 684 technischen Mechanik. Physikalische Zeitschrift, 4, 773-782. 685
van Dalen, D. (2013). L.E.J. Brouwer - topologist, intuitionist, philosopher. London: Springer. 686
von Braunmühl, A., et al. (1897). Über den mathematischen Unterricht an den technischen 687 Hochschulen. Zeitschrift für Architektur und Ingenieurwesen, 2(22), 242-244. 688
von Lossow, P. (1899). Zur Frage der Ingenieurausbildung. Zeitschrift des Vereines deutscher 689 Ingenieure, 43, 355-361. 690
Wazeck, M. (2009). Einsteins Gegner. Die öffentliche Kontroverse um die Relativitätstheorie in 691 den 1920er Jahren. Frankfurt: Campus. 692
Wilkinson, L. (1993). Epidemiology. In W. Bynum \& R. Porter (Eds.), Companion encyclopaedia 693 of the history of medicine (Vol. 2, pp. 1262-1282). London: Routledge. 694

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{lll}
\hline Chapter Title & Reflections on the Empirical Applicability of Mathematics \\
\hline Copyright Year & 2018 & \\
\hline Copyright Holder & Springer International Publishing AG, part of Springer Nature \\
\hline Corresponding Author & Family Name & Sandqvist \\
& Particle & \\
& Given Name & Tor \\
& Suffix & \\
& Division & Department of Philosophy and History \\
& Organization & Royal Institute of Technology (KTH) \\
& Address & Stockholm, Sweden \\
& Email & tor.sandqvist@abe.kth.se \\
\hline
\end{tabular}
Abstract \begin{tabular}{l} 
This paper addresses the not infrequently voiced view that the immense \\
usefulness of mathematics in the physical sciences constitutes a \\
deep philosophical mystery, with potentially far-reaching implications \\
concerning the relationship between the inquiring mind and the material \\
world. It grants the broadly Humean point that the very possibility \\
of inductive projection from past to future, by whatever intellectual \\
means, must be considered a remarkable and perhaps inexplicable fact, \\
but calls into question the idea that the utility of mathematics in this \\
regard is especially baffling. While the aims pursued in pure mathematics \\
may differ radically from those of engineers and scientists, in their \\
development of concepts and theories mathematicians are nevertheless \\
beholden to the same fundamental standards of simplicity and similarity \\
that must govern any reasonable inductive projection; and this fact, it \\
is suggested, may go a considerable way towards explaining why many \\
mathematical constructs lend themselves to empirical application.
\end{tabular}

\section*{Author's Proof}

\title{
Chapter 14 \\ Reflections on the Empirical Applicability of Mathematics
}

\author{
Tor Sandqvist
}

\begin{abstract}
This paper addresses the not infrequently voiced view that the immense 5 usefulness of mathematics in the physical sciences constitutes a deep philosophical 6 mystery, with potentially far-reaching implications concerning the relationship be- 7 tween the inquiring mind and the material world. It grants the broadly Humean point 8 that the very possibility of inductive projection from past to future, by whatever 9 intellectual means, must be considered a remarkable and perhaps inexplicable fact, 10 but calls into question the idea that the utility of mathematics in this regard is 11 especially baffling. While the aims pursued in pure mathematics may differ radically 12 from those of engineers and scientists, in their development of concepts and theories 13 mathematicians are nevertheless beholden to the same fundamental standards of 14 simplicity and similarity that must govern any reasonable inductive projection; and 15 this fact, it is suggested, may go a considerable way towards explaining why many 16 mathematical constructs lend themselves to empirical application.
\end{abstract}

\subsection*{14.1 Introduction}

In his 1959 Richard Courant Lecture in Mathematical Sciences, later published 19 under the title "The Unreasonable Effectiveness of Mathematics in the Natural Sci- 20 ences" (Wigner 1960), the physicist Eugene Wigner gave voice to a deep perplexity 21 over the way in which mathematical concepts and theories, originally developed 22 in the pursuit of pure mathematics without any view to application, so often turn \({ }_{23}\) out to be perfectly suited to the purpose of describing and predicting physical 24 phenomena. This seeming ability of mathematicians to presage the development of 25 natural science is all the more baffling, Wigner argued, in light of the very different 26 priorities of scientists and mathematicians. Whereas the prime objective of the 27 former is to produce an accurate description of the physical world, following the data 2

\footnotetext{
T. Sandqvist ( \(\mathbb{\text { a }}\) )

Department of Philosophy and History, Royal Institute of Technology (KTH), Stockholm, Sweden
e-mail: tor.sandqvist@abe.kth.se
}

\section*{Author's Proof}
wherever they might lead, the activities of the latter are more akin to artistic creation. 29 To be sure, as in any intellectual endeavour, mathematicians are constrained in 30 their construction of definitions and proofs by the rigours of deductive logic; but 31 in deciding which tracts of logical space to explore - what objects and operations 32 to define, and what properties of these constructs to investigate - they are guided 33 to a far greater extent by their sense of beauty and their appetite for intellectual 34 adventure and competition than by any desire to understand or manipulate their 35 physical surroundings. How is it, then, that ideas and theories resulting from such 36 creative pursuits in the realm of the abstract end up as indispensable tools for 37 studying and negotiating the material world? "The miracle", Wigner writes, "of the 38 appropriateness of the language of mathematics for the formulation of the laws of 39 physics is a wonderful gift which we neither understand nor deserve." 40

Stronger language still is employed in Mark Steiner's book-length exploration 41 of the same topic, The Applicability of Mathematics as a Philosophical Problem 42 (Steiner 1998). Citing a multitude of instances, Steiner ventures to show that 43 eminent physicists in their mathematical development of theories have habitually 44 engaged in blatantly "anthropocentric" reasoning, hypothesizing that observable 45 reality will behave in accordance with certain equations that have been selected on 46 the basis of purely formal "analogy" with successful earlier theories, unsupported 47 by any substantively "physical" rationale. Such reasoning is anthropocentric, Steiner 48 maintains, in that, in its faltering progression from one mathematically formulated 49 hypothesis to another, it employs paths of association that owe their very existence 50 to various accidents of human intellectual history. The fact that theories of such 51 disreputable provenance have repeatedly wound up finding empirical vindication 52 amounts, in Steiner's words, to a "challenge to naturalism" (pp.75, 176) comparable 53 to making a "substantial physical discovery based upon the statistical distribution of 54 the letters of the Roman alphabet in Newton's Principia" (Steiner 1989, p. 454). 55

My ambition in this essay is to articulate a point of view where the empirical 56 applicability of mathematics does not present itself as a significant philosophical 57 riddle. My position is not so much that of a thinker who has grappled with a 58 problem and finally solved it as that of someone who fails to perceive any real 59 difficulty in the first place. If my (perhaps somewhat rambling) exposition can either 60 guide the reader towards a similarly untroubled place or assist her in giving the 61 problem a sufficiently sharp formulation to enable complacents like myself to see 62 it, I shall consider my effort well spent. The leading thought, insofar as there is 63 one, is that mathematicians and scientists are beholden to a common conceptual 64 standard of simplicity and similarity, and that this fact may go a considerable way 65 towards explaining why many mathematical constructs lend themselves to empirical 66 application.

My discussion will mainly be focussed on the role of mathematics in enabling 68 us to predict future events - such as an instrument reading, or the behaviour of a 69 machine - on the basis of past observation. The "problem of induction" is sometimes 70 construed as the general question of how to justify an inference from the premiss 71 that a certain regularity has appeared in all observations of a certain phenomenon 72 to date ("all ravens observed so far have been black") to the conclusion that this 73

\section*{Author's Proof}
regularity will always obtain ("all ravens are black"). Such categorical conclusions, 74 however, raise difficulties of a probabilistic nature (Chalmers 2013, p. 48) which are 75 not encountered in more cautious predictions ("most of the ravens to be observed in 76 the near future will be black"), and I will not be concerning myself with them here. 77 Nor will my discussion be predicated on a conception of mathematically formulated 78 laws of nature as providing in any sense perfect descriptions of physical reality. 79 The general form of inductive inference to be considered in the present paper is 80 something like the following: "in most cases observed thus far, events have played 81 out approximately according to such-and-such a pattern; therefore, most near-future 82 cases will conform approximately to this pattern as well." For pragmatic purposes, 83 including typical technological applications, inferences of this kind (with suitable 84 quantifications in place of "near", "most", and "approximately") are sufficient. 85 Restricted to such cases, Wigner's problem becomes: how is it that mathematics is 86 so effective in discovering and describing patterns capable of figuring in successful 87 inductive inferences of this form?

\subsection*{14.2 Induction Without Mathematics}

Empirical extrapolations from past to future are often made without any use of 90 mathematics. It will be useful to have, as a backdrop for the discussion of our main 91 issue, some (fictional) examples of such non-mathematical induction. 92

Scenario A. Astronomers have just discovered a curious fluctuation in the visual 93 light emanating from a certain star some 500 light-years away. About once every 94 hour, the star is seen to emit a pair of light pulses - brief increases in the intensity 95 of radiation in a narrow frequency band - approximately 1 min apart. The first pulse 96 is always either red or green, and the same is true of the second. At the time our 97 story begins, the astronomers find themselves in the short interval between two of 98 these pulses, their observations so far having turned out as follows. ' \(R\) ' signifies a 99 red pulse, ' \(G\) ' a green one, and a comma the 1-h interval between pulse pairs. 100
\[
\text { RR, GG, RR, GG, RR, RR, GG, RR, GG, RR, RR, RR, GG, RR, GG, GG, GG, RR, GG, } 101
\]
 GG, RR, RR, RR, RR, GG, RR, GG, GG, R

Now, should we expect the next pulse to be a red or a green one? Well - we may 103 not have much data to go on, nor any idea of what is causing the signals, but so 104 far, the two pulses in each pair have always been of the same colour, so the obvious 105 answer would seem to be that, since our last observation was one of a red pulse, in 106 all likelihood the next one is going to be red also. That is, on the basis of the fact 107 that all observations so far agree with the hypothesis stated below, we expect the 108 next one to do so as well.

H1. The pulses in any pair are always of the same colour.
Now, to be sure, H 1 is not the only rule consistent with the observations made to 111 date. The same is true, for instance, of the following: 112

\section*{Author's Proof}

\begin{abstract}
H2. The pulses are always of the same colour, except in such cases where the latest eight pairs form the pattern \(R R, R R, R R, R R, G G, R R, G G, G G\); on such occasions the pulses inthe immediately following pair take opposite colours.
\end{abstract}

On H2, the next pulse should be green, not red. Yet to expect the next observation 116 to agree with H 2 , solely on the basis that all the previous ones have done so, seems ridiculous. Our instinct is to expect future observations to conform to the simplest 117 patterns exhibited by past ones; in the circumstances envisaged, H2 is immediately 119 disqualified on the grounds of its needless and arbitrary complexity.

This, however, is not to say that, qua empirical hypothesis, H2 is somehow 12 beyond the pale come what may:

Scenario B. Several months have passed since our narrative from Scenario A left \({ }_{123}\) off. Our brave astronomers have continued to observe red-red and green-green pulse 124 pairs arriving from the star in a seemingly random mix. From time to time, however, the sequence is interrupted by a pair of pulses of opposite colours. These exceptions to the general trend do not turn up at random; in fact, they have occurred exactly in the way described by H2. Despite a frenzy of speculation, no one has yet come up with a good explanation for the findings. The last few signals have been recorded as follows.

In this scenario, expecting a green pulse, on the grounds that H 2 has held withoutgreater degree of confidence in such predictions).

Scenario C. As in Scenario B, most, but not all, pairs of pulses arrive in matching

At first, of course, the correlation is dismissed as a fluke of chance, and no reasonable person expects it to persist; but as one unmatched pair after another turns up in perfect conformity with H 3 , the statistical significance of the correspondence gradually reaches a level where the dismissive stance becomes untenable. When a neighbouring star is discovered to exhibit a similar correlation with Pride and150 Prejudice, a full-blown scientific crisis is precipitated. Is the observable universe just a giant mirror of human creativity, emitting cryptic reflections of its products centuries ahead of time? (Recall that the stars are 500 light-years away.) Or, conversely, is the artistic human mind somehow set up to foreshadow observations in the natural sciences? On either interpretation, the common, naturalistic view of

\footnotetext{
Man and his causal place in the Cosmos is shaken to its core.
}

\section*{Author's Proof}

In each of the three scenarios we are dealing with an unexplained phenomenon; but the degree of weirdness of the phenomenon increases steeply from the first to the third. In Scenario A there is a simple regularity standing out against a background of noise: although the colour of any given pair cannot be predicted in advance, the second pulse is always similar to the first. In Scenario B it is still the case that the second pulse in a pair can always be predicted given a record of the last few observations. To be sure, the rule for doing so has an unsatisfactory, seemingly arbitrary element to it - but there is no indication that the phenomenon is in any way purposely adapted to human culture or cognition. In Scenario C, by contrast,an all-out anthropocentric world-view seems to be the only possible response to the165 data obtained.

In this essay I wish, firstly, to make an observation, and secondly, to formulate a 168 conjecture.

Observation: The universe's propensity for exhibiting, amid its confusion of 170 particular detail, certain general regularities that enable human and non-human 171 animals to predict and shape the future on the basis of the past is indeed an as-172 yet unexplained, and perhaps ultimately inexplicable, matter of empirical fact. This 173 unoriginal, broadly Humean point is fleshed out a bit in Sect. 14.3.

Conjecture: The fact that some of these regularities can be discovered and 175 described with the aid of mathematics does not, in the final analysis, add any further mystery over and above the circumstance noted in the observation; contrary to 177 what is suggested in some of the literature on the "unreasonable effectiveness" of 178 mathematics, instances of empirically applied mathematics have more in common with Scenarios A and B than with Scenario C.

The conjecture - various aspects of which are developed in Sects. 14.4181 through 14.7 - is labelled as such, rather than as a thesis or a contention, in recognition of the limitations of my own scientific erudition. Perhaps scholars with greater insight into the practice and history of science and mathematics will be in a position to reject my suggestions as predicated on inexperience and misunderstanding. If so, the reader is cordially invited to set me straight. \({ }^{1}\)

\subsection*{14.3 The General Mystery of Inductive Projection}

Consider all the possible ways of filling a rectangular grid, such as a computer 188 screen, with black and white pixels. The vast majority of them exhibit no lawlike regularities at all; if we decide to select one by a random process such as flipping a 190 coin for every pixel, we will be astonished if any sort of coherent pattern appears - 191 for instance, if pixels whose vertical coordinates are multiples of 10 always turn out 192 black, or if a picture of a galloping horse emerges on the screen.

\footnotetext{
\({ }^{1}\) In the general thrust of its argument - acknowledging the existence of a problem concerning reasoning in general, while calling into question the idea of mathematical reasoning being particularly problematic - the present paper bears some resemblance to Sarukkai (2005).
}

\section*{Author's Proof}

To be sure, on the extremely rare occasion, such a pattern will actually appear by 194 chance. Consider a situation where half of the pixels - say, the top half - have been 195 filled in, and we are speculating about how the remaining half is going to turn out. 196 Suppose that in the filled-in part of the screen we find a flawless depiction of the top 197 half of a horse. The rational reaction would be to conclude that our coin-tossing is 198 not in fact random, but in some mysterious way under the control of a furtive horse- 199 painter, and that the most likely outcome for the lower half of the screen is a picture 200 of the bottom half of a horse. But under the hypothesis that, contrary to appearance, 201 the process is actually random, the likely continuation is still a lower half-screen 202 of featureless noise - for the crushing majority of all possible screen configurations 203 featuring a partial picture of a horse in their top halves still have nothing but noise 204 in their bottom halves. To put it in Bayesian terms: if our initial credence function 205 assigns equal probability to all possible configurations, then no possible top-half 206 configuration gives any basis for projection to the bottom half. 207

Turning now from the fictional computer screen to the material world in which 208 we find ourselves, there similarly seems to be no a priori reason why the latter should 209 necessarily have been structured in such a way as to exhibit any kind of projectible 210 regularity; why, as it were, does the universe contain anything but white noise? To 211 be sure, if it did not, we would not be here to ask about it, so in this sense our very 212 existence establishes that certain non-random patterns exist. But this observation 213 goes nowhere towards explaining why they do. 214

Nor, as Hume noted, it is obvious why the existence of regularities in empirical 215 events up to the present time should provide any sort of justification for expecting 216 such regularities to persist in the future. Why, among those possible complete world- 217 histories that begin in the way ours has, should we favour the infinitesimal minority 218 that continue in similar fashion, as opposed to all those featuring nothing but white 219 noise from this moment on? The response "Because that's what every sane person 220 just has to do", while sufficient from a pragmatic point of view, does little to alleviate 221 the philosophical puzzle.

222
So there are really two separate conundrums here: one of a broadly scien- 223 tific/explanatory character, one purely epistemological. The scientific problem is 224 how to explain the fact that the world thus far exhibits any discernible regularities 225 at all; the epistemological riddle is how to justify the inference from the observation 226 that the past exhibits regularities to the prediction that the future will, too. As far as I 227 am aware, our position today with respect to these questions is little better than that 228 of Hume in his day; to paraphrase Wigner, the possibility of empirical induction is 229 a gift we neither deserve nor understand. In this way, insofar as mathematics-aided 230 induction is a form of induction, its effectiveness is indeed "unreasonable". But 231 now let us turn to the question whether the usefulness of mathematics in inductive 232 projection adds any further mystery. My conjecture, to repeat, is that it does not. \({ }_{233}\)

\section*{Author's Proof}

\subsection*{14.4 Mathematics-Aided Induction}

In Sect. 14.2, in the course of our discussion of hypotheses H 1 and H 2 , we remarked that, in a situation such as Scenario A, where all of the available data are consistent with either one of the hypotheses, H 1 will be preferred to H 2 on account of its 237 greater simplicity. It is hardly a controversial claim that similar considerations will 238 also be in play in cases where the hypotheses under consideration are formulated 239 in mathematical terms. For a highly simplified example, consider the fictional case 240 of a team of researchers with a proto-Newtonian understanding of gravitation. They 241 know that two \(1-\mathrm{kg}\) objects will attract one another with a force that depends on the 242 distance between them, and are trying to determine the nature of the dependence. In all their observations to date, the force \(F\), as measured in newtons, has been related 244 to the distance \(r\), as measured in meters, in accordance with the equation
\[
\begin{equation*}
F=\left(6.674 \cdot 10^{-11}\right) / r^{2} \tag{14.1}
\end{equation*}
\]

While (let us suppose) no distance in the interval from 99 to 101 m has yet been 246 investigated, the 100 m case is the next one up for trial, and on the basis of their 247 observations so far our scientists are pretty confident that the result will be \((6.674 \cdot 248\) \(\left.10^{-11}\right) / 100^{2}=6.674 \cdot 10^{-15}\) newtons.

Now why is this? After all, all observations so far made have also been in 250 agreement with the rule
\[
F= \begin{cases}\left(6.674 \cdot 10^{-10}\right) / r^{2} & \text { if } 99<\mathrm{r}<101  \tag{14.2}\\ \left(6.674 \cdot 10^{-11}\right) / r^{2} & \text { otherwise }\end{cases}
\]
- would the scientists not be equally justified in concluding, on this basis, that the 252 force observed at a 100 m distance will be \(\left(6.674 \cdot 10^{-10}\right) / 100^{2}=6.674 \cdot 10^{-14}{ }_{253}\) newtons? The obvious answer, just as in Scenario A, is that (14.2) will and should 254 be rejected on the grounds of its gratuitous complexity. 255

Another alternative to (14.1) which might conceivably be entertained is this: 256
\[
\begin{equation*}
F=\left(6.674 \cdot 10^{-11}\right) / r^{1.999} \tag{14.3}
\end{equation*}
\]

Let us suppose that the range and precision of the instruments used by our scientists 257 are insufficient to distinguish between (14.1) and (14.3); the data obtained are no 258 less closely approximated by the latter than by the former. Nevertheless, it is \((14.1), 259\) not (14.3), that gets provisionally accepted - a decision that is subsequently borne 260 out by measurements conducted with more sensitive instruments.

