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Preface 1

The relationship between mathematics and the natural sciences has been subject to 2

much discussion and investigation from both historical and philosophical points of 3

view. Since I work at a technological university whose major educational task is 4

to teach and train future engineers, I have plenty of opportunities to observe and 5

reflect on the equally interesting relationship between mathematics and technology. 6

But when searching the literature, I found very little on the topic. 7

It does not take much reflection to realise that this gap in the literature needs to 8

be filled. Already in pre-literate times, craftspeople depended on their mathematical 9

acumen. Early makers of bronze and other mixtures must have understood the notion 10

of proportions. The weaving of fabrics with beautiful symmetrical patterns required 11

considerable mastery of geometry, and so did many of the ancient and medieval 12

building projects. In modern times, the role of mathematics in technology has 13

been further strengthened. Since the nineteenth century, engineering relies heavily 14

on mechanics, electrodynamics, and other mathematics-based physical theories. 15

Conversely, mathematics depends increasingly on electronic computing. There have 16

been substantial philosophical discussions on computer-mediated proofs and, of 17

course, on the notion of computability, but the technological implications seem to 18

have gone largely unnoticed in these deliberations. 19

In this book, investigations of a wide range of aspects on the technology– 20

mathematics relationship have been brought together for the first time. Hopefully, 21

this can inspire further studies. There is much more to be done in this area! 22

I would like to thank the publisher and the series editor Pieter Vermaas for their 23

strong support and the contributing authors for their dedication and all the work they 24

have put into this project. 25

Stockholm, Sweden Sven Ove Hansson 26

February 9, 2018 27

v
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Chapter 1 1

Introduction 2

Sven Ove Hansson 3

Abstract This is a brief introduction to a multi-author book that provides both 4

historical and philosophical perspectives on the relationship between technology 5

and mathematics. It consists mainly in summaries of the chapters that follow. The 6

books has three main parts: The Historical Connection, Technology in Mathematics, 7

and Mathematics in Technology. 8

Mathematics and technology are closely knit together in several ways. Most obvi- 9

ously, modern technology would be unthinkable without mathematics. Engineers 10

receive a much more thorough mathematical education than most other professions, 11

and that is because they need it. Present-day technology is largely based on scientific 12

theories such as solid and fluid mechanics, electrodynamics, thermodynamics, 13

and quantum mechanics, all of which require considerable mathematical training. 14

Engineers often also need additional mathematical tools, for instance for simulation, 15

optimization, and statistical analysis. 16

The relationship between technology and mathematics is a reciprocal one. 17

Technology needs mathematics, but mathematics also needs technology. When 18

computing power has increased, so has the mathematical use of computers. Math- 19

ematicians use them not only for calculations, but also for numerous other tasks, 20

including the search for proofs and validations. Furthermore, the very notion of 21

computability has a central role at the foundations of mathematics. What we 22

can compute is in important respects a technological question. Therefore, issues 23

from the philosophy of technology come to light in studies of the foundations of 24

mathematics. 25

But in spite of all these connections, very few studies have focused on how 26

the two disciplines are related. This book is the first broad investigation of their 27

interrelations. The chapters that follow will show how mathematics and technology 28

S. O. Hansson (�)
Department of Philosophy and History, Royal Institute of Technology (KTH), Stockholm,
Sweden
e-mail: soh@kth.se

© Springer International Publishing AG, part of Springer Nature 2018
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have influenced each other throughout human history, and continue to do so today. 29

They will also show that the technology-mathematics connection gives rise to a 30

multitude of philosophical issues in need of further investigations. 31

1.1 The Historical Connection 32

A series of six chapters puts focus on various aspects of the historical connections 33

between mathematics and technology. Chapter 2, Mathematics and Technology 34

Before the Modern Era, reaches back to the Palaeolithic age, featuring a tally stick 35

about 11,000 years old that testifies to an early practice of the art of counting. In 36

many preliterate societies, the most advanced mathematical activities were carried 37

out by weavers, who were predominantly female. Cloths with intricate geometrical 38

patterns are known from indigenous cultures around the world. To produce them, 39

number series had to be constructed on the basis of geometrical insights. Consid- 40

erable geometrical knowledge was also involved in the great building projects of 41

ancient and medieval times. The complex geometrical patterns on the walls and 42

ceilings of medieval Islamic buildings bear witness to a high level of mathematical 43

proficiency, as do the rose windows of Gothic cathedrals from the same period. 44

In both cases, ruler-and-compass constructions were used. We do not know if 45

craftspeople picked up this technique from learned geometers, or if it was the other 46

way around. A few contacts between mathematicians and mathematically-minded 47

craftspeople have been documented, but the extent and contents of such contacts 48

cannot be inferred from the available sources. 49

In Chap. 3, Computation in Medieval Western Europe, Sara Uckelman introduces 50

the history of computation from the seventh century to the beginning Renaissance, 51

focusing on three major intellectual developments. The first of these is the calendar 52

calculations in the seventh to ninth centuries that we know from Irish and English 53

sources. In order to solve practical and ecclesiastical problems, such as ensuring 54

that Easter was celebrated at the right time, careful calculations were necessary, 55

and they had to be based on as precise astronomical observations as possible. 56

New developments in Arab astronomy were essential for the accuracy of these 57

calculations. In the thirteenth to fifteenth centuries, a new calculatory tradition was 58

developed by scholars studying physics in an Aristotelian tradition. Contrary to the 59

calendric calculations, these studies were not based in monasteries but in the more 60

secular environment of the universities. Scholars at Oxford (the Oxford Calculators) 61

took the lead. They developed precise notions of velocity, acceleration, and other 62

important concepts in mechanics, and showed how these concepts could be used 63

in mathematical accounts of natural phenomena. The third development described 64

in this chapter is Ramon Llull’s (c.1232–c.1315) use of mathematical principles 65

for drawing logical conclusions from a set of premises. His basic ideas were 66

combinatorial, and he used templates with movable parts to perform his derivations. 67

His constructions may seem simplistic to a modern reader, but they were far from 68
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trivial to his contemporaries, and they were highly influential in the Renaissance 69

and the early modern period. 70

Gottfried Leibniz’s (1646–1716) impressive contributions to several aspects of 71

computation are the subject of Chap. 4 by Wolfgang Lenzen, Leibniz and the 72

Calculus Ratiocinator. Leibniz invented a “four species” calculating machine, i.e. a 73

machine capable of all the four basic arithmetic operations: addition, subtraction, 74

multiplication and division. He also realized the potential of the binary system 75

of numbers, and invented two types of calculating machines for binary numbers. 76

Calculations had a central role in his philosophy. He believed that it would be 77

possible in principle to calculate infallibly the truth-value of any proposition. 78

This would require a universal language (characteristica universalis) in which all 79

concepts were expressed in a way that mirrored their logical interrelations. Leibniz 80

seems to have believed this to be possible; for instance he proposed that God could 81

have created the world by creating numbers that correspond to various properties 82

of the actual world. But in practice he came to focus on how logical validity 83

can be determined by calculative methods. Lenzen walks us through some of the 84

logical writings by Leibniz that precursed ideas to be developed in the centuries that 85

followed, including modal logic, quantifiers, and a rudimentary set theory. Many of 86

the ideas that have shaped modern computing are foreshadowed in various places in 87

his publications and manuscripts. 88

Doron Swade’s Chap. 5, Mathematics and Mechanical Computation, begins with 89

a brief history of mechanical calculation, including the technical problems that 90

made it difficult even in the late nineteenth century to construct and manufacture 91

reliable calculating machines. His focus is on the pioneering work of Charles 92

Babbage (1791–1871), who invented two general-purpose computational machines, 93

the Difference Engine and the programmable Analytical Engine. Neither of these 94

impressive constructions was built until a Difference Engine was completed in 95

1991 under Swade’s direction for the Science Museum in London. Babbage 96

promoted his machines as means to produce reliable mathematical tables, a task 97

of considerable practical importance at the time. However, he also outlined how 98

computing machines could be used to solve equations for which no analytical 99

solution was available. Babbage foresaw that computation by machine would lead 100

to the development of new forms of mathematical analysis. Many of the major 101

principles of modern computer programming can be found in his work and in that 102

of his friend and ally Ada Lovelace (1815–1852). Their achievements illustrate 103

what Swade calls a “two-way relationship between mathematics and machine”: 104

On the one hand, the machine was based on mathematical principles that had been 105

developed previously to organize the work of human computists. On the other hand, 106

the technological principles inherent in the machine inspired new mathematical 107

ideas. 108

Modern computers are general-purpose machines. We usually take them to be 109

constructed as such, but that has not always been the case. In Chap. 6, The Mathe- 110

matical Origins of Modern Computing, Mark Priestley investigates the construction 111

of two key machines in the pioneering period of electronic computing, the ENIAC 112

and the EDVAC. They were both developed in the USA in the 1940s. The ENIAC 113
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was made for calculating missile trajectories and the EDVAC for processing wind 114

tunnel data. Both tasks require the solution of large systems of differential equations. 115

This involves multiple repetitions of small sequences of mathematical operations, 116

each of which employs numerical results from its predecessors. Priestley shows 117

how these historical contingencies “deeply affected the ways in which computers 118

could be deployed in areas outside of mathematics”. In the design of hardware, 119

swift retrieval of stored intermediate results was more important than fast input or 120

output operations. Both the hardware and the software were constructed to facilitate 121

the use of techniques that had been established in the management of large-scale 122

manual calculation tasks, namely the division of complex tasks into a large number 123

of simple subtasks. (Charles Babbage had used the same strategy.) In the 1950s, 124

when computers started to be used for other tasks than mathematical calculations, 125

new programming methods had to be introduced for these new purposes. 126

Sandy Zabell begins Chap. 7, Cryptology, Mathematics, and Technology, by 127

noting that cryptology provides “an ideal case study of the synergy between 128

mathematics and technology”. He divides the history of cryptology into four major 129

phases. In the first of these, which lasted until the end of World War I, the vast 130

majority of cryptographic systems were based on manual encrypting and decrypting. 131

Only a very limited mathematical or technological competence was usually needed 132

for either constructing or cracking a cipher or code. The second period was 133

the era of encoding and decoding machines that were based on mechanical or 134

electromechanical principles. The most famous of these was the German Enigma 135

that was deciphered during the Second World War by ingenious Polish and British 136

cryptanalysts, among the latter Alan Turing. In this period, cryptography became 137

thoroughly mathematized. The third era, starting in the early 1970s, was marked 138

by the introduction of digital computers for encryption and decryption. They made 139

it possible to employ more advanced codes and to change cryptographic systems 140

without having to replace physical equipment. In the same decade, cryptography 141

shifted into the fourth and still on-going era, that of public key systems. These are 142

cryptographic systems, based on number theory, that do not require prior exchange 143

of a secret key over a secure means of communication. This is the mathematics- 144

based technology that is used today on a massive scale for financial transactions and 145

secure messaging over the Internet. 146

1.2 Technology in Mathematics 147

Four chapters discuss the impact of computer technology on current and future 148

mathematics. The first of them is devoted to computer-mediated proofs and the other 149

three to various aspects of computations and computability. 150

According to the four colour theorem, you never need more than four colours 151

to colour the regions of a map on a Euclidean plane so that no two regions with 152

a common border (other than a corner) have the same colour. This was proved 153

in 1976 by letting a computer check through a large number of cases. The proof 154
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was too long for a human to verify all its details. It triggered an extensive and 155

still on-going philosophical discussion on whether we can rely on such a proof 156

in the same way that we rely on a proof that is short enough for a human to 157

go through in detail. In Chap. 8, The Epistemology of Computer-Mediated Proofs, 158

Selmer Bringsjord and Naveen Sundar Govindarajulu generalize this discussion, 159

asking what level of belief a human is justified in having in a conclusion based on 160

some argument, if her access to the conclusion and the argument is mediated by 161

a computer. In this more generalized form, the question is accessible to a detailed 162

philosophical analysis that distinguishes between different types of proofs and other 163

arguments, different types of computers and computer mediation, and different types 164

of belief and knowledge. This results in a framework that makes it possible to answer 165

questions about the epistemic status of computer-mediated proofs in a more nuanced 166

way than previously. 167

The relationship between technological computations and the mathematical 168

concept of computability provides one of the best avenues to studies of the 169

technology–mathematics relationship. Chapter 9 by Sven Ove Hansson, Mathemat- 170

ical and Technological Computability, begins by showing how modern studies of 171

computability connect with a long tradition of attempts to convert all forms of 172

mathematical reasoning into routine manipulation of symbols. In the early twentieth 173

century, many mathematicians believed that such a conversion had been achieved 174

through recent advances in the rigorization and formalization of mathematical 175

proofs. In 1936 Alan Turing proposed a simple procedure – now called the Turing 176

machine – which he claimed would be able to perform all symbol manipulations 177

(computations) that human beings can perform by strictly following a set of 178

unambiguous instructions. The chapter explains in some detail why this bold claim 179

is a highly plausible one. It also discusses some of the sketches that have been made 180

of technological devices with a computational capacity surpassing that of a Turing 181

machine. Many of these proposals refer to physical events that would not normally 182

be counted as computations. It is argued that computations are technological 183

processes into which an intelligent being enters an input, and receives an output. 184

This would exclude many of the schemes for computing devices that are said to 185

surpass the capacity of a Turing machine. 186

Quantum computation is based on information theoretical accounts of quantum 187

mechanics, and in order to understand the former we need to understand the latter. In 188

Chap. 10, On Explaining Non-Dynamically the Quantum Correlations via Quantum 189

Information Theory: What It Takes, Mauro Dorato and Laura Felline introduce 190

some of the major philosophical issues involved in quantum information. They do 191

this from the perspective of an influential information-theoretical axiomatization of 192

quantum theory that was proposed by Clifton, Bub, and Halvorson in 2003. This 193

approach describes the physical world in terms of how information is transferred 194

and transformed. The authors put focus on the concepts of an explanation and a 195

“structural explanation”. For instance, Einstein’s postulation of a curved space-time 196

makes gravity a part of the structure of the universe and therefore not subject to 197

truly causal explanations. Does quantum information theory make non-locality and 198
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entanglement structural in the same sense? This is still an open question, but it is 199

clarified in important respects in this chapter. 200

In spite of significant progress, quantum computing is still far from practical use, 201

but it has given rise to extensive philosophical discussions. Previous speculations 202

that quantum computation could transcend the limits of Turing computability 203

have not been substantiated in a more detailed analysis. Instead, discussions have 204

increasingly turned to issues of computational complexity, i.e. (to put it simply) 205

how fast the computational resources required to compute f (n) for a given function 206

f and a natural number n increase with n. In Chap. 11, Universality, Invariance 207

and the Foundations of Computational Complexity in the Light of the Quantum 208

Computer, Michael Cuffaro discusses the possibility of a “quantum speed-up”, 209

i.e. that quantum computers may outperform classical computers (technically: that 210

they may perform better in solving certain mathematically and technologically 211

significant problems). One of the implications of this would be that computational 212

complexity theory would have to pay more attention to machine-specific issues. 213

Current discussions of computational complexity usually refer to a level of ab- 214

straction that makes all computational models equivalent, since each of them can 215

efficiently simulate each of the others. Investigations of quantum computation may 216

lead to an increased focus on questions concerning certain classes of computers, 217

rather than all computers. However, in Cuffaro’s view this is not as radical a break 218

with current computational complexity theory as some might think. As he sees 219

it, complexity theory is “at its core, a practical science” that applies idealized 220

mathematical concepts to improve our understanding of actual operations performed 221

on real-world computers. The analysis of quantum computing serves to remind us 222

of the actual purpose of this “conceptual bridge between the study of mathematics 223

and the study of technology”. 224

1.3 Mathematics in Technology 225

The last section of the book consists of four chapters on the role of mathematics 226

in technology. The first of them highlights the differences between mathematical 227

modelling in technology and in the social sciences by investigating a historical 228

example of transdisciplinary transfer of modelling techniques. It is followed by a 229

chapter that describes a conflict in the late nineteenth century over the extent and 230

nature of mathematics teaching in the education of engineers. The last two chapters 231

discuss the “unreasonable effectiveness” of mathematics in empirical applications. 232

Mathematical control theory and its engineering applications in servomech- 233

anisms have been essential for the control of steam and combustion engines, 234

airplanes, turbines, and many other technologies. In Chap. 12, Mathematical Models 235

of Technological and Social Complexity, Ronald Kline investigates the attempts 236

made in the decades following World War II to extend this engineering approach to 237

complex social phenomena. Herbert Simon (1916–2001) applied servomechanism 238

theory to the optimization and control of production in a manufacturing unit. 239
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Others applied these ideas in economics, political science, sociology, anthropology, 240

and psychology. The American engineer Jay Forrester (1918–2016) constructed 241

large models of complex social phenomena, using techniques from engineering. 242

He used a multitude of numerical variables, connected non-linearly with multiple 243

loops, to describe the workings of a social system, such as a company or a city. 244

The resulting equation systems were way too complex for analytical treatment, 245

but with the new tools for computerized approximation, predictions could be 246

made about the behaviour of these systems. The most famous application was 247

the controversial Club of Rome report Limits to Growth in 1972. Forrester has 248

received much criticism for oversimplifying social phenomena and not taking results 249

and models from the social sciences into account. As Kline himself notes, the 250

chapter combines three approaches to the interconnectedness of mathematics and 251

technology: “the technological origins of mathematical modelling in cybernetics 252

and System Dynamics; the use of digital computers to create models in System 253

Dynamics; and the conception of scientific models, themselves, as technologies”. 254

Mathematics has been a core discipline in engineering education since its 255

beginnings in the late eighteenth century. The introduction and early history of 256

mathematics teaching for engineers is the starting point of Chap. 13 by Sven Ove 257

Hansson, The Rise and Fall of the Anti-Mathematical Movement. However, its 258

main focus is on a little known counter-reaction to modern mathematics among 259

German professors in the engineering disciplines in the 1890s. This was a short- 260

lived movement that hardly survived into the twentieth century, but it managed to 261

achieve reductions in the mathematical curricula of several German technological 262

colleges (now technological universities). Some members of this movement agitated 263

for the dismissal of all mathematicians from the engineering schools. Instead, the 264

(reduced) courses in mathematics would be taught by engineers. The movement 265

denounced the use of abstract and rigorous methods in mathematics, preferring 266

traditional methods that were considered to be more intuitive. Such resistance to 267

precise methods reappeared in the 1920s and 1930s in the more ominous context of 268

the Nazi movement for “German mathematics”. Its adherents pushed for allegedly 269

more intuitive methods in mathematics which they contrasted with the rigorous 270

“Jewish” mathematics that dominated in academia. 271

In a famous speech in 1959, Eugene Wigner voiced his bafflement over the 272

“unreasonable effectiveness of mathematics in the natural sciences”. Again and 273

again, theories from pure mathematics have turned out to be eminently useful in 274

both science and technology. In Chap. 14, Remarks on the Empirical Applicability 275

of Mathematics, Tor Sandqvist attempts to demystify the empirical effectiveness of 276

mathematics. He focuses on what is arguably its most astonishing aspect, namely the 277

role of mathematics in successful predictions of future events. Sandqvist treats this 278

as a version of the philosophical problem of induction. It is amazing and possibly 279

inexplicable, he says, that the universe exhibits regularities that allow us to predict 280

the future on the basis of the past. However, the fact that we can use mathematics 281

to describe these regularities does not necessarily add to the amazement. It can be 282

explained by the observation that “the development of mathematics always takes 283
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place under the influence of simplicity considerations similar to those guiding 284

human concept formation and inductive projections in general”. 285

In Chap. 15, What the Applicability of Mathematics Says About Its Philosophy, 286

Phillip Wilson approaches the same issue from another angle. He turns the question 287

around and asks: What does the existence of applied mathematics teach us about the 288

philosophy of mathematics? To answer that question he explores the four dominant 289

traditions on the nature of mathematics: Platonism, logicism, formalism, and 290

intuitionism. They have all mostly been discussed in relation to pure mathematics. 291

In their modern forms, they are concerned with much the same key issues, such 292

as the nature of numbers and sets, the status of infinite structures, and what 293

constitutes a valid mathematical proof. Approaching these four standpoints from the 294

perspective of applied mathematics puts them in an uncustomary context, in terms 295

of both their ontological and their epistemological implications. Wilson concludes 296

that although the lens of applied mathematics cannot adjudicate between these 297

four major standpoints, it helps us to bring into focus the questions that have 298

to be addressed when formulating and defending philosophical standpoints about 299

mathematics. 300
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2.1 Technologies for Counting and Arithmetic 29

But the art of counting is known in the vast majority of human communities. We 30

often do it with the help of one-to-one correspondences with sets of small objects 31

such as stones, twigs, or pieces of wood. For instance, inhabitants of the Nggela 32

Islands (part of Solomon Islands) keep track the number of guests at a feast by 33

collecting a small item from each of them as they arrive. In many places, for instance 34

in Borneo, Melanesia and the Philippines, knots on a string are used for counting 35

and for keeping a record of numbers (Sizer 2000). The Incas used khipus, sets of 36

connected knotted strings, for book-keeping and the levy of taxation (Urton and 37

Brezine 2005; Gilsdorf 2010) (Fig. 2.1). 38

An even safer way to keep records of numbers is to make notches on durable 39

objects such as bones or pieces of wood. This method is known from many parts of 40

the world (Sizer 2000, p. 260), and it has a long history. A small bone the size of a 41

pencil that was excavated in Congo has three columns with in total 167 tally marks 42

(Fig. 2.2). It is about 11,000 years old, and bears witness to our ancestors’ ability 43

to write down numbers long before they could write words (Huylebrouck 1996). 44

Other, much older, bones with notches have also been found, but their interpretation 45

as tally marks is controversial (Vogelsang et al. 2010, p. 197; d’Errico et al. 2012, 46

pp. 13216 and 13219; Cain 2006). In modern societies, more advanced tally sticks 47

using a positional system for higher numbers have been used to document debts. 48

Such tallies were still used in both England and France at the beginning of the 49

twentieth century (Stone 1975). The use of cuts on the body to record numbers has 50

also been reported (Lagercrantz 1973). 51

In the traditional Basque system for counting sheep, two of these technical means 52

for counting were combined in a most efficient way: 53

Counting invariably involves two men; one does the actual counting and one records the 54

hundreds. The counter carries 5 small stones (or nails, or some other small item that can be 55

easily held in the hand) and counts either silently or aloud up to 20. When he reaches 20, 56

he transfers a stone from one hand to another, and after transferring the 5th stone, he shouts 57

ehun! [which means ‘hundred’] and the recorder makes a mark by notching a stick or piece 58

of wood. After the last rock has been transferred to the opposite hand, the counter begins 59

again and shifts the rocks back to his original hand, not losing count of the moving sheep. 60

When the last sheep has passed through the passage-way, he shouts the number aloud and 61

counts the rocks in his hand. The number said aloud is one between 1–20 and the rocks in 62

his hand represent the multiples of 20. Thus, by combining these with the number of notches 63

made by the other person, the total number of sheep in the band is obtained. (Araujo 1975, 64

pp. 142–143) 65

These different means to record numbers – stones, knots and notches – have been 66

reported from indigenous cultures all around the world. Similar technologies for 67

simple arithmetic, adding and subtracting, are also widespread. Already in prelit- 68

erate societies, these operations were usually performed with small objects such 69

as stones or twigs that were moved around to represent the operation (Sizer 1991, 70

p. 54). In many cultures, special counting-boards for arithmetic were constructed. 71

For instance, the Incas used counting boards for their calculations (and khipus to 72
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Fig. 2.1 An Inka khipu.
(From Meyers
Konversationslexikon, 1888)

Fig. 2.2 The Ishango bone, a Stonge Age tally stick found in Congo

record the outcome, when that was needed) (Gilsdorf 2010). In medieval Europe, 73

before cheap paper became available, calculations were performed on an abacus or 74

a counting-board, or in a sand tray (Acker 1994; Periton 2015). As late as the early 75

twentieth century, writing slates were used in schools instead of paper for economic 76

reasons (Davies 2005). 77

Thus, the use of tools to support arithmetic has a long history. The same is true 78

of the reciprocal relation, the use of mathematics to support technology. 79
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2.2 The Mathematics of Weaving 80

One of the foremost early uses of mathematics belongs to a traditionally female 81

occupation, namely weaving. Textiles from about 10,000 BCE have been found in 82

the Guitarrero Cave in northern Peru (Jolie et al. 2011), and imprints of woven 83

material have been found in even older archaeological sites. We do not know much 84

about Stone Age weavers, but we can see from present-day hand weaving that 85

the craft of weaving provides excellent opportunities for developing mathematical 86

thinking. Indigenous women all around the world have woven elaborate geometrical 87

patterns with intricate symmetries. In order to do this, they have to combine 88

geometric and arithmetical thinking to construct the number series and numerical 89

relationships that give rise to the desired patterns on the fabric (Karlslake 1987, p. 90

394). In addition, weavers often have to calculate beforehand how much material 91

they need for a particular piece of fabric (Figs. 2.3 and 2.4). 92

In traditional cultures in Central and Southern Africa, cloths with complex 93

geometrical designs are highly valued. The women who weave them perform the 94

most advanced mathematical activities in these societies (Gerdes 2000; Harris 95

1987). Similarly, textiles with symmetrical patterns, both geometrical and figurative, 96

were much esteemed by the Incas. The construction of such patterns must have 97

Fig. 2.3 A Navaho weaver. (Photograph by Roland W. Reed)
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Fig. 2.4 Cloth from the Shoowa people in what is now the Democratic Republic of Congo.
(Courtesy of the Brooklyn Museum)
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been one of the most advanced mathematical activities in their culture as well. The 98

tradition is still alive in some Andean communities: 99

[M]aster weavers called Mamas (a Quechua word, not the word for mother) . . . are women 100

who most likely started weaving when they were girls and reached a high level of expertise. 101

They are generally treated with special respect within their community. The Mamas’ 102

abilities in counting and understanding patterns of symmetry and in geometry are part of that 103

expertise. The ethnomathematical aspect of this situation is this: if we asked one of these 104

women to explain geometric or symmetry properties in terms of lines, rotations, polygons, 105

and so forth, they probably would not explain them in such textbook-like terms. Yet, they 106

clearly understand these mathematical concepts. The difference is that their understanding 107

comes from the perspective of a weaver who must create a cultural product and who wants 108

to include certain patterns. (Gilsdorf 2014, p. 9) 109

Mathematics is also involved in other textile-related activities such as braiding, 110

beadwork, basketry, and the traditionally male activity of rope-making (Chahine 111

2013; Albanese 2015; Albanese et al. 2014; Albanese and Perales 2014; Hirsch- 112

Dubin 2009). 113

With larger societies came additional mathematical activities. Clay tablets from 114

ancient Iraq testify to extensive accounting. Mesopotamian surveyors were tasked 115

with calculating the areas of fields with different geometric shapes (Robson 2000). 116

From ancient Egypt, several mathematical texts have been preserved. They are 117

actually textbooks for scribes, who seem to have received a considerable dose of 118

mathematics as part of their education (Ritter 2000). In addition to accounting they 119
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had to perform the calculations needed in surveying and construction. Surveying 120

was much in need due to the yearly flooding of the Nile. Each year, agricultural 121

fields had to be reconstructed when the Nile receded. Since the area of arable land 122

often changed after the inundation, it was often necessary to redistribute land, and 123

then the areas of differently shaped fields had to be calculated. These calculations 124

were also important for taxation (Barnard 2014). 125

Scribes were required to calculate the amount of stones and other building 126

material that was required in the pharaoh’s big construction projects. They were 127

trained to calculate the height of a pyramid, based on its edge and how much the 128

side slanted. These and other calculations were probably used to guide the actual 129

construction activities. Remaining marks on some Egyptian buildings indicate that 130

the horizontal displacement of a sloped object was used as a form of angular 131

measurement (Imhausen 2006, p. 21). The use of such measurements must have 132

required some understanding of geometry. In addition, calculations relating to the 133

workforce, such as the required quantities of food and beer, had to be performed. 134

Most technological operations in pre-modern societies were performed by 135

craftspeople from whom we have no written evidence. In some cases, their mathe- 136

matical abilities can be inferred from the archaeological evidence. For instance, the 137

notion of proportionality is needed to produce alloys such as bronze with reliable 138

quality, something that was achieved in several ancient civilizations (Malina 1983). 139

Archaeological evidence from Raqqa in eastern Syria shows that glassmakers in 140

the early Islamic period used a chemical dilution line to optimize the properties of 141

glass (Henderson et al. 2004). However, we do not know how they performed the 142

calculations behind these remarkable experiments. 143

2.3 Geometric Wonders of the Islamic World 144

Fortunately, there is one group of ancient craftspeople about whom we know more 145

than about the others, namely those engaged in building construction. This is 146

because many of their most advanced building projects, such as the great churches 147

and mosques, are still available for our study. 148

Geometrical knowledge has probably been used since preliterate times in the 149

construction of buildings. For instance, builders in several indigenous cultures have 150

known how to make a small house rectangular (Each pair of opposite side beams 151

should have the same length, and then the layout should be adjusted so that the 152

diagonals have equal length.) (Sizer 1991, p. 56). But buildings from the High and 153

Late Middle Ages in Europe, Northern Africa, and the Middle East reveal that 154

their builders had access to a rich tradition of much more advanced geometrical 155

knowledge. This is perhaps most obvious from the elaborate geometrical patterns 156

displayed on the walls and ceilings of Islamic buildings. Many of these patterns 157

exhibit mathematically advanced symmetries. The traditional way to construct them 158

was by ruler and compass, an art that was passed over from master to apprentice 159

(Hankin 1925; Thalal et al. 2011) (Fig. 2.5). 160
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Fig. 2.5 God as a master mason, using a compass when creating the world. (From Codex Vin-
dobonensis 2554, written in France around 1250, now in the Österreichische Nationalbibliothek)
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Ruler-and-compass construction is well known from Euclid (fl. 300 BCE) and 161

other Greek geometers. It may have been a Greek invention. At any rate, the 162

Egyptians do not seem to have known the compass (Shelby 1965). The origin of 163

its use in the learned tradition is obscure. Plutarch claims that Plato (c.425–c.348 164

BCE) sharply criticized mathematicians who tried to show the truth of geometrical 165

statements with “mechanical arrangements” that were “patent to the senses” rather 166

than relying on pure thought (Plutarch 1917, p. 471). This has been interpreted as 167

reprobation of constructions by means of other tools than ruler and compass (Evans 168

and Carman 2014, pp. 151–152). 169
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Fig. 2.6 Geometric patterns on a house in Pyrgi, made by contemporary masons using ancient
ruler-and-compass methods
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Was ruler-and-compass construction an invention by learned geometers, who 170

handed it over to craftsmen needing it for practical purposes? Or was it originally a 171

practical work method, discovered and developed by craftsmen, which men of letters 172

transformed from a practical way to use tools to a theoretical restriction on abstract 173

mathematical reasoning? We will probably never know which of these hypotheses is 174

true.1 What we do know, however, is that the method serves both purposes remark- 175

ably well. Contemporary Moroccan carpenters still construct complex geometrical 176

patterns with the same ruler-and-compass methods that their predecessors used a 177

millennium ago (Aboufadil et al. 2013). And in the Greek village Pyrgi, house 178

façades are decorated with geometrical patterns made by traditional craftsmen who 179

have learned the ruler-and-compass methods by apprenticeship (Stathopoulou 2006) 180

(Fig. 2.6). 181

One of the best proofs of the mathematical proficiency of the Islamic master 182

builders can be found in the shrine of Darbi Imam in Isfahan, Iran, which 183

was constructed in 1453 (Fig. 2.7). It exhibits advanced tilings, which were not 184

understood mathematically until five centuries later. Like Penrose patterns, these 185

patterns are quasi-crystalline, which means that they fill the plane perfectly, but 186

1According to Plato, at least one Athenian stone mason, namely Socrates, was versed in the learned
geometry of his time. See McLarty (2005) for a useful discussion of the geometric ideas of the
Platonic Socrates.
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Fig. 2.7 Tesselations in the Darb-i Imam shrine
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do not repeat themselves regularly like the more common types of tiling2 (Lu 187

and Steinhardt 2007). No documentation of the mathematical thinking behind this 188

remarkable achievement seems to have been preserved. 189

2.4 Medieval Master Builders in Europe 190

The compass was as highly valued by Christian masons as by their Middle 191

East colleagues. European masons were often portrayed holding a compass. They 192

commonly used a large compass of the type that would now be called a pair of 193

dividers, with legs ending in needle points. Contrary to the compasses used in latter- 194

day technical drawing, it was not intended for drawing on paper. The master mason 195

made marks directly on the building site. The compass was a useful instrument 196

for that purpose since the layout of large buildings such as churches was based on 197

geometrical principles (Bucher 1972). Marks were also made on the raw material 198

for structural components, such as pieces of timber to be sawn or stones to be cut 199

(Shelby 1965). In a few cases, setting-out marks made with a compass on a stone 200

are still preserved and visible in the building (Branner 1960). When several similar 201

stones or pieces of timber had to be prepared, the mason made his marks on a thin 202

plank from which a template was cut. Large building sites such as a cathedral had a 203

special place, a “tracing house”, where these templates were kept (Shelby 1971). 204

2More precisely: They lack translational symmetry.
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Fig. 2.8 The classical Euclidean construction of a regular hexagon. The construction begins with
the horizontal line, followed by the circle in the middle and then the other two circles. This is
an exact construction, i.e. any errors will depend on the physical execution, not the mathematical
principles

In the early Middle Ages, master masons were usually illiterate, but beginning 205

in the thirteenth century at least some of them learned how to read and write. 206

However, they had no formal mathematical schooling. Their geometrical skills 207

were transferred orally from masters to apprentices. Much of the most advanced 208

knowledge in their craft seems to have been lost with the end of Gothic building, 209

but a couple of master masons wrote small books in which parts of it have been 210

preserved. These books make it clear that in their own view, geometry had a 211

fundamental role in their craft (Shelby 1970, 1972). They explained how to construct 212

a right angle, an equilateral triangle, a square, a pentagon, a hexagon or an octagon 213

(Fig. 2.8). These geometrical procedures were components of the constructions 214

used to set out marks on stones and other structures destined for various functions 215

in a building. For instance, the construction of voussoirs (wedge-shaped stones 216

in a vault) was particularly important, and close attention had to be paid to their 217

geometrical proportions. 218

Most of these constructions were exact (in the Euclidean sense), but some were 219

approximations. One example of the latter can be found in the book Geometria 220

deutsch that was published by the German master builder Matthäus Roritzer, 221

(c.1435–c.1495) in the late 1480s. One of his constructions was a method to 222

draw a line equally long as the circumference of a circle (Fig. 2.9). At the time, 223

doing this exactly was an intriguing, unsolved mathematical problem. (400 years 224

later Ferdinand von Lindemann proved a theorem from which it follows that no 225

such construction is possible with ruler and compass.) The construction consists 226

essentially in marking the diameter of the circle three times in a row on a line, and 227

then adding a seventh of the diameter (which is easily constructible). This amounts 228

to approximating π as 22/7. Roritzer paid no attention to the small error (Shelby 229

1972). In fact, he had a good reason not to do so, namely that the error must have 230
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Fig. 2.9 Matthäus Roritzer’s (approximate) construction of a line with the same length as the
circumference of a given circle. (From his Geometria deutsch.) Presumably, his readers knew how
to divide a given line, such as the diameter of a circle, into seven equal parts with a ruler and a
compass
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been negligible in practical applications on a building site.3 For instance, if the task 231

was to cut a strip of some material to be fitted around a circular shape with a diameter 232

of one meter, then the error caused by this approximation would make the strip about 233

1.3 mm too long, which would almost certainly be negligible in comparison with the 234

other uncertainties involved in such a work process. 235

The Gothic cathedrals had large rose windows, i.e. round windows with symmet- 236

rically arranged rib-work of stone. They were constructed with ruler and compass, 237

and some of them had quite advanced geometrical patterns. The cathedral in 238

Orvieto in central Italy has a large rose window in the form of a regular 22-sided 239

polygon (icosikaidigon) on its façade (Fig. 2.10). The window was constructed in 240

the fourteenth century. The vast majority of Gothic rose windows were based on 241

a regular polygon that the mason could construct exactly with a compass and a 242

straightedge, but no such construction of a 22-sided polygon was known by them 243

(and we now know that no such construction is possible). Detailed measurements 244

of the window indicate that it may have been constructed with a fairly advanced 245

approximate ruler-and-compass method (Ginovart et al. 2016). 246

2.5 Contacts with Mathematicians? 247

Euclidean geometry was part of the medieval learned tradition. The way in which 248

Euclid deduced theorems from a few basic axioms was a model not only for mathe- 249

maticians but also for scholars working in other disciplines. We do not know to what 250

extent learned geometers communicated with the craftspeople who put geometry to 251

practical use, but a few such contacts have been documented. In his autobiography, 252

3This is an early example of the difference between technological and more theoretical ideals of
precision (Hansson 2007).
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Fig. 2.10 Rose window from the Orvieto cathedral
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the Syriac mathematician Ibrahim ibn Sinan (908–946) recounted that he once told a 253

technically clever craftsman how to construct a sundial (Saliba 1999, pp. 641–642). 254

The Persian mathematician and astronomer Abu al-Wafa’ Buzjani (940–c.998), who 255

lived in Baghdad, wrote a book on the geometrical constructions that craftsmen had 256

use for. Ruler-and-compass constructions of regular polygons were prominently 257

featured in the book (Raynaud 2012). However, it is not know to what extent it 258

actually reached its intended audience. 259

The Iranian polymath Al-Biruni (973–1048) commented on the difference 260

between the arithmetical solutions to mathematical problems that scholars preferred 261

and the (presumably geometrical) methods used by most craftsmen. Interestingly, 262

he mentioned that some artisans, in particular instrument makers, preferred the 263

arithmetical methods to those favoured by other craftspeople. If this was a common 264

pattern, then such a minority of mathematically inclined artisans may have formed 265

important links between learned and applied mathematics in this period. After 266

developing a fairly complicated method for calculating the qibla (direction of 267

prayer), Al-Biruni described an approximate method that should be good enough 268

for people in the building trades who were not versed in mathematics (Saliba 1999, 269

p. 642). 270
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In the next century, the Saxon philosopher Hugh of Saint Victor (c.1096–1141) 271

wrote a short treatise, Practica Geometriae, in which he introduced a division of 272

geometry into two parts, called “practical” and “theoretical”. 273

The entire discipline of geometry is either theoretical, that is, speculative, or practical, 274

that is, active. The theoretical is that which investigates spaces and distances of rational 275

dimensions only by speculative reasoning; the practical is that which is done by means 276

of certain instruments, and which makes judgments by proportionally joining together one 277

thing with another. (Hugh of Saint Victor, quoted in Shelby 1972, p. 401). 278

In his discussion of practical geometry, Hugh referred to the application of 279

geometry to surveying. At the time, the trade of surveying seems to have been 280

less mathematically advanced than that of building construction. It was, at least 281

predominantly, based on straight lines and right angles (Price 1955). 282

The Spanish scholar Dominicus Gundissalinus (c.1115–c.1190) wrote a treatise 283

on the classification of knowledge, in which he broadened Hugh’s description of 284

practical geometry. In his treatment, it covered two categories of practitioners, 285

namely surveyors and craftsmen: 286

Craftsmen are those who exert themselves by working in the constructive or mechanical 287

arts – such as the carpenter in wood, the smith in iron, the mason in clay and stones, 288

and likewise every artificer of the mechanical arts – according to practical geometry. 289

Each indeed forms lines, surfaces, squares, circles, etc., in material bodies in the manner 290

appropriate to his art... The office of practical geometry is, in the matter of surveying, 291

to determine the particular dimensions by height, depth, and breadth; in the matter of 292

fabricating, it is to set the prescribed lines, surfaces, figures, and magnitudes according to 293

which that type of work is determined. (Dominicus Gundissalinus, quoted in Shelby 1972, 294

p. 403) 295

Other writers on practical geometry followed Hugh of Saint Victor in limiting their 296

attention to surveying. However, in at least one case, craftsmen in the European 297

Late Middle Ages received some form of mathematical education. The teacher in 298

question was none less than the Florentine polyhistor Filippo Brunelleschi (1377– 299

1446), who is today best known as the discoverer of the linear perspective. When 300

overseeing the construction of the Florence cathedral, he reportedly taught masons 301

and carpenters how to interpret construction drawings. This was new to them, since 302

they were used to wooden models. Seemingly, the instruction included training in 303

the mathematical principles on which these drawings were based (Knobloch 2004, 304

p. 4). 305

In 1486, the above-mentioned master mason Matthäus Roritzer published a book 306

on the geometry of his trade. He dedicated it to the bishop Wilhelm von Reichenau 307

(1426–1496). In the preface he described the bishop as a friend and patron of “the 308

free art of geometry”, and related that the two had discussed this topic on many 309

occasions (Roriczer 1845, p. 13). 310
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2.6 Mathematics on the Offensive 311

In the sixteenth century, the use of mathematics increased in several sectors of 312

European societies. Perhaps most importantly, sea journeys to other continents 313

required improvements in navigation that could only be achieved by mathematical 314

means. Already in 1508, the Spanish Casa de Contratación, which oversaw 315

overseas trade, introduced exams to make sure that navigators were proficient 316

in the mathematical art of navigation (Keller 1985, p. 357). In countries where 317

Church property was confiscated there was also an increased need of surveying. 318

The introduction of triangulation made it possible to draw more accurate maps, 319

but it also raised the demands on the mathematical skills of surveyors. (ibid, p. 320

358) In addition, several attempts were made to solve technical problems with the 321

help of mathematics. For instance, new fortifications were increasingly based on 322

geometrical design principles (Knobloch 2004). 323

To meet the increased demand for mathematics, a new group of professionals 324

presented themselves in the early Renaissance: the mathematical practitioners. They 325

were men with a university education and training in mathematics, who offered 326

their services in all areas where mathematics was needed, including navigation, 327

surveying, and fortification (Cormack 2006). Many of them wrote vernacular 328

textbooks in arithmetic and geometry, at least in part intended for craftspeople 329

and other members of what we would today call technological occupations. In the 330

prefaces of such textbooks, as well as other publication venues, the usefulness of 331

mathematics was proclaimed much more emphatically than what had been common 332

previously. 333

In 1543, the Italian mathematician Niccolò Fontana Tartaglia (c.1499–1557) 334

published the first translation of Euclid into Italian. In the preface he offered a 335

list of the applications of geometry, including building construction, surveying and 336

geography, painting, and the construction of war machines and fortifications (Keller 337

1985, p. 350). Eight years later, Robert Recorde (c.1512–1558), who was one of 338

the first mathematical practitioners in England, wrote a poem in praise of practical 339

geometry, which he included in the preface of his textbook in the subject (Fig. 2.11): 340

The Shippes on the sea with Saile and with Ore, 341

were firste founde, and styll made, by Geometries lore 342

Their Compas, their Carde their Pulleis, their Ankers, 343

were founde by the skill of witty Geometers. 344

To sette forth the Capstocke, and eche other parte, 345

wold make a greate showe of Geometries arte. 346

Carpenters, Caruers, Joiners and Masons, 347

Painters and Limners with such occupations, 348

Broderers, Goldesmithes, if they be cunning, 349

Must yelde to Geometrye thanks for their learning (Stedall 2012, p. 65). 350
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Fig. 2.11 Wall tablet commemorating Robert Recorde in St. Mary’s Church in Tenby, Wales,
close to where he was born. In addition to being an eminent mathematics educator, he was the
inventor of the equals sign (=) and a prominent physician (Courtesy to Richard Hagen, Brisbane)

In an Italian treatise on geometry, published by Giovanni Peverone in 1558, a similar 351

list was offered of crafts employing mathematics. Peverone emphasized in particular 352

that without geometry, people would not be able to solve conflicts about the division 353

of lands. (Keller 1985, p. 350) Writing in 1567, the French humanist and logician 354

Petrus Ramus (1515–1572) put much emphasis on the importance of mathematics 355

in mining. He did not explain the nature of its importance, but he probably referred 356

to the use of machines such as levers, pulleys, and screw pumps, which operate on 357
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mathematical principles. The first English edition of Euclid was published in 1571 358

with a preface by the mathematician John Dee (1527–c.1608), who emphasized the 359

usefulness of geometry in all kinds of trades: 360

Besides this, how many a Common Artificer, is there, in these Realmes of England and 361

Ireland, that dealeth with Numbers, Rule, & Cumpasse: Who, with their owne Skill and 362

experience, already had, will be hable (by these good helpes and informations) to finde 363

out, and deuise, new workes, straunge Engines, and Instrumentes: for sundry purposes in 364

the Common Wealth? or for priuate pleasure? and for the better maintayning of their owne 365

estate?. (Rampling 2011, p. 138) 366

Dee was anxious to point out that not only geometry, but also arithmetic, was useful 367

for practical applications. Mint masters and goldsmiths could use it when mixing 368

metals, physicians when making compound medicines, officers when ordering the 369

troops, and lawyers when dividing property among heirs or between divorcing 370

spouses (Rampling 2011, p. 141). 371

One reason for this emphasis on the mundane practical uses of mathematics was 372

that at this time, mathematics was often associated with occult ideas and various 373

forms of black magic. Many mathematicians – not least John Dee – contributed to 374

this association by being deeply involved in astrological calculations. In addition, 375

the strange symbols and diagrams that mathematicians relished could easily be 376

interpreted as incantations of diabolic forces. In the 1550s, zealous officials in 377

England took mathematical books for occult treatises and consequently committed 378

them to the flames. Drawing attention to the practical usefulness of the mathematical 379

arts was a “rhetoric of utility”, employed by advocates of mathematical education 380

who wanted to rid the subject of its sorcerous reputation (Neal 1999. Cf. Zetterberg 381

1980). 382

When reading these panegyrics of practical mathematics, it is important to 383

remember their rhetorical purpose. They do not necessarily convey the actual usage 384

of mathematics in the various crafts. We should also keep in mind that these texts 385

were written long before the introduction of universal education. Most members 386

of the labouring classes were still illiterate, and few of them had received any 387

formal schooling in arithmetic or other mathematical skills. The basic education 388

in mathematics that the mathematical practitioners pleaded for is now – at least to 389

a considerable extent – realized in most countries of the world through compulsory 390

education. 391

2.7 Epilogue 392

But even today, in spite of school mathematics, the practical mathematics of the 393

crafts sometimes seems to live a life of its own. It does not necessarily coincide with 394

school mathematics, and sometimes its mathematical nature is not even realized. 395

Masons, carpet layers, and carpenters all use geometry in their daily work, often 396

employing methods and ideas that differ from school geometry (Moreira and Pardal 397

2012; Masingila 1994; Millroy 1991). The work of tailors and dressmakers is one 398

of the best examples of this. Their craft requires mastery of concepts such as angles, 399

parallel lines, symmetry, and proportion. Body measures are often transferred to 400
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the cloth with the help of what is essentially a coordinate system (Hancock 1996). 401

However, the mathematical nature of these skills is seldom fully recognized. Let 402

us give the last word to the mathematics educator Munir Fasheh. He once made an 403

interesting comparison between himself and his mother who was a seamstress: 404

While I was using math to help empower other people, it was not empowering for me. It was, 405

however, for my mother, whose theoretical awareness of math was completely undeveloped. 406

Math was necessary for her in a much more profound and real sense than it was for me. My 407

illiterate mother routinely took rectangles of fabric and, with few measurements and no 408

patterns, cut them and turned them into beautiful, perfectly fitted clothing for people. In 409

1976 it struck me that the math she was using was beyond my comprehension; moreover, 410

while math for me was a subject matter I studied and taught, for her it was basic to 411

the operations of her understanding. In addition, mistakes in her work entailed practical 412

consequences completely different from mistakes in my math . . . She never wanted any of 413

her children to learn her profession; instead, she and my father worked very hard to see 414

that we were educated and did not work with our hands. In face of this, it was a shock 415

to me to realize the complexity and richness of my mother’s relationship to mathematics. 416

Mathematics was integrated into her world as it never was into mine. (Fasheh 1989) 417
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Abstract Practices that fall under the broad umbrella of ‘computation’ in the 5

western European Middle Ages tend to be goal-oriented and directed at specific 6

purposes, such as the computation of the date of Easter, the calculation of velocities, 7

and the combinatorics of syllogisms and other logical arguments. In spite of 8

this practical bent, disparate computational practices were increasingly built upon 9

theoretical foundations. In this chapter, we discuss the theoretical principles un- 10

derlying three areas of computation: computistics and the algorithms employed in 11

computistics, as well as algorithms more generally; arithmetic and mathematical 12

calculation, including the calculation of physical facts and theorems; and (possible) 13

physical implementations of computing mechanisms. 14

3.1 Introduction 15

One cannot begin a discussion of the history of computation in the Middle Ages 16

without first settling some definitions. What is ‘computation’? What are ‘the Middle 17

Ages’? (We could also ask “What is ‘history of’?”, but we will forego that in the 18

present context!) Typically, when one speaks of ‘computation’, one refers to the 19

activity of a computer, i.e., mechanical and impersonal activity: A computer is a 20

machine, and machines are (contra the hopes and dreams of some researchers in AI) 21

unthinking (at least currently). On such a narrow view, one should immediately 22

argue that there can be no history of computation prior to the invention of the 23

computer, the machine which does the computation on your behalf. That would 24

make for a very short chapter, so clearly we cannot accept this narrow view. 25

Instead, we do not take computation to be merely the activity of an unthinking 26

machine but rather to cover a broader range of activities and processes which 27

are united in their connections with calculation and reckoning. On such a view, a 28
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‘computer’ is not merely anything that computes, but indeed anyone who computes. 29

Indeed, the word ‘computer’ was originally used in English to refer to people, as 30

opposed to machines. This usage is found as early as the early seventeenth century 31

(OED 2017b, s.v. computer). Earlier, the word for a ‘person who computes’ was 32

Middle English ‘compotiste’ or ‘compotister’, found as early as the fourteenth 33

century and deriving from Medieval Latin compotista (MED 2001–2014, s.v. 34

compotiste). The Latin word compotista was used generally to describe any person 35

who was a computer or calculator, as well as to pick out people doing a specific 36

type of computation or calculation, namely the computation of the calendar. This 37

discipline—calendar computation—was a branch of its own, known as computistics, 38

and was of crucial importance to a society dominated by a church that needed to 39

know when its movable feasts were to occur. 40

So much for computation; how about the Middle Ages? As with ‘computation’, 41

we can either take a narrow or a wide view of our temporal scope. Ultimately, we 42

do not wish to put any termini on our period of inquiry. Instead, we will pick out 43

specific developments and aspects that are the most interesting for understanding 44

the history of computation, and trace these facets rather than attempt to give a 45

complete overview of the entire Middle Ages. Nevertheless, our temporal spread 46

is great: Our earliest references will be to the Anglo-Irish computistic tradition and 47

the Venerable Bede in the seventh to eighth century. We will spend extra time in the 48

late 13th and early fourteenth century acquainting ourselves with Ramon Llull and 49

the Merton Calculators, and then we will reach our terminus ad quem in algebraic 50

algorithms developed in the Renaissance. By taking a concept- and procedure- 51

oriented approach, we need not commit ourselves to a precise or exclusionary 52

definition of the ‘Middle Ages’. 53

Medieval computation tended to be goal-oriented, directed at specific purposes, 54

such as the computation of the date of Easter, the calculation of velocities, 55

and the combinatorics of syllogisms and other logical arguments. There are, of 56

course, many reasons why one would prefer some sort of mindless method/ 57

mechanism/procedure/algorithm for such pragmatic ends: These mechanisms are 58

both easier to retain and remember, and they reduce the possibility of error. It will 59

come as no surprise, then, that many of our examples of ‘computation’ derive from 60

contexts of educational reform. 61

But in spite of this practical bent that disparate medieval developments in 62

computation shared, our interest throughout this chapter is primarily theoretical. We 63

are interested in the principles underlying computation, rather than in the practical 64

outcomes of computation or the tools used for performing them. As a result, we 65

will omit from our scope geometrical constructions; practical engineering; and 66

methods of reckoning and account—there will, alas, be rather a dearth of abacuses 67

in this chapter. Instead, our energies will be concentrated primarily on three facets 68

of computation: computistics and the algorithms employed in computistics, as 69

well as algorithms more generally (3.2); arithmetic and mathematical calculation, 70

including the calculation of physical facts and theorems (3.3); and (possible) 71

physical implementations of computing mechanisms (3.4), with an account of one 72

of the most important people in the history of computation prior to the invention of 73

the computing machine—Ramon Llull. 74
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3.2 Algorithms and Computistics 75

The concept or procedure most straightforwardly associated with computation is the 76

algorithm. The word ‘algorithm’ is derived, via Latin algorismus + Greek αριθμός 77

‘number’, from ‘al-Khwārizmı̄’, the name of a ninth-century Persian algebraist, who 78

was responsible for many of the algorithms for solving algebraic equations that we 79

know of today, such as the following algorithm for solving the equation x2 + 21 = 80

10x: 81

A square and 21 units equal 10 roots. . . The solution of this type of problem is obtained in 82

the following manner. You take first one-half of the roots, giving in this instance 5, which 83

multiplied by itself gives 25. From 25 subtract the 21 units to which we have just referred 84

in connection with the squares. This gives 4, of which you extract the square root, which is 85

2. From the half of the roots, or 5, you take 2 away, and 3 remains, constituting one root of 86

this square which itself is, of course, 9 (Tabak 2014, pp. 61–62). 87

However, ‘algorithm’ wasn’t used to pick out the computational concept until the 88

nineteenth century (OED 2017a, s.v. algorithm). Earlier, an ‘algorithm’ was simply 89

the practice of using Arabic numerals. Johannes de Sacrobosco’s Liber ysagogarum 90

Alchorismi, an introduction to al-Khwārizmı̄’s algebras and one of the earliest 91

known Latin texts that used Hindu-Arabic numerals (Philipp and Nothaft 2014, 92

p. 36), transformed the nature of calculation in western Europe in the Middle Ages 93

and Renaissance. The text was written in the early part of the thirteenth century, and 94

became part of the standard quadrivial curriculum in the universities of England, 95

France, and northern Europe (Philipp and Nothaft 2013, p. 351). 96

Even though the word ‘algorithm’ didn’t mean ‘algorithm’ until quite recently, 97

medieval and Renaissance mathematicians still employed algorithms in their numer- 98

ical computations. For example, Jordanus de Nemore, “one of the most important 99

writers on mechanics and mathematics in the Latin West” (Folkerts and Lorch 2007, 100

p. 2), wrote several algorismus treatises in the thirteenth century containing basic 101

arithmetic operations as well as a procedure for the extraction of square roots using 102

the Arabic number system (Folkerts and Lorch 2007, p. 5), although his treatises 103

lacked the generality and sophistication of Sacrobosco’s. But despite the widespread 104

incorporation of algorithms into mathematical practice, in both the Middle Ages and 105

the Renaissance, “the algorithms developed . . . were also difficult and sometimes 106

even counterintuitive. A lack of insight into effective notation, poor mathematical 107

technique, and an inadequate understanding of what a number is sometimes made 108

recognizing that they had found a solution difficult for them” (Tabak 2014, p. 60). 109

There is a tension between the practical or applied aspects of algorithms— 110

algorithms are generally developed for a purpose—and their difficulty and coun- 111

terintuitiveness (which was by no means restricted to the Renaissance algorithms!). 112

We can see this tension clearly in the discipline of computistics, or the calculation of 113

the calendar. The computi genre, outlining methods of computing the date of Easter, 114

originated in Ireland in the seventh century (Philipp and Nothaft 2013, p. 348), 115

stemming from controversies between the early Irish and English churches over 116

how to calculate the date (Hawk 2012, pp. 44–45). But the dating of Easter was not 117

merely an Anglo-Irish concern. As Nothaft puts it: 118
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For most of the Middle Ages up to the Gregorian reform of the calendar of 1582, the 119

feasts and calendrical rhythms of Western Europe were governed by a single unified system 120

of ecclesiastical time reckoning, which took account of the courses of both the Sun and 121

the Moon. . . During the early Middle Ages, the practical necessity of instructing Christian 122

monks and clerics in the use of these reckoning tools led to the development of a specific 123

genre of learned text, the computus, which incorporated modules of knowledge from a wide 124

variety of fields, most importantly arithmetic and astronomy, but also theology, history, 125

etymology, medicine, and natural philosophy (Philipp and Nothaft 2014, p. 35). 126

Early calculations of Easter were based on the model of a 19-year lunar cycle 127

developed in the third to fourth century and adapted for the Julian calendar (Costa 128

2012, p. 300; Philipp and Nothaft 2014, pp. 35–36). This model was transmitted 129

to the West in the sixth century by Dionysius Exiguus (Philipp and Nothaft 2014, 130

pp. 35–36), and was refined as mathematics and astronomy improved. Eventually, 131

the calendrical calculations were overhauled in the twelfth and thirteenth centuries 132

with the integration of Jewish and Arabic calendrical sources that developed in 133

Iberia independently of the Christian tradition (Costa 2012, p. 301; Philipp and 134

Nothaft 2015). 135

According to many modern commentators, the genre reached its apex with the 136

Venerable Bede’s De temporum ratione of 725 (itself an enlargement of an earlier 137

treatise, De temporibus, from 703). The book included chapters on both practical 138

topics, such as the conversion between Greek and Latin numerals,1 as well as on 139

more theoretical ideas, such as Bede’s distinction between “the immutable cycles 140

of natural time” and the linear time of human events (Costa 2012, p. 300). The 141

linear time of human events requires accurate calendars founded upon astronomical 142

observation, and thus this text can be seen as one of the first which displays 143

computistics to be a science, including calculation as a central component. For many 144

years Bede’s text was “the undisputed milestone of Western computistics” (Philipp 145

and Nothaft 2012, p. 14), and it significantly influenced later texts, such as Rabanus 146

Maurus’s Liber de computo (Hawk 2012, p. 37). But this view of Bede’s texts, as 147

the first real contribution to the field, has recently been challenged by the study 148

of early Irish computists active in the era between Isidore and Bede (Graff 2010, 149

p. 327). One such treatise is the Munich Computus (Warntjes 2010). This text was 150

composed in 718–19, but was based “a substantial substratum” from 689 (Palmer 151

2010, p. 129). The Munich Computus is, like other texts of its type, 152

principally arranged by the early medieval divisions of time, moving from the smallest 153

units (the atom) to the passing of cycles, and ends with a brief chronicle of sorts framing 154

the whole of human history in 532-year Easter cycles (Palmer 2010, p. 130), 155

and also includes material on the calculation of the leap-year day. It also compares 156

the relative merits of different ways of calculating lunar and solar calendars, 157

eventually favoring the Greek methods of Dionysius Exiguus over the Roman 158

1While Bede’s treatise is the earliest known text to include such a conversion, cf. Hawk (2012,
pp. 35, 37), it was by no means the only computistic text to incorporate such material (Cróiní
1982, pp. 283–285).
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and Irish tables exemplified by Victorius of Aquitaine.2 Another such treatise is 159

a recently-discovered Irish computus which possibly pre-dates the Munich treatise 160

and contains a similar comparison between the Victorian and the Dionysiac methods 161

of reckoning (Warntjes 2005, p. 63). 162

From this we can see the range of application of computistics. Beyond the cal- 163

culation of the date of Easter, computistics also incorporated specialized algorithms 164

designed for computing other important aspects of the calendar, such as intervals 165

between events. With these algorithms, not only could a skilled computist take 166

data specific to a day and then “correctly locate a record in a long sequence of 167

years [he] could also compute how many years had elapsed between two similarly 168

dated events” (McCarthy 1994, p. 76). The algorithms the computist used were 169

“mechanical but abstruse” and “well-suited to ensuring that the understanding and 170

managing of historical records would remain the preserve of the privileged few 171

who had been trained in the necessary computistic techniques” (McCarthy 1994, 172

p. 76). Nothaft argues that “the Easter computus in which primitive algorithms (ar- 173

gumenta), memorised to perform various calendrical and chronological calculations, 174

came to play a central role” was “the only major form of ‘applied mathematics’ 175

known to early medieval scholars” (Philipp and Nothaft 2013, p. 348). 176

The computus treatises were also a means by which new developments in 177

Arabic astronomy were translated to the West; for example, two mid-twelfth- 178

century computus treatises written in southeastern Germany employ the Arabic 179

lunar calendar (Philipp and Nothaft 2014, p. 36). The importation of the new Arabic 180

material was necessary to rectify the defects of the 19-year cycle, which caused the 181

standard calendar to no longer be in sync with the actual lunar phases by the end of 182

the eleventh century, and leading “the church to celebrate Easter on the technically 183

wrong date” (Philipp and Nothaft 2014, pp. 36–37). The introduction of the new 184

Arabic lunar calendar allowed for more accurate calendrical computations on the 185

basis of more precise data (Costa 2012, p. 301). 186

What of our claim that new aspects of computation flourished in the context 187

of educational development and reform? Palmer notes that even to historians, 188

computistics “can seem rather obscure and otherworldly” (Palmer 2010, p. 31). But 189

in spite of this seeming obscurity, there is clear evidence that these treatises were 190

spread throughout Europe. We have noted above how computistic manuscripts show 191

a rich exchange of ideas between Ireland and England, reflecting the contemporary 192

learning culture. On the continent, the transmission of computistic texts is associated 193

with the desire of ninth-century Carolingians to “supplement Latin sources with 194

attempts at Greek learning” (Hawk 2012, pp. 29, 30), and Palmer argues that 195

“alongside the other works of the Regensburg library of the period, [computistics] is 196

properly revealed as an integral part of early medieval learning in general” (Palmer 197

2010, p. 31). Hawk argues that we can see evidence for the Carolingian educational 198

reforms in the context of contemporary glosses on Bede’s De temporum ratione 199

2For further information on the significance of computistic texts on the development of early
medieval science, see Borst (1993, 2006).
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(Hawk 2012, p. 44), and this is corroborated by the wide spread of computistical 200

manuscripts across Europe (Philipp and Nothaft 2012; Warntjes 2010). This spread 201

is not only geographical but also temporal, with collections of computistic treatises 202

being newly copied as late as the tenth century (Bisagni 2013–2014, p. 116). 203

3.3 Calculation 204

In this section we attend to the view of ‘computation’ that involves calculation. 205

Calculation itself is manifest in many different ways. On the one hand, it can cover 206

specific calculatory acts which result in a determinate outcome, for example, that 207

process by which we calculate that 2 + 2 = 4. On the other hand, it can cover a 208

general methodological approach towards the solving of certain types of problems, 209

whether arithmetic, philosophical, physical, or astronomical.3 210

Our discussion here jumps forward a few hundred years from the computistical 211

texts of the previous section. The developments we cover are rooted in the 212

foundational bedrock of Aristotelian mechanics, which entered the Latin West in 213

the twelfth century. The new Aristotelian translations were read, disseminated, and, 214

eventually, criticised and modified, over the course of the thirteenth to fifteenth 215

centuries. Two trends in the study of mechanics in this period can be identified: What 216

Murdoch calls the dynamic, Pseudo-Aristotelian approach which was “basically 217

philosophical in character” and “dynamical in approach”, but was “lacking a mathe- 218

matical procedure of proof”, and the Archimedean approach, which was “rigorously 219

mathematical”, but non-dynamical (Murdoch 1962, p. 122). Though the Islamic 220

philosophers and mathematicians had already been melding these two approaches, it 221

was not until the thirteenth century that such a mingling happened in the Latin West. 222

This mingling resulted in the combination of the (Pseudo-)Aristotelian dynamical 223

methods with the rigor of mathematics exhibited by the Archimedean approach. An 224

example of this is Jordanus de Nemore’s mid-thirteenth century treatise on statics, 225

Elementa super demonstrationem ponderum, “in which the dynamical approach 226

of Aristotelian physics is combined with the abstract mathematical physics of 227

Archimedes” (Folkerts and Lorch 2007, p. 4). Texts such as Jordanus’s provide the 228

foundation of the general application of calculatory methods for problem solving. 229

The locus of this transformation of Aristotelian logic and natural philosophy was 230

the universities, which were the primary site of the reception and dissemination of 231

the new Aristotelian translations. The thirteenth century saw the rise of doctrinal 232

conflicts between Aristotle’s views and orthodox catholic doctrine, with the result 233

that by the end of that century, the study of Aristotelian natural philosophy 234

was concentrated within the Arts masters, with the discussion of any question 235

theological in nature restricted to the theologians. (Thus, the secular nature of 236

the computistic developments in the Aristotelian tradition can be distinguished 237

3For computational aspects of astronomy, see Chabas and Goldstein (2014) and McCluskey (1998).
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with the ecclesiastical embedding of computistics.) By the fourteenth century, the 238

secular study of Aristotle was well-embedded, and was clearly reflected in the 239

works of a group of philosophers, logicians, and mathematicians working at the 240

University of Oxford, known as the ‘Oxford Calculators’.4 As a group, the works 241

of the Calculators are marked by an approach to problems of velocity, infinity, 242

continuity, proportion, movement, etc., that combines calculatory methods with 243

logic. Their achievements include “exact definitions of uniform motion and uniform 244

acceleration [and] a proper grasp of the notion of instantaneous velocity” (Murdoch 245

1962, p. 123). Among the people who were either members of the Calculators or 246

associated with them are Richard Kilvington (c. 1302–1361),5 Thomas Bradwardine 247

(c. 1295–1349), William Heytesbury (before 1313–1372/3), John Dumbleton (†c. 248

1349), Richard Swyneshed (†1355), Richard Billingham (fl. 1340s–1350s), Thomas 249

Buckingham (†1349), and Roger Swyneshed (c.1335–c.1365). 250

We do not at present have the opportunity to survey all of the relevant works 251

and results produced by these men, and so will content ourselves with highlighting 252

some of their specific contributions to the mathematicization of physics and natural 253

philosophy. In 1328, Thomas Bradwardine wrote a treatise De proportionibus 254

velocitatum in motibus, which was later printed at Paris in 1495 and at Venice 255

in 1505. In this treatise, he “devised a mathematical formula to establish the 256

relationship between the force applied to an object, the resistance to its motion, 257

and the velocity that results” and he also “speculated that in a vacuum, objects of 258

different weights would fall at the same speed” (Wagner and Briggs 2016, p. 173). 259

The same law appears, in more than 50 different mathematical versions, in Richard 260

Swyneshed’s 1350 book on calculation, helpfully entitled Liber Calculationum 261

(printed at Padua in 1477 and at Venice in 1520). However, neither Bradwardine nor 262

Swyneshed determined exactly the correct form of the law; this was left to William 263

Heytesbury, who first correctly articulated the ‘mean speed theorem’ or the ‘Merton 264

rule of uniform acceleration’ in 1335: 265

A moving body will travel in an equal period of time a distance exactly equal to that which 266

it would travel if it were moving continuously at its mean speed (Hannam 2010, p. 180). 267

An arithmetic proof of this theorem was given by John Dumbleton (Freely 2013, 268

p. 159). 269

Interestingly, Heytesbury’s statement of the mean speed theorem occurs not in 270

a treatise on physics or mathematics, but of philosophy, in his Regule solvendi 271

sophismata (1335), a treatise giving methods for ‘solving’ sophisms. The sophis- 272

4Because many of them were associated with Merton College, they are often also known as the
‘Merton Calculators’; but because not all were members of Merton, this is not an optimal label.
5Kilvington is often cited as the first of the Calculators; however, his methods differed from that
of later calculators (Kretzmann 1988, p. 226; Ashworth 1992, p. 520), and it is likely that he left
Oxford before the others Calculators really became active (Sylla 1999). Nevertheless, his treatises
were enormously influential on the later Calculators, especially on William Heytesbury, student
of Kilvington, whose Regule solvendi sophismata (1335) is indebted to Kilvington’s Sophismata
(Wilson 1956, p. 7).
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mata genre is a specifically philosophical one, with a sophism being a logical or 273

philosophical puzzle whose analysis is either difficult, fallacious, or inconsistent. 274

Many of Heytesbury’s rules for generating solutions to sophisms were calculatory in 275

nature, especially sophisms arising from the analysis of statements involving incipit 276

‘it begins’ and desinit ‘it ceases’, as well as those involving maximal and minimal 277

bounds of capacities as measured on a linear continuum. Heytesbury devotes a 278

chapter to each of these topics (incipit and desinit are treated in Chap. 4; maxima 279

and minima in Chap. 5). It is in Chap. 5 that the mean speed theorem can be found, 280

but the analysis of sophisms involving maxima and minima is closely related to 281

the analysis of beginning and ceasing, since both involve how we are to understand 282

limits. 283

The analysis of starting and stopping, given a continuous account of time, was a 284

typical issue that occupied many of the Calculators. It was a central topic because of 285

its relationship to change, as “every change. . . involves a beginning and a ceasing: 286

the ceasing of one state and the beginning of another” (Kretzmann 1977, p. 4). 287

Change itself is central phenomenon in Aristotelian natural philosophy, as it is 288

required to understand generation and corruption, the topic of Aristotle’s treatise De 289

generatione et corruptione. Many Calculators either wrote commentaries on this 290

treatise or treatises specifically addressing the question of beginning and ceasing, 291

including Richard Kilvington’s Quaestiones super De generatione et corruptione, 292

written before he obtained his Masters c. 1324–1325; Thomas Bardwardine’s De 293

incipit et desinit (Bradwardine 1982) and John Dumbleton’s Summa Logica et 294

Philosophiae Naturalis (c. 1349?) which includes a commentary on De generatione 295

et corruptione. 296

In the parlance of the Calculators and their contemporaries, terms such as incipit 297

and desinit are called exponible, that is, sentences in which they are used can be 298

decomposed into conjunctions of sentences not containing those terms, and it is 299

these conjunctions which must be analysed in order to understand the terms. Often, 300

a syncategorematic term can be expounded in more than one way, and that is why 301

sentences containing these words can provide puzzles. For example, a sentence of 302

the form A incipit esse B “A begins to be B” can be expounded in two ways: 303

1. A is now B and now is the first moment where A is B. 304

2. A is now not B and now is the last moment where A is not B. 305

In the first way of expounding incipit, the limit is intrinsic; in the second, the limit 306

is extrinsic. The analysis of desinit is symmetric. Many of the sophisms rely on 307

conflating these two notions, or interpreting the word in one way in one premise 308

and in the other in another. Thus, every time that these words occur in Kilvington’s 309

analyses, one must be careful to identify when the analysis is trading on this 310

ambiguity between the two readings of incipit and desinit. 311

The calculatory approach was not restricted to applications in physics and 312

metaphysics, but also merged with computistics in eschatology, the calculation 313

of the timetable for the end times (Oberman 1981, p. 526), thus merging the 314

computational threads of this section and the previous. 315
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3.4 Mechanical Reasoning 316

In the previous sections, we have looked at aspects of computation that are on the 317

mathematical side of the spectrum. In this section, we move away from mathemat- 318

ical reasoning or calculation to linguistic reasoning, specifically to computation as 319

a means of producing valid arguments. The most notorious medieval attempt to 320

mechanize linguistic reasoning is that of Ramon Llull, one of the most eccentric 321

men in the history of computation. But though Llull is the best known, he was not 322

the first to have such a lofty goal. Writing in the middle of the twelfth century, John 323

of Salisbury tells us that his student, William of Soissons, 324

invented a device (machinam) to revolutionize the old logic by constructing unacceptable 325

conclusions and demolishing the authoritative opinions of the ancients (John of Salisbury 326

and McGarry 1955, Bk. II, ch. 10, p. 98).6 327

Unfortunately, we do not have any of William’s own writings, or any other 328

references to his machina, making it difficult (perhaps impossible) to determine 329

what kind of mechanism is being referred to. According to the Kneales, “some 330

people” have thought that it was an actual physical construction, akin to Jevon’s 331

logical machine (Kneale and Kneale 1984, p. 201).7 However, it is more likely that 332

“machine” should be understood here in a metaphorical sense, and that William had 333

in mind some particular method or sort of argument-construction which, given a 334

contradiction or an impossible statement, would return any other statement (Martin 335

1986, p. 565). 336

Whether William’s machine was physically embodied or merely a procedure for a 337

reasoner to follow, it is an interesting example of a computational method where the 338

user is no longer necessarily the reasoner; rather, it is the “machine” itself which is 339

doing the reasoning. But there is no doubt that Ramon Llull’s goal was a physically- 340

implemented mechanical computer. 341

Ramon Llull (1232/33–1315/16)’s early years were devoted to a secular life as a 342

courtier and troubadour-lyric writer. In 1263 he underwent a religious conversion 343

and turned his attentions to theological and philosophical pursuits, including 344

missionary travel.8 One of Llull’s goals was to develop a mechanical system of 345

argumentation or demonstration which could be used to show the Jew and the 346

Muslim the error of their ways, and the correctness of Christian theology, and that 347

could not be disputed. This mechanism is best witnessed in two of Llull’s works: The 348

Ars demonstrativa (c. 1283–1289, hereafter referred to as AD) and the Ars brevis 349

(1308, hereafter referred to as AB), which was his single most influential work. 350

6Adamson (Adamson 1919, p. 27) translates John of Salisbury’s machinam as “method”, and the
Kneales translate it as “engine” (Kneale and Kneale 1984, p. 201).
7The Kneales do not say who these “some people” are, and I have had no success in determining
this.
8For biographical information, see Llull and Bonner (1985, vol. 1, pp. 3–52), which includes
extensive excerpts from Llull’s autobiography.
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Fig. A Fig. T Questions & Rules Subjects Virtues Vices
B goodness difference whether? God justice avarice
C greatness concordance what? angel prudence gluttony
D eternity contrariety of what? heaven fortitude pride
E power beginning why? man temperance pride
F wisdom middle how much? imaginative faith accidie
G will end of what kind? sensitive hope envy
H virtue majority when? vegetative charity ire
I truth equality where? elementative patience lying
K glory minority how? and with what? instrumentative pity inconstancy

Fig. 3.1 The alphabet of the Ars brevis (Llull and Bonner 1985, p. 581)

The AB both builds upon and simplifies the AD, and together these works are 351

referred to as simply the ‘Art’. The Art is a mechanism for abstract reasoning in a 352

restricted domain based a system of constants, each representing different concepts. 353

In AD, the alphabet is two-tiered, with 16 symbols representing basic concepts 354

and seven symbols representing what we might call meta-concepts. This two-tiered 355

alphabet is simplified in AB to just nine symbols, whose meaning depends on their 356

usage. Figure 3.1 gives the interpretation of the alphabet of AB in different contexts. 357

The Art consisted in combinatorial arrangements of these alphabets of letters, 358

resulting in the mechanistic computation of new combinations, and hence new 359

concepts or conclusions. The allowed combinations of the constant symbols in 360

the alphabet are illustrated by various tables and diagrams.9 Figure 3.2 of the Ars 361

brevis consisted in three concentric circles, the outermost of which was fixed to the 362

manuscript and the two inner ones being mobile (see Fig. 3.2 for a redrawing of 363

Fig. 3.2 as it occurs in one of the manuscripts (Llull and Bonner 1985, Plate XVIII). 364

For further reproductions of Llull’s tables and diagrams, see Yates (1954), between 365

pages 117 and 118.). By rotating the moving circles in various ways, one can extract 366

all of the valid Aristotelian syllogisms, where the term on the middle circle is the 367

middle term relating the major and minor terms, located on the outer and inner 368

circles. This illustrates how the Art “became a method for ‘finding’ all the possible 369

propositions and syllogisms on any given subject and for verifying their truth or 370

falsehood” (Llull and Bonner 1985, p. 575). 371

The physical nature of the movable circles results in a crude mechanism for 372

computing new concepts (the output) on the basis of a given set of concepts (the 373

input). The mechanistic aspects of this computation cannot be overemphasized; 374

but the process was quite crude and primitive. Because the Art starts from a finite 375

alphabet, there are only finitely many combinations that can be computed, and it has 376

difficulty moving beyond the calculation of intersection (Styazhkin 1969, p. 12). But 377

we should not allow the primitiveness of the mechanism to detract from its novelty: 378

9The diagrams of the first, second, third, and fourth figures of the Ars brevis as found in the Escorial
MS are reproduced in Llull and Bonner (1985) between pages 582 and 583.
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Fig. 3.2 The fourth figure

It is the first known attempt in Western Europe to provide a physical implementation 379

of a mechanistic method of reasoning.10
380

As with many figures whom history eventually identifies as ahead of their time, 381

Llull’s combinatorics were little appreciated in his own time, or in the succeeding 382

century. But by the end of the fifteenth century, Llullism was revived, especially 383

among the Franciscans, and by the early sixteenth century it had become quite 384

fashionable, especially in Paris where the Basque Franciscan Bernard de Lavinheta 385

was invited to introduce Llullism to the Sorbonne in 1514 (Mertens 2009, p. 513). 386

De Lavinheta’s Explanatio compendiosaque applicatio artis Raymundi Lulli was 387

published in Lyon in 1523 (Bonner 1993, p. 65). In 1518, Pietro Mainardi published 388

the Opusculum Raymundinum de auditu kabbalistico, picking up on the link 389

between Llull’s methods and the kabbalah that was originally asserted by Pico 390

della Mirandola 30 years earlier (Mertens 2009, p. 514), a link grounded in the 391

combinatory nature of both Llull’s methods and the Hebrew mysticism. At the end 392

of the sixteenth century, Italian philosopher and mathematician Giordano Bruno 393

wrote a number of treatises both on Llull’s views directly and incorporating Llullism 394

into his own views on memory. Llullism was one of the “major forces in the 395

Renaissance” and it remained “enthusiastically cultivated in Paris throughout the 396

seventeenth century”, influencing Descartes and others (Yates 1954, p. 166). It was 397

revived again in Germany in the eighteenth-century, where its end product was 398

Leibniz’s combinatorial systems (Yates 1954, p. 167). And thus, Llull’s trajectory 399

10For further discussion of Llull’s system, see Bonner (2007), Llull and Bonner (1985), and
Uckelman (2010).
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takes us out of the Middle Ages and into the Early Modern era, and it is time to draw 400

our discussion to an end. 401

3.5 Conclusion 402

In order to discuss the history of computing and computation in the Middle Ages, 403

we must widen what we mean by ‘computation’ to cover a broader conception than 404

mere mindless mechanistic practices. When we do so, we can see that medieval 405

Europe, far from being computer-less, was the site of a variety of developments 406

in computation ranging from the arithmetic to the linguistic, of which we have 407

focused on three: Irish and English computistics in the seventh to ninth centuries; 408

the calculatory and arithmetic turn in natural philosophy in the thirteenth and 409

fourteenth centuries; and the use of mechanical methods in linguistic reasoning 410

in the twelfth and thirteenth centuries. These developments are all closely tied to 411

advances in education more generally, both secular and ecclesiastical. We saw how 412

the insular computistic treatises were embedded into the Carolingian educational 413

structure and disseminated across the continent, as well as the importance of the 414

concentration of mathematical philosophers for the development of physics in 415

Oxford at the beginning of the fourteenth century. Llull’s own project was less 416

concerned with formal education and more outward facing—taking the benefits 417

of traditional scholastic learning and using them to convert the heathens—but by 418

the end of the Middle Ages his developments were integrated into the university 419

education of Europe. 420
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Chapter 4 1

Leibniz and the Calculus Ratiocinator 2

Wolfgang Lenzen 3

Abstract This paper deals with the interconnections between mathematics, meta- 4

physics, and logic in the work of Leibniz. On the one hand, it touches upon 5

some practical aspects such as Leibniz’s construction of a Four-species calculating 6

machine, a mechanical digital calculating machine, and even a cipher machine. 7

On the other hand, it examines how far Leibniz’s metaphysical dreams concerning 8

the “calculus ratiocinator” and its underlying “characteristica universalis” have in 9

fact been realized by the great philosopher. In particular it will be shown that 10

Leibniz not only developed an “intensional” algebra of concepts which is provably 11

equivalent to Boole’s “extensional” algebra of sets, but that he also discovered some 12

basic laws of quantifier logic which allowed him to define individual concepts 13

as maximally-consistent concepts. Moreover, Leibniz had the ingenious idea of 14

transforming the basic principles of arithmetical addition and subtraction into a 15

theory of “real” addition and subtraction thus obtaining some important building 16

blocks of elementary set-theory. 17

4.1 Introduction and Summary 18

The so-called calculus ratiocinator is a bit like the Loch Ness Monster Nessie. Many 19

people talk about it, but nobody seems to know whether it really exists or what it 20

exactly consists of. In a Wikipedia entry it is roughly described as follows: 21

The Calculus ratiocinator is a [ . . . ] universal logical calculation framework, a concept 22

described in the writings of Gottfried Leibniz, usually paired with his [ . . . ] characteristica 23

universalis, a universal conceptual language. The received point of view in analytic 24

philosophy and formal logic is that the calculus ratiocinator anticipates mathematical logic 25

[and that it] is a formal inference engine or computer program which can be designed so 26

as to grant primacy to calculations. [ . . . ] From this perspective the calculus ratiocinator 27
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is only a part [ . . . ] of the universal characteristic and a complete universal characteristic 28

includes a “logical calculus”. 29

A contrasting point of view stems from synthetic philosophy and fields such as 30

cybernetics [ . . . ] and general systems theory [ . . . ]. The synthetic view understands 31

the calculus ratiocinator as a “calculating machine”. The cybernetician Norbert Wiener 32

considered Leibniz’s calculus ratiocinator a forerunner to the modern day digital computer. 33

Hartley Rogers saw a link between the two, defining the calculus ratiocinator as “an 34

algorithm which, when applied to the symbols of any formula of the characteristica 35

universalis, would determine whether or not that formula were true as a statement of 36

science”.1 37

The aim of this paper is to unveil some of the mysteries surrounding the calculus 38

ratiocinator. First, as regards the “hardware” of such a calculus, it will be shown 39

in Sect. 4.2 that although Leibniz had not the slightest idea of a modern day 40

computer (nor, for that matter, of any other electronic device), he successfully 41

invented a mechanical computer in the form of a Four-Species Calculating Machine. 42

Furthermore he even made concrete plans for the construction of a (non-electronic) 43

Dyadic Calculating Machine. 44

Second, as regards the “software”, Leibniz thought it possible to determine the 45

truth-value of any proposition by mere calculation. More concretely he believed that 46

such a calculation had once been carried out by God when he set out to decide which 47

possible world – out of an infinite number of alternatives – should become realized. 48

In order to arrive at that decision, God used his infinitely powerful mind to calculate 49

in every detail the consequences which would result if a certain individual X – rather 50

than any other out of an infinite number of alternative possible individuals – were 51

created. This metaphysical vision, which shall be analyzed in more detail in Sect. 52

4.3, has been summarized by Leibniz in the oft-quoted dictum “Cum Deus calculat 53

et cogitationem exercet fit mundus”. 54

Third, Leibniz was hoping that mankind, although endowed by God only with 55

a finite mind, might eventually develop the tools for determining the truth-value 56

of arbitrary propositions by translating them into a precise universal language (the 57

“characteristica universalis”) which allows calculating the truth in an infallible way. 58

This metaphysical dream, which shall be closer investigated in Sect. 4.4, lies behind 59

Leibniz’s even more famous slogan “Calculemus!” 60

In order to answer the question whether, or how much, of these dreams and 61

visions are realizable (or have in fact been realized by Leibniz himself), a survey 62

of the development of the “calculus ratiocinator” will be given in Sect. 4.5. In 63

Sect. 4.5.1 the background of early seventeenth century syllogistic will be sketched. 64

In Sect. 4.5.2 it will be shown how Leibniz gradually transformed the traditional 65

theory of the syllogism into a much more powerful logic which turned out to 66

be equivalent to so-called Boolean algebra. In Sect. 4.5.3 some expansions of 67

Leibniz’s algebra of concepts will be considered; in particular it will be shown 68

that the introduction of “indefinite concepts”, which function as quantifiers ranging 69

1https://en.wikipedia.org/wiki/Calculus_ratiocinator; online access January 3, 2017. The conclud-
ing quote comes from Rogers (1963), p. 943.

https://en.wikipedia.org/wiki/Calculus_ratiocinator
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over concepts, allows the definition of individual concepts as maximally-consistent 70

concepts. Section 4.5.4 describes Leibniz’s ingenious transformation of some basic 71

laws of elementary arithmetic into a “Calculus of real addition and subtraction” 72

which forms a subsystem of modern set-theory. 73

4.2 Leibniz’s Calculating Machines 74

In 1990, the main curator of the Astronomic-Physical Cabinet of the Hessian 75

State Museum, Ludolf von Mackensen, published an article about the prehistory of 76

calculating machines. After summarizing some early seventeenth century inventions 77

by Wilhelm Schickard and Blaise Pascal, he characterized the role that Leibniz 78

played in this connection as follows. 79

The third big universal scientist of the age of baroque, who decisively advanced the 80

invention of a Four-species Calculating Machine, was the philosopher and mathematician 81

Gottfried Wilhelm Leibniz. [ . . . ] [F]rom the very beginning Leibniz strived for surpassing 82

Schickard and Pascal by creating a machine which was able to make multiplications and 83

divisions. Guided by the idea that a multiplication is a repeated addition and a division a 84

repeated subtraction, Leibniz aimed at a complete mechanization of the first two species so 85

that they could be repeated many times in the shortest possible time. He solved this problem 86

by separating the process of entering the numbers from the process of calculation, i.e. the 87

movement of the counting wheels. Hence the machine was designed by Leibniz to work in 88

two steps, which was achieved by putting special switchgear between the number entry and 89

the calculation device. Such entry/calculation switchgear is a necessary component of each 90

mechanical calculation machine, no matter whether driven by electricity or by means of a 91

hand crank. 92

In the absence of any example of such switchgear which transmits the entered number 93

into the calculating device, Leibniz invented a completely new element, a gear-wheel, 94

whose effective number of teeth could be varied between 0 and 9 so that if, e.g., the number 95

5 was set, five teeth would become effective. Leibniz even devised two variants of such a 96

device, a so-called sprocket wheel [ . . . ] and a so-called stepped drum, i.e. a cylinder which 97

carries nine toothed rings on its circumference. [ . . . ] 98

[Therefore] Leibniz may be considered as the first ancestor of a whole line of 99

development of stepped drum machines that ended in 1948 when Curt Herzstack’s model 100

“Curta” came to the market.2 101

Leibniz’s invention was mainly motivated by the consideration that it is “unworthy 102

to waste the time of excellent people by servile work of calculating when, with the 103

help of a machine, everybody can get the result in a fast and secure way”.3 Figure 104

4.1 shows the original machine built in 1693. 105

2Cf. Mackensen (1990), p. 56–57 (my translation).
3In “Machina arithmetica in qua non additio tantum et subtractio sed et multiplicatio nullo, divisio
vero paene nullo animi labore peragantur” Leibniz wrote: “Indignum est excellentium virorum
horas servili calculandi perire quia Machina adhibita velissimo cuique secure transcribi possit.”
The translation is taken from “Leibniz on his calculating machine” in Smith (1929), 173–181.
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Fig. 4.1 Leibniz’s Four-species calculating machine (© Niedersächsische Landesbibliothek Han-
nover)
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Mackensen further pointed out that although Leibniz certainly was not the 106

inventor of the binary number system, in the 1679 paper “De progressione dyadica” 107

he had developed a clear idea of a binary calculating machine: 108

In the year 1974 [Mackensen] transformed Leibniz’s ideas into a drawing and found out 109

that, if one knows his mechanical Four-species-machine and if one adds a few constructive 110

elements from the technique of the time of baroque to the description of Leibniz’s dual 111

calculating machine, a functional model can be built. [ . . . ] This machine doesn’t use wheels 112

or electric impulses but rolling balls. [ . . . ] In the calculation process and in the device 113

yielding the result the numbers are not represented by teeth of wheels but by balls: a ball 114

means 1, no ball means 0. Thus for the first time the binary principle is applied for the 115

mechanical representation of data.4 116

Figure 4.2 shows von Mackensen’s model which allows to perform additions and 117

multiplications while “subtractions and divisions can only be performed quite 118

cumbersome by way of the complements of the numbers”.5 119

Although the practical value of this machine was further restricted by the fact 120

that it presupposed the possibly laborious transformation of decimal numbers into 121

dual numbers, the very idea of a “Machina arithmeticae dyadicae” remained so 122

important for Leibniz that he later devised another version working with gear- 123

wheels rather than with balls. And he also invented a mechanical device to convert 124

4Cf. Mackensen (1990), p. 58 (my translation). A facsimile of Leibniz’s manuscript “De
progressione dyadica” may be found in Stein and Heinekamp (1990), p. 109.
5Cf. Mackensen (1990), p. 59 (my translation).
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Fig. 4.2 Model of Leibniz’s digital calculating machine (© Ludolf von Mackensen)

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

decimal numbers into dyadic numbers. Figure 4.3 shows a functional model built 125

by Rolf Paland after the construction plans of Ludolf von Mackensen: 126

To conclude this section let it be pointed out that Nicholas Rescher recently 127

reconstructed Leibniz’s ideas of a “Machina Deciphratoria”, i.e. a cipher machine, 128

as sort of a byproduct of his calculating machine. In a letter of February 1679 to the 129

Duke of Hanover-Calenberg, Leibniz described his ideas as follows: 130

This arithmetical machine led me to conceive another beautiful machine that would 131

serve to encipher and decipher letters, and do this with great swiftness and in a manner 132

indecipherable by others. For I have observed that the most commonly used ciphers are 133

easy to decipher, while those difficult to decipher are generally difficult to use, so that busy 134

people abandon them. But with this machine of mine an entire letter is almost as easy to 135

encipher and decipher for one who uses it as it is to copy it.6 136

Eleven years later, in a memorandum for emperor Leopold I in Vienna, he revealed 137

some further details of this machine: 138

It is a smallish mechanism (machinula) that is easy to transport. [ . . . ] While both 139

encipherment and decipherment is [ordinarily] laborious, there is now a facility enabling 140

one to get at the requisite ciphers or alphabetic-letters as easily as though one were playing 141

6Cf. A I 2, p. 125; the translation is from Rescher (2012), p. 35–36.
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Fig. 4.3 Leibniz’s machine for converting decimal into binary numbers (© H. Gramann)
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on a clavichord or other [keyboard] instrument. The requisite letters will immediately 142

emerge, and only need to be copied off.7 143

On the basis of these and some other hints, Rescher developed a conjectural 144

reconstruction of Leibniz’s cryptographic machine which, with the assistance of 145

several engineers, has meanwhile been physically realized. Figure 4.4 shows the 146

result of this reconstruction. 147

4.3 Leibniz’s Grand Vision of the Creation of the World 148

The Christian idea that God created the entire world literally out of nothing does 149

not sound very reasonable. Yet Leibniz evidently did believe in this doctrine or, 150

somewhat more exactly, in the slightly weakened claim that God created the 151

world out of nothing plus one. In 1981 the “Stadtsparkasse Hannover” edited a 152

commemorative coin (Fig. 4.5): 153

In the middle of the coin there is a table with the beginning of the binary number 154

system, framed by samples of elementary arithmetical calculations. On top of the 155

coin one can read “Omnibus ex nihilo ducendis sufficit unum”, which may be 156

translated as follows: “In order to produce everything out of nothing one [thing] is 157

7Cf. A IV 4, p. 68; translation from Rescher (2012), p. 37.
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Fig. 4.4 Leibniz’s cipher machine (© Nicholas Rescher)
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sufficient”. The whole picture is said to represent an “imago creationis”, i.e. a picture 158

of the creation. Now, a skeptic may want to object that the editors of the coin grossly 159

misunderstood Leibniz’s intentions. After all, the diagram mainly illustrates the fact 160

that the set of natural numbers can be built up from just two elements, namely 161

from the numerals 0 and 1. Moreover, since Leibniz used to refer to the number 162

zero by the Latin word ‘nihil’, the quoted dictum can alternatively be translated 163

as saying: “In order to produce every number from 0, the number 1 is sufficient”. 164

Thus one might suspect that the Hanover savings bank mistakenly charged Leibniz 165

with holding the Christian view of the creation of the world while in fact he only 166

wanted to put forward the much more modest claim that the world of numbers can 167

be created from zero plus one. In 1697, however, Leibniz himself had painted the 168

picture shown in Fig. 4.6. 169

Again we are told to see a “Bild der Schöpffung”, a picture of the creation, which 170

contains drawings of the sun, the moon, and other celestial objects. On top one can 171

read “Einer hat alles aus nichts gemacht”, which means ‘One [namely God] has 172

made everything out of nothing’. The ambiguous statement at the bottom “Eins 173

ist noht” can be interpreted as saying either that one thing or that the number one 174

is necessary. In what follows it will be argued that Leibniz did not only have the 175

trivial arithmetical interpretation in mind, but rather the Christian doctrine of the 176

creation of the world. Somewhat more exactly, Leibniz thought it possible for God 177
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Fig. 4.5 Commemorative coin Stadtsparkasse Hannover

to construct the world – or better: the idea of the world – out of the ideas or the 178

concepts of Nothing and One in seven steps. 179

1. Starting with the numerals 0 and 1, one obtains the set of natural numbers. 180

2. Each of these numbers is interpreted as representing, or being characteristic of, a 181

specific primitive concept. 182

3. By way of logical combination the larger set of general concepts is obtained. 183

4. Individual-concepts, i.e. the “ideas” corresponding to individuals, will then be 184

defined as maximally consistent concepts. 185

5. Among the set of all possible individuals the relation of compossibility is 186

introduced. 187

6. Possible worlds are defined as certain maximal collections of pairwise compos- 188

sible individuals. 189

7. The real world is distinguished from its rivals by being the richest, i.e. most 190

numerous and, perhaps, also in some other respect the best of all possible worlds. 191
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Fig. 4.6 Leibniz’s drawing of the creation (© Niedersächsische Landesbibliothek Hannover)
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These seven steps try to capture what Leibniz had in mind with his famous remark 192

“Cum Deus calculat et cogitationem exercet fit mundus”, which means “While God 193

is calculating and carrying out his deliberations the world comes into existence”.8 194

In order to support this interpretation, step 2 of the “logical creation of the 195

world”, viz. the idea of assigning characteristic numbers to concepts, will be closer 196

examined in Sect. 4.4. Steps 3 and 4, i.e. the construction of the algebra of concepts 197

and the definition of individual concepts, will be outlined in Sects. 4.5.2 and 4.5.3. 198

For reasons of space, the remaining steps which deal with the ontological ideas of 199

compossibility, existence, and possible worlds, must stay out of consideration here. 200

The reader is referred to the reconstruction of “The System of Leibniz’s Logic” 201

given elsewhere.9 202

8This remark, which Louis Couturat chose as motto for his ground-breaking book (1901), was
written by Leibniz on the margin of the “Dialogus” of August 1677; cf. GP 7, p. 191. As far as
I know, Leibniz nowhere seriously discussed the problem of the proper creation of the world, i.e.
the transition from the mere idea to its physical actualization.
9Cf. Lenzen (1990), especially Chap. 6.

http://dx.doi.org/10.1007/978-3-319-93779-3_6
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4.4 Leibniz’s Ambitious Dream of a Characteristica 203

Universalis and Its Modest Realization as a Semantics for 204

Syllogistic Inferences 205

Top-ranking among famous quotes from Leibniz certainly is the slogan “Calcule- 206

mus”: 207

[ . . . ] whenever controversies arise, there will be no more need of disputation between two 208

philosophers than between two calculators. For it would suffice for them to take their pencils 209

in their hand, to sit down at the abacus, and to say to one another [ . . . ]: Let us calculate!10 210

This vision of the computability of all (scientific) problems rests on two pillars: (i) 211

the invention of a “characteristica universalis”, into which the respective question 212

can be translated in an unambiguous way; and (ii) the construction of a “calculus 213

ratiocinator”, which in application to this language yields a precisely determined 214

result.11 This section is devoted to an explanation of task (i) while (ii) will be dealt 215

with in Sects. 4.5.1, 4.5.2, and 4.5.3. 216

Already in 1666, in his dissertation “De Arte Combinatoria”, Leibniz mentioned 217

the possibility of “a universal writing, i.e. one which is intelligible to anyone who 218

reads it, whatever language he knows.”12 More than 10 years later he explained in 219

some more detail: 220

Not long ago, some distinguished persons devised a certain universal language or char- 221

acteristic in which all notions and things are nicely ordered, a language with whose help 222

different nations can communicate their thoughts, and each, in its own language, read what 223

the other wrote. But no one has put forward a language or characteristic which embodies, at 224

the time, both the art of discovery and the art of judgment, that is, a language whose signs 225

or characters perform the same task as arithmetic signs do for numbers.13 226

Leibniz was convinced 227

[ . . . ] that one can devise a certain alphabet of human thoughts and that, through the 228

combination of the letters of this alphabet and through analysis of words produced from 229

them, all things can both be discovered and judged. [ . . . ] Once the characteristic numbers 230

of most notions are determined, the human race will have a new kind of tool, a tool that will 231

increase the power of the mind much more than optical lenses helped our eyes, a tool that 232

will be as far superior to microscopes or telescopes as reason is to vision.14 233

10Cf. GP 7, p. 200; the translation has been adopted from https://en.wikiquote.org/wiki/Gottfried_
Leibniz
11Cf. A VI, 4, p. 443: “Itaque profertur hic calculus quidam novus et mirificus, qui in omnibus
nostris ratiocinationibus locum habet, et qui non minus accurate procedit, quam Arithmetica aut
Algebra”.
12Parkinson (1966), p.10.
13Cf. the fragment “De Numeris Characteristicis ad Linguam universalem constituendam” in GP 7,
p. 184–9. The translation has been adopted with some modifications from Ariew & Garber (1989),
p. 6–8.
14Cf. GP 7, p. 185 and p. 187.

https://en.wikiquote.org/wiki/Gottfried_Leibniz
https://en.wikiquote.org/wiki/Gottfried_Leibniz
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The application of the “true” characteristic numbers would allow reducing the ques- 234

tion whether an arbitrary state of affairs holds or not to a mere arithmetical issue. 235

However, as Leibniz soon came to realize, “due to the wonderful interconnection of 236

things, it is extremely difficult to produce the characteristic numbers”. Therefore in 237

a series of essays of April 1679 he contented himself with the much more modest 238

task of developing a formal semantics by means of which the logical validity of 239

syllogistic inferences can be decided: 240

I have contrived a device, quite elegant, if I am not mistaken, by which I can show that 241

it is possible to corroborate reasoning through numbers. And so, I imagine that those 242

so wonderful characteristic numbers are already given, and, having observed a certain 243

general property that characteristic numbers have, I meanwhile assume that these numbers, 244

whatever they might be, have that property. By using these numbers I can immediately 245

demonstrate through numbers, and in an amazing way, all of the logical rules and show how 246

one can know whether certain arguments are formally valid.15 247

This semantics was guided by the idea that a term composed of concepts A and B 248

gets assigned the product of the numbers assigned to the components: 249

For example, since ‘man’ is ‘rational animal’, if the number of ‘animal’, a, is 2, and the 250

number of ‘rational’, r, is 3, then the number of ‘man’, m, will be the same as a*r, in this 251

example 2*3 or 6.16 252

Now a universal affirmative proposition like ‘All gold is metal’ can be understood as 253

maintaining that the concept ‘gold’ contains the concept ‘metal’ (because ‘gold’ can 254

be defined, e.g., as ‘the heaviest metal’). Therefore it seems obvious to postulate that 255

in general ‘Every S is P’ is true if and only if s, the characteristic number assigned to 256

S, contains p, the number assigned to P, as a prime factor; or, in other words, s must 257

be divisible by p. In a first approach, Leibniz thought that the truth-conditions for the 258

particular affirmative proposition ‘Some S are P’ might be construed analogously 259

by requiring that either s can be divided by p or conversely p can be divided by s. 260

But this was a mistake!17 After some trials and errors, Leibniz eventually found the 261

following more complicated solution18: 262

(i) To every term T, a pair of natural numbers <+t1;-t2> is assigned such that t1 263

and t2 are relatively prime, i.e. they don’t have a common divisor. 264

15Cf. GP 7, p. 189, and Ariew and Garber (1989), p. 9–10.
16Cf. “Elementa Calculi” in Couturat (1903), p. 49–57; the translation has been adopted from
Parkinson (1966), p. 17–24.
17According to Leibniz’s condition, the valid mood DARII would become invalid. The assignment
of numbers B = 3, C = 6, D = 2 satisfies the premise ‘All C are D’, because 6 can be divided by 2;
furthermore ‘Some B are C’ becomes true because the number of the predicate, C = 6, is divisible
by the number of the subject, B = 3. But the conclusion ‘Some B are D’ would result as false since
neither B = 3 can be divided by D = 2, nor conversely D by B. Thus also Leibniz soon noticed
that for the truth of a particular affirmative proposition “it is not necessary that the subject can be
divided by the predicate or the predicate divided by the subject”; cf. C., p. 57.
18Cf. “Regulae ex quibus de bonitate consequentiarum [ . . . ] judicari potest, per numeros”, in C.
p. 77–84; an English version may be found in Parkinson (1966), p. 25–32.
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(ii) ‘Every S is P’ is true (relative to the assignment (i)) if and only if +s1 is 265

divisible by +p1 and -s2 is divisible by -p2. 266

(iii) ‘No S is P’ is true if and only if +s1 and -p2 have a common divisor or +p1 267

and -s2 have a common divisor. 268

(iv) ‘Some S is P’ is true if and only if condition (iii) is not satisfied. 269

(v) ‘Some S isn’t P’ is true if and only if condition (ii) is not satisfied. 270

(vi) An inference from premises P1, P2 to the conclusion C is logically valid if and 271

only if for each assignment of numbers satisfying condition (i), C becomes true 272

whenever both P1 and P2 are true.19
273

As Leibniz himself proved in Theorems 1–8, the “simple” inferences of the theory 274

of the syllogism, i.e. the laws of opposition, subalternation and conversion, are 275

all satisfied by this semantics. Furthermore, as was first shown by Lukasiewicz 276

(1951), the semantics of characteristic numbers satisfies all (and only) those moods 277

which are commonly regarded as valid. Hence it is a model of a syllogistic 278

which dispenses with negative concepts. Although Leibniz repeatedly tried to 279

generalize his semantics so as to cover also negative concepts, he never found a 280

satisfactory solution. This problem has only been solved by contemporary logicians 281

like Sanchez-Mazas (1979) and Sotirov (1999). 282

Leibniz’s much further reaching hope that mankind might once discover the 283

“true” characteristic numbers which enable to calculate the truth of arbitrary 284

propositions, must, however, be assessed as an illusion: 285

When we have the true characteristic numbers of things, we will be able to judge without 286

any mental effort or danger of error whether arguments are materially [!] sound.20 287

One reason why such “true” characteristic numbers are bound to remain a chimera 288

consists in the fact that the result of a mathematical calculation always is necessary, 289

while the obtaining or not-obtaining of an arbitrary state of affairs may be 290

contingent. 291

4.5 The Development of Leibniz’s Universal Calculus 292

In the seventeenth century, logic was still dominated by syllogistic, i.e. the theory 293

of the four categorical forms: 294

Universal affirmative proposition (UA) Every S is P SaP
Universal negative proposition (UN) No S is P SeP
Particular affirmative proposition (PA) Some S is P SiP
Particular negative proposition (PN) Some S isn’t P SoP

295

19Cf. C., p. 25–28; condition (vi) was put forward only in another fragment. Cf. C., p. 245–7: “Ex
hoc calculo omnes modi et figurae derivari possunt per solas regulas Numerorum. Si nosse volumus
an aliqua figura procedat vi formae, videmus an contradictorium conclusionis sit compatibile
cum praemissis, id est an numeri reperiri possint satisfacientes simul praemissis et contradictoriae
conclusionis; quodsi nulli reperiri possunt, concludet argumentum vi formae.”
20Cf. GP 7, p. 189, or Ariew and Garber (1989), p. 10.
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A typical textbook of that time is the well-known “Logique de Port Royal”21
296

which, apart from an introductory investigation of ideas, concepts, and propositions, 297

basically consists of a theory of the so-called “simple” laws (of subalternation, 298

opposition, and conversion) and a theory of the syllogistic moods which are 299

classified into four different figures. The following summary of this theory does not 300

rely, however, on Arnaud & Nicole’s presentation but rather on Leibniz’s reception 301

of the traditional logic. For the sake of preciseness, we use the modern symbols ¬, 302

∧, ∨ for the negation, conjunction, and disjunction of propositions and →, ↔ for 303

(strict) implication and (strict) equivalence. 304

4.5.1 Early Seventeenth Century Syllogistic 305

As Leibniz explains, “a subalternation takes place whenever a particular proposition 306

is inferred from the corresponding universal proposition”,22 i.e.: 307

SUB 1 SaP → SiP
SUB 2 SeP → SoP.

308

According to the modern analysis of the categorical forms in terms of first order 309

logic, these laws are not strictly valid but hold only under the assumption that the 310

subject term S is not empty. This problem of so-called existential import will be 311

discussed further below. 312

The theory of opposition first has to determine which propositions are contradic- 313

tories of each other in the sense that they can neither be together true nor be together 314

false. Clearly, the PN is the contradictory, or negation, of the UA, while the PA is 315

the negation of the UN: 316

OPP 1 ¬SaP ↔ SoP
OPP 2 ¬SeP ↔ SiP.

317

The next task is to determine which propositions are contraries to each other in 318

the sense that they cannot be together true, while they may well be together false. 319

As Leibniz states in C., p. 82: “Theorem 6: The universal affirmative and the 320

universal negative are contrary to each other”. Finally, two propositions are said to 321

be subcontraries if they cannot be together false while it is possible that are together 322

true. As Leibniz notes in another theorem, the two particular propositions, SiP and 323

SoP, are logically related to each other in this way. The theory of subalternation and 324

opposition is often summarized in the familiar Square of Opposition (Fig. 4.7): 325

21Cf. Arnauld and Nicole (1683).
22Cf. C., p. 80. In Arnauld & Nicole (1683) the principle of subalternation is put forward informally
as follows: “Les propositions particulières sont enfermés dans les générales de même nature, et non
les générales dans les particulières, I dans A, et O dans E, et non A dans I, ni E dans O”.
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Fig. 4.7 Square of
opposition
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In the paper “De formis syllogismorum Mathematice definiendis” written around 326

1682 Leibniz tried to axiomatize the theory of the syllogistic figures and moods 327

by reducing them to a small number of basic principles. The “Fundamentum 328

syllogisticum”, i.e. the axiomatic basis of the theory of the syllogism, is the “Dictum 329

de omni et nullo”: 330

If a total C falls within another total D, or if the total C falls outside D, then whatever is in 331

C, also falls within D (in the former case) or outside D (in the latter case).23 332

These laws warrant the validity of the following “perfect” moods of the First Figure: 333

BARBARA CaD, BaC → BaD
CELARENT CeD, BaC → BeD
DARII CaD, BiC → BiD
FERIO CeD, BiC → BoD.

334

On the one hand, if the second premise of the affirmative moods BARBARA and 335

DARII is satisfied, i.e. if B is either totally or partially contained in D, then, according 336

to the “Dictum de Omni”, also B must be either totally or partially contained in D 337

since, by the first premise, C is entirely contained in D. Similarly the negative moods 338

CELARENT and FERIO follow from the “Dictum de Nullo”: 339

B is either totally or partially contained in C; but the entire C falls outside D; hence also B 340

either totally or partially falls outside D.24 341

Next Leibniz derives the laws of subalternation from DARII and FERIO by substi- 342

tuting ‘B’ for ‘C’ and ‘C’ for ‘D’, respectively. This derivation (and hence also the 343

validity of the laws of subalternation) tacitly presupposes the following principle 344

which Leibniz considered as an “identity”: 345

SOME BiB. 346

23Cf. C., p. 410–411.
24Cf. C., p. 411.
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With the help of the laws of subalternation, BARBARA and CELARENT may be 347

weakened into 348

BARBARI CaD, BaC → BiD
CELARO CeD, BaC → BoD.

349

Thus the First Figure altogether has six valid moods, from which one obtains six 350

moods of the Second and six of the Third Figure by means of the logical inference- 351

scheme “Regressus”: 352

REGRESS If a conclusion Q logically follows from premises P1, P2, but if Q
is false, then one of the premises must be false

353

When Leibniz carefully carries out these derivations, he presupposes the laws of 354

opposition, OPP 1, OPP 2. Finally, six valid moods of the Fourth Figure can be 355

derived from corresponding moods of the First Figure with the help of the laws 356

of conversions. According to traditional doctrines, the PA and the UN may be 357

converted “simpliciter”, while the UA can only be converted “per accidens”: 358

CONV 1 BiD → DiB
CONV 2 BeD → DeB
CONV 3 BaD → DiB.

359

As Leibniz shows, these laws can in turn be derived from some previously proven 360

syllogisms with the help of the “identical” proposition: 361

ALL BaB. 362

Furthermore one easily obtains another law of conversion according to which the 363

UN can also be converted “accidentally”: 364

CONV 4 BeD → DoB. 365

The announced derivation of the moods of the Fourth Figure was not carried out in 366

the fragment “De formis syllogismorum Mathematice definiendis” which breaks off 367

with a reference to “Figura Quarta”. It may, however, be found in the manuscript LH 368

IV, 6, 14, 3 which, unfortunately, was only partially edited by Couturat. At any rate, 369

Leibniz managed to prove that all valid moods can be reduced to the “Fundamentum 370

syllogisticum” in conjunction with the laws of opposition, the inference scheme 371

“Regressus”, and the “identical” propositions SOME and ALL. 372

Now while ALL really is an identity or theorem of first order logic, ∀x(Bx → 373

Bx), SOME is nowadays interpreted as ∃x(Bx ∧ Bx). This formula is equivalent to 374

∃x(Bx), i.e. to the assumption that there exists at least one x such that x is B. Hence 375

the laws of subalternation presuppose that each concept B which can occupy the 376

position of the subject of a categorical form is »non-empty«. Leibniz discussed this 377

problem of existential import in the paper “Difficultates quaedam logicae” (GP 7, 378

pp. 211–217) where he distinguished two kinds of existence: Actual existence of the 379

individuals inhabiting our real world vs. merely possible subsistence of individuals 380

“in the region of ideas”. According to Leibniz, logical inferences should always be 381
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evaluated with reference to “the region of ideas”, i.e. the larger set of all possible 382

individuals. Therefore all that is required for the validity of subalternation is that the 383

term B has a non-empty extension within the domain of possible individuals.25
384

4.5.2 From the 1678 “Calculus Ratiocinator” to an Algebra 385

of Concepts 386

In this section it will be shown how Leibniz’s algebra of concepts gradually evolves 387

from the traditional theory of the syllogism in four steps: First, by distilling an 388

abstract operator of conceptual containment out of the informal proposition ‘Every 389

S is P’. Second, by inventing or discovering the operator of conceptual conjunction 390

inherent in the operation of juxtaposition of concepts like ‘rational animal’. Third, 391

by a thoroughgoing elaboration of the laws of conceptual negation, which goes hand 392

in hand, fourth, with the invention of the operator of possibility, or self-consistency, 393

of concepts. 394

4.5.2.1 Conceptual Containment and Conceptual Coincidence 395

By the end of the 1670s, Leibniz has come to realize that, in the traditional 396

formulation of the UA, the quantifier expression ‘every’ is basically superfluous. 397

Instead of ‘Every A is B’ one may simply say ‘A is B’. Thus in an early draft of a 398

“Calculus ratiocinator” he abbreviates ‘Omnis homo est animal’ by the formula ‘A 399

est B’ because “the subject is always supposed to be preceded by a universal sign”.26
400

Similarly, in the “Specimen Calculi Universalis” of 1679, he explains: 401

(1) A universal affirmative proposition will be expressed here as follows: A is B, or (every) 402

man is an animal. We shall, therefore, always understand the sign of universality to be 403

prefixed.27 404

By the year 1686 at the latest, when elaborating his “General Inquiries about the 405

Analysis of Concepts and of Truths”, Leibniz uses to express the UA not only with 406

the help of the “copula” ‘is’ as ‘A is B’, but alternatively also as ‘A contains B’ or 407

‘B is contained in A’: 408

(28) I usually take as universal a term which is posited simply: e.g. ‘A is B’, i.e. ‘Every A is 409

B’, or ‘In the concept A the concept B is contained’.28 410

25As will turn out below, this weak condition of existential import is tantamount to the assumption
that concept B is self-consistent!
26Cf. A VI, 4, p. 274: “Subjectum a in exemplo praecedenti, Omnis homo. Semper enim signum
universale subjecto praefixum intelligatur”.
27Cf. GP 7, p. 218 or the translation in Parkinson (1966), p. 33. For the sake of uniformity, Leibniz’s
small letters ‘a’, ‘b’ have been replaced by capitals ‘A’, ‘B’.
28Cf. C., p. 367 or the translation in Parkinson (1966), p. 57.
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Leibniz’s terminology is based upon the traditional distinction between the exten- 411

sion and the “intension” (or comprehension) of a concept. Thus in the “Elementa 412

Calculi” of April 1679 he wrote: 413

(11) [ . . . ] For example, the concept of gold and the concept of metal differ as part and 414

whole; for in the concept of gold there is contained the concept of metal and something 415

else – e.g. the concept of the heaviest among metals. Consequently, the concept of gold is 416

greater than the concept of metal. 417

(12) The Scholastics speak differently; for they consider, not concepts, but instances 418

which are brought under universal concepts. So they say that metal is wider than gold, since 419

it contains more species than gold, and if we wish to enumerate the individuals made of 420

gold on the one hand and those made of gold on the other, the latter will be more than the 421

former, which will therefore be contained in the latter as a part in the whole. [ . . . ] However, 422

I have preferred to consider universal concepts, i.e. ideas, and their combinations, as they 423

do not depend on the existence of individuals. So I say that gold is greater than metal, since 424

more is required for the concept of gold than for that of metal and it is a greater task to 425

produce gold than to produce simply a metal of some kind or other. Our language and that 426

of the Scholastics, then, is not contradictory here, but it must be distinguished carefully.29 427

Similarly, in the “New Essays on Human understanding” the two opposing points 428

of view are explained as follows: 429

The common manner of statement concerns individuals, whereas Aristotle’s refers rather 430

to ideas or universals. For when I say Every man is an animal I mean that all the men 431

are included among all the animals; but at the same time I mean that the idea of animal 432

is included in the idea of man. ‘Animal’ comprises more individuals than ‘man’ does, but 433

‘man’ comprises more ideas or more attributes: one has more instances, the other more 434

degrees of reality; one has the greater extension, the other the greater intension.30 435

From these considerations it follows quite generally that the extension of concept 436

A is contained in the extension of B if and only if the intension of A contains the 437

intension of B: 438

REZI 1 Ext(A) ⊆ Ext(B) ↔ Int(A) ⊇ Int(B). 439

Leibniz defended this principle of reciprocity in a paper of August 1690 as follows: 440

If I say ‘Every man is an animal’ I want the notion of animal to be contained in the idea 441

of man. And the method of notions is contrary to the method of individuals: just as [ . . . ] 442

all men are contained in all animals, so conversely the notion of animal is contained in the 443

notion of man. And just like there are more animals besides the men, so something must 444

be added to the idea of animal in order to get the idea of man. For by augmenting the 445

conditions, the number decreases.31 446

Now the law REZI 1 immediately entails that two concepts with the same extension 447

must also have the same intension: 448

REZI 2 Ext(A) = Ext(B) → Int(A) = Int(B). 449

29Cf. C., p. 53 or the translation in Parkinson (1966), p. 20–21. A similar distinction may also be
found in Arnauld & Nicole (1683), p. 51–2.
30Cf. GP 5, p. 469.
31Cf. C., p. 235.
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According to our modern understanding of “intensionality”, this principle is clearly 450

invalid because one can find concepts or predicates A and B which have the same 451

extension but not the same “intension”. To quote a famous example of Quine, it 452

seems biologically plausible to assume that all animals with a heart have a kidney, 453

and vice versa.32 Therefore the predicates ‘animal with heart’ and ‘animal with 454

kidney’ have the same extension, while their “intensions” or “meanings” differ 455

widely. However, “intension” in the sense of traditional logic must not be mixed 456

up with “intension” in the modern sense. While for contemporary modal logic 457

the intension of an expression is always considered as something dependent of 458

the respective possible world, according to the traditional view the intension of a 459

concept A is not to be taken relative to different possible worlds. Instead it only 460

mirrors the extension of A in the actual world. Furthermore, in Leibniz’s view, the 461

extension of concept A is not just the set of actually existing individuals, but rather 462

the set of all possible individuals that fall under that concept. Anyway, in what 463

follows the containment-relation between concepts A, B shall be symbolized as: 464

A∈B “A is B”; “A contains B”. 465

The logical properties of this relation are easily determined. Already in “De 466

Elementis cogitandi” of 1676, Leibniz had put forward the “absolute identical 467

proposition A is A” together with the “hypothetical identical proposition: If A is 468

B, and B is C, then A is C”.33 Hence the containment-relation is both reflexive and 469

transitive. 470

CONT 1 A∈A
CONT 2 A ∈ B ∧ B ∈ C → A ∈ C.

471

Furthermore Leibniz soon recognized that the identity or coincidence of concepts 472

may be defined as mutual containment. Thus in the “Elementa ad calculum 473

condendum” of around 1678 he notes that “If A is B and B is A, then one can be 474

substituted for the other salva veritate”, where a few lines later he defines that “A 475

and B are the same, if one can everywhere be substituted for the other”.34 With the 476

help of the symbol ‘=’, the former definition may be rendered as follows: 477

IDEN 1 A = B ↔ A ∈ B ∧ B ∈ A. 478

The famous “Leibniz law of identity”, i.e. the principle of the substitutivity of 479

identicals, can be formalized by the following inference scheme (where α is an 480

arbitrary proposition): 481

IDEN 2 If A = B, thenα[A] ⇐⇒ α[B]. 482

32Cf. Quine (1953), p. 21.
33Cf. A VI, 3, p. 506.
34Cf. A VI, 4, p. 154.
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By means of these two basic principles, the subsequent corollaries, according to 483

which the identity-relation is reflexive, transitive, and symmetric, can easily be 484

derived: 485

IDEN 3 A = A
IDEN 4 A = B ∧ B = C → A = C
IDEN 5 A = B → B = A.35

486

4.5.2.2 Conceptual Conjunction 487

The operator of conceptual conjunction combines, e.g., ‘animal’ and ‘rational’ by 488

mere juxtaposition to ‘rational animal’. More generally, two concepts A and B may 489

be conjunctively combined into AB. As Leibniz points out in an early draft of a 490

logical calculus, it follows from the very meaning of conjunctive juxtaposition that 491

AB contains A (and similarly AB contains B) because “AB wants to express just this, 492

namely that which is A and which also is B”36: 493

CONJ 1 AB∈A
CONJ 2 AB∈B.

494

In the “Addenda to the specimen of the Universal Calculus” of 1679, Leibniz noted 495

that the operation of conceptual conjunction is symmetric and idempotent: 496

It must also be noted that it makes no difference whether you say AB or BA, for it makes no 497

difference whether you say ‘rational animal’ or ‘animal rational’. 498

The repetition of some letter in the same term is superfluous, and it is enough for it to 499

be retained once; e.g. AA or ‘man man’.37 500

In our symbolism these laws take the form: 501

CONJ 3 AB = BA
CONJ 4 AA = A.

502

Furthermore Leibniz recognized that in addition to principles CONJ 1, 2, which 503

show that a “compound predicate can be divided into several”, also conversely: 504

Different predicates can be joined into one; thus if it is agreed that A is B, and (for some 505

other reason) that A is C, then it can be said that A is BC. For example, if man is an animal, 506

and if man is rational, then man will be a rational animal.38 507

Hence one gets the further law of conjunction: 508

CONJ 5 A ∈ B ∧ A ∈ C → A ∈ BC. 509

35Leibniz stated these laws especially in the “Generales Inquisitiones”. Cf. A VI, 4, p. 751
“Propositio per se vera est A coincidit ipsi A”; p. 750: “(6) Si A coincidit ipsi B, B coincidit ipsi A
[ . . . ] (8) Si A coincidit ipsi B, et B coincidit ipsi C, etiam A coincidit ipsi B”.
36Cf. A VI, 4, p. 148: “AB est A pendet a significatione huiusmodi compositionis literarum. Hoc
ipsum enim vult AB, nempe id quod est A, itemque B”.
37Cf. GP 7, p. 221–2, or the translation in Parkinson (1966), p. 40.
38Cf. Parkinson (1966), p. 40.
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In Leibniz’s riper calculi this law will usually be strengthened into an equivalence: 510

“That A contains B and A contains C is the same as that A contains BC”39: 511

CONJ 6 A ∈ BC ↔ A ∈ B ∧ A ∈ C. 512

To conclude this section, let it be pointed out that just as the identity operator can be 513

defined by ‘∈’ (according to IDEN 1), so conversely the ∈-operator might be defined 514

(with the additional help of the operator of conceptual conjunction) by ‘=’, namely 515

according to the following law which was put forward by Leibniz, e.g., in § 83 of 516

the “General Inquiries”40: 517

CONT 3 A ∈ B ↔ (A = AB). 518

4.5.2.3 Conceptual Negation 519

Leibniz always used one and the same word, ‘not’ (in Latin ‘non’), to designate 520

the negation either of a proposition or of a concept. Here we will use, however, 521

two different symbols, namely ‘¬’ for the negation of a proposition, and ‘∼’ 522

for the negation of a concept. The logic of the propositional connective is quite 523

straightforward. If one defines the negation of a proposition in the traditional way 524

such that these “two propositions neither can be together true, nor can be together 525

false”, one obtains the following truth-conditions: 526

If the affirmation is true, then the negation is false; if the negation is true, then the affirmation 527

is false [...] If it is true that it is false, or if it is false that it is true, then it is false; if it is true 528

that it is true, and if it is false that it is false, then it is true. All these are usually subsumed 529

under the name of the Principle of contradiction.41 530

While Leibniz had an absolute clear understanding of the logic of propositional 531

negation, during his research into the laws for conceptual negation he faced serious 532

problems. From the tradition, he was acquainted with the law of double negation, 533

“Not-not-A = A”42: 534

NEG 1 ∼(∼A) = A. 535

Also Leibniz easily transformed the Scholastic principle of contraposition into a 536

corresponding law of his “Universal calculus”, viz.: “In general, ‘A is B’ is the same 537

as ‘Not-B is Not-A’”43: 538

NEG 2 A ∈ B ↔ ∼B ∈ ∼A. 539

39Cf. Parkinson (1966), p. 58, fn. 4.
40Cf. C., p. 378, or the translation in Parkinson (1966), p. 67.
41The first quotation is from April 1679, the second from around 1686; cf. A VI, 4, p. 248 and p.
804.
42Cf. § 96 of the “General Inquiries”, e.g., A VI, 4, p. 767.
43Cf. § 77 of the “General Inquiries”, e.g. A VI, 4, p 764, or the translation in Parkinson (1966), p.
67.
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Furthermore Leibniz discovered the following variants of the law of consistency 540

where the symbols ‘ �=’ and ‘ �∈’, of course, are meant to abbreviate the negation of 541

‘=’ and of ‘∈’, respectively: 542

NEG 3 A �= ∼A
NEG 4 A = B → A �= ∼B.
NEG 5* A �∈ ∼A
NEG 6* A∈B → A�∈∼B.44

543

Principles NEG 5, 6 have been marked with a ‘*’ in order to indicate that the laws 544

are not absolutely valid. As will be explained below, they have to be restricted to 545

self-consistent terms. 546

The cardinal mistake of Leibniz’s theory of negation, however, consists in the 547

frequent assumption that the one-way implication NEG 6 might be strengthened 548

into the equivalence: 549

NEG 7* A�∈B ↔ A∈∼B.45 550

This error is a bit surprising because in general Leibniz was well aware of the fact 551

that the formula ‘A∈B’ expresses the universal affirmative proposition while, on the 552

background of the traditional principle of obversion, ‘A∈∼B’ formally represents 553

the universal negative proposition. In view of the laws of opposition, the negated 554

formulae ‘A�∈B’ and ‘A�∈∼B’ therefore represent the particular negative and the 555

particular affirmative proposition, respectively. Hence all four categorical forms 556

can uniformly be expressed in Leibniz’s algebra of concepts as follows: 557

(UA) A ∈ B
(UN) A ∈ ∼B
(PA) A �∈ ∼B
(PN) A �∈ B.

558

From this it follows that the basically (but not entirely) correct principle NEG 6* is 559

just the formal counterpart of the law of subalternation, SUB 1, and this inference 560

clearly must never be converted! Thus, e.g., in § 92 of the “General Inquiries”, 561

Leibniz emphasized that the inference from A�∈∼B to A∈B (or, similarly, from A�∈B 562

to A∈∼B) is invalid.46 On the other hand, a little bit earlier in the same work, namely 563

44In the “General Inquiries”, the above principles had been formulated as follows: “A proposition
false in itself is ‘A coincides with not-A’” (§ 11); “If A = B, then A �= not-B” (§ 171, Seventh);
“It is false that B contains not-B, that is, B doesn’t contain not-B” (§ 43); and “A is B, therefore A
isn’t not-B” (§ 91). Cf. A VI, 4, p. 751, p. 783, p. 755, and p. 766, or the translation in Parkinson
(1966), p. 56, p. 83, p. 59, and p. 68.
45Cf. GRUA, p. 536.
46Cf. A VI, 4, p. 766: “Non valet consequentia: Si A non est non-B, tunc A est B, seu Omne animal
esse non hominem falsum est, quidem; sed tamen hinc non sequitur Omne animal esse hominem.”
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in § 82, he had maintained that “‘A isn’t B’ is the same [!] as ‘A is not-B’”, and this 564

error was repeated again and again in many other fragments.47
565

The root of Leibniz’s notorious problem of mixing up ‘A�∈B’ and ‘A∈∼B’ is 566

closely connected with the distinction between singular and general terms! If A is 567

the name of some individual, or, as one could also say, if A is an individual-concept, 568

then the two propositions ¬(A is B) and (A is ∼B), though being syntactically 569

different, are semantically equivalent because it seems reasonable to assume that 570

for each individual x, x has the negative property ∼B iff x fails to have the positive 571

property B. Thus in the “Calculi universalis investigationes” Leibniz explained: 572

Two terms are contradictory if one is positive and the other the negation of this positive, 573

as ‘man’ and ‘not man’. About these the following rule must be observed: If there are two 574

propositions with exactly the same singular subject of which the first has the one and the 575

second the other of the contradictory terms as predicate, then necessarily one proposition is 576

true and the other false. But I say: exactly the same [singular] subject, for instance if I say 577

‘Apostle Peter was a Roman bishop’ and Apostle Peter was not a Roman bishop’.48 578

The crucial law NEG 7* is indeed valid for the special case where the subject A 579

is an individual concept. Unfortunately, Leibniz failed to realize with sufficient 580

clarity that this principle may not be generalized to the case where A is an arbitrary 581

concept. Thus, after the just quoted passage, he temporarily considered that of the 582

pair of propositions ‘Every man is learned’, ‘Every man is not learned’, always 583

exactly one would be true and the other false, but soon afterwards he noticed this 584

error and remarked that the generalized rule is wrong.49 However, a few lines later 585

he considered the rule once again in a more abstract way (omitting the informal 586

quantifier expression ‘Every’) and then he repeated the mistake of postulating not 587

only the (basically) correct principle NEG 6: “I If the proposition ‘A is B’ is true, 588

then proposition ‘A is not-B’ is false”, but also the incorrect conversion: “III If the 589

proposition ‘A is B’ is false, then the proposition ‘A is not-B’ is true”.50
590

4.5.2.4 Conceptual Possibility 591

Fortunately, the partial confusions and errors of Leibniz’s theory of negation 592

(as described in the preceding section) are highly compensated by an ingenious 593

discovery, namely the invention of the operator of possibility or self-consistency of 594

concepts. This operator shall here be symbolized by 595

47Cf., e.g., § 21 of “Specimina calculi rationalis” in A VI, 4, p. 813: “A non est B idem est quod A
est non B.”
48Cf. A VI, 4, p. 218; the quoted example of Apostle Peter only appears in the critical apparatus of
variants; Leibniz later replaced it by the less fortunate example ‘this piece of gold is a metal’ vs.
‘this piece of gold is a non-metal’.
49Cf. A VI, 4, p. 218; critical apparatus, variant (d): “Imo hic patet me errasse, neque enim procedit
regula.”
50Cf. A VI, 4, p. 218; in order to avoid confusions, I have interchanged Leibniz’s symbolic letters
‘B’ and ‘A’.
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P(A) (“A is possible”). 596

Leibniz himself used many different locutions to express the self-consistency of 597

a concept. Instead of ‘A is possible’ he often says ‘A is a thing’ (“A est res”), or 598

‘A is being’ (“A est ens”), or simply ‘A is’ (“A est”). In the opposite case of an 599

impossible concept, he sometimes also calls A a “false term”. Now in Leibniz’s 600

“Universal calculus”, one can consider, in particular, the inconsistent concept A∼A 601

(“A Not-A”), and therefore one may define that a concept B is possible if and only 602

if B doesn’t contain a contradiction like A∼A: 603

POSS 1 P(B) =df (B�∈A∼A).51 604

In order to get a clearer understanding of the truth-condition of the proposition 605

P(B), let it be noted that the extension of the negative concept ∼A must always 606

be conceived as the set-theoretical complement of the extension of A, because an 607

object x has the negative property ∼A just in case that x fails to have property A. 608

Furthermore, the extension of a conjunctive concept BC generally is the intersection 609

of the extension of B and the extension of C, because x has the property BC if and 610

only if x has both properties. From these conditions it follows that the extension of 611

A∼A is the intersection of Ext(A) and its complement, i.e. the empty set! Hence a 612

concept B is possible if and only if its extension is not contained in the empty set, 613

which in turn means that Ext(B) itself is not empty! 614

At first sight, this requirement appears inadequate, since there are certain 615

concepts – such as that of a unicorn – which happen to be empty but which may 616

nevertheless be regarded as possible, i.e. not involving a contradiction. However, 617

as Leibniz explained, e.g., in a paper on “Some logical difficulties”,52 the universe 618

of discourse underlying the extensional interpretation of his logic should not be 619

taken to consist of actually existing objects only, but instead to comprise all possible 620

individuals. Therefore the non-emptiness of Ext(B) is both necessary and sufficient 621

for guaranteeing the self-consistency of B. Clearly, if B is possible, then there must 622

be at least one possible individual x that falls under concept B. 623

The following two laws describe some characteristic relations between the 624

possibility-operator P and other operators of the algebra of concepts: 625

POSS 2 A ∈ B ∧ P(A) → P(B)
POSS 3 A ∈ B ↔ ¬ P(A∼B).

626

Leibniz’s own formulation of principle POSS 2: “If A contains B and A is true, B 627

also is true” prima facie sounds a bit strange, but he goes on to explain: 628

51Cf. A VI, 4, p. 749, fn 8: “A non-A contradictorium est Possibile est quod non continet
contradictorium seu A non-A. Possibile est quod non est Y, non-Y”.
52Cf. GP 7, p. 211–217, or the translation in Parkinson (1966), p. 115–121.
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By a false letter I understand either a false term (i.e. one which is impossible, or not-being) 629

or a false proposition. And in the same way by [a true letter] I understand either a possible 630

term or a true proposition.53 631

Hence, if the term (or concept) A contains B and if A is “true”, i.e. possible, then also 632

B must be possible. This law, incidentally, might be proved as follows. Assume that 633

A∈B and that P(A); then also P(B) must hold, because otherwise B would contain a 634

contradiction like C∼C. But from A∈B and B∈(C∼C) it would follow by CONT 2 635

that A∈(C∼C) which contradicts the assumption P(A). 636

The important law POSS 3, in contrast, cannot be derived from the remaining 637

laws for containment, negation, and conjunction, but has to be adopted as a 638

fundamental axiom of the algebra of concepts.54 The systematic importance of POSS 639

3 is evidenced by the fact that in the “General Inquiries” Leibniz stated no less 640

than six different versions of this law. Leibniz hit upon this crucial axiom by his 641

investigation of propositions “secundi adjecti” vs. “tertii adjecti” which culminated 642

in the discovery: 643

(151) We have, therefore, propositions tertii adjecti reduced as follows to propositions 644

secundi adjecti: 645

‘Some A are B’ gives ‘AB is a thing’ 646

‘Some A are not B’ gives ‘A not-B is a thing’ 647

‘Every A is B’ gives ‘A not-B is not a thing’ 648

‘No A is B’ gives ‘AB is not a thing’.55 649

With the help of the possibility-operator, the two (almost valid) laws of consistency 650

NEG 5* and NEG 6* can be improved as follows: 651

NEG 5 P(A) → A�∈∼A
NEG 6 P(A) → (A∈B → A�∈∼B).

652

As NEG 6 shows, the validity of the principle of subalternation, i.e. the inference 653

from the UA ‘A∈B’ to the PA ‘A�∈∼B’, only presupposes that the subject term A is 654

self-consistent (and hence has a non-empty extension within the set of all possible 655

individuals). 656

Note also that axioms POSS 2, POSS 3 admit a proof of the following counterpart 657

of what in propositional logic is called “ex contradictorio quodlibet”: 658

NEG 8 (A(∼A))∈B.56 659

53Cf. § 55 of the “General Inquiries”, e.g. A VI, 4, p. 757, or the translation in Parkinson (1966),
p. 60.
54More exactly, this holds only for the implication ¬P(A∼B) → A∈B, while the converse A∈B →
¬P(A∼B) is easily proven: If A∈B, then (by CONT 3) A = AB, hence (by IDEN 6) A∼B = AB∼B,
and thus (A∼B)∈(B∼B), i.e. ¬P(A∼B). Cf. A VI, 4, p. 863: “Vera propositio categorica affirmativa
universalis est: A est B, si A et AB coincidat et A sit possibile, et B sit possibile. Hinc sequitur, si A
est B, vera propositio est, A non-B implicare contradictionem, nam pro A substituendo aequivalens
AB fit AB non-B quod manifeste est contradictorium”.
55Cf. Parkinson (1966), p. 81.
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Just as the contradictory proposition α∧¬α entails any other proposition β, so the 660

contradictory concept A(∼A) contains any other concept B!57
661

It has often been criticized that Leibniz’s logic lacks the operator of conceptual 662

disjunction. Although this is by and large correct, it doesn’t imply any defect or any 663

incompleteness of his algebra of logic because the “missing” operator may simply 664

be introduced by definition: 665

DISJ 1 A∨B =df ∼(∼A∼B).58 666

On the background of the above axioms of negation, the standard laws for 667

disjunction, e.g. 668

DISJ 2 A∈(A∨B)
DISJ 3 B∈(A∨B)
DISJ 4 A∈C ∧ B∈C → (A∨B)∈C,

669

may easily be derived from corresponding laws of conjunction. More generally, as 670

was shown in Lenzen (1984), Leibniz’s “intensional” logic of concepts turns out to 671

be provably equivalent, or isomorphic, to Boole’s extensional algebra of sets, and 672

in this sense Leibniz really managed to transform the theory of the syllogism into a 673

complete and sound algebra of concepts. 674

4.5.3 Indefinite Concepts, Quantifiers, and Individual 675

Concepts 676

Leibniz’s quantifier logic emerges from the algebra of concepts by the introduction 677

of so-called “indefinite concepts”. These concepts are symbolized by letters from 678

the end of the alphabet X, Y, Z ..., and they function as quantifiers ranging over 679

concepts. Thus in the “General Inquiries” Leibniz explained: 680

(16) An affirmative proposition is ‘A is B’ or ‘A contains B’ [...]. That is, if we substitute the 681

value for A, one obtains ‘A coincides with BY’. For example, ‘Man is an animal’, i.e. ‘Man’ 682

is the same as ‘a ... animal’ (namely, ‘Man’ is ‘rational animal’). For by the sign ‘Y’ I mean 683

56Consider the concept A(∼A(∼B)) which contains A(∼A). Since A∼A is contradictory, it follows
by POSS 2 that A(∼A(∼B)) is also impossible; but from ¬P(A(∼A(∼B))) it immediately follows
by POSS 3 that A(∼A)∈B!.
57The inference from a contradictory pair of premises, α, ¬α to an arbitrary conclusion β was
well known in Medieval logic, but Leibniz wasn’t convinced of its validity. In his excerpts from
Caramuel’s Leptotatos (A VI 4, p. 1334–1343) he considered the “argumentatio curiose” by means
of which, e.g., the conclusion ‘Circulus habet 4 angulos’ is derived from the premises ‘Petrus currit’
and ‘Petrus non currit’. Although the deduction is based on two impeccable formal principles,
Leibniz annotated: “Videtur esse sophisma”.
58Leibniz knew quite well that the corresponding propositional connective (α∨β) can similarly be
defined as ¬(¬α ∧¬β). For a closer discussion cf. Lenzen (1983), p. 132–133.
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something undetermined, so that ‘BY’ is the same as ‘Some B’, or ‘a ... animal’ [...], or ‘a 684

certain animal’. So ‘A is B’ is the same as ‘A coincides with some B’, i.e. ‘A = BY’.59 685

With the help of the modern symbol for the existential quantifier, ∃, the latter law 686

can be expressed more precisely as follows: 687

CONT 4 A∈B ↔ ∃Y(A = BY). 688

As Leibniz himself noted, the formalization of the UA according to CONT 4 is 689

provably equivalent to the simpler representation according to CONT 3.60 On the 690

one hand, according to the rule of existential generalization, 691

EXIST 1 If α[A], then ∃Yα[Y], 692

A = AB immediately entails ∃Y(A = YB). On the other hand, if there exists some Y 693

such that A = YB, then according to IDEN 6, AB = YBB, i.e. AB = YB and hence (by 694

the premise A = YB) AB = A.61
695

Next observe that Leibniz often used to formalize the PA ‘Some A is B’ by means 696

of an indefinite concept as ‘YA∈B’. In view of CONT 3, this representation might 697

be transformed into the (elliptic) equation YA = ZB. However, both formalizations 698

are somewhat inadequate because they are theorems of Leibniz’s quantifier logic! 699

According to CONJ 4, BA∈B, hence by EXIST 1: 700

CONJ 6 ∃Y(YA∈B). 701

Similarly, since, according to CONJ 3, AB = BA, a twofold application of EXIST 1 702

yields: 703

CONJ 7 ∃Y∃Z(YA = ZB). 704

These tautologies, of course, cannot adequately represent the PA which for an 705

appropriate choice of concepts A and B may become false! In order to resolve these 706

difficulties, consider a draft of a calculus probably written between 1686 and 1690, 707

where Leibniz proved principle: 708

NEG 9* A�∈B ↔ ∃Y(YA∈∼B).62 709

On the one hand, it is interesting to see that after first formulating the right hand 710

side of the equivalence, “as usual”, in the elliptic way ‘YA is Not-B’, Leibniz later 711

paraphrased it by means of the explicit quantifier expression “there exists a Y such 712

that YA is Not-B”. On the other hand, Leibniz discovered that NEG 8* has to be 713

improved by requiring more exactly that there exists a Y such that YA contains ∼B 714

and YA is possible, i.e. Y must be compatible with A: 715

59Cf. A VI, 4, p. 751 or the translation in Parkinson (1966), p. 56
60Cf. A VI, 4, p. 751, fn. 13, or Parkinson (1966), p. 56, fn. 1: “It is noteworthy that for ‘A = BY’
one can also say ‘A = AB’ so that there is no need to introduce a new letter”.
61This proof was given by Leibniz himself in the important paper “Primaria Calculi Logic
Fundamenta” of August 1690; cf. C., 235.
62Cf. C., 259–261, or the text-critical edition in A VI, 4, p. 807–814.
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NEG 9 A �∈ B ↔ ∃Y(P(YA) ∧ YA ∈ ∼B). 716

Leibniz’s proof of this important law is quite remarkable: 717

(18) [ . . . ] to say ‘A isn’t B’ is the same as to say ‘there exists a Y such that YA is Not-B’. If 718

‘A is B’ is false, then ‘A Not-B’ is possible by [POSS 2]. ‘Not-B’ shall be called ‘Y’. Hence 719

YA is possible. Hence YA is Not-B. Therefore we have shown that, if it is false that A is B, 720

then YA is Not-B. Conversely, let us show that if YA is Not-B, ‘A is B’ is false. For if ‘A is 721

B’ would be true, ‘B’ could be substituted for ‘A’ and we would obtain ‘YB is Not-B’ which 722

is absurd.63 723

To conclude the sketch of Leibniz’s quantifier logic, let us consider some of the 724

few passages where an indefinite concept functions as a universal quantifier. In the 725

above quoted draft, Leibniz put forward principle “(15) ‘A is B’ is the same as ‘If L 726

is A, it follows that L is B’”, i.e.: 727

CONT 5 A∈B ↔ ∀Y(Y∈A → Y∈B).64 728

Furthermore, in § 32 GI, Leibniz at least vaguely recognized that just as A∈B 729

(according to CONJ 6) is equivalent to ∃Y(A = YB), so the negation A�∈B means 730

that, for any indefinite concept Y, A �= BY: 731

CONT 6 A �∈ B ↔ ∀Y(A �= YB). 732

According to the text-critical edition, Leibniz had written: 733

(32) The negative proposition ‘A does not contain B’, or it is false that A is (or contains) B, 734

or A does not coincide with BY.65 735

Unfortunately, the passage ‘or A does not coincide with BY’ (“seu A non coincidit 736

BY”) had been overlooked by Couturat and it is therefore also missing in Parkinson’s 737

translation! Anyway, with the help of ‘∀’, one can formalize Leibniz’s conception 738

of individual concepts as maximally-consistent concepts as follows: 739

IND 1 Ind(A) ↔df P(A) ∧ ∀Y(P(AY) → A ∈ Y). 740

Thus A is an individual concept iff A is self-consistent and A contains every concept 741

Y which is compatible with A. The underlying idea of the completeness of individual 742

concepts had been formulated in § 72 of the “General Inquiries” as follows: 743

So if BY is [“being”], and the indefinite term Y is superfluous, i.e., in the way that ‘a certain 744

Alexander the Great’ and ‘Alexander the Great’ are the same, then B is an individual. If the 745

term BA is [“being”] and if B is an individual, then A will be superfluous; or if BA = C, then 746

B = C.66 747

63Cf. C., p. 261.
64Cf. C., p. 260.
65Cf. A VI, 4, p. 753: “(32) Propositio Negativa. A non continet B, seu A esse (continere) B falsum
est., seu A non coincidit BY.”
66Cf. A VI, 4, p. 762 or the translation in Parkinson (1966), p. 65, § 72 including fn. 1; for a closer
interpretation of Leibniz’s logical criteria for individual concepts cf. Lenzen (2004).



UNCORRECTED
PROOF

74 W. Lenzen

Note, incidentally, that IND 1 might be simplified by requiring that, for each concept 748

Y, A either contains Y or contains ∼Y: 749

IND 2 Ind(A) ↔ ∀Y(A ∈ ∼Y ↔ A �∈ Y). 750

As a corollary it follows that the invalid principle NEG 7*, which Leibniz again and 751

again had considered as valid, in fact holds only for individual concepts: 752

NEG 7 Ind(A) → (A �∈ B → A ∈ ∼B). 753

Already in the “Calculi Universalis Investigationes” of 1679, Leibniz had pointed 754

out: 755

[...] if two propositions are given with exactly the same singular [!] subject, where the 756

predicate of the one is contradictory to the predicate of the other, then necessarily one 757

proposition is true and the other is false. But I say: exactly the same [singular] subject, for 758

example, ‘This gold is a metal’, ‘This gold is a not-metal’.67 759

The crucial issue here is that NEG 7 holds only for an individual concept like, 760

e.g., ‘Apostle Peter’, but not for general concepts as, e.g., ‘man’. The text-critical 761

apparatus of the Academy Edition reveals that Leibniz was somewhat diffident about 762

this decisive point. He began to illustrate the above rule by the correct example “if 763

I say ‘Apostle Peter was a Roman bishop’, and ‘Apostle Peter was not a Roman 764

bishop’” and then went on, erroneously, to generalize this law for arbitrary terms: 765

“or if I say ‘Every man is learned’ ‘Every man is not learned’.” Finally he noticed 766

this error “Here it becomes evident that I am mistaken, for this rule is not valid.”68
767

4.5.4 “Real Addition and Subtraction”: Some Building Blocks 768

of Elementary Set-Theory 769

The so-called Plus-Minus-Calculus was mainly developed in the “Specimen Calculi 770

Coincidentium et Inexistentium” and in the “Non inelegans specimen demonstrandi 771

in abstractis” of around 1687.69 Strictly speaking, it is not a logical calculus but 772

rather a much more general calculus which admits of different applications and in- 773

terpretations. In its abstract form, it should be regarded as a theory of set-theoretical 774

containment, set-theoretical “addition”, and set-theoretical “subtraction”. Unlike 775

modern systems of set-theory, however, Leibniz’s calculus has no counterpart of 776

the relation ‘x is an element of A’; and it also lacks the operator of “negation”, 777

i.e. set-theoretical complement! The complement of set A might, though, be defined 778

67Cf. A VI, 4, p. 217–218.
68Cf. A VI, 4, p. 218, lines 3–6, variant (d). The long story of Leibniz’s cardinal mistake of mixing
up ‘A isn’t B’ and ‘A is not-B’ is analyzed in detail in Lenzen (1986).
69Cf. the text-critical edition in A VI, 4, p. 830–845 and 845–855; English translations may be
found in Parkinson (1966), p. 122–130, 131–144.
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with the help of the subtraction operator as (U-A) where the constant ‘U’ designates 779

the universe of discourse. But, in Leibniz’s calculus, this additional logical element 780

is lacking. 781

Leibniz’s drafts exhibit certain inconsistencies which result from the experimen- 782

tal character of developing the laws for “real” addition and subtraction in close 783

analogy to the laws of arithmetical addition and subtraction. The genesis of this 784

idea is described in detail in Lenzen (1989, 2000). The inconsistencies might be 785

removed basically in two ways. First, one might restrict A-B to the case where B is 786

contained in A; such a conservative reconstruction of the Plus-Minus-Calculus has 787

been developed in Dürr (1930). The second, more rewarding alternative consists in 788

admitting the operation of »real subtraction« A-B also if B is not contained in A. In 789

any case, however, one has to give up Leibniz’s idea that subtraction might yield 790

“privative” entities which are “less than nothing”. 791

In the following reconstruction, Leibniz’s symbols ‘+’ for the addition (i.e. 792

union) and ‘-’ for the subtraction of sets are retained, while his informal expressions 793

‘Nothing’ (“nihil”) and ‘is in’ (“est in”) are replaced by the modern symbols 794

‘∅’ and ‘⊆’. Set-theoretical identity may be treated either as a primitive or as a 795

defined operator. In the former case, inclusion can be defined either by A⊆B = df 796

∃Y(A + Y = B) or simpler as A⊆B = df (A + B = B). If, conversely, inclusion is 797

taken as primitive, identity can be defined as mutual inclusion: A = B = df (A⊆B) 798

∧ (B⊆A).70 Set-theoretical addition, of course, is symmetric, or, as Leibniz puts it, 799

“transposition makes no difference here”71: 800

PLUS 1 A + B = B + A. 801

The main difference between arithmetical addition and “real addition” is that the 802

addition of one and the same “real” thing (or set of things) doesn’t yield anything 803

new: 804

PLUS 2 A + A = A. 805

As Leibniz puts it: 806

A+A = A [ . . . ] i.e. repetition changes nothing here. (For although four coins and another 807

four coins are eight coins, four coins and the same four already counted are not.)72 808

The “real nothing”, i.e. the empty set ∅, is characterized as follows: “It does not 809

matter whether Nothing is put or not, i.e. A+Nih. = A”73: 810

NIHIL 1 A + ∅ = A. 811

In view of the relation (A⊆B) ↔ (A+B = B), this law can be transformed into: 812

70Cf., e.g., Parkinson (1966), p. 131–144 (Definition 3, Propositions 13, 14 and 17).
71Cf. Parkinson (1966), p. 132 (Axiom 1).
72Cf. Parkinson (1966), p. 132.
73Cf. C., p. 267.



UNCORRECTED
PROOF

76 W. Lenzen

NIHIL 2 ∅⊆A. 813

“Real” subtraction may be regarded as the converse operation of addition: “If the 814

same is put and taken away [...] it coincides with Nothing. I.e. A [...] – A [...] = 815

N”74: 816

MINUS 1 A − A = ∅ . 817

Leibniz also considered the following principles which in a stronger form express 818

that subtraction is the converse of addition: 819

MINUS 2* (A + B) − B = A
MINUS 3* (A + B) = C → C − B = A.

820

But he soon recognized that these laws do not hold in general but only in the 821

special case where A and B are “uncommunicating”.75 The new operator of 822

“communicating” sets has to be understood as follows: 823

If something, M, is in A, and the same is in B, this is said to be ‘common’ to them, and they 824

will be said to be ‘communicating’.76 825

Hence two sets A and B have something in common if and only if there exists some 826

set Y such that Y⊆A and Y⊆B. Now since, trivially, the empty set is included in 827

every set (cf. NIHIL 2), one has to add the qualification that Y is not empty: 828

COMMON 1 Com(A, B) ↔df ∃Y(Y �= ∅ ∧ Y ⊆ A ∧ Y ⊆ B). 829

The necessary restriction of MINUS 2* and MINUS 3* can then be formalized as 830

follows: 831

MINUS 2 ¬Com(A, B) → ((A + B) − B = A)
MINUS 3 ¬Com(A, B) ∧ (A + B = C) → (C − B = A).

832

Similarly, Leibniz recognized that from an equation A + B = A + C, A may be 833

subtracted on both sides provided that C is “uncommunicating” both with A and 834

with B, i.e.: 835

MINUS 4 ¬Com(A, B) ∧ ¬ Com(A, C) → (A + B = A + C → B = C).77 836

Furthermore Leibniz discovered that the implication in MINUS 2 may be 837

converted (and hence strengthened into a biconditional). Thus one obtains the 838

following criterion: Two sets A, B are “uncommunicating” if and only if the result 839

of first adding and then subtracting B coincides with A. Inserting negations on both 840

sides of this equivalence one obtains: 841

74Cf. Parkinson (1966), p. 124 (Axiom 2).
75Cf. C., p. 267, # 29: “Itaque si A + B = C, erit A = C-B [ . . . ] Sed opus est A et B nihil habere
commune”.
76Cf. Parkinson (1966), p. 123, who misleadingly inserts the word ‘term’ before the entities M, A,
B, while Leibniz himself spoke more neutrally of “aliquid M”!
77Cf. Parkinson (1966), p. 132 (Axiom 1).
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COMMON 2 Com(A, B) ↔ ((A + B) − B) �= A. 842

Whenever two sets A, B are communicating or “have something in common”, the 843

intersection of A and B, in modern symbols A∩B, is not empty, i.e.: 844

COMMON 3 Com(A, B) ↔ A ∩ B �= ∅ .78 845

Furthermore, “What has been subtracted and the remainder are uncommunicat- 846

ing”,79 i.e.: 847

COMMON 4 ¬Com(A − B, B). 848

Leibniz further discovered the following formula which permits to “calculate” the 849

intersection or “commune” of A and B by a series of additions and subtractions: 850

INTER 1 A ∩ B = B − ((A + B) − A). 851

In a small fragment (C., p. 250) he explained: 852

Suppose you have A and B and you want to know if there exists some M which is in both of 853

them. Solution: combine those two into one, A+B, which shall be called L [ . . . ] and from 854

L one of the constituents, A, shall be subtracted [ . . . ] let the rest be N; then, if N coincides 855

with the other constituent, B, they have nothing in common. But if they do not coincide, 856

they have something in common which can be found by subtracting the rest N [...] from B 857

[ . . . ] and there remains M, the commune of A and B, which was looked for. 858

In this way Leibniz gradually transformed the theory of arithmetical addition and 859

subtraction into a fragment of the theory of sets. It is interesting to see how the 860

incompatibility between the characteristic axiom of set-theoretical union, PLUS 1, 861

and certain laws which hold only for numbers lead him to the discovery of new 862

operators like ‘Com’ and ‘∩’ which have no counterpart in elementary arithmetic. 863
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what cannot be investigated and understood mechanically, 5

cannot be investigated and understood at all – Thomas Carlyle 6

(1829) 7

Abstract The interplay of mathematics and machine is explored through early 8

physical aids from pebbles to the ‘analytical machines’ of the nineteenth century. 9

The earliest speculations on the nature and potential of computing machines 10

are traced through the work of Charles Babbage for whom calculating engines 11

represented a new technology for mathematics. Babbage’s Analytical Engine, a 12

mechanical embodiment of mathematical analysis, and his Mechanical Notation, 13

a universal language of signs and symbols, are described. Ideas prompted by 14

the intersection of mathematics and machine are discussed: the physicalisation 15

of memory and the implications for coding, algorithmic programming, machine 16

solution of equations, heuristics, computation as systematic method, halting, and 17

numerical analysis. A brief Epilogue links this material to the modern era. 18

5.1 Introduction 19

Computing looks to its origins in early counting systems, and from earliest times 20

practitioners have sought, through the use of physical aids, to offset human 21

deficiencies of memory, computational ability, and trust. 22

As a medium of record physical aids have a long history. The use of knotted 23

cords dates back to Biblical times in Old Testament references to knots as religious 24

reminders as well as a record of dimensions of the temple to be. Roman tax 25

collectors used knotted strings to record tax liabilities and payments. A system of 26

knotted cords, quipu, were used by American Indians in the fifteenth and sixteenth 27
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centuries to record numerical data and also as a prompt for the recollection of 28

historical events (Williams 1985: 35–6). 29

Material artefacts were enlisted to ensure accountability when trust and probity 30

were at issue. Notched Tally Sticks to record sums of money, usually debts, date 31

back some 8000 years. Such sticks were used in Medieval Europe to record tax 32

liabilities or the amount of a debt. Split Tally Sticks were adopted in the thirteenth 33

to nineteenth centuries by the English exchequer to record tax liabilities. Notches 34

scored across the stick represented the sum owed or deposited, and the stick was split 35

lengthwise, along the grain, into two matching pieces similarly scored. The slimmer 36

piece was called the ‘foil’ and was held by the bank or Exchequer while the larger 37

piece, the ‘stock’ was held by the depositor or debtor. The device served not only 38

as a record of a loan and its partial repayments, but also as protection against one or 39

another of the parties swindling the other as fraudulently modifying the marks by 40

one party would create a mismatch when the two halves were later compared. The 41

words ‘counterfoil’ and ‘stock holder’ are legacies of this practice. 42

The transition from counting to calculation can be found in calculi, small 43

pebbles, used as markers or tokens freely placed on Roman counting boards. In 44

the abacus with beads threaded on wires in a frame we find incipient mechanism – 45

motion under mechanical constraint. Like the quipu and the counting board, the 46

abacus uses a positional system of value in which the placement of the bead 47

represents numerical value. 48

The European Enlightenment saw a surge in calculating aids. Analog devices 49

with graduated scales for calculation and measurement were the mainstay of calcu- 50

lation from the seventeenth century onwards. The quadrant, sector and proportional 51

compass are some. John Napier’s eponymous Napier’s Bones, described in 1617, 52

consisting of a set of inscribed slats or rods, was a device to aid mainly paper-and- 53

pen multiplication and division. There is nothing macabre in the name which derives 54

from the fact that upmarket versions of the device were made from bone, horn or 55

ivory, rather than wood. 56

Slide rules, with logarithmically graduated scales, were publicised in the 1630s 57

following the introduction of logarithms by Napier in 1614. The most favoured 58

of these for general use were ‘universal’ slide rules for multiplication, division, 59

logarithmic and trigonometric functions. These had many variants some exotically 60

specific: estimating excise duties (conversions scales for cubic inches to bushels, 61

finding the mean diameter of a cask), calculating the volume of timber, the weight 62

of cattle, estimating varieties of interest rates, and scales for a host of specialised 63

engineering applications (Baxandall 1926). Slide rules offered the convenience of 64

portability and robustness, and were widely used for the next 350 years for rapid 65

calculation where accuracy of two to four digit places would suffice (Horsburgh 66

1914). 67

But the algorithmic rule still resided in the human operator upon whom the 68

execution of the calculation depended. The seventeenth century saw several early 69

stirrings to incorporate computational rule in mechanism. Savants in Continental 70

Europe sought to produce mechanical devices for simple arithmetic. Wilhelm 71

Schickard built his ‘Calculating Clock’ (1623), Blaise Pascal, his ‘Pascaline’ (1642), 72
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and Gottfried Wilhelm Leibniz his ‘Reckoner’ (1674) (Martin 1925). The Leibniz’s 73

Reckoner introduced an innovative stepped drum that was the basis of calculator 74

designs for the next two centuries. Decimal numbers were entered, sometimes using 75

a stylus, on circular dials or sliders, and results, the outcome mainly of simple 76

addition with carriage of tens, were displayed on engraved or annotated discs. The 77

Reckoner is celebrated more for its ambition than for any practical accomplishment: 78

the ‘carriage of tens’ failed to work as intended and only one, a largely unsuccessful 79

prototype, appears to have been made (Morar 2015). The Pascaline stimulated 80

philosophical debate about the mechanisation of mental process. Models were 81

paraded before royalty, and demonstrated in the drawing rooms of merchants, 82

government officials, aristocrats, and university professors. Most were ornate and 83

expensive, philosophical novelties, insufficiently robust for daily use, and not many 84

were made. 85

For all the ingenuity of their makers and their seriousness of purpose, mechanical 86

calculators prior to the nineteenth century were largely objets de salon, many 87

exquisite and delicate, sumptuous testaments to the instrument maker’s art, but 88

unsuited to daily use in trade, finance, commerce, science or engineering. 89

The mechanical calculator that made a serious bid for widespread take-up was the 90

arithmometer, patented and made public by Thomas de Colmar in 1820, and became 91

the vanguard of mechanical calculator development in the nineteenth century 92

(Johnston 1997). This was a desk-top device with sliders for entering numbers, 93

numbered dials to display results, a moveable carriage for shifting decades, and 94

a rotary crank handle. While often described as the first successful commercial 95

calculator, the arithmometer was far from an instant success. It took over fifty 96

years of modification and improvement before commanding even a small market. 97

A contemporary government report evaluating utility of arithmometers records 98

that even in the 1870s, they were troublesome, noisy, subject to derangement, 99

imprecisely made, and in frequent need of repair (Mowatt 1893; Henniker 1893; 100

Swade 2003a: 35–9). Arithmometers went on to sell in the tens of thousands but 101

it had taken the better part of a century for them to mature as a product (Johnston 102

1997; Mounier-Kuhn 1999). 103

The function of these devices depends on the ability of the mechanism to 104

manipulate physical representations of numerical value, and their mathematical 105

capabilities were bounded by the state of contemporary mechanics. Unreliability 106

was one issue, digit precision another. Arithmometers, for example, typically 107

featured no more than six or eight digits. Here the limiting mechanism was the 108

carriage of tens. In the worst case of a 1, say, being added to a row of 9s, the carriage 109

of tens needed to propagate across each digit position as it altered 9s to 0s. The 110

action followed a digit-to-digit causal sequence and to effect this domino or ripple- 111

through carry the force required to advance all the digit wheels is derived from a 112

single motion – the addition of 1 to the least significant digit. With calculators made 113

of wood, ivory and soft workable metals digit precision was limited by the strength 114

of the material transferring force from the manual dial, knob, or handle to the all of 115

the digit positions in the same action. 116
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There were other generic deficiencies in manual calculators that further inhibited 117

their use. Multiplying two numbers using an arithmometer is accomplished by the 118

accumulation of partial products. The operator enters the digits of the multiplier 119

on sliding dials, rotates a handle the correct number of times for the current 120

digit of the multiplier, lifts and correctly repositions the moveable carriage, and 121

repeats this process for each next digit of the multiplier. Use of the device requires 122

the continuous informed intervention of the operator and the correctness of the 123

final result relies, not only on the repeated correct mechanical functioning of the 124

device, but on the faultless execution by an operator of a sequence of physical 125

manipulations. Only a limited part of the computational process is embodied in 126

the mechanism (addition and the carriage of tens) with the overall computational 127

algorithm provided not by the device but by the operator. 128

A further limitation was the absence of a permanent record of the outcome. Each 129

new calculation replaces the last set of numbers in the mechanism, and the only 130

way of retaining a record of prior or intermediate results is for the operator to note 131

the contents of the registers by writing them down. Such transcription was again 132

dependent on human agency with each manual operation in the sequence susceptible 133

to error. 134

In the face of such constraints the mathematical ambitions of the calculator 135

makers were modest confined as they were to four-function arithmetic at best, and 136

while the struggle to produce viable devices that were more than aspirational novel- 137

ties continued, practitioners, needing to perform other than elementary calculations 138

relied for the most part on printed mathematical tables, or the slide rule. By a curious 139

twist it was the reliance on printed tables that led to the game-changing episode. 140

And it was the promise of mechanised mathematics that played a decisive role in 141

subsequent change. 142

5.2 Mechanical Computation 143

The event that lifted the prospects for computational machines from the hands of 144

struggling instrument makers is captured in the increasingly well-known vignette 145

in which the English mathematician, Charles Babbage (1791–1871) and the as- 146

tronomer, John Herschel, met in 1821 to check the accuracy of newly prepared 147

manuscripts of astronomical tables. 148

An established practice of the day was double computation in which two sets 149

of results were prepared independently by human computers without collaboration 150

(Swade 2003a: 74–77). The manuscripts of the separately computed sets of results 151

would then be compared for discrepancies (Lardner 1834: 278). The reduced 152

likelihood of two independent computers making the same mistake increased 153

confidence in the integrity of the results. The effectiveness of the technique relies 154

on the independence of the computers from each other. Two computers were 155

instantly dismissed when, hired to assist in the preparation of the British Nautical 156

Almanac for 1771–2, they were found copying from each other (Forbes 1965: 394). 157
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The technique of double computation was not foolproof: it was not unknown for 158

computers who, despite insulation from each other, produced the same incorrect 159

result, and these would elude detection using coincidence checks (Swade 2003b: 160

151–3). 161

Herschel and Babbage met to compare the two newly computed tables. During 162

the process, Babbage, increasingly dismayed by the many discrepancies, exclaimed 163

‘I wish to God these calculations had been executed by steam’ (Hyman 1988: 46). 164

‘Steam’ can be read as a metaphor for the infallibility of machinery, as well as for 165

the model of industrial production to solve the problem of supply. With machine as 166

factory and number as product, tables, like manufactured goods, could be produced 167

at will. In Babbage’s invocation of steam we have an essential extension of the 168

model of industrial production from goods to information, from physical to mental, 169

from matter to mind (Schaffer 1994). 170

There are three accounts by Babbage of the meeting with Herschel, dating 171

from 1822, 1834 and 1839 (Collier 1990: 14–8). The first account leaves it open 172

as to whether it was Babbage or Herschel that made the suggestion of solution 173

by machine. In the second and third accounts Babbage claims ownership of the 174

suggestion for himself. The third account is the most dramatic and is the only 175

one to include direct speech. All three accounts refer to steam. Babbage may well 176

have dramatised the episode or aggrandised his role appropriating more credit with 177

each retelling. But that the episode occurred, and was the jumping-off point for the 178

half-century that followed in which Babbage’s devoted the major part of his efforts 179

to design and build automatic calculating engines, is well evidenced by published 180

accounts that Herschel, who was party to the original event, neither questioned nor 181

contradicted. 182

Even with an automatic calculating engine the production of tables would not 183

eliminate human agency in its entirety. The practices in the production of printed 184

tables had remained unchanged for centuries and involved five essential stages: 185

calculation by hand of each tabular result, the transcription of these results into a 186

tabular format suitable for typesetting, typesetting in loose type by a compositor, 187

printing copies in a conventional printing press and, finally, verification and 188

proof-checking results. In Babbage’s aspirational world the ‘unerring certainty 189

of mechanical agency’ (Lardner 1834: 311) would ensure error-free calculation; 190

having the machine typeset results automatically would eliminate transcription 191

and typesetting errors; the automatic production of stereotype plates during the 192

calculating cycle would serve as moulds for the production of printing plates and 193

would eliminate printing errors – the displacement of loose type by adhesion 194

to sticky ink, for example – and automatically printing a checking copy would 195

assist proof reading. ‘It is only by the mechanical fabrication of tables that such 196