Why should this be? After all, we do not expect natural constants to assume 262 integer values when expressed in antecedently adopted units of measurement - why 263 take a different attitude towards exponents figuring in formulae like (14.1) or (14.3)? 264 Isn't preferring an inverse-power-of-2 law of gravitation to an inverse-power-of- 265 1.999 law tantamount to numerological mysticism? And yet, this is essentially what 266

\section*{Author's Proof}
did happen historically: gravitational force was hypothesised to vary in inverse proportion to the square of distance well before instruments became sufficiently precise to pin down the value of the exponent with any great precision; and once 268 more refined measurements became possible, the hypothesis was corroborated. In this sense, in the oft-recurring phrase (cf. Wigner 1960, p. 9; Dyson 1964, p. 129; Feynman 1967, p. 171) we "got more out" of our mathematically formulated law 272 than was put into it by way of data. How is such a feat of prediction possible?

Again, while always acknowledging the general philosophical mystery of the 274 possibility of predicting the future of the basis of the past, I would argue that this is 275 just another case of preferring a simpler theory to a more complex one. Squaring a 276 number is simpler than raising it to the power of 1.999 because the former operation, 277 unlike the latter, can be reformulated in terms of ordinary multiplication, thus 278 obviating the need to bring in the exponentiation function at all. In fact, in order 279 to say that the force \(F\) is inversely proportional to the square of the distance \(r-280\) i.e., that \(F r^{2}\) is constant - we do not even need to multiply any physical quantities \({ }^{281}\) together at all, but can confine ourselves to multiplication of physical quantities 282 by positive integers, which is to say, to repeated addition of physical quantities: in 283 a straightforward adaptation of the Eudoxian analysis of proportionality, \(F_{1} r_{1}{ }^{2}=284\) \(F_{2} r_{2}{ }^{2}\) just in case it holds of all positive integers \(m\) and \(n\) that \(\left(F_{2} \cdot m\right) \cdot m<\left(F_{1} \cdot n\right) \cdot n{ }_{285}\) if and only if \(r_{1} \cdot m<r_{2} \cdot n\). (If this equivalence seems less than obvious, note \({ }_{286}\) that the identity obtains just in case \(\sqrt{ } F_{1} / \sqrt{ } F_{2}=r_{2} / r_{1}\), whereas the quantified 287 biconditional holds good just in case it is true of every rational number \(m / n\) that 288 \(m / n<\sqrt{ } F_{1} / \sqrt{ } F_{2}\) if and only if \(m / n<r_{2} / r_{1}\).)

Of course, even if we come to agree that an inverse-square law is in a non- 290 arbitrary sense simpler than an inverse-power-of-1.999 law, there still remains the 291 question why pursuit of simplicity should at all be conducive to the pursuit of 292 accurate prediction. But this is just the general problem of induction again. \({ }_{2} 93\)

\subsection*{14.5 On the Genesis of Mathematical Concepts}

It might be objected to the considerations of the previous section that they were 295 predicated on an already settled mathematical terminology. Yes - the objection 296 would go - given the basic concepts of mathematics, an inverse-square law of 297 gravitation may be the simplest way of fitting theory to data; but the deeper issue at 298 hand is why mathematical concepts should have any bearing on the physical world 299 in the first place. How is it that constructs of mathematics, even when developed for 300 purposes other than describing the empirical world, turn out, when combined with 301 simplicity considerations, to be so useful for that purpose?

In large part, I would suggest, the answer lies in the fact that the development of 303 mathematics always takes place under the influence of simplicity considerations 304 similar to those guiding human concept-formation and inductive projection in 305 general.

\section*{Author's Proof}

Consider again Eqs. (14.1) and (14.2). With respect to these rival hypotheses, our 307 envisaged objector might point out that, while (14.1) is simpler than (14.2) when 308 formulated in terms of the conventional operation of division, it is easy to find 309 mathematical functions with respect to which the situation is reversed. For instance, 310 define the binary function \(\ddagger\) as follows:
\[
x \neq y= \begin{cases}10 x / y & \text { if } 99^{2}<\mathrm{y}<100^{2} \\ x / y & \text { otherwise }\end{cases}
\]

Then (14.2) - the law we dismissed as being gratuitously complex - may be 312 rewritten
\[
F=\left(6.674 \cdot 10^{-11}\right) \ddagger r^{2}
\]
whereas (14.1) - the simple and sensible one - comes out as
\[
F= \begin{cases}\left(6.674 \cdot 10^{-12}\right) \ddagger r^{2} & \text { if } 99<\mathrm{r}<101, \\ \left(6.674 \cdot 10^{-11}\right) \ddagger r^{2} & \text { otherwise } .\end{cases}
\]

In this sense, our opponent rightly observes, simplicity is relative to a terminology, 315 and if I wish to maintain that the empirical hypothesis equivalently expressed in 316 (14.1) and \(\left(14.1^{\prime}\right)\) is in any real sense simpler than the one given by either one of 317 (14.2) and (14.2'), I need to justify the choice of carrying out the comparison in 318 terms of division rather than \(\ddagger\).

As any reader who is familiar with Nelson Goodman's (1955) classic discussion 320 of intuitively reasonable versus absurdly gerrymandered concepts will recognize, \({ }^{321}\) for the purpose of discrediting \(\ddagger\) it will not be sufficient to point to its manifestly 322 contrived definition in terms of division - for the converse characterization of \({ }^{323}\) division in terms of \(\ddagger\) is no more attractive:
\[
x / y= \begin{cases}(x \ddagger 10) \ddagger y & \text { if } 99^{2}<\mathrm{y}<101^{2} \\ x \ddagger y & \text { otherwise } .\end{cases}
\]

Rather, the case for division has to be based on the clean-cut and uniform way in
\[
\begin{equation*}
a \cdot k=\overbrace{a+\cdots+a}^{k}, \tag{14.4}
\end{equation*}
\]

\section*{Author's Proof}
and multiplication of arbitrary reals is just the linear (i.e., literally, the most 330 straightforward) extension of this. Precisely put: given any real number \(a\), the one- 331 place function mapping each real \(x\) to \(a x\) is the only continuous function \(f\) such that \({ }_{332}\) (i) \(f(k)=a \cdot k\), as specified by (14.4), for every positive integer \(k\), and (ii) \(f\) maps 333 equal intervals to equal intervals in the sense that \(f\left(y_{1}\right)-f\left(x_{1}\right)=f\left(y_{2}\right)-f\left(x_{2}\right)\) 334 whenever \(y_{1}-x_{1}=y_{2}-x_{2}\). \({ }_{335}\)
(To see that this is so, consider any continuous \(f\) satisfying (i) and (ii). Let \(n / m{ }^{336}\) be any rational number, and \(\mu\) the ex hypothesi constant amount by which \(f(x) 337\) increases when \(x\) increases by \(1 / m . f(0)=0\) since, by (i) and (ii), \(a-f(0)={ }_{338}\) \(f(1)-f(0)=f(2)-f(1)=(a+a)-a=a\). For any integer \(l\), therefore, \({ }^{3} 39\) \(f(l / m)=l \mu\); in particular \(a=f(1)=m \mu\) and so \(f(n / m)=n \mu=a n / m\). Thus 340 \(f(x)=a x\) for every rational \(x\); by continuity the same must hold good for every \({ }^{341}\) real \(x\) whatever.)

In this way, the twin concepts of multiplication and division make for a natural 343 continuation of the theory of addition and its inverse, subtraction; one would be 344 hard put to portray \(\ddagger\) in a similar light. As our hypothetical critic would have it, the 345 apparent perverseness of hypothesis (14.2) is but an artifact of an arbitrary decision 346 to formulate its content in terms of the traditional operation of division. What he fails 347 to appreciate is that, given the conceptual context of addition and its inverse, that 348 decision is supported by the same sort of consideration as informed our assessment 349 of the relative merits of (14.2) and (14.1) in the first place; the absurdity of (14.2) 350 and that of \(\ddagger\) are two faces of the same coin.

As for addition itself, its utility in any empirical context only requires that 352 individual quantities remain unaltered when aggregated: after emptying a sack of 353 800 grains of wheat into one containing 1000, we find ourselves in the possession 354 of \(1000+800\) grains because none has been destroyed or created in the process; 355 adjoining a \(1.5-\mathrm{m}\) plank to a \(2.1-\mathrm{m}\) one will create a body measuring \(2.1+1.5356\) meters because the operation does not change the lengths of the individual planks; 357 etc. Of course, a philosopher of Heraclitan inclination may find cause for wonder 358 in the fact that this sort of constancy from one moment to the next ever occurs in 359 the physical world - let alone with sufficient regularity to allow for the confident 360 prediction of future events - but this only brings us back to the considerations of 36 Sect. 14.3; no additional mystery is incurred by bringing a smattering of arithmetic 362 into the picture.

Thus far, our discussion has confined itself to the most elementary concepts 364 of mathematical analysis. But considerations of overall simplicity of theory are 365 very much in operation at more advanced levels as well. An instructive case in 366 point (and one accorded importance by both Wigner and Steiner) is the theory 367 of complex numbers - i.e., the theory that results from positing, in addition to 368 the real numbers, a number \(i\) such that \(i^{2}=-1\), while retaining the usual laws 369 (commutative, distributive, etc.) of addition and multiplication. As suggested by the 370 term 'complex', the resulting field of numbers forms a more complicated structure 371 than that of the reals, topologically isomorphic to a plane rather than a line. But, as 372 so often happens in mathematics, the stipulative incorporation of a richer domain of 373 objects brings about a considerable streamlining on the level of theory. Whereas, on 374

\section*{Author's Proof}
the real line, for every non-negative number \(a\) there exists an \(x\) such that \(x^{2}=a\) (i.e., a root to the polynomial \(x^{2}-a\) ), complex numbers allow us to drop the \({ }_{376}\) restriction and simply state that for every \(a\) whatsoever there exists such an \(x\). More 377 generally - the so-called "fundamental theorem of algebra" - every polynomial 378 in one variable has at least one root. What is more, even when the coefficients 379 and roots of such a polynomial are all real, the introduction of complex numbers 380 often makes it possible to specify the roots in algebraically uniform ways where 381 otherwise no such characterization exists - indeed this is how, in the sixteenth 382 century, mathematicians' interest in complex numbers was originally piqued in \({ }_{383}\) the study of cubic equations. In the realm of transcendental functions, too, the 384 introduction of complex numbers brings increased uniformity: for instance, rather 385 than constructing exponential and trigonometric functions separately from scratch, 386 we can now define the latter in terms of the former by identifying the sine and cosine 387 of \(x\) with \(\left(e^{i x}-e^{-i x}\right) / 2 i\) and \(\left(e^{i x}+e^{-i x}\right) / 2\), respectively. And so on. 388

This picture of the development of mathematical concepts is not altogether unlike 389 that given by Wigner. On his account, 390
mathematics is the science of skillful operations with concepts and rules invented for just 391
this purpose. [...] Most more advanced mathematical concepts [...] were so devised that 392
they are apt subjects on which the mathematician can demonstrate his ingenuity and sense 393
of formal beauty. [...] [Mathematical concepts] are defined with a view of permitting 394
ingenious operations which appeal to our aesthetic sense both as operations and also in 395
their results of great generality and simplicity. [...] 396
Certainly, nothing in our experience suggests the introduction of [complex numbers]. 397
Indeed, if a mathematician is asked to justify his interest in complex numbers, he will point, 398 with some indignation, to the many beautiful theorems in the theory of equations, of power 399 series, and of analytic functions in general, which owe their origin to the introduction of 400 complex numbers.

In addition to describing (as I have just done) qualities such as generality and 402 simplicity as desiderata of mathematical constructs, Wigner stresses the role of 403 these qualities as criteria of aesthetic beauty, picturing mathematicians as artists 404 in creative pursuit of these values, untroubled by concerns of empirical adequacy. 405 While I have no quarrel with this picture of the psychological forces driving 406 mathematicians, the crucial observation for our present philosophical concerns is 407 that simplicity and generality are precisely the core concepts at work in conventional 408 accounts of empirical induction. Take the simplest theory consistent with your data; 409 make the generalizing assumption that this theory applies equally well to cases yet 410 to be tried; there is your prediction for the future. Now if the original impetus for the 411 theory of real numbers, addition, and multiplication comes from pragmatic concerns 412 with the natural world; if empirical induction is the practice of extrapolating from 413 experience in the most straightforward and uniform way possible; and if the complex 414 plane is the most straightforward and uniform way of generalizing and rounding out 415 the theory of real numbers - then is it really a great cause for wonder that complex 416 numbers have found empirical application?

Once again I hasten to add that I do not pretend to offer any solution to the 418 Humean problem of why human standards of simplicity and uniformity should 419

\section*{Author's Proof}
prove conducive to successful prediction in the first place. All I am suggesting \({ }^{420}\) is that, insofar as these same standards are at work both in the development of 421 mathematical theory and in the scientific effort to understand the natural world, this 422 fact goes a good way towards explaining why the two exhibit a considerable degree 423 of confluence.

\subsection*{14.6 On the Genesis of Empirical Hypotheses}

Thus far in our discussion of mathematically formulated physical theories, we have 426 been considering the fact of their empirical adequacy on an abstract level, without 427 any view to the question how such theories arise in the minds of working scientists. 428 While it is tempting to dismiss questions of the latter sort as matters of psychology 429 with little import for deeper philosophical issues, some authors have held that, on \({ }_{430}\) the contrary, this is where the most theoretically significant cases of "unreasonably \({ }_{43}\) effective" mathematics are to be found.

Steiner (1989) identifies a number of patterns of reasoning whereby scientists 433 have arrived at empirical hypotheses, subsequently experimentally verified, through 434 a process of what he characterizes as purely mathematical "analogy", as opposed to 435 any consideration of (what the scientist takes to be) real physical happenings. For 436 instance:

Equation \(E\) has been derived under assumptions \(A\). The equation has solutions for which \(A \quad 438\) are no longer valid; nevertheless, one looks for these solutions in nature, just because they 439 are solutions of the same equation. (pp. 456-57.)

As an example of this pattern of discovery, Steiner - and, following him, Mark 44 Colyvan (2001) - discusses the process through which Maxwell first arrived at his 442 celebrated equations of electromagnetism, now a staple of physical theory. Here, 443 somewhat abbreviated, is Colyvan's account (pp. 267-68; emphases in original):

Maxwell found that the accepted laws for electromagnetic phenomena prior to about 445 1864, namely Gauss's law for electricity, Gauss's law for magnetism, Faraday's law, and Ampère's law, jointly contravened the conservation of electric charge. Maxwell thus modified Ampère's law to include a displacement current, which was not an electric current in the usual sense [...], but a rate of change [...] of an electric field. This modification was made on the basis of formal mathematical analogy [with Newton's theory of gravitation, where energy and momentum are conserved], not on the basis of empirical evidence. [...]

The interesting part of this story for the purposes of the present discussion [...] is that Maxwell's equations were formulated on the assumption that the charges in question moved with a constant velocity, and yet such was Maxwell's faith in the equations, he assumed that they would hold for any arbitrary system of electric fields, currents, and magnetic fields. In particular, he assumed that they would hold for charges with accelerated motion and for systems with zero conduction current.

And, Colyvan goes on to recount, this latter assumption allowed Maxwell to predict 458 the existence of electromagnetic radiation - a prediction which was later confirmed 459 experimentally.

\section*{Author's Proof}

Thus, we have here a case of a scientist who, pursuing mathematically formulated 461 criteria of well-formedness of theory, was able to construct a new hypothesis which 462 then turned out to be applicable, and empirically supported, under a wider range 463 of conditions than those for which it was originally developed - and this without 464 guidance (in the theory-development stage) from any empirical data gathered under 465 these wider conditions, or from any well-developed idea of the nature of the 466 underlying physical forces. Mathematics itself, as it were, seems to have done the 467 better part of the work.

But, while intellectual feats like these are without question admirable, it is not 469 clear to me that, in the last analysis, they are really of a different kind from the more 470 humdrum projections from experience discussed in Sect.14.4. Maxwell sought 471 a modification of Ampère's law which would agree with the existing empirical 472 data and yet allow for the conservation of electric charge. Having found it, he 473 hypothesised that the new equation would hold up in a wider range of circumstances 474 than those for which data were available - and it did. How does this story differ from 475 that in Sect. 14.4, where our scientists, upon noticing that Eq.(14.1) had held in a 476 range of cases not including that of 100 m , hypothesised that it would hold up in the 477 100 m case as well? To be sure, there is a difference of degree - in the Maxwell story, 478 the new cases are more radically dissimilar to the old ones than in our little fiction. 479 But is the difference of such a nature as to raise any new philosophical puzzle? I do 480 not see how. In either of the episodes, it is a matter of inferring, from the observation 481 that a certain regularity has held in a limited class of situations, that it will hold in a 482 greater class.

Perhaps Steiner and Colyvan will wish to call attention to the fact that Maxwell, 484 in order to get things to work out properly, needed to postulate the existence of a 485 new physical process (the displacement current mentioned in the block quote above) 486 for which there was no empirical evidence at the time, thus venturing out in pursuit 487 of purely mathematical cohesion without anchoring his reasoning to any previously 488 known, robustly physical bedrock. But a similar lack of anchoring was assumed 489 to obtain in Scenario B, and may likewise be supposed to afflict the physicists 490 in Sect. 14.4 without detracting from the plausibility of that story. To notice a 491 regularity, be it of a combinatorial or an arithmetical nature, and rationally project 492 it from observed cases to unobserved ones, does not require any theory as to the 493 underlying cause of the regularity. Ask Newton: Hypotheses non fingo. 494

What about the fact that the original impetus for Maxwell's work came from his 495 feeling that, just as Newtonian mechanics implies the conservation of energy and 496 momentum, so the theory of electromagnetism ought to conserve electric charge - 497 what Colyvan classifies as a case of reasoning by "mathematical analogy"? Well, 498 what of it? Yes, it was a good hunch, and one that could not have been spelled 499 out in a precise way without employing mathematical concepts. Now to Steiner's 500 and Colyvan's way of thinking, if I have understood them correctly, the latter fact 501 suggests that conservation of a quantity, be it momentum or charge, should be 502 classified as a property of the "formalism" employed in the presentation of the 503 theory - a property, that is, of roughly the same dignity as, say, the number of 504 symbols figuring in an equation - rather than as a substantive feature of the theory 505

\section*{Author's Proof}
itself. On such a view, no doubt, the fact that Maxwell struck gold must appear as 506 a crazy fluke. But surely, to conceive of things this way is to draw the line between 507 notation and content in the wrong place. Mathematics is a body of theory, not a 508 notational toolkit. To say that two forces are both inversely proportional to distance 509 squared is not to say that physicists have elected to use similar symbols when writing 510 about them - it is to say that the forces have a structural property in common. 511 Likewise when two phenomena are both seen to obey conservation laws - it is a 512 more abstract kind of similarity, but surely the difference is one of degree, not kind. 513

As always, we must of course acknowledge the possibility-in-principle of 514 standards of similarity so unlike our own that, for instance, a black cat will be seen 515 to have more in common with a white bicycle (they are both black-if-and-only- 516 if-feline) than with a white cat ("Both are cats?"), or a black bicycle. ("Both are 517 black? What strange and arbitrary categories your thinking employs!") From such a 518 perspective, to be sure, the structural similarities cited in the previous paragraph may 519 count for nothing - but now we are back to the quandaries of Hume and Goodman 520 once again. Given the classificational tendencies inherent to basic human sanity, 521 should commonalities of mathematical structure be considered as being on a level 522 with mere notational similarities? I cannot see any reason for thinking that they 523 should.

The story of Maxwell's equations is but one of the multifarious historical exam- 525 ples that have been cited by those who consider the applicability of mathematics 526 a philosophical enigma (and, in fairness to Steiner, it is not the one to which he 527 attaches the greatest significance). I could not possibly discuss them all, but must 528 leave it to the reader to decide to what extent other potentially perplexing instances 529 of mathematics-aided theory formulation can be accounted for in similar ways. For 530 my part, I remain unconvinced that we are faced with a real problem.