[human] errors can be rendered impossible’ asserted Dionysius Lardner in his 197

grandiloquent advocacy of Babbage’s Engine (Lardner 1834: 282). So at least in 198

prospect Babbage’s intended machine would, at a stroke, eliminate the risk of 199

human error to which each of the manual processes was prone, and error-free 200

tables would be available on demand. Astronomers were one group of potential 201

beneficiaries. No longer would they need to petition a reluctant Astronomer Royal 202
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to compile tables for the trajectory of newly observed celestial bodies and incur 203

inevitable delay. They would be able to produce tables on demand. 204

Fired up by the meeting with Herschel, Babbage was seized by the idea of 205

automatic machine calculation, and he immediately began drafting exploratory 206

designs for his difference engine, so called because of the mathematical principle 207

on which it was based, the method of finite differences – an established method 208

of manual calculation used by table-makers. Rather than evaluating the required 209

function ab initio for each successive value of the table by repeated substitution of 210

the argument uniformly incremented for each new entry, the method consisted of 211

first finding the value of the function for relatively widely space intervals of the 212

argument to yield a set of ‘pivotal values’, and then finding intermediate values by 213

interpolation. The favoured technique was interpolation by subtabulation using the 214

method of finite differences. The first use of the technique is not known. It may have 215

originated with Henry Briggs who described it in 1624 though the term ‘method of 216

differences’ appears not to have been adopted till the nineteenth century (Lindgren 217

1990: 311). 218

Examining more exactly the processes and division of labour involved in pre- 219

mechanised tabulation helps to clarify the role a difference engine was intended 220

to play. Tabulation by differences started with mathematicians who chose the 221

formulae for the function to be tabulated, chose the particular form (typically a series 222

expansion), fixed the range of the table (the start and end values of the independent 223

variable), decided the number of decimals to be worked to, and calculated the pivotal 224

values. The mathematicians also calculated the initial differences required to start 225

the process and these, together with the pivotal values, the starting line of initial 226

values, and a set of procedural instructions, were given to the human computers. 227

Starting with the first pivotal value the computers calculated each next tabular value 228

by the repeated addition of differences. The nth difference was added to the (n-1)th
229

difference, the (n-1)th to the (n-2)th and so on, until the first difference was added 230

to the last tabular result to yield the next tabular value. Each repetition of the train 231

of additions generated the next tabular value and the process of repeated additions 232

continued until the new pivotal value was reached. Subtabulation runs of as many 233

as one hundred to two hundred values between pivotal values were not uncommon. 234

The hierarchy of skills involved is exemplified by the great French cadastral 235

tables project led by Gaspard Francois de Prony in the late eighteenth century 236

(Grattan-Guinness 2003; Swade 2003a: 56–62). The tables project, directed by de 237

Prony, which aimed, amongst other things, to monumentalise the French metric 238

system, was the most ambitious single tabulation project undertaken to that time. 239

de Prony, France’s leading civil engineer, was charged with preparing a set of 240

trigonometric and logarithmic tables of unprecedented scope, scale and precision. 241

He distributed the work to three groups reflecting the hierarchy of mathematical 242

skills involved. The preparatory mathematical work was split between two groups 243

of mathematicians, five or six high ranking mathematicians notable amongst whom 244

were Legendre and Carnot, and seven or eight lesser mathematicians who calculated 245

the pivotal values and starting values for the computers. The third group was the 246

largest and consisted of sixty to eighty computers. These had no more than an 247
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elementary knowledge of arithmetic and carried out the most laborious and repeti- 248

tive part of the process. The guillotining of the aristocracy had hit the hairdressing 249

trade and the market for elaborate coiffures was in recession. The hairstyles of the 250

aristocracy became a loathed symbol of the defunct pre-revolutionary regime and 251

many of the computers were unemployed hairdressers who turned their hands to 252

rudimentary arithmetic (Grattan-Guinness 1990). 253

Babbage was familiar with de Prony’s project and greatly admiring of it. His 254

engine would be used exclusively for interpolation using the method of differences 255

and he calculated that interpolation by machine would reduce de Prony’s workforce 256

from ninety five to twelve, the greatest savings being made by replacing the entire 257

group of computers. The machine would replace only the largely ‘mechanical’ work 258

of the human computers. The role of the mathematicians was largely unaffected. 259

While tabular errors feature prominently in the historical narrative of Babbage’s 260

efforts it would be a mistake to take the elimination of error as the enduring motive 261

for Babbage’s interest in machine computation let alone its sole purpose. There 262

is clear evidence that the primacy of errors in Babbage’s motivational landscape 263

has been over-emphasised, and a close reading of his earliest writings on his 264

expectations for his machines demonstrates a parallel and possibly superordinate 265

interest in the mathematical potential of mechanised computation that has been 266

largely overlooked (Swade 2003a: 164–173, 2011: 246–8). 267

5.3 Mathematics and Machines 268

By the spring of 1822 Babbage had made a small working model of a Difference 269

Engine powered by a falling weight. The model has come to be known as 270

‘Difference Engine 0’ (DE0) as it predates the later Difference Engine No. 1. 271

The machine has never been found but from Babbage’s descriptions we know that 272

numerical value was represented by the rotation of geared wheels called ‘figure 273

wheels’ inscribed with decimal numbers 0 through 9, and that multi-digit numbers 274

were represented by figure wheels stacked in vertical columns. DE0 was capable 275

of automatically tabulating quadratics using a repeated cycle that added the second 276

difference to the first, and the first to the current tabular value to generate the next 277

tabular value in the sequence, a mechanised version of the manual method practised 278

by the table makers. 279

The capacity of DE0 was modest featuring a three-digit tabular value, a two- 280

digit first difference and a single-digit second difference which was, in the case 281

of native polynomials, constant (Hyman 1988: 47). However, the little machine 282

has historical significance that transcends its modest capabilities. This was the first 283

automatic calculating device that incorporated mathematical rule in mechanism and 284

the computational algorithm was, for the first time, embodied in an autonomous 285

machine. Through the physical agency of a falling weight, results could be achieved 286

that up to that point in time were achievable only by mental effort. 287
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Up to this point Babbage’s main interest and experience had been in mathemat- 288

ics. He went up to Cambridge in 1810 at the age of seventeen, already a moderately 289

accomplished mathematician. His published output at the time of his mechanical 290

epiphany consisted entirely of mathematical papers, some thirteen in all between 291

1813 and 1821, of which the most interesting to modern mathematicians are those 292

on the calculus of functions (Dubbey 1978). So in 1822, when experimenting 293

with his new model, we have a mathematician aged twenty nine running the 294

first practical automatic computing machine and reflecting on the implications for 295

machine computation. With his first trials fresh in his mind he articulated these early 296

reflections in five papers written in between June and December that year. The ideas 297

and speculations contained in these writings are remarkable and evidence a two-way 298

relationship between mathematics and computational analysis. 299

While Difference Engine 0 has never been found, a larger demonstration piece, 300

completed in 1832, representing one-seventh of the calculating section of the 301

complete Difference Engine No. 1 (Illustration 5.1), has all the essential features 302

of its lost predecessor and is used here to illustrate Babbage’s earliest recorded 303

reflections on machine computation. The ‘beautiful fragment’, as the piece was 304

referred to by Babbage’s son, is the oldest surviving automatic computational 305

machine (Babbage 1889: Preface). 306

Here, as in the first small model, number values are represented by the rotation 307

of geared wheels inscribed with the decimal numbers 0–9 arranged in columns 308

with the least significant digit in the lowermost position. The right-most column 309

represents the tabular value, the middle column the first difference, and the left- 310

most column the second difference. Initial values from a table, precalculated for the 311

specific function being tabulated, are entered by rotating individual figure wheels by 312

hand to the required digit value in a fixed setting-up sequence. For a given function 313

the initial values fix the start value of the argument and the fixed increment of the 314

argument for each next result. The Engine is then operated by cranking to and fro the 315

handle above the top plate. Each cycle of the Engine produced, by repeated addition, 316

the next value of the mathematical expression in the table with the tabular appearing 317

on the on the right. 318

5.4 Computation as Systematic Method 319

New mathematical implications of machine computation are articulated in Bab- 320

bage’s open letter of 3 July 1822, to Sir Humphrey Davy, President of the Royal 321

Society. Here Babbage advertised the use of his Engine to solve equations with no 322

known analytical solution: ‘Another and very remarkable point in the structure of 323

this machine is . . . that it will solve equations for which analytical methods of 324

solution have not yet been contrived’ (Babbage 1822: 4). This claim lifts machine 325

computation from the relatively mundane context of tabulation, to computation as a 326

systematic method of solution (Swade 2003a: 137). 327
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Illustration 5.1 (a) Difference Engine No. 1 demonstration piece (1832). (b) Top view showing
crank handle

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w



UNCORRECTED
PROOF

88 D. Swade

The roots or solutions of an equation are the values of the independent variable 328

at which the function passes through zero. The standard analytical technique for 329

solving equations was to equate the expression to zero and to solve for the unknown. 330

There was no systematic process for doing this and the success of the process 331

depends on ingenuity, creativity, and often an ability to manipulate the problem 332

into a recognisable form that has a known class of solution. Not only was there no 333

guarantee of solution using such techniques, but there was no way of determining 334

whether or not the equation in question was soluble in principle. If analytical 335

methods failed, then trial and error substitution could be tried. This involves 336

substituting trial values of the independent variable and repeating this process to 337

see if values of the argument can be found for which the function converges to zero. 338

But the technique was hit and miss, was regarded as ‘inelegant’ by mathematicians, 339

and did not guarantee success. 340

Starting with an initial value of the independent variable, each cycle of the engine 341

generates each next tabular value, and the machine has found a ‘solution’ when the 342

figure wheels giving the tabular result are all at zero. So finding a solution reduces to 343

detecting the all-zero state, and the number of machine cycles taken to achieve this 344

represents the value of the independent variable, which is the solution sought. If two 345

adjacent tabular results straddle zero (i.e. if the argument does not exactly coincide 346

with the root but the value of the function passes through zero) the solution will be 347

signalled by a change of sign. To remove the reliance on visual detection of the all 348

zero state Babbage first incorporated a bell that would ring to alert the operator to 349

the occurrence of specific conditions in the column of tabular values (Lardner 1834: 350

311). The operator would then halt the machine and read off the number of cycles the 351

machine had run to give the first root of the equation (the machine had facilities for 352

automatic cycle counting). If there were multiple roots the operator keeps cranking 353

until the bell rings again. In the event that there are no roots, the machine continues 354

ad infinitum. To further remove reliance on a human operator, provision was later 355

made for the machines to halt automatically (Swade 2011: 249–50). Babbage wrote 356

explicitly of the machine halting on finding a root. 357

Pre-echoes of Turing’s 1936 paper ‘On computable numbers’ are unmistakable. 358

What later became known as the ‘halting problem’, though not explicitly referred 359

to as such by Turing, is inseparably associated with him. For those interpreting 360

Turing’s ‘circular machine’ halting became a logical determinant of whether or 361

not machines could decide whether a certain class of problems was soluble. While 362

Babbage himself did not claim any special theoretical significance for the halting 363

criterion the resonances with decidability and solubility are unmistakeable. 364

The internal organisation and spatial layout of the engine suggested to Babbage 365

new series for which there was a generative rule but no general expression for the 366

nth term and Babbage speculates on the heuristic value of machine computation to 367

mathematics (Babbage 1822: 312–3). 368

On considering the arrangements of its parts, I observed that a different mode of connecting 369

them would produce tables of a new species altogether different from any with which 370

I was acquainted. I therefore computed with my pen a small table such as would have 371
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been informed by the engine had it existed in this new shape and I was much surprised at 372

discovering that no analytical method was yet known for determining its nth term. 373

Using external gearing any given figure wheel (representing units, tens, hundreds 374

etc. of a given number) could add its value to a wheel in another column during the 375

execution of a standard machine cycle. The technique allows feedback, feed-forward 376

or cross-feeding of individual digits in a way that influences the step-wise generation 377

of successive results. Cycling the machine would produce a new series for which 378

there was a clear generative rule for each next value, but for which there was no 379

known analytical formula: ‘we are not in possession of methods of determining its 380

nth term, without passing through all the previous ones’ (Babbage 1823: 123). By 381

cycling the machine to calculate each next value in turn, any requisite term can be 382

reached. Machine computation offered solutions where formal analysis failed. 383

The portion of Difference Engine No. 1, assembled in 1832, shows additional 384

axes and gearing that allow such cross-coupling and which were added when 385

Babbage later returned to these ideas. He was intrigued by the general question 386

of finding general laws for empirically generated series and he provides an example 387

of how, using an inductive process, he derived a general expression for a new series 388

suggested by the engine. Later he considered recurrence relationships in which each 389

next term in the series is defined in terms of the current term and a few prior terms. 390

In these cases there is a general expression for the nth term, but one that does not 391

allow it to be calculated by direct substitution. A machine capable of iterating the 392

requisite sequence of operations to calculate each new result in turn could again 393

provide computational solutions that resisted analytical process. 394

This line of thinking fell outside the comfort zone of the traditions of the time. 395

The appeal of analytical formulation derived from its generality, that is, the ability 396

to represent, in a single symbolic statement, any and all specific instances of the 397

relations expressed. A silent premise of contemporary mathematics and philosophy 398

was that example was inferior to generalisation, induction inferior to deduction, 399

empirical truths to analytical truths, and the synthetic to the analytic. Generality 400

and universality were elevated above example and instantiation. Calculation, which 401

involves specific numerical example was, in the prevailing culture, implicitly 402

inferior to formal analysis. The existence of a series that could be produced by 403

computational rule for which no formal law was known was at odds with prevailing 404

attitudes. This was new territory and Babbage shows awareness that his enquiries 405

were off piste when he wrote that he would desist from a general investigation 406

of methods to determine general laws for series defined only by generative rules 407

because the techniques involved (essentially induction) were ‘not so much in unison 408

with the taste which at present prevails in that science’ (Babbage 1826b: 218). So 409

computation and computational theory were cast as the methodological poor relation 410

of mathematics and mathematical logic. The stigma of the contingent still rankles. 411

Computer scientists still baulk at the imputation that their discipline might not be as 412

well anchored intellectually as its elite campus neighbours, and they tend to shift in 413

their seats at the suggestion that their subject has its historical roots in engineering 414

rather than something more rarefied. 415
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Babbage foresaw that computation by machine would give rise to new forms of 416

mathematical analysis. One such was what we would now call numerical analysis 417

that would precede computation by machine. In a manuscript unpublished in 418

his lifetime he predicted that the need for techniques to optimise efficiency by 419

tailoring the problem for computation by machine. He used as an example an 420

expression that required 35 multiplications and 6 additions to evaluate and showed 421

that manipulating it into an alternative but mathematically identical form reduced 422

the computational load to 5 multiplications and 1 addition. (Babbage 1837a). In 423

the case of tabulation, new techniques included ‘best fit’ approximation methods, 424

and the preparatory analysis necessary to ensure that the approximation remains 425

valid to the requisite accuracy in the interval to be tabulated. While neither of these 426

elements was new to table-makers, Babbage articulates the need for such analysis in 427

terms of the stimulus to mathematics to formalise and systematise computational 428

method, and the value of this analysis in rendering practically useful otherwise 429

abstract forms. 430

Early on Babbage anticipated that without machine computation, or an alterna- 431

tive, science would stultify: 432

I will yet venture to predict that a time will arrive, when the accumulating labour which 433

arises from the arithmetical applications of mathematical formulae, acting as a constantly 434

retarding force, shall ultimately impede the useful progress of the science, unless this or 435

some equivalent method is devised for relieving it from the overwhelming incumbrance of 436

numerical detail. (Babbage 1823: 128) 437

The need to evaluate mathematical formulae for practical purposes stimulated the 438

engine project and with it the development of mechanical logic. The detailed designs 439

of the Difference Engine contain the earliest embodiment of fundamental principles 440

of machine computation recognisable in the modern era. The use of terms familiar 441

to us in the list below is entirely anachronistic and is for expository purposes only. 442

Principles and features of mechanical logic explicitly detailed in the Difference En- 443

gine designs include: autonomy (transfer of rule from human to machine eliminating 444

the need for human intervention in algorithmic process); digital operation through 445

the discretisation of motion; parallel operation (the simultaneous operation on each 446

digit of multi-digit numbers); non-destructive addition; carriage of tens including 447

secondary carries; ‘microprogramming’; ‘pipelining’; ‘pulse-shaping’ (cleaning up 448

degraded transitions to ensure digital integrity); error prevention, error correction 449

and error detection; ‘latching’ (one-bit memory); ‘polling’ (sequenced interrogation 450

of a series of logical states); and manual input of initial values, printed and/or 451

stereotyped output (Swade 2005). 452

These earliest forays into machine computation evidence a two-way relationship 453

between mathematics and machine. In one direction, the need for reliable mathemat- 454

ical tables was the original stimulus for inventing automatic calculating machines, 455

pursuing their early development, and pioneering basic principles and potential of 456

computational engines. In the reverse direction, we have the earliest articulation of 457

some of the implications of machine computation for mathematics: computation 458
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as systematic method, heuristic potential, and the need for new forms of analysis 459

tailored and contrived to serve new computational needs. 460

What is perhaps remarkable is that the springboard for the nineteenth-century 461

speculations mentioned so far was not a computer as we would now understand the 462

term but an automatic calculator. Difference engines are strictly calculators in that 463

they crunch numbers the only way they know how – by repeated addition according 464

the method of finite differences. They execute a single fixed algorithm on whatever 465

initial values are supplied. While they are capable of conditional action (whether or 466

not to execute a carriage of tens, for example, or whether to halt or not), they are not 467

capable of branching i.e. they cannot deviate from a default operational sequence 468

to pursue an alternative algorithmic trajectory. They have no generality even as a 469

four-function calculator. 470

The essential feature on which Babbage’s speculations are founded was that 471

the machine was automatic. Mathematical rule was embodied in mechanism, the 472

algorithm was contained in wheelwork and, by physical effort, results could be 473

achieved which up to that point in time could only be achieved by mental effort. The 474

idea that the machine was ‘thinking’ was not lost on Babbage or his contemporaries. 475

In 1833 Lady Byron (Ada Lovelace’s mother) referred to the 1832 demonstration 476

piece as ‘the thinking machine’ (Toole 1992: 51). A junior colleague of Babbage’s 477

wrote that Babbage had ‘taught wheelwork to think, or at least to do the office of 478

thought’ (Hyman 1988: 48–9). The machine being autonomous was the first step 479

towards machine intelligence and it was this feature more than any other that served 480

as the basis for early speculation about the implications and potential of machine 481

computation. 482

5.5 From Computation to Computing 483

A practical advantage of the method of differences is that it requires only addition 484

and this eliminates the need for multiplication and division that would ordinarily 485

be needed to evaluate terms in a series, and addition is significantly simpler to 486

realise in mechanism than direct multiplication and division. The method of finite 487

differences allowed the calculation and tabulation of polynomial functions, and 488

what generality this has to mathematics, science and engineering derives from the 489

capacity to express functions in the form of series expansions. For all the ingenuity 490

of its conception and design, difference engines are still calculators confined as they 491

are to a fixed cycle of unvarying mechanical operations. 492

By a series of undocumented steps Babbage was led from mechanised calculation 493

by differences to fully-fledged general purpose computing. His Analytical Engine, 494

incipiently conceived in 1834 and on which he worked for the best part of the 495

rest of his life, was a machine of unprecedented generality. Buxton, doubtless 496

ventriloquising Babbage, wrote that ‘the powers of the Analytical Engine are 497

coextensive with analysis itself’ (Hyman 1988: 150). Babbage himself maintained 498

that two contemporary descriptions of his Analytical Engine (Lovelace 1843; 499
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Illustration 5.2 Analytical engine, Plan 25 (1840)
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Lardner 1834) demonstrated ‘that the whole of the developments and operations 500

of analysis are now capable of being executed by machinery’ (Babbage 1864: 136). 501

The design as it stood in 1840 is shown in Illustration 5.2. In this view the 502

circles represent registers (columns of figure wheels), stud-programmable ‘barrels’ 503

(‘microprograms’), and other mechanisms as seen from above. The cluster of circles 504

around the central circle is the Mill (central processor) and the large central circle is 505

a parallel bus consisting of large toothed wheels that allow transfer of data within the 506

Mill. The Store (memory) is shown as two rows of registers extending indefinitely to 507

the right. Each register or Variable (annotated Vn), so called because the numerical 508

value of its contents is not fixed, consists of a vertical column of up to 50 decimal 509

figure wheels. Provision was made for double precision operation allowing for 100- 510

digit results. The strip between the two rows of Variables (annotated Rack) is a stack 511

of independently moveable toothed slats. The Racks act as a parallel data bus that 512

transfers information between the Store and the Mill via buffer registers (Ingress 513

axis (I), and Egress axis (“A) (Bromley 1982). 514

The machine described is physically massive. The central wheels of the Mill are 515

some 5 ft 6 in. in diameter and some 15 ft high and the engine as shown would 516

be about 10 ft long. However the Store is truncated in the drawing for reasons of 517

drafting convenience and only 17 Variables are shown. Babbage’s minimum engine 518

which would have had some 100 Variables which would stretch it to over 20 ft long 519

and he talks of talks of machines with 1000 Store Variables. A hundred-Variable 520

machine would call for an estimated 50,000 parts. 521
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Illustration 5.3 Punched cards for analytical engine (1840). Smaller cards are operation cards.
Larger cards are variable cards
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The Analytical Engine (an abstraction of design, as it too was never built), 522

offered the prospect of a new technology for mathematics, allowing as it did 523

the evaluation of any definable function of arbitrary generality. At an operational 524

level the Engine was capable of conditional branching, iterative looping, and 525

microprogramming, though neither Babbage nor his contemporaries used these 526

terms. At systems level it had a separate Store and Mill, a serial fetch-execute cycle, 527

punched card input for data and instructions, output through print, punched card, or 528

graph plotter, an internal repertoire of automatically executed operations including 529

direct multiplication, division, addition and subtraction, parallel processing using 530

multiple processors, look-ahead carry, buffering, and pipelining. At user-level it 531

was programmable using punched cards of which there were several kinds, chief 532

amongst which were Operation Cards which contained instructions, Number Cards 533

contained input data, and Variable Cards specified where in the Store the operand 534

was to be found, and the destination location for the result. Cards were made from 535

paste-board and loosely stitched together with ribbon (Illustration 5.3). Repeating an 536

instruction sequence, invaluable for iterative processes in recurrence relationships, 537

was achieved by automatically winding back a pre-specified number of times 538

(determined at one stage of development by a Combinatorial Card) a fixed sequence 539

of Operation Cards (Bromley 2000). 540
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The internal architecture of the machine pre-echoes the signature features of 541

von Neumann’s model described in 1945 and which dominated computer design 542

since: the separation of memory and central processor, serial fetch-execute cycle, 543

and input/output. There is no internal stored program in the Analytical Engine. The 544

sequence of operations is stored on and executed from the Operation Cards stitched 545

together in a sequential train. 546

Between 1836 and 1840 Babbage wrote 25 ‘programs’ for the solution of a 547

variety of mathematical problems, and the nature and scope of these are revealing 548

(Babbage 1836, 1837b). The format of the programs is essentially tabular and 549

similar but not identical for all. Typically the first column features a line number 550

that indicates the order in which the sequence of operations is to be performed. 551

Other columns specify the operation to be performed at each step, the location in 552

store of the operands to be retrieved, which Store Variables are acted upon, where 553

in the Store the results of each operation are to be placed and, for clarification, the 554

changing contents of each Store Variable at each step as the computation progresses. 555

These descriptions are not strictly programs as we now understand the term. For 556

one, there is no control information. Babbage called them Notations of Calculation. 557

‘Traces’ or ‘walkthroughs’ have been suggested as more appropriate descriptions 558

(Bromley 1991: L-1). But I hazard that they are sufficiently algorithmic in intention 559

to exempt us from censure should we continue to refer to them as programs though 560

it is admittedly anachronistic to do so. 561

Ten of Babbage’s twenty four programs are concerned with the solution of 562

simultaneous equations. There are separate programs for the successive reduction 563

of n simultaneous equations in n variables to find the solution for one variable, 564

with separate programs for n = 3, 4, and 5. There are several programs for the 565

reduction of a number of n simultaneous equations in n variables to n-1 equations 566

in n-1 variables, as well as the direct solution of simultaneous equations for each of 567

the variables. Four of the programs are for tabulation by differences of quadratics, 568

cubics, and quartrics. There is a program for the computation of the coefficients of a 569

polynomial from those of another polynomial divided by a linear or quadratic term, 570

and for the coefficients in the product of two polynomials. There are three examples 571

of recurrence relationships requiring iterative looping. The most complex program 572

in the suite is for the solution of a problem in astronomy – computing the radius 573

vector of a body from the eccentricity and mean anomaly of its orbit. 574

The most celebrated program for the Analytical Engine is for the calculation 575

of Bernoulli numbers written by Ada, Countess of Lovelace and published in 576

1843 (Lovelace 1843). With the possible exception of Babbage’s vector radius 577

calculation the Bernoulli calculation (Illustration 5.4) is the most complex program 578

written for the machine requiring as it does nested looping and a form of memory 579

addressing that allows all prior Bernoulli numbers to be retained and available for 580

the calculation of each next term in the series (Glaschick 2016), a requirement not 581

explicit in Babbage’s examples of recurrence relations programs. These sample 582

walkthroughs were intended to demonstrate both the computational power and 583

generality of the machine. 584
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Illustration 5.4 Ada Lovelace’s ‘walkthrough program’ for calculation of Bernoulli numbers
(1843)

Babbage’s writing on the engines is largely technocentric and he offers little in 585

the way of speculation on the broader significance of his work. It was Giovanni 586

Plana, an Italian mathematician, who most clearly situated Analytical Engine and 587

machine computation in the context of mathematics. Plana, writing to Babbage in 588

1840, made the distinction between the ‘legislative’ and the ‘executive’ aspects of 589

analysis positing that ‘hitherto the legislative department of our analysis has been 590

all powerful – the executive all feeble’. He goes on to say that the Analytical Engine 591

redressed this imbalance by giving us ‘the same control over the executive which 592

we have hitherto only possessed over the legislative . . . ’ (Babbage 1864: 129). 593

Babbage was much taken with this distinction as one that for him exactly conveyed 594

the role of machine computation in relation to mathematics. The distinction endured 595

till the end. In 1869 two years before he died, he set out finally to write a general 596

description of the Analytical Engine. He made three separate attempts none of which 597

was completed. Each opened with a statement of the purpose of the Analytical 598

Engine. The first of these (Babbage 1869: 134) dated 4 May 1869 reads: 599

The object of this Engine is to execute by machinery 600

1. All the operations of arithmetic 601

2. All the operations of Analysis 602

3. To print any or all of the calculated results. 603

The greatest generality here is contained in the reference to ‘Analysis’ which in 604

terms of the engine was a reference to symbolic algebra with number an instantiation 605
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of quantity (Priestley 2011: 32). (Lovelace hints at the prospect of an engine capable 606

of implementing arbitrary rules for arbitrary symbols but the ideas are tantalisingly 607

undeveloped). The expressed purpose of the Analytical Engine as that of finding 608

the numerical value of algebraic formulae is, at face value, unexpectedly modest 609

but less so when viewed in the context of the times. In 1841 Lovelace wrote, 610

‘Mathematical Science shows what is. It is the language of unseen relations between 611

things’ (Huskey and Huskey 1980: 308). And Buxton, reflecting the rationalist credo 612

of the time, wrote: 613

There is in fact no question that can be conceived, which does not come within the category 614

of number, or which is not finally reducible to a question to be solved by the investigation 615

of quantities, by one another, according to certain relations . . . . all our ideas of quality are 616

reducible to the ideas of quantity. (Hyman 1988: 153) 617

Mathematics was seen to be uniquely privileged in its descriptive and explanatory 618

powers, and for the rationalists, the world was reducible to number. A generalised 619

machine able to map abstract mathematical description into number was the 620

essential instrument without which the ‘language of unseen relations’ would remain 621

mute. What emerges from Lovelace’s description of the Analytical Engine is the 622

idea that the potential utility of computing machines lies in its ability to manipulate 623

according to rules representations of the world contained in symbols. The machine 624

was the bridge between symbolic abstraction and contingency in the world. We 625

have in these two statements (Lovelace’s and Buxton’s) a reflection of Plana’s two 626

departments of mathematics, legislative and executive. One was not the other’s rival, 627

but an essential complement, and Babbage was evidently more than content with 628

this. 629

5.6 The Mechanical Notation 630

The unprecedented intricacy the mechanisms and long causal chains of action posed 631

difficulties both for the design process and for modes of representation. Holding 632

in one’s mind the multitude of parts and long trains of action in the mechanisms 633

‘would have baffled the most tenacious memory’ wrote Babbage in 1864 (Babbage 634

1864: 113). The solution was his Mechanical Notation, a language of signs and 635

symbols devised to describe the complex mechanisms of his calculating engines. 636

He described the genesis of the language in 1826: 637

The difficulty of retaining in the mind all the contemporaneous and successive movements 638

of a complicated machine, and the still greater difficulty of properly timing movements 639

which had already been provided for, induced me to seek for some method by which I 640

might at a glance of the eye select any particular part, and find at any given time its state of 641

motion or rest, its relation to the motions of any other part of the machine, and if necessary 642

trace back the sources of its movement through all its successive stages to the original 643

moving power. I soon felt that the forms of ordinary language were far too diffuse to admit 644

of any expectation of removing the difficulty, and being convinced from experience of the 645

vast power which analysis derives from the great condensation of meaning in the language 646
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it employs, I was not long in deciding that the most favourable path to pursue was to have 647

recourse to the language of signs. (Babbage 1826a: 250) 648

The importance of notation to mathematical reasoning is a running motif in 649

Babbage’s mathematical work. He wrote that an advantage of symbolic language 650

over common language was lack of ambiguity between sign and signified: unlike 651

words ‘an arbitrary symbol can neither convey, nor excite any idea foreign to 652

its original definition’ (Babbage and Herschel 1813: i; Babbage 1827: 327–8). A 653

further virtue was that of conciseness which he framed as a mental aid to keeping 654

track of long operational sequences (Babbage and Herschel 1813: i–ii; Babbage 655

1830: 395). 656

As a mathematics undergraduate at Cambridge (he graduated in 1814) Babbage 657

had been a vigorous advocate for the superiority of Leibniz’s notation for differential 658

calculus over Newton’s system of dots, this in defiance of the prevailing orthodoxy. 659

A suite of mathematical papers with the general title ‘The Philosophy of Analysis’ 660

includes a paper on notation that predates his involvement in the calculating engines 661

i.e. his ideas on notation are rooted in mathematics and were well developed before 662

his mechanical epiphany in 1821. Edward Bromhead, mathematician and friend of 663

Babbage, in a letter to Babbage commenting on the paper in March of that year, 664

endorsed the importance of notation: ‘I have always considered Notation as the 665

Grammar of symbolic language’ (Dubbey 1978: 93). The Mechanical Notation can 666

be seen as an extension to machines of his ideas on the role and importance of 667

notation in mathematics. 668

The Mechanical Notation provided an abstract form for the nature, timing and 669

causal action of parts, and Babbage used it to specify and describe the structural 670

complexity of mechanisms and their time-dependent behaviour. He also used it as 671

a design aid to optimise timing and eliminate redundancy (Babbage 1851b, 1855, 672

1856). 673

In its mature form there are three federated elements that combine to form the 674

Mechanical Notation, each indispensible to the whole. Forms refer to mechanical 675

drawings depicting the shape and size of parts and their organisation into mecha- 676

nisms. The drawings use familiar drafting conventions of plan views, front and end 677

elevations, and sectional views in mainly third angle projections. There is nothing 678

radical or revolutionary in these. They conform to contemporary representational 679

conventions and capture what are essentially spatial relations. 680

Trains are diagrams that describe the complete causal chain from the first mover 681

to the end result. They show the path of the transmission of motion by parts acting 682

on other parts (Illustration 5.5). Each part in the Forms was assigned a capital letter 683

of the alphabet in one of a number of typefaces – italicised letters for moving parts 684

and upright letters for fixed framing pieces, and a variety of typeface families were 685

used including Etruscan, Roman, and Script. Each letter identifying a part had up 686

to six indices – superscripts and subscripts (Swade 2017: 420). Four of the indices 687

were numerical (index of identity, index of circular position, of linear position, and 688

an index to extend the use of a typeface family in the event of running out of letters). 689

The four numerical indices indicated the spatial relationship to other parts and which 690

parts formed functional groups. 691
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Illustration 5.5 Mechanical notation. Train for circular motion of figure wheels, Difference
Engine No. 2 (detail) (1848)
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Illustration 5.6 Mechanical notation, signs of form (detail) (1851)
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The two non-numerical indexes are the Sign of Form, and Sign of Motion. 692

The Sign of Form gave functional specificity to an otherwise arbitrary symbol. 693

It indicated the species of part – rack, gear wheel, cam, pinion, arm, crank, 694

handle etc. – using symbols that are partial pictograms indicating generic function 695

(Illustrations 5.5 and 5.6). The specific purpose of this portrayal was to enable the 696

chain of action to be followed using mental images of parts without the distraction 697

of reference to the mechanical drawings (Forms). The Sign of Motion described the 698

nature of motion – circular, linear, curvilinear, or reciprocating – as depicted in a 699

particular view in the Forms, plan, elevation, or end view. Signs of Motion could be 700

used in combination in the annotation of a particular part. In 1851 Babbage proposed 701

ten symbols in the Alphabet of Motion and some eighty in the Alphabet of Form and 702

speculated that as many as 200 might be needed (Babbage 1851a: 138). 703

A Train is formed by combining these indexed letters into statements using 704

syntactical rules. Illustration 5.5 shows a portion of the Train for the circular motion 705

of the even difference figure wheels for Difference Engine No. 2. The lower case 706

letters indicate ‘working points’ – points or surfaces on a part that act on or are 707

acted upon by other parts. 708
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Illustration 5.7 Mechanical notation. Cycle for addition and carriage, Difference Engine No. 2
(detail) (1848)
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While the direction of flow in the Trains is generally from left to right (except 709

where there is feedback) neither the Forms nor the Trains describe time-dependent 710

behaviour in any detail. The third element in the triptych are Cycles, essentially 711

timing diagrams that depict at any point in the cycle what action each designated 712

part is performing, and its timed relation to all other contemporaneous motions 713

(Illustration 5.7). 714

Cycles show the orchestration of motions of individual parts into a functioning 715

whole. For this a new set of notational conventions was introduced. Annotations 716

at the head or tail of an arrow indicate linear or circular motion, whether rotation 717

is positive or negative, and whether or not the motion depicted returns the part to 718

its rest position. Other conventions indicate whether the motion is conditional or 719

unconditional, continuous or intermittent and the time window in which the motion 720

may or may not occur. 721
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Advocacy for the Mechanical Notation likened it to both geometry and algebra. 722

For Babbage the distinctive properties of geometry were certainty and demonstra- 723

bility. He described geometry as ‘a science of absolute certainty’ in which ‘signs are 724

pictures’, and privileges it as ‘almost the only demonstrative science’. He places his 725

Notation alongside it (Babbage 1860: 381–2). 726

By these aids the science of constructive machinery becomes simple. It is reduced to 727

mathematical certainty, and I believe now stands by the side of geometry as far as the nature 728

of its reasoning, and that these two sciences stand alone. 729

The Trains allowed one to visualise and trace consequential action, a virtual 730

equivalent to physical demonstration. ‘By the aid of the Mechanical Notation the 731

Analytical Engine became a reality: for it became susceptible of demonstration’ 732

(Babbage 1864: 113). Dionysius Lardner, a colourful populariser of science, em- 733

phasises the generalised abstraction of the Notation: ‘what algebra is to arithmetic, 734

the notation . . . is to mechanism’ (Lardner 1834: 315, 319). 735

Babbage used the Notation extensively in the design of his machines to optimise 736

timing, identify redundancy, derive new motions from existing ones, and marshal 737

long trains of action using a symbolic shorthand all his own. He ranked it as 738

his greatest contribution to knowledge – a universal language for the symbolic 739

description of anything at all from the physiology of animals, respiration, digestion, 740

to combat on land or sea (Babbage 1864: 145; Lardner 1834: 319). He fully expected 741

it to be adopted as an essential tool in engineering training, and was aggrieved when 742

it failed, in 1826, to win him either of the two Royal Medals awarded annually by 743

the Royal Society. He records sulkily that he had received specimens of its use from 744

the United States and from the Continent, and two of his sons were fully conversant 745

with it. But it was used by few others and for all his faith in it merits its fate was one 746

of obscurity. 747

The Mechanical Notation can be seen as a response to the unprecedented levels of 748

complexity of the engines’ mechanisms and is not unlike the ‘hardware description 749

languages’ (HDLs) the like of which emerged again in the early 1970s in computer 750

circuit and system design, and especially in the design of integrated circuits. HDLs 751

provide a higher-order representation to manage otherwise unmanageable detail at 752

component level – the same solution to the same need 150 years apart: 753

I succeeded in mastering trains of investigation so vast in extent that no length of years ever 754

allotted to one individual could otherwise have enabled me to control. (Babbage 1864: 113) 755

5.7 A Coding Problem 756

Machines compute by manipulating, according to rules, physical representations of 757

numbers. Logical relations in a mathematical statement can be seen as timeless or 758

even atemporal, but once ‘physicalised’ in a machine they are subject to physics and 759

mechanics in ways that logic is not: actions need to be phased in time, measures 760

taken to ensure the integrity of representation and control, and the algorithmic 761

sequence needs to be a correct encoding of the problem. The time-dependence 762
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of computational process had unexpected implications for programming that were 763

evidenced in the earliest computer programs. As mentioned earlier, the Variables in 764

the Store are numbered sequentially, V1, V2, V3. . . . and represent the locations 765

in memory for operands and results. Conventional mathematical notation was 766

immediately problematic. The statement V4– V2 = V4 meant ‘subtract the contents 767

of V2 from the contents of V4 and place the result in V4’. The original value in 768

V4 is overwritten by the result. The statement V4– V2 = V4 was problematic for 769

mathematicians. At face value it appears to violate the notion of mathematical 770

identity being trivially true for V2 = 0, and manifestly false for non-zero V2. 771

Babbage’s solution was to add a leading index so the statement then read 1V4– 772
1V2 = 2V4. The leading superscript, the ‘index of alteration’, indicated that the 773

contents of the Variable had changed during the operations. The trailing index, the 774

‘index of location’ remained as before denoting the location in the Store of the 775

Variable in question. Each reuse of the Variable incremented the index of alteration 776

and the history of the Variable’s changing contents could be traced back through the 777

chain of programming steps. 778

The issue arose because memory, for the first time in a computing machine, in 779

virtue of being ‘physicalised’, had spatial location, and instructions expressed in 780

standard mathematical notation did not reflect time-dependence. One of the earliest 781

programs Babbage wrote, dated 4 August 1837, has a sequence of instructions for 782

the solution of two simultaneous equations and features the double index, though 783

he used Roman numerals for the index of alteration (Babbage 1837a: L-1), later 784

changed to more familiar Arabic numbers (Babbage 1864: 127). The need for a new 785

index to reflect time-dependence in an instruction sequence signalled a more general 786

finding – that coding would require new notational conventions. 787

5.8 Epilogue 788

The practical fate of Babbage’s engines was a wretched one. Famed as he is for their 789

invention he is no less famed for failing to build any of them in their entirety. The 790

largest of the few experimental mechanisms he assembled was the demonstration 791

piece for Difference Engine No. 1, ‘the finished portion of the unfinished engine’ 792

(Babbage 1864: 150) which represents one-seventh of the calculating section of the 793

whole machine (Illustration 5.1). The first complete Babbage engine was built in 794

the modern era. Difference Engine No. 2, designed between 1847 and 1849 was 795

built to the original plans and completed 2002 (Illustration 5.8). It weighs 5 tonnes, 796

consists of 8000 parts, measures 11 ft long and 7 ft high, and calculates and tabulates 797

any seventh-order polynomial to 30 decimal places. It works exactly as Babbage 798

intended (Swade 2005). 799

The reasons for Babbage’s failures are a cocktail of factors: fierce pride, poor 800

management, social organisation of labour, absence of production techniques with 801

inherent repeatability to make hundreds of near-identical parts, abrasive diplomacy 802

that alienated those whose support he needed, and loss of credibility through 803
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Illustration 5.8 Difference Engine No. 2 (2002)
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delay, to name but some. Achievable precision in manufacture, and the availability 804

of funding, were indirectly relevant but not critical to the mix (Swade 2000). 805

Others built tabulating difference engines in the nineteenth century stimulated 806

by Babbage’s work – Alfred Deacon in London, Martin Wiberg in Sweden, the 807

Scheutz father-and-son team also in Sweden, and Barnard Grant in the United 808

States (Lindgren 1990). Not all the machines were technically flawless. All were 809

commercial failures. 810

With Babbage’s death in 1871 the movement to mechanise calculation lost its 811

most visible protagonist and its major impetus. Leslie Comrie, spoke of the ‘dark 812

age of computing history that lasted 100 years’ referring to the period between 813

the early 1830s and Comrie’s revival in the early 1930s of automatic tabulation 814

by differences using commercial adding machines (Cohen 1988: 180). There were 815

sporadic flickers in the early twentieth century to design and build ‘analytical 816

machines’ (program controlled calculators) for general calculation, notably by Percy 817

Ludgate and by Torres y Quevedo (Randell 1971, 1982). These were isolated 818

episodes and developmental culs-de-sac. 819

The influence of Babbage’s work on the modern era is tenuous at best. The engine 820

designs were not studied in technical detail until the 1970s (Bromley 1982, 1987, 821

2000) and while his exploits were known to almost all the pioneers of modern 822

computing, they effectively reinvented the principles of computation largely in 823

ignorance of the detail of Babbage’s work. 824

Mechanical computation was not yet entirely defunct. Mechanical devices were 825

used in the transition to fully electronic systems. Konrad Zuse’s early machines 826
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from the late 1930s relied on mechanical memory in the form of sliding plates, 827

and IBM’s Harvard Mark I, completed in 1943, was a hybrid electromechanical 828

system with elements of mechanical logic. One of its early tasks was calculating 829

and printing mathematical tables. 830

Mechanical analog computation, routinely underrepresented in the canon, had 831

several significant successes in providing computational solutions to mathematically 832

modelled physical phenomena. The prediction of tidal behaviour using techniques 833

of harmonic analysis first introduced by William Thomson (later Lord Kelvin) 834

in the 1860s were the basis of several mechanical analog tide predictors. One 835

of these in service in the United States was not replaced until the 1960s by 836

an electronic computer. Michael Williams reports that using a 37-term formula 837

the mechanical predictor could calculate the tidal heights to a tenth of a foot 838

for each minute of the year (Williams 1985: 209). In the late 1920s Vannevar 839

Bush, frustrated by the tedium and difficulty of analytical methods, developed 840

‘differential analysers’ for the solution of differential equations by integration. The 841

analysers were mechanical analog machines using wheel-and-disc integrators as 842

their essential computational element. Differential analysers were used extensively 843

during WWII for the calculation of artillery firing tables. 844

Tide predictors and differential analysers are problem-specific calculators and 845

in this they are unlike the general purpose programmable ‘analytical’ machines 846

discussed earlier. But like the earlier machines they exemplify the idea that mathe- 847

matics and technology intersect where symbols and the rules of their manipulation 848

are physicalised in material form. 849
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Abstract Modern computing has been shaped by the problems and practices of 5

mathematics to a greater extent than is often acknowledged. The first computers 6

were built to accelerate and automate mathematical labour, not as universal logical 7

machines. Very specific mathematical objectives shaped the design of ENIAC, the 8

first general-purpose electronic computer, and its successor, EDVAC, the template 9

for virtually all subsequent computers. As well as machine architecture, software 10

development is firmly rooted in mathematical practice. Techniques for planning 11

large-scale manual computation were directly translated to the task of programming 12

the new machines, and specific mathematical practices, such as the use of tables in 13

calculation, profoundly affected the design of programs. 14

6.1 Introduction 15

If there is a truth universally acknowledged in the history of computing, it is this: 16

the “modern computer” was invented in the early 1940s and its design was first 17

described in the First Draft of a Report on the EDVAC (von Neumann 1945b). In 18

the preceding 3 years, a group at the University of Pennsylvania’s Moore School of 19

Electrical Engineering had designed and built ENIAC, a giant machine that among 20

other things demonstrated the feasibility of large-scale electronic calculation. As 21

ENIAC’s design neared completion in 1944, the team began to plan a follow-up 22

project, the EDVAC. They recruited the mathematician John von Neumann as a 23

consultant, and in early 1945 he wrote a report describing, in rather abstract terms, 24

the design of the new machine. This was the first systematic presentation of the new 25

ideas, and proved highly influential. By the end of the decade the first machines 26

based on the EDVAC design were operational, marking the first step on a ladder of 27

technological progress leading to the ubiquity of computational machinery today. 28
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Historian Michael Mahoney (2005) challenged such machine-centric views of 29

computer history. Mahoney urged historians to turn their attention to the history 30

of computing, not just the technical history of computers. He further argued that 31

the history of computing cannot be understood as a single unified narrative. The 32

computer can be many things to different people, generating a multitude of diverse 33

stories. Mahoney supported his argument by appealing to a particular view of the 34

nature of the computer: while acknowledging that the first computers were built to 35

perform scientific calculations, he believed that the machines based on the EDVAC 36

design were something different, not just calculators but “protean machines” that 37

could be bent to any task. 38

But making it [the computer] universal, or general purpose, also made it indeterminate. 39

Capable of calculating any logical function, it could become anything but was in itself 40

nothing (well, as designed, it could always do arithmetic). (Mahoney 2005, 123) 41

A machine which is in itself nothing cannot have much of a history. Instead, 42

Mahoney urged, historians of computing should tell the stories of how the machine 43

was introduced to and transformed, and was itself transformed by, a wide range of 44

existing “communities”: the people involved in areas of application such as data 45

processing, management, or military command and control systems (Fig. 6.1). 46

It is striking that, despite Mahoney’s revisionist intentions, this schema retains 47

a prominent place for the traditional origin story involving ENIAC and EDVAC. 48

On Mahoney’s account, EDVAC has a dual nature. On the one hand, it is a room- 49

sized mathematical calculator, built for very specific purposes by a particular group 50

ENIAC

EDVAC

military C&C

management

data processing

EDP OR/MS SAGE
WWCCS

computer
science

scientific
computation

calculation
mathematical

logic
mechanical

Business, Industry
& Government

Technology & Science

computers

Fig. 6.1 The communities of computing (Redrawn extract from Mahoney 2005, fig. 5, copyright
© Institute of Materials, Minerals and Mining, reprinted by permission of Taylor & Francis Ltd,
http://www.tandfonline.com, on behalf of Institute of Materials, Minerals and Mining)

http://www.tandfonline.com
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of people. But at the same time it is an abstract machine, “in concept a universal 51

Turing machine”. According to Mahoney, it is this second, spectral machine which 52

moves between communities. Being universal and general-purpose, its potential for 53

use in different fields can be taken for granted. 54

From this point of view, the computer’s mathematical origins are little more than 55

an historical curiosity. Mahoney followed logician-turned-historian Martin Davis 56

(2000) in seeing the crux of the computer’s evolution as being an injection of logic 57

between ENIAC and EDVAC that turned a brute calculator into an ethereal logic 58

machine with, incidentally, the capability to do “arithmetic”.1 59

However, the idea that a new technology can transform many application areas is 60

not the novelty that Mahoney seems to suggest, and does not depend on the universal 61

nature of the technology being transferred, as two examples from the prehistory of 62

computing illustrate. In the 1920s, Leslie Comrie began an extended investigation 63

into the use of punched card machinery to support scientific calculation, work that 64

was continued by Wallace Eckert in the USA. Similarly, Tommy Flowers took with 65

him to Bletchley Park the experience that he had gained with electronic switching 66

before World War 2 in the British GPO, and deployed it very effectively in the 67

development of the Robinson and Colossus machines. In this perspective, the idea 68

that the invention of the computer might give rise to different histories of adoption 69

in different areas is simply another example of a regular historical pattern. 70

The computer remains a special case in its breadth of application, of course, 71

and this is a fact that calls out for explanation. In response, Mahoney appealed to 72

the modern computer’s “protean” nature. But how does the computer come to have 73

such a nature? The conventional answer to this is technological: the “stored-program 74

concept”, itself said to be derived from Turing’s description of a universal machine, 75

is the particular feature that allows a single machine to perform an unlimited variety 76

of tasks.2 But there is an unsatisfying circularity in the suggestion that it is the 77

“universal” logico-technical properties of the computer that make it inevitable that 78

it will find universal application. It is more illuminating to start with a functional 79

characterization: if the computer is a technology of automation, what was it intended 80

to automate? In his proposal for the ACE, a machine to be built at the UK’s National 81

Physical Laboratory, Turing suggested an answer to this question: 82

How can one expect a machine to do all this multitudinous variety of things? The answer is 83

that we should consider the machine as doing something quite simple, namely carrying out 84

orders given to it in a standard form which it is able to understand. (Turing 1946, 3) 85

The modern computer, in other words, is a machine that obeys orders. As a matter 86

of historical contingency, the first such machines were developed to automate the 87

1Similar views were widely canvassed in connection with Turing’s centenary celebrations in 2012.
An alternative perspective, challenging the view that logic played a central role in the development
of EDVAC, has been articulated recently by historians including Tom Haigh (2014) and Edgar
Daylight (2015). See also Sect. 6.5, below.
2The stored-program concept has been discussed, and its usefulness as an analytical category
critiqued, by Haigh et al. (2014).
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specific processes involved in large-scale mathematical calculation. This is far from 88

being the incidental detail that Mahoney suggests, however, and deeply affected 89

the ways in which computers could be deployed in areas outside mathematics, as 90

computer scientist Donald Knuth’s comments on the problems of carrying out data 91

retrieval with electronic computers illustrate: 92

Computers have increased the speed of scientific calculations by a factor of 107 or 108, 93

but they have provided nowhere near this gain in efficiency with respect to problems of 94

information handling. [. . .] We shouldn’t expect too much of a computer just because it 95

performs other tasks so well. (Knuth 1973, 551) 96

The first half of this chapter describes the effects of the mathematical context of 97

innovation on the ENIAC and EDVAC projects and the machines they developed. 98

The computer’s mathematical origins are reflected in more than just its physical 99

characteristics, however. The modern computer automated a certain kind of human 100

labour, that of following a plan of computation in a more or less mechanical way. 101

Many of the established practices of manual calculation were transferred to the new 102

machines and profoundly shaped the ways in which they were used. The second 103

half of this chapter examines how two such practices, the social organization of 104

large-scale computation and the use of mathematical tables, were translated into the 105

context of the automatic computer and the consequences of this for the way the new 106

task of programming was conceived. 107

6.2 The Organization of Large-Scale Calculation 108

In the 1790s, the French engineer Gaspard Riche de Prony embarked on a mammoth 109

project to calculate a new set of tables of logarithmic and trigonometric functions 110

(Grattan-Guinness 1990). The undertaking was industrial in scale, and to manage 111

it de Prony employed the principle of the division of labour recently described by 112

Adam Smith in The Wealth of Nations, first published in 1776. 113

De Prony divided his workforce into three sections. The first section consisted of 114

a small number of leading mathematicians who derived the formulas that would be 115

used to calculate the various functions. These formulas were passed on to a second 116

section of skilled but less eminent mathematicians whose job was to work out how 117

to calculate the values of the formulas using the method of differences. 118

An advantage of the method of differences was that it enabled the functions to 119

be calculated using only the basic operations of addition and subtraction. The third 120

section consisted of relatively unskilled labour, many of them hairdressers who had 121

been made redundant by changing fashions after the French revolution. The workers 122

of the third section carried out sequences of additions and subtraction as specified 123

by calculating sheets prepared by the second section. Rough working was carried 124

out on loose sheets of paper, and the results were transcribed onto the calculating 125

sheets, which were then passed back to the second section for checking. 126
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The third section had little scope for the exercise of judgement or initiative. As 127

Smith had observed, the division of labour often broke a complex task down into 128

activities that were simple enough to be mechanized. Fully aware of de Prony’s 129

approach, Charles Babbage took advantage of this when beginning the development 130

of his first Difference Engine in the 1820s: 131

If the persons composing the second section, instead of delivering the numbers they 132

calculate to the computers of the third section, were to deliver them to the engine, the whole 133

of the remaining operations would be executed by machinery. (Babbage 1822, 10) 134

More than a hundred years after Babbage, large-scale computation was still being 135

organized along the lines pioneered by de Prony. David Grier (1998) has described 136

the organization of the Math Tables Project (MTP), a Depression-era project aimed 137

at providing jobs for unemployed office workers in New York. The work of the 138

MTP was directed by a Planning Committee which “developed the mathematical 139

methodology, and prepared the computing instructions” that were passed onto the 140

Computing Floor Division. This consisted of two groups of trained mathematicians 141

who could be trusted to work independently: the “Special Computing Unit”, who 142

among other responsibilities helped the project leaders to prepare the worksheets 143

for the “Manual Unit”, and the “Testing Section”. The Manual Unit were unskilled 144

workers who were trained to perform to perform specific operations, such as 145

multiplication by a single digit. Their work was directed by the worksheets. 146

Desk calculating machines were widely used in the 1930s to perform arithmetical 147

operations, including multiplication and division. As the MTP grew, it acquired 148

numbers of second-hand calculators and the size of the Manual Unit shrank as its 149

suitably qualified members were promoted to the Machine Unit. 150

From the French revolution right through to the mid-twentieth century, then, the 151

organization of large-scale calculation took the form of a pyramid resting on the 152

base of a large group of mathematically unsophisticated (human) computers. The 153

computers were expected to perform individual arithmetico-logical operations, with 154

or without mechanical assistance, and to closely follow a plan telling them what 155

operations to perform, in what order, and how and where to record the results. The 156

ability to work independently and the exercise of initiative or judgement were not 157

required. 158

It was precisely these characteristics that machine developers of the early 1940s 159

were hoping to automate and that George Stibitz, designer of an influential series of 160

machines at Bell Telephone Laboratories, made the defining property of computers 161

understood as machines rather than human beings.3 162

By “calculator” or “calculating machine”, we shall mean a device (mechanical, electrical 163

or what not) capable of accepting two numbers, A and B, and of forming some or any of 164

3The word “computer” before 1945 did not always refer to a human being. From the 1890s onward,
“computers” were also computational aids, sometimes booklets containing useful collections of
tables and methods (Hering 1891), but more often special-purpose circular slide-rules embodying
particular formulas or algorithms (Halsey 1896). David Mindell (2002) has traced the further usage
of the word in the 1930s in the field of fire-control systems in the US military.
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the combinations A + B, A − B, A × B, A/B. By “computer”, we shall mean a machine 165

capable of carrying out automatically a succession of operations of this kind and of storing 166

the necessary intermediate results”. (Stibitz 1945, 1–2) 167

In the 1830s Babbage had made the first attempt to design such a computer with 168

his work on the Analytical Engine. Around a hundred years later, Konrad Zuse in 169

Germany and Howard Aiken in the USA independently began projects leading to the 170

construction of the first machines capable of automatically carrying out a sequence 171

of operations. 172

6.3 Automating Calculation 173

In 1935, Zuse set up a workshop in his parents’ Berlin apartment and began work. 174

The following year, he submitted a patent application describing a machine which 175

would automatically execute “frequently recurring computations, of arbitrary length 176

and construction, consisting of an assembly of elementary arithmetic operations” 177

(Zuse 1936, 163). The operations to be performed were described by what Zuse 178

called a “computation plan” which would be presented to the machine in some 179

suitable form, such as a punched tape. As an example, Zuse gave a plan for 180

calculating the determinant of a 3 × 3 matrix. This involved a total of 17 operations, 181

each with two operands: 12 multiplications, two additions and three subtractions. 182

Zuse developed a series of machines designed along these lines. The third of 183

these machines, the Z3, was completed in 1941 and is now considered to be the first 184

programmable computer. The Z3 and its predecessors were destroyed in air raids, 185

but Zuse’s next machine, the Z4, survived and was moved to Zurich, where it played 186

an important role in the post-war development of European computing. 187

In 1937, Harvard graduate student and physics instructor Howard Aiken wrote 188

a proposal for “an automatic calculating machine specifically designed for the 189

purposes of the mathematical sciences” (Aiken 1937). He observed that existing 190

punched-card calculating machinery did “the reverse of that required in many 191

mathematical operations”, in that it allowed the evaluation of a limited range of 192

formulas on sequences of data read from punched cards. By contrast, Aiken believed 193

that the characteristic of scientific calculation was that it required long and varied 194

sequences of operations to be carried out on relatively small amounts of data. In 195

principle, this could be done on existing machinery by manually switching from 196

one operation to another: it was precisely this manual switching that Aiken planned 197

to automate. 198

Aiken managed to enlist the help of IBM in building his machine, officially called 199

the IBM Automatic Sequence Controlled Calculator; it later became widely and 200

more conveniently known as the Harvard Mark I. On its completion in 1944, IBM 201

donated the machine to Harvard, where it ran for many years, initially under the 202

control of the US Navy. 203
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Every aspect of Mark I was determined by its role in mathematical calculation. 204

Like Zuse’s machines, it was equipped with a number of general purpose registers, 205

or counters, which stored results and allowed them to be retrieved when needed. 206

Aiken explained the need for storage registers as a consequence of the pragmatics 207

of conventional mathematical notation: 208

The use of parentheses and brackets in writing a formula requires that the computation 209

must proceed piecewise. [. . .] This means that a calculating machine must be equipped 210

with means of temporarily storing numbers until they are required for further use. Such 211

means are available in counters. (Aiken 1937, 198) 212

The counters stored incoming numbers by adding them to their existing contents, 213

thus enabling Mark I to carry out addition in general. Subtraction was carried out 214

using complements. There were specialized units for multiplication and division, 215

to compute the values of selected exponential and trigonometric functions, and to 216

interpolate between values read from a paper tape. But the heart of the machine 217

was the sequence mechanism. This read a list of coded instructions that had been 218

punched onto a paper tape and invoked the corresponding operations. By simply 219

changing the tape, Mark I could be instructed to carry out any desired computation. 220

6.4 The Structures of Computation 221

The sequence of operations performed by the Z3 or Mark I was determined by 222

the sequence of instructions read from the machines’ tapes. To evaluate a simple 223

formula, the tape would simply contain one instruction for each operation that the 224

machine was to execute, but this approach did not scale up well to more complex 225

problems. Many calculations have an iterative structure in which a small sequence 226

of operations is repeatedly performed. It would be wasteful to punch a tape with the 227

same instructions over and over again, and in many cases this would not even be 228

possible. In general, a mathematician cannot tell in advance how many iterations of 229

the operations will be required and instead has to rely some property of the results 230

obtained so far to determine when the calculation should stop. 231

The conditional branch instructions of modern programming languages address 232

these issues by allowing computations to diverge when necessary from the default 233

sequence of instructions. The earliest computers did not have branch instructions, 234

however, and various ad hoc approaches were adopted instead. Babbage proposed 235

mechanisms to “back up” the Analytical Engine’s cards so that instructions could 236

be repeated, while Mark I’s tapes were made “endless” by gluing one end to the 237

other. An endless tape would loop indefinitely, carrying out the instructions on it 238

over and over again. To interrupt a loop, Mark I had a conditional instruction that 239

stopped the machine when, say, the results obtained so far reached certain limits of 240

tolerance, but in order to continue with the next stage of the computation a new tape 241

had to be mounted by the operators and the machine restarted. The first machine to 242
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fully automate computation, allowing loops and conditional branches to be freely 243

utilized, was ENIAC. 244

ENIAC was the brainchild of a physicist, John Mauchly, who had taken up 245

wartime employment at the Moore School.4 The school had a long-standing 246

collaboration with the Army Ordnance Bureau’s proving ground in Aberdeen, in 247

nearby Maryland, and in particular with its Ballistics Research Laboratory (BRL), 248

an important centre of calculation in the interwar years. BRL had supported the 249

Moore School’s acquisition of a differential analyzer, with the understanding that in 250

the event of war it would be made available for BRL’s use. Developed by Vannevar 251

Bush (1931) at MIT, the analyzer was a cutting-edge analogue machine which used 252

mechanical integrators to solve differential equations. 253

When war broke out, BRL faced the challenging task of compiling firing tables 254

for a vast range of new ordnance and ammunition. These tables integrated large 255

amounts of experimental data and ballistic calculation, and told gunners how to 256

aim their weapons to hit a specific target. To compile a table, many trajectories— 257

the predicted paths of projectiles fired from the gun—had to be calculated, each 258

requiring the solution of a set of differential equations that could take a human 259

computer several hours. Invoking the terms of the earlier agreement, BRL set up a 260

satellite computing centre at the Moore School overseen by Herman Goldstine, a 261

mathematician whose wartime commission had seen him posted to BRL. Goldstine 262

and his wife Adele were responsible for training and supervising teams of computers 263

calculating trajectories. The Moore School’s differential analyzer was extensively 264

used in these calculations. 265

Mauchly was not directly involved in the firing table work, but he supervised a 266

group carrying out manual computation and was familiar with the design and use of 267

the analyzer. He had a long-standing interest in the use of electronics for calculation, 268

and in August 1942 brought these interests and experience together in the form of a 269

brief proposal for an electronic analogue of the differential analyzer. He estimated 270

that the use of “high-speed vacuum tubes” would allow trajectories to be calculated 271

in a fraction of the time taken by the mechanical analyzer, let alone by manual 272

calculation. The proposal eventually came to the attention of Herman Goldstine, 273

who saw great potential in it. Mauchly and Presper Eckert, a talented electronic 274

engineer who had trained Mauchly when he first arrived at the Moore School, wrote 275

a more detailed outline and a collaboration was soon agreed whereby the Moore 276

School would build an electronic machine for BRL. 277

Although it was envisaged that the machine would spend a lot of its time 278

calculating trajectories, its design was not limited to that particular application. As 279

Mauchly had explained: 280

There are many sorts of mathematical problems which require calculation by formulas 281

which can readily be put in the form of iterative equations. [. . .] Since a sufficiently 282

approximate solution of many differential equations can be had simply by solving an 283

associated difference equation, it is to be expected that one of the chief fields of usefulness 284

4The following two sections draw extensively on the material in Haigh et al. (2016).
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for an electronic computor [sic] would be found in the solution of differential equations. 285

(Mauchly 1942) 286

Mauchly’s use of the phrase “electronic computer” seems very natural to modern- 287

day readers, but would have been quite unfamiliar in 1942. Mauchly had described 288

the new machine as an “electronic difference analyzer”, but “computer” was soon 289

added to the machine’s name to reflect its potential generality, as Grist Brainerd, the 290

Moore School academic in charge of the project, explained: 291

The electronic difference analyzer and computer is a proposed device never previously 292

built, which would perform all the operations of the present differential analyzers and 293

would in addition carry out numerous other processes for which no provision is made on 294

present analyzers. It is called a “difference” analyzer rather than a “differential” analyzer 295

for technical reasons. (Brainerd 1943) 296

The new machine soon became terminologically independent of its predecessor, 297

being dubbed the “Electronic Numerical Integrator and Computer”, or ENIAC.5 The 298

numerical solution of differential equations by iterative means became ENIAC’s 299

signature application, but over the course of its working life it was applied to a 300

much wider range of calculations than simply trajectories. Nevertheless, as late as 301

the early 1950s, “artillery and bomb ballistics computation” made up a quarter of 302

its workload (Reed 1952). 303

Mauchly may have used the term “computer” to emphasize that ENIAC, unlike 304

a simple calculator, would be automatically sequenced and, like a human computer, 305

able to work independently. In this respect, electronic speed was problematic, as 306

it meant that the familiar technique of reading coded instructions from paper tape 307

was simply too slow. Instead, the team adopted what they later described as a stop- 308

gap solution in response to the urgency of a wartime project and designed ENIAC 309

as a collection of specialized calculating units. They shared with Zuse and Aiken 310

the view that calculations could be specified as sequences of instructions, but they 311

adopted a different technological approach to realizing the instruction sequences. 312

Instructions were set up on “program controls” on each unit, and computations were 313

sequenced by cabling these controls together in problem-specific configurations. 314

As it turned out, this gave ENIAC a flexibility that allowed a greater degree of 315

automation than was possible on the tape-controlled machines. 316

The ENIAC team delivered their first progress report at the end of 1943, 6 months 317

after the start of the contract funding the project. After extensive research into the 318

existing state of the art, a new design for the machine’s basic electronic counters had 319

been decided on, but nothing had been constructed apart from a few test circuits. 320

Plans for some units were fairly well advanced, but others had barely been started. 321

There were many open questions about the design of the machine, and it had not 322

yet been demonstrated that large numbers of unruly electronic valves could be 323

persuaded to collaborate reliably and work as required. 324

5In a 1962 affidavit, Brainerd recalled that Paul Gillon of the Ordnance Bureau, an enthusiastic
supporter of the project, came up with the new name.
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Despite the provisional and incomplete state of the hardware design, however, 325

the report was accompanied by detailed plans showing how ENIAC could be set up 326

to calculate a ballistic trajectory.6 Acting as a kind of feasibility test, this exercise 327

enabled the team to settle many aspects of ENIAC’s design. Different algorithms 328

were investigated, the choice between them being governed by a variety of practical 329

considerations. Would the numerical properties of the equations allow a reasonable 330

degree of accuracy to be preserved throughout the calculation? Would the number of 331

operations to be carried out and intermediate values to be stored physically fit onto 332

ENIAC? Analysis by the Moore School mathematician Hans Rademacher showed 333

that the relatively unfamiliar Heun method would be suitable, and the problem was 334

reduced to a set of 24 simple difference equations. This analysis also enabled the 335

size of ENIAC’s accumulators to be fixed: numbers had to be stored to a precision 336

of ten decimal digits to enable the computed results to be sufficiently accurate for 337

BRL’s purposes. 338

The analysis of the structure of the computation was just as significant as the 339

numerical work. The trajectory calculation was split into four basic sequences of 340

instructions: setting up the initial conditions, performing an integration step, printing 341

a set of results, and carrying out a check procedure. These sequences were combined 342

in a complex structure which included two nested loops: after the initial sequence 343

was complete, a loop would print a set of results and carry out the check procedure 344

40 times; each set of results was calculated by performing the integration step 50 345

times.7 In 1943, the team had little idea how a computation of such complexity 346

would be controlled, and proposed a unit called the “master programmer” which 347

would control the repetition of instruction sequences and move from sequence to 348

sequence when required. 349

In the following months, the team set to work on the master programmer. Central 350

to its design was a multi-functional device known as a “stepper” which controlled 351

the initiation of up to six program sequences, one after the other. Each stepper had a 352

counter associated with it to keep track of how many times the current sequence had 353

been executed. Once a sequence had been repeated a specified number of times, the 354

stepper would move the machine on to the next sequence. Conditional control was 355

enabled by routing pulses derived from the results already calculated into a special 356

“direct input” socket which advanced the stepper independently of the number of 357

repetitions that had been counted. 358

ENIAC, then, was designed to solve a specific type of mathematical problem, but 359

it had to be able to do so completely automatically: if its operators had to change 360

6Haigh et al. (2016) attributed these plans to Arthur Burks. Subsequent archival research suggests
that the work was in fact split between Burks and Adele Goldstine, with Goldstine taking the lead
on the mathematical analysis of the problem, expressed in a “setup form”, and Burks mapping it
onto ENIAC’s distributed programming system in the form of a “panel diagram”.
7ENIAC would therefore carry out 2000 integration steps to calculate a single trajectory, many
more than was feasible in a hand calculation. This was one reason why the numerical properties of
the method to be used had been studied so closely: with many more arithmetical operations being
carried out, errors could be expected to accumulate more rapidly.
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instruction tapes, as on Mark I, the advantages of its electronic speed would be lost. 361

The analysis of the trajectory calculation revealed the level of control flexibility 362

required and led to the design of the master programmer, a device capable of 363

controlling highly complex computations built up using the fundamental structures 364

of loops and conditional branches. As a result, ENIAC was capable of tackling a 365

wide range of problems, although in practice physical constraints such as its small 366

amount of high-speed storage limited its scope of application (Reed 1952). 367

6.5 The Computer as Mathematical Instrument 368

By the summer of 1944, ENIAC’s design was virtually complete and the team were 369

beginning to think about the future. Anxious to secure a new contract before the 370

generous wartime funding arrangements dried up, they proposed to BRL’s director, 371

Colonel Leslie Simon, a new research and development project for a machine which 372

would address two perceived weaknesses of ENIAC’s design: its paucity of high- 373

speed storage, and the time-consuming way in which problems were set up. 374

At around the same time, John von Neumann discovered ENIAC. Despite the 375

fact that he had been a member of BRL’s Scientific Advisory Committee since 376

1940, he only found out about the machine, according to Herman Goldstine, thanks 377

to a chance meeting at Aberdeen railway station. Within a month of this meeting, 378

however, an agreement had been reached for a contract to develop a new machine. 379

Historians have speculated about von Neumann’s role in helping to bring about this 380

decision, but one likely consequence of his involvement was to establish just what 381

the new machine was for. In 1943, BRL had a very clear idea of why they needed 382

ENIAC: they faced a bottleneck in the calculation of firing-table trajectories, and the 383

need to address this requirement shaped ENIAC’s design in many ways. By contrast, 384

in a context where it was cutting back on long-term research projects, the Bureau of 385

Ordnance might not have been so keen to support a proposal framed in terms of the 386

need to address shortcomings in a machine it was still in the process of paying for. 387

As Babbage had discovered a century earlier, this is not a great strategy for winning 388

a funding body’s support. 389

Matters moved quickly. On August 29, at a meeting attended by both Goldstine 390

and von Neumann, BRL’s Firing Table Reviewing Board decided to support a new 391

contract with the Moore School, to develop “a new electronic computing device”. 392

The Board minuted that the new machine would be “cheaper and more practical to 393

maintain” than ENIAC, would be able to store large quantities of numerical data, 394

and would be easy to set up for new problems. The Board also noted that the new 395

machine would be “capable of handling many types of problems not easily adaptable 396

to the present ENIAC” (see Haigh et al. 2016, 134). 397

Von Neumann brought to the meeting the perspective of a user, not a computer 398

builder. Although he proved more than capable of engaging with the gritty details of 399

vacuum tubes, he was also engaged in a continent-wide search for raw computing 400

power for a variety of projects, including the Manhattan Project at Los Alamos. In 401
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March he had used the IBM punched card machines at BRL to carry out some test 402

calculations on hydrodynamical shock problems, noting that: 403

The actual computations on each problem required 6-12 working hours net, and the entire 404

program (setting up, etc), insofar as these three problems were concerned, took less than 405

ten days. [. . .] In the truly many-dimensional cases the possibility of using other types of 406

machines will also have to be investigated. (von Neumann 1944b, 375, 379) 407

The possibility of using ENIAC for similar work was quickly investigated. By 408

August 21, as Goldstine reported: 409

Von Neumann is displaying great interest in the ENIAC [. . .] He is working on the 410

aerodynamical problems of blast and runs into partial differential equations of a very 411

complex character. By greatly simplifying his equations he is able to get a one dimensional 412

equation that is solvable in four hours on the IBM’s. We calculate that it will take ten 413

seconds on the ENIAC counting the printing time. (Goldstine 1944b) 414

But not even ENIAC was powerful enough. The day after deciding to support 415

the new contract, the Firing Table Reviewing Board sent a detailed memo to Simon 416

outlining the rationale for their decision. Since the new machine would be more 417

flexible and capable of storing large amounts of numerical data: 418

It would make possible the solution of the complete system of differential equations of 419

exterior ballistics [. . .] these equations are too complicated in character to be handled by 420

the differential analyzer, the Bell Telephone machines, the IBM machines, or the present 421

ENIAC in a reasonable length of time. (BRL 1944) 422

The Board also noted the application of the new machine to the “extensive and 423

unusual computations” needed to make use of the data produced by BRL’s new wind 424

tunnel. Existing machines, including ENIAC, would be “most useful in extensive 425

but less complicated routine calculations”. The wind tunnel played a prominent role 426

in selling the new proposal to BRL and its paymasters. In mid-September Brainerd 427

wrote to Colonel Paul Gillon of the Bureau of Ordnance referring to: 428

some rather extensive discussions concerning the solution of problems of a type for 429

which the ENIAC was not designed. [. . .] Dr. Von Neumann is particularly interested in 430

mathematical analyses which are the logical accompaniment of the experimental work 431

which will be carried out in the supersonic wind tunnels. Unfortunately practically all of 432

these problems are tied up in non-linear partial differential equations, the solutions of which 433

is is impractical to obtain with any known equipment now existing or being built. (Brainerd 434

1944a) 435

Brainerd was now careful to suggest that ENIAC’s perceived shortcomings were 436

not defects, but rather adaptations to the particular type of problem it was designed 437

to solve. These representations evidently had the required effect: towards the end of 438

October, a supplement to the ENIAC contract was signed authorizing a 9-month 439

contract on “an Electronic Discrete Variable Calculator”, starting on January 1, 440
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1945.8 Von Neumann’s existing role at BRL was expanded, allowing him to act 441

as a consultant to the Moore School for the new project (Goldstine 1944a). 442

Simon received yet another memo on the subject, this time from von Neumann 443

himself, in January 1945. Von Neumann emphasized the importance of “general 444

aerodynamical and shock-wave problems” and the need to make “full and efficient 445

use of the Supersonic Windtunnel”, and he pointed out that ENIAC and the Bell 446

Labs machines were not really suited to the kind of calculations required: 447

The differential equations are usually partial and 2 or 3 dimensional, and they are therefore 448

in the simplest cases just on the margin of what the present equipment can handle, and in 449

all other cases far outside its compass. [. . .] The EDVC [sic] is being designed with just this 450

type of problem in view. (von Neumann 1945a) 451

In the latter part of 1944, then, a rather vague aspiration to build a machine that 452

would address some of ENIAC’s shortcomings was refined into a proposal for a 453

computer optimized to solve a class of problems of pressing concern to BRL, multi- 454

dimensional, non-linear, partial differential equations. Brainerd was quick to spell 455

out the connections between this application and the team’s technical ambitions: 456

If a two-dimensional problem is to be solved [. . .] many thousands of values of quantities 457

must be stored while the process is being carried on. It is on this point of the great amount 458

of storage capacity required that existing and contemplated machines fall down. There is 459

also a further point that the programming of the carrying out of the solutions is far more 460

complicated than permitted by existing or contemplated machines. (Brainerd 1944a) 461

EDVAC, then, needed a large high-speed store because the calculations it was 462

being built to carry out generated large amounts of numerical data. But this also 463

suggested a solution to the problem of setting up the machine quickly: 464

To evaluate seven terms of a power series took 15 minutes on the Harvard machine of 465

which 3 minutes was set up time, whereas it will take at least 15 minutes to set up ENIAC 466

and about 1 second to do the computing. To remedy this disparity we propose a centralized 467

programming device in which the program routine is stored in a coded form in the same 468

type storage devices [sic] suggested above [to hold numerical data]. (Goldstine 1944c) 469

All previous automatic computers had used different storage media for numbers 470

and program instructions: numbers were stored in counters of various kinds, while 471

instructions were read from paper tape or, in the case of ENIAC, set up on dedicated 472

pieces of hardware. If instructions were to be available at electronic speed, they 473

could not be read when needed from an external medium, but had to be placed on the 474

machine before the computation began. As Goldstine noted, a new device—mercury 475

delay lines—had been proposed for the cost-effective storage of large amounts of 476

numerical data. If instructions were coded as numbers, as on the Harvard and Bell 477

Labs machines, it would obviously be possible to use the same kind of device to 478

hold the instructions. 479

8Brainerd (1944b) described the machine thus in a memo to the Bureau of Ordnance. By the time
the project’s first progress report was issued, at the end of March 1945, it had firmly acquired the
acronym EDVAC, in which the C stood for “computer”.
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At this point, Goldstine’s proposal was that, instead of using different media to 480

store numbers and instructions, they could be held in storage devices of the same 481

type. What is often taken to be a defining characteristic of the modern computer, 482

storing data and instructions in a single device, was adopted rather cautiously. In the 483

First Draft, after carefully listing all the different types of information that EDVAC 484

would have to store, von Neumann commented: 485

While it appeared, that various parts of this memory have to perform functions which differ 486

somewhat in their nature and considerably in their purpose, it is nevertheless tempting 487

to treat the entire memory as one organ, and to have its parts even as interchangeable as 488

possible for the various functions enumerated above. (von Neumann 1945b, 6) 489

Some problems needed lots of programming instructions but used little numerical 490

data, while others were exactly the reverse. As Eckert explained the following year, 491

a single store would give EDVAC valuable flexibility: 492

Aside from simplifying the construction of the machine, this move eliminates for the 493

designer the problem of attempting to find the proper balance between the various types of 494

memory [. . .] The proper subdivision of the memory, even for a restricted set of problems, 495

such as the ENIAC is designed to handle, is too variable from problem to problem to permit 496

an economical compromise. (Eckert 1946, 112) 497

However, the code proposed in the First Draft clearly distinguished numbers and 498

instructions, and treated the two kinds of data rather differently. EDVAC’s memory 499

would still be explicitly partitioned, recreating on a problem-by-problem basis the 500

separate storage devices that Goldstine envisaged. 501

The tape of Alan Turing’s universal machine of 1936 also held both data and 502

coded instructions, a fact that has led some writers to suppose that there is a simple 503

“stored program concept”, invented by Turing and subsequently implemented by the 504

new machines of the mid-1940s. The complexities and confusions surrounding the 505

term “stored program” have been analysed by Haigh et al. (2014), and it is sufficient 506

here to note that EDVAC’s unitary memory was not the result of the application of 507

an insight drawn from mathematical logic, but of a series of pragmatic engineering 508

decisions taken during the design of a machine requiring an unprecedentedly large 509

store in order to address a particular class of mathematical problem. 510

A more significant innovation of the First Draft was to give programs the 511

ability to modify their own instructions in certain ways as computations progressed. 512

This had profound consequences for EDVAC’s mathematical capabilities, making it 513

feasible to write programs that operated on large vectors and matrices, not just on 514

a small number of individual variables. Without this, the machine would not have 515

been able to solve the partial differential equations of interest to von Neumann. 516

There is nothing like this in Turing’s earlier logical work. 517

Like ENIAC, then, EDVAC was designed and sold to its sponsor as a math- 518

ematical instrument with a rather specific purpose. Designing a machine capable 519

of carrying out the required calculations led to a number of features that are now 520

considered definitional of the modern computer, such a large unitary memory and 521

code that allows programs to modify their own instructions. There is no need to 522
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postulate an “injection of mathematical logic” in order to explain the origins of the 523

computer and little, if any, evidence in the archival record of such an injection. 524

6.6 Planning and Coding 525

The last two sections have examined some of the ways in which the computer’s 526

mathematical origins shaped its technological design. The influence of mathematics 527

was not limited to hardware, however: the following sections will explore how the 528

work practices within which automatic computers were situated profoundly affected 529

early conceptions of computer programming. 530

The ENIAC progress report issued at the end of 1943 positioned the plans for 531

the trajectory calculation in the context of a “general setup procedure” consisting 532

of three phases. The first phase was mathematical, involving “the reduction of the 533

given set of equations or relations to such a form that they can be solved by the 534

ENIAC” (Moore School 1943, XIV (1)). This involved transforming the equations 535

so that they only used the basic operations provided by ENIAC and ensuring that the 536

computation would fit within the limits of its hardware, both in terms of the number 537

of operations involved and the accuracy of the results that would be obtained. For the 538

trajectory calculation, this phase resulted in a set of difference equations allowing a 539

numerical solution of the equations of exterior ballistics to be calculated. 540

The second phase involved mapping these difference equations onto ENIAC’s 541

hardware. Variables were assigned to accumulators, and decisions were taken about 542

numerical matters such as the number of decimal places and the position of the 543

decimal point. Once this was done: 544

this phase of setup reduces to the somewhat routine task of scheduling the operations and 545

the corresponding connections. There are many possible arrangements for each problem, 546

however, so that some skill is involved in chasing a suitable and preferred one. (Moore 547

School 1943, XIV (2)) 548

The results of this phase were given in a “setup form” describing the sequencing 549

of the operations and the numerical details, and a “panel diagram” giving details of 550

exactly how switches would be set and connections plugged so that ENIAC would 551

perform the operations in the required order. Plans for the trajectory calculation 552

were attached to the report. Based on the information in the panel diagram, the third 553

phase of the procedure was rather more routine, involving “the manual plugging 554

in of the various conductor cables and the manual setting of the various program 555

switches” (Moore School 1943, XIV (3)). 556

The report claimed no originality for this three-phase procedure, pointing out its 557

similarity to the way equations were set up on the differential analyzer. But its roots 558

go back much further than that: the three phases correspond quite clearly to the basic 559

division of labour devised by de Prony in the eighteenth century. The first phase, 560

putting “the given equations [. . .] in a form suitable for the machine”, corresponds 561

to the work of the mathematicians in de Prony’s first section, and Adele Goldstine 562
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and Arthur Burks, developing detailed computational plans that used only basic 563

arithmetical operations, would have been natural members of the second section. 564

The most significant change is a direct consequence of automation: the arithmetical 565

hairdressers of de Prony’s third section have been replaced by ENIAC, and human 566

labour is only required to set up ENIAC to perform the calculation and supervise it 567

while in operation. 568

The similarity extends even to the checking of calculations. De Prony had called 569

for calculations to be carried out in two different ways, with the workers of the 570

second section checking that the results were consistent. Every time ENIAC printed 571

a set of results, a single integration step would be carried out with known data and 572

the results printed. These would be checked by the operators, and any discrepancies 573

with the expected results would indicate that a hardware fault had occurred. 574

Howard Aiken’s group at Harvard employed a similar division of labour when 575

preparing computations for Mark I. The first step was taken by “the mathematician 576

who chooses the numerical method best adapted to computation by the calculator” 577