\subsection*{14.7 Mathematicity as a Matter of Perspective}

My principal aim in this paper has been to argue that cases of applicable mathemat-Still, though, in many cases one is likely to feel that the mathematical laws inquestion have a rather arbitrary character to them - why this specific constellationto take the paper's main argument one tentative step further by suggesting that such

The point can be brought out by means of yet another fictional example, for 544 the presentation of which we shall first need to provide a bit of mathematical

\section*{Author's Proof}

14 Reflections on the Empirical Applicability of Mathematics
background. The functions of hyperbolic sine and cosine are defined as follows.
\[
\sinh \theta=\frac{e^{\theta}-e^{-\theta}}{2}, \quad \quad \cosh \theta=\frac{e^{\theta}+e^{-\theta}}{2}
\]

The hyperbolic functions obey laws closely resembling those governing the ordinary trigonometric functions. For instance, whereas, for any \(\phi, \psi\), and \(\theta\),
\[
\begin{aligned}
\cos (\phi+\psi) & =\cos \phi \cos \psi-\sin \phi \sin \psi \\
\sin (\phi+\psi) & =\sin \phi \cos \psi+\cos \phi \sin \psi
\end{aligned}
\]
and
\[
\cos ^{2} \theta+\sin ^{2} \theta=1
\]
for the hyperbolic functions (as is easily verified by reference to their definitions) 549 we have
\[
\begin{aligned}
\cosh (\phi+\psi) & =\cosh \phi \cosh \psi+\sinh \phi \sinh \psi \\
\sinh (\phi+\psi) & =\sinh \phi \cosh \psi+\cosh \phi \sinh \psi
\end{aligned}
\]
and
\[
\cosh ^{2} \theta-\sinh ^{2} \theta=1
\]

The analogy goes further, and is one of the reasons the functions have attracted the 552 attention of mathematicians since their introduction in the eighteenth century. 553

Now imagine the following counterfactual scenario. Experimental physicists, 554 as yet unaware of the principles of special relativity, are conducting empirical 555 investigations into the addition of speeds in a common direction of movement. That \({ }_{556}\) is, they are studying situations in which an object \(B\) is moving with speed \(u\) relative \({ }_{557}\) to an object \(A\), while another object \(C\) is moving, in the same direction, with speed 558 \(v\) relative to \(B\). (By the relative speed of \(Y\) and \(X\) we mean the speed of \(Y\) as 559 measured by equipment that is stationary with respect to \(X\), or vice versa; as a 560 matter of empirical fact, the result will be the same either way.) Now let \(w\) be the 561 speed of \(C\) relative to \(A\). Naturally, our relativistically innocent scientists expect to 562 observe that
\[
w=u+v
\]

To their considerable surprise, however, the relative speeds are instead consistently 565 found to obey the law
\[
\begin{equation*}
\theta_{w}=\theta_{u}+\theta_{v} \tag{14.5}
\end{equation*}
\]

\section*{Author's Proof}
where \(\theta_{u}, \theta_{v}\), and \(\theta_{w}\) are the numbers satisfying the equations
\[
\begin{aligned}
u \cosh \theta_{u} & =c \sinh \theta_{u}, \\
v \cosh \theta_{v} & =c \sinh \theta_{v}, \\
w \cosh \theta_{w} & =c \sinh \theta_{w},
\end{aligned}
\]
\(c\) being the speed of light in a vacuum.
One can easily imagine the experimentalists scratching their heads over this 569 seemingly arbitrary law. Of all possible moderately complicated functions of two 570 variables, why should \(w\) be determined by \(u\) and \(v\) in precisely the way described 571 by (14.5)? Why not equally well some entirely different monotonically increasing 572 function? On the face of it, the situation looks similar to our Scenario B. 573

But now a clever theoretician points out that Eq. (14.5) can in fact be derived 574 in a natural way from one simple (if counter-intuitive) postulate: that \(c\), the speed 575 of light, must be the same in all inertial frames of reference. The reasoning will be 576 familiar to any reader who (unlike our fictional scientists) has studied basic relativity 577 theory. Nevertheless, in order to get a firmer grip on the sense of "derivation" in 578 play here - physicists have been known to deploy the term rather more freely than a 579 mathematician typically would - let us recapitulate the argument. 580

Consider two frames of reference \(\mathfrak{A}\) and \(\mathfrak{B}\), stationary with respect to the above- 581 mentioned objects \(A\) and \(B\), respectively; for an unspecified event \(e\), let \(x\) be its 582 spatial coordinate in \(\mathfrak{A}\) along the axis parallel to the movement of \(B\), and \(t\) the 583 time at which \(e\) occurs in \(\mathfrak{A}\). Similarly, let \(x^{\prime}\) and \(t^{\prime}\) be \(e^{\prime}\) s spatial and temporal 584 coordinates in \(\mathfrak{B}, x^{\prime}\) increasing in the same direction as \(x\). For simplicity, let the 585 origins of the two coordinate systems coincide, so that when \(x=0\) and \(t=0\), then 586 likewise \(x^{\prime}=0\) and \(t^{\prime}=0\). (Such coincidence can always be arranged by picking 587 an arbitrary event and using it as origin of both frames.) We now turn our attention 588 to the mathematical relation between \(x\) and \(t\), on the one hand, and \(x^{\prime}\) and \(t^{\prime}\), on 589 the other. In particular, how is the spatial coordinate in the one system determined 590 by the spatial and temporal coordinates in the other; in other words, what are the 591 functions \(f\) and \(f^{\prime}\) such that
\[
x=f\left(x^{\prime}, t^{\prime}\right) \quad \text { and } \quad x^{\prime}=f^{\prime}(x, t) ?
\]

Some constraints on \(f\) and \(f^{\prime}\) may be laid down at once. Firstly, for reasons 593 of symmetry, we must expect \(f\) and \(f^{\prime}\) to be related in such a way that, for any 594 numbers \(\zeta, \xi\) and \(\tau\), if \(\zeta=f^{\prime}(\xi, \tau)\) then \(-\zeta=f(-\xi, \tau)\), meaning that
\[
\begin{equation*}
-x^{\prime}=f(-x, t) \tag{14.6}
\end{equation*}
\]

For - if a bit of hand-waving be allowed \(-\mathfrak{A}\) as seen from \(\mathfrak{B}\) is exactly like \(\mathfrak{B}\) as 596 seen from \(\mathfrak{A}\) except that whereas \(\mathfrak{B}\) is moving through \(\mathfrak{A}\) in a positive direction, 597 the direction of movement of \(\mathfrak{A}\) through \(\mathfrak{B}\) is negative; and this in turn is exactly 598 like having the direction of movement the same but the signs of spatial coordinates 599 flipped.

\section*{Author's Proof}

Secondly, lest the character of the transformation differ arbitrarily from one 601 time and place to another, we should expect equal intervals to transform into equal 602 intervals. That is to say, if \(x_{1}^{\prime}-x_{2}^{\prime}=x_{3}^{\prime}-x_{4}^{\prime}\) and \(t_{1}^{\prime}-t_{2}^{\prime}=t_{3}^{\prime}-t_{4}^{\prime}\), it ought to hold \({ }_{603}\) that \(x_{1}-x_{2}=x_{3}-x_{4}\) and \(t_{1}-t_{2}=t_{3}-t_{4}\) (where \(x_{i}\) and \(t_{i}\) are the \(\mathfrak{A}\)-coordinates 604 of an event with \(\mathfrak{B}\)-coordinates \(x_{i}^{\prime}\) and \(t_{i}^{\prime}\) ). But this can only hold in general if the 605 function \(f\) is linear; in other words, there must exist numbers \(\gamma\) and \(\delta\) such that 606 always \(f(\xi, \tau)=\gamma \xi+\delta \tau\), i.e.
\[
\begin{equation*}
x=\gamma x^{\prime}+\delta t^{\prime} \tag{14.7}
\end{equation*}
\]
and, by (14.6), \(-x^{\prime}=\gamma(-x)+\delta t\), i.e. 608
\[
\begin{equation*}
x^{\prime}=\gamma x-\delta t \tag{14.8}
\end{equation*}
\]

Thirdly, the origin of \(\mathfrak{B}\), by definition always located at position 0 on the \(x^{\prime}{ }_{609}\) axis, will be moving trough \(\mathfrak{A}\) in accordance with the equation \(x=u t\), so that 610 \(0=x^{\prime}=\gamma x-\delta t=\gamma u t-\delta t\), which is to say that \(\delta=\gamma u\), allowing us to 611 recast (14.7) and (14.8) as
\[
\begin{equation*}
x=\gamma\left(x^{\prime}+u t^{\prime}\right), \quad \quad x^{\prime}=\gamma(x-u t) \tag{14.9}
\end{equation*}
\]

Having thus established the general form to be expected of \(f\) and \(f^{\prime}\), in order to 613 pin down \(\gamma\) we now invoke the postulate of the invariance of \(c\). By this postulate, 614 a light pulse emitted at the common origin of \(\mathfrak{A}\) and \(\mathfrak{B}\) will travel in the positive 615 direction according to the equations
\[
\begin{equation*}
x=c t, \quad x^{\prime}=c t^{\prime} \tag{14.10}
\end{equation*}
\]

From (14.9) and (14.10) it follows by simple algebraic reasoning - the details of 617 which need not concern us here - that either
\[
\begin{equation*}
\gamma=\frac{1}{\sqrt{1-u^{2} / c^{2}}} \tag{14.11}
\end{equation*}
\]
or
\[
\begin{equation*}
\gamma=-\frac{1}{\sqrt{1-u^{2} / c^{2}}} \tag{14.12}
\end{equation*}
\]

While, from a purely logical point of view, one might perhaps allow that (14.11) 620 should hold in some cases, (14.12) in others, the simplest, most uniform way 621 of having the disjunction obtain universally is for one of the disjuncts to obtain 622 universally, so as to render \(\gamma\) a continuous function of \(u\). Universal validity 623 of (14.12), however, would entail, in the limiting case where \(u=0\), that \(\gamma=-1624\) and consequently \(x=-x^{\prime}\), which is impossible since in this situation frames \(\mathfrak{A}\) and 625 \(\mathfrak{B}\) are one and the same. So (14.11) it must be.

\section*{Author's Proof}

Thus we arrive at the conclusion that time and place in frame \(\mathfrak{B}\), and therewith 627 speed relative to \(B\), are related to time and place in frame \(\mathfrak{A}\), and therewith speed 628 relative to \(A\), in the way indicated by Eqs. (14.9) and (14.11). And from these 629 relations, as it turns out, the puzzling velocity-addition Eq. (14.5) follows on purely 630 mathematical grounds. Again, the intra-mathematical specifics are immaterial to 631 our philosophical concerns; readers wishing to delve into the details may consult a 632 suitable textbook exposition, for instance sections 12.5 and 14.3 of Shankar (1989). 633

At this point, the reader might not unreasonably take issue with our description 634 of the foregoing line of reasoning as a derivation of (14.5) from nothing but the 635 postulate that the speed of light be the same in all inertial frames of reference. In 636 addition to this premiss, it will be objected, in several instances we appealed to 637 extra-mathematical considerations of simplicity, symmetry, etc. Objection granted; 638 but the point of the example is that none of these additional premisses is nearly 639 as mathematically involved as (14.5) itself, and our invocation of them does 640 nothing to undermine the following lesson: an empirical regularity which initially 641 gives a mysterious impression of having been instituted for the mathematical 642 gratification of experimental scientists may on closer inspection turn out be a 643 necessary consequence of a set of mathematically much more pedestrian principles. 644 What initially (in our fictional chronology) looked like a Scenario B-like situation 645 has turned out, when regarded from the right point of view, to be more closely 646 comparable to Scenario A.

Here, then, is my suggestion. Perhaps it holds as a general rule that, whenever 648 scientists observe that the material world exhibits a lawlike regularity, describable in 649 mathematical terms but seemingly arbitrary in its specifics, in fact the mathematical 650 character of the law is an effect of the specific perspective from which they are 651 observing it. From a different conceptual vantage point it may be possible to give the 652 phenomena in question an equally full and precise description without employing, 653 on the level of basic postulates, any sophisticated mathematical functions whatso- 654 ever. 655
I am not suggesting that finding such a vantage point will typically be an easy 656 task. On the contrary, it may well be that in many cases the mathematics-free point 657 of view requires fundamental conceptual categories so far removed from the natural 658 workings of human cognition that we will never be able to attain it, and from 659 whatever perspective we are capable of looking at them, the phenomena will take 660 on a mathematically artful aspect. In this regard, the picture I am sketching differs 661 radically from the above-discussed example from relativistic kinematics, in which 662 the only real challenge on a conceptual level is to think of temporal intervals as 663 relative to a frame of reference. But what I am suggesting is that the difference 664 between the relativistic case, where a less mathematically involved point of view is 665 readily available, and the legions of cases where no such alternative is known, may 666 be one of degree rather than kind.

The suggestion is a vague one, and is not being advanced in a programmatic 668 spirit. Certainly I do not have any splendid mathematics-free reformulations of 669 physical theories on offer, nor am I admonishing physicists to do a better job of 670 coming up with them. What I am attempting is perhaps best described as a shift 671

\section*{Author's Proof}
of the burden of proof with regard to the philosophical issue of the empirical 672 applicability of mathematics. Granted, our best physical theories make heavy 673 use of mathematics, not only in teasing out the testable consequences of their 674 fundamental postulates, but also in the formulations of these postulates themselves. 675 But, pending any argument that the mathematical character of physical theories 676 is an essential feature of the world they are describing, rather than a (possibly 677 humanly unavoidable) artifact of the conceptual lens through which that world is 678 being studied, perhaps a bit of caution is in order when pronouncing on the wider 679 philosophical implications of applied mathematics.

\section*{References}
\begin{tabular}{ll} 
Chalmers, A. (2013). What is this thing called science? St Lucia: University of Queensland Press. & 682 \\
Colyvan, M. (2001). The miracle of applied mathematics. Synthese, 127, 265-277. & 683 \\
Dyson, F. (1964). Mathematics in the physical sciences. Scientific American, 211(3), 128-147. & 684 \\
Feynman, R. (1967). The character of physical law. Cambridge, MA/London: The M.I.T. Press. & 685 \\
Goodman, N. (1955). Fact, ficion, and forecast. Cambridge, MA: Harvard University Press. & 686 \\
Sarukkai, S. (2005). Revisiting the 'unreasonable effectiveness' of mathematics. Current Science, & 687 \\
88(3), 415-423. & 688 \\
Shankar, R. (2014). Fundamentals of physics: Mechanics, relativity, and thermodynamics. New & 689 \\
Haven/London: Yale University Press. & 690 \\
Steiner, M. (1989). The application of mathematics to natural science. The Journal of Philosophy, & 691 \\
86(9), 449-480. & 692 \\
Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge, MA: & 693 \\
Harvard University Press. & 694 \\
Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. & 695 \\
Communications on Pure and Applied Mathematics, 13(1), 1-14. & 696
\end{tabular}

\section*{Author's Proof}

\section*{Metadata of the chapter that will be visualized online}
\begin{tabular}{|c|c|}
\hline Chapter Title & What the Applicability of Mathematics Says About Its Philosophy \\
\hline Copyright Year & 2018 \\
\hline Copyright Holder & Springer International Publishing AG, part of Springer Nature \\
\hline Corresponding Author & \begin{tabular}{ll} 
Family Name & Wilson \\
Particle & \\
Given Name & Phil \\
Suffix & \\
Division & School of Mathematics and Statistics \\
Organization & University of Canterbury \\
Address & \begin{tabular}{l} 
Christchurch, New Zealand \\
Email
\end{tabular}
\end{tabular} \\
\hline Abstract & What does the existence of applied mathematics say about the philosophy of mathematics? This is the question explored in this chapter, as we take as axiomatic the existence of a successful applied mathematics, and use that axiom to examine the various claims on the nature of mathematics which have been made since the time of Pythagoras. These claims - on the status of mathematical objects and how we can obtain reliable knowledge of them - are presented here in four "schools" of the philosophy of mathematics. The perspective and claims of each school and some of its subschools are presented, along with some historical development of the school's ideas. Each school is then examined under what we call the lens of the existence of applied mathematics: what does the existence of applied mathematics imply for the competing claims of these various schools? Although, unsurprisingly, this millennia-old debate is not resolved in the next few pages, some of the key issues are brought into sharp focus by the lens. We end with a summary and a tentative discussion of the physicist Max Tegmark's Mathematical Universe Hypothesis. \\
\hline Keywords (separated by "-") & Philosophy - Philosophy of mathematics - Philosophy of science Applied mathematics \\
\hline
\end{tabular}

\section*{Author's Proof}

\title{
Chapter 15 \\ What the Applicability of Mathematics 2 Says About Its Philosophy \(3_{3}\)
}

\author{
Phil Wilson
}

\begin{abstract}
What does the existence of applied mathematics say about the philosophy 5 of mathematics? This is the question explored in this chapter, as we take as 6 axiomatic the existence of a successful applied mathematics, and use that axiom 7 to examine the various claims on the nature of mathematics which have been 8 made since the time of Pythagoras. These claims - on the status of mathematical 9 objects and how we can obtain reliable knowledge of them - are presented here 10 in four "schools" of the philosophy of mathematics. The perspective and claims 11 of each school and some of its subschools are presented, along with some historical 12 development of the school's ideas. Each school is then examined under what we call 13 the lens of the existence of applied mathematics: what does the existence of applied 14 mathematics imply for the competing claims of these various schools? Although, 15 unsurprisingly, this millennia-old debate is not resolved in the next few pages, some 16 of the key issues are brought into sharp focus by the lens. We end with a summary 17 and a tentative discussion of the physicist Max Tegmark's Mathematical Universe 18 Hypothesis.
\end{abstract}

\subsection*{15.1 Introduction}

We use mathematics to understand the world. This fact lies behind all of modern 21 science and technology. Mathematics is the tool used by physicists, engineers, 22 biologists, neuroscientists, chemists, astrophysicists and applied mathematicians 23 to investigate, explain, and manipulate the world around us. The importance of 24 mathematics to science cannot be overstated. It is the daily and ubiquitous tool 25 of millions of scientists and engineers throughout the world and in all areas of 26 science. The undeniable power of mathematics not only to predict but also to 27

\footnotetext{
P. Wilson ( \(\triangle\) )

School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand e-mail: phillip.wilson@canterbury.ac.nz
}

\section*{Author's Proof}
explain phenomena is what physics Nobel laureate Eugene Wigner dubbed the 28 "unreasonable effectiveness of mathematics in the natural sciences" (Wigner 1960). 29

Yet the success of mathematics in explaining the world belies a great mystery: 30 why is that possible? Why are our abstract thought and our manipulation of symbols 31 able to successfully explain the workings of distant stars, the patterns of stripes on 32 a tiger, and the weirdest behaviour of the smallest units of matter? Why is applying \({ }_{33}\) mathematics to the real world even possible?

34
This is a question in the philosophy of mathematics. The traditional approach to 35 answering it is to first decide (hopefully on rational grounds) what to believe about 36 the nature of mathematics and its objects of study, and then to explore what this 37 philosophical standpoint says about the applicability of mathematics to the world. 38 In this chapter, I take a different approach.

I take as given the existence of applied mathematics. On this foundational axiom, 40 I ask the question "what does the existence of applied mathematics say about 41 the philosophy of mathematics?" In this way, we treat the existence of applied 42 mathematics as a lens through which to examine competing claims about the nature \({ }_{43}\) of mathematics. What then do we mean by the existence of applied mathematics, 44 by the philosophy of mathematics, and what are the claims on the nature of 45 mathematics?

\subsection*{15.1.1 Applied Mathematics}

It is not easy to define applied mathematics. The authoritative Princeton Companion 48 to Applied Mathematics (Higham 2015a) sidesteps this difficulty by instead describ- 49 ing what applied mathematics is based on what applied mathematicians do. This is 50 a strategy, the Companion argues (Higham 2015b, p. 1), with some distinguished 51 historical precedent (for example, Courant and Robbins 1941).

In this chapter I borrow a concise definition of applied mathematics from 53 mathematician Garrett Birkhoff (1911-1996), who took inspiration from physicist 54 Lord Rayleigh (1842-1919): "mathematics becomes 'applied' when it is used to 55 solve real-world problems" (quoted in Higham 2015b, p. 1). The breadth of this 56 definition, which includes "everything from counting change to climate change" 57 (Wilson 2014, p. 176), is important. It means that we can use the shorthand 58 "applied mathematics" for any application of mathematics to understanding the 59 real world, and the name "applied mathematician" for any person doing so. This 60 usage of "applied mathematics" and "applied mathematician" means we avoid any 61 confusion over how a particular example or person might be categorised according 62 to contingent academic disciplines in the workplace.