(Harvard 1946, 50). Relevant factors considered at this stage included the accuracy 578

and the speed of the calculation, and also the ease with which it could be checked. 579

The chosen method was then expressed in terms of Mark I’s basic operations. A 580

variety of notations were used at this stage. Coding sheets (Harvard 1946, 49) were 581

used to define the basic sequence of operations to be punched onto instruction tapes, 582

and diagrams were prepared showing how to wire the plugboards that some of Mark 583

I’s more complex units possessed. 584

Mark I was not fully automatic, however, and its operators were a integral part 585

of computations, being required, for example, to change tapes when necessary. As 586

well as coded instructions for Mark I, therefore, detailed operating instructions had 587

to be drawn up for each calculation. In this context, the equivalent of de Prony’s 588

third section was the cyborg assemblage of Mark I and its operators. The Harvard 589

group preserved the traditional status distinctions between the sections: operators 590

were “enlisted Navy personnel” (Bloch 1999, 87), whereas the mathematicians were 591

civilians or commissioned officers. 592

Historians have sometimes described the origins of programming as a secondary 593

process that followed the development of the computing hardware. For example, 594

Nathan Ensmenger (2010, 34) writes that programming was “little more than an 595

afterthought in most of the pioneering wartime computing projects”. At least in 596

the case of ENIAC and EDVAC, this is not true: detailed plans, or programs, were 597

prepared as part of the design process in both projects and directly influenced central 598

aspects of the machines’ design, such as ENIAC’s master programmer. 599

It would be more accurate to say that the participants in these wartime projects 600

did not view programming as being something particularly novel or problematic. 601

Machines were built to carry out specific mathematical tasks and their designers 602

assumed that existing well-understood procedures for planning and organizing 603

large-scale calculations could be straightforwardly applied to the new situation. 604

Moving from human to automatic computation led to changes in the way that the 605

accuracy of calculations was estimated and their results checked, but the overall 606

workflow of the planning process was unchanged. The biggest difference was that 607
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instead of handing a computation sheet to a human, the instructions it contained 608

had to be translated into machine-readable form, but once the sequence of low-level 609

operations had been decided on, this was thought to be a straightforward procedure. 610

The changes brought about by automation were localized at a late stage in the 611

overall planning process, as von Neumann pointed out when preparing a “tentative 612

computing sheet” for a Monte Carlo simulation. It was, he said, 613

neither an actual “computing sheet” for a (human) computer group, nor a set-up for the 614

ENIAC, but I think it is well suited to serve as a basis for either. (von Neumann 1947, 152) 615

In the first of an influential series of reports on Planning and Coding of Problems 616

for an Electronic Computing Instrument, Goldstine and von Neumann (1947) gave 617

a detailed account of how existing practices of large-scale calculation could be 618

adapted for use with automatic computers. Although the word “programming” was 619

being used in its modern sense as early as 1944,9 Goldstine and von Neumann chose 620

not to use it. Instead, they split the overall workflow into the two major phases of 621

“planning” and “coding”. The division between the two phases marked the point at 622

which techniques specific to automatic computers became important. 623

Goldstine and von Neumann described planning as a “mathematical stage of 624

preparations”. Echoing the approach taken by the ENIAC and Mark I designers, 625

they explained that planning involved developing equations to model the problem at 626

hand, reducing these to “arithmetical and explicit procedures”, and estimating the 627

“precision of the approximation process”. They emphasized that all three steps in 628

the planning stage were “necessary because of the computational character of the 629

problem, rather than because of the use of a machine” (Goldstine and von Neumann 630

1947, 19). 631

The coding phase was less familiar and so discussed in much more detail. It was 632

divided into two stages. A “macroscopic” stage corresponded to the second phase 633

of the ENIAC setup procedure. It began by expressing the structure of the program 634

in diagrammatic form, using the new flow diagram notation that Goldstine and von 635

Neumann had developed, and drawing “storage tables” summarizing the data used 636

by the program. The subsequent “microscopic” stage corresponded more closely to 637

what in understood by “coding” today, and involved expressing the contents of the 638

various boxes in the flow diagram in machine code. Some routine manipulations of 639

the code were then carried out to turn it into its final machine-readable form. 640

By 1948, two further Planning and Coding reports, containing a number of 641

worked examples, had been issued. The reports were highly influential and the flow 642

diagram notation was widely adopted. Ensmenger (2016) has pointed out that as 643

programming industrialized, flow diagrams came to function as boundary objects, 644

notations inhabiting “multiple intersecting social and technical worlds” and flexible 645

enough to enable communication between groups as disparate as managers, system 646

analysts and programmers. Initially, however, they sat on the boundary between 647

9Goldstine was an early adopter of the terminology; see, for example, the uses of “programming”
and “program routine” by Brainerd (1944a) and Goldstine (1944c) quoted in the previous section.
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the planning and coding stages of the program preparation process. As computers 648

came to be used for tasks that were not exclusively mathematical, or where a 649

“mathematical stage of preparation” became less applicable, development began 650

with a stage of “analysis” whose results, documented as a flow diagram, became the 651

input for the more machine-oriented aspects of the workflow. 652

As experience with the new machines was gained, it quickly became apparent 653

that planning and coding was not quite as straightforward as expected. The exercise 654

of preparing instructions for a machine revealed the extent to which planners had 655

relied on the humans of the third section to display intuition and common sense, 656

even when they were supposedly acting “mechanically”. The English mathematician 657

Douglas Hartree, one of ENIAC’s first users, commented on a typical breakdown in 658

an automated calculation: 659

A human computor, faced with this unforeseen situation, would have exercised intelligence, 660

almost automatically and unconsciously, and made the small extrapolation of the operating 661

instructions required to deal with it. The machine without operating instructions for dealing 662

with negative values of z could not make this extrapolation. (Hartree 1949, 92) 663

The moral that Hartree drew from this experience was that programmers needed 664

to take a “machine’s-eye view” of the instructions being written, and this blurring 665

of the boundaries between human and machinic agency is nicely captured in the 666

image of the human “automatically” exercising intelligence. However, it was more 667

common to call for a more exhaustive and rigorous planning process. In what is 668

often described as the first programming textbook, the Cambridge-based team of 669

Maurice Wilkes, David Wheeler, and Stanley Gill explained that: 670

A sequence of orders [. . .] must contain everything necessary to cause the machine to 671

perform the required calculations and every contingency must be foreseen. A human 672

computer is capable of reasonable extension of his instructions when faced with a situation 673

which has not been fully envisaged in advance, and he will have past experience to guide 674

him. This is not the case with a machine. (Wilkes et al. 1951, 1) 675

As this indicates, Goldstine and von Neumann’s view of computer programming 676

as a form of planning quickly became standard. The first challenge to the perceived 677

limitations of this approach would not emerge until the mid-1950s, a development 678

outlined in the final section of this chapter. 679

6.7 From Tables to Subroutines 680

The influence of mathematical practice on the use of automatic computers is visible 681

not only in the organization of complete computations, but also in the details of 682

specific programming techniques. An interesting example of this is the relationship 683

between the use of tables in manual computation and the development of the idea of 684

the subroutine. 685

The use of tables was so engrained in mathematical practice that the Harvard 686

Mark I’s designers put it on a par with the familiar operations of addition, subtrac- 687
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tion, multiplication and division, writing that the machine was designed to carry out 688

computations involving “the five fundamental operations of arithmetic”: the fifth 689

operation was described as “reference to tables of previously computed results” 690

(Harvard 1946, 10). Tables were a ubiquitous feature of manual computation. A 691

typical table would hold the precomputed values of a function, and when a value 692

was required the (human) computer would interrupt work on the main calculation, 693

take the appropriate volume of tables down off the shelf, look up the required value, 694

and copy it into the appropriate place on the worksheet. Interpolation was used to 695

obtain values for arguments that fell between those printed in the table. 696

Mark I contained dedicated hardware to support each arithmetic operation. Table 697

look-up was implemented by three “interpolation units”. These units read numerical 698

data from tapes containing equally spaced values of the function argument, each 699

followed by the coefficients to be used in the interpolation routine (Harvard 700

1946, 38, 47). When a function value was required, the argument was sent to an 701

interpolation unit. The unit would then search the tape for the appropriate value of 702

the argument, read the interpolation coefficients, and carry out a hardwired routine 703

to calculate the required value. 704

Mark I also had special-purpose units to compute logarithms and values of the 705

exponential and sine functions. Unlike the interpolators, these units did not read 706

a tape, but executed a built-in algorithm to compute the required values directly. 707

Nevertheless, the units were described as “electro-mechanical tables” (Harvard 708

1946, 11), a terminological choice that makes clear that Mark I’s designers were 709

not only transferring the use of mathematical tables in manual computation into the 710

world of automatic machinery, but also using the experience of the past as a way of 711

making sense of the new machine. 712

ENIAC’s designers also considered table look-up to be one of their machine’s 713

basic capabilities (Moore School 1943, XIV (1)), and took a similarly explicit 714

approach to supporting the use of tables. Numerical information was stored on three 715

“portable function tables”, large arrays of switches on which a table of around 100 716

values could be set up, indexed by a two-digit argument. This data was read by a 717

“function table” unit, the whole arrangement being optimized to make it convenient 718

to read the five values required for a biquadratic interpolation. Unlike Mark I, 719

however, ENIAC had no dedicated interpolation unit. It was left to the user to set 720

up an interpolation routine suitable for the problem at hand, and many examples of 721

such routines are presented in Adele Goldstine’s 1946 manual and other reports. 722

There is a tension apparent in Mark I and ENIAC between the alternatives of 723

looking up tabular data and computing values when needed. While mathematical 724

functions could be computed on demand, some applications, such as calculating a 725

trajectory, made use of empirical data for which no formula was available. There 726

was no alternative to storing such tables explicitly. The volume of tabular data to 727

be stored was one of the issues that the EDVAC team considered when estimating 728

the size of memory the machine would need, and von Neumann summarized the 729

situation as follows: 730
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In many problems specific functions play an essential role. They are usually given in form of 731

a table. Indeed in some cases this is the way in which they are given by experience [. . .], in 732

other cases they may be given by analytical expressions, but it may nevertheless be simpler 733

and quicker to obtain their values from a fixed tabulation, than to compute them anew (on 734

the basis of the analytical definition) whenever a value is required. (von Neumann 1945b, 735

4–5) 736

He suggested that common functions such as log, sin and their inverses could 737

be treated by table look-up rather than calculation. Interestingly, Mark I’s designers 738

had made precisely the opposite choice, providing the dedicated electromechanical 739

tables to compute the values of these elementary functions on demand. 740

Large computations would typically have to look up many values, and so perform 741

multiple interpolations. On Mark I, this would simply require repeated calls to the 742

interpolation units, but the situation was a bit more complicated on ENIAC where 743

the interpolation routine was set up by the programmer. Clearly, setting up the 744

instructions repeatedly would be a wasteful and ultimately infeasible approach. 745

To perform multiple interpolations, the designers had to find a way to return 746

to a different place in the main instruction sequence each time the interpolation 747

routine was carried out. This capability was provided by the versatile steppers, the 748

key components of ENIAC’s master programmer. The mid-1944 progress report 749

explained how this could be done, making the connection with interpolation explicit: 750

Thus within a given step of integration a certain interpolation process may be used several 751

times. This sequence need be set up only once; by means of a stepper the same sequence 752

can be used whenever needed. (Moore School 1944, IV-40) 753

This idea of “computation on demand” was naturally soon generalized, and it 754

was recognized that it would be useful to be able to easily reuse any sequence of 755

instructions, not only those computing familiar mathematical functions. In August, 756

1944, von Neumann reported to Robert Oppenheimer on the progress of the Bell 757

Labs machine. Like Mark I, this machine would read instructions from paper tape, 758

but unlike the Harvard machine, it would have more than one sequence unit. As von 759

Neumann (1944a) noted, it would employ “auxiliary routine tapes [. . .] used for 760

frequently recurring sub-cycles”. There is no suggestion that these auxiliary tapes 761

would be limited to the purpose of interpolation or table look-up. 762

This turned out to be an issue even on Mark I: its electromechanical tables took 763

a long time to calculate a value, as they used the full numerical precision of the 764

machine. Programmers Richard Bloch and Grace Hopper soon found it necessary 765

to develop more efficient routines for specific problems. As Mark I only had one 766

sequence mechanism, however, they had no alternative to recording and reusing 767

these routines by hand, as Hopper recalled: 768

And if I needed a sine subroutine, angle less than π/4, I’d whistle at Dick and say, “Can I 769

have your sine subroutine?” and I’d copy it out of his notebook. (Hopper 1981) 770

It quickly became clear that it would be useful to plan in advance, and to make 771

routines that were likely to be generally useful available for reuse. In 1945, to test 772

the usability of the EDVAC code he had designed, von Neumann wrote a program 773
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to merge two sequences of data. After completing the code, he noted the potential 774

generality of the procedure and commented that it could 775

be stored permanently outside the machine, and it may be fed into the machine as a “sub 776

routine”, as a part of the instructions of any more extensive problem, which contains one or 777

more [merge] operations. (von Neumann 1945c, 25-6)10 778

Subroutines were extensively discussed by the EDVAC group in the summer of 779

1945, and in September Eckert and Mauchly provided the following account in a 780

progress report: 781

It is by the use of “subsidiary chains” of orders, to be called into use from time to time, as 782

they are needed, by a “higher” set of orders, that a computational routine can be compactly 783

represented. What is more, this corresponds to the way in which mathematical processes 784

are most easily and naturally thought about. The rule for interpolation is not written down 785

anew each time it must be used, but is regarded as a “subsidiary routine” already known to 786

the computer, to be used when needed. (Eckert and Mauchly 1945, 40) 787

Eckert and Mauchly made here the familiar connection between subroutines and 788

interpolation, and hence the use of tables, but it is striking that the direction of the 789

metaphor is now reversed and the terminology of automatic computing is used to 790

characterize a familiar and long-established mathematical practice. 791

The idea that subroutines would be recorded in a notebook already seemed 792

outdated, and the benefits of more systematic ways of storing and sharing code 793

were becoming recognized. Herman Goldstine (1945) commented that “[e]vidently 794

one would collect in his library tapes for handling standard types of problems such 795

as integrations and interpolations”, and even in Harvard sequence tapes of “general 796

interest” were “preserved in the tape library” (Harvard 1946, 292). 797

The idea of a subroutine library soon caught on and the developers and users 798

of various machines began to plan standard libraries. As well as convenience, the 799

promise of greater reuse made it economic to analyze the library routines to ensure 800

that they were efficiently coded and would work correctly in a range of contexts. In 801

a January 1947 report on EDVAC programming, Samuel Lubkin (1947, 20, 28) gave 802

an example of a “standard subroutine” to compute square roots “in the form it would 803

take in a library of subroutines”, while at around the same time ENIAC operator Jean 804

Bartik was contracted by BRL to run a programming group charged with developing 805

“the technique of programming the production of trigonometric and exponential 806

functions” along with a number of other routines of interest to ballisticians.11 Some 807

years later, the library concept and techniques for writing and using subroutines 808

10It is not clear whether the term “subroutine” originated with von Neumann or whether he took it
over from the Mark I programmers. Assuming that Hopper in 1981 was not providing a verbatim
report of her 1944 conversation with Bloch, von Neumann’s manuscript is the earliest documented
usage that I know of, and it is perhaps significant that the term does not appear in Harvard (1946).
In fact, the more general term “routine” seems to appear only once in that volume (on page 98),
suggesting that it was not in common use in Harvard.
11See Anonymous (1947) for the complete list of problems assigned to the group. As Bartik (2013,
115–120) described, however, much of the group’s effort was diverted to developing EDVAC-style
codes in advance of ENIAC’s conversion to central control.
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were more widely disseminated in the textbook by Wilkes et al. (1951) which made, 809

as its subtitle promised, “special reference to the EDSAC and the use of a library of 810

subroutines”.12
811

The metaphor of the “library” is telling. Authors working in libraries consult 812

reference books, but the texts they are writing do not form part of the library. At 813

best, they will be added to the shelves only after being completed, published and 814

found worthy of preservation. Similarly, a subroutine thought to be generally useful 815

might, after extensive checking, be placed in a library, but the main routines written 816

to solve specific problems were treated quite separately and were less likely to be 817

permanently stored. Work practices reinforced the distinction between the two types 818

of code. Wilkes et al. (1951, 43) described how EDSAC subroutines and master 819

routines were punched on separate tapes and only combined at the last minute to 820

form a program tape for an actual computation. The subroutines themselves were 821

punched on coloured tape and stored in a steel cabinet, while the master copies were 822

kept under lock and key. In contrast to these complex and bureaucratized procedures, 823

the master routine tapes could be treated very casually, as the story of Wilkes’ Airy 824

program reveals (Campbell-Kelly 1992). At Harvard (1946, 292), there was also a 825

contrast between the care that would go into the preparation of a library tape for 826

Mark I and one intended to be run but once. 827

Subroutines, then, are a technique with roots in the mathematical practice of table 828

use that allowed programs to be efficiently structured and written. However, while 829

a mathematician carrying out a complex calculation would not normally develop 830

a new interpolation routine, say, programmers did identify new and unanticipated 831

subroutines while writing new programs. Among the first to notice this were 832

BRL mathematicians Haskell Curry and Willa Wyatt who in 1946 planned an 833

interpolation routine for ENIAC. They divided the program into a number of 834

“stages” and, noting that some stages could be reused to avoid having to recode 835

them, went on to make the methodological recommendation that programmers 836

identify reusable stages by looking for repeated code: “the more frequently recurring 837

elements can be grouped into a stage by themselves” (Curry and Wyatt 1946, 30). 838

However, other writers did not follow this lead. Subroutines were not explicitly 839

represented in the flow diagram notation, and in the Planning and Coding reports 840

Goldstine and von Neumann offered no guidance on how to identify useful new 841

subroutines. Some of the library subroutines described by Wilkes et al. (1951), such 842

as those carrying out integration, made use of “auxiliary subroutines” which defined 843

the function being integrated, but more general uses of user-defined subroutines 844

were not considered. 845

As a result, perhaps, ad hoc subroutines were rather uncommon in practice. Of 846

the 30 stages in Curry and Wyatt’s interpolation program, only four were identified 847

as being reusable. In the Monte Carlo programs run on ENIAC in 1948, there was 848

only one subroutine (to compute a pseudo-random number) in approximately 800 849

12Not to be confused with EDVAC, EDSAC was an electronic computer developed in Cambridge
by a team led by Maurice Wilkes. It came into operation in 1949.
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program instructions (Haigh et al. 2016, 183–6). Programming guidelines for the 850

Harvard Mark II even suggested that in general “the method which involves the 851

fewest routines [. . .] is the logical choice” (Harvard 1949, 266). 852

The emphatic distinction between master routines and subroutines had another 853

consequence, namely that calling hierarchies were rather flat. Typically, a master 854

routine would call a small number of subroutines, but it was rather rare for one 855

subroutine to call another. The techniques used for subroutine call and return further 856

meant that recursive calls, where a subroutine calls itself, were not possible. 857

The practices of subroutine use that emerged in the early years of automatic 858

computing, then, reflected the ways in which tables were used in manual calculation. 859

Like a set of tables, a subroutine library is a resource that is available in advance of 860

a computation, and subroutine use was largely restricted to calling routines from a 861

library. Looking up a table is an exceptional task that takes the computer away from 862

the normal process of working through a computation sheet and, similarly, calling a 863

subroutine is an exceptional occurrence. Looking up a table is a self-contained and 864

non-recursive operation: when looking up a value in a table, you rarely have to look 865

up a second table in order to complete the operation. Similarly, complex structures 866

of calling relationships between subroutines appear to be uncommon. 867

These assumptions were still in evidence 10 years later in the first widely-used 868

programming language, Fortran. Like the computer itself, Fortran was intended for 869

mathematical application. The source code was described as “closely resembling 870

the ordinary language of mathematics” and “intended to be capable of expressing 871

any problem of mathematical computation” (IBM 1956, 2). Subroutines were un- 872

derstood by analogy with mathematical functions. A formula containing a function, 873

such as a− sin (b − c), could be translated directly into Fortran as A-SINF(B-C) 874

(IBM 1956, 12). Fourteen functions were provided as “built-in subroutines” of the 875

language, but these were for rather simple operations such as returning the absolute 876

value of a number. Functions that would typically have been tabulated, such as the 877

trigonometric and exponential functions, were not built in and were left for users to 878

define. 879

However, new subroutines could not be defined in the Fortran language itself, but 880

had to be written in machine code, and then added to the library in rather a complex 881

and labour-intensive process. 882

Library subroutines exist on the master FORTRAN tape in relocatable binary form. Placing 883

a new subroutine on that tape involves (1) producing the routine in the form of relocatable 884

binary cards, and (2) transferring these cards on to the master tape by means of a program 885

furnished for that purpose. (IBM 1956, 40) 886

Only with the arrival of Fortran II in 1958 did the language provide more general 887

support for the definition and use of functions and subroutines. 888

The FORTRAN II subprogram facilities are completely general; subroutines can in turn 889

use other subroutines to whatever degree is required. These subroutines may be written 890

in source program language. For example, subprograms may be written in FORTRAN II 891

language such that matrices may be processed as units by a main program. (IBM 1958, 1) 892
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6.8 Conclusions 893

This chapter began by considering the view expressed by Davis and Mahoney that 894

since EDVAC the computer has been intrinsically a universal logic machine, and 895

hence that its subsequent application to a host of application areas was, if not always 896

straightforward in practice, at least unproblematic in theory. A consequence of this 897

view is that the computer’s origins as a technological innovation to automate specific 898

mathematical processes are reduced to the level of an incidental detail. 899

In contrast, this chapter has shown that EDVAC, like its predecessors, was 900

planned, promoted, designed and built for very specific mathematical purposes. 901

This perspective dominated much computer development throughout the rest of the 902

1940s, and I have argued elsewhere (Priestley 2011, 147–153) that the identification 903

of machines based on the EDVAC design with Turing’s idea of a universal machine 904

was not widely made until the early 1950s. As Mahoney might have pointed out, the 905

story of the adoption of the computer by non-mathematical communities is often the 906

story of how the mathematical orientation of the early machines was overcome. As 907

Christopher Strachey, one of the first people to write substantial programs for non- 908

mathematical applications, commented: 909

the machines have been designed principally to perform mathematical operations. This 910

means that while it is perfectly possible to make them do logic, it is necessarily a rather 911

cumbersome process. (Strachey 1952) 912

What was invented in the 1940s was not just the automatic computer, however, 913

but modern computing. The machines were conceived as replacements for human 914

computers engaged in mathematical calculation. As Stibitz made clear, this is why 915

they are called computers. The computers’ job was to carry out, in ways specified 916

by an explicit plan, a sequence of operations, and the central innovation of modern 917

computing was to automate the task of instruction following. Rather than describing 918

the take-up of a uniquely capable technology, Mahoney’s “histories of computing” 919

were to be the stories of how different communities came to reformulate their 920

existing work practices in the form of computer programs. 921

The task of preparing instructions for the new machines to execute, the activity 922

that we now call programming, naturally became of central importance. Sections 6.6 923

and 6.7 showed how early thinking about programming was profoundly shaped 924

by the mathematical context in which the new computers were built. At the 925

organizational level, existing techniques for managing large-scale calculation were 926

preserved as far as possible. Goldstine and von Neumann’s Planning and Coding 927

reports dealt largely with mathematical applications and were rooted in a division 928

of labour dating back to the late eighteenth century. Machine-specific techniques 929

were categorized as coding issues, and it was assumed that the overall planning 930

of a computation could proceed along familiar lines. At a more detailed level, the 931

particular ways in which subroutines were used to make programming more efficient 932

reflected aspects of the use of mathematical tables in manual computation. This 933

is not to say, of course, that the use of subroutines was limited to mathematical 934

functions—the EDSAC library also included crucially important input and output 935
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subroutines. The point is, rather, that the role of subroutines within programs and 936

the ways in which they were used were constrained by their association with existing 937

practices of using mathematical tables. 938

These two aspects are characteristic of a general approach to programming that 939

was widely accepted in the late 1940s and early 1950s. Many of the developments 940

of the 1950s, such as the move to automate coding that led to the development of 941

high-level programming languages such as Fortran, were aimed at making technical 942

improvements within this framework but did not break away from the overall model 943

or the mathematically-oriented thinking that underlay it. 944

The first explicit reflection on and challenge to this approach emerged, perhaps 945

unsurprisingly, in a non-mathematical context. In 1955, Allen Newell and Herbert 946

Simon began to consider the prospects of writing programs to solve what they 947

called “ultracomplicated problems” such as chess playing and theorem proving. 948

They chose the latter as a testbed, and by 1956 had developed the Logic Theorist 949

(LT), a program capable of finding proofs in the propositional calculus. They found 950

existing programming technique inadequate for developing LT, developing instead 951

a notion of “heuristic programming”.13
952

Newell and Simon’s critique of current approaches to programming focused on 953

precisely the two issues that I have taken as being emblematic of the mathematical 954

approach to programming. They first addressed the belief that computations had to 955

be planned in advance in exhaustive detail. 956

But one of the sober facts about current computers is that, for all their power, they must 957

be instructed in minute detail on everything they do. To many, this has seemed to be 958

harsh reality and an irremovable limitation of automatic computing. It seems worthwhile 959

to examine the necessity of the limitation of computers to easily specified tasks. (Newell 960

and Simon 1956, 1) 961

Secondly, they noted that the design of LT made extensive use of subroutines. 962

Recognizing that “most current computing programs [. . .] call for the systematic use 963

of a small number of relatively simple subroutines that are only slightly dependent 964

on conditions”, they argued for a view of program structure that was quite different 965

from the prevailing view of a program as a sequence of statements. Whereas “[a] 966

FORTRAN source program consists of a sequence of FORTRAN statements” (IBM 967

1956, 7), Newell and Simon held that: 968

a program [. . .] is a system of subroutines [. . .] organized in a roughly hierarchical fashion. 969

[. . .] The number of levels in the main part of LT is about 10, ignoring some of the recursions 970

which sometimes add another four or five levels. (Newell and Shaw 1957, 234–8) 971

This vision of the use of subroutines is quite different from the prevailing model 972

discussed in Sect. 6.7 of this chapter. Rather than corralling subroutines in libraries 973

that enforced limited and rather stereotypical patterns of use, Newell and Simon 974

viewed them as being fundamental programming structures on a par with loops 975

13See Priestley (2017) for a more detailed account of Newell and Simon’s critique and the take-up
of their work by the nascent AI community.
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and conditional branching. Their programming work was highly influential in the 976

late 1950s in the emerging field of artificial intelligence (Feigenbaum and Feldman 977

1963), and it is very striking that in applying automatic computers to this new area 978

of application they rejected two aspects of the traditional approach that directly 979

reflected the specific practices of mathematical computation. 980

Certain aspects of Newell and Simon’s approach can be found in the personal 981

styles of earlier writers. In his proposal for the ACE, Turing gave some examples 982

of the “paper technique of using the machine”, culminating in the definition of a 983

routine CALPOL to calculate the value of a polynomial. The program for CALPOL, 984

or “instruction table” in Turing’s terminology, made use of eight subsidiary routines, 985

and its code bore out Turing’s general comment that: 986

The majority of instruction tables will consist almost entirely of the initiation of subsidiary 987

operations and transfers of material. (Turing 1946, 28) 988

Turing was exceptional among the computer developers of the early 1940s in 989

having no significant experience of large-scale manual computing. The intellectual 990

roots of his famous 1936 paper on computable numbers were in the logical theory 991

of recursive functions, which proceeds by building up complex definitions from 992

simpler ones. Turing adapted this approach for his machine table notation, and the 993

table defining the universal machine is built up largely by combining many simpler 994

tables (Priestley 2011, 77–92). It is precisely this style of thought that is reflected in 995

his practical programming examples such as the table for CALPOL. 996

Curry and Wyatt’s 1946 interpolation program for ENIAC was constructed by 997

combining a large number of small program fragments. Although he spent the war 998

as a BRL mathematician, Curry’s background and interests were, like Turing’s, in 999

mathematical logic rather than practical computation. In two later reports Curry 1000

developed this approach into a general theory of program construction, one that he 1001

explicitly opposed to the Goldstine/von Neumann model of subroutines and that 1002

bore more than a passing resemblance to his work in combinatory logic (De Mol 1003

et al. 2013). 1004

Neither Turing’s example nor Curry’s theory made an immediate impact, how- 1005

ever. Rather than developments in logical theory, it was the stimulus to develop 1006

programs for a new class of essentially non-mathematical problems that led, in 1007

the mid-1950s, to the establishment of an alternative to the prevailing approach to 1008

programming. 1009
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Abstract Cryptology furnishes an ideal example of the synergy between mathe- 5

matics and technology. This is illustrated by events before, during, and after World 6

War II: manual methods of encryption were replaced by faster and more secure 7

methods of machine encryption; these methods were then attacked during the war 8

by mathematicians using a combination of mathematics and machines; and after 9

the war machine encryption was in turn eventually supplanted by computers and 10

computer-based encryption algorithms. Random number generation illustrates one 11

aspect of this: physical randomization has been completely replaced by the use of 12

pseudo-random number generators. A particularly striking example of the impact of 13

mathematics on cryptography is the development of public key encryption. 14

Tracing developments in cryptology can pose interesting challenges for the 15

historian because of a desire for secrecy, but it is occasionally possible to see behind 16

the veil; the last section of this chapter discusses some interesting instances of this. 17

7.1 Introduction 18

Cryptology is the science of secret communication. It has two branches: cryptog- 19

raphy, designing secret methods of communication; and cryptanalysis, developing 20

ways and means of attacking cryptographic systems. These two branches are arch- 21

rivals: cryptographers attempt to design their systems to be resistant to even the 22

most imaginative attacks; cryptanalysts attempt to circumvent such defenses by all 23

possible means. 24

Cryptology is an ideal case study of the synergy between mathematics and 25

technology: the cryptographer develops new methods of encryption, based on 26

advances in either technology or mathematics, to combat vulnerabilities in current 27

methods; the cryptanalyst in turn develops new technology and mathematics to 28
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attack such systems. Sometimes a new technology is found to be vulnerable as 29

a result of careful mathematical analysis; sometimes new mathematical methods 30

of encryption are attacked by developing new technologies (as was the case 31

at Bletchley Park during World War II in their attack on German methods of 32

encryption). 33

7.1.1 The Four Ages of Cryptology 34

Subdividing history into discrete periods necessarily involves an element of over- 35

simplification; but, suitably qualified, it does aid organizing material. In that spirit, 36

there are the four ages of cryptology: 37

1. The classical period: manual methods (up to the end of World War I). 38

Up until the end of the First World War, almost all cryptographic systems were 39

manual (“paper and pencil”). Herbert Yardley’s 1931 The American Black Chamber, 40

and Fletcher Pratt’s 1939 Secret and Urgent convey a vivid picture of the subject 41

as it existed at that time. Mathematics (for example, in the guise of statistical 42

attacks) and technology (for example, secret inks) were both employed, but with 43

few exceptions this was only at the most basic level (see, e.g., the book by Abraham 44

Sinkov 1968). 45

2. The middle ages: the rise of the machines (1918–1973). 46

The First World War made clear the limitations of hand methods. There were 47

two basic problems: speed and security. The rise of modern warfare and commerce 48

led to an unprecedented increase in wireless communication, and this in turn raised 49

the issue of secure communication using a method subject to interception by third 50

parties. The sheer volume of messages called for mechanization. Furthermore, after 51

the war it soon became clear just how vulnerable the traditional methods of manual 52

encryption were: the Germans learned that their naval codes had been compromised; 53

the Japanese that the US government had been reading their diplomatic messages 54

during sensitive negotiations after the war. 55

This led to the development of a variety of mechanical devices designed to 56

efficiently encrypt a large volume of messages while at the same time being 57

immune to classical cryptanalytical attacks. These included the commercial Hagelin 58

machines of the commercial firm Crypto A. G., the German Enigma, Japanese 59

“Red” and “Purple” machines, the British Typex, the US Sigaba, and so on. 60

3. The modern era: the advent of the computer (1973–present). 61

Although representing a great leap forward in sophistication, speed, and security, 62

these machines suffered from a number of disadvantages. Foremost of these were 63

the constraints arising from the use of a mechanical device to perform encryption. 64

Obvious theoretical improvements might be ruled out on the basis of practical 65

engineering considerations. And change was necessarily slow: replacing one system 66
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by another meant recalling potentially thousands of devices world-wide. Using a 67

computer as the basis for encryption freed one from the limitations of a machine, 68

replacing hardware by software, and had the advantage that software updates could 69

be accomplished in days, not months or years. 70

Dating the start of this period is even more arbitrary than the preceding one. 71

But developments such as computer networking, the design of the Unix operating 72

system, the Unix utility crypt, and Feistel’s Scientific American article (the last two 73

in 1973), suggest the year 1973 as a reasonable point to date this change. 74

4. The postmodern era: public key encryption (1976–present). 75

All methods of cryptography – classical, mechanical, and computer – up to 76

1976 required a shared secret: a private key(s), shared by sender and receiver, that 77

enabled one to encrypt a message and the other to decrypt it. And this in turn 78

required some secure channel by which at least one party could communicate this 79

secret to the other. But in 1976 and 1977 a remarkable discovery was made: it was 80

possible to securely communicate between two parties without a prior secure key 81

exchange: a key could be sent from one party to the other over a public channel 82

without compromising any subsequent encrypted communication. This astounding 83

discovery – breaking with more than two millennia of past cryptographic theory – 84

we refer to as the postmodern era in cryptography. 85

7.2 Classical Cryptography 86

The role of both mathematics and technology in classical cryptology was relatively 87

limited; the existing literature on it is vast. Nevertheless, some brief discussion of it, 88

in order to set the stage for later developments, is necessary. 89

The need for and use of methods of secret communication is as old as man 90

himself. For example, during the Persian siege of the Greek city of Potidaea in the 91

winter of 480–79 BC, the Persian commander Artabazus exchanged messages with 92

Timoxenus, a military officer inside the city. 93

Whenever Timoxenus and Artabazus wished to communicate with one another, they wrote 94

the message on a strip of paper, which they rolled round the grooved end of an arrow, and 95

the arrow was then shot to some predetermined place. Timoxenus’s treachery was finally 96

discovered when Artabazus, on one occasion, missed his aim, and the arrow, instead of 97

falling in the spot agreed upon, struck a Potidaean in the shoulder. As usually happens 98

in war, a crowd collected round the wounded man; the arrow was pulled out, the paper 99

discovered, and taken to the commanding officers. [Herodotus 8.128, Aubrey de Sélincourt 100

translation.] 101

Strictly speaking, this is an instance of steganography: the message is hidden 102

rather then encrypted. The Caesar cipher instead is a method of enciphering 103

messages that goes back to Gaius Julius Caesar (100–44 BC). The Roman historian 104

Suetonius tells us: 105
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There exist letters from Caesar to Cicero and acquaintances on topics in which Caesar, when 106

he wished to transmit them confidentially, wrote in cipher. That is, he changed the order of 107

letters in such a way that no word could be made out. If somebody wanted to decipher it and 108

understand the content, then he had to insert the fourth letter of the alphabet, that is D, for 109

A, and so on. [Lives of the Caesars, 56; translation modified from that of Beutelspacher.] 110

That is, one enciphers the message by substituting three letters back: 111

A → X, B → Y, C → Z, . . . , Z → W ; 112

and one deciphers the enciphered message by reversing this process: 113

A → D, B → E, C → F, . . . , Z → C. 114

Thus if the message were 115

VENI VEDI VICI, 116

(“I came, I saw, I conquered”), then Caesar would have enciphered this as: 117

SBKF SBAF SFZF. 118

(Strictly speaking, the Roman alphabet of Caesar’s time was smaller than the 26 119

letter alphabet of today.) 120

The Caesar cipher is a special instance of what is termed a monoalphabetic 121

substitution cipher: one replaces each letter of the alphabet by another letter (its 122

cipher equivalent), each letter being used as a cipher equivalent precisely once. The 123

result is a permutation of the 26 letters of the alphabet. The Caesar cipher is a very 124

special permutation of the alphabet, a shift permutation. There are a total of 26 such 125

permutations: if σk represents a shift by k, then there are 26 shifts σk (0 ≤ k ≤ 25). 126

(Note a shift back by k is equivalent to a shift forward by 26 − k.) 127

Other simple permutation methods are known; for example, one can step forward 128

by a multiple k of the position. For example, if k = 3, then A in position 1 is 129

replaced by C (the third letter in the alphabet), B in position 2 is replaced by F 130

(the sixth letter in the alphabet), C in position 3 is replaced by I (the ninth letter 131

in the alphabet), and so on. (The letter H is replaced by X, and then one cycles 132

around, so that I is replaced by A.) It can be shown that the result is a permutation 133

of the alphabet provided the multiplier k is not divisible by either 2 or 13 (the factors 134

of 26). The process is sometimes described as one of decimation, and the result a 135

decimated substitution alphabet. 136

Of course, if one knows a monoalphabetic shift or decimation cipher is being 137

used, such a system affords little security: one can use brute force to try out the 138

26 possible shifts or 12 possible decimations and (provided the message is long 139

enough) only one shift or decimation will produce a meaningful message. But if 140

one does not confine oneself to a shift or decimation, and chooses an arbitrary 141

permutation of the alphabet, the system becomes much more secure: there are a 142

total of 26! or 143
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403, 291, 461, 126, 605, 635, 584, 000, 000 144

monoalphabetic substitutions. The brute force method is no longer feasible. 145

Monoalphabetic substitution, however, is still not a very secure method; one can 146

exploit, given a message of sufficient length, the statistical regularities present in a 147

language to determine the particular permutation being used. There are a number 148

of famous stories in literature illustrating the method; for example, Edgar Allan 149

Poe’s short story “The Goldbug”, and Sir Arthur Conan Doyle’s “The Adventure of 150

the Dancing Men”. For reference, the approximate order of occurrence of the most 151

common letters in ordinary English is: 152

ETAOIN SHRDLU 153

(Of course, frequency of occurrence depends on both context and language. Thus, 154

for example, one would not particularly expect this order to hold for military 155

German.) 156

Polyalphabetic substitution ciphers, in contrast, use a sequence of different 157

permutations for several successive letters. For example, in the so-called Vigenère 158

cipher, one uses a key word (such as ISP), and each letter in the key word indicates 159

the number of letters to shift forward in a Caesar cipher type substitution. (So if the 160

key word is ISP, then I = 9, S = 19, P = 16 shifts are employed, followed by another 161

set of three such shifts, and so on.) Even these ciphers have their weaknesses, 162

however: if the length of the keyword is guessed, say k, then one can divide the 163

message into k groups (each corresponding to a letter in the keyword) and subject 164

each group to the classical attack used in the case of a monoalphabetic cipher. What 165

one would need would be an encryption key as long as the message itself, and even 166

here there are vulnerabilities if the key were itself some form of plaintext (say a 167

passage from the Bible). In the end security would depend on a key consisting of 168

a random string of letters as long as the message itself (a “one-time pad”). The 169

exigencies of commerce, diplomacy, or defense seldom permit one such a luxury; 170

what is needed is a compromise between the total security afforded by the one-time 171

pad (or tape in the case of a mechanical implementation), and the essentially total 172

insecurity of the monoalphabetic cipher. 173

The desire to avoid such vulnerabilities motivated the design of encryption 174

devices (such as the German military Enigma) in the years leading up to World 175

War II. 176

7.3 The Rise of the Machines 177

The advent of mechanical or electromechanical methods of encryption posed novel 178

problems, and this in turn led to the need for novel personnel. 179
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7.3.1 Mathematics Comes to the Fore 180

Apart from such basic statistical analyses such as frequencies of letters (or digraphs 181

or trigraphs, and so on), classical attacks on encryption systems were basically 182

linguistic in nature, and gifted cryptanalysts often came from the humanities. For 183

example, during the First World War, Room 40, the cryptanalytic section of the 184

British Admiralty’s Naval Intelligence Division, employed a number of classical 185

scholars such as Frank Adcock (1886–1968, Professor of Ancient History at the 186

University of Cambridge from 1925 to 1951), Alfred “Dilly” Knox (1884–1943, 187

Fellow of King’s College from 1909), and John Beazley (1885–1970, Professor of 188

Classical Archaeology and Art at the University of Oxford from 1925 to 1956), as 189

well as Frank Birch (1889–1956, who after the war was a Fellow of King’s College 190

and Lecturer in History until he turned to the stage in the 1930s), and Walter Bruford 191

(1894–1988, Professor of German at Edinburgh and the University of Cambridge). 192

Adcock and Birch made sufficiently important contributions to the war effort that 193

afterwards both were awarded the OBE (Order of the British Empire). 194

Although such skills remained valuable even during the Second World War 195

(for example, Knox continued on in British Intelligence until 1943, and Adcock, 196

Birch, and Bruford worked at Bletchley Park after the outbreak of war in 1939), it 197

eventually became clear that mathematicians (or at least individuals of mathematical 198

bent) were also needed. The intelligence services of various countries came to 199

realize this sooner or later. The US and Poland were among the first. 200

7.3.1.1 US Mathematical Cryptologists 201

In 1930 the US Army established the Signal Intelligence Service, headed by William 202

Frederick Friedman (1891–1969). Although not a mathematician himself, Friedman 203

had done graduate work in genetics and made extensive use of mathematical 204

techniques in cryptology while at the Riverbank Institute from 1914 to 1921. In 205

1921 he was hired by the Army as a cryptographer and later became the Army’s 206

chief cryptanalyst. It was during this period (1923) that he wrote his Elements of 207

Cryptanalysis, later expanded into the four-volume classic Military Cryptanalysis 208

(Friedman 1938–1941). 209

In April 1930 the first three individuals Friedman hired for his fledgling orga- 210

nization were all mathematics teachers: Frank B. Rowlett (1908–1998), Solomon 211

Kullback (1907–1994) and Abraham Sinkov (1907–1998). Both Kullback and 212

Sinkov were sufficiently advanced in their studies that they received doctorates in 213

mathematics shortly afterwards (in 1934 and 1933, respectively) from the nearby 214

George Washington University. All three were subsequently to play an important 215

part in US cryptology. 216
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7.3.1.2 Polish Mathematical Cryptologists 217

During the Polish-Soviet war of 1919–1921, Polish military intelligence em- 218

ployed several outstanding research mathematicians (Stanisław Leśniewski, Stefan 219

Mazurkiewicz, and Wacław Sierpiński), who succeeded in breaking a number of 220

Soviet ciphers. Presumably because of this positive experience, after the German 221

military began to use the Enigma, an electromechanical device, to encrypt their 222

messages starting in the late 1920s, Poland hired three mathematicians in 1932 – 223

Marian Rejewski (1905–1980), Jerzy Różycki (1909–1942), and Henryk Zygalski 224

(1908–1978) – to work on attacking the device. Using an approach grounded in 225

group theory developed by Rejewski (and aided by information provided by French 226

Intelligence), in 1933 the three were able to begin reading Enigma traffic. In doing so 227

they were aided by a number of mechanical devices that were developed especially 228

for the purpose. These included the cyclometer (c. 1934) and the bomba (1938), as 229

well as other aids such as the Zygalski sheets; see Rejewski (1981). 230

The Polish contribution to the ability of the Allies to read the Enigma during the 231

Second World War was considerable. Up to July 1939 the UK had no success in 232

attacking the military Enigma. But then, sensing the impending outbreak of war, the 233

Poles convened a special meeting outside of Warsaw where they revealed to their 234

British and French counterparts their success, even providing each with a copy of 235

the machine, including the internal wiring of its wheels. This, together with their 236

extensive knowledge of intercepts and how the machine was used, was to prove 237

invaluable; see Welchman (1986). 238

7.3.1.3 British Mathematical Cryptologists 239

The British were somewhat slower to exploit the skills and talents of mathemati- 240

cians. But when it became clear in 1938 that war was coming soon, GC & CS (the 241

Government Code and Cypher School) began to recruit “men of the professor class”, 242

including the phenom Alan Turing, who took training courses in cryptology prior to 243

the outbreak of war and reported to Bletchley Park on September 4, 1939 (the day 244

after war was declared). By the end of the war dozens of research mathematicians 245

had been hired, including J. W. S. Cassels, I. J. (“Jack”) Good, Philip Hall, Peter 246

Hilton, M. H. A. (“Max”) Newman, David Rees, Derek Taunt, William Tutte, 247

Gordon Welchman, J. H. C. Whitehead, and Shaun Wylie. Many of these performed 248

outstanding feats of cryptanalysis during the war. 249

7.3.1.4 German Mathematical Cryptologists 250

The Germans, although they were a towering presence in world mathematics 251

(at least until the Nazis came to power), were curiously late in coming to the 252

game. There were essentially no mathematicians in German signals intelligence 253

prior to 1937. (Dr. Ludwig Föppl, 1887–1976, was a notable exception, serving 254
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during World War I; see Brückner 2005 and Samuels 2016.) When Dr. Erich 255

Hüttenhain (1905–1990) was hired that year, it was essentially by pure chance. 256

Dr. Hüttenhain, who was a mathematical astronomer, had become interested in 257

cryptography because of an interest in Mayan astronomical chronology (the Mayan 258

language then being largely unknown). Hüttenhain subsequently submitted a design 259

for a cryptographic system to the German military, and on the basis of this was 260

offered a job in 1937 in their cipher section, housed in the Reichskriegsministerium. 261

In 1938 this cipher section was transferred to the newly formed OKW (Oberkom- 262

mando der Wehrmacht), and thenceforth called OKW/Chi (Oberkommando der 263

Wehrmacht/Chiffrierabteilung). 264

Hüttenhain rose rapidly in the organization and was soon tasked with hiring 265

more mathematicians for it. The first of these was Wolfgang Franz (1905–1996), 266

who joined OKW/Chi on July 17, 1940. Other subsequent hires included Ernst 267

Witt (1911–1991), Otto Teichmueller (1913–1943), and Karl Stein (1993–2000). 268

Teichmueller was killed in action after rejoining his unit and appears to have 269

accomplished little, but the others all survived the war and in some cases went on to 270

careers of considerable distinction. Both Franz and Stein later became Presidents of 271

the DMV (Deutsche Mathematiker Vereinigung, or German Mathematical Society). 272

Indeed it appears that one of Hüttenhain’s motivations in hiring the mathematicians 273

he did was to ensure their survival. But it is striking and telling that OKW/Chi only 274

began hiring new mathematicians in addition to Hüttenhain nearly a year after the 275

outbreak of war. 276

The one other branch of the German military that also began to hire math- 277

ematicians in considerable numbers for wartime cryptologic purposes was the 278

German Army proper (the Heer, as opposed to the Kriegsmarine or Luftwaffe) 279

housed in OKH (Oberkommando der Heeres). At least 14 Ph.D.s in mathematics, 280

from Berlin, Göttingen, and Dresden, among other universities, were eventually 281

hired, along with others working in statistics, economics, and actuarial science. 282

(The most distinguished of these was Willy Rinow, later to become yet another 283

President of the DMV.) But here too these individuals were only brought in after the 284

outbreak of war, and this was to cost the Germans heavily on the defensive side of 285

ensuring the security of their encryption devices. For further information on German 286

mathematical cryptologists during World War II, see Weierud and Zabell (2018). 287

7.3.2 The Enigma 288

During World War II, the German military used an encryption device called the 289

Enigma for sending enciphered messages. After one of 26 keys on a typewriter 290

keyboard was pressed, an electric current entered the machine from the right, passed 291

through a series of three moveable wheels (termed the right, middle, and left wheels) 292

while traveling from right to left, and entered a fourth, fixed wheel which reversed 293

the direction of current. The current then passed in the opposite direction through 294
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the left, middle, and right wheels, exited the machine, and one of 26 small lamps lit 295

up indicating the enciphered version of the input letter. 296

Each of the moveable wheels had 26 contacts on each side, so that current could 297

enter either side and exit on the other. Because of the internal wiring of the wheel, 298

current entering a contact on the right, say, would exit at a different contact on 299

the left. The result was a permutation of the alphabet. During the 1930s Polish 300

cryptanalysts were able to determine the internal wiring of the moveable and fixed 301

wheels of the German military Enigma. This was an impressive feat given that the 302

total number of possible wheel wirings (that is to say, possible permutations of the 303

26 letters of the alphabet) is, as previously noted, on the order of 4 × 1027. 304

In cryptography, Kerckhoffs’s principle (named after Auguste Kerckhoffs, 1835– 305

1903, a Dutch linguist and cryptologist) states that a cryptographic system should 306

be secure (immune to attack) even if all aspects of the design of the system are 307

known except the key (a specific item of information needed to decipher a message, 308

preferably varying from message to message or day to day, or some relatively short 309

period of time). A system that relies for its security on a lack of knowledge of the 310

system by an opponent ceases to be secure when a copy of the device is obtained 311

or a spy provides its specifications or (as in the case of the Poles) a cryptanalyst 312

deduces it. 313

Thus the Germans did not rely on a lack of knowledge of the wiring of the wheels 314

of their Enigma to ensure its security. Instead they relied on the daily setting. When 315

the machine was set for sending messages on a given day, the three moveable wheels 316

were chosen from a set of 5. The wheel order (or Walzenlage) specified which 317

wheels were to be selected and how they were to be placed in the machine. (For 318

example, 2 5 3 means wheel 2 on the left, wheel 5 in the middle, wheel 3 on the 319

right.) There were therefore a total of 5P3 = 5 · 4 · 3 = 60 possible wheel orders on 320

any given day. For extra security, the German Naval Enigma selected its 3 wheels 321

from an enlarged set of 8, rather than just 5. This increased the number of possible 322

wheel orders from 60 to 8P3 = 8 · 7 · 6 = 336. 323

In order to set the wheels on a given day, each wheel had a lettered ring attached 324

to its left side, the 26 letters of the alphabet appearing on the rim of the ring. If we 325

think of the 26 contacts on the wheel as numbered from 1 to 26, the ring could be 326

rotated so that the letter A on its rim was next to contact 1, or next to contact 2, 327

and so on, up to contact 26. Specifying how each of the three rings were set relative 328

to each of the three moveable wheels was called the ring setting (or Ringstellung). 329

Since each ring could be set in any of 26 different ways, the total number of ring 330

settings was 331

263 = 17, 576. 332

Before the current entered the wheels, it passed through a plugboard which 333

subjected the letters of the alphabet to an initial permutation by interchanging 334

selected pairs of letters. (For example, the letters a and b, and c and d might be 335

interchanged, and the remaining 22 letters left unchanged.) On a given day, the usual 336

practice was to cross-plug (or “stecker”) 10 pairs of letters (for a total of 20), and 337
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thus leave the remaining 6 letters unsteckered. If n pairs of letters were steckered, 338

then the number of possible steckerings (or Steckerverbindungen) was 339

26!
2n · n! · (26 − 2n)! 340

The table below gives the number of Steckerverbindungen for anywhere from 341

n = 1 to n = 13 letter pairs. (Curiously, the choice of 10 letter pairs does not 342

maximize the number of possible steckerings: the maximum is reached for n = 11.) 343

n = Number of Steckerverbindungen

t3.11 325

t3.22 44,850

t3.33 3,453,450

t3.44 164,038,875

t3.55 5,019,589,575

t3.66 100,391,791,500

t3.77 1,305,093,289,500

t3.88 10,767,019,638,375

t3.99 53,835,098,191,875

t3.1010 150,738,274,937,250

t3.1111 205,552,193,096,250

t3.1212 102,776,096,548,125

t3.1313 7,905,853,580,625

Thus, the total number of possible daily settings for the Army Enigma (Walzen- 344

lagen, Ringstellungen, Steckerverbindungen) was 345

60 · 17, 576 · 150, 738, 274, 937, 250 = 158, 962, 555, 217, 826, 360, 000. 346

Presumably for this reason the German authorities considered the Enigma to 347

be a highly secure encryption device. In reality the Allies were able to decipher 348

a substantial fraction of the Enigma messages that they intercepted. They were 349

able to do this in part because of a variety of errors on the part of the German 350

operators (insecure practices), but also because of the “Bombe”, a special purpose 351

mechanical device devised under the leadership of Alan Turing (1912–1954) and 352

Gordon Welchman (1906–1985). 353

The Bombe consisted of 36 replicas of the three-wheel Enigma. Each replica 354

consisted of 3 drums (one for each wheel), these would collectively spin through the 355

263 = 17, 576 different settings of the three wheels in approximately 18 minutes. 356

Before a run, a menu was prepared: a crib (conjectured plaintext) was identified, and 357

on the basis of it a graph was constructed summarizing relationships implied by the 358

crib between different letters being encrypted at different stages. (This process was 359

assisted by the fact that in the Enigma a letter could never encrypt to itself.) On the 360
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basis of this graph, the Bombe was wired accordingly and a run begun. Whenever 361

the drums came to a setting consistent with the menu, then current would flow and 362

this setting would be noted; this was a stop. Although there could be “false stops” 363

corresponding to an incorrect setting, Turing calculated early on that these would 364

be few enough given a menu of sufficient complexity. Further, his initial design was 365

considerably improved in 1940 by Welchman’s invention of the diagonal board, 366

which exploited the reciprocal nature of the Enigma (the same setting on the Enigma 367

was used to both encrypt and decrypt the same message). 368

Although some of the German cryptologists had some appreciation of the 369

potential weakness of the Enigma, they viewed these as largely theoretical in nature, 370

requiring rooms full of mechanical equipment to effect an attack. The willingness 371

of the British to make precisely such an outlay was a key element in their success. 372

Some of the credit for the success of Bletchley Park is due to the then Prime 373

Minister, Winston Churchill, who had a keen understanding of the value of science 374

and technology in pursuit of Britain’s war aims. On September 6, 1941, Churchill 375

had visited Bletchley Park, and expressed appreciation for their efforts. But, 376

frustrated with then inadequate resources, 6 weeks later, on October 21, 1941, 377

the heads and deputy heads of Hut 6 (cryptanalysis of the Army and Luftwaffe 378

Enigma) and Hut 8 (cryptanalysis of the Naval Enigma) wrote a letter directly to 379

Churchill noting with frustration impediments to the cryptanalysts’s work, such as 380

the absurdity that some messages were not being decrypted due solely to a “shortage 381

of trained typists”. The letter was hand-delivered to Churchill’s private secretary at 382

10 Downing, who promised it would be given directly to Churchill. This was done 383

and Churchill promptly wrote a memo (headed “Action This Day”) directing his 384

principal staff officer: “Make sure they have all they want on extreme priority and 385

report to me that this has been done”. Not surprisingly, there were no problems after 386

that. 387

7.3.3 Tunny 388

Tunny was the codename the British gave to another important German encryption 389

device, the SZ40/42 (the “Schlusselzusatz”, or Cipher Attachment, manufactured 390

by Lorenz). The Enigma was an off-line device (that is, encrypting or decrypting 391

a message was performed separately from sending and receiving the message), 392

intended for short communications (say 200 characters or less). The SZ40/42, in 393

contrast, was an online teleprinter encryption device intended for much longer 394

messages, containing thousands of characters. (So, for example, it is possible that 395

Hitler’s infamous message to the Commandant of Paris shortly before the city fell to 396

the Allies in August 1944, instructing that Paris be destroyed, was sent in encrypted 397

form using this device.) 398

The Poles were familiar with the basic structure of the Enigma, in part because it 399

was a modified version of a commercially available device (and in part thanks to a 400

spy, Hans Thilo Schmidt). The SZ40, in contrast, had been designed by the German 401
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military, and so there was no corresponding model to work from. In a tour-de-force 402

of cryptological skill, however, members of Bletchley Park were eventually able to 403

deduce the entire structure of the machine thanks to a single operational slip-up on 404

the part of the German operators, who had once sent two long and virtually identical 405

messages at the same setting (such messages are said to be “in depth”). 406

This was no mean feat, given the complexity of the device. Letters were 407

represented in it using the then standard five impulse Baudot code (so, for example, 408

A = 00011, B = 11001, . . . ). The encryption used 409

• five “chi” wheels (employing regular motion) 410

• five “psi” wheels (employing irregular motion) 411

• two “mu” wheels (determining when irregular motion occurs) 412

(Here “irregular” means that sometimes the wheels moved, and sometimes did not.) 413

Despite its apparent complexity, the process of encryption may be simply and 414

schematically represented as: 415

P → P + ψ → P + ψ + χ = C 416

(P denoting “plaintext”, C “ciphertext”). 417

Despite its impressive appearance, Tunny suffered from a serious design flaw: 418

when the five psi (irregularly moving) wheels did move, they did so simultaneously. 419

As a result, a crafty combination of the output of a pair of wheels (in the initial 420

stage of the attack, the ψ1 and ψ2 wheels) resulted in a biased stream of 0-1 bits. 421

This could be used as a test for the correct setting of the chi wheels for the given 422

message. Because there were 1271 (= 41 · 31) possible settings for the χ1 and χ2 423

wheels, respectively, if the correct setting was used to decrypt this test stream, this 424

would strip off the chi layer of encryption and the resulting 0–1 stream would be 425

a biased sequence of 0s and 1s; whereas if one of the other 1270 incorrect settings 426

were used to decrypt the test stream, the resulting 0–1 stream would remain and 427

appear as unbiased. Thus the task of setting the first two chi wheels was converted 428

into the purely statistical task of finding the one biased stream among the 1271. 429

This required a vast amount of computing, and for this the Colossus was 430

constructed (see Copeland 2006, for a detailed discussion of this device from a 431

variety of viewpoints). It has been argued that in many ways the Colossus was 432

the first programmable computer, not because it could store a program in memory, 433

but because it could be (relatively) easily rewired to perform different tasks. (This 434

was in contrast with the Bombe, which was a special purpose device, designed and 435

constructed for the sole task of attacking the Enigma.) 436

Once one pair of chi wheels had been set, then by a similar process other pairs 437

of chi wheels could be set, eventually resulting in setting all five wheels. This 438

work was performed in the Newmanry, named after its head, M. H. A. (“Max”) 439

Newman, who although a pure mathematician had initially proposed the feasibility 440

of such an attack. After the chi wheels had been set by primarily statistical means, 441

the message and settings were sent to the Testery (named after Major Ralph 442

Tester, who headed it), where the psi wheel layer of encryption was then stripped 443
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off by primarily linguistic means of attack. Thus the attack on Tunny combined 444

technology, mathematics, and linguistics, and rooms of equipment, but was most 445

certainly worth it. See Reeds et al. (2015) and Zabell (2015). 446

Of course both the Allies and the Axis powers used a wide variety of devices for 447

encryption and decryption; see Pröse (2006) for a detailed scholarly discussion. For 448

a general overview of the cryptologic war, 1939–1945, see Budiansky (2000). For a 449

discussion of Turing’s Bayesian viewpoint in his own words, see Turing (2012) and 450

a commentary on it, Zabell (2012). 451

7.4 The Modern Era: Computers 452

One of the impediments the Germans encountered was that their methods of 453

encryption were limited by purely mechanical considerations (as well as the 454

difficulty in replacing old equipment by new if a new method of encryption were 455

thought to improve on an old one). This changed with the advent of the computer: 456

now there was no purely physical limitation on the length (number of bits that could 457

be set) of a wheel, or the number of wheels, or the algorithm used to combine 458

different inputs from different components at any stage in the process of encryption. 459

Eventually highly secure, publicly available algorithms such as DES (the Data 460

Encryption Standard, first published in 1975) and AES (the Advanced Encryption 461

Standard, first published 1998) became available. Obviously the rise of computer 462

networks was a factor in this development. 463

This subject could easily be the subject of a book, so in this chapter we focus on 464

one particular aspect of the use of computer algorithms. 465

7.4.1 Generating Random Numbers 466

We have already seen the importance of generating random numbers in cryptogra- 467

phy, in its role in producing one-time pads. 468

The resort to random selection was already widespread in the ancient world. 469

Aristotle, for example, in his Athenian Constitution, describes an elaborate two- 470

stage procedure that the Athenians used for selecting members of a jury (Moore 471

1975, pp. 303–307); and during the Roman Republic lots were commonly used 472

to assign provinces to the consuls and other major state officials. The use of 473

randomization for scientific and mathematical purposes is of course much more 474

recent. Stigler (1999, Chapter 7) discusses a number of nineteenth century examples. 475

True physical randomization, however, is often difficult to achieve (and in the 476

hands of the unwary is often not achieved). One celebrated example is the famous 477

1970 draft lottery debacle (Fienberg 1971). One remedy for this is the construction 478

of tables of random numbers that researchers can use with confidence. The earliest 479

of these was L. H. C. Tippett’s table of random numbers published in 1927, prepared 480
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at the suggestion of Karl Pearson, to facilitate carrying out random sampling 481

experiments for simulation studies; see Pearson (1990, pp. 88–95). The culmination 482

of such efforts was the construction of the Rand Corporation’s “A Million Random 483

Digits With 100,000 Normal Deviates” (Rand 1955). 484

In the last several decades such physically generated tables have been entirely 485

supplanted by algorithmic random number generators executed by computer code. 486

Strictly speaking, of course, sequences of numbers generated this way are only 487

“pseudo-random”, although this typically suffices for almost all practical purposes. 488

Nevertheless, there are challenges here too; see Knuth (1997, Chapter 3). To 489

appreciate just what a change this represents, consider that the following two lines 490

of R (a statistical programming language) code will generate the entire contents of 491

the Rand Tables in only a fraction of a second: 492

rand.rd <- sample(0:9, 10^6, replace = TRUE) 493

rand.nd <- rnorm(10^5) 494

The failure to enforce randomness in a cryptographic protocol can have serious 495

consequences. For example, in the Naval Enigma, a trigram “message indicator” 496

was encrypted using one of 9 bigram tables. The sender chose a pair of trigrams, 497

say LQR and CPY , from a Kenngruppenbuch, added a pair of “haphazard” letters, 498

say G and O, and then encrypted each column of the resulting two-by-four array 499

using the bigram table: 500

G L Q R
→

T A L I

C P Y O U H S U 501

Then TALI UHSU was sent. 502

The receiver of TALI UHSU , who knew the bigram table in use that day, 503

reversed this process, to find the message indicator CPY . (Strictly speaking, CPY 504

was not the actual message indicator: using the Grundstellung or general daily 505

setting, CPY was in turn encrypted and the resulting trigram was the final setting 506

used to encrypt the message.) 507

This apparently impressive procedure had, however, two fatal weaknesses. The 508

first was that the trigrams were not selected randomly by the operators from 509

the Kenngruppenbuch: there was a tendency to pick trigrams from the tops of 510

pages. Turing devised an attack that exploited this (using a “sampling of species” 511

approach). The other weakness was that humans are also very poor at randomly 512

selecting individual letters. As Good later related: 513

I noticed on one night shift that about 20 messages were enough to identify which digraph 514

table was in use, because the ‘haphazard’ letters (G and O in the example) were not ‘flat- 515

random’. This discovery then provided the routine method for identifying the table. [Good 516

2000, p. 109] 517

For such reasons experienced cryptographers go to great lengths to ensure 518

genuinely random selection is employed. For example, in a code book one replaces 519

letters, words, and phrases by, say, groups of five digits. If the purpose of the 520
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encoding is not just data compression (as was sometimes the case for commercial 521

code books) but also secure communication, then two books must be used: one 522

listing in alphabetic order the letters, words, and phrases next to randomly assigned 523

five-digit numbers; and another listing in numerical order the five-digit numbers 524

next to the corresponding letters, words, and phrases. 525

In the 1930s the Signal Intelligence Service of the US Army attempted to 526

construct such a code book, and encountered great difficulty in randomly assigning 527

the code equivalents to the letters, words, and phrases. They were faced with the 528

challenge of “scrambling” 60,000 cards. At first they dumped drawers of the cards 529

onto the floor and attempted to mix them by hand, but found it did not mix the cards 530

enough. Then they started throwing handfuls of cards into the air, and even turned 531

on the wall fans to maximum speed; “the results were still far from satisfactory”. 532

It was only after in addition to all this when they began placing cards on cleared 533

desktops in an irregular way and repeated the entire process several times that they 534

were “at last able to achieve an acceptable randomization of all the plaintext cards” 535

(Rowlett 1998, pp. 53–54). 536

Here is an instructive illustration of the importance of randomness in cryptology, 537

a topic briefly mentioned earlier. 538

7.4.2 The One-Time Pad 539

In many cryptographic systems the goal is to transform a given plaintext into 540

a ciphertext that is indistinguishable from a “flat random” (that is, uniformly 541

distributed) sequence. For example, suppose a plaintext P = (P1, P2, . . . Pn) is 542

written in a t-letter alphabet (for instance t = 2 for bits, t = 26 for letters, and so 543

on). Suppose that an additive key sequence K = (K1,K2, . . . , Kn) is flat random 544

(in the sense that every n-long sequence in the t-letter alphabet has a probability 545

of t−n of occurring). Then it is not hard to see that (addition being mod t) that the 546

cipher text sequence C = (C1, C2, . . . , Cn) defined by 547

Cj = Pj +Kj 548

is itself flat random. That is, whatever statistical regularities may have been present 549

in the plaintext P have been entirely obliterated by addition of the flat random key 550

sequence K . This is the theoretical basis for the use of the “one-time pad” (a pad 551

containing such a key sequence that is then added once – and only once – to a 552

plaintext). 553

In principle the use of the one-time pad is the basis of a theoretically unbreakable 554

encipherment if carried out in a correct and secure manner. 555

One famous example of its misuse was the subject of the NSA’s Venona 556

Project. During World War II, some Soviet agents in the US used one-time pads to 557

communicate with their masters in Moscow. But for reasons that are not understood 558

(but presumably reflected wartime conditions in the Soviet Union) pages from the 559
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pads were reprinted and the same sequences of numbers reused. The upshot was 560

that as a result of a monumental effort on the part of US cryptanalysts a substantial 561

fraction (more than 10%) of the content of these highly secret messages were in 562

fact read, giving insight for example into the Soviet atomic spy ring. See generally 563

Haynes and Klehr (2000). 564

7.5 Postmodern Era: Public Key Encryption 565

Three may keep a secret if two are dead – Benjamin Franklin. 566

In classical, private-key crypto-systems, A and B securely communicate over a 567

channel in which a third party (C) may be eavesdropping. 568

C
⏐
⏐
�

A −−−−→ public channel −−−−→ B

569

They do this by means of a private key that has been previously sent via a secure 570

channel. Classical examples of this include DES (the data encryption standard) and 571

the more recent AES (advanced encryption standard). 572

In the 1970s cryptography was revolutionized by the introduction of public 573

key systems, where no prior exchange of a private key over a secure channel is 574

necessary. This possibility is the basis of the https protocol, which enables you and 575

Amazon (say) to securely exchange information about credit cards even if someone 576

is “listening in”. 577

How is this possible? The key lies in the use of “trap–door” functions: a 578

function, say E, which is easy to compute, but whose inverse D = E−1 is hard 579

to compute (unless additional, private information is available). For example, think 580

of computing x2 vs.
√
x. 581

7.5.1 RSA Encryption 582

RSA (for Rivest et al. 1978) is an early and still very important example. In the 583

following, φ(n) is the Euler phi function, the number of integers k, 1 ≤ k ≤ n, 584

relatively prime to n, that is, (k, n) = 1. (A good reference for the number theory 585

that appears in RSA encryption is Kraft and Washington 2014.) 586

Encryption method: 587

1. Choose n and e: here n = pq (p, q two large primes, private), and e is an 588

exponent such that (e, φ(n)) = 1. Here both n and e are public. 589
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2. Translate letters into their numerical equivalents, forming blocks P of the 590

largest permissible size; for example, MATH → 12001907. (In this example, 591

the encoding is A → 00, B → 01, . . . , Z → 25.) 592

3. Encrypt: C := E(P ) ≡ P e (mod n), 0 ≤ C < n. 593

Now comes the clever part, which appeals to Euler’s theorem. Recall that Euler’s 594

theorem tells us that aφ(n) ≡ 1 (mod n) provided (a, n) = 1. Suppose (P, n) = 1. 595

Because (e, φ(n)) = 1, 596

d := e−1 (mod φ(n)) 597

exists, hence ed ≡ 1 (mod φ(n)), hence 598

ed = kφ(n)+ 1. 599

So to decrypt, if you know d, you just compute 600

Cd = (P e)d = P ed = P kφ(n)+1 = (P φ(n))kP = P (mod n). 601

In order for this to be secure, one needs d to be difficult to find given just n and 602

e (which are public), but easy to compute given p and q (which are to be private). 603

Now if we know φ(n), then solving ex ≡ 1 (mod φ(n)) (to invert e and find 604

d) is easy, because it is equivalent to solving the first order Diophantine equation 605

ex + φ(n)y = 1, for which the (extended) Euclidean algorithm is available. The 606

relevance to RSA is this: in order to find d, we need to know φ(n). Now if we know 607

the factorization n = pq, then it is easy to find φ(n), since φ(n) = (p − 1)(q − 1). 608

But 609

“multiplication is easy, factoring is hard”, 610

so it is easy to go in one direction (use the private p and q to find n and φ(n)), but 611

hard to go in the other (factor the public n to find p and q): we are in the trap-door 612

function situation. 613

614

Objection: maybe there is some other way of finding φ(n)without factoring n = pq. 615

616

Response: no, given n = pq, factoring n is equivalent to computing φ(n). 617

618
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In one direction this is immediate, given the factorization n = pq, just use the 619

formula φ(n) = (p − 1)(q − 1). For the other direction, since n = pq and φ(n) = 620

(p − 1)(q − 1), observe that 621

p + q = n− φ(n)+ 1. 622

Thus we know the sum p + q as well as the product pq if we know both n and 623

φ(n). Thus the question reduces to the 624

625

Problem: given pq and p + q, find p and q. In general, given the sum and product 626

of two numbers, find the two numbers. 627

628

Solution: If the numbers are a and b, consider 629

f (x) = (x − a)(x − b) = x2 − (a + b)x + ab. 630

We know the sum and product, a + b and ab, so we are given a quadratic equation, 631

and our mission is to find a, b, the roots of f (x)! This is easy: just use the quadratic 632

formula. (Computing square roots is easy for a computer.) 633

634

The bottom line: given n and φ(n), it is easy to find p, q. 635

636

Note: This does not prove that factoring is hard; only that it is equivalent to 637

computing φ(n). Note also that “hard” is a function of current technology. (Some 638

things that were hard 50 years ago are easy today; and some things that are hard 639

today may be easy 50 years from now.) 640

7.5.2 Key Exchange Protocols 641

In key exchange or key establishment protocols, the goal is for two parties to arrive 642

at a common, secret key for use in a cryptosystem, doing this while communicating 643

over an insecure channel. The original idea for this goes back to back to Whitfield 644

Diffie and Martin Hellman in 1976, and is an attractive application of primitive 645

roots. 646

7.5.2.1 Diffie-Hellman Key Exchange 647

In Diffie-Hellman key exchange, Alice and Bob communicate over a public (and 648

potentially insecure) channel. The two agree on a large prime number p, and a fixed 649

number q < p. (Technically, q is a primitive root mod p.) Alice has private key a, 650
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Bob has private key b. Alice sends qa (mod p) to Bob, and Bob sends qb (mod p) 651

to Alice. Then Bob computes (qa)b (mod p) and Alice computes (qb)a (mod p). 652

The two numbers agree because 653

(qa)b = qab = qba = (qb)a (mod p). 654

The security of the method resides in the fact that even if a third party (Carol) 655

intercepts qa or qb, she cannot find the values of a or b even if she knows q and p; 656

this involves the computationally challenging task of finding the discrete logarithms 657

a = logq(q
a), b = logq(q

b). 658

Note the two clever ingredients of the Diffie-Hellman method. First, Alice and 659

Bob exchange information that enables each to construct a common key: Alice gives 660

Bob qa (mod p); Bob gives Alice qb (mod p). 661

The potential insecurity in the key exchange arises from the fact that the 662

information Alice sends Bob obviously has to bear some relation to the use Alice 663

makes of the information Bob sends her. The common element is her private key 664

a: Alice uses it both to compute qa and qba . If Carol could learn the value of a 665

and intercept qb, she could figure out qba . But the only public glimpse of Alice’s 666

private key a is when Alice sends qa to Bob. Thus it is essential that this step not 667

compromise the security of the private key a. This is the second clever element 668

of the method: the use of a mathematical procedure that is readily computable in 669

one direction (otherwise the method would be impractical), but computationally 670

intractable in the other. 671

7.5.2.2 Massey-Omura Key Exchange 672

In this scheme just a single large prime p is public; Alice has private keys ea and 673

da (such that eada ≡ 1 (mod p − 1)), Bob has private keys eb and db (such that 674

ebdb ≡ 1 (mod p − 1)). The following exchange from Alice to Bob then takes 675

place: 676

qea → qeaeb → qeaebda → qeaebdadb = (qeada )ebdb ≡ q (mod p) 677

Think of this as follows: Alice puts a lock on a box (ea) and sends it to Bob; Bob 678

puts a second lock on the box (eb) and sends it back to Alice. Alice then removes 679

her lock using her key (da), and sends the box back to Bob. Finally, Bob removes 680

his lock using his key (db), and opens the box, revealing the shared secret q. 681
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7.6 Through a Glass Darkly 682

Signals intelligence organizations are often quite chary of revealing their secrets or 683

successes. This presents challenges – but also opportunities – for the historian. 684

One might expect former employees would want to publicize their past exploits, 685

but there can be serious disincentives here. The history of signals intelligence 686

contains a number of celebrated instances of old hands feeling free to publicize their 687

cryptologic exploits, only to suffer serious consequences. Two cautionary tales here 688

are those of Herbert Yardley (1889–1958) and Gordon Welchman (1906–1985). 689

Yardley had been the head of the “American Black Chamber”, a highly- 690

successful code-breaking organization having its origins in the World War I Cipher 691

Bureau MI-8, and which later became a joint operation run by the US Army and 692

Department of State. But when, in 1929, administrations changed and the new 693

Secretary of State Henry L. Stimson met with Yardley and was briefed on its 694

operations, the American Black Chamber was promptly shut down. “Gentlemen”, 695

Stimson declared, “do not read each other’s mail”. (Twelve years later, in the 696

aftermath of the attack on Pearl Harbor, Stimson, now Secretary of War, presumably 697

came to feel differently.) Now out of work, in the middle of the Great Depression, 698

and informed that his operation was no longer worth while, Yardley went on to write 699

his fantastic book The American Black Chamber (1931), narrating with gusto the 700

many exploits of that organization. But although the Department of State many have 701

looked down on Yardley’s reading of gentlemen’s mail, the Department of the Army 702

did not: they were furious with Yardley for revealing so many of their secrets and he 703

became persona non grata for the rest of his life. (When the Canadians hired Yardley 704

several years later to help run their own fledging signals intelligence organization, 705

he was dismissed after less than a year at the insistence of the US and UK.) For an 706

outstanding account of Yardley’s life, see Kahn (2004). 707

Gordon Welchman provides another cautionary tale. Welchman had headed 708

Hut 6 (Army and Luftwaffe cryptanalysis) at Bletchley, and was responsible for 709

many important advances during the war. (He was also the moving force behind 710

the letter to Churchill in late 1941 that resulted in Bletchley Park being given 711

virtual carte blanche in obtaining personnel and materiel.) Welchman emigrated 712

to the US in 1948, and spent the rest of his life working primarily for the US 713

defense establishment. He kept scrupulously quiet for more than 35 years about 714

his outstanding contributions to the Allied war effort. But in the late 1970s, as more 715

and more revelations about Bletchley Park came out, Welchman concluded that total 716

silence was no longer required. And so he came to write his highly informative The 717

Hut Six Story, which detailed the many successes in the attack on the Enigma, the 718

devices (such as the Bombe and diagonal board used in its attack), and Alan Turing’s 719

crucial role in all this. But he made a fatal error: he failed to submit his book for 720

prepublication review. He was promptly stripped of his security clearance, forbidden 721

to speak to the press, and remained under a cloud for the (sadly short) remainder of 722

his life. For a recent biography of Welchman, see Greenberg (2014). 723
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Silence about technical achievements would seem particularly important. Nev- 724

ertheless it is possible from time to time to identify individuals who were able to 725

publish technical results – stripped of their cryptographic origins – before their 726

involvement on the dark side became known. Here are two case studies. 727

7.6.1 Case Study 1: I. J. Good 728

I. J. (Irving John, “Jack”) Good (1916–2009) was an undergraduate at Jesus College, 729

Cambridge (1934–1938) before receiving his Ph. D. at Cambridge in 1941, under 730

the supervision of G. H. Hardy and A. S. Besicovitch. Shortly after, he reported to 731

Bletchley Park on May 27, 1941 (the day the Bismarck was sunk). He was fortunate 732

in this: he spent his first 2 years (1941–1943) at Bletchley working in Hut 8 (Naval 733

cryptanalysis) under Alan Turing, from whom he learned the Bayesian approach to 734

statistics; and his last 2 years (1943–1945) working in the Newmanry (recall this was 735

one of two sections devoted to cryptanalysis of the SZ40/42, an online teleprinter 736

system) under M. H. A. (“Max”) Newman, using an attack centered on the use of 737

the “Colossus”. 738

After the war Good spent a few years at the University of Manchester (1945– 739

1948), and then returned to GCHQ (Government Communications Headquarters, 740

the postwar successor to GC & CS), where he remained for 11 years (1948–1959). 741

After visiting several institutions for 2–3 year stints (Admiralty Research Labo- 742

ratory, 1959–1962; Institute for Defense Analyses, 1962–1964; Trinity College, 743

Cambridge, 1964–1967), he became a Professor at Virginia Polytechnic Institute, 744

where he remained for the rest of his life. 745

After the war Good wrote a classic book, Probability and the Weighing of 746

Evidence (1950), espousing the subjective, Bayesian viewpoint (but with a strong 747

pragmatic streak running throughout). But even though the book appeared in 1950, 748

a first draft had been written in 1946, immediately after Good left Bletchley. In 749

retrospect it is clear that the book advances a view of the subject that Good had 750

acquired directly from Turing. In its preface, Good thanks Turing, Newman, and 751

Donald Michie (that is, his two bosses at Bletchley and his closest collaborator in 752

the Newmanry) for reading the first draft. 753

But Good’s Bletchley Park-inspired contributions to statistics in the years 754

immediately after the war were not confined to just a general advocacy of the 755

Bayesian viewpoint. He proceeded to publish (always scrupulously crediting Tur- 756

ing) developments and refinements of a number of technical advances Turing had 757

developed during the war. As Good later explained: 758

Turing did not publish these wartime statistical ideas because, after the war, he was too 759

busy working on the ground floor of computer science and artificial intelligence. I was 760

impressed by the importance of his statistical ideas, for other applications, and developed 761

and published some of them in various places. Much of my delay was caused by the 762

wartime attitude that everything was classified, from Hollerith cards to sequential statistics, 763
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to empirical Bayes, to Markov chains, to decision theory, to electronic computers. These 764

extreme standards of secrecy only gradually abated after the war [Good 2001, p. 211]. 765

Up until 1976, however, Good remained entirely silent about his actual wartime 766

work. At this point in time it is hard to appreciate the total silence up to then 767

regarding Allied successes in attacking German encryption devices; one illustration 768

among many is provided by David Kahn’s pathbreaking book The Codebreakers 769

(1967): although it contains an entire chapter about the US success in reading the 770

Japanese “Purple” cipher, and several chapters on German signals intelligence, it is 771

entirely silent about Bletchley and Ultra. 772

All this changed in 1973, when General Gustave Bertrand (1896–1976) wrote 773

Enigma, ou la plus grande énigme de la guerre 1939–1945 (“Enigma, or the 774

Greatest Enigma of the War of 1939–1945”). This revealed that since 1932 the 775

Poles had been reading the Enigma, as well as the Polish-French collaboration. This 776

apparently served as an inducement to the British to lift a year later (1974) their 777

total embargo on any discussion of their cryptologic successes during the war; the 778

first beneficiary of this change in policy was F. W. Winterbotham’s The Ultra Secret 779

(1974). After this the floodgates opened, and an ever-increasing succession of books 780

and papers appeared; a small (but significant) sampling of these include Hinsley 781

(1979–1990), Rejewski (1981), Welchman (1982), Hinsley and Stripp (1993), and 782

Reeds et al. (2015). I. J. Good has returned to this subject many times (in what might 783

be termed the “dance of the seven veils”); see Good (1976, 1979, 1993, 2000, 2001, 784

2006). 785

For further information on Good’s life, see the outstanding interview by David 786

Banks (1996). 787

7.6.2 Case Study 2: Aleksandr Alekseevich Borovkov 788

A. A. Borovkov (1931–) is a prominent Russian mathematician, working in the 789

areas of probability and statistics. He did his undergraduate work at the University 790

of Moscow, graduating in 1954. After completing his graduate studies under the 791

great A. N. Kolmogorov, he then moved to Novosibirsk in 1960 to become “head 792

of the recently created probability theory and mathematical statistics section of 793

the Institute of Mathematics of the Siberian Branch of the Academy of Sciences 794

of the USSR” (Borisov et al. 2001, p. 1009). He has remained there since. He 795

is perhaps best known for his work in the field of large deviations, for example 796

boundary crossing probabilities for random walks, the subject of his thesis. This 797

was an interesting (if risky) choice of topic: although large deviation theory is 798

currently one of the most active areas of research in mathematical probability, it 799

was a relatively unexplored area at the time and virtually nothing had been done in 800

Borovkov’s particular area of study. What led him to his interest in this field? 801

Borisov et al. (2001) discretely tell us that after the completion of his undergrad- 802

uate studies in 1954, Borovkov “worked for several years in an organization doing 803
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applied research” (p. 1009). Borovkov himself was willing just a few years later 804

(2004) to be much more explicit: 805

I began to study this problem under the following circumstances. After graduating from 806

Moscow State University in 1954 I was assigned to a covert organization (despite the 807

recommendation of Kolmogorov for graduate work) that solved cryptography problems 808

by using computers. For this purpose, one of the most powerful computers of the time was 809

created. The approach was based on exhaustion of diverse versions of decoding, which 810

produces a great number N of variants of decoding on the output, that is, sequences of 811

letters a1, a2, . . . , an. Among them one should recognize the true ‘decoded’ text (that is, a 812

text in English corresponding to the correct version of decoding). Since the number N was 813

very large (say, of order 108 − 1010), it was impossible to perform this work ‘manually’, 814

and a ‘computer algorithm’ for recognition of the decoded text was used. This algorithm 815

was based on the statistical criterion of sequential analysis that was to distinguish between 816

two hypotheses: H1 = {the text is chaotic, that is, the ai are independent, P(ai = k) = 817

q(k) = 1/26, k = 1, . . . , 26} and H0 = {the text is decoded}. In the latter case, diverse 818

simplest models were used, for example, {ai} was assumed to be a sequence of independent 819

variables with the known probabilities p(k) = P(ai = k) or a Markov chain with the 820

known probabilities pjk = P(ai = k/ai−1 = j). 821

So Borovkov’s public work in large deviations was a direct consequence of his 822

working for a “covert organization” interested in cryptography! 823

What is particularly interesting (and impressive) about Borovkov’s work on this 824

subject is that it was not encouraged by Kolmogorov – quite the contrary: 825

At that time I was successful in enrolling in the correspondence graduate programme with 826

the support of Kolmogorov, and I decided to take the problem as a thesis project. This was 827

quite risky, because nothing was known at the time about the problem, and Kolmogorov 828

told me at once that he had no ideas about it. (He even suggested that I choose another 829

problem, but I declined.) The risk turned out to be serious, because I could not get anything 830

for almost three years. The solution in the case of bounded lattice variables ξi (this was the 831

very case we needed) was found in 1958 in a purely analytic way. 832

7.7 Discussion 833

Modern methods of communication involve the transmission of massive amounts of 834

information over channels that are either insecure or potentially insecure (subject to 835

interception). The early part of the twentieth century saw this in the case of wireless 836

transmissions over long distances; the last several decades with the rise of computer 837

networks, LANs and WANs, and the internet. This gave rise in turn to the need 838

for rapid methods of ensuring privacy, authentication of sender, and guaranteeing 839

integrity of message. 840

In the era before computers this was accomplished by the constructing of 841

machines, often impressive by the standards of their day, used to encrypt an 842

increasing volume of military, diplomatic, and commercial information; these were 843

in turn often attacked by methods devised by mathematicians and implemented 844

by the construction of new and sophisticated machines. In the modern computer 845

era encryption has, not surprisingly, become the output of computers rather than 846
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special purpose mechanical, electronic, or electromechanical devices. These modern 847

methods of encryption now almost exclusively call upon the resources of modern 848

mathematics, as do the efforts of cryptanalysts to defeat them. 849

Documenting the evolution of modern encryption is a challenging one for the 850

historian: it is in the nature of the subject that the more successful one is, the less 851

one wants others to know about it. The career of I. J. Good illustrates this: it took 852

decades before his part in Allied successes during World War II became known 853

even in outline; and a number of statistical advances that arose out of his war work 854

became public knowledge only after their cryptanalytic origins were hidden. 855
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which rational human knowledge and belief, of the propositional variety, can be 6

secured. Our particular instance of this investigation arises from the stipulation 7

that a human (a) receives a partial or complete formal argument/proof (A) for/of a 8

conclusion φ, where some computing machine M “stands between” or mediates a’s 9

receiving A and φ. The mediation can take any number of forms, ranging from the 10

simple and mundane (e.g., a is a teacher who types in to a text-editing system a proof 11

of some easy theorem for a math class, and then prints out the proof for subsequent 12

study and presentation to the class) to the exotic and famous (e.g., a receives a too- 13

big-to-survey printout of a computer-generated proof of the four-color theorem). 14

Under what conditions is it rational for a to believe φ? Once we have erected at 15

least a reasonably precise framework for understanding the structure of arguments 16

and proofs, classifying computing machines, ranking strength of knowledge and 17

belief, and distinguishing at least roughly between types of computer mediation, 18

this result, as we indicated, is a framework in which this pair of questions (and 19

other, related ones) can eventually be answered. 20

8.1 Introduction 21

Epistemology includes in large part investigation of the conditions by which 22

rational human knowledge and belief, of the propositional variety (a.k.a. learning 23

of declarative content), can be secured. Our particular instance of this investigation 24
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arises from the stipulation that a human (a) receives a partial or complete formal 25

argument/proof (A) for/of a conclusion φ, where some computing machine M 26

“stands between” or mediates a’s receiving A and φ. The mediation can take any 27

number of forms, ranging from the simple and mundane (e.g., a is a high-school 28

math teacher who types in to a text-editing system a proof of Euclid’s Theorem for 29

a math class, and then prints out or displays the proof for subsequent study and 30

presentation to the class) to the exotic and famous (e.g., a receives a too-big-to- 31

survey printout of a computer-generated proof of the four-color theorem). In this 32

context, here is the most-general form of the question that drives our investigation: 33

(QB) Where M mediates as provisionally described above, under what conditions is it 34

rational for a to believe φ?1 35

Once we have erected at least a reasonably precise framework for understanding 36

the structure of arguments and proofs, classifying computing machines, ranking 37

strength of knowledge and belief, and distinguishing between some types of 38

computer mediation, the result is a framework in which (QB) can be answered.2 We 39

try herein to provide some evidence for this optimism, by applying the framework 40

in somewhat concrete ways, and by pointing toward next-steps concretization in 41

connection with proof systems more exotic and powerful than standard extensional 42

ones associated with first- and second-order logic. 43

The sequel unfolds in accordance with this plan: In the next section (Sect. 8.2), 44

we provide a brief but serviceable clarification of the mediating machine M in 45

our overarching framework. This section also includes a rapid discussion of what 46

we take proofs (and also, for reasons to be given, arguments) to be. We next 47

(Sect. 8.3) present a “high-altitude” view of the overarching process with which 48

we are concerned, one going from the ingredients being given to M by a human, 49

eventually to a final epistemic attitude (specifically, as we have said, belief) on 50

1We are sorry to disappoint those readers who will wish to have this different question addressed
as well or instead:

(QK) Where M mediates as provisionally described above, under what conditions does a
in our instance really know that φ?

We leave (QK) aside in favor of (QB) and its variants because the conditions under which
rational belief becomes knowledge have been notoriously difficult to set out to the satisfaction
of most, let alone nearly all, thinkers. The most efficient way to confirm this is to read any
decent overview of the “Gettier Problem” (GP) a problem generated by consideration of ingenious
thought-experiments from Gettier (1963) in which an agent seems to know some proposition, but
by any of the traditional accounts of knowledge as justified (= rational) true belief going back to
Plato, doesn’t. E.g. see this cogent overview: (Ichikawa and Steup 2012). Plato’s original defense
can be found in the Theaetetus, which can in turn be found in (Hamilton and Cairns 1961). A final
word related to the GP conundrum: We encourage readers to join us in resisting the affirmation
of any such principle as that if an agent a believes but doesn’t know φ, the agent can’t have
learned φ—this being resistance that protects the position that a learns φ in the computer-mediated
arrangement considered in the present paper, at least in cases in which the strength of the belief
that φ on the part of a is high.
2And eventually (QK) as well.
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the part of that human. Next, in Sect. 8.4, we infuse our overarching framework 51

with gradations of belief, which allows us to refine the framework in such a way 52

that nuanced sub-questions under the umbrella of question (QB) can be sensibly 53

addressed. For example, this sub-question becomes expressible: 54

(QB6) Where M mediates as provisionally described above, under what conditions is it 55

rational for a to believe φ with certainty? 56

In Sect. 8.5, we spend some time exploring some concrete instantiation of our 57

framework, using some proof-oriented technology in our laboratory (for standard, 58

extensional logic), and featuring some real proofs. We wrap the paper up by 59

spending a bit of time explaining the next steps that can be taken in order to 60

achieve further concretization of our framework (Sect. 8.6); we include discussion 61

here of situations rather more exotic than those arising from use of straightforward 62

extensional logic: viz., the cases of infinitary logic, and intensional logic. 63

8.2 Computing Machines, Arguments/Proofs 64

Computing machines in the present discussion shall range across pretty much 65

everything one might consider to be a candidate, from a device or process that 66

simply prints out the input it receives, to a computer program for discovering and 67

checking a proof, to all the abstractions at and below a standard Turing machine 68

(e.g., abaci, register machines, etc.), to so-called “hypercomputers” (which are 69

formally specified machines capable of computing functions beyond Turing-level 70

machines).3 In all cases, we refer simply to the computing machine in our analysis 71

as M (and we use subscripts and superscripts to refer to more than a single such 72

machine; e.g. we can ask the reader to consider two machines M1 and M2). 73

Next, note that an argument or proof A is what we can harmlessly call an 74

abstract type. The basis for this generic terminology is the same as what allows 75

various thinkers to refer to, say, “Henkin’s completeness proof” without any relevant 76

physical object in play. The same thing is going on when people refer (successfully) 77

to, say, Gödel’s proof of the completeness theorem, rather that any particular 78

inscriptions of it upon paper, or a computer display, etc. (It’s the tokens of Gödel’s 79

proof that vary considerably across textbooks, classrooms, notebooks, etc.) We 80

denote a physical token of this type as Â. Argument/proof tokens are physical 81

instantiations of the corresponding abstract arguments/proof; they can be written 82

down on paper and other media, read, inspected, erased, copied, transmitted, and 83

so on. We follow the same notation and simple ontology for machines as well, and 84

hence distinguish between M and M̂. 85

3An elegant example is infinite-time Turing machines; see (Hamkins and Lewis 2000). For a list
of hypercomputing devices (in the context of a case, entirely separate from purposes driving the
present chapter, for the proposition that human persons can hypercompute), see (Bringsjord and
Arkoudas 2004).
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As to what an argument for our investigation is, we let A = (�,�∗, φ) denote 86

an arbitrary argument, which usually4 has finitely many premises � and proceeds 87

by inferential steps �1,�2, . . . ,�n to the conclusion, φ (�∗ refers simply to all the 88

inferences collected together). But why do we refer to arguments, not proofs, given 89

that the title of the present chapter of course revolves around the phrase ‘Computer- 90

Mediated Proofs’? The explanation is simply that the arguments with which we 91

concerned are formal arguments, and the only difference between them and what 92

are customarily classified as proofs is that the latter are usually distinguished by 93

appearing in a particular context (e.g., one in which the community uses ‘proof’ 94

instead of ‘argument’), whereas that isn’t necessary for arguments. We recognize 95

that some will wish to count our formal arguments as proofs. That is fine; nothing we 96

say hinges on the absence of this conflation. And a final point: Just as some computer 97

programs can be invalid, so some proofs can be invalid—despite the fact that they 98

are still proofs. It’s an odd fact, but a fact nonetheless, that some harbor the notion 99

that a “proof is a proof”; that is, that by definition a proof is a valid progression of 100

reasoning. This is an odd notion, because undeniably we can and often do speak 101

of defective computer programs, and we are perfectly entitled to likewise speak 102

sensibly of defective proofs. In light of this situation, computer-mediated proofs 103

certainly can suffer from the mediation in question. Indeed, computer-mediation 104

can turn a valid proof into an invalid one. This possibility, and related ones, is what 105

makes the epistemology of computer-mediated proofs interesting, important, and 106

“real-world.” 107

8.3 The Compu-Mediated Epistemological Framework 108

In our opening paragraph we provided a provisional account of mediation, to which 109

the questions (QB) and (QB6) referred. Now we get a bit more precise. Our frame- 110

work for systematizing the epistemology of computer-mediated arguments/proofs 111

is a generalization and expansion of what is presented in (Arkoudas and Bringsjord 112

2007) for analysis of proof-checking (in connection with e.g. proofs of the Four- 113

Color Theorem) and what is presented in (Bringsjord 2015) in connection with a 114

defense of a particular approach to program verification.5 The diagram shown in 115

Fig. 8.1 sums up in end-to-end fashion the entire framework that anchors the present 116

chapter, and we explain this framework now. 117

First, a quick point regarding notation: → is the material conditional, while 118

� denotes the causal production of what is to the right from what is to the left. 119

Next, note that there is an important temporal dimension to the framework: time is 120

4Not invariably. See our coverage of infinitary logic in Sect. 8.6.1.
5The second of these papers uses a scheme that generalizes, expands, and relaxes the scheme set
out and employed in the first.
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Fig. 8.1 Overarching diagrammatic depiction of the proof-mediation flow

basically flowing from the left to the right, and also from the top down to the bottom 121

when we see the column of formulae on the right side of the picture in question: 122

• P[a,M̂(Â)�̂〈ÂM, ϕ̂〉] 123

• B[a,M̂(Â)�̂〈ÂM, ϕ̂〉] 124

• B[a,M(A)� 〈AM, ϕ〉] 125

• B[a, T (AM) ∧ T (ϕ)] 126

Hence, at the final timepoint in the progression, our agent a believes that the 127

machine-mediated argument AM is true (= is valid), and that its conclusion ϕ is 128

so as well. Notice that at this concluding moment the agent’s belief is directed not 129

at a particular token, but at the abstract types in question. The topmost formula 130

in Fig. 8.1 is a crucial one and is “applied” to the output produced by M; it says 131

that the agent a believes that what the machine gives as output is worthy of assent. 132

Specifically, the M-mediated argument is believed true/valid, and the conclusion of 133

this argument is believed true as well. We view the situation as one in which our 134

agent has learned φ. 135

We now explain what happens as time flows on. The overall progression starts 136

with an argument token as input given to the mediating machine for processing 137

of some kind. The output token consists of a pair composed, first, of an argument 138

ÂM token that is an argument causally related to the one in the original input, 139

and, second, the conclusion ϕ̂ corresponding in turn to the original, earlier input 140

conclusion φ̂. This output pair from M, given the agent’s belief in the general 141

principle that is the topmost formula (discussed above), is combined with the fact 142

that the agent a perceives (P is a perception operator) that pair is so produced (i.e., 143

combined with the fact that P[a,M̂(Â)�̂〈ÂM, ϕ̂〉]), leads to the state-of-affairs 144

expressed by the next formula in the column on the right, which simply reflects the 145

move from perception to belief. Belief targeting tokens then move to belief targeting 146

propositions (types), and then finally we come to the concluding formula in the 147

column, which we have already explained. 148

With our framework now in hand, the questions we have isolated thus far can 149

be refined. For example, the general question driving our inquiry now becomes 150

this one: 151

(QB′) Where M mediates as laid out in Fig. 8.1, under what conditions is it rational for a 152

to believe ϕ? 153
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And the sub-question (QB6) is now supplanted with this more precise version: 154

(QB′
6) Where M mediates as laid out in Fig. 8.1, under what conditions is it rational for a 155

to believe ϕ with certainty? 156

8.4 The Epistemological Framework Infused with Graded 157

Belief 158

Despite the foregoing, we do not assume belief to be simply an “on versus off” 159

matter. On the contrary, belief, at least of the human variety, is modulated by at 160

least some version of strength, confidence, likelihood, or probability. Therefore the 161

framework we have presented above, and diagramed in Fig. 8.1, is objectionably 162

simplistic, and hence must be refined. We have already hinted at this via question 163

(QB6), which refers to “believing with certainty.” 164

Let’s consider some simple examples to start. You surely believe that in ordinary 165

base-10 arithmetic (τ ) 2+2 = 4. You also believe that (π ) the objects you currently 166

perceive in front of you (the characters composing this parenthetical in this sentence, 167

e.g.) are actually in front of you. And you also believe that (μ) some humans have in 168

the past landed on the Moon. But these are very different beliefs, strength-wise. In 169

the case of τ , you are, we can safely say, certain that this proposition holds. What 170

about π , that those characters really exist in the physical world? Here things aren’t 171

certain. You might be a brain in a vat, or you might be dreaming, or Descartes’ “evil 172

demon” might be deceiving you. Nonetheless, unless you have evidence that your 173

senses are compromised by such exotica, we can say that while your belief that π 174

holds isn’t at the level of certainty, it’s as close as a cognizer of our kind can get to 175

certainty without getting all the way there. We shall say that π is at the level of the 176

evident. 177

From here, we can continue to work down to a point where a proposition that is 178

the target of belief is a “toss up”; in this case, we say that the belief that φ (where φ 179

expresses the proposition in question) is counterbalanced. In between evident and 180

counterbalanced are four strength factors; the gist of what they mean should be clear 181

from the words selected to express them. These words, and the entire spectrum of six 182

(positive) values, are shown in Fig. 8.2. For what it’s worth, we suspect that in most 183

real-world cases in which relevant professionals in the formal sciences consider 184

computer-mediated arguments/proofs with the aim of accepting or rejecting some 185

statement ϕ, if they do accept, their corresponding belief that ϕ holds is at the level 186

of overwhelmingly likely. 187

Please note that we intentionally dodge having to deal in the present chapter with 188

probability and inductive logic, and hence employ the minimalist scheme of Fig. 8.2 189

in order to articulate a basic foundation for the epistemology of computer-mediated 190

proof, upon which our successors can perhaps build. Trying to use probability with 191

epistemic operators would make for very heavy and controversial going, and the 192

situation would be made all the worse by the brute fact that we haven’t here the 193



UNCORRECTED
PROOF

8 The Epistemology of Computer-Mediated Proofs 171

Fig. 8.2 Positive epistemic
values certain (6)

evident (5)
overwhelmingly likely (4)

beyond reasonable doubt (3)
likely (2)

more likely than not (1)
counterbalanced (0)

space of a monograph at hand. In this regard, nothing much, alas, has changed since 194

the early days of modern inductive logic, 50 odd years ago. To take in the situation 195

then, one can start with the seminal (Hintikka and Hilpinen 1966). In addition, 196

Kyburg (1970) sums up the “chaos of non-consensus” regarding what probability is, 197

and the implications of this state-of-affairs for inductive logic, as of a half-century 198

back. That things haven’t changed all that much in the half-century since Kyburg’s 199

survey is why we believe the circumspect move to make, in the present chapter, is 200

to employ a scheme that is extremely general, and skirts the still-buzzing hornet’s 201

nest of probability and inductive logic.6 202

Of course, ultimately the truly mature epistemology of computer-mediated proof 203

will need to include, minimally, some determinate stand regarding probability 204

and its role (or possibly its lack thereof) in this epistemology.7 Given this, we 205

volunteer only that presumably the most natural interpretation of probability to

6Sanguine, skeptical readers can see some very recent publications which reveal that even today
the role of probability in supporting rational belief, whether or not that belief is about arguments,
proofs, and the conclusions therefrom, is highly controversial. E.g., the recently released Argument
& Inference: An Introduction to Inductive Logic (Johnson 2016) divides the non-deductive basis
for rational belief and decision-making into one part that leaves probability (in any guise) aside,
and then another side that embraces and employs probability—and yet on the other hand, other
overviews of this non-deductive basis assume that it must be probabilistic in nature (e.g. see
Hawthorne 2004/2012).
7There are purely technical reasons for opting herein to use a streamlined multi-valued continuum
for graded belief, given the current state of inductive logic, and for that matter of contemporary
fields that also draw directly from probability, such as artificial intelligence (AI). (Bayesian
reasoning in the AI of today is central to the field. For an overview, see Russell and Norvig 2009.)
One reason is that today inductive logic, AI, and other probability-infused fields invariably make
use of formal languages that are too inexpressive in the context of real-world proofs. Real-world
proofs routinely make use of constructions that are infinitary in nature, and hence, taken at face
value, these proofs, in the context of computer-mediation and epistemology, explode the bounds
of formal languages that are the bases for probabilistic processing today. This is true because these
languages are rooted in the space running from the propositional calculus to fragments of simple
extensional logics like first-order logic (FOL) to FOL itself. This is despite seminal work long ago
in the assignment of probabilities to formulae in infinitary formal languages of logics; (e.g. see
Scott and Krauss 1966).
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investigate in connection with the epistemology of computer-mediated proof would 206

presumably be the epistemological interpretation of probability. An early but lucid 207

and still-informative summary is the chapter “The Epistemological Interpretation of 208

Probability” in Kyburg (1970).8 209

It’s worth noting that while the multi-valued scheme we employ here, as we have 210

cheerfully confessed, is intended to avoid explicit alliances with persistently murky 211

and controversial concepts and interpretations of probability, it can nonetheless be 212

shown that this scheme is in conformity with at least the vast majority of the generic 213

frameworks for so-called plausibility relations (Friedman and Halpern 1995), and 214

hence is a scheme far from idiosyncratic. More specifically, the binary relation 215

in question must satisfy four axioms (with additional axioms serving to regiment 216

further, more-specific constraints), and it can be proved that these axioms, suitably 217

instantiated, hold for our scheme. For instance, where ‘φ 	 ψ’ is read as ‘φ is of 218

less or equal plausibility to ψ ,’ the first axiom proposed by Friedman and Halpern 219

(1995) says that 220

if φ is a tautology and ψ includes a contradiction, then φ 
	 ψ , 221

and it’s an easily obtained theorem that this axiom, appropriately rendered more 222

precise,9 holds for our ordering (which is of course generated by letting ≤ for the 223

natural numbers be 	). 224

We are now in position to appreciate that every occurrence of a belief operator 225

B in Fig. 8.1 carries a strength parameter in its superscript. We don’t present a new 226

overarching picture with these parameters to supplant the one given in Fig. 8.1, but 227

rest content with a single example to fix the situation for the reader: Consider again 228

the final moment in the progression, corresponding to this formula: 229

B[a, T (AM) ∧ T (ϕ)]. 230

The question here is: What is the level of confidence in this belief? Parameterized, 231

we have: 232

Bk[a, T (AM) ∧ T (ϕ)], 233

where k is the parameter; and of course the parameter is instantiated with some 234

value from the gradations given above. For instance, if our human a’s belief is at the 235

level of ‘beyond reasonable doubt,’ we would have: 236

B3[a, T (AM) ∧ T (ϕ)], 237

8Terminology used to denote competing interpretations of probability has evolved. In the modern
survey (Hájek 2002/2011), ‘logical probability’ is essentially used instead. Kyburg’s (1970)
terminology is sustained, and modernized, in the excellent (Galavotti 2011).
9Specifically, for the proof, take φ to be a theorem established by some valid proof known to be
valid by an arbitrary agent a, and stipulate that the second conjunct of the antecedent in this axiom
is cashed out as both that {ψ} � ⊥, and that a knows this.
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8.5 Some Concretization of the Framework 238

In order to present the promised concretization, we start by looking at standard 239

first-order logic (FOL), which as is well-known is purely extensional.10 FOL is 240

in the literature associated with many different proof calculi. Among these, one 241

family is resolution-based, and another is natural-deduction-based; these are the 242

two most commonly used kinds of proofs systems in question. Resolution-based 243

proof calculi are made up of a few simple inference schemata, and require formulae 244

to be in a clausal form. Such calculi are primarily used by automated theorem 245

provers (e.g. by SNARK (Stickel et al. 1994), one of our personal favorites), as it is 246

quite easy to optimize, relative to other automated proof systems for FOL. On the 247

other hand, natural deduction has more inference schemata/rules than resolution. 248

Natural deduction’s schemata are more complex, and they correspond to the kind 249

of supposition-based reasoning that humans use in the formal, deductive sciences. 250

At any point in a natural-deduction proof in progress, there are a large number 251

of choices. Natural-deduction systems are primarily used in pedagogy, in proofs 252

that have to be authored manually, and in proofs that are supposed to be read by 253

humans. That said, natural-deduction provers, though fewer in number, have been 254

built (Pelletier 1998).11
255

Before we go further, we first announce two definitions of what it means in our 256

framework for a human to understand a proof in first-order logic: 257

a strongly understands Â
Understanding a proof, Â ≡ � � φ, requires checking it for its accuracy
firsthand and verifying that for all modelsm and interpretations I, ifm |�I �
then m |�I φ.

The above definition requires checking through possibly an infinite number of 258

models. The definition below is more lenient but less general, but we feel fits more 259

closely what non-logicians (mathematicians, students, etc.) do when they encounter 260

a formal proof or argument. 261

10A readable overview can be found in (Boolos et al. 2003). An overview more suitable for
consumption by those with some mathematical maturity, and wonderfully economical, is provided
in (Ebbinghaus et al. 1994).
11One still in existence and available is OSCAR, created by John Pollock, and revived after his
passing by our laboratory’s Kevin O’Neill. Resurrected (and improved) OSCAR can be obtained
here: http://rair.cogsci.rpi.edu/projects/automated-reasoners/oscar.

http://rair.cogsci.rpi.edu/projects/automated-reasoners/oscar
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a weakly understands Â
Understanding a proof, Â ≡ � � φ, requires checking it for its accuracy
firsthand, and verifying that in the intended model m and interpretation I, if
m |�I � then m |�I φ.

These definitions are supposed to reflect the fact that humans have a semantic 262

picture of what a proof says before saying that they understand the proof. Now, 263

given a human a and a proof Â from a resolution or natural-deduction system M, 264

there are a few different possibilities that can ensue; they are shown below. Assume 265

that a believes with strength c1 ∈ E that M is implemented correctly as M̂. 266

Possibilities

P1 a (strongly/weakly) understands the proof.
P2 a does not (strongly or weakly) understand the proof, but can check the

proof first-hand without deploying a proof checker.
P3 a neither understands the proof nor can check it manually, but can deploy

a proof-checker or proof-verifier ν that a knows is built correctly.
P4 a neither understands the proof nor can check it manually, but can deploy

a proof-checker or proof-verifier ν. a has belief with some confidence
c2 ∈ E that ν is built correctly, but does not know that it is built correctly.

P5 a can neither understand nor check the proof.

Given the above five overarching cases, we now walk through what could happen. 267

In the first case, the proof is fully understood and fully checked by the human, 268

firsthand. In this case, the machine’s role could be to “merely” discover an unknown 269

proof or present a proof that the human has not seen before (this would e.g. be 270

natural in a class). One instance of the former case is the theorem in algebra “All 271

Robbins algebras are Boolean algebras.” This statement was conjectured in the 272

1930s and the proof was finally (and, for theorem-proving aficionado, famously) 273

completed by a machine in 1996 (Wos 2013). The proof in question was simple and 274

understandable.12
275

12The proof can be obtained from http://www.cs.unm.edu/~mccune/papers/robbins/

http://www.cs.unm.edu/~mccune/papers/robbins/
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Fig. 8.3 A complex resolution proof. (The resolution proof is obtained by SNARK after a call
from higher-level, manually crafted, hypergraphical natural deduction that is unique to Slate)
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Case P1
There are two sub-possibilites:

1. If a strongly understands the proof Â, a’s strength of belief in the proof is
certain.

2. If a only weakly understands the proof Â, a’s strength of belief in the proof
is evident.

In the second case, a does not understand the proof, but can check the proof 276

manually. For example, a could be a student getting acquainted with the process 277

of formal theorem-proving. For instance, in the Slate (Bringsjord et al. 2008; 278

Bringsjord and Taylor 2017) proof-engineering system used in Bringsjord’s formal- 279

logic classes, in one standard setup students are asked to prove a conclusion from a 280
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set of given premises using natural deduction. Before they embark on this process, 281

students can summon a resolution prover as an oracle, and examine the fruit of its 282

effort. The resolution prover’s individual steps are usually quite simple, but it can 283

be rather hard to understand the proof generated by the prover. For example, see 284

the proof from Slate shown in Fig. 8.3. The proof simply shows that the relation 285

SameSpecies is symmetric. 286

Case P2
Agent a’s belief is at the level of overwhelmingly likely.

In the third case, a is given a proof Â that is quite difficult to understand and 287

check manually. Fortunately, a has at hand a proof verifier ν that can check whether 288

Â is correct or not. Agent a also fully understands and knows that the proof-verifier 289

is correct. The proof enterprise of the Four-Color Theorem by Appel and Haken 290

falls into this category (for details, see Arkoudas and Bringsjord 2007). To get a 291

sense of the scale of the proof, here are Appel and Haken describing it: 292

“This leaves the reader to face 50 pages containing text and diagrams, 85
pages filled with almost 2500 additional diagrams, and 400 microfiche pages
that contain further diagrams and thousands of individual verifications of
claims made in the 24 lemmas in the main sections of text. In addition, the
reader is told that certain facts have been verified with the use of about twelve
hundred hours of computer time and would be extremely time-consuming to
verify by hand. The papers are somewhat intimidating due to their style and
length and few mathematicians have read them in any detail.”

It is obviously not possible for a human to fully understand such a proof in any 293

fashion. One simply has to rely on proof verifiers. This fact is discussed in some 294

detail in (Arkoudas and Bringsjord 2007), where it is explained that the verifier can 295

itself be verified. 296

Case P3
a’s belief is at the level of beyond reasonable doubt.

Now onto the fourth case. When might we have a proof in first-order logic that we 297

don’t have full confidence in? Actually, there are numerous possibilities. One arises 298

from the use of what are called procedural attachments in theorem provers. Given 299

a theorem prover ρ, if it supports procedural attachments, we can supply it with 300
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a set of oracles {oR1 , oR2 , . . . , oRn} for the set of predicates {R1, R2, . . . , Rn}. For 301

example, if we are seeking a proof about ancestry and lineages, a computer program 302

motherOf could be supplied as an oracle for the motherOf predicate symbol.13
303

Then any proof will contain, in addition to the standard set of proof steps, calls to 304

an/the oracle/s. In such situations, the strength c2 of our belief in the correctness of 305

the proof checker is limited to how effective the proof checker is in validating the 306

oracles’ behavior. Even if we have full confidence in the verifier, we should not be 307

more confident of the overall proof than we are in the third case above. Hence the 308

assignment below: 309

Case P4
a’s belief is at the level of the lower of beyond reasonable doubt and c2.

In the final case, we are looking at proofs that are neither fully understandable 310

nor fully verifiable. What could give rise to such a situation? While this situation 311

may at first thought seem exotic, ordinary mathematics in fact frequently gives rise 312

to such states-of-affairs. For example, when faced with a challenging conjecture, 313

mathematicians commonly use analogies with other simpler situations and mathe- 314

matical domains to construct a hope-filled proof-sketch rather than a full, conclusive 315

proof. A well-known example of this is Gödel’s first incompleteness theorem (GI),14
316

the proof of which is usually presented in analogy with the much simpler liar 317

paradox (= The Liar).15 In a formalized version of this approach in which analogical 318

inference is itself allowed, the machine would present, rather than a full proof, an 319

analogy and a corresponding partial proof-sketch. For instance, see Licato et al. 320

(2013), in which an intelligent machine generates just such a formal argument for 321

GI. In this case, we have the following: 322

13Many theorem provers also support what are called rewrite codes. These are computer functions
that rewrite complex function expressions to simpler forms. Since function expressions can be
written using just relation symbols, our discussion covers this too. See SNARK’s documentation
for examples of procedural attachments and rewrite codes in action: http://www.ai.sri.com/~stickel/
snark.html.
14Wiles’ proof of Fermat’s Last Theorem is a more-recent case in point; see (Wiles 1995) and
(Wiles and Taylor 1995).
15A fully technical, elegant version of GI based explicitly on The Liar can be found in (Ebbinghaus
et al. 1994).

http://www.ai.sri.com/~stickel/snark.html
http://www.ai.sri.com/~stickel/snark.html
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Case P5
a’s belief is at the likely level.

Given our coverage of the above possibilities, we have provided at least 323

preliminary answers to a number of questions that are instances of (QBk). 324

8.6 Next Steps 325

All serious readers will have realized early in their study of the present essay that we 326

have contributed but a prolegomenon for sustained investigation of the epistemology 327

of computer-mediated proofs. We do maintain, however, that the framework we have 328

erected will serve as a firm foundation on which to build future analyses of scenarios 329

beyond those we entertained above. Even so, there is much work to be done; here, 330

in particular, are the next two steps we will be taking. 331

8.6.1 Infinitary Proof Systems 332

First, given some of our earlier work devoted to systematic consideration of 333

infinitary formal reasoning and infinitary computation (e.g. Govindarajulu et al. 334

2013a; Bringsjord and Govindarajulu 2011), it will be necessary to expand our 335

framework so that it includes not just finite proofs, but also infinite ones.16
336

One particularly interesting non-finitary inference schema is the ω-rule. This rule 337

has historically been a candidate for use with theories of arithmetic. Any theory of 338

arithmetic has the following standard terms {0, 1, 2, . . . , }, whose interpretations in 339

the standard model 〈N;+, ∗, . . .〉 are the usual suspects {0, 1, 2, . . . , }. The ω-rule 340

is then: 341

ω-rule

φ(0), φ(1), φ(2), . . . , φ(n), . . .
∀x : φ(x) ω-rule

Readers familiar with Gödel’s first incompleteness theorem will know that any 342

nice theory of arithmetic, �, is negation-incomplete, that is, there are one or more 343

16See Footnote 7 if you haven’t done so already.
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troublesome φ such that � 
� φ and � 
� ¬φ.17 These φ can be tamed one way or 344

another if we add the ω-rule to the proof calculus in question (that is � �ω φ; or 345

� �ω ¬φ).18 Unfortunately, and this can be obviously seen, the ω-rule is not that 346

useful in standard practice as it has an infinite number of premises. This is where the 347

restricted ω-rule steps in. In this rule, instead of an infinite number of formulae, 348

we provide a computer program mφ which takes in as input n ∈ N and provides a 349

proof of φ(n) from �. We use this finite computer program as a premise. 350

Restricted ω-rule

mφ

∀x : φ(x) restricted ω-rule

Obviously, checking a proof that has the restricted ω-rule can be a quite difficult 351

task. Such checking involves verifying whether a computer program always behaves 352

according to a certain set of requirements. This is not always possible, but can be 353

possible in some set of cases. It should be noted that in such a case, we could 354

have a finite proof that is correct but still uncheckable, not due to any practical 355

circumstances, but rather due to strong fundamental limits. The resultant strength of 356

the belief in the proof would be then strongly tied to the strength of the belief in the 357

computer programmφ . (For a rigorous proof that any system that uses the restricted 358

ω-rule is not even semi-decidable, see our Govindarajulu and Bringsjord 2014.) 359

8.6.2 Intensional Systems 360

Plain first-order logic (and indeed, for that matter, n-order logic) is not capable 361

of correctly modeling knowledge, beliefs, and other internal states of information- 362

processing agents. This can be most easily demonstrated by simply trying one’s level 363

best to model knowledge. For example, consider an agent a investigating a murder. 364

The agent does not know that jack is the murderer, when in fact jack is the murderer. 365

The agent does trivially know that (jack = jack). The agent’s knowledge could be 366

derived from the agent knowing a stronger statement such ∀x.(x = x), which is 367

a simple theorem in first-order logic. Straightforward modeling in first-order logic 368

quickly leads to a contradiction, as can be seen below. In fact, other sophisticated 369

17A nice theory � is one that allows representations (it can prove facts about the primitive-recursive
relations and functions), is decidable (for any φ, it is decidable whether � � φ) and is consistent.
See Smith (2013) for a good introduction to the two Gödelian incompleteness theorems.
18For a more in-depth discussion of the ω-rule and its uses, see Baker et al. (1992) and Franzén
(2004). For a proof that deploys it “brazenly” (i.e., in a manner that simply takes it to be wholly
legitimate) see Bringsjord and van Heuveln (2003).
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schemes also quickly disintegrate, as we show in (Bringsjord and Govindarajulu 370

2012). 371

Modeling Knowlege in First-order Logic

Knows (a, jack = jack) jack = murderer

Knows (a, jack = murderer) ¬Knows (a, jack = murderer)

φ ∧ ¬φ

It is well-known that any sophisticated cognitive modeling requires at the least 372

a quantified modal logic. For example, see our modeling of the false-belief task in 373

(Arkoudas and Bringsjord 2008), modeling of akrasia in Bringsjord et al. (2014), 374

and self-consciousness in Bringsjord et al. (2015). In addition, rigorous semantics 375

of natural language calls for modal logic (Govindarajulu et al. 2013b). Common 376

to all these investigations is a family of systems that we have termed cognitive 377

calculi.19 Unlike traditional logics that deal with intensional operators, cognitive 378

calculi eschew the use of possible-worlds semantics and instead opt for proof- 379

theoretic semantics. That is, � |� φ is defined via a function μ(�, φ, ρ1, . . . , ρn), 380

where ρi are proofs in the system. We feel that proof-theoretic semantics is not 381

only more cognitively plausible but also more feasible computationally, if we have 382

to build agents that understand proofs and arguments. For example, see (Francez 383

and Dyckhoff 2010) for a proof-theoretic semantics of natural language that is also 384

trivially mechanizable. There are two major questions in this domain. The first 385

question, of the same structure as the questions isolated and presented above, is: 386

Given a computer-mediated proof ρ, what ought to be the strength of our belief in 387

the proof? The second question is this: What ought to be the strength of belief in a 388

computer-mediated proof ρ for an agent a, given we have at hand what the agent 389

knows, believes, etc.? 390

Wrapping up with a concession, we do admit that our framework is currently 391

somewhat limited by the system of “graded belief” we have employed, even though 392

that system is substantially more nuanced than Chisholm’s (1966).20 We are in the 393

process of generalizing our multi-valued epistemic logic so that it incorporates the 394

epistemological interpretation of probability (recall our remarks above regarding 395

probability and inductive logic). 396

19One specimen in the family is the Deontic Cognitive Event Calculus. See http://www.cs.rpi.edu/~
govinn/dcec.pdf for an overview.
20Including frameworks presented in subsequent, revamped-and-expanded editions of his episte-
mological theory, given in (Chisholm 1977, 1987).

http://www.cs.rpi.edu/~govinn/dcec.pdf
http://www.cs.rpi.edu/~govinn/dcec.pdf


UNCORRECTED
PROOF

8 The Epistemology of Computer-Mediated Proofs 181

References 397

Arkoudas, K., & Bringsjord, S. (2007). Computers, justification, and mathematical knowledge. 398

Minds and Machines, 17(2), 185–202. http://kryten.mm.rpi.edu/ka_sb_proofs_offprint.pdf 399

Arkoudas, K., & Bringsjord, S. (2008). Toward formalizing common-sense psychology: An 400

analysis of the false-belief task. In T.-B. Ho & Z.-H. Zhou (Eds.), Proceedings of the Tenth 401

Pacific Rim International Conference on Artificial Intelligence (PRICAI 2008) (Lecture notes 402

in artificial intelligence (LNAI), Vol. 5351, pp. 17–29). Springer. http://kryten.mm.rpi.edu/KA_ 403

SB_PRICAI08_AI_off.pdf 404

Baker, S., Ireland, A., & Smaill, A. (1992). On the use of the constructive omega-rule within 405

automated deduction. In A. Voronkov (Ed.), Logic programming and automated reasoning 406

(Lecture notes in computer science (LNCS), Vol. 624, pp. 214–225). Berlin: Springer. 407

Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2003). Computability and logic (5th ed.). Cambridge: 408

Cambridge University Press. 409

Bringsjord, S. (2015). A vindication of program verification. History and Philosophy of Logic, 410

36(3), 262–277. This URL goes to a preprint. http://kryten.mm.rpi.edu/SB_progver_selfref_ 411

driver_final2_060215.pdf 412

Bringsjord, S., & Arkoudas, K. (2004). The modal argument for hypercomputing minds. Theoreti- 413

cal Computer Science, 317, 167–190. 414

Bringsjord, S., & Govindarajulu, N. S. (2011). In defense of the unprovability of the church-turing 415

thesis. Journal of Unconventional Computing, 6, 353–373. Preprint available at the URL given 416

here. http://kryten.mm.rpi.edu/SB_NSG_CTTnotprovable_091510.pdf 417

Bringsjord, S., & Govindarajulu, N. S. (2012). Given the web, what is intelligence, really? 418

Metaphilosophy, 43(4), 361–532. This URL is to a preprint of the paper. http://kryten.mm. 419

rpi.edu/SB~NSG~Real~Intelligence~040912.pdf 420

Bringsjord, S., & Taylor, J. (2017). Logic: A modern approach: Beginning deductive logic, 421

advanced. Troy, Motalen. This is an e-book edition of 23 Jan 2017. The book is accompanied 422

by the Slate software system, ISBN of 978-0-692-60734-3, and version of 25 Jan 2016. 423

Bringsjord, S., & van Heuveln, B. (2003). The mental eye defense of an infinitized version of 424

Yablo’s paradox. Analysis, 63(1), 61–70. 425

Bringsjord, S., Taylor, J., Shilliday, A., Clark, M., & Arkoudas, K. (2008). Slate: An argument- 426

centered intelligent assistant to human reasoners. In F. Grasso, N. Green, R. Kibble, & 427

C. Reed (Eds.), Proceedings of the 8th International Workshop on Computational Models of 428

Natural Argument (CMNA 8) (pp. 1–10). Patras, University of Patras. http://kryten.mm.rpi.edu/ 429

Bringsjord_etal_Slate_cmna_crc_061708.pdf 430

Bringsjord, S., Govindarajulu, N., Thero, D., & Si, M. (2014). Akratic Robots and the compu- 431

tational logic thereof. In Proceedings of ETHICS 2014 (2014 IEEE Symposium on Ethics 432

in Engineering, Science, and Technology), Chicago (pp. 22–29). IEEE Catalog Number: 433

CFP14ETI-POD. Papers from the Proceedings can be downloaded from IEEE at URL provided 434

here. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6883275 435

Bringsjord, S., Licato, J., Govindarajulu, N., Ghosh, R., & Sen, A. (2015). Real robots that pass 436

tests of self-consciousness. In Proceedings of the 24th IEEE International Symposium on Robot 437

and Human Interactive Communication (RO-MAN 2015) (pp. 498–504). New York: IEEE. 438

This URL goes to a preprint of the paper. http://kryten.mm.rpi.edu/SBringsjord_etal_self-con_ 439

robots_kg4_0601151615NY.pdf 440

Chisholm, R. (1966). Theory of knowledge. Englewood Cliffs: Prentice-Hall. 441

Chisholm, R. (1977). Theory of knowledge (2nd ed.). Englewood Cliffs: Prentice-Hall. 442

Chisholm, R. (1987). Theory of knowledge (3rd ed.). Englewood Cliffs: Prentice-Hall. 443

Ebbinghaus, H. D., Flum, J., & Thomas, W. (1994). Mathematical logic (2nd ed.). New York: 444

Springer. 445

Francez, N., & Dyckhoff, R. (2010). Proof-theoretic semantics for a natural language fragment. 446

Linguistics and Philosophy, 33, 447–477. 447

http://kryten.mm.rpi.edu/ka_sb_proofs_offprint.pdf
http://kryten.mm.rpi.edu/KA_SB_PRICAI08_AI_off.pdf
http://kryten.mm.rpi.edu/KA_SB_PRICAI08_AI_off.pdf
http://kryten.mm.rpi.edu/SB_progver_selfref_driver_final2_060215.pdf
http://kryten.mm.rpi.edu/SB_progver_selfref_driver_final2_060215.pdf
http://kryten.mm.rpi.edu/SB_NSG_CTTnotprovable_091510.pdf
http://kryten.mm.rpi.edu/SB~NSG~Real~Intelligence~040912.pdf
http://kryten.mm.rpi.edu/SB~NSG~Real~Intelligence~040912.pdf
http://kryten.mm.rpi.edu/Bringsjord_etal_Slate_cmna_crc_061708.pdf
http://kryten.mm.rpi.edu/Bringsjord_etal_Slate_cmna_crc_061708.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6883275
http://kryten.mm.rpi.edu/SBringsjord_etal_self-con_robots_kg4_0601151615NY.pdf
http://kryten.mm.rpi.edu/SBringsjord_etal_self-con_robots_kg4_0601151615NY.pdf


UNCORRECTED
PROOF

182 S. Bringsjord and N. S. Govindarajulu

Franzén, T. (2004). Transfinite progressions: A second look at completeness. Bulletin of Symbolic 448

Logic, 10, 367–389. 449

Friedman, N., & Halpern, J. (1995). Plausibility relations: A user’s guide. In Proceedings of the 450

Eleventh Conference on Uncertainty in AI (pp. 175–184). https://www.cs.cornell.edu/home/ 451

halpern/papers/plausibility_manual.pdf 452

Galavotti, M. C. (2011). The modern epistemic interpretations of probability: Logicism and 453

subjectivism. In D. Gabbay, S. Hartmann, & J. Woods (Eds.), Handbook of the history of logic 454

(Inductive logic, Vol. 10, pp. 153–203). Amsterdam: Elsevier. 455

Gettier, E. (1963). Is justified true belief knowledge? Analysis, 23, 121–123. http://www.ditext. 456

com/gettier/gettier.html 457

Govindarajulu, N. S., & Bringsjord, S. (2014). Proof verification can be hard! In Presented at 458

the 10th Conference of Computability in Europe (CiE). http://www.naveensundarg.com/papers/ 459

ProofVerificationCanBeHard.pdf 460

Govindarajulu, N., Licato, J., & Bringsjord, S. (2013a). Small steps toward hypercomputation via 461

infinitary machine proof verification and proof generation. In M. Giancarlo, A. Dennuzio, 462

L. Manzoni, & A. Porreca (Eds.), Unconventional computation and natural computation 463

(Lecture notes in computer science, Vol. 7956, pp. 102–112). Berlin: Springer. 464

Govindarajulu, N. S., Bringsjord, S., & Licato, J. (2013b). On deep computational formalization 465

of natural language. In A. M. H. Abdel-Fattah & K.-U. Kühnberger (Eds.), Proceedings of 466

the Workshop: “Formalizing Mechanisms for Artificial General Intelligence and Cognition” 467

(Formal MAGiC) at Artificial General Intelligence 2013. http://cogsci.uni-osnabrueck.de/~ 468

formalmagic/FormalMAGiC-Proceedings.pdf 469

Hájek, A. (2002/2011). Interpretations of probability. In E. Zalta (Ed.), The stanford encyclopedia 470

of philosophy. https://plato.stanford.edu/entries/probability-interpret 471

Hamilton, E., & Cairns, H. (Eds.). (1961). The collected dialogues of plato (including the letters). 472

Princeton: Princeton University Press. 473

Hamkins, J. D., & Lewis, A. (2000). Infinite time turing machines. Journal of Symbolic Logic, 474

65(2), 567–604. 475

Hawthorne, J. (2004/2012). Inductive logic. In E. Zalta (Ed.), The stanford encyclopedia of 476

philosophy. https://plato.stanford.edu/entries/logic-inductive 477

Hintikka, J., & Hilpinen, R. (1966). Knowledge, acceptance, and inductive logic. In P. Suppes & 478

J. Hintikka (Eds.), Aspects of inductive logic (pp. 1–20). Amsterdam: North-Holland. 479

Ichikawa, J., & Steup, M. (2012). The analysis of knowledge. In E. Zalta (Ed.), The Stanford 480

encyclopedia of philosophy. http://plato.stanford.edu/entries/knowledge-analysis 481

Johnson, G. (2016). Argument & inference: An introduction to inductive logic. Cambridge: MIT 482

Press. 483

Kyburg, H. (1970). Probability and inductive logic. London: Macmillan. 484

Licato, J., Govindarajulu, N. S., Bringsjord, S., Pomeranz, M., & Gittelson, L. (2013). Analogico- 485

deductive generation of Gödel’s first incompleteness theorem from the liar paradox. In F. Rossi 486

(Ed.), Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI– 487

13) (pp. 1004–1009). Beijing: Morgan Kaufmann. Proceedings are available online at http:// 488

ijcai.org/papers13/contents.php. The direct URL provided below is to a preprint. The published 489

version is available at http://ijcai.org/papers13/Papers/IJCAI13-153.pdf, http://kryten.mm.rpi. 490

edu/ADR_2_GI_from_LP.pdf 491

Pelletier, J. (1998). Automated natural deduction in thinker. Studia Logica, 60(1), 3–43. 492

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle 493

River: Prentice Hall. 494

Scott, D., & Krauss, P. (1966). Assigning probabilities to logical formulas. In P. Suppes & 495

J. Hintikka (Eds.), Aspects of inductive logic (pp. 219–264). Amsterdam: North-Holland. 496

Smith, P. (2013). An introduction to Gödel’s theorems. Cambridge: Cambridge University Press. 497

This is the second edition of the book. 498

https://www.cs.cornell.edu/home/halpern/papers/plausibility_manual.pdf
https://www.cs.cornell.edu/home/halpern/papers/plausibility_manual.pdf
http://www.ditext.com/gettier/gettier.html
http://www.ditext.com/gettier/gettier.html
http://www.naveensundarg.com/papers/ProofVerificationCanBeHard.pdf
http://www.naveensundarg.com/papers/ProofVerificationCanBeHard.pdf
http://cogsci.uni-osnabrueck.de/~formalmagic/FormalMAGiC-Proceedings.pdf
http://cogsci.uni-osnabrueck.de/~formalmagic/FormalMAGiC-Proceedings.pdf
https://plato.stanford.edu/entries/probability-interpret
https://plato.stanford.edu/entries/logic-inductive
http://plato.stanford.edu/entries/knowledge-analysis
http://ijcai.org/papers13/contents.php
http://ijcai.org/papers13/contents.php
http://ijcai.org/papers13/Papers/IJCAI13-153.pdf
http://kryten.mm.rpi.edu/ADR_2_GI_from_LP.pdf
http://kryten.mm.rpi.edu/ADR_2_GI_from_LP.pdf


UNCORRECTED
PROOF

8 The Epistemology of Computer-Mediated Proofs 183

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., & Underwood, I. (1994). Deductive 499

composition of astronomical software from subroutine libraries. In Proceedings of the Twelfth 500

International Conference on Automated Deduction (CADE–12), Nancy (pp. 341–355). SNARK 501

can be obtained at the url provided here. http://www.ai.sri.com/~stickel/snark.html 502

Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Annals of Mathematics, 503

141(3), 443–551. 504

Wiles, A., & Taylor, R. (1995). Ring-theoretic properties of certain Hecke algebras. Annals of 505

Mathematics, 141(3), 553–572. 506

Wos, L. (2013). The legacy of a great researcher. In M. P. Bonacina & M. E. Stickel (Eds.), 507

Automated reasoning and mathematics: Essays in memory of William McCune (pp. 1–14). 508

Berlin: Springer. 509

http://www.ai.sri.com/~stickel/snark.html


Metadata of the chapter that will be visualized online

Chapter Title Mathematical and Technological Computability
Copyright Year 2018
Copyright Holder Springer International Publishing AG, part of Springer Nature
Corresponding Author Family Name Hansson

Particle
Given Name Sven Ove
Suffix
Division Department of Philosophy and History
Organization Royal Institute of Technology (KTH)
Address Stockholm,  Sweden
Email soh@kth.se

Abstract The study of algorithms, computations, and computability offers a
major contact point between mathematics, technology, and philosophy.
This chapter begins with a brief history of computations and the
technical means used to support them. Summary accounts are given
of two scholarly developments that provided much of the intellectual
background for modern computation: attempts to express all reasoning
as mathematics and attempts to reduce all of mathematics to simple,
rule-bound symbol manipulation. This is followed by a discussion
of the Turing machine, including a detailed explanation of why it
can be said to cover all systems of rule-bound symbol manipulation.
The universal Turing machine and its philosophical implications are
also discussed. A two-dimensional classificatory scheme is offered for
proposed constructions of computing devices with stronger computing
powers than a Turing machine. This categorization serves to highlight
the weaknesses of current proposals for such devices. In conclusion, it
is emphasized that computation has to be understood as an intentional
input-output process with high demands on reliability and lucidity. The
study of computations and algorithms has much to learn from other
studies of intentional human action, not least in the philosophy of
technology.



UNCORRECTED
PROOF

Chapter 9 1

Mathematical and Technological 2

Computability 3

Sven Ove Hansson 4

Abstract The study of algorithms, computations, and computability offers a major 5

contact point between mathematics, technology, and philosophy. This chapter 6

begins with a brief history of computations and the technical means used to support 7

them. Summary accounts are given of two scholarly developments that provided 8

much of the intellectual background for modern computation: attempts to express all 9

reasoning as mathematics and attempts to reduce all of mathematics to simple, rule- 10

bound symbol manipulation. This is followed by a discussion of the Turing machine, 11

including a detailed explanation of why it can be said to cover all systems of rule- 12

bound symbol manipulation. The universal Turing machine and its philosophical 13

implications are also discussed. A two-dimensional classificatory scheme is offered 14

for proposed constructions of computing devices with stronger computing powers 15

than a Turing machine. This categorization serves to highlight the weaknesses of 16

current proposals for such devices. In conclusion, it is emphasized that computation 17

has to be understood as an intentional input-output process with high demands on 18

reliability and lucidity. The study of computations and algorithms has much to 19

learn from other studies of intentional human action, not least in the philosophy 20

of technology. 21

9.1 Introduction 22

Computations, as we perform them today, provide an obvious connection between 23

mathematics and technology. We all use technology – if nothing else an app in the 24

phone – for our everyday calculations. Large computations, such as those underlying 25

weather forecasts and complex scientific models, are performed on computers that 26

do routinely what was practically impossible a generation or two ago. But is not 27

all this rather trivial from a mathematical point of view? One might believe so, but 28

S. O. Hansson (�)
Department of Philosophy and History, Royal Institute of Technology (KTH), Stockholm,
Sweden
e-mail: soh@kth.se

© Springer International Publishing AG, part of Springer Nature 2018
S. O. Hansson (ed.), Technology and Mathematics, Philosophy of Engineering
and Technology 30, https://doi.org/10.1007/978-3-319-93779-3_9

185

mailto:soh@kth.se
https://doi.org/10.1007/978-3-319-93779-3_9


UNCORRECTED
PROOF

186 S. O. Hansson

in fact some of the deepest problems at the very foundations of the mathematical 29

enterprise emanated from careful investigations of seemingly trivial routines that 30

can be executed by a machine. 31

In Book XI of his Metamorphoses, Ovid tells us of king Midas who gained the 32

golden touch, so that everything he put his hand on turned into gold. Mathematicians 33

do not have that ability, but they possess another, almost equally stupendous faculty: 34

every object they touch is transformed into an abstract, purely conceptual entity. 35

When the ancient geometers studied straight lines, the lines lost all their width 36

but became infinitely long. When studying numbers, mathematicians constructed 37

abstract numbers such as
√−1, a figment of mathematical imagination that has the 38

convenient property of yielding −1 when squared, but lacks the obvious connection 39

to the real world that ordinary numbers such as 7 and 22
7 have. Unsurprisingly, when 40

mathematicians turned to machines, they transformed them as well into abstract 41

contrivances. Mathematicians cannot put up with arbitrary limits, so just as the lines 42

of geometry are infinitely long, the machines of mathematics have infinite capacity. 43

On the other hand, mathematicians cannot resist an opportunity to simplify, so their 44

machines are extremely simple as compared to the complex machines constructed 45

by engineers. 46

We are going to have a close look at the Turing machine, foremost among math- 47

ematical machines, which was proposed by Alan Turing in 1937. It is astonishingly 48

simple, but nevertheless reputed to be able to compute everything that can at all 49

be computed. Some say that its powers are even greater than that; allegedly, it can 50

prove every mathematical statement that it is at all possible to prove. Some have even 51

claimed that a Turing machine can think, just like one of us. These are controversial 52

claims, but one thing is sure: Studies of fundamental issues in both mathematics 53

and philosophy have taken new directions through the discussions that this highly 54

abstract machine has given rise to. 55

To introduce the subject we are first going to explore the nature of computation 56

(Sect. 9.2). After that we turn to two scholarly developments that provided much 57

of the intellectual background for Alan Turing’s construction: attempts to express 58

all reasoning as mathematical (Sect. 9.3) and to express all mathematical reasoning 59

as computations (Sect. 9.4). We will then have a close look at the Turing machine 60

(Sect. 9.5). We will attend to the common claim that it can compute and prove 61

everything that can at all be computed or proved, and then consider the contrary 62

assertion that machines can be constructed that are capable of computing what the 63

Turing machine cannot (Sect. 9.6). Some final remarks are presented in Sect. 9.7. 64

9.2 The Art of Calculation 65

We usually see mathematics as concerned with concepts and arguments that are 66

totally independent of material reality. Mathematics should be equally accessible 67

to a “brain in a vat” as it is to our own embodied brains. But in practice, we rely 68

heavily on aide-mémoires in the form of papers, blackboards, and computer screens 69

that we fill with mathematical symbols, equations, and diagrams. This applies to 70

all forms of mathematical activities, including elementary arithmetic. Most of us 71
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are able to make a calculation such as 35 × 75 reliably with paper and pencil, but 72

performing it mentally is more difficult. This seems always to have been so. In 73

ancient civilizations, calculations were performed with the help of physical objects 74

such as pebbles, marks in sand or dust, or beads on counting boards and abacus 75

frames (Chabert 1999). At least in some cultures, the use of marks or movable 76

objects as aide-mémoires for numbers seems to have preceded written language. 77

Obviously, the reliability of calculations depends crucially on the stability and 78

durability of the devices used to support them. Outdoors on a windy day you are 79

well advised to use stones rather than leaves to perform your calculations. In this 80

very elementary sense, all non-trivial calculations depend – along with the vast 81

majority of mathematics – on our access to technology for storing information. 82

This is a feature that mathematics shares with other expressions of human culture. 83

For instance, literature unsuitable for learning by heart, such as novels, is equally 84

dependent on the devices we have constructed for storing information. 85

Until fairly recently, the role of technology in calculations was restricted to 86

that of recording the intermediate and final outcomes of the process. The actual 87

operations were performed by human minds. From the eighteenth century until 88

well into the second half of the twentieth century, large calculations were entrusted 89

to what were then called “computers”, namely people hired to perform large 90

numbers of arithmetic operations. Logarithmic and other mathematical tables as 91

well as astronomical tables for nautical use were obtained in this way, and so 92

were calculations for business, administrative, and engineering purposes. A large 93

French project in the 1790s employed three sections of workers in the calculation 94

of mathematical tables. The first section was a small group of mathematicians who 95

decided the exact contents of the tables and chose the mathematical formulas to 96

be used in calculating and checking them. The second section was a handful of 97

experts who converted these instructions into exact numerical tasks, usually series 98

of additions and subtractions. The third section consisted of between 60 and 80 99

“computers” who, following these instructions, performed the large number of 100

elementary numerical operations that were required. Many of them were unem- 101

ployed female hairdressers who had left their former trade when the grandiose and 102

ostentatious hairstyles of the Ancien Régime nobility were not longer in demand 103

(Grattan-Guinness 1990; Grier 2005). 104

9.2.1 Instructions and Algorithms 105

A computation (or calculation1) performed by a human being is an activity 106

following some procedure. If you guess what 35 × 75 is, and happen to give the 107

right answer, then you did not perform a computation. Similarly, if you knew the 108

answer because you have learned it by heart, you did not compute it. In neither case 109

1The word “calculation” is commonly used for elementary operations, and “computation” for more
advanced and complex ones. There is no sharp delimitation in usage between the two terms.
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was the answer obtained by means that can also be used to solve, independently, 110

other, similar problems. The standard way to perform this calculation is to use one 111

of the methods taught in primary school (such as long multiplication) that can be 112

used to multiply any two numbers. (Alternatively, some method can be used that is 113

only applicable to a smaller class of pairs of numbers.2) 114

To see how essential it is that a calculation covers more than one case, consider 115

the following instruction to “calculate” 333 × 999: 116

Write: 332667. 117

Although this instruction yields the right answer, it cannot be used to multiply any 118

other numbers. Therefore, this is not a calculation.3 119

Furthermore, for a procedure to count as a calculation, it must be expressible with 120

an instruction that specifies exactly what to do at each stage of the operation. For 121

instance, the following instruction for finding the square root of a positive number 122

x does not count as a calculation since it does not tell us exactly what to do: 123

Guess a number. Determine its square. If the square is larger than x, then 124

replace your guess by a smaller number, and if is smaller than x then replace 125

it by a larger number. Determine the square of the new guess. Continue in 126

this way, guessing and squaring, until you find a number whose square is very 127

close to x. This is your approximation of
√
x. 128

Surely, you can find the square root of a number by applying this rule in combination 129

with some good, improvised mathematical thinking. However, we would not call 130

this a computation due the element of intelligent improvisation that is required. 131

A computation should be based on an instruction that prescribes exactly and 132

unambiguously what to do at each stage of the process (Cleland 2002, pp. 160– 133

161). There is an interesting parallel with the standard requirement on scientific 134

experiments that they should be repeatable. If you have performed a well-conceived 135

scientific experiment, and others repeat it, then they should obtain the same result. 136

Similarly, if you have performed a calculation and someone else repeats it, then the 137

result should be the same (and so should the whole series of operations, step by 138

step). In both cases, repeatability ensures intersubjectivity (Hansson 1985, p. 96). 139

There is one more requirement on computations that needs to be mentioned: We 140

expect a computational procedure to be sure to yield a result. An operation that can 141

go on for ever without providing us with the answer we want would not qualify as a 142

method for calculation. 143

2For instance, the following rule can be used to multiply two two-digit numbers that both end in 5
and whose first digits are either both odd or both even: Add the first digits. Divide by 2. Add their
product. Write 25 afterwards. In this case, (3 + 7)/2 + (3 × 7) = 26, so 35 × 75 = 2625. (I.e.,
(10a + 5)(10b + 5) = ((a + b)/2 + ab)× 100 + 25.)
3The set of problems that can be solved with a method of calculation will have to be mathematically
“natural”. For instance, the above instruction can also be used to make each of the additions
332666+1, 332665+2, 332664+3, etc., but such an ad hoc collection of problems does not make it
a calculation.
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For example, a “perfect number” is a number that is equal to the sum of its proper 144

divisors. The first perfect number is 6 (equal to 1 + 2 + 3), and the second is 28 (equal 145

to 1 + 2 + 4 + 7 + 14). It is not difficult to construct a procedure for finding the nth 146

perfect number: just go through the whole series of positive integers, testing each of 147

them. However, it is currently not known whether the number of perfect numbers is 148

finite or infinite. If it is finite, then we will reach a point when our procedure will 149

go on for ever, without yielding an outcome and without signalling that it is useless 150

to continue. Such a procedure would lack the property of effectiveness, by which 151

is meant the ability to yield (within a finite number of steps) an output for every 152

input.4 153

Effective procedures are also called algorithms. This word derives from the 154

name of the prominent Persian mathematician Muhammad ibn Musa al-Khwarizmi 155

(c.780–c.850), who wrote an influential treatise on calculations. His last name was 156

latinized “Algoritmi”. According to modern usage of the term, an algorithm does 157

not have to operate on numerical expressions. It can operate on other mathematical 158

symbols as well, and the output can also be a symbolic expression other than a 159

number. Generally speaking, an algorithm is an effective procedure on symbols, 160

expressed in an instruction that describes each step in precise terms that do not 161

leave any scope for doing in more than one way. 162

Textbox 9.1 shows one of the most famous algorithms in the history of mathemat- 163

ics, namely Euclid’s (fl. 300 BCE) algorithm for finding the greatest common divisor 164

of two integers (i.e. the largest number that is a divisor of them both). This algorithm 165

has two features that are prominent in most algorithms of later date as well. First, 166

one of its steps comprises a conditional rule, i.e. an instruction that depends on 167

the outcome of the previous step, in this case whether or not the two numbers are 168

equal. Secondly, it contains a cyclic iteration, i.e. a part of the procedure (in this 169

case the single step of subtraction) that has to be performed again and again until a 170

conditional rule requires the cycle to be broken. 171

These two components can also be found in the algorithms described in ancient 172

Chinese and Indian mathematical texts (Li 2015, p. 324). The presentation of a 173

“shu” for a problem has a central role in ancient Chinese mathematics. A shu is a 174

method for solution, usually close to what we today call an algorithm. Similarly, 175

many Indian mathematical works focus on presenting a “pericarma”, a rule that can 176

be used to solve a problem (Li 2015, pp. 321–322 and 327). In the ancient Orient, 177

including Babylonian, Egyptian, Indian, and Chinese mathematical traditions, the 178

construction of algorithms was a more prominent mathematical activity than the 179

proving of theorems (Li 2015; Ritter 2000). In contrast, mathematicians in ancient 180

Greece focused on proving theorems, which they regarded as the most prestigious

4At the time of writing, it is not known if the procedure for finding perfect numbers sketched out
here is effective or not. If there are infinitely many perfect numbers, then the procedure is effective,
otherwise not.
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Write the two numbers on a slate

If the two numbers on the slate are not equal:

Replace the largest number

If the two numbers on the slate are equal:

Stop the procedure. The number

written twice the greatest common divisor.

Example:

6 is the least common denominator of 114 and 48.

by the difference between the two numbers.

Textbox 9.1 Euclid’s algorithm for finding the greatest common divisor of two integers

activity (but excellent algorithms were also produced, as exemplified by Euclid’s 181

algorithm and several algorithms by Archimedes, (c.287–c.212 BCE)). As we will 182

see in Sect. 9.4.3, in the 1930s the two activities of algorithm construction and 183

theorem proving were united in new and surprising ways. 184
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9.2.2 The First Computing Machines 185

As mentioned above, the use of aide-mémoires for calculations has a long history. 186

The use of technological means for other parts of calculatory procedures is of much 187

later origin (depending on how we view the abacus). The Scottish mathematician 188

John Napier (1550–1617) invented so-called calculating bones, staves based on 189

tables for multiplication and other operations that simplified many types of calcu- 190

lations. He also discovered logarithms, which were implemented on slide-rules to 191

simplify multiplication and division. In the seventeenth century, several calculating 192

machines using rotating wheels to register numbers were introduced. Wilhelm 193

Schickard (1592–1635) was probably the first inventor to propose such a machine 194

and Blaise Pascal (1623–1662) and Gottfried Wilhelm Leibniz (1646–1716) the 195

most famous ones. However, due to technical problems these machines remained 196

rarities without much practical usage. Commercial production and widespread use 197

of mechanical calculators only began in the second half of the nineteenth century 198

(Swade 2011b, 2018; Lenzen 2018). 199

By far the most advanced computing machines to be conceived in the pre- 200

electronic era were two constructions invented by Charles Babbage (1791–1871), 201

the difference engine which he invented in the early 1820s and the analytical engine 202

which he conceived in 1834. Both would have been huge mechanical constructions, 203

and neither was completed in his life-time. The difference engine was constructed 204

to calculate series of values for instance for logarithmic tables. The analytical 205

machine was a general-purpose computational machine. It would be controlled with 206

punched cards, a technology already in use for the control of automatic looms. The 207

instructions on the punched cards – what we would now call the program – were 208

to be based on the subdivision of complex mathematical tasks into a large number 209

of small, simple tasks that had been developed for the organization of large-scale 210

calculations by human computists mentioned in Sect. 9.2. (See Swade 2018 for 211

details on Babbage’s two machines.) 212

In the public discourse, and when applying for funding, Babbage strongly empha- 213

sized that his machines would eliminate error in the production of mathematical and 214

astronomical tables. Error-prone humans would be replaced by what the influential 215

science popularizer Dionysius Lardner (1793–1859) called “the untiring action and 216

unerring certainty of mechanical agency” (Lardner [1834] 1989, p. 169). But the 217

analytical machine had capacity for much more. The person who expressed this 218

best was probably the mathematician and computer visionary Ada Lovelace (1815– 219

1852) (Swade 2010). 220
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9.2.3 Ada Lovelace’s Vision 221

Being a woman in an environment hostile to female scholarship, Lovelace only 222

published her thoughts as notes to a translation that she made of a text by the 223

Italian engineer Luigi Menabrea (1809–1896). His text described the principles and 224

operations of Babbage’s analytical engine. Lovelace’s notes are three times longer 225

than the original article, but published under her initials rather than her full name 226

in order not to draw attention to the fact that they were written by a woman. These 227

notes are remarkable in many ways, for instance they contain the first published 228

computer programs, written by herself (Lovelace [1834] 1989, pp. 158–170). But 229

what is most interesting for our present purposes are her reflections on the machine 230

and its powers. 231

She emphasized that although the analytical machine’s operations were based 232

on the four basic arithmetic operations, its powers were immensely extended 233

by “the subsequent combination of these in every possible variety” (Lovelace 234

[1834] 1989, p. 93n). She referred explicitly to the two mechanisms mentioned 235

in Sect. 9.2.1, iterations and conditional instructions. She described iterations as 236

“cycles of operations” (p. 150), and defined what we would today call nested cycles: 237

“A cycle that includes n other cycles, successively contained one within another, 238

is called a cycle of the n+1th order.” (p. 151n). In addition, the machine was 239

capable of following conditional instructions or, in her own words, it was able to 240

“discover which of two or more possible contingencies has occurred, and of then 241

shaping its future course accordingly” (p. 98n). She realized the powerfulness of 242

such computational structures, and made the following remarkable statements: 243

The Analytical Engine. . . is not merely adapted for tabulating the results of one particular 244

function and of no other, but for developing and tabulating any function whatever. In fact 245

the engine may be described as being the material expression of any indefinite function of 246

any degree of generality and complexity (p. 115) 247

[T]here is no finite line of demarcation which limits the powers of the Analytical Engine. 248

These powers are co-extensive with our knowledge of the laws of analysis itself, and need 249

be bounded only by our acquaintance with the latter. Indeed we may consider the engine as 250

the material and mechanical representative of analysis, and that our actual working powers 251

in this department of human study will be enabled more effectually than heretofore to keep 252

pace with our theoretical knowledge of its principles and laws, through the complete control 253

which the engine give us over the executive manipulation of algebraical and numerical 254

symbols. (p. 121) 255

These passages give the impression that she was prescient enough to have a sense 256

of the notion of a universal computer, which was precisely defined only about a 257

century later. In fact, her assessment of the analytical engine was essentially correct; 258

we now know that it is indeed a universal machine.5 Perhaps even more remarkably, 259

she also saw something that not even Babbage himself appears to have realized 260

5Gandy (1988, p. 57) showed that the functions computable with the analytical engine “are
precisely those which are Turing computable.”
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(Swade 2010),6 namely that the powers of his machine were not limited to numerical 261

calculations. It could also be used to obtain “symbolical results” which are “not less 262

the necessary and logical consequences of operations performed upon symbolical 263

data, than are numerical results when the data are numerical.” (p. 119): 264

It may be desirable to explain, that by the word operation, we mean any process which 265

alters the mutual relation of two or more things, be this relation of what kind it may. This 266

is the most general definition, and would include all subjects in the universe. In abstract 267

mathematics, of course operations alter those particular relations which are involved in the 268

considerations of number and space, and the results of operations are those peculiar results 269

which correspond to the nature of the subjects of operation. But the science of operations, 270

as derived from mathematics more especially, is a science of itself, and has its own abstract 271

truth and value, just as logic has its own peculiar truth and value, independently of the 272

subjects to which we may apply its reasonings and processes. 273

. . . The operating mechanism might act upon other things besides number, were objects 274

found whose mutual fundamental relations could be expressed by those of the abstract 275

science of operations, and which should be also susceptible of adaptations to the action 276

of the operating notation and mechanism of the engine. Supposing, for instance, that 277

the fundamental relations of pitched sounds in the science of harmony and of musical 278

composition were susceptible of such expression and adaptations, the engine might 279

compose elaborate and scientific pieces of music of any degree of complexity or extent. 280

(pp. 117–118) 281

The engine can arrange and combine its numerical quantities exactly as if they were letters 282

or any other general symbols; and in fact it might bring out its results in algebraical notation, 283

were provisions made accordingly. . . [I]t would be a mistake to suppose that because its 284

results are given in the notation of a more restricted science, its processes are therefore 285

restricted to those of that science. (p. 144) 286

Interestingly, and again much ahead of her time, she ascribed this generality of the 287

analytical engine to logic. “[T]he processes used in analysis form a logical system 288

of much higher generality than the applications to number merely.” (p. 152). 289

There were people at the time who believed that the analytical engine, once 290

constructed, would be able to “think”.7 Ada Lovelace was more careful about this. 291

In her view, the machine would be able to do “whatever we know how to order 292

it to perform”. It had “no power of anticipating any analytical relations or truth”. 293

She believed that it would be able to “follow analysis”, but conceded that this could 294

not be known for sure “excepting the actual existence of the engine, and actual 295

experience of its practical results” (p. 156). 296

Babbage and Lovelace anticipated ideas and constructions that would not rise 297

into prominence until well into the twentieth century. Before exploring how they 298

were then developed, we need to have a look at two major mathematical endeavours 299

that were instrumental in moving the art of calculation from a peripheral position 300

in applied mathematics to a central role in the foundations of mathematics. One 301

6Lovelace said (p. 119) that she did not know “[w]hether the inventor of this engine had any such
views in his mind whilst working out the invention.”
7One of them was Ada Lovelace’s mother, Lady Byron (1792–1869), who described it as a
“thinking machine”. (Quoted in Swade 2011a, p. 246.)
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of these endeavours was the conversion of non-mathematical to mathematical 302

reasoning. The other was the conversion of mathematical reasoning to symbol 303

manipulation. 304

9.3 The Formalization of Reasoning 305

This story cannot be told without mentioning Ramon Llull (c.1232–c.1315), an 306

excentric Majorcan theologian and philosopher who developed a method that would 307

allegedly generate all the truths in each area of inquiry by combining the basic truths 308

of that area. For this to be possible, all knowledge in each subject area had to be 309

derivable from what we would now call a limited set of axioms. Today, this appears 310

to be a strange assumption, but it seemed much more plausible at a time when 311

Euclid’s axiom-based geometry was seen as a paragon to be followed by scholars in 312

all other disciplines. For instance, Llull assumed that all properties of God could be 313

derived from a limited number of obvious properties, such as goodness, greatness, 314

wisdom etc. In order to find all of God’s properties, one would therefore have 315

to systematically search for all combinations of these basic properties, and draw 316

adequate conclusions from each such combination. The same approach could be 317

used in all other subject areas. To obtain all the required combinations from a set 318

of basic ideas he invented devices consisting of rotating, concentrically arranged 319

circles that contained representations of all the basic concepts. 320

Llull’s system and devices were immensely popular well into the eighteenth 321

century. Jonathan Swift (1667–1745) satirized them in his Gulliver’s Travels (1726), 322

where he described how scholars in the academy of Lagado created new knowledge 323

with an engine constructed to move around bits of wood with words written on them 324

to create ever new combinations. When they found words in a row that seemed to 325

make sense, they wrote them down. In this way, “the most ignorant person at a 326

reasonable charge, and with a little bodily labour, might write books in philosophy, 327

poetry, politics, law, mathematics, and theology, without the least assistance from 328

genius or study”. (ch. III:5) But others took Llull’s ideas much more seriously. 329

His ideas were among the main sources of speculations that all forms of (valid) 330

reasoning should be reducible to some form of calculation. 331

Thomas Hobbes (1588–1679) repeatedly equated reasoning and computation. (It 332

is not clear whether he was influenced by Llull, but he had access to some of his 333

writings in the Hardwick library.8) In his Leviathan he wrote: 334

When man reasoneth, he does nothing else but conceive a sum total, from addition of 335

parcels; or conceive a remainder, from subtraction of one sum from another: which, if it 336

be done by words, is conceiving of the consequence of the names of all the parts, to the 337

name of the whole; or from the names of the whole and one part, to the name of the other 338

part. . . These operations are not incident to numbers only, but to all manner of things that 339

8Forteza (1998). Cf. Hamilton (1978).
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can be added together, and taken one out of another. . . Out of all which we may define, that 340

is to say determine, what that is which is meant by this word reason, when we reckon it 341

amongst the faculties of the mind. For reason, in this sense, is nothing but reckoning that is, 342

adding and subtracting, of the consequences of general names agreed upon for the marking 343

and signifying of our thoughts; I say marking them, when we reckon by ourselves, and 344

signifying, when we demonstrate or approve our reckonings to other men. (Hobbes [1651] 345

1839, pp. 29–30)9 346

It does not take much reflection to realize that natural languages are unsuited for 347

such reasoning by simple addition and subtraction of concepts. Therefore, scholars 348

striving to formalize reasoning proposed the construction of an artificial language 349

that should reflect the structure of concepts and ideas much better than natural 350

languages. Such a language would facilitate all scholarly pursuits, and it should 351

therefore replace Latin as the learned language. Francis Bacon (1561–1626) was the 352

first major proponent of such a language. He had many followers, some of whom 353

published fairly detailed proposals for the construction of a universal language 354

(Cram 1985; Singer 1989). 355

These ideas were further developed in the work of Gottfried Wilhelm Leibniz 356

(1646–1716) (Lenzen 2018; Pombo 2010). Beginning in his youthful Dissertio de 357

arte combinatoria (1666) he applied Llull’s combinatorial method to characterize 358

exhaustively the conclusions that could be drawn through traditional syllogisms 359

from given premises. He envisaged a universal language for science and philosophy, 360

his “characteristica universalis”, that would be perfectly aligned with the structure 361

of ideas. 362

Thus I assert that all truths that can be demonstrated about things expressible in this 363

language with the addition of new concepts not yet expressed in it – all such truths, I say, 364

can be demonstrated solo calculo, or solely by manipulation of characters according to a 365

certain form, without any labour of the imagination or effort of the mind, just as occurs in 366

arithmetic and algebra. (Quoted in Mates 1986/1989, p. 185n.) 367

With the help of such a language, scholarly controversies could easily be solved: 368

This being done, if controversies were to arise, there would be no more need of disputation 369

between two philosophers than between two calculators. For it would suffice for them to 370

take their pencils in their hands and to sit down at the abacus, and say to each other (and if 371

they so wish also to a friend called to help): Let us calculate.10 372

In his correspondence with Damaris Masham (1659–1708), Leibniz even speculated 373

on machines that could “imitate reason” (Jones 2014, pp. 194–195; cf. Widmaier 374

1986). However, not even Leibniz, one of the most prolific and inventive scholars of 375

his times, managed to produce anything like the universal language that would be 376

9See also de Jong (1986) and MacDonald Ross (2007).
10Quo facto, quando orientur controversiae, non magis disputatione opus erit inter duos
philosophos, quam inter duos computistas. Sufficiet enim calamos in manus sumere sedereque
ad abacos, et sibi mutuo (accito si placet amico) dicere: calculemus.” (Leibniz 1890, vol. 7, p.
200).
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necessary for anyone – human or machine – to perform the calculations that would 377

replace ordinary reasoning and argumentation. 378

In a much more modest form, these ideas were revived by the English logician 379

George Boole (1815–1864). In his The Laws of Thought (1854) he developed an 380

algebraic analysis of properties. For instance, if w denotes white things, and s 381

denotes sheep, then ws denotes those objects that are both white and sheep, w + s 382

those objects that are either white or sheep, w− s those that are white but not sheep, 383

etc. 1 denotes “everything”, and thus 1 − w denotes everything that is not white. 384

Boole proposed “laws of thought” such as: 385

xy = yx 386

xx = x 387

z(x + y) = zx + zy 388

z(x − y) = zx − zy, etc. 389

This is the origin of the logical language that is now taught as sentential (proposi- 390

tional) logic. Boole’s major achievement was to extend the application of algebra 391

to objects other than numbers. As noted by Michèle Friend (2010), Boole “started 392

to really develop the technical machinery needed to make an algebra of natural 393

language terms, where propositions are one sort of term, amongst others.” In his 394

system, relations and functions that are expressible in natural language can be 395

included in the formal apparatus. “When we allow symbolic representations of 396

predicates[,] relations and functions, we can calculate out thoughts, much as we 397

calculate out numbers.” (Friend 2010, p. 174. See also Uckelman 2010). This was 398

a major achievement, but, of course, there was still no universal language in place. 399

Ordinary reasoning could only be replaced by calculations in the few and rather 400

trivial cases in which simple combinations of properties were sufficient to represent 401

the argument. It was possible to conclude that “the sheep that are not white” are the 402

same as “the sheep that are not white sheep” (since s(1−w) = s−ws), but two sheep 403

farmers arguing about the best way to manage their farms would not be much helped 404

by Boole’s algebra. Boole was himself aware of this, and in the last chapter of his 405

great book he emphasized the need for empirical observations to acquire knowledge 406

about the physical world; “as the cultivation of the mathematical or deductive faculty 407

is a part of intellectual discipline, so truly is it only a part” (p. 327). In spite of 408

these limitations, Boole’s achievement was considerable. It provided a much more 409

versatile way to represent arguments in mathematical language than what had been 410

available previously. 411

In 1869 another English logician, William Stanley Jevons (1835–1882), con- 412

structed a “logical piano” that was based on Boole’s logic. It had a keyboard that 413

looked much like a piano with only white keys. By pressing the keys you could 414

introduce premises indicating logical relations among up to four terms. Mechanical 415

levels and pulleys made the appropriate changes on a screen, showing what these 416

premises add up to. For instance, we can use three terms, interpreted as iron, metal, 417

and element. If we introduce the two premises that iron is a metal and metals are 418
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elements, then the screen will show that iron is an element (Barrett and Matthew 419

2005). The logical piano has been hailed as “the first machine to solve Boolean 420

logic problems faster than was possible by hand” (Gent and Walsh 2000, p. 1). 421

Another major achievement in the mathematization of reasoning was made 422

by the German logician Gottlob Frege (1848–1925). In 1879, he published the 423

Begriffsschrift, a book that opened up new avenues for logic. His most important 424

innovation was predicate logic, a new formal representation of predicates, relations, 425

and the words “all” (denoted ∀) and “some” (denoted ∃). Today, it is a standard 426

exercise in elementary logic courses to translate natural language sentences into 427

predicate logic. We can easily express sentences in Frege’s predicate logic that had 428

no representation in previous logical systems, with a translation process such as the 429

following: 430

Every successful team has a hardworking coach. 431

For all x, if x is a successful team, then there is some y that is its coach and is 432

hardworking. 433

For all x, if Sx and T x, then there is some y such that Cyx and Hy. 434

(∀x)(Sx ∧ T x → (∃y)(Cyx ∧Hy)) 435

Frege’s predicate logic is a huge advance over previous logical languages, none of 436

which has the versatility exhibited in the above example. However, there are many 437

everyday expressions that it cannot render, for instance adverbs (“he drove slowly”), 438

modal sentences (“I might have come but I didn’t”), and quantities intermediate 439

between all and some (“most of his ideas go wrong”). The construction of a 440

language in which all relations between concepts are mirrored in their logical 441

properties is as far-fetched as ever, even with the (considerable) resources of 442

predicate logic. 443

But still, predicate logic gave rise to a revolution in logic. Although it is insuf- 444

ficient for translating large parts of natural language, it is sufficient for expressing 445

much – some would say all – of the natural language that is needed in mathematics. 446

The vast majority of mathematical definitions and theorems can be expressed in 447

predicate logic, and even more importantly: If we perform mathematical proofs 448

very carefully in the smallest possible steps, then each step can be expressed as 449

a statement in predicate logic, and it can be seen to follow from its predecessors 450

according to the rules of predicate logic. Such proofs in small steps are not much 451

liked by mathematicians – they share some of the disadvantages of looking down 452

at your feet all the time while trying to find your way in an unknown terrain. 453

However, predicate logic arrived at a time when mathematics was in a crisis. 454

The possibility of appealing to such meticulous proofs rather than to intuitions 455

expressed in natural language seemed to offer a chance to secure the foundations of 456

mathematics. 457
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9.4 Mathematics as Symbol Manipulation 458

In the nineteenth century, mathematicians attended increasingly to the foundations 459

of their discipline. Most of the foundational work was prompted by problems in two 460

areas of mathematics, namely analysis and geometry. 461

9.4.1 The Arithmetization of Analysis 462

Analysis is the branch of mathematics that studies differentiation, integration, and 463

infinite series. (The near-synonym “calculus” usually refers to the less advanced 464

parts of analysis.) Since its modern beginnings in the seventeenth century, anal- 465

ysis was largely based on reasoning that referred to infinitesimals, i.e. fictional 466

numbers that were supposed to be larger than zero but smaller than all positive 467

numbers. Pierre de Fermat (c.1607–c.1665) has been credited with their invention. 468

Mathematicians used them in many ways. For instance, a continuous curve was 469

described as consisting of straight line segments of infinitesimal length. Leibniz 470

put infinitesimals to efficient use in differential calculus. We still use his notation 471

dy/dx, which was originally thought of as the ratio between an infinitesimal change 472

in the projection to the y-axis and an infinitesimal change in the projection to the 473

x-axis. Some mathematicians interpreted infinitesimals as fixed quantities. Others, 474

including Jean le Rond d’Alembert (1717–1783) interpreted them as a shorthand 475

for a limit concept. But even with that interpretation, the concept was far from fully 476

precise.11
477

Studies of discontinuous functions made mathematicians increasingly aware of 478

the precarious nature of the concept of infinitesimals. In 1829, Peter Lejeune- 479

Dirichlet (1805–1859) showed that a function could easily be constructed that is 480

discontinuous everywhere: Let c and d be constants, and let f (x) = c whenever 481

x is rational and f (x) = d whenever d is irrational. In 1861 Karl Weierstraß 482

(1815–1897) constructed a function that is continuous everywhere but nowhere 483

differentiable. These discoveries contributed much to the development of more 484

rigorous foundations for calculus, using limits to define concepts such as continuity, 485

integral, and derivative in a much more precise way. Important contributions to 486

this development were made by Augustin-Louis Cauchy (1789–1857), Bernhard 487

Riemann (1826–1866), and Karl Weierstraß. Perhaps the single most important step 488

was Weierstraß’s introduction of a concept of limit that replaced infinitesimals and 489

spatial intuitions by mathematical reasoning based entirely on numbers (Edwards 490

1979, pp. 301–334). 491

In order to make calculus more rigorous, a precise account of the continuum of 492

real numbers was crucially needed. The rational numbers can easily be “reduced” 493

11Much later, infinitesimals were introduced in nonstandard analysis, but now rigorously defined.
This was largely the work of Abraham Robinson (1918–1974).
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to the natural numbers, since each rational number is by definition the ratio between 494

two natural numbers. It was much more difficult to define the real numbers in terms 495

of the natural numbers, but in the early 1870s several mathematicians, including 496

Richard Dedekind (1831–1916) and Georg Cantor (1845–1918) showed viable ways 497

to do this. These constructions all made use of infinite sets of rational numbers. For 498

instance, to define
√

2 we can make use of (1) the set of positive rational numbers 499

x such that x2 < 2, and (2) the set of positive rational numbers x such that 2 < x2. 500

All positive rational numbers belong to one of these two sets. 501

Since these reconstructions of analysis redefined it in terms of numbers, they 502

were said to “arithmetize” the subject.12 In 1900, the French mathematician and 503

philosopher Henri Poincaré (1854–1912) said: 504

The vague idea of continuity, which we owe to intuition, resolved itself into a complicated 505

system of inequalities referring to whole numbers. 506

In this way, the difficulties arising from passing to the limit, or from consideration of 507

infinitesimals, are found to be definitely clarified. 508

Today nothing remains in analysis but integers and finite or infinite systems of integers, 509

interrelated by a net of relations of equality or inequality. 510

Mathematics, as it is said, has been arithmetized.13 511

In spite of the term “arithmetization” and the use of natural numbers, mathemati- 512

cians of the time seem to have viewed this development not as a reduction of 513

mathematics to the numbers 1, 2, 3. . . , but rather as a reduction to operations on 514

arbitrary symbols (Jahnke and Otte 1981). We saw above that already in 1843, Ada 515

Lovelace realized that operations on an arbitrary (finite) set of symbols could be 516

represented as operations on natural numbers.14 The German physicist Hermann 517

von Helmholtz (1821–1894) expressed this insight very clearly in 1887: 518

I regard arithmetic, the doctrine of the pure numbers, as a method, based on purely 519

psychological facts, that serves to teach the consistent application of a system of signs 520

(namely numbers) of unlimited extent and unlimited potential for refinement. To wit, 521

arithmetic explores the question which different ways of combining these signs (calculating 522

operations) will lead to the same final result. (Helmholtz 1887, p. 20)15 523

12This term is usually attributed to the German mathematician Felix Klein (1849–1925) who used
it in a speech in 1895 (Klein 1895).
13“L’idée vague de continuité, que nous devions à l’intuition, s’est résolue en un système
compliqué d’inégalités portant sur des nombres entiers.