For our purposes, then, applied mathematics, is simply mathematics which is 64 applied. An applied mathematician is anyone who applies mathematics.

In a book like this we can take it for granted that the existence of applied 66 mathematics is undisputed. Its chapters present case after case of the overwhelming 67 success and importance of the application of mathematics to the world around us. 68

\section*{Author's Proof}

\begin{abstract}
Applied mathematics not only predicts the outcome of experiment, it also provides 69 understanding and explanation of the forces, fields, and principles at work. Indeed, 70 "Mathematics ... has become the definition of explanation in the physical sciences" 71 (Barrow 2000). This is what I mean by the existence of applied mathematics, a useful 72 phrase which I will abbreviate to TEAM.

Here I take mathematics, science, and technology seriously, in that I believe 74 they have something important and objective to say about the world. While there 75 are cultural and social concerns with the institutional forms of transmission of 76 mathematics, I firmly reject the "woefully inadequate explanation" (Barrow 2000) 77 that mathematics is merely a social construct. This postmodern fallacy has been 78 hilariously exposed by Sokal \((1996,2008)\) and others. As a mathematician and 79 scientist, I also reject the notion, fashionable among some famous physicists, that 80 philosophy has nothing useful to say about science; see for example Weinberg 81 (1992), or Krauss (2012). This chapter is evidence against that view. 82
\end{abstract}

\subsection*{15.1.2 The Four Schools of the Philosophy of Mathematics}

What is mathematics? What is the status of the objects it studies? How can we obtain 84 reliable knowledge of them? These are the general types of questions which animate 85 and define the philosophy of mathematics, and on which we will focus below. 86 If you think this sounds vague, I agree with you. In Philosophy of Mathematics: 87 selected readings (Benacerraf and Putnam 1983) compiled by the highly influential 88 philosophers of mathematics Paul Benacerraf and Hilary Putnam, the editors write 89 in their first sentence "It would be difficult to say just what comprises the philosophy 90 of mathematics".

But we have to talk about something, so in what follows I present some of the 92 main ideas from the long history of this vaguely-defined area of philosophy. This \({ }^{93}\) is not an exhaustive study of all of the schools of the philosophy of mathematics, 9 neither will we see all of the main areas of study. Those in the know might find it 95 shocking that I do not mention Descartes, Locke, Berkeley, or Wittgenstein, and 96 spend scant time on Kant and Hume. Their ideas fill these pages through their 97 influence on their contemporaries and those who came after them and on whose 98 ideas I focus. And while I try to present some historical development, this can only 99 ever be cursory in a single chapter covering over 2500 years from Pythagoras to 100 the present. I am painfully aware of the Western bias in my presentation, with no 101 mention of the great Indian, Chinese, and Arabic traditions. I hope that you are 102 intrigued enough to follow the references. If you are eager to start right now, then 103 Bostock (2009) gives a highly readable and comprehensive introduction, Benacerraf 104 and Putnam (1983) contains selected key papers and readings, Horsten (2016) is an 105 excellent starting point for an educational internet journey, and Mancosu (2008) is 106 a survey of the modern perspective. But I hope you will read this chapter first. 107

The chapter divides the philosophy of mathematics into four schools, each 108 of which has its own section. This division is broadly accepted and historically 109

\section*{Author's Proof}
relevant, but not without controversy. I have also tried to present the arguments of 110 smaller subschools of the philosophy of mathematics. Sometimes this has required discussing a subschool when a theme arises, even if historically it does not belong in that section. I hope that historians of the philosophy of mathematics, and the philosophers themselves, will forgive me.

Mostly I have tried to avoid jargon, but there are some important concepts that I have tried to develop as they arise. However, there are two words needed from the start: ontology and epistemology. Ontology concerns the nature of being. In terms of mathematics: what do we mean when we say that a mathematical object exists? Are mathematical objects pure and outside of space and time, as the platonist insists, or are they purely mental, as the intuitionist would argue, or the fairy tales of the fictionalist? Epistemology concerns the nature of knowledge, how we can come to have it, and what justifies our belief in it. Speaking loosely, we can say that if ontology concerns the nature of what we know, then epistemology concerns how we know it.

\subsection*{15.1.3 The Lens}

I focus on what TEAM says about the philosophy of mathematics. It is important to distinguish this concern with what the applicability of mathematics says about the nature of mathematics from a concern (even a philosophical one) with the nature of the work done in applying mathematics. This latter question focusses on the praxis of applying mathematics: how applied mathematicians choose which problems to work on, how they turn a real-world problem into a mathematical one, what their aesthetic is, how they choose a solution method, how they communicate their work, and related questions. See for example Davis and Hersh (1981), Ruelle (2007), Mancosu (2008), and Higham (2015a).

In training our TEAM lens on the four main schools of the philosophy of mathematics, we bring into focus some aspects of old questions. This is complementary to a more modern focus on the so-called "philosophy of real mathematics" (Barrow-Green and Siegmund-Schultze 2015, p. 58). This "new wave" as outlined in the introduction to Mancosu (2008), currently avoids the daunting ontological question of why mathematics is applicable, and focusses instead on expanding the epistemological objects of study to include "fruitfulness, evidence, visualisation, diagrammatic reasoning, understanding, explanation" (Mancosu 2008, p. 1) and more besides. These everyday epistemological issues raised by working with mathematics are used to refine what is meant by applied mathematics, to study how applied mathematics and its objects of study relate to the rest of mathematics, and what mathematical value there is in applied mathematics. Indeed, Pincock (2009, p. 184) states "a strong case can be made that significant epistemic, semantic and metaphysical consequences result from reflecting on applied mathematics". The interested reader is referred to the excellent overviews collected in Mancosu (2008) and Bueno and Linnebo (2009).

\section*{Author's Proof}

I take TEAM as axiomatic in order to examine the claims of various schools of the philosophy of mathematics. This is distinct from those like Quine (1948) 152 and Putnam (1971) who take TEAM as axiomatic in order to provide a justifi- \({ }_{153}\) cation for "faith" in mathematics. As outlined by Bostock (2009, pp. 275 ff), the 154 Quine/Putnam position is that mathematics is similar to the physical sciences in the 155 sense that both postulate the existence of objects which are not directly perceptible 156 with human senses. In the case of mathematics, this includes the integers, while 157 for the physical sciences, this includes atoms, to take an example in each field. The Quine/Putnam position is that mathematics as well as the physical sciences should be exposed to the "tribunal of experience". In particular, since our atomic theory leads to predictions which conform to our experience, we should accept the existence of atoms as real. Crucially, claim Quine and Putnam, since all our physical theories are mathematical in nature, and since those theories work, we must accept the existence of the mathematical entities on which those theories depend as also being real. The Quine/Putnam indispensability argument is that we must believe that mathematical objects exist because mathematics works. We will return to the indispensability argument, but I reiterate that we will use TEAM as an axiom for examining competing claims on the nature of mathematics, rather than using TEAM as an axiom for a new claim on the nature of mathematics.

The remainder of the chapter is structured as follows. We will examine each of 170 the four schools in turn, introducing their main ideas, explaining their ontology and epistemology, and giving a brief overview of their history and structure. Within each school's section, we will use the TEAM lens to bring into focus the challenges faced by the school's followers as they attempt to explain the applicability of mathematics.
We end with a discussion and conclusion.

\subsection*{15.2 Platonism}

The platonist believes that mathematical objects are real and exist independently

\section*{Author's Proof}

The platonist does not believe that mathematical objects are drawn off or 192 abstracted from the physical world; rather, that they exist in a realm of perfect, \({ }^{193}\) idealised forms outside of space and time. But what does "existence" mean in this 194 statement? Existence usually refers to an object embedded in time and space, yet 195 these platonic forms are taken to be outside of time and space. Their existence is of 196 a different type to all other forms of existence of which we know. We can say that as 197 I type this my laptop rests on an oak table in New Zealand early in 2017. We can say 198 that our sun will be in the Milky Way galaxy next year, and that Caesar lay bleeding 199 in Rome two millennia ago. The verbs "rest", "be", "bleed" in these statements are 200 fancy ways of saying "is", and the locations and times in each example are not two 201 pieces of information but one: a single point in the fabric of spacetime which Albert 202 Einstein (1879-1955) wove for us a century ago. By contrast, platonic objects "are" 203 in a "place" outside of spacetime.

Platonism is the oldest of our four schools, and for many mathematicians in 205 history this perspective was taken to be natural and obvious - and this remains true 206 for the typical mathematician or scientist today (Bostock 2009, p. 263). There is 207 some evidence that Plato (427-347 BCE) held this view (Cooper 1997), possibly 208 swayed towards the life of the mind and away from the life of the engaged citizen 209 philosopher after his great mentor Socrates was condemned to death. Plato presented 210 his theory of forms in his Phaedo, and developed it in his Republic (Cooper 1997), 21 with its enduring image of a shackled humanity deluded by shadows cast by ideal 212 forms on a cave wall. It is much less clear that the platonism we are discussing here 213 was a view held by Plato, since in later life Plato saw mathematical forms as being 214 intermediaries between ideal forms and perceptible objects in our world (Bostock 215 2009, p. 16). For this reason I do not capitalise the word "platonism".

Mathematical platonism is the position that mathematical objects have a reality or existence independent not only of space and time but also of the human mind. Within this statement are the three claims that (1) mathematical objects exist, (2) 219 they are abstract (they sit outside of spacetime), and (3) they are independent of 220 humans or other intelligent agents (Linnebo 2013). All three claims have been \({ }_{22}\) challenged by various schools, but the claim of independence sets platonism apart 222 from the other schools, as we shall see. For the platonist, the concept of number, the 223 concept of a group, the notion of infinity - all of these would exist without humans, 224 and even, remarkably, without the physical universe. The platonist ontology is that 225 mathematical objects are real, the realest things that exist.

But how can we know about them? Even mathematicians are physical beings containing mental processes and which are embedded in space and time, so how can

This is surely an unsatisfactory answer. To say that we know something a priori \({ }^{232}\) is merely to rename the fact that we do not know how we know it. It is dodging the \({ }_{233}\) issue - begging the question. If the innateness claim is taken to its extreme, the idea \({ }_{234}\) that every abstract concept that humanity might ever uncover is somehow hardwired from birth into a finite brain of finite storage capacity seems questionable to say the \({ }_{236}\) least. And where is the information encoded which is uploaded into the developing foetal brain? DNA has a finite, if colossal, storage capacity (Extance 2016). \({ }_{238}\)

\section*{Author's Proof}

The other option is that (at least) the human mind somehow has the capacity to access the platonic realm. But how can a physical, mental being access a realm 240 outside of those two realms? Plato himself saw this epistemological problem as a grave issue, and in his later life he moved away from the viewpoint which bears his 241 name, as we saw above.

This problem of epistemological access was precisely formulated by Benacerraf244 (1973). By breaking the problem into its constituent assumptions and deductions, 245 Benacerraf gave philosophers of mathematics more precise targets at which to 246 aim. There have been many responses to this challenge, as we shall see. But as 247 summarised in Horsten (2016), the fundamental problem of a how a "flesh and 248 blood" mathematician can access the platonic realm "is remarkably robust under variation of epistemological theory" - that is, " \([t]\) he platonist therefore owes us a 250 plausible account of how we (physically embodied humans) are able" to access the 251 platonic realm.

Such an account is elusive, although attempts are being made; see (Balauger 253 2016, section 5) for an excellent summary. It is worth noting here that even ardent platonists such as Kurt Gödel (1906-1978) failed to avoid dodging the issue. Gödel \({ }^{255}\) is a central figure in the philosophy of mathematics. As we shall see, he was a \({ }^{256}\) platonist, who destroyed both logicism and formalism, and shackled the consistency 257 of intuitionistic arithmetic to that of classical arithmetic (Ferreirós 2008, p. 151), \({ }^{258}\) where consistency means that contradictions cannot be derived. But returning to 259 the issue of epistemological access, we see for example, in Gödel (1947, pp. 483- 260 4) how he skips over it by stating "axioms force themselves on us as being true. I don't see why we should have less confidence in this kind of perception, i.e. in 262 mathematical intuition, than in sense perception." But how do we come by such 263 intuitions? Whether they are innate (following the great Immanuel Kant (1724-264 1804)) or acquired (following the equally great David Hume (1711-1776)) there 265 remains the question of how mental events correlated with physical brains localised 266 in spacetime are able to have them.

Platonism is a kind of realism. The realist believes that mathematical objects 268 exist, and do so independently of the human mind. Gödel was certainly a platonic 269 realist (Bostock 2009, p. 261). There are, however, non-platonic forms of realism, 270 and the Quine/Putnam position outlined in the Introduction is one example. Quine 271 and Putnam argue that mathematics is real because it underpins our physical 272 theories - since they work, mathematics must be true. By "work" here I mean 273 precisely what I meant when I defined applied mathematics in the Introduction, 274 and the breadth of that definition is important. Since it really does cover everything 275 from counting change to climate change, it is not just the use of mathematics in 276 highfalutin scientific domains such as climate modelling or fundamental particle 277 physics, but also includes the utility of basic arithmetic for counting sheep.

\section*{Author's Proof}

Under even the closest scrutiny beneath the TEAM lens, the ontology of platonism remains as pure and perfect as its own ideal forms. Since the platonist believes that 281 the physical world is an imperfect shadow of a realm of perfect ideal objects, and 282 since in this worldview mathematics is itself a very sharp shadow cast by a more \({ }^{283}\) ideal form, it is no surprise that our mathematics becomes applicable to the physical 284 world. This is not evidence for platonism, but the TEAM lens does not reveal any 285 evidence against platonism based on its ontology.

However, as we have seen, cracks appear when we examine the epistemology of 287 platonism - that is, when we ask how we are able to have knowledge of the platonic 288 realm of ideal forms. The problem of epistemological access is such a serious one \({ }_{289}\) that it has prompted a rejection of platonism altogether, which we consider in the following three sections. Another approach has been to recast platonism in forms 29 which avoid the epistemic access problem.

One example is plenitudinous platonism; see Balaguer (1998) and Linsky 293 and Zalta \((1995,2006)\) for two different versions. The central idea is that any 294 mathematical objects which can exist, do exist. Summarising how this approach 295 may solve the problem of epistemological access, Linnebo (2013) says "If every 296 consistent mathematical theory is true of some universe of mathematical objects, 297 then mathematical knowledge will, in some sense, be easy to obtain: provided that 298 our mathematical theories are consistent, they are guaranteed to be true of some 299 universe of mathematical objects."

While plenitudinous platonism may solve the epistemic access problem (though 301 this remains controversial), it does not yet explain why mathematics is able to 302 be applied to the real world. Both platonism and plenitudinous platonism fail to 303 explain why any part of mathematics should explain the physical world. Simply 304 assuming that our mathematical objects (platonism), or objects in all forms of 305 mathematics (plenitudinous platonism) have an independent existence does not in 306 any way explain why they are applicable to the real world around us. Something 307 further is required, some explanation of why the platonic realm entails the physical 308 realm. This is what the TEAM lens brings sharply into focus for the platonist and 309 plenitudinous platonist arguments.

An idea similar to plenitudinous platonism and which goes some way to address- 311 ing epistemic concerns was developed by the mathematical physicist Max Tegmark 312 (b. 1967). In a series of papers beginning with Tegmark (2008), and explained in 313 layperson terms in Tegmark (2014), Tegmark shows that platonic realism about 314 physical objects implies a radical platonic realism about mathematical objects. 315 Tegmark argues that the hypothesis that physical objects have an independent exis- 316 tence implies his Mathematical Universe Hypothesis (MUH): "our physical world 317 is an abstract mathematical structure" (Tegmark 2008, p. 101). He goes on to argue, 318 echoing the plenitudinous platonists, that all mathematics which can exist does exist 319 in some sense, that our physical world is mathematics (not simply mathematical), 320 and that our minds are themselves self-aware substructures of this mathematical

\section*{Author's Proof}
universe. In the MUH, ourselves, our universe, and the various multiverses which our physical theories imply are subsets of this grand mathematical ensemble. The \({ }_{323}\) MUH addresses (though was not motivated by) the same epistemic concerns which 324 motivated the plenitudinous platonists. Tegmark's ideas have spawned much debate, 325 and in the grand tradition he has both defended and amended his hypothesis. 326 It is heartening to see a mathematical physicist engaging with philosophers and \({ }_{327}\) mathematicians precisely around the issues of this chapter. For a starting point of 328 objections and Tegmark's responses to them, see Wikipedia (2017).

As for Quine/Putnam realism, Bostock (2009, p. 278) observes that when 330 considering objections to the Quinean position it is important to be careful about \({ }_{33}\) what is meant by science and the applications of mathematics. He argues that 332 adopting the kind of broad definition of applied mathematics that I have taken for \({ }_{333}\) this chapter will undermine some of the objections to the Quine/Putnam theory, \({ }_{334}\) such as those in Parsons (1979/1980) and Maddy (1990). However, surely we can 335 conclude that the Quine/Putnam idea is attractive under the TEAM lens?

Not so, claims Bostock (2009, pp. 305-6). One problem is the tenuous nature of truth when it is defined in this quasi-instrumentalist and utilitarian way, when the only true mathematical things are those which currently support our physical theories. As the theories change, so does truth. Worse, it is possible to argue 340 that fewer and fewer parts of classical mathematics are required for our scientific 341 theories, leading, in the extreme, to the fictionalism of Hartry Field (b. 1946) in which absolutely no mathematical objects are necessary; see the discussion in the Formalism section. But even if a time-dependent notion of mathematical truth is
 accepted, Paseau (2007) observes that the Quine/Putnam theory leaves unspecified 344 the ontological status of the objects it posits. Mathematical statements are true when they are useful, but the Quinean can only shrug when asked whether mathematical 347 objects are platonic or have one of the other possible statuses given in the following sections.

A final comment concerns the issue of causal agency for Quine and Putnam. 350 Their position argues that both quarks and real numbers are to be considered true in as much as they are required in our quantum mechanics. Yet the former is a name for something which has a causal role in the world, while the latter is the name for 353 a temporarily useful fiction with no causal power.

\subsection*{15.3 Logicism}

To the logicist, mathematics is logic in disguise. All of the varied fields of mathematics are simply the fecund outpourings produced when logic combines with interesting definitions (Bostock 2009, p. 114). Mathematics equals logic plus 358 definitions.

In this way, logicists seek to reduce mathematics to something else: logic. 360 This idea can trace its lineage to Aristotle (384-322 BCE), who invented logic 361 and tried to formulate his mathematical arguments in logical terms. Aristotle 362

\section*{Author's Proof}
rejected Plato's insistence on a higher realm of ideal objects. He did not reject 363 abstraction, but saw it as a process of generalisation of examples in the world. 364 To him, the concept of triangle generalised real-world triangles. While Plato 365 believed that all Earthly triangles were poor shadows of an ideal triangle with an 366 independent existence beyond space and time, Aristotle believed that the concept of 367 a triangle was abstracted from our everyday experience of triangles in the world. All 368 Aristotle's science and mathematics concerns these abstractions. His ontology is of 369 generalised ideas in the human mind, and his epistemology is one of perception, 370 even in mathematics (Bostock 2009, p. 16). Thus to Aristotle, and his conceptualist 371 viewpoint just outlined, we invent rather than discover mathematics, which is why I 372 described him as having invented logic.

Central to a reductionist view of mathematics is that it can be reduced to 374 something more fundamental, that the definitions of mathematics are a type of name or shorthand for relationships between sets of the fundamental objects, and that the 376 correspondence of those names with things in the real world is of little interest or 377 relevance to mathematics. This type of reduction can be called nominalism, since it 378 concerns names, and there are two types (Bostock 2009, p. 262). One is logicism, 379 which reduces mathematics to logic, and states that mathematics is a collection 380 of names applied to logical objects. In this view, mathematics is a set of truths 381 derived (or discovered) by the use of logic. It is worth noting that in this nominalist 382 account, the mathematical objects have no independent existence. The second type 383 of nominalism is the fictionalism of Hartry Field, which we discuss below in the 384 section on Formalism.