Par là les difficultés provenant des passage à la limite, ou de la considération des infiniments
petits, se sont trouvées définitivement éclaircies.

Il ne reste plus aujourd’hui en Analyse que des nombres entiers ou des systèmes finis ou infinis
de nombres entiers, reliés entre eux par un réseau de relations d’égalité ou d’inégalité.

Les Mathématiques, comme on l’a dit, se sont arithmétisées.” (Poincaré 1902, p. 120).
14This representability of symbols as numbers was used in masterly fashion by Kurt Gödel (1931)
when he assigned a unique number to each sentence that is expressible in a logical language (Gödel
numbering).
15“Ich betrachte die Arithmetik, oder die Lehre von den reinen Zahlen, als eine auf
rein psychologischen Thatsachen aufgebaute Methode, durch die die folgerichtige Anwen-
dung eines Zeichensystems (nämlich der Zahlen) von unbegrenzter Ausdehnung und unbe-
grenzter Möglichkeit der Verfeinerung gelehrt wird. Die Arithmetik untersucht namentlich,
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The term “arithmetization” has not been used for long. Today, we see the reduction 524

of analysis to sets of numbers as a reduction to sets rather than to numbers. 525

This is probably because set theory is now a much more established discipline 526

and it is now well-known that the natural numbers can be developed within set 527

theory (for instance using the series ∅, {∅}, {{∅}}, {{{∅}}}, . . . ). But what was once 528

called “arithmetization” is still the standard method to ensure sufficient precision in 529

mathematical analysis. 530

9.4.2 A New Approach to Geometry 531

The other area of mathematics that engendered foundational work was geometry. 532

Non-Euclidean geometry was discovered in the 1830s, but did not catch the attention 533

of mainstream mathematicians until the late 1860s (Freudenthal 1966). Euclid 534

(fl.300 BCE) derived a large number of theorems for two- and three-dimensional 535

geometry from a small set of seemingly self-evident axioms. For more than two 536

millennia, this had been taken as the epitome of mathematical rigour. Now it 537

had to be accepted that even these axioms were not self-evident. This led to 538

attempts to reformulate Euclid’s geometry with more rigour. In 1882 the German 539

mathematician Moritz Pasch (1843–1930) published a new and considerably more 540

rigorous axiomatization of Euclidean geometry. He pointed out several seemingly 541

self-evident assumptions made by Euclid that apparently no one had noted before 542

him, and replaced them by explicit axioms (Pasch 1882). 543

However, Pasch was still anxious that his axioms should be intuitively appealing. 544

The German mathematician David Hilbert (1862–1943) took a radical new depar- 545

ture in an axiomatization of Euclidean geometry that he published in 1899 (Hilbert 546

1899). Instead of searching for axioms that expressed evident truths he wanted 547

his axioms to be independent of any associations with intuition. The fundamental 548

requirement was that the axioms should form a consistent system. In other words, if 549

a statement could be derived from the axioms, the negation of that statement should 550

not be derivable from them. 551

The difference between these approaches to axiomatization can be illustrated 552

with how basic geometrical concepts such as point, line, and plane, were introduced. 553

Euclid’s Elements begin with these definitions: 554

1. A point is that which has no part. 555

2. A line is length without breadth. 556

3. The extremities of a line are points. 557

4. A straight line is a line which lies evenly with the points on itself. (Euclid 1939, pp. 436– 558

439) 559

welche verschiedene Verbindungsweisen dieser Zeichen (Rechnungsoperationen) zu demselben
Endergebniss führen.”
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Although remarkably precise, these definitions refer to spatial intuitions with words 560

such as “part”, “breadth”, “extremity”, and “lie evenly”. These intuitions are also 561

invoked in various ways in Euclid’s proofs. Pasch found this approach to be 562

unsatisfactory, and expressed his axiomatic ideal as follows: 563

The axioms should completely include the empirical material to be dealt with mathemat- 564

ically, so that after the axioms have been set up there should be no need to refer back to 565

perceptions.16 566

Hilbert went one step further. Not even when the axioms were set up should there 567

be any appeal to empirical perceptions or spatial intuitions: 568

We imagine three different systems of things: we call the things of the first system points 569

and denote themA,B,C, . . . ; we call the things of the second system lines and denote them 570

a, b, c, . . . ; we call the things of the third system planes and denote them α, β, γ, . . . . 571

We think of the points, lines, and planes as being in certain relations with each other 572

and we denote these relations with words such as “lying on”, “between”, “parallel”, 573

“congruent”, “continuous”; the exact and complete description of these relations follows 574

from the axioms of geometry.17 575

This passage is most notable for what it does not contain. There is no reference 576

to spatial intuitions. Points, lines, and planes are presented as undefined entities, 577

and what can be proved about them is entirely determined by the rules specifying 578

how they relate to each other. Possibly the clearest expression of this approach was 579

uttered by Hilbert while waiting with two colleagues for a train in a railway station 580

in Berlin: “It should always be possible to say ‘tables, chairs and beer mugs’ instead 581

of ‘points, lines and planes”’ (Blumenthal 1935, p. 403). 582

9.4.3 Can All Mathematical Problems Be Solved 583

in One Fell Swoop? 584

At the time, Hilbert’s axiomatization of Euclidean geometry must have been seen 585

as severing geometry from empirical science. In actual fact it had the very opposite 586

effect. Discoveries in physics in the following decades made it clear that physical 587

space is non-Euclidean. After describing how the new view of geometry opened up 588

16“Die Grundsätze sollen das von der Mathematik zu verarbeitende empirische Material voll-
ständig umfassen, so daß man nach ihrer Aufstellung auf die Sinneswahrnehmungen nicht mehr
zurückzugehen braucht” (Pasch 1882, p. 17, quoted from Contro (1976) p. 286).
17“Wir denken drei verschiedene Systeme von Dingen: die Dinge des ersten Systems nennen
wir Punkte und bezeichnen sie mit A,B,C, . . . ; die Dinge des zweiten Systems nennen wir
Gerade und bezeichnen sie mit a, b, c, . . . ; die Dinge des dritten Systems nennen wir Ebenen
und bezeichnen sie mit α, β, γ, . . . . . . .

Wir denken die Punkte, Geraden, Ebenen in gewissen gegenseitigen Beziehungen und bezeich-
nen diese Beziehungen durch Worte wie “liegen”, “zwischen”, “parallel”, “kongruent”, “stetig”;
die genaue und vollständige Beschreibung dieser Beziehungen erfolgt durch die Axiome der
Geometrie” (Hilbert 1899, p. 2).
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the geometrical properties of physical space as an issue for empirical investigation, 589

Albert Einstein wrote: “I attach special importance to the view of geometry which 590

I have just set forth, because without it I should have been unable to formulate the 591

theory of relativity.”18
592

Hilbert’s Foundations of Geometry was also important in another respect. He 593

did not look for the foundations of geometry in arithmetic. Instead, he provided 594

geometry with a fundamental axiomatization of its own. In the same way, other 595

mathematical disciplines could be provided with independent foundations in the 596

form of a set of axioms and precise rules for deriving theorems from these axioms. 597

Hilbert changed his terminology and started to talk about axiomatization instead of 598

arithmetization (Petri and Norbert 2007). A new picture of mathematics emerged, 599

namely as the science of strictly rule-bound symbol manipulations.19 Frege’s logical 600

language had a crucial role in this new approach, since all ordinary mathematical 601

statements could be expressed with it. For instance, instead of writing 602

For all x and y, x + y = y + x. 603

we can write 604

(∀x)(∀y)(x + y = y + x), 605

thus eliminating natural language. Some of these fully formalized mathematical 606

statements would be axioms, some would be definitions of new symbols in terms 607

of those previously introduced, others steps in proofs, and yet others the outcomes 608

of proofs. It would then, according to Hilbert, be “natural and consistent” to treat 609

logical symbols, such as ∀ and the symbols for conjunction and negation, “just 610

like the numerals and letters in algebra and to consider them, too, as signs that 611

in themselves mean nothing, but are merely building blocks for ideal propositions.” 612

They are “just objects for the application of our rules”.20 For instance, the following 613

proof step: 614

(∀x)(∀y)(x + y = y + x) 615

3 + 7 = 7 + 3 616

follows from a rule of substitution that is included among the rules for sym- 617

bol manipulation in this system. In this way, proofs would be reduced to the 618

manipulation of logical and mathematical symbols. Mathematics would become 619

symbol manipulation. Although the construction of mathematical proofs would 620

18“Dieser geschilderten Auffassung der Geometrie lege ich deshalb besondere Bedeutung
bei, weil es mir ohne sie unmöglich gewesen wäre, die Relativitätstheorie aufzustellen”
(Einstein 1921, p. 6).
19Arguably, this was the realization of Ada Lovelace’s above-mentioned “science of operations”
that could apply to “letters or any other general symbols” as well as numbers (Lovelace [1843]
1989, pp. 117 and 144).
20“naturgemäß und konsequent. . . den Zahlzeichen und den Buchstaben in der Algebra gleich-
stellen und ebenfalls als Zeichen auffassen, die an sich nichts bedeuten, sondern nur Bausteine für
die idealen Aussagen sind”, “nur Objekte für die Anwendung unserer Regeln” (Hilbert 1928, p. 8).
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continue to require mathematical acumen, checking them would be a simple routine 621

procedure. 622

Hilbert raised three fundamental questions about such rigorously axiomatized 623

mathematical systems. One of the questions was whether a mathematical system 624

such as common arithmetic is consistent, by which is meant that one cannot derive 625

both a statement and its negation from the axioms. 626

To introduce the other two problems we need the concept of validation. Suppose 627

that we have a formula containing variables (such as x, y . . . ) and some structure 628

containing elements that can be assigned to these variables. Let the formula be as 629

follows: 630

(∀x)(∀y)(x > y → (∃z)(x > z > y)) 631

We can apply this formula to a structure in which we interpret the variables x, y . . . 632

as rational numbers and > as “greater than”. Then the formula says that if x is 633

greater than y, then there is some number that is smaller than x but larger than y. 634

This is obviously the case, and consequently our axiom is satisfied in this structure. 635

But if we instead use a structure containing only natural numbers, and still interpret 636

> as “greater than”, then the axiom is not satisfied, as we can see by letting x = 3 637

and y = 2. 638

Now suppose that we have an axiom system, we can call it A, and some formula 639

f. If every structure that satisfies A also satisfies f, then we can say that A validates 640

f. This is conceptually quite different from saying that f can be proved from A; the 641

former claim refers to comparisons of structures, and the latter to the constructibility 642

of step-by-step proofs. We can therefore ask whether the formulas that can be 643

validated from a set of axioms are the same as those that are provable from it. This 644

question naturally divides into two. First, can all the provable formulas be validated? 645

This is called soundness. And secondly, are all the formulas that can be validated 646

provable? This is called completeness. Soundness is usually the easy part. It was 647

not difficult to prove the soundness of Frege’s predicate logic and mathematical 648

systems expressible in it. The completeness part was much more difficult, and it 649

was one of Hilbert’s three questions. In 1929 Kurt Gödel (1906–1978), then a PhD 650

student in Vienna, proved that a particular axiom system21 is sufficient for deriving 651

all formulas that are valid in predicate logic. Since validity is usually equated with 652

mathematical truth, this result can be interpreted as unifying truth and provability 653

(in predicate logic). 654

Hilbert’s third question took another approach to validity. Suppose that we are 655

presented with a formula (sentence) in predicate language. Is there a way to find out 656

whether that formula is valid or not? Is there “a procedure”22 that answers this ques- 657

tion for all formulas that we apply it to? This is the Entscheidungsproblem (decision 658

problem) which Hilbert did not hesitate to call “the main problem of mathematical 659

logic”.23 Its importance was further enhanced by Gödel’s completeness theorem. 660

21More precisely: a deductive system, i.e. the combination of a set of axioms and a set of rules for
making derivations based on them.
22“ein Verfahren”. Hilbert and Ackermann (1938), p. 91.
23“das Hauptproblem der mathematischen Logik”, Hilbert and Ackermann (1938), p. 90.
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Due to that theorem, a formula in predicate logic is valid if and only if it can be 661

proved from the axioms. Therefore, a solution of the Entscheidungsproblem would 662

also provide a way to determine whether a given formula is provable or not. 663

It was reasonable to assume that a positive solution of the Entscheidungsproblem 664

would have an unprecedented effect on mathematics as a whole. It seemed possible 665

to axiomatize in principle all of mathematics in predicate logic. Therefore, a method 666

to determine the validity (truth) of everything expressible in that system would 667

amount to a decision procedure for all mathematical statements. It would have 668

been a philosopher’s stone for mathematicians, and its discovery would have over- 669

shadowed all previous achievements in mathematics. The English mathematician 670

Godfrey Hardy (1877–1947) denounced the idea that some system of rules could 671

be shown to determine for any formula whether it was provable or not. “There is 672

of course no such theorem” he said (without much argument), “and this is very 673

fortunate, since if there were we should have a mechanical set of rules for the 674

solution of all mathematical problems, and our activities as mathematicians would 675

come to an end” (Hardy 1929, p. 16). He said that negative theorems were more to 676

be expected, and that is also what happened. 677

In 1931 Kurt Gödel published what have come to be called his two incomplete- 678

ness theorems. The first of them showed that if a consistent axiom system contains 679

basic arithmetic, then there are statements in its language that can neither be proved 680

nor disproved in the system itself. The second theorem showed that in such an axiom 681

system, it is not possible to prove the consistency of the system itself. Gödel’s proofs 682

were based on what might be called the ultimate arithmetization of mathematics: he 683

developed a method to code all formulas and sets of formulas as integers. Since the 684

system generates proofs about numbers, it can then also generate proofs about (the 685

number representing) itself. A sentence can be constructed that “says” about itself 686

that it is not provable in this system, and obviously such a sentence can neither be 687

proved nor disproved on pain of inconsistency. 688

Before Gödel published his incompleteness theorems, the best hope to solve the 689

Entscheidungsproblem seemed to be that some method could be found to derive a 690

given formula from the axioms if it was true and to derive its negation if it was 691

not true. (Gödel’s previous completeness theorem had, if anything, kindled hopes 692

that this was possible.) Gödel’s new results made it clear that such a straightforward 693

solution was not possible. It was still possible that the Entscheidungsproblem had 694

some solution that involved a rigorous routine other than a proof. But clearly, 695

it was now much more urgent than before to look for ways to show that the 696

Entscheidingsproblem was insolvable. 697

If the Entscheidungsproblem had a solution, it would have to be a specified and 698

well-determined routine that could be applied to all formulas in predicate logic. In 699

other words, it would have to be an algorithm. A proof that the Entscheidingsprob- 700

lem was insolvable would have to show that there exists no such algorithm. But 701

in order to prove that, it was necessary to have a precise specification of what an 702

algorithm is. No such specification was available, so it would have to be constructed. 703

This is how a rather mundane problem area in applied mathematics, namely 704

how algorithms can be constructed, became a pivotal issue in the foundations of 705

mathematics. 706
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9.5 Alan Turing’s Machine 707

This brings us to the centrepiece of this chapter, namely Alan Turing’s (1912–1954) 708

paper “On Computable Numbers, with an Application to the Entscheidungsprob- 709

lem”. It was first presented in 1936 and then published the year after (Turing 710

1937a,b). It is based on an exceptional specimen of philosophical analysis. By 711

carefully analyzing what one does when executing an algorithm, and combining 712

this analysis with a good dose of mathematical idealization, Turing developed a 713

simple procedure intended to cover everything that can be done with an algorithm.24
714

Importantly, Turing’s article was devoted to clarifying the notion of a computation 715

that can be performed as a routine task by human beings. This resulted in tasks 716

so well-defined that they could be performed by a certain type of machine, but his 717

analysis was not an attempt to find out what types of symbolic operations can, in 718

general, be performed by machines. The Turing machine appears “as a result, as a 719

codification, of his analysis of calculations by humans” (Gandy 1988, pp. 83–84).25
720

This is somewhat obscured to the modern reader by his frequent usage of the word 721

“computer”, which at that time referred to a human computist but is today easily 722

misinterpreted as referring to an electronic computer.26
723

9.5.1 An Example 724

Before we delve into Turing’s analysis in its full generality, it may be helpful to 725

introduce some of its major components with the help of a simple example. Consider 726

the addition of two numbers, such as 589 + 135. This is how I learned to perform 727

that operation: 728

24In many accounts of Turing’s work, this analytical work is not adequately described. Robin
Gandy (1919–1995), who was Turing’s graduate student, rightly called it a “paradigm of
philosophical analysis” (Gandy 1988, p. 86).
25See for instance Turing (1937a, p. 231, [1948] 2004, p. 9), Cleland (2002, p. 166), Israel
(2002, p. 196), and Sieg (1997, pp. 171–172, 2002, pp. 399–400). Misunderstandings on this
are not uncommon, for instance Arkoudas (2008, p. 463) claims that “the term ‘algorithm’ has
no connotations involving idealized human computists” and that Turing just “referred to human
computers as a means of analogy when he first introduced Turing machines (e.g., comparing the
state of the machine to a human’s ‘state of mind,’ etc.)”. A careful reading of Turing’s 1936–7
article will show that Arkoudas’s interpretation cannot be borne out by the textual evidence.
26Turing still used the word “computer” in this sense a decade later, see Turing ([1947] 1986,
p. 116) Gandy (1988, p. 81) proposed that we use “computer” for a computing machine and
“computor” for a computing human. Some authors have adopted this practice, e.g. Sieg (1994).
However, the difference between the two spellings is easily overlooked. To make the difference
more easily noticeable, I propose that we revive the word “computist” for a human performing
calculations.
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1 1 729

589 730

135 731

724 732

This is a step-by-step process such that in each step, you only have to look at a part 733

of what is recorded on the paper. In the first step, you only have to consider the 734

column furthest to the right. You add the two numbers (9 and 5) and write down 735

the outcome in the way indicated. Then you turn to the next column, etc. Once you 736

know this procedure you can use it to add in principle any two numbers, even if 737

they are very large. All you need is an instruction for what to do when you are in a 738

column, before you proceed to the next column. 739

A detailed instruction for this algorithm will have to be rather long since it 740

must cover all cases of what you can find in a column (all possible combinations 741

such as 9+5, 1+8+3, and 1+5+1 in this example). For simplicity, we can instead 742

consider the corresponding instruction for adding two numbers in binary notation. 743

Mathematically, this is of course a trivial change of notation. In fact, any finite set of 744

symbols can be encoded as series of 0 and 1, and consequently all forms of symbol 745

manipulation can be expressed as manipulation of strings of these two (or any other 746

two) symbols.27
747

Essentially the same algorithm can be used in binary notation. The addition 589+ 748

135 comes out as follows: 749

1 1 1 1 750

1 0 0 1 0 0 1 1 0 1 751

1 0 0 0 0 1 1 1 752

1 0 1 1 0 1 0 1 0 0 753

Just as in the decimal system, we begin in the right-most column, and go stepwise 754

to the left. Each column has four spaces for symbols. When we arrive in a column, 755

we have to look at the top three spaces, since they determine what we will have to 756

do. We can use a simple notation for these three spaces. Then 757

758

⎡

⎣

1
0
1

⎤

⎦ and

⎡

⎣1
1

⎤

⎦ 759

represent the two columns furthest to the right in our example. In the rightmost 760

column, we have to write 0 in the bottom row, move one step left and then write 1 761

in the top row. This be is summarized in the following short form: 762

27In this example, there are in fact three symbols, since the empty space and 0 are not treated in
the same way, as can be seen from rules 1 and 18 in Textbox 9.2. It is perfectly feasible to use only
two symbols; we can for instance replace each symbol space with two adjacent symbol spaces such
that 00 represents an empty space, 01 represents 0 and 11 represents 1. See Sect. 9.5.2.
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⎡

⎣1
1

⎤

⎦: bottom 0, go left, top 1. 763

The 18 commands in Textbox 9.2 contain all the instructions we need to add any 764

two binary numbers of arbitrary size. Importantly, this set of instructions can be 765

followed by a person who does not know what the symbols 0 and 1 stand for, let 766

alone what the binary number system is or what it means to add two numbers. You 767

might object at this stage that someone who follows these instructions mechanically 768

without understanding them probably runs a higher risk of making a mistake than 769

someone who knows what she is doing. But that does not concern us here since we 770

can allow ourselves the idealization of an error-free execution. We are not trying 771

to find some practical way to add two numbers. Our business is to decompose the 772

algorithm into as simple operations as possible. 773

From that point of view, there are still significant simplifications that can be 774

performed in our set of instructions. Perhaps most importantly, we have required 775

that three symbol spaces be read at the same time. This is not necessary, since we 776

can divide the instructions into even smaller parts. Each of the rules in Textbox 9.2 777

can be replaced by a small series of even simpler rules, neither of which requires 778

that we read more than one symbol space at a time. For instance, we can begin in 779

the top row of each column (the row for carries) and read the number there. If it 780

contains a 1, then the algorithm enters one state (with memory 1 from the top row), 781

otherwise it goes into another state (with memory 0 from the top row). In both cases, 782

we are instructed to go down one step. Suppose that we are performing the operation 783

in the above example. We then have to follow the second of these instructions, i.e. 784

we leave the top row in a state representing memory 0. 785

We are now in the second row of the rightmost column (and in a state with 786

memory 0). We read the symbol in the new symbol space. What it contains 787

determines what we will do next and what new state we will enter. In this case, 788

since we read 1 we will be instructed to enter a state corresponding to “being on the 789

second row and having memory 1”. This state instructs us to go one step downwards, 790

to the third row from the top in the same column. At the same time we are instructed 791

to enter a new state that (informally speaking) carries the information that we have 792

1 in memory. 793

When we arrive in the third row, we read the symbol there, which is 1. This 794

determines the new state (which, informally speaking, ensures that we behave as we 795

should when we have 2 in memory). The instruction associated with this new state 796

requires that we go one step down and write the symbol 0 in the bottom row. 797

After this we have to go to the top row in the column to the left and write the 798

symbol 1 there. However, instead of doing this in one step, we can do it in five: First 799

we take one step to the left, then three separate steps up, and finally we write the 1 800

in the appropriate place. 801

It is a fairly easy exercise to transform the instructions in Textbox 9.2 into a new 802

set of instructions based entirely on suboperations that are so small that we only read 803

one symbol space at a time and only move one step at a time. (It is a much more 804



UNCORRECTED
PROOF

208 S. O. Hansson

Textbox 9.2 An algorithm for adding two binary numbers
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difficult exercise to do this in a way that requires as few states as possible.) From 805

the viewpoint of practical application, this division into extremely small subtasks 806

makes the addition of two numbers unnecessarily complicated. Since we are capable 807

of perceiving three symbols simultaneously, it is obstructive to only be allowed to 808

consider one symbol at a time. But again, what we are trying to achieve is not 809

practical convenience but a set of suboperations that are as simple as possible. And 810

we have now taken considerable steps in that direction. All that the computist needs 811

to be able to do is now to (1) read (only) the symbol in her present location, (2) 812

move one step, and (3) enter a new stage according to a simple rule that is based on 813

the previous state and the symbol that was read in it. Could it be done simpler? 814

Yes, it can. One major important simplification remains. As we have presented 815

it, this algorithm can be implemented on a checked paper that is only four squares 816

(symbol spaces) wide. Unlimited length is required so that we can add numbers of 817

unlimited length, but do we really need four rows? 818

One of the rows can easily be dispensed with. The top row, which contains the 819

carries, is not needed since the carries are “remembered” by the states anyhow. But 820

we can do even better than that. As shown in Fig. 9.1, if we tilt the columns then 821

we can represent the same operation on a strip of paper that has a width of only one 822

symbol space. It is not difficult to modify the instructions so that the operation can 823

be performed on only one row. (In this particular case, the operation will even be 824

simplified in this transformation, since we will only have to move in one direction, 825

from right to left.) 826

We have now arrived at a mechanism with the following components: 827

• A tape of unlimited length with linearly ordered symbol spaces, each of which 828

can contain a symbol from a finite alphabet (usually 0 and 1). 829

• A computist who always adheres to one of a finite set of specified states, and has 830

access to (“reads”) only one symbol space at each time. 831

• Instructions that tell the computist at each stage what to do next. Given the 832

present state and the symbol in the accessed symbol space, (s)he is instructed 833

(1) to write a specified symbol in the presently accessed symbol space, or to 834

move one step to the left, or to move one step to the right, or to halt28; and (2) 835

what new state to enter. 836

After all these simplifications, the tasks of the computist are now so “mechanical” 837

that they can be performed by a machine. The mechanism described above is what 838

we now call a Turing machine. We have just seen that it can be used to add any two 839

numbers. What other algorithms can be executed by such a machine? Turing had a 840

simple answer to that question: All algorithms. Let us now have a close look at his 841

arguments for this bold claim. 842

28Halting is dealt with in different ways in different versions of Turing machines. A common
construction is to let there be a combination of a state and an accessed symbol for which there is
no instruction. When the computist arrives at that combination (s)he is assumed to halt since she
has no instruction on how to proceed.
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1 0 0 1 0 0 1 1 0 1
1 0 0 0 0 1 1 1

First addend

Second addend

Space for the sum

1011001001 11100001

First addend Second addend

Space for the sum

Fig. 9.1 How to represent a workspace with three rows in a workspace with only one row

9.5.2 Turing’s Analysis 843

Alan Turing’s analysis of computation was rather brief, and most of his article 844

was devoted to its mathematical development. Quite a few additions are needed to 845

make the picture complete. In the following presentation I will refer to supplements 846

offered in particular in work by Robin Gandy (1980) and Wilfried Sieg (1994, 2002, 847

2009), and also add some details that do not seem to have appeared previously in 848

the literature. 849

To understand Turing’s analysis it is important to keep in mind that he was 850

not concerned with actual computability, which depends on our resources and our 851

mathematical knowledge. For instance, the 12 trillionth digit of π (digit number 852

12 × 1012) was not actually computable in Turing’s lifetime, but it seems to be so 853

today (Yee and Kondo 2016). Mathematicians stay away from such ephemeral facts, 854

and look beyond trivialities such as practical limitations. Like his colleagues, Turing 855

was interested in effective computability.29 A mathematical entity is effectively 856

computable if it would be computable if we had unlimited resources, such as time 857

29Cf. Section 9.2.1. This term was apparently introduced by Alonzo Church (1936).
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and paper. (The established term “effective” may be a bit confusing; the term 858

“potential” might have been better.) 859

Consider a function f that takes natural numbers as arguments. If we are 860

discussing actual computability, then we are concerned with the combination of 861

f and a number. Suppose that we have a procedure for calculating f (x) for 862

any x. Then f (5) may be actually computable whereas f (10100) is not since 863

its computation would require too extensive resources. (Currently this seems 864

to be the case if f (x) denotes the xth prime number.) In contrast, effective 865

calculability is a property of the function f itself. The difference between cal- 866

culating f (5) and f (10100) is a matter of practical resources, and when dis- 867

cussing effective computability, we should assume unlimited resources. Similarly, 868

a mathematical statement that could only be proved with a proof that has more 869

symbols than there are particles in the universe would still be a provable statement 870

(Shapiro 1998, p. 276). 871

“Computing is normally done”, said Turing, “by writing certain symbols on 872

paper.” Turing (1937a, p. 249) In saying so he implicitly acknowledged that due 873

to limitations in human memory, we need aide-mémoires such as notes on paper 874

to support our computations. (Cf. above, Sect. 9.2.) He did not mention that other 875

(technological) devices than pencil and paper can be used for the same purpose, 876

for instance an abacus or pebbles on a counting-board. However, all such devices 877

provide us with a visual representation of symbols, and we can depict the same 878

symbols, standing in the same relationships to each other, on paper. It therefore 879

seems reasonable to assume that if we can perform a computation, then we can 880

perform it with symbols on paper as the only aide-mémoire. 881

He continued: “We may suppose this paper is divided into squares like a 882

child’s arithmetic book.” (Turing 1937a, p. 249) He did not explain why this is 883

a reasonable assumption, but it is not difficult to justify. When we make notes to 884

support a calculation, it is important not only which symbols we write but also in 885

what relations they stand to each other. These relations are largely represented by 886

their relative spatial positions. For instance, it makes a big difference if we write 887

“10+10 = 20” or “200+10 = 1” on the paper, although the symbols are the same. 888

The spatial relations between the symbols determine how we interpret them. Of 889

course we could have other arrangements on the paper than the traditional checked 890

pattern. Why not perform calculations on hexagon (honeycomb-patterned) paper? 891

Or some other more complex tessellation? Or on two or more papers that we move 892

over each other? 893

The answer is that we have no reason to believe that computing capabilities 894

could be increased in that way. For the computational procedure to be well-defined, 895

the impact of the relations between symbols will also have to be well-defined, and 896

therefore these relations must be unambiguously describable. The spatial relations 897

between symbols on a checked paper can be specified by saying that one symbol is 898

positioned for instance “3 steps to the right and 1 step down”, as compared to some 899

other symbol. Analogous (but perhaps more complex) descriptions will have to be 900

available for the spatial relations between symbols placed in some other pattern, if 901

these spatial relations should be usable in a computation. Such descriptions can be 902
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written down, for instance in a long list on a checked paper. Although it may be 903

more time-consuming to base computations on such descriptions than on a more 904

visually appealing representation, it is difficult to see why it should not be feasible. 905

We can therefore conclude that Turing’s assumption of a checked paper does not 906

restrict what calculations can be performed. 907

How large should the paper be? The answer to that question is quite simple, 908

provided that we are concerned with effective (not actual) computability. We must 909

be “able” (as a thought experiment) to deal with numbers of unlimited size, and 910

therefore we must follow Turing in assuming that there is no limit to the number of 911

squares on the tape. 912

Figure 9.1 showed how an operation on three rows in a squared exercise book 913

can be squeezed into a single row. Turing took a similar step, claiming that it can 914

always be taken: 915

In elementary arithmetic the two-dimensional character of the paper is sometimes used. 916

But such a use is always avoidable, and I think that it will be agreed that the two- 917

dimensional character of paper is no essential of computation. I assume then that the 918

computation is carried out on one-dimensional paper, i.e. on a tape divided into squares. 919

(Turing 1937a, p. 249) 920

Turing took the step from two- to one-dimensional calculation space in a rather 921

easy-going way, and this part of the argument is still in need of elucidation. As 922

Robert Gandy noted, it is “not totally obvious that calculations carried out in two (or 923

three) dimensions can be put on a one-dimensional tape” without losing any capacity 924

(Gandy 1988, pp. 82–83). The following argument may perhaps show why this has 925

usually not worried mathematicians: We saw above how an operation performed in 926

three rows can easily be transferred to only one row. We have to make sure that the 927

“states of mind” of our computist always, informally speaking, keep track of which 928

row is currently scanned. All instructions for moving around will have to be adjusted 929

accordingly. For instance, when we would move one step to left in the three-row 930

system we have to move three steps to the left on the tape. Now suppose instead 931

that we had an operation that used all the rows in a big exercise book with 60 rows. 932

This operation could be made one-dimensional in the same way as in Fig. 9.1. The 933

columns tilted to horizontal position would be sixty squares high, and the operation 934

of moving one step to the left would have to be replaced by sixty moves to the left. 935

But again, this is quite feasible, and the fact that it is impracticable does not matter 936

in a discussion of effective computability. The same applies to an “exercise book” 937

with, say, a thousand or a million rows. 938

Turing also wrote: 939

I shall also suppose that the number of symbols which may be printed is finite. (Turing 940

1937a, p. 249) 941

By “symbols” he meant here types of symbols. He gave two reasons why there 942

should only be finitely many types of symbols. First, he claimed that if there is an 943

infinity of symbols, then there will be symbols that differ to an arbitrarily small 944

extent and, presumably, are therefore indistinguishable. Given the limitations of 945

human vision, this is a plausible argument, provided that there is a limit to the size 946
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of the symbols. For instance, we can require that each symbol be small enough to 947

fit within one of the squares (symbol spaces) of the tape. We can divide each square 948

into so many pixels that human vision cannot distinguish between two symbols if 949

they coincide on the pixel level. And clearly, there cannot be an infinite number of 950

pixel combinations. However, this argument refers to physical limitations, which are 951

not preferred arguments in a mathematical context. If we presume that there are no 952

limits to the time available to the computist, why cannot we also assume that there 953

are no limits to her powers of perception? 954

Turing’s second argument is much stronger. He observed that it is “always 955

possible to use sequences of symbols in the place of single symbols” (Turing 956

1937a, p. 249). Thanks to the positional system we can write arbitrarily large 957

numbers with just a few symbols (such as the ten digits 0, 1, 2, . . . , 9 in the decimal 958

positional system). We can also introduce an unlimited number of variables in 959

a mathematical language, for instance denoting them x0, x1, x2, x3, . . . . Turing 960

pointed out that strings of symbols “if they are too lengthy, cannot be observed at 961

one glance”. For instance, “[w]e cannot tell at a glance whether 9999999999999999 962

and 999999999999999 are the same”. However, there is no need to tell this at a 963

glance. It is sufficient that a computist can compare the two numbers digit by digit 964

and thereby determine if they are the same. 965

As mentioned already in Sect. 9.5.1, when we have a finite number of symbols, 966

then we can encode them all in binary notation (but that is a step Turing did not 967

take in this article). Today’s computers use ASCII, Unicode and other codings that 968

assign a digital number to each symbol. It has been rigorously shown that whatever 969

calculation can be performed by some Turing machine can also be performed by 970

a Turing machine that only has the two symbols 0 and 1, one of which is also the 971

symbol for a blank square (Shannon 1956, pp. 163–165). 972

Turing seems to have taken it for granted that only one symbol at a time can 973

be written in a square (Turing 1937a, p. 231). That is a sensible restriction. Since 974

there can only be a finite number of distinguishable symbols, there can only be a 975

finite number of distinguishable combinations of symbols in a symbol space.30 We 976

can then treat each of these combinations as a symbol of its own. In a second step, 977

we can encode each of these “new” symbols in a binary code with one symbol per 978

square, as just described. 979

We have now, following Turing’s analysis, established a minimal workspace that 980

is sufficient for the performance of all (effective) computational procedures: An 981

infinite tape consisting of squares in a row, each of which contains one of the two 982

available symbols. Let us now turn our attention to the work that will be performed 983

in that workspace. There are essentially four things that you do when computing: 984

You read symbols, write symbols, move your attention (and then typically also the 985

tip of your pen) between parts of the paper, and you keep track of what the rules of 986

30This argument presupposes that there is only a finite number of different positions that a symbol
can have within a symbol space. This is a reasonable assumption, given the function of symbol
spaces, as explained above.
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this particular calculation require you to do next. Before we consider each of these 987

activities in turn, two more general comments are in place. 988

In order to make his machine as simple as possible, Turing proposed that we 989

describe the actions of the computist as “split up into ‘simple operations’ which 990

are so elementary that it is not easy to imagine them further divided” (Turing 991

1937a, p. 250). In this style of analysis, the simplicity of the individual operations is 992

always the top priority. A long series of small and very simple operations is always 993

considered better than a single, somewhat more complex operation. This should be 994

kept in mind in the discussion of all four of these activities.31
995

The other comment concerns an assumption that Turing seems to have made 996

implicitly, namely that the operations performed by the computist take time. If each 997

component of a computation could follow immediately upon its predecessor, so that 998

an unlimited number of them could be performed “in no time”, then we would be 999

able to complete an infinite number of operations. This would make a big difference 1000

for what mathematical problems we could solve.32 In fact, it would be sufficient for 1001

the operations to go successively faster in the way described by R.M. Blake in 1926: 1002

The first in an infinite series of operations takes half a second, the second operation 1003

1/4 s, the third 1/8 etc. Then the whole infinite series will be finished in one second 1004

(Blake 1926, p. 651). Or, as Bertrand Russell said the year before Turing published 1005

his article: “Might not a man’s skill increase so fast that he performed each operation 1006

in half the time required for its predecessor? In that case, the whole infinite series 1007

would take only twice as long as the first operation.” (Russell 1936, p. 144). Turing’s 1008

analysis tacitly excludes such unlimited acceleration of activities (although it would 1009

seem like the epitome of “effective computation”). We should assume that there is 1010

some non-zero stretch of time that each step in the calculation takes as a minimum. 1011

Reading: Humans can perceive several symbols simultaneously. This is how we 1012

read a text; only a novice reader spells her way through a text letter by letter. But 1013

there is a limit to how much we can take in at the same time. You are just now 1014

perceiving whole words at a time in this text (and it would be very difficult to follow 1015

it if you had only one letter at a time presented to you). However, neither you nor 1016

anyone else can ingest whole pages at a time. The situation is similar for someone 1017

reading inputs or intermediate results in a computation. Turing wrote: 1018

We may suppose that there is a bound B to the number of symbols or squares which the 1019

computer can observe at one moment. If he wishes to observe more, he must use successive 1020

observations. (Turing 1937a, p. 250) 1021

Suppose that the computist can simultaneously read at most ten adjacent symbols. 1022

Then we can just as well assume that she can only read one symbol at a time, but 1023

31One aspect of this priority for simplicity is that each operation is assumed to affect only a minimal
part of the tape. This feature can be described as a locality condition or, better, a set of locality
conditions for reading, writing, and moving (Sieg 2009, pp. 584–587).
32Based on this omission in Turing’s text, Copeland (1998) claims that Turing machines can
compute Turing-incomputable functions, namely if they perform infinitely many operations in
finite time.
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moves across ten squares and remembers the pattern. (We will return below to how 1024

memory can be organized in a Turing machine.) The same applies to any number 1025

of adjacent symbols. Therefore, without much ado, we can assume that only one 1026

symbol space at a time can be read. 1027

At any moment there is just one square. . . which is ‘in the machine’. We may call this 1028

square the ‘scanned square’. The symbol on the scanned square may be called the ‘scanned 1029

symbol’. The ‘scanned symbol’ is the only one of which the machine is, so to speak, 1030

‘directly aware’. (Turing 1937a, p. 231) 1031

Turing was well aware that sometimes, in a calculation, you need to read something 1032

that is far away from the symbols you are currently working on. You may for 1033

instance have to pick up an intermediate result that you obtained several pages 1034

ago. But Turing pointed out that this can easily be done if we introduce a special 1035

symbol sequence adjacent to the information that may have to be retrieved later. 1036

The information can then be found by going back step by step, searching for that 1037

sequence (Turing 1937a, p. 251). 1038

Writing: As a child I was much amused by a comic strip in which Goofy, who 1039

had for some reason temporarily become a genius, wrote poems in Sanskrit with one 1040

hand and at the same time mathematical proofs with the other. But that was a truly 1041

superhuman feat. Although we typically read more than one symbol simultaneously, 1042

it is uncommon for us humans to write more than one symbol at a time. The 1043

established procedure for writing a sequence of symbols is to write them one at 1044

a time. Unsurprisingly, Turing chose to restrict writing to one symbol at a time, just 1045

as he had done for reading. His arguments for restricting reading in this way applies 1046

to writing as well: 1047

We may suppose that in a simple operation not more than one symbol is altered. Any other 1048

changes can be split up into simple changes of this kind. (Turing 1937a, p. 250) 1049

Since the spatial relations between symbols are important, it is essential to write 1050

each new symbol in the right place. Turing wrote: 1051

The situation in regard to the squares whose symbols may be altered in this way is the same 1052

as in regard to the observed squares. We may, therefore, without loss of generality, assume 1053

that the squares whose symbols are changed are always ‘observed’ squares. (Turing 1937a, 1054

p. 250) 1055

Since he also assumed that there is at each moment only one observed square, it 1056

follows that writing will have to take place in that square. Should there be reason 1057

to write in another square than that which is observed, then that can be achieved by 1058

moving first and then writing. 1059

In the last quotation Turing used the term “alter” for writing. This means that 1060

writing need not consist only of filling in blank squares. Overwriting is also allowed. 1061

In other words, the ideal computist performing an effective computation does not 1062

only have a pencil, she has an eraser as well.33
1063

33The option of erasing a symbol to replace it by a blank square was not included in Turing’s
account, and it does not either seem to have had any role in later versions of the Turing machine.
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Moving: Although only one symbol space at a time can be attended to, it must 1064

be possible to move around so that different symbol spaces can be read and written 1065

into. 1066

The machine may also change the square which is being scanned, but only by shifting it one 1067

place to right or left. (Turing 1937a, p. 231) 1068

There are at least two ways in which longer moves can be performed in a precise 1069

manner. First, a series of instructions can, in combination, specify the number of 1070

steps in a movement. For instance, moving three steps to the right can be achieved 1071

with a series of three instructions: 1072

(i) move one step to the right and then enter a state encoding that two steps to the 1073

right remain to be made, 1074

(ii) move one step to the right and then enter a state encoding that one step to the 1075

right remains to be performed, and 1076

(iii) move one step to the right. 1077

Secondly, an iterated move can be limited by a sequence of symbols that, if read in 1078

that order, will put an end to the movement. For instance, a series of moves to the 1079

right can be discontinued as soon as three 1’s in a row have been scanned. 1080

Keeping track: We have now described the actions that a Turing machine can 1081

perform. It remains to describe how these actions are controlled. Turing wrote 1082

several years later: 1083

It will seem that given the initial state of the machine and the input signals it is always 1084

possible to predict all future states. This is reminiscent of Laplace’s view that from the 1085

complete state of the universe at one moment of time, as described by the positions and 1086

velocities of all particles, it should be possible to predict all future states. (Turing 1950, p. 1087

440) 1088

This was not meant as an endorsement of a deterministic view of the universe. 1089

According to Turing, determinism is “rather nearer to practicability” for a computa- 1090

tion than for the whole universe. (p. 440) The outcome of a computation should 1091

be exactly determined by the input and the instructions according to which the 1092

computation is performed. The application of the instructions (rules) has to be 1093

controlled by a mechanism that keeps track of “where we are” in the process. This 1094

is something that a human computist has to do throughout the process. For instance, 1095

in the addition discussed in Sect. 9.5.1, the computist must know, at each stage of 1096

the process, “I am now at a stage when I should move one step to the left”, “I am 1097

now at a stage when I should write 1”, etc. In addition, she will have to know what 1098

stage of the process she has to enter after completing the present one. Turing chose 1099

to call these stages states of mind. Furthermore: 1100
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The behaviour of the computer at any moment is determined by the symbols which he is 1101

observing, and his ‘state of mind’ at that moment. (Turing 1936–7, p. 250)34 1102

We therefore need a set of instructions, one for each combination of a state of mind 1103

and a scanned symbol. The instruction should tell us what to do, and what state of 1104

mind to enter after having done it. For simplicity, we can assign numbers to the 1105

states of mind so that they can easily be referred to. An instruction can then have 1106

the following form: 1107

If in state 12 reading 0, then write 1 and enter state 14. 1108

In Textbox 9.3, a simple Turing machine is presented that subtracts the number 1 1109

from any positive integer in digital notation. 1110

How many states of mind are needed? The more complex a computation is, the 1111

more states may be required. But Turing put a limit to their numerosity: 1112

We will also suppose that the number of states of mind which need be taken into account is 1113

finite. (Turing 1937a, p. 250) 1114

For this he gave two reasons. First: 1115

The reasons for this are of the same character as those which restrict the number of symbols. 1116

If we admitted an infinity of states of mind, some of them will be ‘arbitrarily close’ and will 1117

be confused. (Turing 1937a, p. 250) 1118

This is not a very strong argument. Suppose that we have an infinite series of states 1119

of mind. We can call them S1, S2, S3, . . . They can be constructed so that they all 1120

behave differently. This would make them distinguishable. And although it would 1121

take an enormous amount of time to find a state with a very high number in a table 1122

of the states, such a search task is well within the presumed capacity of a Turing 1123

machine. Turing’s second argument was much stronger. 1124

Again, the restriction is not one which seriously affects computation, since the use of more 1125

complicated states of mind can be avoided by writing more symbols on the tape. (Turing 1126

1937a, p. 250) 1127

In order to keep track of how many times a specific operation has been performed, 1128

we may introduce a series of states, one for having done it once, another for having 1129

done it twice, etc. However, if we want the operation to be performable an unlimited 1130

number of times, then that solution is impossible unless we allow an infinite number 1131

of states of mind. But there is another solution. We can introduce a “counter” on the 1132

tape together with a mechanism that adds 1 to the counter each time the operation 1133

has been performed. In this way, we can keep track of an unlimited number of times 1134

that the operation has been performed, while still having a finite number of states of 1135

mind. 1136

34As we saw above, Turing argued that the process could be so constructed that only one symbol
at a time is observed. Consequently, “symbols” can be replaced by “symbol” in this statement. Cf.
Turing (1937a), pp. 231–232, 251 and 253–254.
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The machine has three states and the following instructions:
If in state 1 reading 0, then write 1 and enter state 2.
If in state 1 reading 1, then write 0 and enter state 3.
If in state 2 reading 1, then move left and enter state 1.
If in state 3 reading 0, then move left and enter state 3.
If in state 3 reading 1, then move left and enter state 3.
The machine starts in state 1, reading the rightmost digit of the number. It halts when it reaches a condition
for which it has no instruction. (Alternatively,we can add instructions making it halt when reading a
blank.) In this example, it subtracts 1 from 20.

1 0 1 0 0

1

1 0 1 0 1

2

1 0 1 0 1

1

1 0 1 1 1

2

1 0 1 1 1

1

1 0 0 1 1

3

1 0 0 1 1

3

1 0 0 1 1

3

1 0 0 1 1

3

Textbox 9.3 A simple Turing machine that subtracts 1 from a number in binary notation
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Another interesting argument for allowing only a finite number of states of mind 1137

was introduced by Stephen Kleene (1909–1994): 1138

Let us have a try at making sense out of there being a potential infinity of states of mind by a 1139

human computer with an expanding mind in applying an algorithm. So I encounter Smarty 1140

Pants, who announces to me, “I can calculate the value of a certain function φ(x), for each 1141

value of x for which it is defined, by rules already fixed which will determine my every 1142

step, so that what function φ(x) is is already determined. But I can’t tell you, Wise Acre, 1143

how, because the rules have to tell how I will respond in each of an infinity of ultimately 1144

possible states of my expanding mind.” I would reply, “Phooey! If you can’t tell me what 1145

your method is, it isn’t effective in my understanding of the term!” How can S.P. know 1146

about all those future states of his infinitely expanding – should I say exploding? – mind? 1147

(Kleene 1987, p. 493) 1148

According to Kleene, the very notion of an algorithm or an effective computation 1149

“involves its being possible to convey a complete description of the effective 1150

procedure or algorithm by a finite communication, in advance of performing 1151

computations in accordance with it” (Kleene 1987, p. 493).35 This is certainly an 1152

essential component of what we mean by an algorithm: it must be possible to apply 1153

unambiguously, and therefore it must also be possible to specify and communicate. 1154

Hopefully, the arguments in this section – most of them Turing’s own, but some 1155

added later on – are sufficient to show that he provided a highly convincing account 1156

of what it means for a mathematical entity to be computable, or obtainable by 1157

performing an algorithm. It should again be emphasized that Turing’s analysis was 1158

aimed at determining what a human can do by following an algorithm, i.e. a fully 1159

rule-bound and deterministic procedure for symbol manipulation. The hypothetical 1160

machine that emerged from this analysis showed, as he saw it, that anything a human 1161

computist can do by just following instructions, can also be performed by a certain 1162

type of machine. Later, after several years’ experience of the development of digital 1163

computers, he referred to human computing as the model on which they were based: 1164

The idea behind digital computers may be explained by saying that these machines are 1165

intended to carry out any operations which could be done by a human computer. The human 1166

computer is supposed to be following fixed rules; he has no authority to deviate from them 1167

in any detail. We may suppose that these rules are supplied in a book, which is altered 1168

whenever he is put on to a new job. He has also an unlimited supply of paper on which he 1169

does his calculations. He may also do his multiplications and additions on a ‘desk machine’, 1170

but this is not important. (Turing 1950, p. 436) 1171

9.5.3 The Universal Machine 1172

In addition to his path-breaking analysis of the notion of a computation, Turing’s 1173

article contained another equally important achievement, namely the construction of 1174

a “universal” Turing machine that can perform all calculations performable by any 1175

35Cf. Hofstadter (1979), p. 562.
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other Turing machine. To see how this is possible, we can begin by noting that in 1176

order to specify a Turing machine it is sufficient to provide a list of all the rules that 1177

govern its performance. For instance, the Turing machine presented in Textbox 9.3 1178

is specified by the five rules that are given in the box. Each of these rules can easily 1179

be converted into a list of four numbers. If we use 0 to denote “write 0”, 1 for “write 1180

1”, and 2 for “go left”, then the five rules in the example can be rewritten as follows: 1181

〈1, 0, 1, 2〉 1182

〈1, 1, 0, 3〉 1183

〈2, 1, 2, 1〉 1184

〈3, 0, 2, 3〉 1185

〈3, 1, 2, 3〉 1186

It is fairly easy to encode these rules in binary notation and put them on a tape in 1187

such fashion that the rule what to do in a specific situation (such as “in state 2, 1188

reading 1”) can be retrieved unambiguously. The same tape can also contain the 1189

input sequence that we want to run on this machine (such as 10100 in our example). 1190

A universal Turing machine reads the first symbol of the input and then searches the 1191

tape for the instruction that is applicable in this case, executes that instruction, reads 1192

the symbol in the symbol space where it is now located, searches for the appropriate 1193

instruction, executes it, etc. Turing showed in detail how a universal machine can be 1194

constructed, providing a list of the rules determining its operations (Turing 1937a, 1195

pp. 243–246). A couple of years later, when he had experience of building digital 1196

computers, he described the universal machine as follows: 1197

If we take the properties of the universal machine in combination with the fact that machine 1198

processes and rule of thumb processes are synonymous we may say that the universal 1199

machine is one which, when supplied with the appropriate instructions, can be made to 1200

do any rule of thumb process. This feature is paralleled in digital computing machines such 1201

as the ACE. They are in fact practical versions of the universal machine. (Turing [1947] 1202

1986, pp. 112–113)36 1203

The construction of a universal machine makes it possible to use one and the same 1204

machine for all computations. As we saw above, this was a step essentially foreseen 1205

by Charles Babbage and Ada Lovelace, but it was nevertheless an important 1206

achievement. Turing wrote in 1948: 1207

The importance of the universal machine is clear. We do not need to have an infinity 1208

of different machines doing different jobs. A single one will suffice. The engineering 1209

problem of producing various machines for various jobs is replaced by the office work 1210

of ‘programming’ the universal machine to do these jobs. (Turing [1948] 2004, p. 414) 1211

In his 1937 paper, Turing used the universal machine to prove that the Entschei- 1212

dungsproblem is unsolvable. In order to do so he had to come up with a problem 1213

that cannot be solved by any algorithm. Note that with his encoding, every algorithm 1214

corresponds to a Turing machine that can in its turn be represented by a set of 1215

instructions on a tape (which can be run on the universal machine). 1216

36Cf. Turing ([1947] 1986, p. 107, 1950, p. 436).
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For any Turing machine we can ask the question: If we run this machine, starting 1217

with an empty tape, will it ever halt, or will it go on running for ever? Is there 1218

some algorithm for solving this problem for any Turing machine? If there is, then 1219

that algorithm must itself be representable as a Turing machine. Let us call that 1220

machine H . If we feed a tape representing some Turing machine into H , then (we 1221

can presume) it gives us the answer 1 if that machine halts, and 0 if it does not. 1222

We can now construct another machine H+ that is actually H with an extra 1223

feature at the end of the process. Whenever H prints 1, then H+ enters a loop. 1224

Whenever H prints 0, then H+ halts. Or, more succinctly: 1225

– WhenH+ is fed with the code for a Turing machine that halts, thenH+ does not 1226

halt. 1227

– When H+ is fed with the code for a Turing machine that does not halt, then H+
1228

halts. 1229

Like all other Turing machines, H+ can be represented by a code on a tape. Let us 1230

now feed the code of H+ into itself. What will happen? It follows directly that if 1231

H+ halts, then it does not halt, and if it does not halt, then it halts. Thus it is logically 1232

impossible to build a machine like H+. But if H could be built, then it would be 1233

very easy to build H+. We can therefore conclude that H cannot either be built. If 1234

there was some algorithm for solving the halting problem, then it would be possible 1235

to build H . Consequently, there is no algorithm for solving the halting problem. 1236

9.5.4 The Reception 1237

Alan Turing was far from the only logician in search of a precise specification 1238

of effective computability. Already in early 1934, the American logician Alonzo 1239

Church (1903–1995) speculated that a general class of number-theoretical functions, 1240

called the λ-definable functions, might coincide with the effectively computable 1241

functions (Sieg 1997). His PhD student Stephen Kleene was convinced “overnight” 1242

that this must be correct (Kleene 1981, p. 59), but others were less easily convinced. 1243

In particular Kurt Gödel, who had a very strong standing among his colleagues, 1244

considered the proposal to be quite unsatisfactory. In spite of Gödel’s resistance, 1245

Church presented his proposal to the American Mathematical Society in April 1246

1935 and published it the following year (Church 1936). But Gödel remained 1247

unconvinced. 1248

In an appendix to his 1937 paper, Turing showed that his and Church’s definitions 1249

coincided. In other words, the λ-computable functions coincided with the functions 1250

computable on a Turing machine. This meant that there were in fact three equivalent 1251

characterizations of computability, since the λ-computable functions were already 1252
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known to coincide with the generally recursive functions, a class defined by Jacques 1253

Herbrand (1908–1931) and Gödel.37
1254

Colleagues immediately realized that Turing’s analysis was superior to the 1255

other proposals in terms of its intuitive plausibility. Kurt Gödel, who had not 1256

been convinced by Church’s proposal, was persuaded by Turing’s argument.38
1257

Alonzo Church wrote that Turing’s proposal had, in comparison with his own, 1258

“the advantage of making the identification with effectiveness in the ordinary (not 1259

explicitly defined) sense evident immediately – i.e. without the necessity of proving 1260

preliminary theorems.”39 (Church 1937, p. 43). He also wrote: 1261

[A] human calculator, provided with pencil and paper and explicit instructions, can be 1262

regarded as a kind of Turing machine. It is thus immediately clear that computability, 1263

so defined, can be identified with (especially, is no less general than) the notion of 1264

effectiveness as it appears in certain mathematical problems (various forms of the Entschei- 1265

dungsproblem, various problems to find complete sets of invariants in topology, group 1266

theory, etc., and in general any problem which concerns the discovery of an algorithm). 1267

(Church 1937, pp. 42–43) 1268

In a textbook published in 1952, Stephen Kleene introduced the term “Church’s 1269

Thesis” for the identification of effective computability with λ-computability, Tur- 1270

ing computability and the other equivalent definitions (Soare 2007, p.708). It is now 1271

more commonly called the Church-Turing thesis. Its formal status in mathematics 1272

is not entirely clear, but a proposal by Robert Soare is worth mentioning. He 1273

compares the Church-Turing thesis to other precise mathematical explications of 1274

vague concepts that have become generally accepted, such as the definition of a 1275

continuous curve and that of an area. Soare notes that these are now “simply taken 1276

as definitions of the underlying intuitive concepts”, thus indicating that we might 1277

think similarly of the Church-Turing thesis (Soare 1996, p. 297). 1278

The thesis specifies what can be achieved by following exact instructions. As 1279

Kurt Gödel was eager to point out, mathematics is much more than that: 1280

Turing’s work gives an analysis of the concept of ‘mechanical procedure’ (alias ‘algorithm’ 1281

or ‘computation procedure’ or ‘finite combinatorial procedure’). This concept is shown 1282

to be equivalent with that of a ‘Turing machine’. . . Note that the question of whether 1283

there exist finite non-mechanical procedures not equivalent with any algorithm, has nothing 1284

whatsoever to do with the adequacy of the definition of ‘formal system’ and of ‘mechanical 1285

procedure’. . . Note that the results mentioned. . . do not establish any bounds for the powers 1286

of human reason, but rather for the potentialities of pure formalism in mathematics. (Gödel 1287

1964, pp. 72–73)40 1288

37Several other equivalent characterizations have been added to the list, first of them Emil
Post’s (1936) proposal that had some elements in common with Turing’s but was conceived
independently. As clarified by Soare (1996, p. 300), Post’s ideas were much less developed than
those presented by Turing.
38He wrote later that he was “completely convinced only by Turing’s paper”. (Letter from Gödel
to Georg Kreisel, May 1, 1968, quoted by Sieg (1994, p. 88)).
39The reference about the necessity of proving preliminary theorems refers to a technicality
clarified by Sieg (1994, p. 112).
40See also Gödel (1958).
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9.6 What Machines Can Do 1289

When Turing wrote his famous paper, computation was still a process performed 1290

by humans. Even if the computist used a mechanical desk calculator, (s)he was 1291

always involved in every step of the process. Today, large calculations are almost 1292

invariably performed on machines. It is therefore appropriate to ask whether 1293

Turing’s characterization of (effective) computations is still valid. It applies to 1294

common electronic computers as we know them, since their capacities are in 1295

principle those of a (fast) Turing machine with a finite tape. But what about 1296

other types of machines? Can we construct a machine that is capable of making 1297

computations that a Turing machine cannot perform? 1298

9.6.1 Two Elementary Insights 1299

Many discussions on what computations can be performed by machines have gone 1300

wrong due to the lack (or neglect) of two rather elementary insights. 1301

First, the notion of an effective computation by a machine is an idealization, just 1302

as the notion of an effective computation by a human (Shapiro 1998, p. 275). In 1303

fact, no physical machine can even perform all the computations performable by a 1304

Turing machine, since the latter is an idealized machine that can operate on (finite) 1305

numbers so large that they cannot be represented in the universe.41 Therefore, a 1306

machine with greater computing powers than a Turing machine cannot be an actual 1307

physical machine. It will have to be a hypothetical machine, although it may be 1308

describable as an idealized version of some type of physical machine. As illustrated 1309

in Fig. 9.2, the hypothetical machine will then stand in the same relationship to that 1310

physical machine as a Turing machine to an actual electronic computer. (It will, 1311

for instance, have to be absolutely error-free and provided with unlimited memory.) 1312

Importantly, even if this “idealized other machine” has greater computing powers 1313

than an “idealized electronic computer” (i.e. a Turing machine), it does not follow 1314

that the actually existing other machine has greater computing powers than the 1315

actually existing electronic computer. 1316

The following proposal for an extension of the Church-Turing thesis to compu- 1317

tation by machines is not untypical: 1318

Physical Church-Turing thesis: The class of functions that can be computed by any physical 1319

system is co-extensive with the Turing computable functions. (Timpson 2007, p. 740) 1320

This proposed thesis is followed by a discussion of how it could be falsified by 1321

the construction of various powerful computing devices. But that is an unnecessary 1322

discussion. As it stands, the thesis is obviously false since no physical device can 1323

41According to one estimate, the universe can register up to 1090 bits (Lloyd 2002). Obviously, the
practical limitations for a computing device ever to be built are much stricter.
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electronic computer

(Turing machine)

Idealized other
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computer
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computing
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Fig. 9.2 The relationships between physical computers and idealized computers with unlimited
capacities. A machine that transcends the powers of a Turing machine cannot be a physical “other
computing device” but must be an “idealized other computing device” that cannot be physically
realized

have the capacity of a Turing machine to produce and operate on symbol sequences 1324

of unlimited size. 1325

The second elementary fact is that computation is a technological operation, 1326

not just a physical event. In technology, contrary to physics, human agency and 1327

intention are indispensable. Leaving them out can have absurd consequences, as 1328

can be seen from the so-called pancomputationalist standpoint, according to which 1329

every physical system implements every computation. (Shagrir 2012) For instance, 1330

the A4 sheet that I have in front of me represents a calculation of π , since if its long 1331

side is measured in a unit corresponding to about 9.45 cm, then it is 3,14 units long. 1332

(Pancomputationalism does not get better than this, and is not worth being taken 1333

seriously.) 1334

Computation is a process into which an intelligent agent enters an input, and 1335

receives an output. The process has to be reliable, repeatable, and as Piccinini (2015, 1336

p. 253) pointed out, settable in the sense that “a user sets the system to its initial state 1337

and feeds it different arguments of the function being computed”, and then receives 1338

the appropriate outputs. 1339
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9.6.2 Computativeness 1340

We can categorize proposed methods for exceeding Turing computatibility accord- 1341

ing to two dimensions. One of these is computativeness, the degree to which the 1342

operation in question is or at least resembles a computation. I propose that we 1343

distinguish between three degrees of computativeness. 1344

The highest degree requires that the process is exactly characterized in predeter- 1345

mined, consecutive small steps, just like an ordinary mathematical algorithm. This 1346

is a property that ordinary digital computers have, as noted by Turing in 1950. 1347

The digital computers considered in the last section may be classified amongst the ‘discrete 1348

state machines’. These are the machines which move by sudden jumps or clicks from 1349

one quite definite state to another. These states are sufficiently different for the possibility 1350

of confusion between them to be ignored. Strictly speaking there are no such machines. 1351

Everything really moves continuously. But there are many kinds of machine which can 1352

profitably be thought of as being discrete state machines (Turing 1950, p. 439)42 1353

There is an obvious problem with the idea of a machine that performs Turing- 1354

incomputable operations with this high degree of computativeness: If its operations 1355

are performed step by step in this way, then they can be checked but a human 1356

computist, and then why cannot they also be performed by a computer or by a Turing 1357

machine? 1358

One possibility would be that the machine has capacities for parallel computing 1359

that human computists lack. This option was carefully investigated by Robin Gandy 1360

(1980). He assumed that a hypothetical physical computing device performs its 1361

operations in discrete and uniquely determined steps. Massively parallel operations 1362

are allowed, but the machine must satisfy two physical conditions: There is a lower 1363

limit on the size of its smallest parts, and there is also a limit (such as the speed of 1364

light) on the speed of signal transmission between its parts. Gandy concluded that 1365

whatever can be computed by such a machine, working on finite data according to 1366

a finite set of instructions, is Turing computable. 1367

The second degree of computativeness is represented by an input-output device 1368

that does not operate in describable discrete steps. Such a device could be called a 1369

“black box”, but in order to rely on it we would have to know how it works and have 1370

very good reasons to believe that it performs the computation accurately. 1371

The major problem with such a device would be that if we rely on it, then our 1372

reliance is based on physical rather than mathematical knowledge. According to 1373

the traditional view, mathematics cannot be based on empirical observations, since 1374

mathematical knowledge must have a type of certainty that cannot be achieved in 1375

empirical science. If a mathematical result relies on a computation that we cannot 1376

follow in detail, then it may not be possible to check its validity with mathematical 1377

means. Our reliance on it would have to depend on some physical theory, and this 1378

would add a component of uncertainty that is outside of the purview of mathematics 1379

42Charles Babbage put much effort into making his computing machines operate by switching
reliably between discrete states (Swade 2011b, pp. 67–70).



UNCORRECTED
PROOF

226 S. O. Hansson

– unless that theory has been “certified as being absolutely correct, unlike any 1380

existing theory, which physicists see as only an approximation to reality” (Davis 1381

2006, p. 130). 1382

But on the other hand, traditional belief in mathematical certainty is arguably a 1383

chimera. There is ample historical evidence that published work by highly respected 1384

mathematicians sometimes contains serious mistakes (Grcar 2013). For all that we 1385

know, the probability of a mistake in a very complex mathematical proof may be so 1386

high that its veracity is more uncertain than that of some of our physical theories. 1387

Whether we would be prepared to rely on a device with the second degree of 1388

computativeness will therefore depend on our standpoint in a highly contentious 1389

philosophical issue: Should the reliability of mathematical theorems be judged 1390

according to our best estimates of the probability of error, or should we uphold 1391

the traditional separation between mathematical and empirical knowledge? 1392

The third and lowest degree of computativeness is represented by physical events 1393

that cannot be harnessed in an input-output computational device. As argued in the 1394

previous section, such a physical event is not, properly speaking, a computation or a 1395

computational event. However, much of the discussion on computations beyond the 1396

bounds of Turing computability has referred to such events. The following quotation 1397

is far from unrepresentative of the discussion: 1398

I can now state the physical version of the Church-Turing principle: ‘Every finitely 1399

realizable physical system can be perfectly simulated by a universal model computing 1400

machine operating by finite means.’ (Deutsch 1985, p. 99) 1401

On this interpretation, any physical phenomenon which we cannot (currently) 1402

describe adequately with Turing computable functions would refute the physical 1403

version of the Church-Turing thesis. However, simulation and modelling are very 1404

different from computation. That we lack means for simulating a natural process 1405

certainly does not imply that we can use that process for making a calculation. We 1406

should therefore regard this type of events as (at most) raw material from which a 1407

computing device can be constructed. 1408

9.6.3 Corroboration 1409

The second dimension is corroboration, the degree to which the actual functioning 1410

of the potential computing device has been demonstrated. Here, again, three 1411

levels are appropriate. The highest degree of corroboration is an actually working 1412

computer. The next highest degree is a device for which there is a proof of 1413

concept, but still no working prototype. In such cases, the physical principles 1414

underlying the device are well-known and have been sufficiently demonstrated, but 1415

significant work remains to harness them in a practically useful device. Currently, 1416

quantum computation is an example of this. (It is expected to speed up some 1417

computations, but not to transcend Turing computability. See Hagar and Korolev 1418

2007.) The third and lowest degree is compatibility with some valid physical theory, 1419
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Fig. 9.3 Two dimensions for the evaluation of proposed computational devices. Computativeness
is represented on the vertical and corroboration on the horizontal dimension. The white square
represents actual computing devices. The light grey area represents hypothetical computing
devices. The dark grey area represents vague speculations about such devices

without sufficient knowledge of the physical conditions that have to be satisfied 1420

for the device to be realizable. As was noted by Itamar Pitowsky (2007, p. 625), 1421

compatibility with a single physical theory, such as relativity theory, is “a very 1422

weak notion of physical possibility”. However, since it is often referred to in these 1423

discussions we have to include it in our deliberations. 1424

In Fig. 9.3, the two dimensions for evaluating computational devices have been 1425

combined. Let us now have a look at two of the hypothetical devices that have 1426

most frequently been discussed in the debate on whether computation transcending 1427

Turing computability is possible. 1428

9.6.4 Two Examples 1429

Mark Hogarth (1994) proposed what is probably the most discussed computational 1430

method intended to transcend Turing computability. Under certain conditions that 1431

are compatible with the laws of general relativity, there can be two trajectories from 1432

one point in space-time to another. One of these trajectories – we may call it the 1433

Endless Road – takes infinitely long time, whereas the other – we may call it the 1434

Shortcut – takes only finitely long time. You can then, or so it is said, start a Turing 1435

machine and send it along the Endless Road. Having done that, you take the Shortcut 1436
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to the place where the two trajectories meet. There you will find out what the Turing 1437

machine achieved in infinite time. This would seem to be a nice way to solve the 1438

halting problem and a host of other problems that cannot be solved in the usual way 1439

since we cannot compute for ever and yet receive the outcome. 1440

But does it work? Well, there are a few problems. For instance, a machine that is 1441

run for infinite time will need an infinite supply of energy. Like all other machines 1442

it will have a non-zero and possibly increasing probability of failure, which means 1443

that it is sure to malfunction within infinite time (Button 2009, pp. 778–780). There 1444

are also some additional trifles to deal with, such as locating the particular type 1445

of region in space-time (if it exists), and finding a reliable carrier that brings the 1446

machine along the Endless Road to the meeting place that was decided an infinitely 1447

long time ago. 1448

This construction is a clear case of the lowest degree of corroboration: mere 1449

compatibility with one particular physical theory, namely, in this case, relativity 1450

theory. But if it worked, it would operate through a discrete, stepwise process, so 1451

we should place it in the rightmost square in the top row in Fig. 9.3. 1452

Another often discussed example is based on the so-called three-body problem 1453

in classical mechanics. The problem is very simple to state: Suppose that we have 1454

three physical bodies in space. We know their masses, and we also know what 1455

positions, velocities, and directions of movement they have at a particular point 1456

in time. The three-body problem is to predict the positions of all three bodies at all 1457

future points in time. In its general form the problem has no known solution. Georg 1458

Kreisel (1923–2015) proposed that some cases of the three-body problem may 1459

lack a Turing computable solution (Kreisel 1974, p. 24).43 But here it is essential 1460

to distinguish between the Newtonian model of mechanics, in which bodies are 1461

represented by point masses and velocity is unlimited, and the real physical world. 1462

For instance, Zhihong Xia has shown that in the corresponding five-body problem, 1463

one of the bodies could be sent off at infinite speed (Saari and Xia 1995). This will 1464

of course not happen in real life. It is an anomaly of the model. More generally 1465

speaking, mathematical representations of physical systems should not be confused 1466

with these systems themselves. Notably, “incomputability is just a property of the 1467

mathematical way of representing physical systems”, not a property of the actual 1468

physical systems (Cotogno 2003, p. 186). 1469

No practically realizable many-body constellation with uncomputable properties 1470

appears to have been presented. Furthermore, if such a constellation were to 1471

be brought about, it would not be an input-output device but just a physical 1472

phenomenon which could not be simulated by a computable function. We must 1473

therefore put this type of example in the right-most square at the bottom line of 1474

Fig. 9.3. 1475

These are just two examples, but they are among the most promoted ones. Most 1476

of the proposals for computations beyond the limit of Turing computability fail in 1477

a very elementary respect: No other proof is given of their realizability than that 1478

43Cf. Smith (2006).