The logicist ontology is that mathematical objects are merely logical ones in 386 disguise. This ontology neatly explains why the varied fields of mathematics are 387 connected: they lie in correspondence with one another because their objects of 388 study are at root the same logical objects (or collections of them), but with a 389 different overlay of definitions. Moreover, the central practice of mathematicians, 390 the proving of theorems, follows well-defined and closely prescribed logical rules 391 which themselves guarantee the validity and truth of the outcomes. No matter the 392 definitions of the objects, when logical operations are correctly applied to logical 393 objects (disguised as mathematical ones) the outcome will certainly be true. 394

In the logicist worldview mathematicians take disguised logical objects and 395 perform logical operations on them. Because of this derivation of new results by 396 a logical analysis of existing concepts, it is tempting to refer to these truths as 397 analytic, and thereby to invoke Kant, and in particular to set up an opposition with 398 Kant's synthetic truths derived from experience. But to use these words here might 399 be misleading, since Kant himself argued for the synthetic nature of some, if not 400 all, mathematical truth (Bostock 2009, p. 50). To Kant, mathematical truths could 401 not be wholly derived by the action of logic; some a priori "intuition" of the objects 402 involved was required. In the context of logicism, an analytic truth means one which 403 is derived by the action of logic on logical objects plus definitions. This is the usage 404 employed by the key figure Gottlob Frege, as we shall see below.

To explore what it means to say that mathematics is logic plus definitions, we can 406 ask: what is a number in the logicist worldview? Surely something so fundamental to 407

\section*{Author's Proof}
mathematics, at the core of arithmetic, cannot be open to debate? Yet to the logicist, 408 the idea of number is in some sense superfluous to the truths of arithmetic. Defining 409 number in a mathematical way simply overlays mathematical definitions on logical 410 objects. The overlay is done on multiple objects rather than single objects, since 411 if the latter were true then the logicist worldview would be rather barren. Merely 412 positing a one-to-one correspondence between mathematical objects and logical 413 ones would be no more interesting than compiling a very accurate thesaurus. If I 414 observe that every eggplant is an aubergine and that every aubergine is an eggplant, 415 then I can merely use the two words interchangeably, and I have not learned 416 anything new about eggplants. Or aubergines. Rather, in the logicist worldview, 417 a mathematical definition is powerful because it encodes multiple logical objects 418 and the relationships between them. The apparently simple task of defining number 419 logically takes us from the budding of logicism in the garden of a man named Frege, 420 through its flowering in the care of a man named Russell, to its wilting in the shadow 421 cast by a man named Gödel.

The soil for Frege's garden was laid down by Richard Dedekind (1831-1916). 423 Dedekind is known to undergraduate mathematicians for putting the real numbers 424 on a solid basis. He defined them by means of "cuts": an irrational such as the square 425 root of 2 cuts the rational numbers into two classes, or sets. One of these contains all 426 of the rational numbers smaller than the square root of 2 , while the other contains 427 all of the rational numbers larger than the square root of 2. This gave Dedekind 428 the hope that all of mathematics could be built on logic plus set theory, with sets 429 conceived of as logical objects.

This dream was shared by Gottlob Frege (1848-1925), who is considered the 431 founder of logicism. Bostock in his (2009, p. 115) says "Frege's first, and ... 432 greatest contribution ... is that he invented modern logic." Extending Dedekind's 433 ideas, Frege defined number in terms of classes of equinumerous classes. In this 434 way, the number 2 is the name for all sets which have two elements. Although this 435 smacks of circularity, it is formalised in a way which avoids it. However, Bertrand 436 Russell (1872-1970) found a paradox nestled at the heart of logicism as conceived \({ }_{437}\) by Frege as a combination of set theory and logic. This is the famous Russell's 438 paradox, which in words is the following. Consider a set which contains all sets 439 which do not contain themselves as members. Does this set contain itself? If it does, 440 then it does not, and if it does not, then it does.

A popular analogy is the following. Suppose there is a town in which every man 442 either always shaves himself, or is always shaved by the barber. This seems to divide \({ }_{443}\) the men of the town into two neat classes; no man can be in both sets by definition. 444 But what about the barber? If he is a man who always shaves himself then he cannot 445 be, since he is also then a man shaved by the barber. And if he is a man who is 446 always shaved by the barber, then he will always shave himself, which he cannot. \({ }_{447}\)

Thus even the definition of quite simple sets is problematic. The problem is 448 surprisingly difficult to eliminate, leaving aside solutions such as a barber who does 449 not shave or is a woman. So difficult, in fact, that Frege gave up on his own logicist 450 dream. Russell did not. He developed with Alfred North Whitehead (1861-1947) a 451 new theory of "types", which in essence are hierarchical sets. This "ramified" theory 452

\section*{Author's Proof}
eliminated the type of paradoxes which bedevilled Frege's logicism. A set could no \({ }_{453}\) longer contain itself as a member. In the shaving story, it is as if the town now has a 454 caste system, and a man can be shaved only by someone of a lower caste. Thus the 455 barber can be shaved by someone of a lower caste, and can shave anyone in a higher 456 caste, but no-one can shave themselves (the lowest caste grows beards).

Russell and Whitehead wrote the monumental Principia Mathematica (Russell 458 and Whitehead 1910) to bring Frege's dream to fruition through their ramified 459 theory of types. The power of the mantle of meaning which mathematics places 460 over logic is revealed by the fact that it takes 378 pages of dense argument in the 461 Principia to prove (logically) that one plus one equals two.

462
But despite these Herculean efforts, the dream of reducing mathematics to logic 463 died when Gödel rocked the mathematical world in 1931 with the publication of 464 his two incompleteness theorems (Gödel 1931; see also Smoryński 1977). The 465 first theorem is bad enough news: it says that any system which aims to formalise 466 arithmetic must necessarily be incomplete. Incomplete means that the system must 467 contain true statements which cannot be proved. And Gödel showed that this is true 468 for any system which aimed to formalise arithmetic, and, worse, for any system 469 which contained arithmetic. Thus Gödel's theorem not only destroyed the approach 470 based on a combination of logic and ramified types developed by Russell and 471 Whitehead, but all possible approaches. This was a profound and philosophically 472 disturbing shock to mathematicians, who until that moment believed that all true 473 statements must be provable. Mathematics has not been the same since. 474

Even worse was to come from Gödel's second incompleteness theorem: it 475 is impossible to prove the consistency of arithmetic using only the methods of 476 argument from within arithmetic. Thus to prove even the most basic of mathematical 477 areas consistent, that is to show that contradictions can never be derived within it, 478 requires stepping outside of that area. But then the new area of mathematics used 479 to establish consistency of the first area would itself require external techniques in 480 order to establish its consistency, and so on.

Gödel showed that any system which aims to formalise an area of mathematics 482 contains unprovable true statements, and that the consistency of the system can only \({ }_{483}\) be established by stepping outside of itself. Logicism (and not just logicism, as we 484 shall see) seemed well and truly dead. But logicism lives on in modified forms; the 485 idea of number as a powerful naming convention for a set of interconnected logical 486 objects is closer to what is now called the neo-Fregean standpoint. The difference 487 between Fregean logicism and neo-Fregean logicism revolves around "Hume's 488 Principle", which asserts that two sets are of the same size if their members can 489 be placed in a one-to-one correspondence. Neo-Fregeans aim to derive elementary 490 arithmetic from Hume's Principal plus logic rather than Frege's axioms of set theory 491 plus logic. Frege himself rejected this approach since he knew that Hume's Principle 492 did not clearly define number per se. Indeed, he observed that with Hume's Principle 493 alone it is impossible to say that Julius Caesar is not a number. But Neo-Fregeans 494 attempt to avoid this problem by taking Hume's Principle to be the very definition of 495 number; see for example (Bostock 2009, pp. 266 ff). Moroever, Russell's theory of 496 types is now considered the start of predicativism. Both neo-Fregean logicism and 497

\section*{Author's Proof}
predicativism seek to avoid paradox while retaining logic as fundamental. These 498 ideas have been developed for example by Bostock (1980); see also his (2009, 499 section 5.3 ). 500

If in some sense all mathematics can be reduced to logic, what is the ontology 501 of logic? The logicist rejects the realist idea that mathematical objects have an 502 independent existence in a platonic realm of ideal forms, and substitutes logic as 503 a foundation for mathematics. But this merely shifts the ontological question on to 504 logic, and here we see a divergence in the history of logicist thought. Its founding 505 father, Frege, was a realist of sorts, since he believed that logic and its objects 506 had a platonic existence (Bostock 2009, chapter 9). Although Russell's views were 507 complex and evolved throughout his life, he also seemed to remain essentially a 508 platonic realist when it came to mathematics. Other logicists choose to remain silent 509 on ontology.

\subsection*{15.3.1 Logicism Under the Lens}

What can the logicist say about the existence of applied mathematics? If at the heart 512 of mathematics we find only logic, and if the familiar objects of mathematics are 513 merely names under which hides a Rube Goldberg arrangement of logical objects, 514 then why should mathematics have anything useful to say about the real world? The 515 logicist is not allowed to answer that the universe is merely an embodiment of a 516 higher platonic realm of logic. To do so makes them a platonist. 517

There does not seem to be much more to see of logicism under the TEAM lens. 518 At its heart, there is either a dormant platonism in its classical form (which Gödel 519 destroyed anyway), or an echoing ontological silence in the modern forms. Since 520 these modern forms do not propose any ontology, it is hard to critique them via 521 the existence of applied mathematics. However, even they seem to have an implied 522 platonism at their heart, since the neo-Fregean adoption of Hume's principle brings \({ }_{523}\) with it a notion of infinity which is platonic in the extreme - see Bostock (2009, p. 524 270) for some of the controversy.


Perhaps one observation can be made using the TEAM lens. If even such a 526 simple concept as number veils a hidden complexity of logical objects, maybe 527 what mathematicians do is to select definitions which excel at encoding logical 528 objects and their interrelations. Having done so, perhaps mathematics is then a 529 process of selection and evolution. This principle of fecundity and an evolutionary 530 perspective is sufficiently general that it may apply in a broad sense to other schools 531 in the philosophy of mathematics. However, it has problems. For a start, what is 532 the ontological status of the fecund objects upon which evolution acts? Secondly, 533 there are epistemological problems with the claim (see for example Mohr 1977) 534 that minds with the best model of reality are those which are selected as fittest 535 evolutionarily. It is not clear that the objects of the human mind need faithfully 536 represent the objects of the physical universe. Mental maps of reality survive not 537 because they are faithful to reality, but because of the advantage they conferred to 538

\section*{Author's Proof}
our ancestors in their struggles to survive and to mate. Moreover, while concepts such as number and causality have obvious correlates in the real world, our modern theories of physics involve concepts which have no obvious correlates in the real world, such as complex analysis or the common-sense defying nature of quantum

\subsection*{15.4 Formalism}

The formalist holds a radical ontological perspective: mathematical objects have no 545 real existence, they are merely symbols. The mathematician shuffles and recombines 546 these meaningless symbols according to the dictates of systems of postulates. No 547 meaning is ever to be ascribed to the symbols or the statements in which they appear, 548 nor is any kind of interpretation of these symbols or statements ever to be done. 549 Some formalists may be content to remain agnostic on whether meaning can ever be 550 ascribed to mathematical symbols and statements, preferring simply to insist that no 55 meaning is necessary, that the symbols and their interrelations suffice. Others, more 552 radically still, insist that no meaning can ever be given to mathematical symbols and 553 statements, and the systems in which they are used.

These symbols are manipulated within systems of postulates and rules, the formal 555 systems which give formalists their moniker. The formalist is in theory able to study 556 any formal system, but usually certain restrictions are placed on what counts as a 557 postulate, and what is an allowable rule. One of the main criteria for a formal system 558 is the concept of consistency which we have already encountered.

A formal system is consistent when its axioms and rules do not allow the 560 deduction of a contradiction. In the early days of the formalist school, its leader, 56 David Hilbert (1862-1943) believed that consistency implied existence (Bostock 562 2009, p. 168). It is hard to discern what is meant by "existence" here, given the 563 formalist insistence on the meaningless of mathematics - indeed, Hilbert himself 564 seems somewhat agnostic on this point (Reid 1996). However, I take it to mean that 565 any statement derived from the axioms and rules has (at the very least) the same 566 ontological existence as the axioms themselves. Thus while mathematics may be 567 seen as one among many formal systems, and while each can be studied in the same 568 way, if the axioms of mathematics are shown to have a more significant existence 569 then so do all other mathematical objects.

It is impossible to talk about formalism without talking about Hilbert. The school 571 probably would not exist without him. Hilbert was a towering figure of nineteenth 572 and twentieth century mathematics, and his name is attached to several important 573 concepts and theories (Reid 1996). He is also famous for listing 23 open problems 574 in mathematics in the published form of his address to the International Congress 575 of Mathematicians in Paris in 1900 (Hilbert 1902). Many of Hilbert's problems are 576 still unanswered and remain the focus of research today. Hilbert in 1920 began his 577 so-called program to show that mathematics is a consistent formal system. As we 578 have seen, Gödel would show a decade later that this is impossible.

\section*{Author's Proof}

Hilbert was already on the formalist track when in 1899 he published his 580 Grundlagen der Geometrie (The Foundations of Geometry) (Hilbert 1899), in 581 which he formulated axioms of Euclidean geometry and showed their consistency. 582 Hilbert is not the only mathematician to axiomatize Euclid's geometry. The idea 583 is to eliminate geometrical intuition from geometry and to replace that intuition 584 with definitions and axioms about objects bearing geometrical names. From those 585 postulates can be derived all the theorems of Euclid's geometry, but crucially and 586 as a direct result of the formulation of geometry as a formal system, those theorems 587 need no longer be taken as referring to geometrical objects in the real world. In fact, 588 they need not even be taken as referring to any kind of abstract geometry, neither to 589 the platonist's ideal geometry, not to the Aristotelian's geometry generalised from 590 the real world. Although the postulates use words such as "line" and "point", these 591 objects are only defined by the formal system, and are not supposed to be taken as 592 referring to our everyday notion of lines and points. The words could just as easily 593 be replaced by "lavender" and "porpoise" - but again, without any sense that there 594 is any correspondence with lavender or porpoises in the real world. This is the start 595 of the formalist dream.

It was no great surprise when Hilbert showed in his Foundations of Geometry that 597 Euclidean geometry was consistent. At the time, the only area of mathematics over 598 which there was any doubt as to its consistency was Georg Cantor's (1845-1918) 599 theory of infinite numbers (Bostock 2009, p.168). To introduce this theory, we first 600 need to consider the notion of countability.

A finite set is countable if it can be placed in one-to-one correspondence with a 602 subset of the natural numbers. This is a formal definition of what it means to count 603 the objects in the set. Counting means assigning each object a unique number, which 604 puts them in a one-to-one correspondence with a subset of the natural numbers, say 605 the subset of numbers from 1 to 10 if there are ten objects in the set. If the set is 606 infinite, we call it countable if it can be placed in one-to-one correspondence with 607 all of the natural numbers (not just a subset). (Some authors reserve countable for 608 finite sets and call countable infinite sets enumerable.) 609

The concept of countability puts infinity within our grasp. If the elements in an 610 infinite set can be paired with the counting numbers, then an incremental counting- 611 type algorithmic process can be set up to "access" everything in the set. For every 612 element in the set there is a unique positive whole number, and for every positive 613 whole number there is a unique object. However, this immediately leads to apparent 614 paradoxes. For example, the even natural numbers can be paired in an obvious way 615 with the natural numbers, and are thus countable. This means that the size of the 616 set of even natural numbers is the same as the size of the set of all natural numbers, 617 despite the fact that the latter contains the former!

Cantor asked whether the set of all numbers is countable. This set of real numbers 619 contains not just the natural numbers, but all integers, all rational numbers, and all 620 irrational numbers. He assumed first that the reals are countable, in which case, 621 by definition they can be listed alongside the natural numbers. The next step was 622 Cantor's stroke of genius. He considered a real number whose decimal expansion 623 differs from the first real number on the list in the first decimal place, from the 624

\section*{Author's Proof}
second real number in the second decimal place, and so on for every decimal place. \({ }^{625}\) This number is therefore different from every number on the list, and so it is not 626 on the list. Yet it is a real number, and so if the assumption of the countability of 627 the reals were correct it is on the list. This contradiction implies that the assumption 628 of countability was wrong, and Cantor concluded that the reals are uncountable. 629 Stunningly, this means that there is a "bigger size" of infinity than the size of the set 630 of natural numbers. Moreover, Cantor showed that there is an infinite succession of 631 sizes of infinities, each bigger than the last, and he constructed a beautiful theory 632 of these infinite numbers. Within this theory, his famous continuum hypothesis 633 is that the second smallest size of infinity is the size of the set of real numbers 634 (Bagaria 2008).

Hilbert so loved Cantor's theory that he desired that "[n]o one shall drive us 636 out of the paradise which Cantor has created" (Hilbert 1926, p. 170), and so he 637 was desperate to prove its consistency. He never did so, and Gödel incompleteness 638 theorems showed its impossibility before Hilbert had even finished shoring up 639 the foundations of arithmetic. As Hilbert waded through the mud he found in the 640 formalist foundations, he repeatedly encountered the notion of infinity. Although he \({ }_{641}\) hoped to construct an edifice up to Cantor's theory, Hilbert did not want infinity in 642 the formalist foundations on which he built. Hilbert could not prove the consistency \({ }_{64}\) of arithmetic based on a finitary formal system. This insistence that as a finite human 644 in an apparently finite world we should use only "finitary" definitions and methods 645 will recur in our final school of mathematical philosophy, intuitionism, to which 646 Hilbert ironically was bitterly opposed.

The death blow for Hilbert and the formalist's dream came with Gödel's incom- 648 pleteness theorems, as described in the Logicism section above. These theorems 649 not only destroyed the logicist dream of a mathematics founded on (and in some 650 sense no more than) logic, but simultaneously destroyed Hilbert's formalism. This 651 is because the theorems showed that any formal system sophisticated enough to 652 contain simple arithmetic would necessarily contain unprovable true statements, 653 and whose consistency required an external system. There was no way out, and 654 formalism was dead.

Consequently, it is unlikely that anyone would call themselves a formalist today 656 (Bostock 2009, p. 195). The idea which died is that formal systems are primary 657 in the sense that they are the object of study, and that any application of them to an 658 area of mathematics is essentially meaningless. But formalism evolved and survived 659 in the same way that dinosaurs both died out and are alive in the birds we see 660 around us. One surviving form is structuralism. The idea behind it, as advanced by 661 Dedekind (1888) and Benacerraf (1965) is that the common structures of particular 662 areas of mathematics are the object of study; they are primary. Like the formalist, the \({ }_{663}\) structuralist believes that applications of the structures are secondary, and that it is 664 the structures themselves which must be studied. For example, the natural numbers 665 can be taken to be an example of a progression: a non-empty set of objects each of 666 which has a successor, as formalised in Peano's axioms (Gowers 2008, pp. 258-9). 667 Because natural numbers are an example of a progression, they are less interesting 668 to the structuralist than the progression structure they model. 669

\section*{Author's Proof}

The idea of structure being fundamental seems to be attractive to some physicists, even if they do not necessarily acknowledge structuralism. Writing popular accounts of the power of mathematics in the physical sciences, people like John Barrow, David Deutsch, and Ian Stewart argue for the primacy of pattern or structure. For example, Deutsch (b. 1953), a mathematical physicist, argues that the human brain both embodies the mathematical relationships and causal structure of physical objects such as quasars, and that this embodiment becomes more accurate over time. This happens because our study of these objects aligns the structure of our brains with the structure of the objects themselves, with mathematics as the encoding language of structure (Deutsch 2011). What is the ontology of such structures? The question is somewhat avoided by structuralists, but in essence they must claim either a platonic existence for them, or one of the other positions detailed here. Thus any claims of the structuralist are subject to some of the same ontological and epistemological objections as the other schools herein.

Finally here, we consider not a variant of logicism but a subschool which has 684 in common with logicism the denial of any meaning in the objects of mathematics. 685 In the Logicism section I said that logicism could be considered to be one form 686 of nominalism. Another is given in Field (1980); see also Bostock (1979). By this 687 account, mathematics is a "fairytale world which has no genuine reality" (Bostock 688 2009, p. 262). In this fairytale world, numbers (and other mathematical concepts) are 689 powerful names for a collection of underlying objects and structures. These names 690 allow us to use, say, arithmetic rather than logic or set theory in our deductions. 691 This use of arithmetic as a set of names and rules is conservative in the sense that 692 we cannot prove anything in arithmetic that could not be proved by stripping away 693 the arithmetical names and working with a more fundamental structure (such as 694 logic). Thus the names are useful but not required, and no meaning is given to them. 695 Moreover, even if it is a useful fiction to treat them as real, the things to which 696 the names seem to point have no independent existence; they may be abstractions 697 of some kind, but they are not real in the sense of having an independent platonic 698 existence.

Of course, we sometimes choose names which correspond to things in the real 700 world. We know about numbers when we count shirt buttons, which is a kind of 701 instrumentalist view of the existence of numbers. Thus arithmetic can be taken 702 to be about the countable things we encounter in the world, whose ontological 703 status is either left vague or has a minimalist instrumentalist view. Any correctly 704 derived arithmetical statements are true both of numbers as fictions and of real- 705 world numbers. Arithmetical deductions which go beyond what can be encountered in the world are true, but only in some fictional sense.

\subsection*{15.4.1 Formalism Under the Lens}

If mathematics is a game, why should it tell us anything about the world? To the pure 709 formalist, mathematical objects have no "real" existence, and to do mathematics 710 is simply to explore a formal system or systems. But no particular formal system 71

\section*{Author's Proof}
should be privileged over any other - some may be more interesting than others, for 7 sure, but none of them is taken to have any special ontological status. Why, then, 713 does mathematics help to explain the world?

The only way out of this conundrum seems to be to take Hilbert's less hard 715 line view in which mathematical objects have a special ontological status, and that 716 the formal system or systems at the foundations of mathematics are therefore more 717 special than others. Although this does fix one problem, it creates another: what 718 does it mean for mathematical objects to have special ontological status? What 719 is that ontological status? The options are presumably those held by one of the 720 other schools of the philosophy of mathematics and therefore subject to the same 721 criticisms under the TEAM lens (amongst others). 722

Putting those criticisms to one side, and playing devil's advocate, I could point 723 out that some games do teach us about the world. For example, in 1970 Martin 724 Gardner introduced the world to John Conway's "Game of Life" (Gardner 1970). 725 Since that time, this simple game has become a field of study both in its own right 726 and as a model for processes in biology, economics, physics, and computer science, 727 as revealed by a quick search of Google Scholar. But although some features of the \({ }_{728}\) Game of Life are emergent and therefore could not be predicted, the simple rules of 729 the game were chosen in order to mimic those of simple real-world systems. If we 730 wish to claim that this is comparable to the far more complex game of mathematics 731 mimicking the real world, then we would have to assert that the rules of mathematics 732 were chosen in order to mimic those in the real world. Once again, we are forced to 733 abandon the ontology of pure formalism, at least. \({ }_{734}\)

Other problems are visible under the TEAM lens. While it is easy to accept 735 that, say, the rules of arithmetic have been chosen because they mimic real-world 736 counting, it is harder to explain the important role that, say, complex analysis or 737 Hilbert spaces play in our best theories of the universe. In geometry, it is "natural" 738 to consider flat Euclidean geometry, and so the non-Euclidean geometry which arose 739 in the last half of the nineteenth century was viewed initially with distaste and seen 740 as something of a pointless game. Yet Einstein has taught us that our universe is 741 non-Euclidean. How, then, are we to know which of our formal systems have special 742 ontological status? Only those which are later shown to correspond to some aspect 743 of the real world? But this is surely a poor ontological status which seems predicated 744 both on time and on our ignorance. What if when our theories change we need an 745 area of mathematics and so it becomes "real" - but then later find we no longer need \({ }_{746}\) it, at which it returns to being unreal? It seems that this is indistinguishable from the 747 Quine/Putnam indispensability argument, and so arguments against that position are 748 also valid here.

The structuralist might choose to argue that the structures of mathematics are 750 chosen because they mimic some aspect of the real world. But does this not give 751 a privileged ontological status to the real world, and the structures within it? What 752 is their ontological status? At this point, the structuralist has passed the buck. The 753 fictionalist seems Quinean when examined under the TEAM lens, for the only way 754 to distinguish between the real and the fictional is to expose a truth to the crucible of 755 the real world. The other option is to admit a platonic existence at the heart of your 756 fictionalist worldview, as Field himself did when he sought to remove it in Field 757 (1992).

\section*{Author's Proof}

\subsection*{15.5 Intuitionism}

Intuitionism was the first and remains the largest "constructivist" schools of 760 mathematics (Chabert 2008). Most of what I say in this section can be taken to be 761 true of the other constructivist schools, which include (i) finitism, (ii) the Russian 762 recursive mathematics of Shanin and Markov, (iii) Bishop's constructive analysis, 763 and (iv) constructive set theory. It is always a pleasure to note that intuitionists claim 764 constructivism as a subschool and constructivists claim intuitionism likewise, but I 765 will mostly use the word "intuitionism" as an umbrella term in this section, and look 766 forward to the deluge it provokes from constructivists.

767
The defining characteristic of intuitionism is that existence requires construction. 768 The perspective of intuitionists, for example in Bridges (1999), is that believing that 769 existence requires construction forces upon the mathematician the requirement to 770 use a different logic. This logic is the intuitionistic logic which has at its heart a 771 rejection of the law of excluded middle and a rejection of the axiom of choice. I 772 will explain each of these points below. It is worth noting that, as in every area 773 we discuss herein, the argument for intuitionism has at least two sides. For every 774 Bridges arguing that construction implies intuitionistic logic, there is a Dummett 775 arguing that this is untrue (see his 1977, and Bostock 2009, pp. 215 ff ). But we 776 continue, since all schools presented herein have adherents arguing their corner and 777 antagonists arguing them into one.

All mathematicians distinguish between an existence proof and a construction 779 proof. The former merely establishes whether a statement claiming the existence of 780 some mathematical object is true or not. A construction proof, by contrast, gives 781 steps which construct the properties of the object in question, and so gives in 782 addition to a proof of truth some insight as to why. In the case in which the statement 783 is not true, an actual counterexample is constructed. I now try to put a little flesh on 784 these bones.

A common question in mathematics concerns the existence of a mathematical 786 object. This is not the metaphysical notion of existence central to this chapter. When 787 a mathematician asks whether a mathematical object exists, she is not worried about 788 whether scientific methods can show it to be a real, physical thing in the world, nor 789 is she usually bothered with the ontological status of that object. Instead, she is 790 interested in whether the object exists in a mathematical sense.

For the majority of mathematicians, existence proofs suffice, even if construction 792 proofs provide more information. Not so the intuitionists, who believe that existence 793 is shown only when the object has been constructed. Construction here has a specific 794 meaning, and once again this has nothing to do with building an object in the real 795 world. Rather it has to do with providing a proof of a statement from which, at least 796 in principle, an algorithm could be extracted which would compute the object in 797 question, and any of its properties. Only when a constructive proof has been found 798 is the object said to exist. For the intuitionist, "existence" means "construction". 799

For a real-world analogy, we can turn the weather. When I look up the weather 800 records for my home town of Christchurch, New Zealand, I can see that in 2016801

\section*{Author's Proof}
the maximum recorded temperature was \(34^{\circ} \mathrm{C}\) on 27 th February, and the minimum 802 recorded temperature was \(-5^{\circ} \mathrm{C}\) on 11th August (WolframAlpha 2017). This means 803 that with confidence I can claim that there was a moment between 27th February and 804 11th August when the temperature was precisely \(0{ }^{\circ} \mathrm{C}\). My assertion rests on two 805 points: that for this time range the temperature starts at a positive value (34) and ends 806 on a negative one ( -5 ), and that temperature cannot instantaneously change. From 807 these two observations, I know that there must exist a time, however short, when 808 the thermometer read \(0^{\circ}\), since it is impossible to go smoothly from 34 down to -5809 without passing through 0 . Of course, there were probably many such times, but the 810 mathematician's interest in uniqueness is not our concern here, only existence. In 811 our temperature analogy we have demonstrated the existence of a time at which the 812 temperature was \(0^{\circ}\) in a way which would satisfy most mathematicians. 813

But the intuitionist weather-watcher would not be satisfied. She wants something 814 more: she wants an actual moment at which the thermometer read 0 . In our analogy, 815 this means going through the weather station data until such a time is found. That is 816 a "constructive" proof of the existence of a \(0^{\circ}\) time. 817

Our analogy has flaws, as all do. It could give the impression that intuitionistic 818 mathematics is about data-sifting; this is untrue. Intuitionistic mathematics is 819 mathematics, but with tighter constraints on what can be used in the logical 820 arguments called proofs which establish truths. Indeed, Bridges argues in his (1999) 821 that the intuitionistic mathematician is free to work with whatever mathematical 822 objects she so desires. Another flaw is that although the analogy illustrates the 823 difference between existence and construction, it does not have an analogy for 824 intuitionistic logic.

I said above that intuitionistic logic has two features which distinguish it from 826 classical logic, and both features involve a rejection. The first of these is a rejection 827 of the law of excluded middle (LEM). For most mathematicians, something either 828 is, or is not. A number is either rational, or irrational. It cannot be both; it is 829 either. But the intuitionist will not say it is one or the other until it has been 830 constructed. A classical mathematician may present the following argument. Object 831 X can either have property P or not. If we assume for the sake of argument that 832 it has property P, we can investigate the consequences of our assumption. Suppose 833 that when we do that, we uncover a contradiction, an absurdity. Then (assuming we 834 have done everything correctly) the only problem was our assumption that object 835 X had property P . Thus it cannot have property P . This is the commonly used proof 836 technique called proof by contradiction, and we saw an example of it above when 837 we presented Cantor's diagonal argument.

Such a proof would not be considered valid in intuitionistic logic. The reason 839 that it is invalid is that X has not been shown to have a particular property or not, but 840 simply that by assuming the converse a contradiction has been found. At issue is not 841 the assumption of whether or not X has property P . If the objects of study of which 842 X is an example are such that they must either have property P or not, then it would 843 be absurd to argue that they have neither, or, somehow, a superposition of both. 844 The intuitionist does not argue this. Rather, the idea is of a radical redefinition of 845 truth. To the intuitionist mathematician, a statement is true only when a constructive 846

\section*{Author's Proof}
proof without recourse to the LEM has been given. A statement is false precisely 847 when a counterexample has been given. Since truth now has this specific meaning, 848 a statement is neither true nor false until such a constructive proof is furnished.

Although the truth of a statement becomes time-dependent, it is not the same 850 time-dependency as in the Quine/Putnam indispensability argument. There, some- 851 thing is real only for as long as it is necessary for a successful theory of the real 852 world; the status of mathematical objects are forever conditional. For the intuitionist, 853 on the other hand, truth is defined to mean proof by construction. Thus an object is 854 neither real nor not real until it is constructed, at which point it becomes and forever 855 remains real (or becomes and remains forever not real when a counterexample is 856 constructed).

To object that surely, say, the statement "the trillionth decimal digit of pi is zero" 858 has been true or false since the dawn of time is to confuse the platonic notion of truth 859 with the intuitionist one. The point is that although the trillionth decimal digit of pi 860 has a value entirely independent of the free will of humans, that it is indeed dictated 861 by something deeper than whatever human whimsy may want it to be, until its value 862 is actually calculated the statement has no (intuitionist) truth value associated with \({ }_{863}\) it.

Although for the intuitionist mathematical objects have properties which can be 865 rigorously defined or derived, they nevertheless have the ontological status of being 866 purely mental objects. In this way, intuitionism is a form of the conceptualism which 867 harks back to Aristotle (Bostock 2009, p. 44). By making mathematics mental, 868 intuitionists avoid problems of epistemic access, since naturally we can access the 869 objects of our own minds. There is an ontological issue associated with insisting 870 that mathematical objects are purely mental. We must ask why they have properties 871 independent of the individual mind which explores or creates them. Thus an obvious 872 objection to this conceptualism is that these objects must rely on some deeper 873 structure that at the very least is shared by other human minds. But that suggests 874 that there is something more fundamental than the mathematics itself - and the 875 intuitionist certainly cannot claim that something like logic, language, "structure", 876 or a platonic realm of ideas is more fundamental. 877

Indeed, the founder of intuitionism, Luitzen Egbertus Jan Brouwer (1881-1966), 878 echoing Kant and in agreement with the mathematicians Felix Klein (1849-1925) 879 and Henri Poincaré (1854-1912), believed that the basic axioms of mathematics 880 are intuited. In this he meant that they were known to our minds, but not that 881 our intuition reveals anything which exists outside of the mind. He went further, 882 claiming a stark independence of mathematics from both language and logic. If 883 there was any relation there, it was that logic and language rested on mathematics, 884 rather than the other way around. This was revolutionary, and put Brouwer directly 885 in harm's way. His point of view, given in Brouwer (1907), was directly contrary 886 to both logicism and to Hilbert's program of formalism as it developed in the 887 1920s. Hilbert's program was popular and Hilbert himself was powerful. Brouwer 888 apparently did nothing other than disagree with Hilbert, yet Hilbert had Brouwer 889 removed from the editorial board of the prestigious journal Mathematische Annalen, 890 and sought to discredit him at every turn (van Dalen 2008, p. 800).

\section*{Author's Proof}

Having discussed construction, the law of excluded middle, and the redefinition 892 of "truth", I now consider the other idea which intuitionists reject, the axiom of 893 choice. Stated in words, it says that we can always select an element from each of a 894 family of sets. This is uncontroversial for a finite family of finite sets, but becomes 895 controversial otherwise, because an infinite number of choices can be made. For 896 most mathematicians this is not a problem; to put it crudely, the fact that there are an 897 infinite number of choices which can be made guarantees that one can be made. For 898 an intuitionist, the mere fact that a choice can be made is not enough: the choice must 899 be specified in order to count as a construction. Yet when a classical mathematician 900 invokes the axiom of choice it is usually for very general cases in which specificity 901 is impossible (or for which there is no perceived benefit in specifying the object). 902

To make this point clearer, suppose we have a countable number of sets, each of 903 which is countable. Now suppose that we wish to form a superset containing all of 904 the elements in all of the sets and to ask whether that new set is itself countable. 905 This is easy for a classical mathematician. For each set, she first lists the elements, 906 which we know can be done because every set in the family is countable. Then 907 she runs the lists together in turn, and hey presto, the superset is listed out, and 908 therefore countable. There is no "problem" with this proof for most mathematicians, 909 but the intuitionist asks: how did she choose the ordering for each set, and for the 910 family of sets? There is an infinite number of choices in each case, so the choice 911 function is unspecified. The proof uses (in quite a disguised way) the axiom of 912 choice. Whenever the axiom of choice is used, the proof is non-constructive. 913

Uncountable infinity is the heart of the rejections which define intuitionism. To 914 be clear, if the axiom of choice is invoked either in a finite context or in one which 915 is countable, then a choice function can be defined and the intuitionist is happy. 916 The problem is in the uncountable case. Likewise, the law of excluded middle is 917 connected with the notion of infinity; recently Bridges has argued that the continuum 918 hypothesis implies LEM (Bridges 2016). Only potential infinities, namely those 919 accessible through enumeration or by an algorithmic process are acceptable to the 920 intuitionist.

But to return to our starting point that intuitionistic mathematics is mathematics 922 done with intuitionistic logic, we note that it is sometimes possible to construct 923 intuitionistic theories of mathematical objects which in classical mathematics 924 require uncountable infinities. For example, Brouwer introduced the notion of 925 choice sequences to create a theory of the continuum (that is, the real number 926 line) which was apparently out of reach to intuitionists (Brouwer 1981). Brouwer 927 never defined choice sequences carefully enough to avoid problems, but Bishop's 928 constructive mathematics (Bishop 1967; Bishop and Bridges 1985) does contain an 929 apparently sound theory of the reals which avoids uncountable infinities. This is 930 an example of how something which in classical mathematics requires uncountable 931 infinities can be given an intuitionistic theory which only uses countable processes. 932

\section*{Author's Proof}

\subsection*{15.5.1 Intuitionism Under the Lens}

Intuitionism has never been popular with mathematicians, and few applied math-
934 ematicians insist on a constructive approach to their work. But is it possible to 935 argue that intuitionistic logic's insistence on countability, apparently so true of our 936 physical universe, is the reason for the success of mathematics in modelling the 937 world?

Does the universe only appear to rely on countability, and so are there unavoid- 939 able instances of uncountable infinities, both in our theories of the world and in the 940 universe itself? Since infinity is implied in our best theories of the very big and the 941 very small, it is no wonder that when intuitionism is under the TEAM lens what 942 comes into focus is quantum mechanics (QM) and general relativity (GR). 943

It may seem that on a large scale our universe is a finite (though huge) thing 944 containing a finite number (though huge) of discrete things. But we do not know 945 that to be a fact. At the other end of the scale, quantum mechanics suggests that 946 the structure of spacetime is granular at the very smallest of time and length scales. 947 However, that prediction has not yet been verified. It may be the result of our most 948 successful and accurate theory of science, but we do not know it to be true. Could 949 the universe be infinite in extent? Might spacetime be a continuum? 950

Continuous spacetime does not necessarily cause a fatal problem for intuitionism 95 since Bishop's constructive mathematics has an intuitionistic theory of continua. A potentially deeper argument, given by Hellman (1993, 1997), that intuitionism must be wrong because QM requires a theory of unbounded operators which seems to defy intuitionism, has been refuted by Bridges \((1995,1999)\) on the grounds that such a theory is possible with an intuitionistic approach. These Hellman-type arguments have also been refuted in the context of GR: see Billinge's (2000) response to Hellman (1998). However, what of mathematical objects essential to our theories of the universe but for which no intuitionistic theory has yet been found? Does their 959 necessity destroy intuitionism? Billinge (2000) says no, when she powerfully argues 960 that just because we have not yet found a constructive proof of something does not 961 mean that it cannot ever be found.

The intuitionist's belief that the objects of mathematics are purely mental avoids 963 the plantonist's problem of epistemological access. But the TEAM lens shows us 964 a deeper ontological problem: if the objects of mathematics are purely mental, 965 why should they ever have any correspondence with the real world? Why should mathematics ever be useful?

\subsection*{15.6 Discussion and Conclusion}

The platonist see mathematics as eternal and changeless, existing outside of 969 spacetime. But how do we access such an ideal realm? How does this ideal realm 970 cast the physical "shadows" in our world which mathematics explains? The logicist 97

\section*{Author's Proof}
reduces mathematics to logic in disguise. But why should logic explain the world? Does logic have a platonic existence? The formalist is the ultimate reductionist, claiming that mathematics is naught but a game, a meaningless shuffling of semantically empty symbols. But why should the game of mathematics be able to 975 explain the world? Why that game and not another? Finally, conceptualism returns 976 with the intuitionists, who believe that only construction means truth. But while 977 intuitionistic logic and an insistence on construction are not at odds with our best theories of the universe (our best applied mathematics), the intuitionist believes that all mathematical objects are mental constructions. Why should such mental constructions explain the world?