UNCORRECTED
PROOF

9 Mathematical and Technological Computability 229

they are compatible with a particular physical theory. In addition, most of them lack 1479

the input-output relationship and the settability that are characteristic of anything 1480

that anyone, outside of this debate, would call a computer. Whether more promising 1481

proposals will come up in the future is, of course, an open issue. 1482

9.7 Conclusion 1483

Let us summarize some of the main themes discussed in this chapter. Mathemati- 1484

cians in ancient civilizations were engaged in two major pursuits. One was to prove 1485

theorems, i.e. general statements about mathematical subject matter. The other was 1486

to construct algorithms, procedures for solving various classes of problems. An 1487

algorithm is a rule-bound and completely determinate procedure on symbols that 1488

can be performed “mechanically”. Algorithms were invented for simple tasks such 1489

as the basic arithmetic operations, but also for a wide variety of more advanced 1490

tasks. In a sense, algorithms are the technology of mathematics. 1491

Beginning in ancient Greece, theorem-proving became the dominant activity in 1492

European mathematics. The construction of algorithms was a subsidiary and less 1493

esteemed activity. But at least since the thirteenth century, scholars have worked 1494

hard to find ways to reduce all form of human reasoning to simple procedures in 1495

the style of an algorithm. Major intellectuals such as Francis Bacon and Gottfried 1496

Wilhelm Leibniz were deeply engaged in these activities, and considerable efforts 1497

– including the construction of logic-friendly artificial languages – were spent on 1498

the project. But not much success was registered until scholars turned to the more 1499

limited task to encode mathematical reasoning, rather than reasoning in general, in 1500

a strictly formalized system. 1501

In the second half of the nineteenth century, logicians developed new and more 1502

powerful logical languages. Although still insufficient for most forms of human 1503

reasoning, the new languages were sufficient to encode mathematical reasoning. 1504

Mathematical axioms and theorems could be expressed as logical formulas, without 1505

any need for natural language. Proofs could take the form of lists of such logical 1506

statements, beginning with the axioms and ending with the theorem. Each item on 1507

the list would have to follow from its predecessors according to a set of derivation 1508

rules. These rules carried instructions for simple, rule-bound symbol manipulations, 1509

just like classical algorithms. 1510

These achievements came at a most timely occasion since two of the foremost 1511

mathematical disciplines, analysis and geometry, had severe foundational problems. 1512

The new logic offered a way to put these and other mathematical disciplines on firm 1513

foundations. The problem how to construct algorithms moved from the periphery of 1514

mathematical research to a central role in the foundations of the discipline. 1515

In 1937 Alan Turing provided a characterization of routine symbol manipula- 1516

tions. Every such operation that a human can perform can be reduced to a set 1517

of very simple, truly “mechanical” operations. These operations were in fact also 1518
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mechanical in another sense: They can be performed by a machine. A digital 1519

computer can do everything that a human can do routinely (and do it much faster). 1520

Mathematical operations such as computations and proofs have important fea- 1521

tures in common with technological processes. They are intentional, contrary to 1522

most other physical events. If a storm brings together a pile of six pebbles with 1523

another pile that has eight pebbles, it has not performed a computation – and neither 1524

have I if I just raked together two piles of pebbles without reflecting on their 1525

numbers. A physical process that takes place independently of anyone’s intentional 1526

action is neither a technological nor a mathematical process. Unfortunately, physical 1527

events involving no one’s intentions have often been confounded with computations. 1528

Furthermore, both mathematical and technological processes are required to be 1529

reliable. This requirement is usually stricter in mathematics than in technology. A 1530

mathematical process such as a computation has to yield the right result on each and 1531

every occasion when it is implemented according to the instructions. 1532

A third property of interest is lucidity. It is an advantage if we know how a 1533

technological process works, not only that it works. However, this is not an absolute 1534

criterion in technology, and reliable technologies have been used without much 1535

understanding of why and how they work (Norström 2013). In mathematics, to the 1536

contrary, lucidity is considered to be an absolute criterion. We expect to have full 1537

access to computations and proofs so that we can check them. This creates problems 1538

for proposals to perform computations in physical systems that we cannot follow 1539

stepwise as we can with ordinary digital computers. 1540

Criteria such as intentionality, reliability, and lucidity have to be taken into 1541

account in the analysis of devices that may potentially be used for computational and 1542

other mathematical purposes. Although mathematics and technology are distinctly 1543

different activities, the study of algorithms and computations has much to learn 1544

from studies of intentional human action that have been performed not least in the 1545

philosophy of technology. 1546
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of a dynamical explanation of the quantum correlations, to be given in terms of 10

some interpretations (or alternative formulations) of quantum theory. In order to 11

strengthen the claim that it can provide an explanation of the quantum correlations, 12

quantum information theory should inquire into the possibility that the quantum 13

correlations could be treated as “natural”, that is, as phenomena that are physically 14

fundamental. As such, they would admit only a structural explanation, similarly to 15

what happened in crucial revolutionary episodes in the history of physics. 16

10.1 Introduction 17

On the wake of the remarkable success enjoyed by quantum theory in its application 18

to computation theory and cryptography, many philosophers and physicists have 19

recently explored the idea that information can also play a privileged foundational 20

role. Such thesis has been articulated in a variety of ways, starting from the claim 21

that an analysis of the information-processing capabilities of quantum systems can 22

provide a deeper understanding of some of the most puzzling quantum phenomena, 23

to the claim that Quantum Information Theory is the right framework for the 24

formulation of quantum theory, to the claim that such a theory is about quantum 25

information. With respect to the wave-particle duality, for instance, Bub has 26

argued that: “quantum mechanics [ought to be regarded] as a theory about the 27

representation and manipulation of information constrained by the possibilities and 28
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impossibilities of information-transfer in our world (a fundamental change in the 29

aim of physics), rather than a theory about the behavior of non-classical waves and 30

particles.” (Bub 2005, 542). 31

Bub, together with many other philosophers and physicists, relied in particular 32

on axiomatic reconstructions of quantum theory in terms of information-theoretic 33

principles as the right framework for the reformulation of quantum theory in 34

terms of information. In view of the many progresses axiomatic reconstructions 35

of quantum theory achieved in the study of nonlocality, in fact, it is natural to raise 36

the question whether such theories can somehow explain the kind of nonlocality 37

displayed by the quantum correlations. In this paper, we investigate this question 38

by discussing and evaluating a remarkable theorem by Clifton, Bub and Halvorson 39

(2003) (CBH henceforth). 40

In addition, we argue that, on the one hand, axiomatic reconstructions of quantum 41

theory can provide a genuine explanation of one aspect of nonlocality, in virtue 42

of its counterfactual dependence on the core principles of quantum theory. On the 43

other hand, however, this explanation per se does not account for the occurrence 44

of quantum correlations. As we will show, explaining quantum correlations in 45

terms of quantum information theory would require a structural explanation (Dorato 46

and Felline 2011), which rules out the possibility of other causal or dynamical 47

accounts of the quantum correlations. A fully structural explanation of nonlocality 48

could therefore only be achieved if the quantum correlations turned out to be 49

fundamental or “natural”, in the sense of being non-caused or non-dynamically 50

explainable. In this sense of natural, vertical motion was natural in Aristotelian 51

physics, inertia became natural in Newtonian physics, length contractions and free 52

fall became natural in special and general relativity respectively, in virtue of a 53

replacement of previous dynamical explanations by explanations given in terms of a 54

new spatiotemporal structure providing a structural explanation (Dorato 2014). Our 55

conclusion will be that (at least so far) axiomatic reconstructions of quantum theory 56

cannot show that quantum correlations are fundamental or natural in this sense. 57

In the first section of the paper we analyze axiomatic reconstructions of quantum 58

theory’s account of nonlocality in terms of CBH’s characterization theorem. In the 59

second section, we illustrate the sense in which CBH’s approach can provide an 60

explanation of nonlocal entangled states by showing how they are counterfactually 61

dependent on the core principles of quantum theory. In Sect. 10.3 we introduce 62

the notion of structural explanations as explanations that render a causal/dynamical 63

account superfluous. We finally evaluate CBH’s claim that axiomatic reconstruc- 64

tions of quantum theory makes a dynamical interpretation of quantum theory 65

explanatorily irrelevant by translating it into the question whether their explanations 66

can be equated to structural explanations in the sense discussed in the first two 67

sections. 68
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10.2 Quantum Entanglement and Axiomatic 69

Reconstructions of Quantum Theory 70

Axiomatic reconstructions aim at finding few physical principles from which it is 71

possible to derive the Hilbert structure of quantum theory: 72

[t]heorems and major results of physical theory are formally derived from simpler mathe- 73

matical assumptions. These assumptions or axioms, in turn, appear as a representation in 74

the formal language of a set of physical principles. (Grinbaum 2007) 75

By default, the principles at the basis of axiomatic reconstructions of a physical 76

theory do not have a foundational role within the theory, nor are they required to 77

be ontologically prior to its theorems. Their only role is to provide an axiomatic 78

basis for the deduction of the theory: “nothing can be generally said about their 79

ontological content or the ontic commitments that arise from these principles.” 80

(Grinbaum 2007, 391). The same, of course, is valid in the specific case of ax- 81

iomatic reconstructions of quantum theory and its information-theoretic principles 82

about the possibilities and impossibilities of information transfer. Within quantum 83

information theory in general, and in axiomatic reconstructions of quantum theory 84

specifically, information is meant in the physical sense, a notion of quantity of 85

information cashed out in terms of the resources required to transmit messages – 86

measured classically by Shannon entropy or, in quantum theory, by Von Neumann 87

entropy. 88

Some of the advocates of axiomatic reconstructions of quantum theory interpret 89

its success as evidence for the fact that information technologies and therefore 90

information-theoretic principles possess a central role also in the ontology of 91

quantum theory. In different forms, this position is held by some of the philoso- 92

phers/physicists working in this field, defending the claim that quantum theory is 93

about the epistemological state of the observer or about the claim that the world is, 94

at its bottom, just information, while offering different ontological interpretations 95

of what is meant by information. Timpson (2013) calls such contributions to the 96

foundations of quantum theory the ‘direct’ approaches to quantum information 97

theory and contrasts it to the ‘indirect’ approach, which, more humbly, aims at 98

learning something useful about the structure or axiomatics of quantum theory 99

by reflecting on quantum information-theoretic phenomena. In this paper, we shall 100

mainly discuss the indirect approach. 101

10.2.1 CBH Axiomatic Reconstruction of Quantum Theory 102

CBH prove a theorem that characterizes quantum theory by proposing three 103

“fundamental information theoretic laws of nature” (CBH 2003, 1562) or, less 104

ambitiously, three principles concerning the impossibility of information transfer: 105
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1. No superluminal information transfer via measurement. It states that merely 106

performing a local (non-selective) operation1 on a system A cannot convey any 107

information to a physically distinct system. 108

2. No broadcasting. This constraint states the impossibility of perfectly broadcast- 109

ing the information contained in an unknown physical state. Broadcasting is a 110

generalization of the process of cloning which, in turn, is a process that starts 111

with a system in any arbitrary state |α〉 and ends up with two systems, each in 112

the state |α〉. While cloning applies only to pure states, broadcasting generalizes 113

also to mixed states. In quantum mechanics, broadcasting is possible for a set of 114

states ρi iff they are commuting. 115

3. No bit-commitment. The bit commitment is a cryptographic protocol in which 116

one party, Alice, supplies an encoded bit to a second party, Bob, as a warrant for 117

her commitment to the value 0 or 1. The information available in the encoding 118

should be insufficient for Bob to ascertain the value of the bit at the initial 119

commitment stage. However, such information should be sufficient, together with 120

further information supplied by Alice at a later stage – the ‘revelation stage’, 121

when she is supposed to “open” the commitment by revealing the value of the 122

bit – for Bob to be convinced that the protocol does not allow Alice to cheat by 123

encoding the bit in a way that leaves her free to reveal either 0 or 1 at will. As 124

an illustration of how this cheating strategy should work, consider this example 125

from (Timpson 2013): 126

Consider a spin-1/2 system: a 50/50 mixture of spin-up and spin-down in the z-direction 127

is indistinguishable from a 50/50 mixture of spin-up and spin-down in the x-direction— 128

both give rise to the maximally mixed density operator ½ 1. Alice might associate the 129

first type of preparation with a 0 commitment and the second with a 1 commitment. 130

Bob, when presented with a system thus prepared will not be able to determine which 131

procedure was used. Alice also needs to keep a record of which preparation procedure 132

she employed, though, to form part of the evidence with which she will convince Bob 133

of her probity at the revelation stage. Thus, for a 0 commitment, Alice could prepare a 134

classically correlated state of the form: 135

0 commitment: (1) 136

whilst for a 1 commitment, she could prepare a state 137

1 commitment: (2) 138

System 2 is then sent to Bob. 139

At the revelation stage, Alice declares which bit value she committed to, and hence 140

which preparation procedure she used. The protocol then proceeds in the following 141

way: If she committed to 0, Alice and Bob both perform σz measurements and Alice 142

declares the result she obtains, which should be perfectly correlated with Bob’s result, 143

if she really did prepare state ρ0. Similarly, if she committed to 1, Alice and Bob both 144

perform σx measurements and Alice declares her result, which again should be perfectly 145

correlated with Bob’s result, if she really prepared state ρ1. If the results reported by 146

Alice and obtained by Bob don’t correlate, then Bob knows that Alice is trying to 147

mislead him. The trouble with this otherwise attractive protocol is that Alice is able to 148

cheat freely by making use of what is known as an EPR cheating strategy. Thus, rather 149

than preparing one of the states ρ0 or ρ1 at the commitment stage, Alice can instead 150

1Selective measurements operations are here obviously not considered, given that in such
operations the statistics in general changes due to a change of the ensemble under study.
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prepare an entangled state, such as the Bell state |ϕ+>12. The reduced density operator 151

for Bob’s system will still be ½ 1, but Alice can now simply wait until the revelation 152

stage to perform a suitable measurement on her half of the entangled pair and prepare 153

Bob’s system at a distance in whichever of the two different mixtures she chooses (pp. 154

212–213).2 155

By asserting the impossibility of such a secure cryptographic protocol, the no bit- 156

commitment principle assures the stability of entangled states also in macroscopic 157

or nonlocal processes and forbids that entangled states decay in macroscopic or 158

nonlocal states. Schrödinger contemplated the possibility of such a theory in (1936). 159

Within this kind of theory (which, following Timpson, we shall call Schrödinger- 160

type theory), the EPR cheating strategy would not be applicable (given that 161

entangled states would not be stable enough) and the secure bit-commitment would 162

be in general possible. 163

The CBH Characterization Theorem, therefore, demonstrates that the basic 164

kinematic features of a quantum-theoretic description of physical systems (i.e. 165

noncommutativity and entanglement) can be derived from the three information- 166

theoretic constraints. 167

The formal model utilized by quantum information theory in order to derive 168

such a result is the C*-algebra. This is an abstract representation of the algebra 169

of observables which can represent both classical (particle and field) and quantum 170

mechanical theories. 171

As far as quantum mechanics is concerned, the algebra of all bounded 172

operators on a Hilbert space is a C*-algebra. A quantum system A is therefore 173

represented by a C*-algebra and a composite system A+B is represented by 174

the C*-algebra v . Observables are represented by self-adjoint elements of 175

the algebra and a quantum state is an expectation-valued functional over these 176

observables, with the constraint that two systems A and B are physically distinct 177

when “any state of is compatible with any state of , i.e., for any state ρA of 178

and for any state ρB of , there is a state ρ of v such that ρ|A = ρA and ρ|B 179

= ρB” (Bub 2004 p. 5). 180

The CBH theorem proves that quantum theory – which they take to be a 181

theory formulated in C∗-algebraic terms in which the algebras of observables 182

pertaining to distinct systems commute, the algebra of observables on an individual 183

system is noncommutative, and which allows space-like separated systems to be in 184

entangled states – can be derived from the assumption of the three information- 185

theoretic constraints. More exactly, it is demonstrated that (see e.g. Bub 2004, 186

pp. 246–247): (1) the commutativity of distinct algebras follows from the first 187

constraint (no superluminal information transfer via measurement) it follows the 188

commutativity of distinct algebras: if the observables of distinct algebras commute, 189

then the no superluminal information transfer via measurement constraint holds (the 190

converse result is proved in (Halvorson 2003)). Commutativity of distinct algebras 191

is meant to represent no-signalling; (2) cloning is always allowed by classical (i.e. 192

2In the following we follow closely CBH’s and Timpson’s treatments.
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commutative) theories and, if any two states can be (perfectly) broadcast, then the 193

algebra is commutative. Therefore, from the second constraint, no broadcasting, 194

follows the noncommutativity of individual algebras. (3) if and represent 195

two quantum systems (i.e., if they are individually noncommutative and mutually 196

commuting), there are nonlocal entangled states on the C*-algebra v they 197

generate. 198

However, Bub argues, we still cannot identify quantum theories with the class 199

of noncommutative C*-algebras. It is at this point that the third information- 200

theoretic constraint, the no unconditionally secure bit-commitment, is introduced, 201

‘to guarantee entanglement maintenance over distance’. 202

It has been argued that the role of no bit-commitment is in this sense somewhat 203

ambiguous (see e.g. Timpson 2013). The first suggested motivation for the need 204

of the no bit-commitment is in fact the following: in the account so far provided, 205

the existence of nonlocal entangled states follows directly from the choice of the 206

C*-algebra and from its formal properties. On the other hand, “in an information- 207

theoretic characterization of quantum theory, the fact that entangled states can be 208

instantiated nonlocally, should be shown to follow from some information-theoretic 209

principle.” (Bub 2004, p. 6). It seems, in other words, that the role of the no 210

bit-commitment is to provide an information-theoretic ground, in the context of 211

C*-algebra, to the origin of entanglement, which, otherwise, would be a mere 212

consequence of the choice of the mathematical machinery used by the theory. This 213

suggestion is made clearer in (Clifton et al. 2003): 214

So, at least mathematically, the presence of nonlocal entangled states in the formalism is 215

guaranteed, once we know that the algebras of observables are nonabelian. What does not 216

follow is that these states actually occur in nature. For example, even though Hilbert space 217

quantum mechanics allows for paraparticle states, such states are not observed in nature. In 218

terms of our program, in order to show that entangled states are actually instantiated, and— 219

contra Schrödinger—instantiated nonlocally, we need to derive this from some information- 220

theoretic principle. This is the role of the ‘no bit-commitment’ constraint. (p. 10) 221

But if the mathematical structure of reference is a C*-algebra, it would seem that 222

the function of the third principle would be to reassess the occurrence of entangled 223

states. But, as Timpson argues, the idea of positing a principle in order to “rule 224

in” something which is already part of the theory is quite peculiar: “ruling states 225

in rather than out by axiom seems a funny game. Indeed, once we start thinking 226

that some states may need to be ruled in by axiom then where would it all end? 227

Perhaps we would ultimately need a separate axiom to rule in every state, and that 228

can’t be right.” (Timpson 2013, p. 206) On the other hand, given that the problem 229

seems to rise from the existence of other weaker algebras where entanglement could 230

not follow from the first two principles, the no bit-commitment could be seen as a 231

constraint on this more general context. But in this case, it is still to be proved that 232

no bit-commitment would succeed, given that so far there is no proof that it would 233

guarantee in this more general context the stability of nonlocal entanglement. 234

In other occasions Bub suggests a slightly different role for the no bit- 235

commitment. We have already seen that the no bit-commitment is incompatible 236

with Schrödinger-type theories that, even if not in violation of the no information 237
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via measurement and no broadcasting principles, eliminate nonlocal entanglement 238

by assuming, for instance, its decay with distance. About this, Timpson argues that 239

also this argument is anyway dubious, since “a Schrödinger-type theory is only 240

an option in the sense that we could arrive at such a theory by imposing further 241

requirements to eliminate the entangled states that would otherwise occur naturally 242

in the theory’s state space.” (Timpson 2013, p. 207). 243

In (Hagar and Hemmo 2006, n.12 and 19) the no bit-commitment is interpreted 244

as a dynamical constraint, meant to rule out dynamical theories (such as GRW) 245

which, while coherent with the first two principles, implies a decay of entanglement 246

at the macroscopic level. Timpson also considers this option (2004, Ch. 9) and 247

rejects it as in evident contrast with CBH’s explicit ambitions of being concerned 248

only with the “kinematic features of a quantum-theoretic description of physical 249

systems” (Bub 2004, p. 1). Anyway, as noticed by Hagar and Hemmo, also in this 250

interpretation the no bit-commitment has a controversial status. The problem lies in 251

the fact that if the no bit-commitment applies merely to cryptographic procedures 252

where the entangled states utilized are states of microsystems, then it is redundant 253

(since also GRW complies with it); otherwise (i.e., if it also applies to situations 254

where the entanglement concern also massive systems) it would be unwarranted, 255

and quantum information theory would end up being a no-collapse theory. To see 256

why, recall the previous illustration of the bit-commitment procedure. In standard 257

quantum mechanics, the no bit-commitment holds since entanglement is stable also 258

at a distance, so that Alice can always cheat by sending to Bob a particle in entangled 259

state. Given the well-known result of the Aspect experiment, we know that in 260

such a situation a Schrödinger type theory (postulating a decay of the entangled 261

state) is not empirically adequate. This is the reason why, in such a case, the no 262

bit-commitment is justified. On the other hand, in this kind of situation the no 263

bit-commitment is respected also by the GRW theory, since the entangled state is 264

stable at microscopic scale (also when the particles are far). GRW violates the no 265

bit-commitment just in case the entangled state concerns a massive system, since 266

in this case the entanglement decays very quickly. In other words, a secure bit- 267

commitment shall always be possible in principle via a set up that requires Alice 268

to encode her commitment in the position state of a massive enough system (Hagar 269

and Hemmo 2006, §3.2). But in this case, also standard quantum mechanics implies 270

an effective decay of the system (and therefore an effective violation of the no bit- 271

commitment), due to decoherence. And at the moment there is no empirical ground 272

for deciding which of the two approaches (GRW’s collapsed state or standard 273

quantum theory with decoherence) is the correct one. But then it follows that 274

if the no bit-commitment is meant to ensure the stability of entanglement also 275

at a distance, then it is uninformative; if it is meant to ensure the stability of 276

entanglement also for massive bodies, then it is not supported by empirical grounds. 277

(Hagar and Hemmo 2006, §3.2). 278

Finally, there is another feature that seems to testify against the interpretation of 279

the no bit-commitment as a dynamical principle. So far, we have utilized Hagar and 280

Hemmo’s treatment of the no bit-commitment in order to show how, even if taken 281

as a dynamical principle, it is not able to provide an information-theoretic ground 282
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to the occurrence of entangled states. But another obvious consequence of taking 283

the no bit-commitment seriously in virtue of its active role in ruling out dynamical 284

reduction models à la GRW would mean to forbid collapse not only for nonlocal 285

entangled states, but also in massive bodies. In other words, what we would end up 286

with would be a genuine no-collapse theory, which is clearly not what CBH had in 287

mind with their third information-theoretic principle. 288

In a word, the conclusions that we have reached with respect to the effectiveness 289

of the no bit principle in providing an information-theoretic ground to entanglement 290

are as follows: as a kinematic principle, the no bit-commitment has a dubious role: 291

either it is redundant (in the context of the C*-algebra); or it is unconvincing. As 292

a dynamical principle, either it applies merely to cryptographic procedures where 293

the entangled states utilized are states of microsystems, in which case it is, again, 294

redundant, or it also applies to situations where massive systems are concerned, in 295

which case it would be unfounded, and it would make quantum information theory 296

correspond to a no-collapse theory. 297

Given the dubious role of the no bit-commitment principle, and for reasons of 298

illustrative simplicity and clarity, in the rest of this paper we follow Timpson’s 299

analysis and consider non-locality as following from the first two principles only. 300

In sum, the fundamental three theses defended by Bub on the significance of the 301

CBH theorem are as follows: 302

303• A quantum theory is best understood as a theory about the possibilities and impossibili- 304

ties of information transfer, as opposed to a theory about the mechanics of non-classical 305

waves or particles. 306

• Given the information-theoretic constraints, any “mechanical” theory of quantum 307

phenomena that tries to offer a dynamical account of the measuring instruments that are 308

responsible for the observed phenomena must be empirically equivalent to a quantum 309

theory. 310

• Assuming that the information-theoretic constraints are in fact satisfied in our world, 311

no mechanical theory of quantum phenomena that includes an account of measurement 312

interactions can be acceptable, and the appropriate aim of physics at the fundamental 313

level then becomes the representation and manipulation of information. (Bub 2004) 314

10.3 How Do Axiomatic Reconstructions of Quantum 315

Theory Explain? 316

We are now in the position of presenting CBH’s explanation of non-locality and 317

to show that this derivation provides the basis for an explanation of (an aspect of) 318

quantum nonlocality, i.e. of the existence of nonlocal entangled states.3 Following 319

the results illustrated in the previous section, the explanation of non-locality follows 320

three steps: 321

3Part of the results of this section are exposed in more details in (Felline 2016).
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1. The ‘no superluminal information transfer’ principle entails the commutativity of 322

distinct algebras: if the observables of distinct algebras commute, then the ‘no- 323

superluminal information transfer’ constraint holds. Commutativity of distinct 324

algebras is meant to represent ‘no signalling’. A theory violating this principle 325

would display strong non-locality and superluminal signalling; 326

2. The ‘no broadcasting’ principle entails the non-commutativity of individual 327

algebras. Cloning is always allowed by classical theories and if any two states can 328

be (perfectly) broadcast, then the algebra is commutative. A theory violating this 329

principle is therefore a classical theory with commutative individual algebras; 330

3. If A and B are two individually non-commutative sub-algebras but mutually 331

commuting algebras, there are nonlocal entangled states on the C*-algebra A 332

V B that they generate. 333

It has been sometimes argued that axiomatic reconstructions of quantum theorys 334

explain by providing Deductive-Nomological explanations or explanations by 335

unifications, as they unify the laws of quantum theory under the few principles 336

that play the role of axioms. For instance, Flores (1999) characterizes explanations 337

in theories of principle4 (and therefore in axiomatic reconstructions of quantum 338

theory) as providing explanations by unification. 339

As a first reaction to these claims, we must stress that a logical derivation of 340

P from laws of nature is not always explanatory in science. This is exactly why 341

the conjecture that principle theories provide Deductive-Nomological explanations 342

allows Brown and Pooley (2006) to conclude that Special Relativity, as a principle 343

theory, lacks explanatory power (Felline 2011). In the same way, the claim that 344

axiomatic reconstructions of quantum theorys provide Deductive-Nomological 345

explanations hides the real explanatory contribution of these theories. On the other 346

hand, it is clear that the explanatory power of axiomatic reconstructions of quantum 347

theory is deeply entangled with the highly unifying power of the theories that they 348

aim to achieve; however, according to the view we propose, unification is one 349

virtue of explanations rather than its essence. As we will argue, the most distinctive 350

contribution of axiomatic reconstructions of quantum theory in understanding the 351

quantum world can be captured neither by the Deductive-Nomological, nor by the 352

unificationist approaches. 353

Felline (2016) proposes an alternative account of explanation in axiomatic 354

reconstructions of quantum theory and in particular of quantum entanglement. 355

In order to account for the explanation of quantum entanglement, she borrows 356

from Mark Steiner’s account of explanation in mathematics. Steiner’s central idea 357

4“We can distinguish various kinds of theories in physics. Most of them are constructive. They
attempt to build up a picture of the more complex phenomena out of the materials of a relativity
simple formal scheme from which they start out. Along with this most important class of theories
there exists a second, which I will call ‘principle-theories.’ These employ the analytic, not
synthetic, method. The elements which form their basis and starting-point are not hypothetically
constructed but empirically discovered ones, general characteristics of natural processes, principles
that give rise to mathematically formulated criteria which the separate processes or the theoretical
representations of them have to satisfy” (Einstein 1919, p. 228).
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is that “to explain the behavior of an entity, one deduces its behavior from its 358

characterizing property,5 i.e. a “property unique to a given entity or structure within 359

a family or domain of such entities or structures.” (Steiner 1978, p. 143) According 360

to Steiner’s account, an explanatory proof 361

makes reference to a characterizing property of an entity or structure mentioned in the 362

theorem, such that from the proof it is evident that the result depends on the property. It 363

must be evident, that is, that if I substitute in the proof a different object of the same domain, 364

the theorem collapses; more, I should be able to see as I vary the object how the theorem 365

changes in response. In effect, then, explanation is not simply a relation between a proof 366

and a theorem; rather, a relation between an array of proofs and an array of theorems, where 367

the proofs are obtained from one another by the ‘deformation’ prescribed above. (Steiner 368

1978, 144) 369

According to Felline’s account, the definition of a “characterizing property” 370

applies also to the principles of the axiomatic reconstructions of quantum theory. 371

The principles’ function, in fact, is to “isolate” quantum theory from a family of 372

other physical theories representable by C*algebra. More precisely, the CBH’s 373

principles isolate quantum theory from the family of all theories that can be 374

represented with a C*-algebra. 375

Moreover, CBH’s explanation of nonlocality consists, as in Steiner’s account, in 376

the derivation of the explanandum from the principles ‘no superluminal signals’ and 377

‘no broadcasting’. 378

Third, a crucial part of CBH explanation consists in showing that, and how, the 379

theorem/explanandum changes when the characterizing property is changed. CBH 380

show that if the no broadcasting condition is dropped, then one has a classical 381

phase space theory while, if the no-superluminal signals principle is dropped, one 382

has a theory where distinct and distant physical systems are not kinematically 383

independent, i.e. a strongly nonlocal theory. 384

Let us scrutinize more in depth the epistemic content of this kind of explanation. 385

A central concern of axiomatic reconstructions of quantum theory is the question 386

“How does the quantum world differ from the classical one?”. 387

Many physicists have faced this question and provided their answer (the dis- 388

cretization of the energy levels of oscillators for Planck, the discretization of angular 389

momentum and the Principle of Complementarity according to Bohr, while for 390

de Broglie the characterizing feature of quantum theory was the wave nature of 391

matter, and for Schrödinger it was entanglement, for Dirac it is superposition and 392

so on). Axiomatic reconstructions of quantum theory addresses the question ‘how 393

does the quantum differ from the classical?’ with a new perspective, i.e. with the 394

axiomatization approach. Thanks to this formal approach, the explanations just seen 395

show how the mathematical structure of the theory constrains the kind of properties 396

that are admissible within the theory and that the explanandum is a consequence of 397

such constraints. In order to understand why this kind of explanation is especially 398

powerful in axiomatic reconstructions of quantum theory, it is first of all useful to 399

5The objection that this is really a form of Hempelian derivation will be dealt with below.
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resort in more details to Einstein’s (1919) well-known dichotomy between theories 400

of principle and constructive theories already mentioned in note 1. 401

As illustrated by the well-known case of the special theory of relativity, theories 402

of principle often provide a more general picture of the structural features of the 403

world. This is due in general to their analytic method, which starts from general 404

phenomenological laws, leading to conclusions that are both independent of the 405

details of the constituents of the physical systems under study, and of wider, more 406

general application. 407

In the same way, according to CBH, the three information-theoretic principles 408

“constrain the law-like behavior of physical systems” (Clifton et al. 2003, p. 24) 409

and quantum theory “can now be seen as reflecting the constraints imposed on the 410

theoretical representations of physical processes by these principles” (pp. 24–25). 411

With respect to this constraining function, the notion of Shannon information 412

(or von Neumann entropy) is especially useful, as it allows to abstract away from 413

assumptions about the constitution of bodies and the dynamical details underlying 414

the occurrence of the correlations. By singling out the axiomatic structure of 415

the theory from the details that a constructive theory would require, axiomatic 416

reconstructions of quantum theorys make explicit the connections and relations of 417

dependence between the elements of the theory, and between quantum theory and 418

the rest of our scientific theories. For instance, according to CBH reconstruction, 419

nonlocal entanglement depends on non-commutativity and kinematic independence. 420

To sum up, axiomatic reconstructions of quantum theory searches for an answer 421

to the above question: “how does the quantum world differ from the classical one?” 422

in the different constraints on quantum and classical information processing. The 423

information-theoretic approach invites us to look at physical systems as tools for 424

the transfer and manipulation of information, and the difference between quantum 425

and classical systems, more specifically, lies in the different resources that quantum 426

systems provide for information processing tasks. 427

Before we conclude this section, let us notice that the explanations provided 428

by reconstructions of quantum theory in terms of information-theoretic principles 429

might be seen as a particular case of ‘what-if-things-had-been-different’ expla- 430

nations, with a counterfactual dependence structure that is made explicit by the 431

deformation of the principles and the derivation of its consequences. This fact 432

suggests that the model of explanation presented here naturally fits those kinds of 433

general accounts of explanation that attribute a central role to the counterfactual 434

dependence between explanans and explanandum (See Morrison 1999, but also 435

Reutlinger 2012; Pincock 2014) and that include as special cases also causal or 436

mechanistic theories of explanations that attribute a central role to counterfactual 437

dependence in their definition of “mechanism” (Craver 2007; Glennan 2010). 438

Finally, notice that such a counterfactual approach is distinct from a Deductive- 439

Nomological model of explanation. Of course, logical/mathematical derivations are 440

involved also in counterfactual explanations and are therefore necessary, but they 441

are not sufficient to grasp the essence of this approach. There are at least two 442

distinguishing elements: the Deductive-Nomological model neglects the specific 443

role of laws as characterizing properties, and the fact that the explanation is not 444
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constituted by one, but by an array of derivations, which provide the counterfactual 445

information referred to above. 446

10.4 Are Explanations in Axiomatic Reconstructions 447

of Quantum Theory Structural? 448

In this section, we are going to see what it takes for an axiomatic reconstructions 449

of quantum theory to provide a complete explanation of quantum non-locality – i.e. 450

not only an explanation of the existence of entangled quantum states, but also of the 451

occurrence of non-local quantum correlations. In order to investigate this issue, we 452

first introduce the notion of structural explanation and show that an information- 453

theoretic explanation of quantum phenomena must belong to this variety; then 454

we argue that the explanations provided by axiomatic reconstructions of quantum 455

theory per se do not yet provide structural explanations of quantum correlations 456

and discuss what additional assumptions will be required to provide such a kind of 457

explanation. 458

In the literature, we find other kinds of non-causal explanations of physical 459

phenomena, namely structural explanation (Hughes 1989; Bokulich 2009; Clifton 460

1998; Dorato and Felline 2011). As a first approximation, a structural explanation 461

is an explanation of a physical phenomenon in terms of its “representative” in 462

the mathematical model. This representative is linked by a set of relations to 463

other members of the model, and the phenomenon is an exemplification of the 464

network. The often discussed, paradigmatic example of a structural explanation is 465

the geometrical explanation of length-contraction in special relativity. Not only is 466

such an explanation independent of metaphysical assumptions about the nature of 467

Minkowski’s spacetime – and therefore of the substantivalism/relationism dispute – 468

but also of any assumption about the mechanical details and physical composition 469

of the systems underlying the phenomena to be explained (Lange 2013a, b; Janssen 470

2002a, b, 2009). A structural explanation, if successful, renders a dynamical6 471

account of length contraction not just superfluous, but also wrongheaded. 472

Dorato and Felline (2011) have argued that the formal structure of quantum 473

theory provides a structural explanation of quantum nonlocality in terms of the 474

Hilbert structure that is used to represent quantum states. 475

What distinguishes a structural explanation of quantum nonlocality from other 476

non-causal (mathematical) explanations of the kind given by axiomatic reconstruc- 477

tions of quantum theory is that the former consists in showing that the explanandum 478

(the quantum correlations in our case) could not be possibly explained by any causal 479

explanation because it is part of the “causally fundamental” structure of the world. 480

By “causally fundamental” structure of the world we intend to refer to phenomena 481

6See note 1.
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or relations thereof that are to be regarded as “natural”, i.e., as such that cannot be 482

in turn accounted for, or inferred by, the behavior or laws of “underlying” entities. 483

Some historical considerations may help us to formulate an alternative account 484

of a non-causal explanation, in which the quantum correlations could be regarded 485

as natural in this sense. In fact, there exist often neglected but deep analogies 486

between the discovery of quantum correlations and previous major transitions that 487

characterized the history of physics. 488

As is well-known, in Kuhn’s view, scientific revolutions are accompanied by 489

radical shifts in the kind of phenomena that are regarded as in need of an explanation 490

(Kuhn 1970, p. 104). In our case, the ongoing debates in the interpretation of 491

quantum theory could be usefully described in terms of the different fundamental 492

commitments about what one should take as explanatory primitive and what instead 493

should be explained. This shift may apply both to the measurement problem and to 494

nonlocal quantum correlations, the two major conceptual innovations with respect 495

to classical physics. If these correlations were to be regarded as natural in virtue 496

of their fundamentality vis à vis the quantum world – rather than an explanandum 497

to be accounted for by dynamical laws – they would become an explanans, i.e. the 498

fundamental ground for explaining why the macroscopic world does not appear to 499

be entangled, something that classical physics had been taking for granted! 500

The same radical switch of explanatory perspective took place when inertial 501

motion replaced previous dynamical explanations of Aristotle’s “violent motions”, 502

when Einstein’s kinematical treatment of the relativistic effects replaced previous 503

attempts to derive them from the Lorentz covariance of dynamical laws governing 504

the inner behavior of rods and clocks, and when Einstein’s postulation of a curved 505

spacetime superseded previous explanations of gravity involving a force. In fact, 506

while one of the main problems of Aristotelian physics was to give some sort of 507

dynamical account that could explain why bodies continue in their motion despite 508

the absence of a “motor”, in Newtonian physics the continuation of motion became 509

the natural, primitive state of bodies and forces have been introduced to explain 510

deviation from rectilinear, inertial motion. Later, the introduction of affine spaces 511

codified in a geometrically precise way the new role given by the principle of 512

inertia to rectilinear motion. Likewise, dynamical attempts to explain contractions 513

and dilations were superseded by geometrical explanations in terms of Minkowski 514

fourdimensional geometry and in the case of general relativity the gravitational 515

force was geometrized away thanks to the introduction of Riemannian manifold 516

with a variable curvature. Explanations like these count as structural because they 517

show how the explanandum is the manifestation of a fundamental structure of the 518

world that is accounted for only by the different geometrical structures defining the 519

appropriate spacetimes.7 520

If this pattern of scientific change could also be extended to the nonlocal quantum 521

correlations, what kind of structural explanation could we advance in order to 522

replace actual or possible causal models of nonlocal correlations and treat them 523

as we now treat inertia, the speed of light and free fall? Can we regard the axiomatic 524

7For more details, see Dorato (2014).
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reconstructions of quantum theory explanation of entanglement depicted above as 525

a form of structural explanation that can also explain the occurrence of quantum 526

correlations? 527

In order to answer this question, one should keep in mind that the most puzzling 528

issues related to quantum phenomena emerge when the attempt is made to account 529

for how such phenomena occur. The same applies to quantum nonlocality, when the 530

latter is understood as the occurrence of nonlocal correlations: how do such correla- 531

tions occur? Or, in other words, what are the entities and processes that “underlie” 532

or produce their occurrence? Notice that the traditional, minimal interpretation of 533

Shannon (and von Neumann), in which information is a measure of the amount of 534

correlation between systems, does not rule out such a (possibly causal) account, 535

which is therefore also compatible with the axiomatic reconstructions of quantum 536

theory. 537

To defend the stronger claim that quantum information theory’s explanation 538

of non-locality is the only game in town, a further argument is required. For 539

instance, information immaterialism (Zeilinger 1999, 2005) adds to the claim that 540

the quantum state is about quantum information the radical metaphysical view that 541

information (the “immaterial”) is the fundamental subject matter of physics. 542

Under this assumption, other mechanical explanations of quantum phenomena 543

are ruled out. In fact, in this case, the information-theoretic structure is not an 544

epistemic tool for measuring the amount of correlation between unknown systems 545

regarded as black boxes, but is all there is. In virtue of its fundamentality, it is the 546

complete description of the world, since in principle there is no “reality” underlying 547

these correlations. Such a description would therefore also automatically provide 548

the basis for a structural explanation of quantum phenomena. 549

Admittedly, the ontological picture behind information immaterialism is contro- 550

versial to say the least (e.g. Timpson 2010, 2013). While here we cannot discuss it 551

in details, this immaterial ontology may not be so lethal to the explanatory power 552

of quantum information theory. Structural explanations are independent of the on- 553

tology “underlying” the explanandum, and this independence includes as a special 554

case the “software-without-hardware” ontology of information immaterialism: the 555

explanatorily relevant facts here are part of the mathematical properties of the 556

structure of which the explanandum is a manifestation. This, of course does not 557

rescue Zeilinger’s information immaterialism from its independent problems but, 558

under a structural account of explanation, the explanatory power of the theory might 559

remain intact. 560

By avoiding the complications of Zeilinger’s bold immaterialism, also CBH 561

argue that the conceptual problems of quantum theory dissolve as soon as one 562

interprets the quantum state as quantum information. However, within Zeiliger’s 563

immaterialism, the rejection of a deeper explanation of quantum phenomena follows 564

from the fact that immaterialism itself provides an information-based explanation 565

of such phenomena. CBH, instead, ground their epistemological analysis on the 566

claim that, exactly as special relativity regarded as a theory of principle made 567

Lorentz’s theory (a constructive theory) explanatorily superfluous, in the same way 568

their theorem render any alternative interpretation of quantum theory explanatorily 569
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superfluous. As a consequence, they argue that quantum theory is best understood 570

as a theory of principle in Einstein’s sense (1919), involving just the possibilities 571

and impossibilities of information processing. In this sense, although the ontology 572

at the basis of quantum information theory and quantum theory is still uncertain, 573

we can still endorse a structural explanation of quantum phenomena, since – for 574

epistemological reasons – information is to be considered a fundamental physical 575

quantity. 576

In any case, for the success of their project it is crucial to show that, as a 577

consequence of the CBH theorem, information must be taken as a physical primitive. 578

The way CBH argue for this conclusion is to conjecture that the CBH theorem 579

makes any constructive mechanical interpretation of quantum theory in principle 580

empirically underdetermined. 581

You can, if you like, tell a mechanical story about quantum phenomena (via Bohm’s theory, 582

for example) but such a story, if constrained by the information-theoretic principles, can 583

have no excess empirical content over quantum mechanics, and the additional non-quantum 584

structural elements will be explanatorily superfluous. (Bub 2005, p. 14) 585

As a first comment, note that a structural explanation of the quantum correlations 586

is stronger than the account provided by axiomatic reconstructions of quantum 587

theory. In such theories, and in Bub (2005) in particular, possible mechanical or 588

dynamical accounts of the quantum correlations are not excluded but only deemed 589

in principle empirically equivalent to whatever is derived in terms of the quantum 590

informational principles. According to a structural explanation of the quantum 591

correlations instead, no explanation deriving from theories that are empirically 592

equivalent to standard quantum theory is possible, for the simple reason that 593

the quantum correlations do not need in principle any dynamical or mechanical 594

explanation. 595

An even more serious problem, though, derives from the premise of CBH argu- 596

ment stating that all constructive interpretations of quantum theory are empirically 597

equivalent. Many criticisms to the quantum information theory’s reconstruction 598

program hinge exactly on this point. Hagar and Hemmo (2006), for instance, argue 599

that quantum information theory is not sufficient and a further account in terms of a 600

constructive and mechanical quantum theory is instead necessary. 601

For instance, in principle collapse and no-collapse theories have incompatible 602

empirical predictions. In the case of GRW-type theories, such an incompatibility 603

is at the moment practically untestable but it could become testable sooner than 604

expected. The problem is that such predictions concern the detection of superposi- 605

tions in macrosystems – and in these cases even collapse theories predict an effective 606

collapse due to environmental decoherence. However, the fact that so far we have not 607

been able to properly isolate a macrosystem in such a way as to control decoherence, 608

does not make the two kinds of theories in principle empirically equivalent. On 609

these assumptions, a mechanical story about the dynamics of quantum systems is 610

therefore still possible and, according to Hagar’s and Hemmo’s, is still needed to 611

explain the unobserved. 612
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10.5 Conclusions 613

In conclusion, we want to suggest that Bub’s approach can be reconciled with Hagar 614

and Hemmo’s more constructive account. On the one hand, considering the nonlocal 615

correlations as wholly natural in the stronger sense suggested in Sect. 10.3 sounds 616

rather plausible to us (and it is plausible even to a Bohmian rejecting the formulation 617

of the theory in terms of a quantum potential). But a conceptual move consisting in 618

considering quantum correlations as fundamental as inertia, the speed of light and 619

free fall, renders an account as to why the macroscopic world is not an entangled 620

mess even more indispensable. In Newtonian mechanics, forces are introduced 621

to explain a “deviation” from natural inertial motion and in the general theory 622

of relativity the geodesic deviation equation is introduced to explain “deviation” 623

from the naturally local inertial trajectories. What explains a “deviation” from the 624

naturally entangled states of the microworld, in such a way that the macroworld 625

appears to be non-entangled? 626
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Abstract Computational complexity theory is a branch of computer science ded- 7

icated to classifying computational problems in terms of their difficulty. While 8

computability theory tells us what we can compute in principle, complexity theory 9

informs us regarding what is feasible. In this chapter I argue that the science 10

of quantum computing illuminates complexity theory by emphasising that its 11

fundamental concepts are not model-independent, but that this does not, as some 12

suggest, force us to radically revise the foundations of the theory. For model- 13

independence never has been essential to those foundations. The fundamental aim 14

of complexity theory is to describe what is achievable in practice under various 15

models of computation for our various practical purposes. Reflecting on quantum 16

computing illuminates complexity theory by reminding us of this, too often under- 17

emphasised, fact. 18

11.1 Introduction 19

Computational complexity theory is a branch of computer science that is dedicated 20

to classifying computational problems in terms of their difficulty. Unlike com- 21

putability theory, whose object is to determine what we can compute in principle, 22

the object of complexity theory1 is to inform us with regards to which computational 23

problems are actually feasible. It thus serves as a natural conceptual bridge 24

1There are a number of sciences (for example: complex systems theory, the study of Kolmogorov
complexity, and so on) which are referred to as complexity theories. Unless otherwise noted, any
occurrence of ‘complexity theory’ in what follows should be understood as referring in particular
to computational complexity theory, and any conclusions made should be taken as pertaining only
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between the study of mathematics and the study of technology, in the sense that 25

computational complexity theory informs us with respect to which computational 26

procedures may reasonably be expected to be technologically realisable. 27

Quantum computer science is the study of algorithms and other aspects of 28

computer systems whose construction involves an explicit appeal to various features 29

of quantum physical theory. Strikingly, there are quantum algorithms that appear 30

to significantly outperform algorithms which do not take advantage of quantum 31

resources. What distinguishes, quantitatively, quantum from classical computation 32

is not the number of problems that can be solved using one or the other model. 33

Rather, what distinguishes the quantum from the classical model of computation 34

is that the number of problems solvable efficiently—i.e. the number of problems 35

whose solution is feasibly realisable—in the former model appears to be larger than 36

the number of problems solvable efficiently in the latter. The study of quantum 37

computer science therefore advances the goal of complexity theory in the sense 38

that it adds to our knowledge of the class of feasibly realisable computational 39

procedures. 40

More generally, as I will argue below, the study of quantum computation 41

illuminates the very nature and subject matter of complexity theory. Yet it does not 42

do so in a way that is often claimed. In particular it is not uncommon to come 43

across statements in the philosophical and scientific literature to the effect that 44

advances in quantum computing force a fundamental revision of the foundations 45

of complexity theory (Hagar 2007; Nielsen and Chuang 2000; Bernstein and 46

Vazirani 1997). According to this view it is the traditional aim of complexity 47

theory to understand the nature of concepts such as that of a ‘tractable problem’ 48

in themselves; i.e., apart from the manner in which they are implemented under 49

particular models of computation. Model-independence, in turn, is taken to rest upon 50

an ‘extended’ or ‘strong’ version of the Church-Turing thesis, or alternately, upon an 51

‘invariance’ thesis. And because quantum computers seemingly violate these theses, 52

it is concluded that complexity theory’s foundations must be somehow rebuilt. 53

As I will argue, however, model-independence is not and never has been at the 54

core of computational complexity theory. Its foundations are therefore not shaken by 55

the advent of quantum computing. Complexity theory is fundamentally a practical 56

science, whose aim is to guide us in making distinctions in practice among tractable 57

and intractable problem sets. The model-independence of complexity-theoretic 58

concepts is not a necessary condition for realising this aim. Quantum computation 59

indeed illuminates the subject matter of complexity theory. But it does not do so 60

by overturning its foundations. Rather, quantum computing illuminates complexity 61

theory by reminding us of its practical nature. 62

This is both a virtue of the theory as well as a reason for increased philosophical 63

attention to it. Science does not always or only, or perhaps ever, progress through 64

the absolute identification of fundamental entities, be they abstract or concrete. 65

to it. See Müller (2010) for a discussion of the difficulties associated with formulating machine-
independent concepts in the context of Kolmogorov complexity.
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Complexity theory furnishes us with a particularly striking illustration that sci- 66

entific progress—even in the mathematical sciences—is, in fact, often built upon 67

pragmatically justified foundations and conceptual structures.2 There is a general 68

philosophical lesson in this, which in different contexts has been profitably analysed 69

by some (for example, Carnap 1980 [1950], 1962, ch. 1), though in my view too few, 70

philosophers. 71

In the next section we will briefly review, from a historical perspective, the 72

foundations of computability theory. Section 11.3 will then connect the foregoing 73

discussion to the foundations of computational complexity theory, and will intro- 74

duce the theory’s basic concepts. In Sect. 11.4 we will discuss the ‘universality 75

of Turing efficiency’ thesis, as well as the closely related ‘invariance thesis’. 76

Section 11.5 will introduce the basic concepts of quantum computing. In Sect. 11.6 77

we will discuss quantum computing’s significance for the conceptual foundations of 78

complexity theory. We will then conclude. 79

11.2 The Entscheidungsproblem and the Origins of the 80

Church-Turing Thesis 81

With his second incompleteness theorem, Gödel demonstrated that any ω-consistent 82

formalisation of number theory, whose formulas are primitively recursively defin- 83

able, and which is rich enough to permit arithmetisation of syntax, cannot prove 84

its own consistency.3 For such a capability would be incompatible with Gödel’s 85

first incompleteness theorem, by which he demonstrated that within any such 86

formalisation there are sentences neither provable nor refutable from the axioms. 87

Finding a general and effective procedure for determining whether a given formula 88

in such a system is one of these sentences, however, remained an open question. 89

This was the Decision Problem—in German: the Entscheidungsproblem—for 90

validity, originally posed for first-order logic by Hilbert and Ackermann (1928, Pt. 91

III); that is, to describe an ‘effective procedure’ by which one can decide whether 92

an arbitrarily given expression of first-order logic is provable from the axioms.4 93

2See also Dean (2016a), who reviews the arguably insurmountable problems that face any attempt
to regard an algorithm as a mathematical object in the light of computer science practice.
3An ω-consistent theory is such that it is both consistent and satisfies a syntactic analogue of
soundness (see Dawson 2007, p. 504). A primitively recursively definable formula is such that
it can be built up from a finite number of successive basic operations. Arithmetisation of syntax
refers to a procedure by which every sentence in a formal system is encoded uniquely into a natural
number (called its ‘Gödel number’).
4The reason for Hilbert and Ackermann’s focus on the special case of first order logic is that it is the
most restricted example of a general logic adequate for representing higher arithmetic, i.e. number
theory. Its study was to constitute the first step in the development of a more encompassing logical
framework for mathematics (Dawson 2007, p. 500). Note that Hilbert and Ackermann additionally
posed a parallel Decision Problem for satisfiability. In the sequel, unless otherwise indicated, I
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Informally, an effective computational procedure consists of a finite number of 94

precise finite-length instructions guaranteed to produce some desired result in a 95

finite number of steps if followed exactly by a human being using nothing other than 96

paper and pencil. An example of an effective procedure is the truth-table method as 97

applied to sentential logic. Famously, Church and Turing were independently able 98

to show that the Entscheidungsproblem for first-order logic could not be solved; i.e., 99

no effective calculational procedure for determining the validity of an arbitrarily 100

given expression in first-order logic exists. 101

Turing, to whom we will restrict our attention, showed this partly by means 102

of a penetrating philosophical analysis of the notion of effective computation.5 103

Turing (1936–7, pp. 249–51) argued that it is essential to the idea of carrying out a 104

computation that the computer uses a notebook from which she reads, and onto 105

which she writes, various symbols related to her work. These symbols, as they 106

must be distinguishable from one another, are chosen from a finite alphabet. At any 107

given moment during a computation, the computer will find herself in one of a finite 108

number of relevant states of mind which summarise her memory of the actions she 109

has performed up until that point along with her awareness of what she must now 110

do (pp. 253–4). The actions that are available to her are characterised by a finite 111

set of elementary operations, such as ‘read the next symbol’ from the notebook, 112

‘write symbol a’ to the notebook, and so on. Turing then argued that one could 113

design an automatic machine, which he called an α-machine, to instantiate each 114

of these essential features of the practice of human computation (see Fig. 11.1). 115

In doing so he identified the extension of the concept ‘effectively calculable’ with 116

that of ‘computable by α-machine’. This identification is known as Turing’s thesis, 117

which he proved (p. 263ff) to be equivalent with Church’s independently arrived at 118

thesis that the class of effectively calculable functions is identical with the class of 119

λ-definable functions (Church 1936). For this reason it is also called the Church- 120

Turing thesis. 121

Turing then addressed the Entscheidungsproblem in an indirect way (Turing 122

1936–7, pp. 259–63, 1938). He first showed that it is impossible to determine, 123

for a given α-machine, whether it is ‘circle-free’; i.e. whether it is not the case 124

that it never outputs more than a finite number of symbols. He then showed that 125

if the Entscheidungsproblem were solvable, one could determine, for any given 126

α-machine, whether it is circle-free. Since this contradicts the first result, the 127

Entscheidungsproblem is unsolvable. 128

will take the Decision Problem or Entscheidungsproblem to refer exclusively to the problem for
validity.
5In what follows it must be kept in mind that computation, at the time of the publication of “On
Computable Numbers,” generally referred to an activity performed by human beings; a computer
was a person employed to carry out computations.
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Control unit

Read-write head

Tape

Fig. 11.1 A version of what is now called a ‘Turing machine’. The control unit houses the
machine’s ‘state of mind’, which in general changes after every operation of the read-write head.
The read-write head reads, writes, and moves back and forth along portions of a one-dimensional
tape (the machine’s ‘notebook’). Such a machine is an idealised representation of the components
involved in human computation

11.3 Efficient Computation 129

The period just discussed, during which the seminal papers by Church, Gödel, 130

Turing, and others were published, is the period of the birth of computer science 131

in the modern sense. It was to be nearly three more decades before the particular 132

branch of modern computer science that furnishes the subject matter for this chapter, 133

computational complexity theory, took shape with the work of Cobham (1965), 134

Edmonds (1965), Hartmanis and Stearns (1965), and others. Yet one of its key 135

questions was anticipated significantly earlier by none other than Gödel. Revisiting 136

the Entscheidungsproblem in a letter he wrote to von Neumann in 1956, Gödel asked 137

for von Neumann’s opinion concerning the number, ϕ(l), of steps needed, in the 138

worst case, to decide whether some arbitrarily given formula of first-order logic 139

has a proof of length l. In his letter Gödel asks6: “how fast does ϕ(l) grow for an 140

optimal [Turing] machine?” He notes that “One can show that ϕ(l) ≥ Kl” (for some 141

constant K), and then asserts: 142

If there actually were a machine with ϕ(l) ∼ Kl (or even only with ∼ Kl2), this would have 143

consequences of the greatest magnitude. That is to say, it would clearly indicate that, despite 144

the unsolvability of the Entscheidungsproblem, the mental effort of the mathematician in 145

the case of yes-or-no questions could be completely [Gödel’s Footnote: Apart from the 146

postulation of axioms] replaced by machines. One would indeed have to simply select an 147

l so large that, if the machine yields no result, there would then also be no reason to think 148

further about the problem (Gödel 1956, p. 10). 149

To illustrate: take some proposition F of first-order logic and consider testing to 150

see whether F has a proof, �, of length l. Let l be a number of steps far too large for 151

any unaided human being to survey in a lifetime, but small enough that a machine 152

could survey them all relatively quickly. Gödel’s point is that, from the machine’s 153

6In the following quotations I have replaced the variable n with l.
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perspective, the Kl (or perhaps Kl2) steps needed to discover whether � exists is 154

not very much greater than the l steps that would be needed to survey it. We would 155

expect, therefore, that the machine will give us an answer to the question of whether 156

F has a proof of length l in a reasonable amount of time. By assumption, however, 157

surveying a proof of length ≥ l is beyond the practical capabilities of any human 158

being. So if the machine yields a negative result, then we can conclusively say that, 159

for the practical purposes of unaided human computation, F is unprovable. Indeed 160

there would be no reason to bother with the practical computational purposes of 161

unaided human mathematicians at all; if such a machine existed we could henceforth 162

consider such questions exclusively with respect to it. 163

There is an additional, deeper, point that is implicit here as well. Gödel’s question 164

to von Neumann is stated in the context of the Entscheidungsproblem, where it is 165

assumed that the procedure to be used by a human mathematician to answer the 166

question of whether F can be proved is an effective one, in the sense described 167

in the previous section. Recall that following an effective procedure requires no 168

ingenuity on the part of the person doing the following; it is a purely mechanical 169

procedure which, if followed exactly, is guaranteed to give one a result in a finite 170

number of steps. It is precisely for this reason that we can model it with a machine. 171

In general, however, theorem proving is an activity which we do take to require 172

insight and ingenuity. We take there to be more to the process of discovering a 173

proof of a particular theorem than blindly following a set of rules; we need insight 174

into the ‘essential nature’ of the problem at hand in order to guide us to the most 175

likely route to a solution, and we need ingenuity to proceed along this route in 176

a skillful, efficient, way. Or so one could object. Be that as it may, if we could 177

in fact build a machine to discover, in only Kl (or Kl2) steps, whether any given 178

proposition of first-order logic has a proof of length l, it would make, not just human 179

beings themselves, but the ingenuity and insight associated with their activities in 180

this context, dispensable. 181

Implicit in the above considerations is the idea that neither ϕ(l) ∼ Kl nor 182

ϕ(l) ∼ Kl2 yields a significantly greater number than l from the point of view 183

of a machine. This is consistent with the ideas of modern complexity theory, where 184

in fact any decision problem (i.e., yes-or-no question) for which a solution exists 185

whose worst-case running time is bounded by as much as a polynomial function 186

of its input size, n, is considered to be a ‘tractable’ (a.k.a. ‘feasible’, ‘efficiently 187

solvable’, ‘easy’, etc.7) problem. Indeed, these ideas are not just consistent; one 188

way to motivate the modern complexity-theoretic identification is to begin with 189

essentially Gödel’s assertion that problems which require only Kn or Kn2 steps 190

to solve are tractable.8 Combine this with the computer programmer’s intuition that 191

an efficient program, to which one adds a call to an efficient subroutine, should 192

7I will be using these terms interchangeably below.
8Note that although Gödel’s letter to von Neumann anticipates this and other ideas of modern
complexity theory, I am not claiming that it actually influenced the theory’s development. As far
as I am aware, Gödel’s letter was unknown prior to its translation and publication in Sipser (1992).
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continue to be thought of as efficient (Arora and Barak 2009, p. 27), and we naturally 193

arrive at the conclusion that the set of efficiently solvable problems just is the 194

set of problems solvable in a polynomial number of time steps. This ‘polynomial 195

principle’ is generally considered to be at the heart of the theory of computational 196

complexity. We will discuss it in more detail (and critically) in Sect. 11.6. 197

In the context of the Turing machine (TM) model, the set of decision problems 198

solvable in polynomial time is referred to as the class P.9 More formally, we can 199

conceive of a decision problem as one whose goal is to yield a yes-or-no answer to 200

the question of whether a given string x of length n is a member of the ‘language’ 201

L. For example, the decision problem for determining whether a given number is 202

prime can be represented as the problem to determine, for an arbitrarily given binary 203

string, whether it is a member of the language {10, 11, 101, 111, 1011, 1101, 10001, 204

10011, . . . } (the set of binary representations of prime numbers). Now call a given 205

language L a member of the class DTIME(T (n)) if and only if there is a Turing 206

machine10 for deciding membership in L whose running time, t (n), is ‘on the order 207

of T (n)’, or in symbols: O(T (n)). Here, T (n) represents an upper bound for the 208

growth rate of t (n) in the sense that, by definition, t (n) is O(T (n)) if for every 209

sufficiently large n, t (n) ≤ k · T (n) for some constant k.11 So for any language L 210

in, for example, DTIME(n2), there is a TM that will take no more than kn2 steps to 211

decide membership in L. We can now formally characterise P as (Arora and Barak 212

2009, p. 25): 213

P =
⋃

k≥1

DTIME(nk). (11.1)

Note that the class DTIME(T (n)) is defined, strictly speaking, to be a set of 214

languages. Below I will sometimes use statements of the form: ‘(decision) problem 215

R is in DTIME(T (n))’, which is shorthand for the assertion that the language LR , 216

associated with R, is decidable in O(T (n)) steps. 217

We have just seen that L is in P if and only if one can construct a polynomial- 218

time TM that will decide, for any given x, whether x ∈ L. Now suppose that one is 219

presented with a proof that x ∈ L. If one can verify this proof using a polynomial- 220

time TM M , then we say that L is a member of the complexity class NP.12 More 221

formally (Arora and Barak 2009, p. 39), 222

L ∈ NP whenever: x ∈ L ⇔ ∃u s.t. M(x, u)
poly= ‘yes’, (11.2)

9It is also sometimes referred to as PTIME, in order to emphasise the distinction between it and
PSPACE, the class of problems solvable using space resources bounded by a polynomial function
of n.
10The ‘D’ in DTIME stands for ‘deterministic’. It contrasts with ‘nondeterministic time’, which I
will introduce later.
11The qualification ‘for every sufficiently large n’ can be rephrased as the assertion that there exists
some finite n0 ≥ 1 such that t (n) ≤ k · T (n) whenever n ≥ n0.
12NP stands for nondeterministic polynomial time. The reason for this name will become clear
shortly.
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where u is string (usually called a ‘certificate’) whose length is given by a 223

polynomial function of the length, n, of x, and M(x, u)
poly= ‘yes’ asserts that the 224

machine M accepts x, given u, in polynomial time.13
225

The restricted form of the Entscheidungsproblem described above by Gödel is 226

certainly in NP; given a proposition x, and a proof u of x whose length is ≤ l, 227

one can obviously verify this in polynomial time. Indeed, the problem also happens 228

to be ‘NP-complete’ (Hartmanis 1993).14 NP-complete problems are the hardest 229

problems in NP, in the sense that if we have in hand a solution to an NP-complete 230

problem, we can easily convert it into a solution to any other problem in NP. That 231

is, a language L ∈ NP is in the class NP-complete if and only if a procedure for 232

deciding L can be converted, in polynomial time, into a procedure for deciding L′, 233

for any L′ ∈ NP. More concisely, L ∈ NP is NP-complete if and only if ∀L′ ∈ NP , 234

L′ is polynomial-time reducible, in the above sense,15 to L (Arora and Barak 2009, 235

p. 42). 236

The proposition that there exists a general solution to the restricted Entschei- 237

dungsproblem which requires no more than Kl2 steps to carry out—call this 238

the ‘Gödelian conjecture’16—does not amount merely to the proposition that this 239

decision problem is in NP. Recall that the restricted Entscheidungsproblem is the 240

problem to decide whether an arbitrarily given formula x has a proof of length 241

l; it is not merely the problem of verifying this fact about x given a certificate 242

u. The Gödelian conjecture, therefore, amounts to the claim that the restricted 243

Entscheidungsproblem is in P. But since this problem is known to be NP-complete, 244

the Gödelian conjecture, if correct, amounts to the claim that P = NP.17
245

Interestingly, there has been no proof or disproof to date of the statement 246

that P = NP. Partly due to the intuitive implausibility of its consequences—that 247

“the mental effort of the mathematician in the case of yes-or-no questions could 248

be completely replaced by machines” (Gödel 1956)—the statement is generally 249

believed to be false. Besides this there are further, mathematical, reasons to believe 250

that P 
= NP (Aaronson 2013a, p. 67). I will not mention these here as the P = NP 251

question is not our focus. I will only say that the project to prove or disprove P = NP 252

is a worthwhile one, not so much because the outcome is in doubt, but because a 253

formal proof would likely enlighten us with regards to just what it is that insight and 254

ingenuity contribute to the practice of mathematics. 255

13u must be of polynomial length in n to ensure that M can read u in polynomial time.
14Gödel himself gives no indication that he realises this in his letter.
15What I have described above is actually called a Karp reduction. It is a weaker concept than
the related one of Cook reduction. We will not discuss the distinction here. For more on this, see
Aaronson (2013a, p. 58).
16Gödel does not himself actually conjecture this, although he comes close to doing so: “it seems
to me . . . to be totally within the realm of possibility that ϕ(l) grows slowly.” (Gödel 1956, p. 10).
17Strictly speaking it only entails that NP ⊆ P. But since obviously P ⊆ NP, it would follow that
P = NP.
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Our discussion of the Turing machine model of computation has thus far focused 256

on the standard, i.e., deterministic, case. A standard TM is such that its behaviour 257

at any given moment in time is wholly determined by the state that it finds itself 258

in plus whatever input it receives. The machine can be fully characterised, that 259

is, by a unique transition function over the domain of states and input symbols. 260

One can, however, generalise the TM model by allowing the machine to instantiate 261

more than one transition function simultaneously.18 Upon being presented with a 262

given input in a given state, a nondeterministic Turing machine (NTM) is allowed to 263

‘choose’ which of its transition functions to follow (see Fig. 11.2). Exactly how this 264

choice is made is left undefined, and for the purposes of the model can be thought 265

of as arbitrary. We say that an NTM accepts a string x if and only if there exists 266

a path through its state space that, given x, leads to an accepting state. It rejects x 267

otherwise. We define the class NTIME(T (n)), analogously to DTIME(T (n)), as the 268

set of languages for which there exists an NTM that will decide, in O(T (n)) steps, 269

whether a given string x of length n is in the language L. 270

Recall that above I characterised NP as the set of languages for which one 271

can construct a polynomial-time TM to verify, for any x, that x ∈ L, given a 272

polynomial-length certificate u for x. One can alternatively characterise NP as the 273

set of languages for which there exists a polynomial-time NTM for determining 274

membership in L: 275

NP =df

⋃

k≥1

NTIME(nk). (11.3)

This definition is the source of the name NP, in fact, which stands for ‘nondetermin- 276

istic polynomial time’. 277

Definitions (11.2) and (11.3) are equivalent. Given a language L and a 278

polynomial-time NTM that decides it, then for any x ∈ L, there is by definition 279

a polynomial-length sequence of transitions of the NTM which will accept x. 280

One can use this sequence as a certificate for x, and verify it in polynomial-time 281

using a (deterministic) TM. Conversely, suppose there is a TM MD that, given a 282

polynomial-length certificate u for x, can verify in polynomial time that x ∈ L. 283

Then one can construct a polynomial-time NTM MN that will ‘choose’ certificates 284

from among the set of possible polynomial-length strings (e.g., by randomly writing 285

one down). Upon choosing a certificate u, MN then calls MD to verify x given u, 286

and transitions to ‘yes’ only if MD outputs ‘yes’ (Arora and Barak 2009, p. 42). 287

For an NTM, no attempt is made to define how such a computer chooses, at 288

any given moment, whether to follow one transition function rather than another. In 289

particular, it is not assumed that any probabilities are attached to the machine’s 290

choices. Indeed, under Turing’s original conception (1936–7, p. 232), these are 291

18The idea of a machine with an ambiguous transition function can be found in Turing (1936–
7). Turing calls this a ‘choice machine’ (p. 232), and notes its extensional equivalence with the
automatic (i.e. deterministic) machine (p. 252, footnote ‡).
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1,1,R
a

0,0,R

b0,0,R

0,1,S / 1,1,S

1,1,R
Accept

0,0,R

1,1,R

0,0,L

0,0,S

1(Start, 0)=(a 0 R, , ) 2(Start, 0)=(b, 0, R)

1(Start, 1)=( Start, 1, R) 2(Start, 1)=( Start, 1, R)

etc. etc.

d
d
d

d

Fig. 11.2 A nondeterministic Turing machine (NTM) is such that, for a given state and a given
input, the state transitioned to is not predetermined; at any given step the machine is able select
from more than one transition function (in this case, δ1 and δ2). The machine depicted accepts
binary strings ending in ‘00’, since there exists a series of transitions for which, given such a
string, the machine will end in the ‘Accept’ state. But it is not guaranteed to do so. The machine
additionally is guaranteed to reject any string not ending in ‘00’. In the diagram, an edge from s1
to s2 with the label α, β, P is read as: In state s1, the machine reads α from its tape, writes β to the
tape in the same position, moves its read/write head along the tape to the position P with respect to
the current tape position (L = to the left, R = to the right, S = same), and finally transitions to state s2

thought of as the choices of an external operator. They are thus arbitrary from the 292

machine’s point of view. In a probabilistic Turing machine (PTM), on the other 293

hand, we characterise the computer’s choices by associating a particular probability 294

with each of its transitions (see Fig. 11.3). 295

Like TMs and NTMs, PTMs have associated with them a number of complexity 296

classes. The most important of these is the class BPP (bounded-error probabilistic 297

polynomial time). This is the class of languages such that there exists a polynomial- 298

time PTM that, on any given run, will correctly determine whether or not a string 299

x is in the language L with probability ≥ 2/3. The particular threshold value of 300

2/3 is inessential to this definition. It is chosen in order to express the idea of a 301

‘high probability’.19 But any threshold probability pmin ≥ 1/2 + n−k , where k 302

is a constant, will suffice for the definition of BPP. For given a polynomial-time 303

PTM that correctly determines whether or not x ∈ L with probability pmin, re- 304

19Note that the high probability requirement constitutes a key conceptual difference between BPP
and NP. The latter demands only that it is possible for an NTM to arrive at a correct solution.
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a

0,0,R
(p = 3/8)

0,0,L
(p = 5/8)

1,1,R
(p = 4/5)

1,0,L
(p = 1/5)

Fig. 11.3 One node in a PTM. Given an input of 1 in the state a, the machine will write 1 to the
tape and move right with probability 4/5, or write 0 and move left with probability 1/5. On an input
of 0 it will write 0 and move right with probability 3/8, or write 0 and move left with probability
5/8. For a given state and a given input, edge probabilities must add up to 1. We can imagine that
the machine’s choices are made in accordance with these probabilities by repeatedly ‘flipping a
coin’

running it a number of additional times that is no more than polynomial in n and 305

taking the majority answer will yield a correct result with probability close to 1 306

(Arora and Barak 2009, p. 132). Since, as I mentioned above, the time it takes to 307

run a polynomial-time algorithm a polynomial number of times is still polynomial, 308

varying pmin in this way will do nothing to alter the set of languages contained 309

in BPP. 310

11.4 The Universality and Invariance Theses 311

The Church-Turing (C-T) thesis claims nothing about the efficiency of any particular 312

model of computation. Nor does it carry with it any implications concerning 313

physically possible computing machines in general (see Turing 1950, §§3, 5, 6.7). 314

Both Church’s and Turing’s theses are, as we saw earlier, theses concerning the 315

limits of effective procedures. Despite this, the C-T thesis is often misrepresented 316

in this regard in the philosophical and even in the scientific literature (for further 317

discussion of the reasons for the confusion, see Copeland 2015; Timpson 2013; 318

Pitowsky 1990). In more informed literature, however, these re-interpretations of 319

the C-T thesis are explicitly distinguished from it. The thesis (I) that any reasonable 320

model of computation can be simulated with at most a polynomial number of extra 321

time steps by a PTM is often called the ‘strong’ C-T thesis (see, e.g., Nielsen and 322
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Chuang 2000, p. 140).20,21 The thesis (II) that a physical instantiation of a TM can 323

simulate any physically possible machine that realises a finite instruction set and 324

that works on finite data is often called the ‘physical’ C-T thesis (Andréka et al. 325

2018; Piccinini 2011). But confusingly, (II) is also sometimes called the ‘strong’ 326

thesis (Goldin and Wegner 2008), and (I) is sometimes called the ‘physical’ thesis 327

(Hagar 2007). 328

So as not to contribute to the confusion arising from this ambiguous labelling, 329

and more importantly, to discourage any erroneous inferences to the intended scope 330

of Church’s and Turing’s original theses themselves, I will, following Copeland 331

(2015), refer to (II) as ‘Thesis M’. I will refer to (I), the subject of this section, as 332

the ‘universality of Turing efficiency thesis’. For it follows from the truth of (I) that 333

the set of problems efficiently solvable in general, i.e., on any reasonable digital 334

machine model M, is identical with the set of problems efficiently solvable on a 335

PTM. Formally this can be expressed as: 336

⋃

PolyM = BPP. (11.4)

In other words, the thesis implies that the set of problems solvable in polynomial 337

time does not grow beyond BPP if we allow ourselves to vary the underlying 338

model.22
339

A further closely related notion is what van Emde Boas (1990, p. 5) has called 340

the ‘invariance thesis’. This states that any reasonable machine model can simulate 341

any other reasonable machine model with no more than a polynomial slowdown. 342

20 Some textbooks state (I) as a thesis about the TM rather than the PTM model (see, e.g., Arora and
Barak 2009, p. 26). I will follow Nielsen and Chuang (2000), in order to leave open the possibility
that P � BPP, and also because BPP constitutes a more natural contrast (see Footnote 22 below)
with its quantum analogue, BQP, which we will introduce in the next section. Until recently, P
� BPP was thought to be very likely true, however evidence (e.g., Agrawal et al. 2004) has been
mounting in favour of the conjecture that in fact P = BPP. Whether (I) is formulated with respect to
TMs or PTMs makes little difference to what follows. A TM can be thought of as a special case of
a PTM for which transition probabilities are always either 0 or 1.
21The qualification ‘reasonable’ will be explained shortly.
22 There is a slight complication that I am glossing over here, namely that what it means for a
machine to constitute a solution to a problem varies across computational models. In particular
a TM solution to a problem is required to yield a correct answer with certainty, whereas (as
I mentioned previously) a PTM solution in general need only yield a correct answer with high
probability. Implicit in (11.4), therefore, is an appeal to the more general criterion for solvability
corresponding to that appropriate to a PTM rather than to a TM. This subtle distinction regarding
what it means to solve a problem under various models of computation is one reason, that I alluded
to in Footnote 20 above, for expressing the universality thesis in terms of BPP rather than P. For
as we will see in the next section, a quantum computer, like a PTM, is a probabilistic machine and
is subject to the same criterion for success. Expressing the universality thesis in terms of BPP thus
allows for a more straightforward analysis of the quantum model’s significance for the thesis. A
similar remark applies to the invariance thesis, which I now introduce.
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(See also: Goldreich 2008, p. 33, who names it differently.23) The invariance thesis 343

implies the universality thesis, but not vice versa. Note that in the context of both the 344

universality and invariance theses, ‘reasonable’ is typically understood as physically 345

realisable. Reasonable models include variants of the TM model, for example, 346

but do not include models which employ unbounded parallelism.24 This will be 347

discussed further in Sect. 11.6. 348

There are reasons for believing in the truth of both the universality and invariance 349

theses. Neither the standard variations on the Turing model, such as adding more 350

tapes, increasing the number of squares readable or writable at a given moment, and 351

so on (Arora and Barak 2009), nor the alternative reasonable universal (classical) 352

models of computation that have been developed since Turing’s work, are faster 353

than PTMs by more than a polynomial factor, and all appear to be able to simulate 354

one another efficiently in this sense (van Emde Boas 1990). 355

Over the last three decades, however, evidence has nevertheless been mounting 356

against universality and invariance, primarily as a result of the advent of quantum 357

computing (Aaronson 2013a, chs. 10, 15). We will discuss quantum computing in 358

more detail in the next section. 359

11.5 Quantum Computation 360

Consider the (non-quantum) machine depicted in Fig. 11.4. This simple automaton 361

has two possible states: {0, 1}. It has one possible input (omitted in the state- 362

transition diagram), which essentially instructs the machine to ‘run’. This can 363

be implemented, for example, by a button connected to the machine’s inner 364

mechanism. At the end of any given run, the machine will either remain in the state 365

it was previously in or else transition to the opposite state, with equal probability. 366

One can imagine that the machine also includes a small door which, when opened, 367

reveals a display indicating what state the machine is in. A typical session with 368

the machine consists in: (a) opening the door to record the machine’s initial state; 369

(b) pushing the ‘run’ button one or more times; (c) opening the door to reveal the 370

machine’s final state. 371

Let us suppose that between the initial and final opening of the door, our 372

experimenter pushes the button twice. Given that the initial reading was 0, what 373

is the probability that the final reading is 0 as well? This is given by: 374

23For the purposes of our discussion of the invariance thesis we will not be distinguishing between
TMs and PTMs but will be taking the former to be a special case of the latter (this is motivated
in Footnote 20 above). We will understand the thesis, then, as asserting that any reasonable
probabilistic machine model is efficiently simulable by any other reasonable probabilistic machine
model. PTMs and quantum computers are both examples of probabilistic models.
24The parallel random access machine (PRAM) model, for example, is excluded.
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Fig. 11.4 A simple automaton which, when run, randomly transitions to one of two possible
states. In the state-transition diagram at the left, edge labels represent probabilities for the indicated
transitions

Pr(C20 → 0) = Pr(C0 → 0) × Pr(C0 → 0)

+ Pr(C0 → 1) × Pr(C1 → 0)

= 1/2, (11.5)

where Cnψ → φ signifies that the computer is run n times after beginning in the 375

state ψ , and ends in φ. Equation (11.5) illustrates that there are two possible ways 376

for the computer to begin and end in the state 0 after two runs. Either it remains in 0 377

after each individual run, or else it first flips to 1 and then flips back. From Fig. 11.4, 378

one can easily see that: 379

Pr(C20 → 0) = Pr(C20 → 1) = Pr(C21 → 0) = Pr(C21 → 1) = 1/2,

(11.6)

and indeed we have that Pr(Cnψ → φ) = 1/2 for any n. 380

The internal state (what is revealed by opening the door) of the simple machine 381

pictured in Fig. 11.4 is describable by a single binary digit, or ‘bit’. In general the 382

internal state of any classical digital computer is describable by a sequence of n 383

bits, and likewise for its inputs and outputs. A bit can be directly instantiated by any 384

two-level classical physical system, for example by a circuit that can be either open 385

or closed. In a quantum computer, on the other hand, the basic unit of representation 386

is not the bit but the qubit. To directly instantiate it, we can use a two-level quantum 387

system such an electron (specifically: its spin). The qubit generalises the bit. Like 388

a bit, it can be ‘on’, i.e. in the state |0〉, or ‘off’, i.e. in the state |1〉. In general, 389

however, the state of a qubit can be expressed as a normalised linear superposition: 390

|ψ〉 = α|0〉 + β|1〉, (11.7)

where the ‘amplitudes’ α and β are complex numbers such that |α|2 +|β|2 = 1. We 391

refer to |ψ〉 as the ‘state vector’ for the qubit.25
392

25The modulus squared (or ‘absolute square’), |c|2, of a complex number c is given by cc̄, where
c̄ is the complex conjugate of c. |ψ〉 is normalised when |α|2 + |β|2 = 1.
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An important difference between qubits and bits is that not all states of a qubit 393

can be observed directly; in particular, one never observes a qubit in a linear 394

superposition (aside from the trivial case in which one of α, β is 0).26 According 395

to the Born rule, a qubit in the state (11.7), when measured, will be found to be 396

in the state |0〉 with probability |α|2, and in the state |1〉 with probability |β|2. 397

For example, consider a simple one-qubit quantum machine that implements the 398

following transitions: 399

Q|0〉 → i√
2
|0〉 + 1√

2
|1〉 ≡ |χ〉, (11.8)

Q|1〉 → 1√
2
|0〉 + i√

2
|1〉 ≡ |ξ 〉. (11.9)

If the machine begins in the state |0〉, and the button is pushed once, it will transition 400

to |χ〉. Then with probability | i√
2
|2, opening the door will reveal |0〉, and with 401

probability | 1√
2
|2 it will reveal |1〉. 402

Since | i√
2
|2 = | 1√

2
|2 = 1/2, a series of ‘one-push’ experiments with this 403

quantum machine will produce identical statistics as will a series of one-push 404

experiments with the classical machine depicted in Fig. 11.4. Things become more 405

interesting when we consider two-push experiments. If the machine is in the initial 406

state |0〉, then after the first push the machine will effect the transition (11.8). If, 407

before opening the door, we push the button again, the machine will make the 408

following transition: 409

Q
( i√

2
|0〉 + 1√

2
|1〉

)

= i√
2
Q|0〉 + 1√

2
Q|1〉

= −1

2
|0〉 + i

2
|1〉 + 1

2
|0〉 + i

2
|1〉 = i|1〉. (11.10)

Since |i|2 = 1, opening the door will find the machine in the state |1〉 with certainty. 410

Likewise, if the machine begins in |1〉, a two-push experiment will find it in the state 411

|0〉 with certainty. A state transition diagram for the quantum machine is given in 412

Fig. 11.5.27
413

26To be more precise: one never observes a qubit in a linear superposition with respect to a
particular measurement basis. Generally, in quantum computing, measurements are carried out in
the computational, i.e. {|0〉, |1〉}, basis. In this basis the superposition (|0〉+ |1〉)/√2, for example,
can never be the result of a measurement. If one measures in the {|+〉, |−〉} basis, however, then
such a result is possible, since |+〉 = (|0〉 + |1〉)/√2. On the other hand, a measurement in the
{|+〉, |−〉} basis will never yield the result |0〉 = (|+〉 + |−〉)/√2 even though a result of |0〉 is
possible in the computational basis.
27Note that overall phase factors have been abstracted away from in Fig. 11.5. Two normalised
state vectors which differ only in their overall phase factor yield all of the same probabilities
for outcomes of experiments and are considered as equivalent according to quantum theory. For
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Fig. 11.5 A simple quantum computer. With each button push, the machine deterministically
oscillates, via the transition Q, between the states |0〉, |χ〉, |1〉, |ξ〉 in the manner depicted. When
the door is opened, the machine undergoes the ‘measurement’ transition M . This results, when
the computer is in one of the states |χ〉 and |ξ〉, in a reading of |0〉 or |1〉 with equal probability.
Opening the door when the machine is in either |0〉 or |1〉 has no effect on the computer’s state

The probabilities for outcomes of two-push experiments with the quantum com- 414

puter Q are significantly different from those associated with two-push experiments 415

on C. This is despite the fact that if one performs two (or in general n) repetitions 416

of a one-push experiment (i.e. in which one opens the door after every button 417

push), the resulting statistics will be identical for both C and Q. One can think 418

of a one-push experiment with C or Q as instantiating a ‘maximally noisy’ (i.e. 419

completely useless) NOT-gate. With a two-push experiment on Q, however, we have 420

instantiated a perfect NOT-gate. We cannot do anything analogous with C. 421

The foregoing was a simple—almost trivial—illustration of some of the basic 422

differences between classical and quantum computation. But by taking advantage 423

of these and other differences, researchers have been able to develop quantum 424

algorithms to achieve results that seem impossible for a classical computer. Quan- 425

tum computers cannot solve non-Turing-computable problems (see Hagar and 426

Korolev 2007). However, as we will discuss shortly, quantum computers are able 427

to efficiently solve problems that have no known efficient classical solution. This 428

apparent ability of quantum computers to outperform classical computers is known 429

as ‘quantum speedup’. 430

A fascinating question, assuming that they indeed have this ability,28 regards 431

exactly which physical features of quantum systems are responsible for it. We 432

will not be discussing this question further here.29 Rather, let us return to Gödel’s 433

example, all of these express the same physical state: |ψ〉, −|ψ〉, i|ψ〉, −i|ψ〉. Local phase factors,
however, are important; |0〉+|1〉√

2
and |0〉−|1〉√

2
, for example, are different states.

28There is strong evidence (some of which we will discuss shortly), however there is still no proof,
that quantum computers can efficiently solve more problems than classical computers can.
29In (11.10), the partial amplitudes contributing to the |0〉 component of the state vector cancel each
other out. Many quantum algorithms include similar transitions, leading some to view quantum
interference as the source of quantum speedup (Fortnow 2003), although others have questioned
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question regarding the resources required to solve the restricted form of the 434

Entscheidungsproblem. Could a quantum computer be used to solve NP-complete 435

problems such as this one efficiently? It turns out that a quantum computer can yield 436

a performance improvement over a standard TM with respect to such problems. 437

Recall (see Definition 11.2) that a language L is in NP if there is a TM, C, such that 438

x ∈ L if and only if there is a certificate u whose length is polynomial with respect 439

to the length of x, that if fed to C can be used by C to verify x’s membership in L 440

in polynomial time. If in addition, in polynomial time, for any given x, C can itself 441

either find such a suitable certificate, or determine that one does not exist, then L is 442

also in P. 443

Let the question be, ‘Does the string x of length n have a “proof”, i.e. a certificate, 444

of length ≤ nk?’, for some constant k. The number of possible certificates ui is 445

N = 2nk
. Assuming the space of certificates is unstructured, C will need O(N) steps 446

to decide whether x is in L; the computer will run through the possible certificates 447

ui one by one, testing each in turn to see if it is a valid certificate for x, moving on 448

to the next certificate if it is not. Using a quantum computer and Grover’s quantum 449

search algorithm (Grover 1996), however, only O(
√

N) steps are required. It turns 450

out that this is the best we can do (Bennett et al. 1997). But while this quadratic 451

speedup is impressive, the overall running time of the quantum computer remains 452

exponential in the length, n, of x. Quantum computers, therefore, do not appear to 453

allow us to affirm the Gödelian conjecture.30
454

However there is evidence that the class of languages efficiently decidable by 455

a quantum computer is larger than that corresponding to either a deterministic 456

or probabilistic classical computer. To be more precise, define the class BQP, 457

analogously to the class BPP, as the class of languages such that there exists a 458

polynomial-time quantum computer that will correctly determine, with probability 459

≥ 2/3, whether or not a string x is in the language L. The question of whether 460

a quantum computer can outperform a classical computer amounts to the question 461

of whether BQP is larger than BPP. It is clear that BPP ⊆ BQP; one invocation 462

of the transition (11.8), for example, followed by a measurement, can serve to 463

simulate a classical ‘coin flip’, and in polynomial time this procedure can be used

whether interference is a truly quantum phenomenon (Spekkens 2007). The fact that some quantum
algorithms appear to spawn parallel computational processes has led to the idea of ‘quantum
parallelism’ as the primary contributing mechanism (Duwell 2007, 2018), and to the related but
distinct idea that this processing occurs in parallel physical universes (Hewitt-Horsman 2009;
for a criticism see Aaronson 2013b; Cuffaro 2012). Others view quantum entanglement (Cuffaro
2017a,b; Steane 2003), or quantum contextuality (Howard et al. 2014), as providing the answer.
Still others view the structure of quantum logic as the key (Bub 2010).
30Note that above it was assumed that the space of certificates is unstructured. However it is
possible that a given NP-complete language L possesses non-trivial structure that can be exploited
to yield further performance improvements (Cerf et al. 2000). Therefore we cannot rule out that L

is efficiently decidable by a classical computer, let alone by a quantum one.