80

This last point is subtle, and slippery. Of course we expect that any idea which 982 explains the world will be in our minds; that is where we experience ideas. The 983 issue concerns how an idea can come to mimic and explain the outside world. This 984 is a debate with a long history. In the middle stand two figures directly opposed 985 to one another. Kant believed that our minds are primary, and thus that our applied 986 mathematics works not because our minds come to mirror reality, but because reality 987 must conform to the mind in order to be perceptible and comprehensible to us. By 988 contrast, Hume was an empiricist, naturalist, and sceptic, who believed that our 989 concepts came from experience of an independently-existing natural world, without 990 imposing an ontology on that world. At the far end of the chronology is Plato, 991 who believed that our mental realm can access a world of forms which projects 992 the physical world. This raises more questions than it answers. Nevertheless, it 993 seems to be the perspective of many theoretical physicists today, perhaps without 994 considering its epistemic problems. The modern structuralist, by contrast, might 995 argue that structure is fundamental, and so our mental world can be structured to 996 mimic the external world. We have already observed in the Formalism section that 997 such a perspective seems to pass the buck on the ontological status of structure. 998 This structuralist approach seems attractive to physicists such as Deutsch, whom we 999 encountered in our discussion of structuralism above, and who otherwise seems to 1000 be a realist in his worldview. 1001

When physicists make pronouncements about mathematics they are usually 1002 motivated not by concern about what mathematics is or what its foundations are, 1003 but only by what sort of mathematics should or can be taken to be the foundation 1004 of physics. For example, the Nobel laureate in Physics Gerard 't Hooft (b. 1946) 1005 wants only finiteness in his theories of quantum mechanics (Musser 2013). It is not 1006 completely clear what he means by this, but it seems to be a kind of countability, 1007 since he mentions basing theory on the integers or finite sets (though the former 1008 are countably infinite). 't Hooft seems to be directly motivated by the granular 1009 discreteness of spacetime at the Planck scale predicted by QM. It would be wrong 1010 to suggest that he is rejecting classical mathematics and a platonic ontology in 1011 favour of, say, neo-Fregean logic, intuitionism, or a Hilbertean finitism, when he 1012 is only restricting himself to finite methods and objects for the mathematics of QM. 1013 He says nothing about the ontological status of other mathematics. Likewise, the 1014 physicist Lee Smolin (b. 1955) claims in his (2000) that topos theory is "required" 1015 for cosmology, and topos theory itself requires constructive set theory, a form of 1016

\section*{Author's Proof}
intuitionism. Once again, this is not a statement of ontological intent for the whole of mathematics, just for what mathematics can be applied to physics. In both cases, 1018 the question of epistemology is left open, as is the ontological status of the objects 1019 being studied. However, when applied mathematicians such as these physicists do 1020 not explicitly acknowledge their adopted philosophical position they may overlook 1021 some difficulties, especially when their position combines ideas from different 1022 philosophical schools. This seems particularly acute when the physical objects are \({ }_{1023}\) considered real but the mathematics used to model them is considered to be entirely 1024 mental. Note that neither of these physicists claim that the mathematics which helps 1025 them is the only mathematics which is true; there is no evidence that they adhere to 1026 the Quine/Putnam indispensability argument.

1027
The TEAM lens reveals other issues which we have not discussed above. For 1028 example, it is one thing to say that applied mathematics is possible, but we could 1029 also ask why we are able to do it. Why is the mathematics which seems to do so well 1030 at explaining the world accessible to our minds? We can imagine a universe in which 1031 rational, intelligent beings existed who were incapable of developing sufficiently 1032 advanced mathematics to understand that universe even though it were capable of 1033 being comprehended mathematically.

Also, what about beauty, or the role of aesthetics? This is a commonly- 1035 observed inspiration for both mathematicians and those who apply mathematics. 1036 The mathematician GH Hardy (1877-1947) said of mathematics "Beauty is the first 1037 test: there is no permanent place in the world for ugly mathematics" (Hardy 1940). 1038 Einstein is quoted in Farmelo (2002, p. xii) as saying "the only physical theories 1039 that we are willing to accept are the beautiful ones", while physicist colleague 1040 Hermann Weyl (1885-1955) said "My work has always tried to unite the true with 1041 the beautiful and when I had to choose one or the other, I usually chose the beautiful" 1042 (quoted in Stewart 2007, p. 278). But why should an aesthetic of mathematics help 1043 create new mathematics, and new applied mathematics? Are we simply wrong about beauty, especially when we use it as a selection criterion? Could ugly theories better explain the world, and even be more fecund mathematically? Perhaps we have been misled by mathematics because we are in the early days of science; are we even wrong about the power of mathematics to explain the world?

Another question we have overlooked as we peered down the TEAM lens More specifically, if I have a mathematical model of a physical process which I then analyse mathematically to arrive at a physically-verifiable result, need each of the intermediate logical steps also have physical meaning? This question has
\[
\text { been considered by Nancy Cartwright, among others; see for example her (1984), in } 1054
\] been considered by Nancy Cartwright, among others; see for example her (1984), in which she says "derivations do not provide maps of causal processes. A derivation 1055 may start with the basic equations that govern a phenomenon. It may be highly 1056 accurate, and extremely realistic. Yet it may not pass through the causes." This question, and the others raised above, deserve more attention.

\section*{Author's Proof}

\subsection*{15.6.1 Conclusion}

We do not know the ontological or epistemological status of mathematical objects.
1060
We do not know why mathematics can be applied to the world around us. 1061 Though it was too much to hope that the TEAM lens would itself provide an 1062 experimentum crucis which would eliminate all but one philosophy of mathematics 1063 and therefore resolve a millennia-old debate, the TEAM lens has brought into 1064 focus the questions which must be clearly addressed when defending a particular 1065 philosophical standpoint.

1066
I have attempted to summarise the systems of ideas which constitute these 1067 standpoints in four broad schools. Despite presenting them as separate, they are 1068 united in their concern with the ontological and epistemological questions, and in their focus on key ideas: what is number, what is a set, what is a proof, what is infinity, and more besides. As we saw, one person who has united them in a stunningly destructive way was Kurt Gödel.

Another figure may pull some of these strands together. Max Tegmark introduced the radically realist Mathematical Universe Hypothesis, which earns him a capital P on Platonist if anyone ever deserves it. The MUH is a tentative, new, and controversial idea, and my positive view of it may not be representative. But I do think it takes seriously these philosophical questions and that it represents an important attempt to think clearly about them, and possibly to unite some of the schools. For example, structuralists and fictionalists might observe that in the MUH all mathematical objects exist and all things which exist are mathematical, and so there is no need for any particular structure or fiction to be privileged. Even the debate between Kantian innateness and Humean empiricism may be erased: if the mind is a self-aware substructure of the mathematical universe, then there is no epistemic gap between the mind and the world. For platonists, the problem of epistemological access may be solved because the MUH is more than plenitudinous platonism, which addressed the epistemic concerns. However, it also potentially fixes the platonist ontological issues and leaves us with an inspiring thought: if everything is mathematics and mathematics is everything, then there is only one realm. We are self-aware substructures of mathematics.

\section*{References}

Bagaria, J. (2008). Set theory. In T. Gowers (Ed.), The Princeton companion to mathematics. 1091 Princeton: Princeton University Press. 1092
Balaguer, M. (1998). Platonism and anti-Platonism in mathematics. Oxford: Oxford University 1093 Press.

1094
Balauger, M. (2016). Platonism in metaphysics. In E. N. Zalta (Ed.), The Stanford encyclopedia 1095 of philosophy (Spring 2016 Edition), viewed 12 Feb 2017. https://plato.stanford.edu/archives/ 1096 spr2016/entries/platonism/

1097
Barrow, J. D. (2000). Between inner space and outer space. Oxford: Oxford University Press.

\section*{Author's Proof}

Barrow-Green, J., \& Siegmund-Schultze, R. (2015). The history of applied mathematics. In N. 1099 J. Higham (Ed.), The Princeton companion to applied mathematics. Princeton: Princeton 1100 University Press.

1101
Benacerraf, P. (1965). What numbers could not be, Philosophical Review, 74, 47-73. Reprinted 1102 in Benacerraf, P., \& Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings, 1103 second edition. Cambridge: Cambridge University Press.

1104
Benacerraf, P. (1973). Mathematical truth. In P. Benacerraf \& H. Putnam (Eds.), (1983) Philosophy 1105 of mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press. 1106
Benacerraf, P., \& Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (2nd 1107 ed.). Cambridge: Cambridge University Press.

1108
Billinge, H. (2000). Applied constructive mathematics: On Hellman's 'Mathematical construc- 1109 tivism in spacetime'. The British Journal for the Philosophy of Science, 51(2), 299-318. 1110
Bishop, E. (1967). Foundations of constructive analysis. New York: McGraw-Hill. 1111
Bishop, E., \& Bridges, D. (1985). Constructive analysis. Heidelberg: Springer Verlag. 1112
Bostock, D. (1979). Logic and arithmetic (Vol. 2). Oxford: Clarendon Press. 1113
Bostock, D. (1980). A study of type-neutrality. Journal of Philosophical Logic, 9, 211-296, 363- 1114 414.

Bostock, D. (2009). Philosophy of mathematics. Chichester: Wiley-Blackwell. 1116
Bridges, D. S. (1995). Constructive mathematics and unbounded operators: A reply to Hellman. 1117 Journal of Philosophical Logic, 24(5), 549-561. 1118
Bridges, D. S. (1999). Can constructive mathematics be applied in physics? Journal of Philosoph- 1119 ical Logic, 28(5), 439-453. 1120
Bridges, D. S. (2016). The continuum hypothesis implies excluded middle. In D. Probst \& P. 1121 Schuster (Eds.), Concepts of proof in mathematics, philosophy, and computer science. Berlin: 1122 Walter De Gruyter.

1123
Brouwer, L. E. J. (1907). On the foundations of mathematics. PhD thesis, Universiteit van 1124 Amsterdam. English translation in Brouwer, L. E. J. (1975). Collected Works 1. Philosophy 1125 and foundations of mathematics (Heyting, A., Ed.). North-Holland. 1126
Brouwer, L. E. J. (1981). Brouwer's Cambridge lectures on intuitionism (D. van Dalen, Ed.). 1127 Cambridge: Cambridge University Press. 1128
Bueno, O., \& Linnebo, O. (Eds.). (2009). New waves in philosophy of mathematics. Basingstoke: 1129 Palgrave Macmillan. 1130
Cartwright, N. (1984). Causation in physics: Causal processes and mathematical derivations. 1131 Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 1984. 1132 Volume Two: Symposia and Invited Papers, pp. 391--404. 1133
Chabert, J.-L. (2008). Algorithms. In T. Gowers (Ed.), The Princeton companion to mathematics. 1134 Princeton: Princeton University Press. 1135
Cooper, J. M. (Ed.). (1997). Plato: Complete works. Indianapolis: Hackett Publishing Company. 1136
Courant, R., \& Robbins, H. (1941). What is mathematics? Oxford: Oxford University Press. 1137
Davis, P. J., \& Hersh, R. (1981). The mathematical experience. Boston: Birkhäuser. 1138
Dedekind, R. (1888). The nature and meaning of numbers, translated from the German by WW 1139 Beman in Dedekind, R. (1963). Essays on the theory of numbers. New York: Dover. 1140
Deutsch, D. (2011). The beginning of infinity: Explanations that transform the world. London: 1141
Allen Lane. 1142
Dummett, D. (1977). Elements of intuitionism. Oxford: Clarendon Press. 1143
Extance, A. (2016). How DNA could store all the world's data. Nature, 537, 22-24. 1144
Farmelo, G. (2002). It must be beautiful: Great equations of modern science. London: Granta 1145 Books.
Ferreirós, J. (2008). The crisis in the foundations of mathematics. In T. Gowers (Ed.), The 1147 Princeton companion to mathematics. Princeton: Princeton University Press. 1148
Field, H. (1980). Science without numbers. Princeton: Princeton University Press. 1149
Field, H. (1992). A nominalistic proof of the conservativeness of set theory. Journal of Philosoph- 1150 ical Logic, 21, 111-123. 1151

\section*{Author's Proof}
Gardner, M. (1970). Mathematical games - The fantastic combinations of John Conway's new ..... 1152

solitaire game "life". Scientific American, 223, 120-123. ..... 1153
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter ..... 1154
Systeme I. Monatshefte für Mathematik Physik, 38, 173-198. English translation in Gödel, K. ..... 1155
(1986). Collected works I. Publications 1929-1936 (Feferman, S., et al., Eds.). Oxford: Oxford ..... 1156
University Press. ..... 1157
Gowers, T. (2008). The Princeton companion to mathematics. Princeton: Princeton University ..... 1158Press.
Hardy, G. H. (1940). A mathematician's apology. Cambridge: Cambridge University Press.1159
Reprinted in 1992. ..... 1161
Hellman, G. (1993). Constructive mathematics and quantum mechanics: Unbounded operators and ..... 1162the spectral theorem. Journal of Philosophical Logic, 22(3), 221-248. 1163
Hellman, G. (1997). Quantum mechanical unbounded operators and constructive mathematics - a ..... 1164
rejoinder to Bridges. Journal of Philosophical Logic, 26(2), 121-127. ..... 1165
Hellman, G. (1998). Mathematical constructivism in spacetime. The British Journal for thePhilosophy of Science, 49(3), 425-450.1167
Higham, N. J. (Ed.). (2015a). The Princeton companion to applied mathematics. Princeton: ..... 1168
Princeton University Press.
Higham, N. J. (2015b). What is applied mathematics. In N. J. Higham (Ed.), The Princeton ..... 1169 ..... 1170
companion to applied mathematics. Princeton: Princeton University Press. ..... 1171
Hilbert, D. (1899). The foundations of geometry. Translated from German by EJ Townsend, 1950. ..... 1172
La Salle: Open Court Publishing Company. ..... 1173
Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8, ..... 1174437-479, translated from the German by Newson, MW. 1175Hilbert, D. (1926). On the infinite. Mathematische Annalen, 95, 161-190. Translated from German 1176by E Putnam and GJ Massey, in Benacerraf, P., \& Putnam, H. (Eds.). (1983). Philosophy of 1177mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press. 1178
Horsten, L. (2016). Philosophy of mathematics. In E. N. Zalta (Ed.), The Stanford encyclopedia ..... 1179
of philosophy (Winter 2016 edition), viewed 12 Feb 2017. https://plato.stanford.edu/archives/ ..... 1180
win2016/entries/philosophy-mathematics/ ..... 1181
Krauss, L. (2012). A universe from nothing: Why there is something rather than nothing. New ..... 1182

York: Free Press. ..... 1183
Linnebo, Ø. (2013). Platonism in the philosophy of mathematics. In E. N. Zalta (Ed.), The ..... 1184
Stanford encyclopedia of philosophy (Winter 2013 Edition), viewed 26 Feb 2017. https:// ..... 1185
plato.stanford.edu/archives/win2013/entries/platonism-mathematics/ ..... 1186
Linsky, B., \& Zalta, E. N. (1995). Naturalized platonism versus platonized naturalism. Journal ofPhilosophy, 92(10), 525-555.1188
Linsky, B., \& Zalta, E. N. (2006). What is neologicism? The Bulletin of Symbolic Logic, 12(1), ..... 1189

60-99. ..... 1190
Maddy, P. (1990). Realism in mathematics. Oxford: Clarendon Press. ..... 1191
Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University ..... 1192Press.1193
Mohr, H. (1977). Lectures on structure and significance of science. New York: Springer-Verlag. ..... 1194

Reprinted 2013. ..... 1195
Musser, G. (2013). Does some deeper level of physics underlie quantum mechanics an interview ..... 1196
with Nobelist Gerard 't Hooft, viewed 1 Feb 2017. https://blogs.scientificamerican.com/ ..... 1197
critical-opalescence/does-some-deeper-level-of-physics-underlie-quantum-mechanics-an- ..... 1198
interview-with-nobelist-gerard-e28099t-hooft/ ..... 1199
Parsons, C. (1979/1980). Mathematical intuition. Proceedings of the Aristotelian Society, 80, 145- ..... 1200

168. ..... 1201
Paseau, A. (2007). Scientific platonism. In M. Leng, A. Paseau, \& M. Potter (Eds.), Mathematical ..... 1202
knowledge. Oxford: Oxford University Press. ..... 1203

\section*{Author's Proof}

Pincock, C. (2009). Towards a philosophy of applied mathematics. In O. Bueno \& O. Linnebo 1204 (Eds.), New waves in philosophy of mathematics (pp. 173-194). Basingstoke: Palgrave 1205 Macmillan.
Putnam, H. (1971). Philosophical logic. New York: Harper \& Row. 1207
Quine, W. V. (1948). On what there is. Review of Metaphysics, 2, 21-38. 1208
Reid, C. (1996). Hilbert. New York: Springer-Verlag.
1209
Ruelle, D. (2007). The mathematician's brain. Princeton: Princeton University Press. 1210
Russell, B., \& Whitehead, A. N. (1910). Principia mathematica (Vol. 1). Cambridge: Cambridge 1211 University Press. 1212
Smolin, L. (2000). Three roads to quantum gravity. London: Weidenfeld \& Nicolson. 1213
Smoryński, C. (1977). The incompleteness theorems. In J. Barwise (Ed.), Handbook of mathemat- 1214 ical logic (pp. 821-866). Amsterdam: North-Holland. 1215
Sokal, A. D. (1996). Transgressing the boundaries: Towards a transformative hermeneutics of 1216 quantum gravity. Social Text, 46/47, 217-252.

1217
Sokal, A. D. (2008). Beyond the hoax: Science, philosophy and culture. Oxford: Oxford University 1218 Press.
Stewart, I. (2007). Why beauty is truth. New York: Basic books. 1220
Tegmark, M. (2008). The mathematical universe. Foundations of Physics, 38(2), 101-150. 1221
Tegmark, M. (2014). Our mathematical universe. New York: Vintage books. 1222
van Dalen, D. (2008). Luitzen Egbertus Jan Brouwer. In T. Gowers (Ed.), The Princeton companion 1223 to mathematics. Princeton: Princeton University Press. 1224
Weinberg, S. (1992). Dreams of a final theory. New York: Pantheon books. 1225
Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. 1226 Communications on Pure and Applied Mathematics, 13, 1-14. 1227
Wikipedia. (2017). Mathematical universe hypothesis, viewed 26 Feb 2017. https:// 1228 en.wikipedia.org/wiki/Mathematical_universe_hypothesis 1229
Wilson, P. L. (2014). The philosophy of applied mathematics. In S. Parc (Ed.), 50 visions of 1230 mathematics (pp. 176-179). Oxford: Oxford University Press. 1231
WolframAlpha. (2017). 2016 weather in Christchurch, New Zealand, viewed 21 Feb 2017. http:// 1232 www.wolframalpha.com/input/?i=2016+weather+in+christchurch,+new+zealand 1233```


[^0]:    Michael E. Cuffaro is a postdoctoral research fellow of the Rotman Institute 15 of Philosophy at the University of Western Ontario, and an external member of 16 the Munich Center for Mathematical Philosophy at LMU Munich. His research 17 focuses on the philosophy of physics, the philosophy of computing, as well as on 18 the history of and more general questions within the philosophy of science and 19 mathematics. He is co-editor of the interdisciplinary volume: Physical Perspectives 20 on Computation, Computational Perspectives on Physics (Cambridge University 21 Press, 2018) and co-author of the Stanford Encyclopedia of Philosophy entry 22 on "Quantum Computation". He has published in such journals as: The British ${ }^{23}$ Journal for the Philosophy of Science, Philosophy of Science, Studies in History 24 and Philosophy of Modern Physics, History of Philosophy Quarterly, and Politics 25 Philosophy and Economics. 2

[^1]:    S. O. Hansson ( $\triangle$ )

    Department of Philosophy and History, Royal Institute of Technology (KTH), Stockholm, Sweden
    e-mail: soh@kth.se

[^2]:    S. O. Hansson ( $\boxtimes$ )

    Division of Philosophy, Royal Institute of Technology (KTH), Stockholm, Sweden
    e-mail: soh@kth.se

[^3]:    ${ }^{1}$ According to Plato, at least one Athenian stone mason, namely Socrates, was versed in the learned geometry of his time. See McLarty (2005) for a useful discussion of the geometric ideas of the Platonic Socrates.

[^4]:    ${ }^{2}$ More precisely: They lack translational symmetry.

[^5]:    ${ }^{3}$ This is an early example of the difference between technological and more theoretical ideals of precision (Hansson 2007).

[^6]:    S. L. Uckelman ( $\boxtimes$ )

    Department of Philosophy, Durham University, Durham, UK
    e-mail: s.l.uckelman@durham.ac.uk

[^7]:    principally arranged by the early medieval divisions of time, moving from the smallest units (the atom) to the passing of cycles, and ends with a brief chronicle of sorts framing the whole of human history in 532-year Easter cycles (Palmer 2010, p. 130),
    and also includes material on the calculation of the leap-year day. It also compares the relative merits of different ways of calculating lunar and solar calendars, eventually favoring the Greek methods of Dionysius Exiguus over the Roman

[^8]:    ${ }^{1}$ While Bede's treatise is the earliest known text to include such a conversion, cf. Hawk (2012, pp. 35, 37), it was by no means the only computistic text to incorporate such material (Cróiní 1982, pp. 283-285).

[^9]:    ${ }^{2}$ For further information on the significance of computistic texts on the development of early medieval science, see Borst $(1993,2006)$.

[^10]:    ${ }^{3}$ For computational aspects of astronomy, see Chabas and Goldstein (2014) and McCluskey (1998).

[^11]:    ${ }^{4}$ Because many of them were associated with Merton College, they are often also known as the 'Merton Calculators'; but because not all were members of Merton, this is not an optimal label.
    ${ }^{5}$ Kilvington is often cited as the first of the Calculators; however, his methods differed from that of later calculators (Kretzmann 1988, p. 226; Ashworth 1992, p. 520), and it is likely that he left Oxford before the others Calculators really became active (Sylla 1999). Nevertheless, his treatises were enormously influential on the later Calculators, especially on William Heytesbury, student of Kilvington, whose Regule solvendi sophismata (1335) is indebted to Kilvington's Sophismata (Wilson 1956, p. 7).

[^12]:    ${ }^{6}$ Adamson (Adamson 1919, p. 27) translates John of Salisbury's machinam as "method", and the Kneales translate it as "engine" (Kneale and Kneale 1984, p. 201).
    ${ }^{7}$ The Kneales do not say who these "some people" are, and I have had no success in determining this.
    ${ }^{8}$ For biographical information, see Llull and Bonner (1985, vol. 1, pp. 3-52), which includes extensive excerpts from Llull's autobiography.

[^13]:    ${ }^{9}$ The diagrams of the first, second, third, and fourth figures of the Ars brevis as found in the Escorial MS are reproduced in Llull and Bonner (1985) between pages 582 and 583.

[^14]:    

[^15]:    ${ }^{10}$ For further discussion of Llull's system, see Bonner (2007), Llull and Bonner (1985), and Uckelman (2010).

[^16]:    W. Lenzen ( $\boxtimes$ )

    Department of Philosophy, Osnabrück University, Osnabrück, Germany
    e-mail: lenzen@uos.de

[^17]:    ${ }^{1}$ https://en.wikipedia.org/wiki/Calculus_ratiocinator; online access January 3, 2017. The concluding quote comes from Rogers (1963), p. 943.

[^18]:    ${ }^{2}$ Cf. Mackensen (1990), p. 56-57 (my translation).
    ${ }^{3}$ In "Machina arithmetica in qua non additio tantum et subtractio sed et multiplicatio nullo, divisio vero paene nullo animi labore peragantur" Leibniz wrote: "Indignum est excellentium virorum horas servili calculandi perire quia Machina adhibita velissimo cuique secure transcribi possit." The translation is taken from "Leibniz on his calculating machine" in Smith (1929), 173-181.

[^19]:    ${ }^{4}$ Cf. Mackensen (1990), p. 58 (my translation). A facsimile of Leibniz's manuscript "De progressione dyadica" may be found in Stein and Heinekamp (1990), p. 109.
    ${ }^{5}$ Cf. Mackensen (1990), p. 59 (my translation).

[^20]:    ${ }^{6}$ Cf. A I 2, p. 125; the translation is from Rescher (2012), p. 35-36.

[^21]:    ${ }^{7}$ Cf. A IV 4, p. 68; translation from Rescher (2012), p. 37.

[^22]:    ${ }^{8}$ This remark, which Louis Couturat chose as motto for his ground-breaking book (1901), was written by Leibniz on the margin of the "Dialogus" of August 1677; cf. GP 7, p. 191. As far as I know, Leibniz nowhere seriously discussed the problem of the proper creation of the world, i.e. the transition from the mere idea to its physical actualization.
    ${ }^{9}$ Cf. Lenzen (1990), especially Chap. 6.

[^23]:    ${ }^{10}$ Cf. GP 7, p. 200; the translation has been adopted from https://en.wikiquote.org/wiki/Gottfried_ Leibniz
    ${ }^{11}$ Cf. A VI, 4, p. 443: "Itaque profertur hic calculus quidam novus et mirificus, qui in omnibus nostris ratiocinationibus locum habet, et qui non minus accurate procedit, quam Arithmetica aut Algebra".
    ${ }^{12}$ Parkinson (1966), p. 10.
    ${ }^{13}$ Cf. the fragment "De Numeris Characteristicis ad Linguam universalem constituendam" in GP 7, p. 184-9. The translation has been adopted with some modifications from Ariew \& Garber (1989), p. 6-8.
    ${ }^{14}$ Cf. GP 7, p. 185 and p. 187.

[^24]:    ${ }^{15}$ Cf. GP 7, p. 189, and Ariew and Garber (1989), p. 9-10.
    ${ }^{16}$ Cf. "Elementa Calculi" in Couturat (1903), p. 49-57; the translation has been adopted from Parkinson (1966), p. 17-24.
    ${ }^{17}$ According to Leibniz's condition, the valid mood DariI would become invalid. The assignment of numbers $B=3, C=6, D=2$ satisfies the premise 'All $C$ are $D$ ', because 6 can be divided by 2 ; furthermore 'Some $B$ are $C$ ' becomes true because the number of the predicate, $C=6$, is divisible by the number of the subject, $B=3$. But the conclusion 'Some $B$ are $D$ ' would result as false since neither $B=3$ can be divided by $D=2$, nor conversely $D$ by $B$. Thus also Leibniz soon noticed that for the truth of a particular affirmative proposition "it is not necessary that the subject can be divided by the predicate or the predicate divided by the subject"; cf. C., p. 57.
    ${ }^{18} \mathrm{C}$. "Regulae ex quibus de bonitate consequentiarum [...] judicari potest, per numeros", in C. p. 77-84; an English version may be found in Parkinson (1966), p. 25-32.

[^25]:    ${ }^{19}$ Cf. C., p. 25-28; condition (vi) was put forward only in another fragment. Cf. C., p. 245-7: "Ex hoc calculo omnes modi et figurae derivari possunt per solas regulas Numerorum. Si nosse volumus an aliqua figura procedat vi formae, videmus an contradictorium conclusionis sit compatibile cum praemissis, id est an numeri reperiri possint satisfacientes simul praemissis et contradictoriae conclusionis; quodsi nulli reperiri possunt, concludet argumentum vi formae."
    ${ }^{20}$ Cf. GP 7, p. 189, or Ariew and Garber (1989), p. 10.

[^26]:    ${ }^{21}$ Cf. Arnauld and Nicole (1683).
    ${ }^{22}$ Cf. C., p. 80. In Arnauld \& Nicole (1683) the principle of subalternation is put forward informally as follows: "Les propositions particulières sont enfermés dans les générales de même nature, et non les générales dans les particulières, I dans A , et O dans E , et non A dans I , ni E dans O ".

[^27]:    ${ }^{23}$ Cf. C., p. 410-411.
    ${ }^{24}$ Cf. C., p. 411.

[^28]:    ${ }^{25}$ As will turn out below, this weak condition of existential import is tantamount to the assumption that concept $B$ is self-consistent!
    ${ }^{26}$ Cf. A VI, 4, p. 274: "Subjectum $a$ in exemplo praecedenti, Omnis homo. Semper enim signum universale subjecto praefixum intelligatur".
    ${ }^{27}$ Cf. GP 7, p. 218 or the translation in Parkinson (1966), p. 33. For the sake of uniformity, Leibniz's small letters ' $a$ ', ' $b$ ' have been replaced by capitals ' $A$ ', ' $B$ '.
    ${ }^{28}$ Cf. C., p. 367 or the translation in Parkinson (1966), p. 57.

[^29]:    ${ }^{29}$ Cf. C., p. 53 or the translation in Parkinson (1966), p. 20-21. A similar distinction may also be found in Arnauld \& Nicole (1683), p. 51-2.
    ${ }^{30}$ Cf. GP 5, p. 469.
    ${ }^{31}$ Cf. C., p. 235.

[^30]:    ${ }^{32}$ Cf. Quine (1953), p. 21.
    ${ }^{33}$ Cf. A VI, 3, p. 506.
    ${ }^{34}$ Cf. A VI, 4, p. 154.

[^31]:    ${ }^{35}$ Leibniz stated these laws especially in the "Generales Inquisitiones". Cf. A VI, 4, p. 751 "Propositio per se vera est $A$ coincidit ipsi $A$ "; p. 750: "(6) Si $A$ coincidit ipsi $B, B$ coincidit ipsi $A$ $[\ldots](8) \mathrm{Si} A$ coincidit ipsi $B$, et $B$ coincidit ipsi $C$, etiam $A$ coincidit ipsi $B$ ".
    ${ }^{36} \mathrm{Cf}$. A VI, 4, p. 148: " $A B$ est $A$ pendet a significatione huiusmodi compositionis literarum. Hoc ipsum enim vult $A B$, nempe id quod est $A$, itemque $B$ ".
    ${ }^{37}$ Cf. GP 7, p. 221-2, or the translation in Parkinson (1966), p. 40.
    ${ }^{38}$ Cf. Parkinson (1966), p. 40.

[^32]:    ${ }^{39}$ Cf. Parkinson (1966), p. 58, fn. 4.
    ${ }^{40}$ Cf. C., p. 378, or the translation in Parkinson (1966), p. 67.
    ${ }^{41}$ The first quotation is from April 1679, the second from around 1686; cf. A VI, 4, p. 248 and p. 804.
    ${ }^{42} \mathrm{Cf} . \S 96$ of the "General Inquiries", e.g., A VI, 4, p. 767.
    ${ }^{43}$ Cf. § 77 of the "General Inquiries", e.g. A VI, 4, p 764, or the translation in Parkinson (1966), p. 67.

[^33]:    ${ }^{44}$ In the "General Inquiries", the above principles had been formulated as follows: "A proposition false in itself is ' $A$ coincides with not- $A$ '" (§ 11); "If $A=B$, then $A \neq$ not- $B$ " (§ 171, Seventh); "It is false that $B$ contains not- $B$, that is, $B$ doesn't contain not- $B$ " (§43); and " $A$ is $B$, therefore $A$ isn't not- $B$ " (§ 91). Cf. A VI, 4, p. 751, p. 783, p. 755, and p. 766, or the translation in Parkinson (1966), p. 56, p. 83, p. 59, and p. 68.
    ${ }^{45}$ Cf. GRUA, p. 536.
    ${ }^{46} \mathrm{Cf}$. A VI, 4, p. 766: "Non valet consequentia: Si $A$ non est non- $B$, tunc $A$ est $B$, seu Omne animal esse non hominem falsum est, quidem; sed tamen hinc non sequitur Omne animal esse hominem."

[^34]:    ${ }^{47}$ Cf., e.g., § 21 of "Specimina calculi rationalis" in A VI, 4, p. 813: " $A$ non est $B$ idem est quod $A$ est non B."
    ${ }^{48}$ Cf. A VI, 4, p. 218; the quoted example of Apostle Peter only appears in the critical apparatus of variants; Leibniz later replaced it by the less fortunate example 'this piece of gold is a metal' vs. 'this piece of gold is a non-metal'.
    ${ }^{49}$ Cf. A VI, 4, p. 218; critical apparatus, variant (d): "Imo hic patet me errasse, neque enim procedit regula."
    ${ }^{50} \mathrm{Cf}$. A VI, 4, p. 218; in order to avoid confusions, I have interchanged Leibniz's symbolic letters ' $B$ ' and ' $A$ '.

[^35]:    ${ }^{51}$ Cf. A VI, 4, p. 749, fn 8: " $A$ non- $A$ contradictorium est Possibile est quod non continet contradictorium seu $A$ non- $A$. Possibile est quod non est $Y$, non- $Y$ ".
    ${ }^{52}$ Cf. GP 7, p. 211-217, or the translation in Parkinson (1966), p. 115-121.

[^36]:    ${ }^{53}$ Cf. § 55 of the "General Inquiries", e.g. A VI, 4, p. 757, or the translation in Parkinson (1966), p. 60.
    ${ }^{54}$ More exactly, this holds only for the implication $\neg \mathrm{P}(A \sim B) \rightarrow A \in B$, while the converse $A \in B \rightarrow$ $\neg \mathrm{P}(A \sim B)$ is easily proven: If $A \in B$, then (by Cont 3) $A=A B$, hence (by IDEN 6) $A \sim B=A B \sim B$, and thus $(A \sim B) \in(B \sim B)$, i.e. $\neg \mathrm{P}(A \sim B)$. Cf. A VI, 4, p. 863: "Vera propositio categorica affirmativa universalis est: $A$ est $B$, si $A$ et $A B$ coincidat et $A$ sit possibile, et $B$ sit possibile. Hinc sequitur, si $A$ est $B$, vera propositio est, $A$ non- $B$ implicare contradictionem, nam pro $A$ substituendo aequivalens $A B$ fit $A B$ non- $B$ quod manifeste est contradictorium".
    ${ }^{55}$ Cf. Parkinson (1966), p. 81.

[^37]:    ${ }^{56}$ Consider the concept $A(\sim A(\sim B))$ which contains $A(\sim A)$. Since $A \sim A$ is contradictory, it follows by Poss 2 that $A(\sim A(\sim B))$ is also impossible; but from $\neg \mathrm{P}(A(\sim A(\sim B)))$ it immediately follows by Poss 3 that $A(\sim A) \in B!$.
    ${ }^{57}$ The inference from a contradictory pair of premises, $\alpha, \neg \alpha$ to an arbitrary conclusion $\beta$ was well known in Medieval logic, but Leibniz wasn't convinced of its validity. In his excerpts from Caramuel's Leptotatos (A VI 4, p. 1334-1343) he considered the "argumentatio curiose" by means of which, e.g., the conclusion 'Circulus habet 4 angulos' is derived from the premises 'Petrus currit' and 'Petrus non currit'. Although the deduction is based on two impeccable formal principles, Leibniz annotated: "Videtur esse sophisma".
    ${ }^{58}$ Leibniz knew quite well that the corresponding propositional connective $(\alpha \vee \beta)$ can similarly be defined as $\neg(\neg \alpha \wedge \neg \beta)$. For a closer discussion cf. Lenzen (1983), p. 132-133.

[^38]:    ${ }^{59}$ Cf. A VI, 4, p. 751 or the translation in Parkinson (1966), p. 56
    ${ }^{60}$ Cf. A VI, 4, p. 751, fn. 13, or Parkinson (1966), p. 56, fn. 1: "It is noteworthy that for ' $A=B Y$ ' one can also say ' $A=A B$ ' so that there is no need to introduce a new letter".
    ${ }^{61}$ This proof was given by Leibniz himself in the important paper "Primaria Calculi Logic Fundamenta" of August 1690; cf. C., 235.
    ${ }^{62}$ Cf. C., 259-261, or the text-critical edition in A VI, 4, p. 807-814.

[^39]:    ${ }^{63}$ Cf. C., p. 261.
    ${ }^{64}$ Cf. C., p. 260.
    ${ }^{65}$ Cf. A VI, 4, p. 753: "(32) Propositio Negativa. $A$ non continet $B$, seu $A$ esse (continere) $B$ falsum est., seu $A$ non coincidit $B Y$."
    ${ }^{66} \mathrm{Cf}$. A VI, 4, p. 762 or the translation in Parkinson (1966), p. 65, § 72 including fn. 1; for a closer interpretation of Leibniz's logical criteria for individual concepts cf. Lenzen (2004).

[^40]:    ${ }^{67}$ Cf. A VI, 4, p. 217-218.
    ${ }^{68}$ Cf. A VI, 4, p. 218, lines 3-6, variant (d). The long story of Leibniz's cardinal mistake of mixing up ' $A$ isn't $B$ ' and ' $A$ is not- $B$ ' is analyzed in detail in Lenzen (1986).
    ${ }^{69}$ Cf. the text-critical edition in A VI, 4, p. 830-845 and 845-855; English translations may be found in Parkinson (1966), p. 122-130, 131-144.

[^41]:    ${ }^{70}$ Cf., e.g., Parkinson (1966), p. 131-144 (Definition 3, Propositions 13, 14 and 17).
    ${ }^{71}$ Cf. Parkinson (1966), p. 132 (Axiom 1).
    ${ }^{72}$ Cf. Parkinson (1966), p. 132.
    ${ }^{73}$ Cf. C., p. 267.

[^42]:    ${ }^{74}$ Cf. Parkinson (1966), p. 124 (Axiom 2).
    ${ }^{75}$ Cf. C., p. 267, \# 29: "Itaque si $A+B=C$, erit $A=C-B[\ldots]$ Sed opus est $A$ et $B$ nihil habere commune".
    ${ }^{76}$ Cf. Parkinson (1966), p. 123, who misleadingly inserts the word 'term' before the entities $M, A$, $B$, while Leibniz himself spoke more neutrally of "aliquid $M$ "!
    ${ }^{77}$ Cf. Parkinson (1966), p. 132 (Axiom 1).

[^43]:    ${ }^{78}$ Cf. Parkinson (1966), p. 127, Case 2 of Theorem IX: "Let us assume meanwhile that $E$ is everything which $A$ and $G$ have in common - if they have something in common, so that if they have nothing in common, $E=$ Nothing".
    ${ }^{79}$ Cf. Parkinson (1966), p. 128, Theorem X.

[^44]:    D. Swade ( $\square$ )

    Department of Computer Science, Royal Holloway University, London, UK
    e-mail: doron.swade@rhul.ac.uk

[^45]:    M. Priestley ( )

    Independent Researcher, London, UK

[^46]:    ${ }^{1}$ Similar views were widely canvassed in connection with Turing's centenary celebrations in 2012. An alternative perspective, challenging the view that logic played a central role in the development of EDVAC, has been articulated recently by historians including Tom Haigh (2014) and Edgar Daylight (2015). See also Sect. 6.5, below.
    ${ }^{2}$ The stored-program concept has been discussed, and its usefulness as an analytical category critiqued, by Haigh et al. (2014).

[^47]:    ${ }^{3}$ The word "computer" before 1945 did not always refer to a human being. From the 1890s onward, "computers" were also computational aids, sometimes booklets containing useful collections of tables and methods (Hering 1891), but more often special-purpose circular slide-rules embodying particular formulas or algorithms (Halsey 1896). David Mindell (2002) has traced the further usage of the word in the 1930s in the field of fire-control systems in the US military.

[^48]:    ${ }^{4}$ The following two sections draw extensively on the material in Haigh et al. (2016).

[^49]:    ${ }^{5}$ In a 1962 affidavit, Brainerd recalled that Paul Gillon of the Ordnance Bureau, an enthusiastic supporter of the project, came up with the new name.

[^50]:    ${ }^{6}$ Haigh et al. (2016) attributed these plans to Arthur Burks. Subsequent archival research suggests that the work was in fact split between Burks and Adele Goldstine, with Goldstine taking the lead on the mathematical analysis of the problem, expressed in a "setup form", and Burks mapping it onto ENIAC's distributed programming system in the form of a "panel diagram".
    ${ }^{7}$ ENIAC would therefore carry out 2000 integration steps to calculate a single trajectory, many more than was feasible in a hand calculation. This was one reason why the numerical properties of the method to be used had been studied so closely: with many more arithmetical operations being carried out, errors could be expected to accumulate more rapidly.

[^51]:    ${ }^{8}$ Brainerd (1944b) described the machine thus in a memo to the Bureau of Ordnance. By the time the project's first progress report was issued, at the end of March 1945, it had firmly acquired the acronym EDVAC, in which the C stood for "computer".

[^52]:    ${ }^{9}$ Goldstine was an early adopter of the terminology; see, for example, the uses of "programming" and "program routine" by Brainerd (1944a) and Goldstine (1944c) quoted in the previous section.

[^53]:    ${ }^{10}$ It is not clear whether the term "subroutine" originated with von Neumann or whether he took it over from the Mark I programmers. Assuming that Hopper in 1981 was not providing a verbatim report of her 1944 conversation with Bloch, von Neumann's manuscript is the earliest documented usage that I know of, and it is perhaps significant that the term does not appear in Harvard (1946). In fact, the more general term "routine" seems to appear only once in that volume (on page 98), suggesting that it was not in common use in Harvard.
    ${ }^{11}$ See Anonymous (1947) for the complete list of problems assigned to the group. As Bartik (2013, 115-120) described, however, much of the group's effort was diverted to developing EDVAC-style codes in advance of ENIAC's conversion to central control.

[^54]:    ${ }^{12}$ Not to be confused with EDVAC, EDSAC was an electronic computer developed in Cambridge by a team led by Maurice Wilkes. It came into operation in 1949.

[^55]:    ${ }^{13}$ See Priestley (2017) for a more detailed account of Newell and Simon's critique and the take-up of their work by the nascent AI community.

[^56]:    S. Zabell ( $\triangle$ )

    Department of Statistics, Northwestern University, Evanston, IL, USA
    e-mail: zabell@ math.northwestern.edu