UNCORRECTED
PROOF

270 M. E. Cuffaro

to simulate any of a given PTM’s transition probabilities.31 As for the evidence 464

for strict containment—i.e. for BPP�BQP—this comes mainly from the various 465

quantum algorithms that have been developed. 466

Shor’s quantum algorithm (Shor 1997) for integer factorisation is a spectacular 467

example. The best known classical factoring algorithm is the number field sieve 468

(Lenstra et al. 1990), which requires O(2(log N)1/3
) steps to factor a given integer 469

N . Popular encryption mechanisms such as RSA (Rivest et al. 1978) rely on the 470

assumption that factoring is hard. Yet Shor’s algorithm requires only a number 471

of steps that is polynomial in log N—an exponential speedup over the number 472

field sieve. There are also provable ‘oracle’ separations between the classical and 473

quantum computational models. An oracle is a kind of imaginary magic black box, 474

to which one puts a question chosen from a specified set, and from which one 475

receives an answer in a single time step. For example, Simon’s problem (Simon 476

1994) is that of determining the period of a given function f that is periodic under 477

bitwise modulo-2 addition. One can define an oracle O for evaluating arbitrary 478

calls to f . Relative to O, Simon’s quantum algorithm requires O(n) steps, while 479

a classical algorithm requires O(2n). This is an exponential speedup. 480

None of these results are absolutely conclusive. On the one hand, not 481

every complexity-theoretic proposition relativises to an oracle. The result that 482

IP = PSPACE, for example, does not hold under certain oracle relativisations 483

(PSPACE is the class of problems solvable using polynomially many space 484

resources; IP is the class of problems for which an affirmative answer can be verified 485

using an interactive proof). Further, there are oracles relative to which P = NP, as 486

well as oracles relative to which P 
= NP. Oracles are important tools that, among 487

other things, help to simplify and clarify the conceptual content of complexity- 488

theoretic propositions, however they cannot be used to resolve these and other 489

questions (for a discussion, see Fortnow 1994). Nor can they definitively show that 490

BPP�BQP. Simon’s problem, for instance, might contain some hitherto unknown 491

structure, obscured by the relativisation of the problem to an oracle, that could be 492

exploited by a classical algorithm. Regarding Shor’s algorithm, on the other hand, 493

unlike Simon’s, it does not make essential use of an oracle. Yet this nevertheless 494

does not conclusively demonstrate that BPP�BQP, for it is still an open question 495

whether factoring is in BPP. While most complexity theorists believe this to be false, 496

their conviction is not as strong as their conviction, for example, that P 
= NP—for 497

the factoring problem does have some internal structure, which is in fact exploited 498

by the classical number field sieve algorithm (Aaronson 2013a, 64–66). 499

While none of the individual pieces of evidence are conclusive, taken together 500

they nevertheless do lend a great deal of plausibility to the thesis that quantum 501

computers can solve more problems efficiently than can classical computers. That 502

said, it is not the place here to evaluate this evidence. For the purposes of our 503

discussion we will assume that this thesis is true. In the next section we will consider 504

its consequences. 505

31Rather than Q, one typically uses a ‘Hadamard gate’ (H) for this purpose, which acts as follows:

H |0〉 → 1√
2
|0〉 + 1√

2
|1〉, H |1〉 → 1√

2
|0〉 − 1√

2
|1〉.
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11.6 Quantum Computing and the Foundations of 506

Computational Complexity Theory 507

If BPP�BQP, then it follows that the universality of Turing efficiency thesis is false. 508

Some authors view the consequences of this for complexity theory to be profound. 509

Bernstein and Vazirani (1997), for example, take it that the theory “rests upon” this 510

thesis (p. 1411), and that the advent of quantum computers forces us to “re-examine 511

the foundations” (p. 1412) of the theory. The sense in which complexity theory rests 512

upon universality is expressed by Nielsen and Chuang (2000), who write that the 513

failure of the universality thesis implies that complexity theory cannot achieve an 514

“elegant, model independent form” (p. 140). Of this, Hagar (2007) writes: 515

To my mind, the strongest implication [of the violation of universality] is on the autonomous 516

character of some of the theoretical entities used in computer science, . . . given that quantum 517

computers may be able to efficiently solve classically intractable problems, hence re- 518

describe the abstract space of computational complexity, computational concepts and even 519

computational kinds such as ‘an efficient algorithm’ or ‘the class NP’, will become machine 520

dependent, and recourse to ‘hardware’ will become inevitable in any analysis of the notion 521

of computational complexity. (pp. 244–5). 522

Given that the universality of Turing efficiency thesis states that any reasonable 523

model of computation can be simulated with at most a polynomial number of 524

extra time steps by a (probabilistic) Turing machine, however, the reader may 525

be understandably confused by the claim that this thesis grounds the model- 526

independence of complexity-theoretic concepts to begin with. At most, it seems that 527

only a very weak sense of model-independence follows from universality. The truth 528

of (11.4), that is, implies that any assertion, of the form ‘language L is decidable 529

efficiently by an instance of the reasonable machine model M’, is replaceable by 530

the assertion that ‘language L is decidable efficiently by a PTM’. And since ‘by a 531

PTM’ is thus made universally applicable, it can be omitted from all such statements 532

in the knowledge that it is implicit (cf. Nakhnikian and Salmon 1957). But while 533

this yields a kind of model-independence in the sense that one need not explicitly 534

mention the PTM model when speaking of the complexity-theoretic characteristics 535

of L, it remains the case, nevertheless, that a reference to the PTM model is implicit 536

in one’s assertions about L. 537

To illustrate just how weak such a notion of model-independence is, note that, 538

based on it, one could argue that, although quantum computing refutes the model- 539

independence consequent upon the universality of Turing efficiency, it at the same 540

time provides a replacement for it (cf. Deutsch 1985, Bernstein and Vazirani 1997, p. 541

1413). Nielsen and Chuang (2000) write that if the universality of Turing efficiency 542

thesis were true, that it would be 543

great news for the theory of computational complexity, for it implies that attention may 544

be restricted to the probabilistic Turing machine model of computation. After all, if a 545

problem has no polynomial resource solution on a probabilistic Turing machine, then 546

the [universality of Turing efficiency] implies that it has no efficient solution on any 547

computing device. Thus, the [universality of Turing efficiency] implies that the entire theory 548

of computational complexity will take on an elegant, model-independent form if the notion 549

of efficiency is identified with polynomial resource algorithms (p. 140). 550
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Putting aside for the moment the somewhat strange comment that an expansion 551

of our knowledge of the extent of the space of efficiently decidable languages 552

is ‘bad news’ for complexity theory, note that quite the same argument could be 553

made if one replaces ‘probabilistic Turing machine’ with ‘quantum computer’ and 554

‘universality of Turing efficiency’ with ‘universality of quantum efficiency’. For 555

although BPP in (11.4) is now replaced with BQP, we have analogously given 556

a characterisation, in terms of a single machine model, of
⋃

PolyM. And yet if 557

a computer based on the principles of quantum physics can be taken to ground 558

an absolute model-independent characterisation of complexity-theoretic concepts, 559

then the right conclusion to draw is that this is not a satisfactory notion of model- 560

independence.32
561

One could, perhaps, counter that the model-independence consequent on the 562

universality thesis actually stems from the nature of the Turing model itself. 563

Assuming that one is convinced by Turing’s philosophical analysis, the Turing 564

model does, after all, represent the conceptual essence of effective computation (cf. 565

Hartmanis and Stearns 1965, p. 285). Be that as it may, there is no reason to think 566

that such a model must also be the most efficient one.33 The model-independence 567

of complexity theory thus would turn out to be a contingent fact. This in itself is not 568

a criticism. Nevertheless in that case it is not clear just what model-independence 569

would contribute to the ground of complexity theory in the theoretical sense. A 570

‘universality of quantum efficiency thesis’ would be, perhaps, less metaphysically 571

satisfying from the point of view of a computer scientist, but in itself would do just 572

as much theoretical work as the universality of Turing efficiency thesis. 573

BPP�BQP also implies the failure of the invariance thesis. Because of its 574

supposed relation to the Church-Turing thesis, it is universality and not invariance 575

that has received the lion’s share of attention from philosophers (an exception is 576

Dean). But unlike the universality thesis, there is a sense of model-independence 577

built right into the very statement of invariance. After all, it amounts to a direct claim 578

that the particular machine model under consideration, since it can be efficiently 579

simulated by any other reasonable model, is irrelevant for the purposes of providing 580

a characterisation of the complexity of a problem. Note also that the statement of 581

invariance itself makes no reference to the Turing model, so it is not susceptible to 582

the same sort of criticism I directed at the universality thesis above. It is true that 583

the domain of ‘reasonable’ or physically realisable models does not, for example, 584

include the ‘unreasonable’ parallel computational models, thus the invariance thesis 585

cannot provide model-independence in a truly absolute sense. Still, the study of 586

efficient algorithms in particular is mainly concerned with reasonable models. So 587

32One could, however, ground a relative notion of model-independence based on quantum
principles. I will discuss this further below.
33For a discussion of some possible justifications, and the problems that go along with them, for
the choice of the multi-tape TM as the benchmark for complexity-theoretic analyses, see Dean
(2016c).
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invariance, if true, arguably provides absolute model-independence in the only sense 588

that matters.34
589

Van Emde Boas takes the invariance thesis (he does not mention the universality 590

thesis) to, as a consequence, constitute a foundational thesis for complexity theory: 591

The fundamental complexity classes P and NP became part of a fundamental hierarchy: 592

LOGSPACE, NLOGSPACE, P, NP, PSPACE, EXPTIME, . . . And again theory faced the 593

problem that each of these classes has a machine-dependent definition, and that efficient 594

simulations are needed before one can claim that these classes are in fact machine- 595

independent and represent fundamental concepts of computational complexity. It seems 596

therefore that complexity theory, as we know it today, is based on the [assumption that the 597

invariance thesis holds] (van Emde Boas 1990, p. 5, ellipsis in original). 598

I will be criticising this statement. Before I do, however, it is important to note 599

that it is clear that the simplifying assumption of invariance can be profoundly 600

useful; its truth would imply that one can restrict one’s attention to the (reasonable) 601

model of one’s choice when inquiring into the complexity-theoretic characteristics 602

of particular problems. Further, and independently of this, studies such as van 603

Emde Boas’s, of the extent to which one model can simulate another, illuminate 604

the structure of complexity theory by allowing one to characterise the space of 605

machine models in terms of various ‘equivalence classes’. Van Emde Boas, for 606

instance, defines the models comprising the ‘first machine class’ as those for which 607

the invariance thesis holds. The ‘second machine class’ is defined with respect to a 608

different ‘parallel computation thesis’ (1990, p. 5), which I will not further describe 609

here. Note that van Emde Boas is careful to point out the partly conventional and 610

partly empirical (he does not use these words) nature of such theses: 611

The escape in defending the Invariance Thesis . . . is clearly present in the word reasonable 612

. . . For example, when in 1974 it was found that a RAM model with unit-time multiplication 613

and addition instructions (together with bitwise Boolean operations) is as powerful as a 614

parallel machine, this model (the MBRAM) was thrown out of the realm of reasonable 615

(sequential) machines and was considered to be a “parallel machine” instead. The standard 616

strategy seems to be to adjust the definition of “reasonable” when needed. The theses 617

become a guiding rule for specifying the right classes of models rather than absolute truths 618

and, once accepted, the theses will never be invalidated. This strategy is made explicit if we 619

replace the word reasonable by some more neutral phrase. (van Emde Boas 1990, pp. 5–6). 620

There is much to commend in this statement. But note first that it is not clear 621

that the ‘standard strategy’ will work in the face of quantum computing. On the one 622

hand, one would be hard-pressed to argue that quantum computers are not physically 623

realisable machines. On the other hand, the ‘quantum parallelism thesis’ (Duwell 624

2007, 2018; Pitowsky 1990, 2002) is quite controversial (Cuffaro 2012; Steane 625

2003), so it is not obvious that quantum computers should be classed as parallel 626

rather than sequential computers. This said, even if one takes the invariance thesis 627

to be violated by quantum computing, the idea of it, not as an absolute truth but 628

as a ‘guiding rule’—a sort of intensional principle for characterising the extensions 629

34See Dean (2016c) for a discussion of ways to circumscribe the space of operations that should
be allowable in a reasonable model.
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corresponding to different equivalence classes of models—remains, and it remains 630

a highly illuminating methodological principle for studying the relations between 631

computational models. 632

To illustrate what I mean by this,35 note that ‘quantum computer’ is actually 633

an umbrella term for a number of (universal) computational models: the quantum 634

Turing model (Deutsch 1985), the quantum circuit model (Deutsch 1989), the 635

cluster-state model (Briegel et al. 2009), the adiabatic model (Farhi et al. 2000), and 636

many others. To date, all of these models have been found to be computationally 637

equivalent in the sense that they all yield the same class of problems, BQP (see, 638

for example, Aharonov et al. 2007; Raussendorf and Briegel 2002; Nishimura and 639

Ozawa 2009). Thus it seems as though a third quantum machine class, in addition 640

to van Emde Boas’s first and second machine classes, exists. Fascinatingly, the 641

differences between the first and this third machine class turn out to be related to 642

the differences in the physics used to describe the machines which comprise them. 643

The physics, in turn, informs our judgements regarding which of these equivalence 644

classes should be deemed as ‘reasonable’. On the basis of these judgements we are 645

then enabled make conclusions with regards to what is feasible for us to accomplish 646

in the real world (cf. Dean 2016a, pp. 30, 56). If it were not for the existence 647

of quantum computers, one would be warranted in the belief that only a single 648

reasonable machine class exists. Quantum computing teaches us that there are at 649

least two. 650

Invariance, thought of as a guiding rule or methodological principle, rather than 651

as a thesis, is what is driving these investigations; through the search for equivalence 652

classes we carve out and illuminate the structure of the space of computational 653

models. This yields a notion of relative model-independence among the machine 654

models comprising a particular class. To be clear, the existence of relative model- 655

independence within the conceptual structure of complexity theory is itself not 656

strictly speaking necessary for the theory. It is true that the theory would arguably be 657

far less interesting if every abstract model of computation were different from every 658

other; for one thing there would be no unified notion of ‘classical computation’ to 659

compare quantum computation with—a quantum computer would be just another 660

model among many. Yet one can still imagine what such a complexity theory 661

would look like: a theory describing the computational power of various abstract 662

models of computation and their interrelations. This is not so alien that it would 663

be unrecognisable from our modern point of view.36 In fact the early period 664

35I am indebted to Scott Aaronson and to Sona Ghosh for independently prompting the discussion
in this and the next two paragraphs.
36The very notion of an abstract model of computation presupposes some notion of complexity-
theoretic invariance, of course, without which it would be impossible to unify various physical
instantiations of a model under a single concept. I am perfectly ready to concede that if complexity-
theoretic invariance failed to hold in this minimal sense then this would be disastrous for modern
complexity theory. But then I cannot see how it would be possible to revise complexity theory in
light of this; it would seem impossible to have a theory of complexity, or indeed any theory of any
subject, if even basic abstraction were not possible.
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of complexity theory, before the introduction of the polynomial principle (to be 665

discussed below) looked much like this. Representative of this period are results 666

such as that by Hartmanis and Stearns (1965), for example, who prove that the 667

multi-tape TM model is capable of a quadratic speedup with respect to the single- 668

tape TM model. Such analyses are indeed still present in the modern theory. 669

The fact that relative model-independence does exist, on the other hand, arguably 670

tells us something deep, or anyway something, about how computer science 671

connects up with the world. The invariance principle (rather than thesis) is a vitally 672

important part of computational complexity theory partly for this reason. And as 673

a methodological principle, it fulfils this role whether it is successful in its search 674

for equivalence classes of computational models or not. For the lack of any relative 675

model-independence within the theory would arguably also tell us something about 676

computer science’s relation to the physical world. A further, still methodological, 677

role of invariance is as a simplifying principle. For from a practical perspective the 678

theory would be exceedingly unwieldy, even if it would not strictly speaking be 679

impossible to develop, if no equivalence classes of abstract computational models 680

existed. 681

And yet none of this seems to imply or depend upon model-independence in the 682

sense of the first of my quotes of van Emde Boas above. Indeed it is not clear what 683

one gains from model-independence in that sense. LOGSPACE, NLOGSPACE, P, 684

NP, PSPACE, EXPTIME, and other complexity classes are each of them classes 685

of languages, after all. To compare any two of them is to compare one class of 686

languages with another; they are thus already machine-independent in that sense. 687

For this reason it is a meaningful question to ask whether the class P is large enough 688

to include all of the languages in NP, irrespective of how one defines either of them 689

in terms of an underlying machine model. On the other hand, one can define P as 690

the class of languages which are efficiently decidable by a TM. And one can define 691

NP as the class of languages which are efficiently decidable by an NTM. And to 692

be sure, deeper insight is gained by reflecting on how one translates the definition 693

of NP given in terms of the NTM model (11.3), into the alternative definition of 694

NP given in terms of the standard TM model (11.2). For then one sees clearly that 695

the statement that P = NP amounts to the assertion that the restricted form of the 696

Entscheidungsproblem is efficiently solvable. But in this case it is by reflecting on 697

the characteristics of a particular model that one gains this insight, namely, the 698

Turing machine model insofar as it represents the conceptual essence of human 699

digital computation.37
700

I am not alone in my skepticism. The idea that it is the fundamental goal 701

of complexity theory to get at some metaphysical notion of an independently 702

existing thing called ‘efficient computation’ is certainly not shared by all complexity 703

theorists. For example, Fortnow (2006) writes: 704

By no means does computational complexity “rest upon” a [universality of Turing effi- 705

ciency] thesis. The goals [sic.] of computational complexity is to consider different notions 706

37This is one reason why the question whether P = NP remains interesting even if P�BQP.
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of efficient computation and compare the relative strengths of these models. Quantum 707

computing does not break the computational complexity paradigm but rather fits nicely 708

within it. 709

Fortnow’s statement refers to the universality thesis; however it can clearly 710

equally well be asserted as a counter to the claimed foundational status of the 711

invariance thesis. A quick glance at the practice of complexity theorists seems to 712

confirm that Fortnow is right, for since the advent of quantum computing in the 713

mid-1990s, complexity theory appears to have continued on in much the same way 714

as before. Classic textbooks such as Papadimitriou’s (1994) excellent reference, 715

written before Shor’s (1994) breakthrough in quantum factoring, continue to be 716

cited frequently in modern scholarly work; more modern textbooks such as Arora 717

and Barak’s (2009) book include a chapter on quantum computation but otherwise 718

present the subject in much the same way as similar textbooks always have done; 719

BQP is just one of many classes in Aaronson’s (2016) ‘complexity zoo’. Despite 720

the fact that the prospects for a practicable and scalable quantum computer are 721

improving significantly every year (Veldhorst et al. 2015), and despite the fact that 722

most computer scientists believe that BPP�BQP and thus that the universality and 723

invariance theses are false, complexity theory—as a discipline—does not appear to 724

be in crisis. Complexity theory as a whole has grown—many new and important 725

questions have arisen regarding exactly how BQP relates to other complexity 726

classes—but the basic conceptual framework within which we ask these questions 727

remains much the same as before. 728

But if model-independence is not constitutive of complexity theory, what is? 729

Built into the definition of both the universality and invariance theses is the more 730

basic idea that an algorithm is efficient if and only if it requires no more than 731

a polynomial number of steps to complete. As we have seen, the roots of this 732

idea go back at least as far as Gödel’s letter to von Neumann, although from the 733

modern perspective, its main sources are the seminal articles of Cobham (1965) and 734

Edmonds (1965). I will call it the ‘polynomial efficiency principle’ or ‘polynomial 735

principle’ for short.38 Unlike either the universality or invariance theses, there is 736

no question that the polynomial principle is de facto foundational with respect 737

to the modern framework of complexity theory, in the sense that the conceptual 738

structure of the theory—the definitions of and relations between its most important 739

complexity classes such as P, NP, BPP, BQP, and so on—depend crucially upon the 740

principle. 741

And yet there is a different sense in which it can be said to be controversial. The 742

goal of the polynomial principle is to capture our pre-theoretic notion of what it 743

means for an algorithm to be efficient. Expressing this, Edmonds writes: 744

38Forms of this principle are often referred to as the Cobham-Edmonds thesis (e.g., see Dean
2016b). Unfortunately, this terminology is not always consistent. In Goldreich (2008, p. 33), for
example, the Cobham-Edmonds thesis is the name given to what we have here called the invariance
thesis.
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. . . my purpose is . . . to show as attractively as I can that there is an efficient algorithm [for 745

maximum matching]. According to the dictionary, “efficient” means “adequate in operation 746

or performance.” This is roughly the meaning I want—in the sense that it is conceivable for 747

maximum matching to have no efficient algorithm. Perhaps a better word is “good.” 748

I am claiming, as a mathematical result, the existence of a good algorithm for finding a 749

maximum cardinality matching in a graph. (Edmonds 1965, p. 420, emphasis in original). 750

One could argue, however, that the polynomial principle fails to achieve this goal. 751

For example, a problem for which the best algorithm requires O(n1000) steps to 752

complete is considered to be tractable according to the principle, while a problem for 753

which the best algorithm requires O(2n/1000) steps is considered to be intractable. 754

Yet despite these labels, the ‘intractable’ problem will take fewer steps to solve 755

for all but very large values of n. Strictly speaking, of course, since it is defined 756

asymptotically, the principle does not yield an incorrect answer even in such cases. 757

However problems we are faced with in practice are invariably of bounded size, 758

and an asymptotic measure—the preceding example illustrates this—seems to at 759

least sometimes be ill-suited for their analysis. A further reason for doubting the 760

polynomial principle is that it is a measure of worst-case complexity. Yet it does not 761

seem implausible that an average-case measure might give us better insight into just 762

how ‘good’ a given algorithm is. 763

All of this may be granted. And yet growth rates such as the above are extremely 764

rare in practice. Generally speaking, polynomial-time algorithms have growth rates 765

with small exponents, and the simplification made possible by the use of an 766

asymptotic measure generally does more good than it does harm; “For practical 767

purposes the difference between algebraic and exponential order is often more 768

crucial than the difference between finite and non-finite.” (Edmonds 1965, p. 451). 769

We also generally do not know in advance how the inputs to a particular problem 770

will be distributed, and in such circumstances average case complexity analyses are 771

impracticable (see Papadimitriou 1994, pp. 6–7). 772

What the arguments for and against the polynomial principle illustrate is that 773

its goal is not so much to provide an absolute or metaphysical distinction between 774

good and bad algorithms. What these arguments show us is that the purpose of the 775

principle is to guide us in making such distinctions in practice. In particular, what the 776

arguments for the principle amount to is the—empirical—claim that the polynomial 777

principle has been highly successful, in the sense that it has tended to provide us 778

with extraordinarily good guidance for the problems with which we are generally 779

faced. Aaronson sums this up as follows: 780

Of the big problems solvable in polynomial time—matching, linear programming, primality 781

testing, etc.—most of them really do have practical algorithms. And of the big problems 782

that we think take exponential time—theorem-proving, circuit minimization, etc.—most of 783

them really don’t have practical algorithms. So, that’s the empirical skeleton holding up our 784

fat and muscle (2013a, p. 54). 785

The precise way in which the polynomial principle aids us in the search for 786

good algorithms is by providing us with a mathematical explication of ‘good’ in 787

the context of complexity theory. In doing so it provides us with a mathematical 788

framework for our inquiries, within which we can express precise questions, and 789

generate precise answers. 790
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. . . if only to motivate the search for good, practical algorithms, it is important to realise that 791

it is mathematically sensible even to question their existence. For one thing the task can 792

then be described in terms of concrete conjectures. (Edmonds 1965, p. 451). 793

And yet, while the principle is generally a good guide, it is we who must 794

ultimately decide, in every case upon which we bring it to bear, whether or not 795

to follow its advice. 796

It would be unfortunate for any rigid criterion to inhibit the practical development of 797

algorithms which are either not known or known not to conform nicely to the criterion. 798

Many of the best algorithmic ideas known today would suffer by such theoretical pedantry. 799

. . . And, on the other hand, many important algorithmic ideas in electrical switching theory 800

are obviously not “good” in our sense. (Edmonds 1965, p. 451). 801

Just as the polynomial principle is a practical principle, so is complexity theory a 802

practical science, in the sense that its fundamental aim is to inform us with regards 803

to the practical difficulty of computing different classes of problems—i.e. with 804

regards to the things we would like to do—on our various machines. Principles 805

such as the polynomial and even the invariance principle (insofar as it serves as a 806

methodological principle for carving out equivalence classes of machine models) 807

illuminate the structure of this space of possible tasks. But they, and the structure 808

with it, are ultimately guides which should be set aside whenever they cease to be 809

useful. To some extent this is true in every science—the principles of Newtonian 810

mechanics, say, must give way to the principles of modern spacetime theories. But 811

principles such as the polynomial principle, and the theory of complexity that is built 812

upon it, do not claim for themselves universal validity as Newtonian mechanics at 813

one time did—nor do they even claim to have a well-defined sphere of application 814

(how large must an exponent be before a polynomial-time algorithm is no longer 815

considered to be ‘really’ efficient?). The polynomial principle, and complexity 816

theory with it, are intrinsically practical in nature; they claim to be useful only ‘most 817

of the time’ and for most of our practical purposes. This is the theory’s core. 818

This said, if, with the development of the theory, the polynomial principle 819

somehow ceased to be useful even in merely the majority of cases of practical 820

interest, this would certainly require a substantial revision of much of the theory’s 821

framework, for so much of the conceptual structure of complexity theory is built 822

upon the assumption of the polynomial principle. And yet even in this case the 823

essential nature and subject matter—the metaphysical foundation, if you will— 824

of the theory—a theory of what we are capable of doing in practice—would not 825

change. 826

11.7 Conclusion 827

Cobham (1965) took complexity theory to be a science concerned with three general 828

groups of questions: those related (i) to “specific computational systems”, (ii) to 829

“categories of computing machines”, and (iii) to those questions which “are inde- 830
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pendent of any particular method of computation” (pp. 24–5). The third subdivision 831

will always remain a part of complexity theory. In fact, machine-independent results 832

can be had in the theory—though no one would argue that these provide a foundation 833

for it—if one uses a very general and amorphous notion of a complexity measure 834

(Seiferas 1990). Indeed studies such as these suggest that further reflection may 835

be needed on precisely what is meant by the notion of ‘intrinsic complexity’. But 836

model-independence is not all of the theory; nor is it a foundation for the other 837

two groups of questions mentioned by Cobham. Computational complexity theory 838

is, at its core, a practical science. As a mathematical theory, it employs idealised 839

concepts and methods, and appeals to formal principles which are justified insofar 840

as they are useful in providing us with practical advice regarding the problems we 841

aim to solve. Our solutions to such problems are implemented on particular machine 842

models. Computational complexity theory studies the various notions of efficiency 843

associated with these different models, and studies how these notions relate to one 844

another. “Quantum computing”, to quote Fortnow once again, “does not break the 845

computational complexity paradigm but rather fits nicely within it.” Indeed, far from 846

breaking the complexity-theoretic paradigm, quantum computing serves to remind 847

us of the point of it all. 848
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Mathematical Models of Technological 2

and Social Complexity 3

Ronald Kline 4

Abstract This chapter recounts part of the history of mathematical modeling in 5

the social sciences in the United States and England in the 1950s and 1960s. It 6

contrasts the modeling practices of MIT engineer Jay Forrester, who developed 7

the field of System Dynamics, with that of English cybernetician Stafford Beer, 8

and American social scientist Herbert Simon, in regard to the contested issues 9

of prediction and control. The analysis deals with the topic of mathematics and 10

technology in three senses: the technological origins of mathematical modeling 11

in cybernetics and System Dynamics in the fields of control and communications 12

engineering; the use of digital computers to create models in System Dynamics; 13

and the conception of scientific models, themselves, as technologies. The chapter 14

argues that the different interpretations of Forrester, Beer, and Simon about how 15

models should serve as technologies help explain differences in their models and 16

modeling practices and criticisms of Forrester’s ambitious attempts to model the 17

world. 18

In 1948, Warren Weaver, chief of the natural sciences division of the Rockefeller 19

Foundation in the United States, issued a challenge to scientists in an article 20

entitled “Science and Complexity.” An applied mathematician who had headed 21

the government’s research and development program on gunfire control systems 22

in World War II and now consulted for the RAND Corporation on the military 23

science of operations research, Weaver said that scientists in the first half of the 24

twentieth century had learned to solve the problem of “disorganized complexity” 25

by using statistical mechanics and probability theory to analyze random events 26

occurring among a large number entities, such as the movements of gas molecules 27

in thermodynamics. The challenge in the second-half of the twentieth century was 28

to solve the problem of “organized complexity” in biology and the social sciences. 29

That problem could not be analyzed with pre-war methods, Weaver maintained, 30
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because structured systems such as living organisms and social organizations 31

exhibited purposeful rather than random behavior. Weaver predicted that scientists 32

would utilize two innovations coming out of World War II (the digital computer and 33

the interdisciplinary approach of operations research) to solve the “complex, but 34

essentially organic, problems of the biological and social sciences.”1
35

In this chapter, I discuss two new scientific disciplines that contemporaries 36

thought were well-suited to solve the problem of organized complexity in the 37

social sciences – cybernetics and System Dynamics. I contrast the work of engineer 38

Jay Forrester, who developed the field of System Dynamics at the Massachusetts 39

Institute of Technology (MIT), with that of American social scientist Herbert Simon 40

and English cybernetician Stafford Beer. I discuss why contemporaries thought 41

cybernetics and System Dynamics could meet Weaver’s challenge, how Forrester 42

and his competitors mathematically modeled social systems using theories from 43

control-systems engineering, and criticisms about the validity of Forrester’s models. 44

I focus on the contested issues of prediction and control in modeling practice in 45

order to draw out wider issues about the mathematization of the social sciences in 46

this period. 47

My analysis deals with the topic of mathematics and technology in three senses: 48

the technological origins of mathematical modeling in cybernetics and System 49

Dynamics; the use of digital computers to create models in System Dynamics; 50

and the conception of scientific models, themselves, as technologies. For the 51

latter theme, I draw on recent work in the history and philosophy of science that 52

analyzes the construction and use of scientific models as technologies.2 Although 53

Forrester and his contemporaries used similar principles from control-systems 54

engineering, they created much different sorts of models. I argue that their different 55

interpretations of how models should serve as technologies help explain differences 56

in their models and modeling practices, criticisms of Forrester, and Forrester’s 57

ambitious attempts to model first the industrial firm, then the city, and finally the 58

world. 59

1Warren Weaver, “Science and Complexity,” American Scientist, 36 (1948): 536–544,
on 542. On his work in World War II and later at RAND, see David A. Mindell,
Between Human and Machine: Feedback, Control, and Computing before Cybernetics
(Baltimore: Johns Hopkins University Press, 2002), Chap. 7; and Martin Collins,
Cold War Laboratory: RAND, the Air Force, and the American State, 1945–1950 (Washington,
DC: Smithsonian Institution press, 2002), Chap. 4.
2Margaret Morrison and Mary S. Morgan, “Models as Mediating Instruments,” in
Models as Mediators: Perspectives on Natural and Social Science, edited by Morgan and Morrison
(Cambridge: Cambridge University Press, 1999): 10–37.



UNCORRECTED
PROOF

12 Mathematical Models of Technological and Social Complexity 287

12.1 The Technological Basis of Cybernetics and System 60

Dynamics 61

The technological basis of modeling in cybernetics and System Dynamics came 62

from the engineering fields of control systems and communications. From the late 63

nineteenth century to the 1930s, inventors and engineers devised numerous types 64

of small regulating units to control the operation of much larger, often unruly 65

machines. These control systems steered ships, stabilized the motion of ships and 66

airplanes by means of gyroscopes, enabled airplanes to fly with a minimal amount of 67

human control, and aimed large artillery at distant targets on land, sea, and in the air. 68

The control systems worked on the principle of the servomechanism, in which the 69

outputs of the machine to be regulated (e.g., its position, direction, or motion) were 70

fed back in a closed loop and compared to the desired settings in order to generate 71

error signals that would eventually move the machine to the desired goal (see Fig. 72

12.1). In the field of communications, engineer Harold Black and his colleagues 73

at the American Telegraph and Telephone Company (AT&T) invented a negative- 74

feedback amplifier in the 1920s that stabilized the transmission of long-distance 75

telephone signals by using feedback to cancel out the distortions that came from 76

temperamental vacuum tubes used in the repeater amplifiers. 77

Cybernetics and System Dynamics drew on the mathematical theories that 78

engineers and scientists developed between the wars to analyze and improve the 79

design of these feedback control systems. At MIT, Harold Hazen created a general 80

theory of servomechanisms while working on the differential analyzer, an influential 81

mechanical analog computer used to solve complex differential equations. At 82

AT&T’s Bell Telephone Laboratory, Harry Nyquist and Henrik Bode created 83

mathematical theories and graphical techniques to design stable negative feedback 84

amplifiers for the Bell System. During World War II engineers combined the fields 85

of control and communication by recognizing that any servomechanism operated 86

like a negative feedback amplifier and thus could be analyzed using the Nyquist 87

Diagram and the Bode Plot. This merger of control and communication theory 88

occurred when the National Defense Research Committee’s (NDRC) division of 89

Fire Control, headed by Warren Weaver, let contracts to MIT’s Servomechanisms 90

Laboratory and to Bell Labs to design anti-aircraft fire-control systems.3 91

Fig. 12.1 Control-system
diagram. Wiener,
Cybernetics, 1948, p. 132

Feed back
take-off

Compensator
Subtractor

OutputEffector

3Mindell, Between Human and Machine, Chaps. 3–5, 7–9, 11; and Stuart Bennett,
A History of Control Engineering, 1800–1930 (London: Peter Peregrinus, 1979), Chap. 4.
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It was while working on a sophisticated anti-aircraft project for the NDRC that 92

MIT mathematician Norbert Wiener created a theory of prediction and control, as 93

well as a theory of information, that served as the basis for founding the new science 94

of cybernetics in 1948. And it was while working at MIT’s Servomechanisms Lab- 95

oratory during the early Cold War that Jay Forrester learned the theory of feedback 96

control and communication that would form the basis of System Dynamics. 97

12.2 Mathematical Modeling of Social Systems in the Cold 98

War 99

The work of Forrester and other modelers was part of a larger movement to quantify 100

the social sciences in the Cold War by replacing qualitative and physical models 101

with equation-based mathematical models.4 Although several scientists had created 102

mathematical models of the economy in the 1920s and 1930s that consisted of 103

linked differential equations, difference equations, or inferential statistics – most 104

notably Dutch economist Jan Tinbergen – this endeavor did not gain ground outside 105

of economics in the U.S. until after World War II.5 In 1956, the first volume of 106

General Systems, the journal of General System Theory, a field founded by biologist 107

Ludwig von Bertalanffy, reprinted a 1951 article by economist Kenneth Arrow at 108

Stanford University that surveyed mathematical models in the social sciences. The 109

editors of the journal explained that physicists and, increasingly biologists, did not 110

have to be convinced of the utility of mathematical models; social scientists did. 111

Furthermore, the universal claims of mathematics were “put to a severe test in the 112

evaluation of the role of mathematical models in social science.”6
113

The social scientists and engineers who worked in cybernetics and systems 114

dynamics did not have to be convinced because mathematical modeling had been 115

central to those fields since their founding after the war. Both interdisciplines were 116

part of a larger systems movement that grew to prominence in the 1960s with the 117

rise of systems analysis, systems engineering, operations research, game theory, 118

4See Max Black, Models and Metaphors: Studies in Language and Philosophy (Ithaca: Cornell
University Press, 1962), 223–226.
5George P. Richardson, Feedback Thought in Social Science and Systems Theory (Philadelphia:
University of Pennsylvania Press, 1991, Chap. 2; and Adrienne van de Bogaard, “Past Measure-
ment and Future Prediction,” in Models as Mediators, edited by Morgan and Morrison, Chap. 10.
6Ludwig von Bertalanffy and Anatol Rapoport, “Preface,”
General Systems: Yearbook of the Society for the Advancement of General Systems Theory,
1 (1956): v; and Kenneth Arrow, “Mathematical Models in the Social Sciences,” ibid., 29–47,
which was reprinted from The Policy Sciences: Recent Developments in Scope and Method,
edited by Daniel Lerner and Harold D. Lasswell (Stanford: Stanford University Press, 1952),
129–154.
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and General Systems Theory.7 All of these fields, as well as economic input-output 119

analysis and linear programming, were related to what Philip Mirowski has called 120

the “cyborg sciences” of the Cold War and Hunter Heyck has called the “age of 121

system” in the social sciences.8 122

The central analogy of cybernetics, popularized by Wiener, who gave the field its 123

name, was that both animals and machines could be analyzed using mathematical 124

theories from control and communications engineering. A favorite analogy was 125

to compare the central nervous system in humans – consisting of the brain, 126

nerve net, effectors, and sensors – with control systems run by digital computers, 127

popularly known as “electronic brains.” Cyberneticians claimed they could model 128

living organisms, intelligent machines, and society as systems structured by causal 129

information-feedback loops, because such systems exhibited purpose, learning, and 130

adaptation to the environment.9 Early researchers in cybernetics created physical 131

and mathematical models of human behavior and the brain.10 Although Wiener had 132

stated that the mathematics of cybernetics could not be applied to the social sciences 133

because of the lack of sufficient runs of quality data in those fields,11 several social 134

scientists in the United States applied cybernetics in their work. These included such 135

prominent figures as Talcott Parsons in sociology, Herbert Simon in management 136

science, Karl Deutsch in political science, George Miller in psychology, Roman 137

Jakobson in linguistics, and Gregory Bateson in anthropology.12
138

Sociologist Walter Buckley at the University of California, Santa Barbara, noted 139

in 1967 that cybernetic and general system models were not simply a fashionable 140

analogy based on the latest technology. “There is a difference between analogizing 141

and discerning fundamental similarities of structure,” Buckley stated. “The newer 142

system view is building on the insight that the key to substantive differences 143

in systems lies in the way they are organized, in the particular mechanisms 144

and dynamics of the interrelationships among the parts with their environment.” 145

7Ronald R. Kline, The Cybernetics Moment, Or Why We Call Our Age the Age of Information
(Baltimore: Johns Hopkins University Press, 2015), 190–195.
8Philip Mirowski, Machine Dreams: Economics Becomes a Cyborg Science (Cambridge:
New York: Cambridge University Press, 2002), Chap. 1; and Hunter Heyck,
The Age of System: Understanding the Development of Modern Social Science (Baltimore:
Johns Hopkins University Press, 2015).
9Steve J. Heims, The Cybernetics Group (Cambridge, MA: MIT Press, 1991); Geoffrey C. Bowker,
“How to be Universal: Some Cybernetic Strategies, 1943–1970,” Social Studies of Science 23
(1993): 107–127; and Kline, Cybernetics Moment, Chap. 3.
10See., e.g., Andrew Pickering, “Ross Ashby: Psychiatry, Synthetic Brains, and Cybernetics,” in
The Cybernetic Brain: Sketches of Another Future (Chicago: University of Chicago Press, 2010),
Chap. 4; and Lily E. Kay, “From Logical Neurons to Poetic Embodiments of Mind: Warren S.
McCulloch’s Project in Neuroscience,” Science in Context, 14 (2001): 591–614.
11Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine
(Cambridge, MA, and New York: Technology Press and John Wiley, 1948), 33–34, 189–191.
12Richardson, Feedback Thought in Social Science and Systems Theory, Chaps. 3–5; and Kline,
Cybernetics Moment, Chap. 5.
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Thus, contemporaries believed that cybernetics and systems theory could solve 146

the problem of organized complexity because purposeful systems (living and non- 147

living) were governed by actual, casual information-feedback loops assumed by 148

cybernetics.13
149

12.3 Prediction and Control 150

Those who employed cybernetics and systems theory to model social processes 151

often parted ways when it came to the issues of prediction and control, even though 152

they relied on the same control-system theory and practices described above. By 153

the 1930s, engineers had worked out how to use Laplace transforms to solve the 154

linear differential equations that described such a system. Prediction and control 155

are intimately related in such an analysis. By finding a general solution to the 156

equations and plotting the results in a Nyquist diagram, engineers could predict the 157

performance of the system under various inputs and determine its stability, while 158

automatically controlling the system in the desired manner. More complex systems 159

containing multiple information-feedback loops, non-linearities, and positive as 160

well as negative feedback were considered to be mathematically intractable.14
161

To illustrate the application of this theory to the social sciences, consider the 162

work of Herbert Simon. A polymath social scientist at the newly established Grad- 163

uate School of Industrial Administration at the Carnegie Institute of Technology 164

(now Carnegie-Mellon University), Simon was a strong advocate of mathematical 165

modeling in the social sciences.15 In 1952, he published an extensive paper that 166

applied servomechanism theory to the problem of optimizing production control in 167

manufacturing. Saying his method came under the rubric of “cybernetics,” Simon 168

gave a tutorial for social scientists on the mathematics of servo theory, which was 169

common in electrical engineering. He explained how to use Laplace transforms 170

to solve the linear differential equations of control systems by converting them 171

to complex-number algebraic equations. He also showed how to use the Nyquist 172

criteria to decide whether or not the system was stable by plotting the roots of the 173

algebraic equations in the frequency domain. Simon acknowledged that the results 174

of his mathematical analysis of the production problem were known intuitively by 175

experienced managers, but he concluded that servomechanism theory provided a 176

13Walter F. Buckley, Sociology and Modern Systems Theory (Englewood Cliffs, NJ: Prentice
Hall, 1967), 3 (quotation), 38–39. On systems theory and organized complexity, see Ludwig
von Bertalanffy, General System Theory: Foundations, Development, Applications (New York:
George Braziller, 1968), 34, 68.
14See, e.g., Gordon S. Brown and Donald P. Campbell, Principles of Servomechanisms (New York:
Wiley, 1948).
15Hunter Crowther-Heyck, Herbert A. Simon: The Bounds of Reason in Modern America (Balti-
more: Johns Hopkins University Press, 2005).
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rigorous and precise methodology on which to base decision rules.16 As noted 177

by his biographer, Simon combined the science of control (cybernetics) with the 178

science of choice (decision theory) to come up with his celebrated theory of bounded 179

rationality.17
180

Prediction and control entered into Simon’s model in several ways. The general 181

solution of the differential equations precisely predicts future states of the system. 182

Determining whether a system is stable or not is another form of prediction. The 183

model represents how a system is controlled, and the modeler can indirectly control 184

a system by recommending changes to it based on experiments done with the model. 185

At this time, economists often associated prediction of future states with what they 186

called “descriptive models” and indirect control with what they called “prescriptive 187

models.”18 In both senses, these models are themselves technologies. 188

A third form of control can be seen in the work of Stafford Beer. An operations- 189

research consultant in the British steel industry, Beer turned from the mathematical 190

techniques of OR, such as linear programming, to cybernetics in the 1950s. 191

Beer laid out the new approach in Cybernetics and Management (1959), and in 192

several subsequent books, culminating in the ill-fated scheme to build a cybernetic 193

system to control the economy of socialist Chile in the early 1970s.19 Beer’s 194

proposal for a Cybernetic Factory, which is analogous to a biological model, 195

illustrates his approach. The main idea behind the system (Fig. 12.2) is that the 196

cybernetician designs a control system that homeostatically couples the Company 197

to its Environment. The control system consists of the boxes in the bottom half of 198

the diagram. The main feedback loop, running from the output of the Company’s 199

Homomorphic Model to the Company, controls the Company’s operations. This 200

is not a traditional, negative feedback control loop. The homomorphic models 201

enable the two-part system (Company and Environment) to achieve ultrastability, 202

a concept Beer adapted from British cybernetician W. Ross Ashby. Ultrastability 203

ensures the survival of the Company, which is the main goal of Beer’s cybernetic 204

management.20 Although Beer, like Simon, relied on information-feedback loops, 205

his purpose was to directly control systems not to create models to make predictions. 206

He did this by designing automatically adaptable software models of the system and 207

its environment – the Homomorphic Models – and embedding them physically into 208

an actual control system. 209

16Herbert Simon, “On the Application of Servomechanism Theory in the Studies of Production
Control,” Econometrica, 20 (1952): 247–268, on 258.
17Crowther-Heyck, Herbert A. Simon, Chap. 9.
18Mary S. Morgan, “Simulation: The Birth of a Technology to Create ‘Evidence” in Economics,”
Revue d’histoire des sciences, 57 (2004): 341–377, on n. 16, 348, and 365–366.
19Pickering, Cybernetic Brain, Chap. 6; and Eden Medina,
Cybernetic Revolutionaries: Technology and Politics in Allende’s Chile (Cambridge, MA:
MIT Press, 2011).
20Stafford Beer, Cybernetics and Management (New York: John Wiley, 1959), Chap. 1; W. Ross
Ashby, Design for a Brain: The Origin of Adaptive Behaviour (New York: John Wiley, 1952); and
Pickering, Cybernetic Brain, Chaps. 4 and 6.
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Fig. 12.2 Cybernetic factory. Beer, Cybernetic Management, 1959, p. 150

12.4 Jay Forrester and System Dynamics 210

These multiple meanings of prediction and control are evident in the work of Jay 211

Forrester. Forrester modeled much more complex systems than did Simon and 212

other social scientists, and tried to model the complexity Beer thought could not 213

be represented. Forrester developed his method of modeling from his experience 214

designing control systems and digital computers at MIT during World War II and 215

the early Cold War. He worked on an analog flight simulator at Gordon Brown’s 216

Servomechanisms Laboratory during the war, then turned to digital computing after 217
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the war and led the group that developed the Whirlwind computer and magnetic-core 218

memory. Whirlwind formed the basis for SAGE, the real-time, computer-controlled 219

anti-aircraft radar system that was deployed across the northern United States during 220

the 1950s.21 Upon moving to the newly established Sloan School of Industrial 221

Management at MIT in the mid-1950s, Forrester brought his experience with 222

control systems and digital computers to bear on the solution of management 223

problems. He embarked on a 5-year program – supported by the Ford Foundation, 224

the Digital Equipment Corporation, and MIT’s Computation Center – to develop 225

his first modeling program, “Industrial Dynamics,” whose main purpose was to 226

train managers at the Sloan School. Forrester expanded his modeling technique to 227

analyze the growth and decay of cities in Urban Dynamics (1969), then the world’s 228

population and natural resources in World Dynamics (1971). In all of these projects, 229

which eventually came under the rubric of “System Dynamics,” Forrester designed 230

models to be learning tools, that is, technologies for policy makers.22
231

Forrester explained the purpose and practices of his modeling technique, which 232

remained remarkably constant over the years, in his first book on the subject, 233

Industrial Dynamics (1961). At the Sloan School, Forrester established a “manage- 234

ment laboratory,” in which he and his group created mathematical models to serve as 235

“tools for ‘enterprise engineering,’ that is for the design of an industrial organization 236

to meet better the desired objectives.” Enterprise engineering consisted of four steps. 237

First, Forrester and his group interviewed managers to identify the goals of the 238

organization, problem areas to be investigated, and factors and decision policies 239

to include in the model. Second, they created an information-feedback model on 240

a digital computer to simulate the observed behavior of the organization. Third, 241

they revised the computer model until it gave an “acceptable” representation of 242

the organization’s behavior (i.e., one agreed to by the modelers and their clients). 243

Fourth, managers used these results to modify the organization to improve its 244

performance.23 Forrester and his followers defined the boundaries of their closed- 245

system models so that the “behavior modes of interest [to their clients] are generated 246

within the boundaries of the defined system.”24
247

21Mindell, Between Human and Machine, Chap. 8; Paul N. Edwards, Closed World:
Computers and the Politics of Discourse in Cold War America (Cambridge, MA: MIT Press,
1996); Chap. 3; and Thomas P. Hughes, Rescuing Prometheus: Four Monumental Projects
that Changed the Modern World (New York: Pantheon, 1998), Chap. 2.
22Brian P. Bloomfield, Modeling the World: The Social Construction of Systems Analysis (Lon-
don: Basil Blackwell), 1986; and William Thomas and Lambert Williams, “The Epistemologies
of Non-Forecasting Simulations, Part I: Industrial Dynamics and Management Pedagogy at MIT,”
Science in Context, 22 (2009): 245–270.
23Jay W. Forrester, Industrial Dynamics (Cambridge, MA: MIT Press, 1961), Chaps. 1–2, quota-
tion on 56.
24Jay W. Forrester, “Industrial Dynamics – After the First Decade,” Management Science, 14
(1968): 398–415, on 406.
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After a decade developing his program at MIT, modeling firms, and training 248

modelers, Forrester could boast that industrial dynamics had spread to many U.S. 249

companies, including Kodak, RCA, IBM, and the Coca-Cola company, and overseas 250

to the Philips Lamp Works in the Netherlands. In 1968, Forrester maintained that 251

industrial dynamics was not merely a modeling technique, but a profession. “Like 252

the recognized professions,” Forrester said, “there is an underlying body of principle 253

and theory to be learned, applications to be studied to illustrate the principles, cases 254

to build a background on which to draw, and an internship to develop the art of 255

applying theory.”25
256

In Industrial Dynamics, Forrester argued that six networks – handling flows of 257

materials, orders, money, personnel, capital equipment, and information – could 258

be interconnected to model any economic or company activity. Forrester modeled 259

each network with the basic structure shown in the diagram in the top right section 260

of Fig. 12.3. Levels accumulate flows of that network’s activity (e.g., the flow of 261

materials in production). Decision functions (shown by a valve symbol) regulate the 262

flow rates between the levels (shown by a solid line) based on the information fed 263

to them from the levels (shown by a dotted line). Forrester noted that this was a 264

continuous rather than a discrete mathematical representation (i.e., an analog rather 265

than a digital form of modeling, even though it was done on a digital computer). The 266

symbols, in fact, resembled those used to set up equations on the analog Differential 267

Analyzer invented by Vannevar Bush at MIT in the 1930s.26 In mathematical terms, 268

levels indicate integration, rates differentiation. 269

Consider the simplified model of a production-distribution system shown in the 270

top left section of Fig. 12.3, which includes only three interconnected networks: 271

materials, orders, and information.27 To put this non-linear system into tractable 272

mathematical form, Forrester wrote difference equations that related levels to rates, 273

which the digital computer calculated at discrete time intervals. A level equation for 274

this system is shown in the bottom section of Fig. 12.3. The equation states a simple 275

accounting relationship: present retail inventory equals the previous retail inventory, 276

plus the difference between the inflow shipment rate and the outflow shipment rate 277

during the previous time interval, the difference in rates being multiplied by the 278

computing time interval. As Forrester said, “In short, what we have equals what we 279

had plus what we received less what we sent away.”28
280

25Jay W. Forrester, “Industrial Dynamics – A Response to Ansoff and Slevin,”
Management Science, 14 (1968): 601–618, on 617. For an early list of industrial-dynamics
clients, most of whom were modeled by consultants trained at MIT, see Edward B. Roberts, “New
Directions in Industrial Dynamics,” Industrial Management Review, vol. 6, no. 1 (Fall 1964):
5–14, on 11. On the experience of the Sprague Electric Company, which was the first firm to
have its operations modeled by Forrester’s group, see Bruce R. Carlson, “An Industrialist Views
Industrial Dynamics,” ibid., 15–20.
26Forrester, Industrial Dynamics, 67–71.
27Forrester added the other networks in modeling companies for his clients.
28Industrial Dynamics, 76. An example of a rate equation is OUT.KL = STORE.K/DELAY. See
p. 78.
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Fig. 12.3 Principles of industrial dynamics. Forrester, Industrial Dynamics, 1961, pp. 67, 139

The industrial dynamics software, written in the language of the DYNAMO soft- 281

ware compiler, created by Forrester’s colleagues Phyllis Fox and Alexander Pugh to 282

run on the IBM 700 series of digital computers, solved the level equations first, then 283

the rate equations in each time interval DT. The difference equations were solved 284

independently because the information-feedback channels were uncoupled from the 285

rest of the model during the computing time interval. As Forrester explained, “The 286

model traces the course of the system through time as the environment (levels) leads 287

to decisions and actions (rates) that in turn affect the environment.”29
288

Forrester’s method differs substantially from the techniques employed by Simon 289

and other modelers, who solved simultaneous, linked differential equations to obtain 290

a general solution describing system behavior in a precise manner.30 Forrester’s use 291

of the technology of the digital computer enabled him to model multiple-loop, non- 292

linear systems, containing both positive and negative feedback, whose differential 293

equations were intractable. The computer simulation for actual systems often ran 294

to more than 100 equations. Forrester stated that “When we no longer insist that

29Ibid., 75.
30Richardson, Feedback Thought in Social Science and Systems Theory, 153–155.
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we must obtain a general solution that describes, in one neat package, all possible 295

behavior characteristics of the system, the difference in difficulty between linear and 296

nonlinear systems vanishes.”31
297

In effect, Forrester traded the ability to model realistic, non-linear systems for 298

the ability to make precise predictions of less realistic, linear systems. Forrester 299

explained that he did not use the digital computer to do precise numerical integration 300

of the difference equations as was common in scientific calculation.32 These 301

“elaborate numerical methods,” Forrester argued, were not justified in industrial 302

dynamics. “We are not working for high numerical accuracy. The information- 303

feedback character of the systems themselves make the solutions insensitive to 304

round-off and truncation errors.” To complicate the model further, Forrester added 305

an element of random noise to the rates, simulating actual conditions. The solution 306

interval, DT, needed to be small to enable an accurate characterization of the overall 307

performance of the system, but not so small that it led to excessive use of expensive 308

computer time, which was a concern at the time, even at MIT. He empirically 309

adjusted the solution interval “to observe whether or not the solutions are sensitive 310

to the simplified numerical methods that are being used.”33
311

Forrester addressed the issues of prediction and control under the topic of model 312

validity. In line with the pedagogical goals of his program at the Sloan School,34
313

Forrester developed industrial models as a technology to train managers how to 314

redesign (i.e., control) industrial systems. Forrester thus related prediction and 315

control to policy making (in this case management policy). Forrester argued that a 316

model was valid if it predicted the general results that would “ensue from a change 317

in organizational form or policy,” especially the “direction of the major changes in 318

system performance.” It should also indicate the “approximate extent of the system 319

improvements that will follow.” The model could not predict precisely the future 320

state of a system. Forrester thought such a prediction was “possible only to the 321

extent that the correctly known laws of behavior predominate over the unexplained 322

noise.”35
323

Two response curves generated by the model of the production-distribution 324

system discussed earlier illustrate Forrester’s approach. Figure 12.4 shows the 325

31Forrester, Industrial Dynamics, 51 (quotation), Appendix B (list of equations for models). For a
similar statement, see Forrester, Urban Dynamics (Cambridge, MA: MIT Press, 1969), 108.
32He explained the relationship between difference equations and differential equations, for
example, as IAR = IARt = 0 + ∫

(SRR-SSR)dt. See Forrester, Industrial Dynamics, n, 8, p, 76.
Numerical integration by the digital computer has a long history; see Thomas Haigh, Mark Priestly,
and Crispin Rope, ENIAC in Action: Making and Remaking the Modern Computer (Cambridge,
MA: MIT Press, 2016).
33Forrester, Industrial Dynamics, 80. DT was usually determined by the exponential delay (p. 79).
He also says that statistical analysis probably cannot model non-linear, noisy, information-feedback
systems. See p. 130.
34On this point, see, especially, Thomas and Williams, “The Epistemologies of Non-Forecasting
Simulations, Part I.”
35Forrester, Industrial Dynamics, 116, 124, his emphasis.
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Fig. 12.4 Response of production-distribution system to a sudden 10% increase in retail sales.
Forrester, Industrial Dynamics, 1961, p. 24
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response of the model to a sudden and sustained increase of 10% in retail sales. 326

The values for retail inventory, distribution inventory, factory production, factory 327

inventory, and so forth fluctuate, then reach stability at higher values over a year 328

after the step increase.36 Figure 12.5 shows the response of the same production- 329

distribution system to a 10% unexpected rise and fall in retail sales over a 1-year 330

period. The periodic disturbance produces large swings in system values, showing 331

that the “system, by virtue of its policies, organization, and delays, tends to amplify 332

those retail sales changes to which the system is sensitive.”37 The effects of other 333

disturbances are suppressed. 334

These curves illustrate how Forrester engaged in a policy form of prediction and 335

control. He experimented with the model as a technology to investigate (predict) 336

how the system responded in general to standard inputs. The next step was to 337

“determine ways to improve management control for company success.” Forrester 338

altered the design of the system by changing the model’s feedback-loop structure 339

and policies (rates), such as the way orders were handled and inventory managed, to 340

see the effects on system response. The mathematical models allowed experimental 341

36In this case, modeling showed that factory warehouse orders were not due to an industry increase
in business volume, but to a transient.
37Industrial Dynamics, 28.
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Fig. 12.5 Response of production-distribution system to 10% unexpected rise and fall in retail
sales. Forrester, Industrial Dynamics, 1961, pp. 26–27
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computer simulations to be conducted in Forrester’s “management laboratory” 342

in his program of “enterprise engineering.”38 The models in Industrial Dynamics 343

were thus management technologies of policy prediction and control, in which 344

representation served the interventionist purpose of redesigning industrial systems. 345

Forrester’s engineering experience informed his modeling of social complexity. 346

One of the foundations of industrial dynamics was that the “experimental model 347

approach to the design of complex engineering and military systems can be applied 348

to social systems.”39 The response curves generated by the model to various inputs 349

answer the kinds of questions regarding prediction and control that would be posed 350

by a control-system engineer: Is the system stable? How does it respond to standard 351

types of inputs? How can the responses be improved to avoid disastrous results 352

such as system oscillation and run away? These considerations outweighed those of 353

precisely predicting future system states in the culture of the control engineer, as 354

they did for Forrester when he trained managers in Industrial Dynamics at the Sloan 355

School. 356

This technological approach is also present in Forrester’s analysis of the 357

complexity of social systems. In contrast to Beer, Forester believed that realistic, 358

multiple-loop, feedback systems exhibited a complexity that had definable behav- 359

iors. He discussed these characteristics in Urban Dynamics (1969) under seven 360

headings: Counterintuitive Behavior; Insensitivity to Parameter Changes; Resis- 361

tance to Policy Changes; Control through Influence Points; Corrective Programs 362

Counteracted by the System; Long-term vs. Short-Term Response; and Drift to 363

Low Performance. Forrester argued that the interaction of non-linear feedback loops 364

38Ibid., 31, 43, 56.
39Ibid., vi. The other three foundations were the theory of information-feedback systems, military
decision making, and the digital computer.
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led to many of these behaviors.40 As pointed out by critics, it was probably no 365

coincidence that the conservative nature of Forrester’s model of urban systems – in 366

which government programs such as public housing produce ineffective or counter- 367

productive results – matched Forrester’s conservative worldview.41
368

12.5 Criticism of Forrester’s Models 369

Forrester’s models came under heavy criticism from social scientists in the 1960s 370

and 1970s. Here, I focus on critiques relating to the contested issues of prediction 371

and control. Management scientists criticized Forrester for his unbending views on 372

prediction and model validity. Liberal social scientists criticized his models and 373

those of Stafford Beer as technocratic technologies of authoritarian control.42 The 374

fact that Forrester was an outsider to the culture of mathematical modeling in the 375

postwar social sciences helps explain these criticisms and his responses to them. 376

The most substantial critique of industrial dynamics came from management 377

scientists Igor Ansoff and Dennis Slevin at the Graduate School of Industrial 378

Administration at the Carnegie Institute of Technology, a rival institution to the 379

Sloan School at MIT. In 1968 Ansoff and Slevin published a lengthy, supposedly 380

non-partisan evaluation of industrial dynamics in Management Science, the main 381

journal of that new field, as part of a series of expository papers commissioned by 382

the Office of Naval Research and the Army Research Office. The paper appeared 383

alongside an account by Forrester of the first decade of industrial dynamics, a 384

response by Forrester to Ansoff and Slevin, and their brief reply. Writing from the 385

point of view of management science, Ansoff and Slevin criticized many aspects 386

of Forrester’s modeling practices. They objected to the requirement to quantify 387

all variables, which left out management judgment, that the DYNAMO complier 388

dictated modeling practices, Forrester’s ignorance of previous models of industrial 389

systems, that the costs of industrial dynamics outweighed its benefits, and the 390

inability of Forrester’s models to predict system outcomes. The last complaint led 391

Ansoff and Slevin to question the validity of Forrester’s models, and, by implication, 392

the validity of industrial dynamics itself.43
393

Ansoff and Slevin related the issue of prediction to model validity at several 394

points. To them, ascertaining the validity of a model meant devising a “test 395

40Forrester, Urban Dynamics, Chap. 6. In contrast, Beer categorized systems in terms of two
dimensions: complexity (as being “Simple,” “Complex,” or “Exceedingly Complex”); and deter-
minism (as being “Deterministic” or “Probabilistic”). See Beer, Cybernetics and Management, 12,
18.
41See, for example, S. I. Schwartz and T. C. Foin, “A Critical Review of the Social Sys-
tems Models of Jay Forrester,” Human Ecology, 1 (1972): 161–173, on 166; and Bloomfield,
Modeling the World, 40–47.
42See, e.g., Robert Lilienfeld, The Rise of Systems Theory: An Ideological Analysis (New York:
John Wiley, 1978); and Medina, Cybernetic Revolutionaries, Chap. 6.
43H. Igor Ansoff and Dennis P. Slevin, “An Appreciation of Industrial Dynamics,”
Management Science, 14 (1968): 383–397.
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which establishes, first, that a model is capable of describing (and predicting) the 396

behavior of the system with satisfactory accuracy; second, and more important 397

for a management scientist, that changes in the model which produce desired 398

improvements will produce closely similar improvements when applied to the 399

real world systems.” They thought Forrester’s practice of developing models by 400

adjusting the computer simulation to achieve dynamic characteristics – such as 401

stability, oscillation, and growth – that were acceptable to modelers and their 402

clients, was “largely subjective.” They thought such tinkering was even more 403

subjective than other forms of modeling in “prescriptive management science.” For 404

an exemplary model of management decision-making, Ansoff and Slevin pointed 405

to the work of Herbert Simon, their colleague at Carnegie Tech, whose 1952 406

paper on servomechanism theory generated testable generalities for a production- 407

control system. “What one gets instead [from Forrester] are prescriptions of how to 408

construct models for individual situations; but no unifying insights are apparent.”44
409

Although Simon had also based his model on control-system theory (the theory 410

of servomechanisms), Ansoff and Slevin attributed some of Forrester’s problems 411

to that very field of engineering. They observed that Forrester’s preference for 412

modeling behavioral characteristics “has a strong resemblance to the typical 413

typological techniques used in servomechanism design,” e.g., Nyquist diagrams. 414

More generally, they found the unreflective, imperial program of Forrester, an 415

interloper from engineering, to be galling. They ended their essay, ironically titled 416

“An Appreciation of Industrial Dynamics,” by quoting Forrester to the effect that 417

industrial dynamics should replace the failed program of mathematical modeling 418

in management science. “This was written in 1961,” Ansoff and Slevin concluded, 419

“after a fifteen year period which many people, disagreeing with Forrester, would 420

describe as a period of revolutionary advances in management science.”45
421

This sort of reaction to Forrester left such an impression that Herbert Simon 422

voiced a similar complaint a quarter of a century later in his autobiography, 423

Models of My Life (1991). Simon wrote about the advice he had given the U.S. 424

President’s Science Advisory Committee (PSAC) about the Club of Rome’s report 425

Limits to Growth (1972), which relied on Forrester’s model of world dynamics. 426

Simon recalled that “My reaction was one of annoyance at this brash engineer 427

who thought he knew how to predict social phenomena. In the discussion, I pointed 428

out a number of naïve features of the Club of Rome model, but the matter ended, 429

more or less, with that.”46 Simon was more caustic in private. In early 1972, he 430

wrote PSAC that “My objection, of course, is not to system studies, but to the 431

cavalier way that Forrester does them, and his complete ignorance of the relevant 432

theoretical and empirical literature.” He thought that Dennis Meadows, a co-author 433

of Limits to Growth whom he had met, was “less doctrinaire about what he is 434

doing than is Forrester, but apparently lives as a satellite to the latter.” That spring, 435

44Ibid, quotations on 387, 388, 390, 395.
45Ibid., quotations on 386, 396.
46Herbert Simon, Models of My Life (New York: Basic Books, 1991), 307.
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Simon wrote the director of the Brookhaven National Laboratory about using linear 436

programming to model energy policies: “Meanwhile the hullaballoo about the rather 437

silly Club of Rome model of everything-in-the-world has had at least the good effect 438

(so far) of stirring up some positive attitudes toward models. I don’t know why it 439

should take a bad model to convince people that modelling is a good thing, but I 440

will not look this gift horse in the teeth.”47
441

Many reviewers of Forrester’s World Dynamics (1971), on which the Club of 442

Rome model was based, were just as critical. Martin Shubick at the Department of 443

Administrative Sciences at Yale, voiced many of the same criticisms Ansoff and 444

Slevin had made, including satirizing Forrester’s ignorance of the social sciences. 445

In regard to Forrester’s method of testing a model’s validity via consensus, Shubick 446

harshly said, “Most behavioral scientists even when they want to be ‘relevant’ are 447

not completely satisfied with a criterion of validation that amounts to no more than 448

acceptance by top decision makers or use by those in power. Such a criterion can 449

fast lead to a Lysenko style of science. And it appears to be the one that Forrester 450

accepts.” Simon told the PSAC that he agreed with Shubick’s review. One of 451

Forrester’s main defenders was Denis Gabor at Imperial College, a physicist who 452

had turned to cybernetics to model social systems and thus rigorize the supposedly 453

“soft” social sciences.48
454

Yet some critics apparently did not understand that Forrester had gone beyond 455

Simon and other modelers to use servo theory to model nonlinear social systems. 456

Shubick missed this point, as did Simon. In fact, Simon had to apologize in 1989 to 457

Donella Meadows, another co-author of Limits to Growth, that he had mistakenly 458

described Forrester’s model as being linear in a manuscript Meadows was reviewing 459

for OR Forum. Simon corrected the error, but he did not change his statement that 460

it was not news that the Club of Rome model, like earlier ones of prey-predator 461

relationships, would “explode” and show “large limit cycles of booms and busts of 462

population and other variables.” Simon concluded that this result “could have been 463

inferred from textbook treatments of dynamic systems without any computation 464

at all.”49
465

Forrester responded to these criticisms by defending the tests of model validity 466

he gave in Industrial Dynamics, charging that critics (usually, non-engineers) did 467

47Herbert Simon to David Beckler, Jan. 27, 1972; and Simon to Kenneth Hoffman, May 3,
1972, both in Herbert Simon Papers, Carnegie-Mellon University, box 51, Consulting, PSAC
correspondence, available on-line at http://diva.library.cmu.edu/Simon
48Martin Shubick, “Modeling on a Grand Scale,” Science, n.s., 174 (1971): 1014–1015, on 1014;
Simon to Beckler (note 47 above); Denis Gabor, “World Modeling,” Science, n.s., 176 (1972): 109.
On Gabor’s approval of cybernetic modeling of social systems, see, e.g., Gabor, “Cybernetics and
the Future of Our Industrial Civilization,” Journal of Cybernetics, 1, no. 2 (April–June 1971): 1–4.
49Donella Meadows to Herbert Simon, August 26, 1989; Simon to Meadows, Sep. 6, 1989, both
in Simon Papers, box 79, Publications, “Prediction and Prescription of Systems Modeling”; and
Simon, “Prediction and Prescription of Systems Modeling,” OR Forum, 38, no. 1 (Jan.-Feb. 1990):
7–14, on 9. On Shubick not understanding the non-linearity of Forrester’s approach, see Harold
Hemond, et al. “World Modeling,” Science, n.s., 176 (1972): 109.

http://diva.library.cmu.edu/Simon
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not understand his modeling practices, and promising that further development 468

of his program would answer all charges.50 Forrester’s responses had become 469

so predictable that a reviewer of his collected papers in a British operations- 470

research journal in 1975 remarked, “Throughout the twenty years of I.D. and S.D. 471

[Industrial Dynamics and System Dynamics], it is repeatedly stated that the subject 472

is just beginning, that much research remains to be done, and that there are as 473

yet few people sufficiently trained and competent to understand the conceptual 474

and theoretical background necessary to apply the work. None of the published 475

S. D. work to date – least of all ‘World Dynamics’ or ‘Limits to Growth’ – can be 476

said to substantiate these claims for intellectual profundity.” The reviewer thought 477

Forrester’s papers were “an attempt to place an MIT-exclusive brand name on a 478

product which is an already widely available commodity.”51
479

12.6 Discussion 480

What do my examples from cybernetics and System Dynamics tell us about the 481

relationship between technology, mathematics, and modeling in the social sciences 482

during the Cold War? In attempting to solve the problem of organized complexity, 483

Simon, Beer, and Forrester drew on a successful technological theory (the theory of 484

servomechanisms) to mathematically model complex social systems in a variety of 485

ways using dynamic information-feedback loops in order to predict their behavior 486

(Simon) or control them, either directly (Beer), or by prescribing improvements to 487

the system (Forrester). 488

They debated at length the question of how well their adaptations of servomech- 489

anism theory modeled social systems. The question of whether or not it was 490

permissible to borrow a highly mathematical model from engineering was not of 491

concern to them because it had become the norm in such areas as Operations 492

Research.52 The question was how well the models worked in practice, how good a 493

technology they were. 494

In England, Beer staked his claim on his ability to control extremely complex 495

systems using an unconventional control theory derived from Ross Ashby. He 496

succeeded in the field of operations research by designing systems that worked on 497

the basis of performative control, rather than prediction.53
498

In the United States, social scientists in the related field of management science 499

critiqued engineer Jay Forrester for creating a modeling technique at MIT’s 500

50See, e.g., Forrester, “Industrial Dynamics – A Response to Ansoff and Slevin”; and Forrester,
“World Modeling,” Science, n.s., 176 (1972): 109–110.
51Mark Cantley, “[Review of] ‘Collected Papers of Jay W. Forrester’ . . .,”
Operations Research Quarterly, 28 (1977): 111–113, on 112–113.
52William Thomas, Rational Action: The Sciences of Policy in Britain and America, 1940–1960
(Cambridge, MA: MIT Press, 2015).
53Pickering, Cybernetic Brain, Chap. 16.
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business school outside the culture of social science. Ansoff, Slevin, and Shubick 501

criticized Forrester for not knowing the social-science literature on mathematical 502

modeling. Simon called him a “brash engineer” who had the audacity to model 503

social systems. Forrester’s reliance on servomechanism theory was not the issue 504

because they viewed Simon’s work in that area as a paragon of modeling practice. 505

Instead, they criticized Forrester for slavishly abiding by the culture of control- 506

system engineering to privilege behavioral characteristics over precise results – for 507

valuing indirect control over prediction, prescription over description. Ironically, 508

they upheld a representative ideal of scientific research more so than did the 509

highly-respected physicist Denis Gabor. The conflict between these engineering and 510

social-science cultures apparently did not encourage Forrester to read the social- 511

system modelers, nor did they read Forrester very carefully either. 512

Ever the evangelist, Forrester acted in a manner that his critics called hubris and 513

his disciples called leadership. He and his followers worked hard to establish System 514

Dynamics as an autonomous field. They imitated the famous MIT summer studies 515

at the Sloan School, made a fetish out of computer simulation, relied on corporate 516

sponsors rather than peer-review scientific agencies for support, and established 517

their own journal and professional society.54 These efforts further insulated System 518

Dynamics from mathematical modeling in the social sciences, which set the stage 519

for the severe criticisms of the Club of Rome report. 520

In the end, it was Herbert Simon’s theory of rational choice, derived from 521

cybernetics, that prevailed in the social sciences. By combining the science of choice 522

(decision theory) with the science of control (servomechanisms theory), Simon 523

created a hybrid that was not so closely tied to the closed-loop feedback systems 524

of engineering and technology. 525

54Forrester, “The Beginning of System Dynamics,” Banquet Talk at the International Meeting of
the System Dynamics Society, Stuttgart, Germany, July 13, 1989, available at http://leml.asu.edu/
jingle/Web_Pages/EcoMod_Website/Readings/SD+STELLA/Forrester-Begin’g-SD_1989.pdf

http://leml.asu.edu/jingle/Web_Pages/EcoMod_Website/Readings/SD+STELLA/Forrester-Begin'g-SD_1989.pdf
http://leml.asu.edu/jingle/Web_Pages/EcoMod_Website/Readings/SD+STELLA/Forrester-Begin'g-SD_1989.pdf
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Chapter 13 1

The Rise and Fall 2

of the Anti-Mathematical Movement 3

Sven Ove Hansson 4

Abstract Ever since the beginnings of modern engineering education at the end 5

of the eighteenth century, mathematics has had a prominent place in its curricula. 6

In the 1890s, a zealous “anti-mathematical” movement emerged among teachers in 7

technological disciplines at German university colleges. The aim of this movement 8

was to reduce the mathematical syllabus and reorient it towards more applied 9

topics. Its members believed that this would improve engineering education, but 10

many of them also had more ideological motives. They distrusted modern, rigorous 11

mathematics, and demanded a more intuitive approach. For instance, they preferred 12

to base calculus on infinitesimals rather than the modern (“epsilon delta”) definitions 13

in terms of limits. Some of them even demanded that practically oriented engineers 14

should replace mathematicians as teachers of the (reduced) mathematics courses for 15

engineers. The anti-mathematical movement was short-lived, and hardly survived 16

into the next century. However calls for more intuitive and less formal mathematics 17

reappeared in another, more sinister context, namely the Nazi campaign for an 18

intuitive “German” form of mathematics that would replace the more abstract and 19

rigorous “Jewish” mathematics. 20

13.1 Introduction 21

Technological work has always required calculations. Alloys, mortars, and paints 22

have to be mixed in the right proportions, the sizes of building elements and machine 23

parts have to fit in with the construction as a whole, and in most crafts the required 24

amounts of raw materials have to be determined before the work begins. But the 25

use of more advanced mathematics, in particular mathematical analysis, to solve 26

technological problems did not get off the ground until the eighteenth century 27

(Klemm 1966). The French military engineer Bernard Forest de Bélidor (1698– 28
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1761) published a famous four-volume book, L’architecture hydraulique (1737, 29

1739, 1750, and 1753) that represents the first extensive use of integral calculus to 30

solve engineering problems. In 1773, the physicist Charles-Augustin de Coulomb 31

(1736–1806), who is now best known for his work on electricity, published his 32

Essai sur une application des règles de maximis et de minimis à quelques problèmes 33

de Statique relatifs à l’Architecture in which he applied mathematical analysis in 34

innovative ways to what is now called structural mechanics. In 1775, the Swedish 35

ship builder Fredrik Henrik af Chapman published a treatise on naval architecture 36

that made use of Thomas Simpson’s method for the approximation of integrals 37

(Harris 2001). The technological use of mathematics has continued to develop ever 38

since. 39

The new profession of engineering was established in the late eighteenth and 40

early nineteenth centuries. From the beginning, applied mathematics was one 41

of its hallmarks. Mathematics has retained its central role in the education of 42

engineers, but its role has sometimes been subject to heated controversies in 43

engineering schools. In the 1890s a movement that called itself anti-mathematical 44

flourished among German professors in the engineering disciplines. This chapter 45

traces the activities and concerns of that rather short-lived movement. A particularly 46

interesting aspect is its denunciation of abstract methods in mathematics and its 47

promotion of Anschauung (apperception) at the expense of mathematical rigour. In 48

the 1920s and 1930s this ideal was relaunched for entirely different purposes in the 49

Nazi “German mathematics” movement that will also be briefly discussed. But let 50

us first have a look at how it all started. 51

13.2 The French Connection 52

The word “engineer” derives from the Latin ingenium, which was used in the 53

classical period for a person’s talent or inventiveness, but could also refer to a 54

clever device or construction. In the Middle Ages, ingenium was a general term 55

for catapults and other war machines for sieges. A constructor or master builder of 56

such devices was called ingeniarius or ingeniator (Bachrach 2006; Langins 2004). 57

In the eighteenth century, “engineer” was still a military category. Engineering 58

officers worked with war machines, but they also drew maps and built fortifications, 59

roads and bridges. Several European countries had schools for engineering officers 60

where these skills were taught along with considerable doses of mathematics 61

(Langins 2004). Outside of the military, advanced technological tasks were still 62

performed by master craftsmen without any theoretical education. It was not until 63

1794 that the first civilian school for engineering was founded in Paris under the 64

name École polytechnique (Grattan-Guinness 2005). It was led by Gaspard Monge 65

(1746–1818), an able mathematician and a Jacobin politician. He was determined 66

to use mathematics and the natural sciences, including mechanics, as the foundation 67

of engineering education (Hensel 1989a, p. 7). About a third of the curriculum 68

hours were devoted to mathematics (Purkert and Hensel 1986, pp. 27 and 30–35). 69
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Monge himself developed a new discipline, descriptive geometry. Largely based on 70

perspective drawing, it provided a mathematical basis for technical drawing. It was 71

put to use in machine construction in the École polytechnique, and it spread rapidly 72

to other countries as an important part of the mathematical education of engineers 73

(Lawrence 2003; Klemm 1966). 74

In addition to the practical usefulness of mathematics, the emphasis on mathe- 75

matical knowledge was well in line with the meritocratic, anti-aristocratic ideology 76

of the young republic. Mathematical proficiency was an objectively verifiable 77

standard that provided a non-arbitrary and decidedly non-aristocratic criterion 78

for selection and promotion, and it was therefore perceived as democratic. This 79

approach was largely modeled from the education of artillery engineers, which had 80

a strong mathematical component in addition to extensive technical training (Alder 81

1999). 82

The École polytechnique became the paragon of polytechnical schools in other 83

countries in Europe and also in the USA. A sizable number of polytechnical 84

schools were founded in the 1820s and 1830s in the German-speaking countries, 85

and a similar development took place in other parts of Europe (Purkert 1990, p. 86

180; Schubring 1990, p. 273; Scharlau 1990). The new schools all followed the 87

example of the École polytechnique in providing their students with a high level of 88

mathematical and natural science education. Initially, most of them fell far behind 89

the École polytechnique, but they tried to catch up. Beginning in the 1860s, they 90

modelled their education after the established universities (Hensel 1989a, pp. 6–7; 91

Grayson 1993). 92

13.3 Heightened Mathematical Ambitions 93

The use of mathematical methods for various practical engineering tasks increased 94

throughout the nineteenth century. One prominent example is the use of Karl 95

Culmann’s graphic statics in the construction of the Eiffel Tower (Gerhardt et al. 96

2003). In consequence, treatises and textbooks were published on the application of 97

mathematics to technological topics such as optics, structural mechanics, building 98

construction, machine construction, shipbuilding, and engineering thermodynamics 99

(Klemm 1966). The number of mathematical teaching positions in the technological 100

colleges increased rapidly, and they provided a large part of the new academic 101

positions in mathematics1 (Schubring 1990, p. 273; Scharlau 1990, 264–279; 102

Hensel 1989b). Several prominent mathematicians started their academic career in 103

technological colleges. One of the foremost among them was Richard Dedekind 104

1The advanced polytechnical schools in the German-speaking countries were called “Technische
Hochschulen”. Most of them were renamed “Technische Universitäten” in the 1960s–1980s. In
this chapter, these terms are translated as “technological college” respectively “technological
university”.
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(1831–1916), who taught first at what is now the ETH in Zurich and then at 105

what became the Braunschweig University of Technology. He is still known for 106

his path-breaking studies on real numbers, set theory and abstract algebra, but his 107

strict methods were sometimes considered impractical for engineers (Purkert 1990, 108

p. 188). 109

Around the middle of the nineteenth century, professors in mechanical engi- 110

neering increasingly emphasized new and more stringent mathematical approaches 111

to their discipline. This put higher mathematical demands on their students. 112

Consequently, mathematics teaching expanded on the curricula, and more advanced 113

mathematics was introduced. However, the heightened mathematical ambitions 114

were not always easy to implement. Many of the students had a rather weak 115

mathematical background from their previous education. 116

In 1865, the influential Association of German Engineers (Verein Deutscher 117

Ingenieure, VDI) adopted a new policy for the education of engineers. It was 118

based on a committee report that emphasized the difference between the German 119

engineering schools with their “proclivity for an extensive scientific education” and 120

the “more immediate and empirical introduction” to the engineering profession 121

in the corresponding English institutions.2 The commission was aware that the 122

English system had proponents among German engineers, but their own opinion was 123

favourable to extensive studies of mathematics and the natural sciences, which they 124

described as the “foundations” of technology. In contrast, the historical, aesthetic, 125

and economic disciplines had more limited roles as “auxiliary sciences”3 (Anon. 126

1865, pp. 706, 716, 721). Based on this report, the VDI adopted a resolution that 127

recommended “the teaching of mathematics and the natural sciences to an extent 128

and intensity not inferior to the universities”.4 It was also emphasized that these 129

sciences should be studied “for their own sake, not just as a preparation to make 130

it possible to study the special courses”5 (Hensel 1989a, pp. 14–15). This should 131

be read against the background that at this time, the technological colleges were 132

striving to achieve the same status as the traditional universities. The VDI’s policy 133

seems to have contributed to the continued recruitment of prominent mathematicians 134

to technological colleges in the 1870s and 1880s. These recruitments were based 135

primarily on excellence in pure mathematics (Hensel 1989a, pp. 16–21 and 240– 136

243). 137

2“Neigung zu einer umfassenden wissenschaftlichen Ausbildung”, “mehr unmittelbare und em-
pirische Einführung”.
3“Grundlage”, “Hülfswissenschaften”.
4“die Mathematik und die Naturwissenschaften in einer den Universitäten nicht nachstehenden
Ausdehnung und Intensität gelehrt werden sollen”.
5“diese Wissenschaften an der polytechnischen Schule um ihrer selbst willen, nicht nur als
Vorbereitung für die Fachcurse studiren zu können”.
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13.4 The Counterreaction 138

The expansion of mathematical teaching and research at technological universities 139

was largely driven by professors in mechanical engineering who were engaged in 140

the introduction of new, more mathematically advanced models in their disciplines. 141

One of them was Franz Grashof (1826–1893). He was president of the VDI, 142

and instrumental in developing its pro-mathematical policy of 1865. But many 143

representatives of other technological subjects had a different opinion. They did not 144

see the need for more mathematics, but they were worried that the new mathematics 145

courses would infringe on their own subjects. This led to a growing tension that 146

sometimes gave rise to open conflicts, in particular in decisions on recruitments 147

and appointments. In the technological college in Munich such conflicts broke out 148

already in the 1870s. The director of the school, Karl Maximilian von Bauernfeind 149

(1818–1894), used his influence to recruit practically oriented mathematicians who 150

put little emphasis on the more abstract and foundational issues in mathematics. 151

He was actively opposed by the young mathematician Walther von Dyck (1856– 152

1934), who wanted to recruit mathematicians with excellent research qualifications 153

(Hashagen 1998, p. 174). 154

Contacts with educators in other countries fuelled the conflicts over the role 155

of mathematics. Those favouring an extended mathematical curriculum looked to 156

France and in particular the École polytechnique, whereas their opponents turned 157

their eyes to the more practically oriented education of engineers in Britain with its 158

strong focus on on-the-job training (Hensel 1989a, p. 6). Increasingly, their focus 159

shifted to America, whose engineering education was quite similar to that in Britain. 160

The world exhibition in Philadelphia in 1876 led to a vivid discussion in Germany 161

about technological education (Manegold 1970, pp. 146–147). 162

However, it was another world exhibition, namely that in Chicago in 1893, that 163

triggered an intensified and often outright hostile discussion about the teaching of 164

mathematics in technological colleges (Manegold 1970, pp. 146–147). Once again, 165

the VDI was the main forum of the discussions. The organization had organized 166

German participation in the exhibition, and afterwards it also provided forums for 167

discussions on what could be learned from the transatlantic visit. Considerable 168

concerns were vented about Germany’s competitiveness in comparison to the 169

US, both in terms of actual engineering achievements and the education of new 170

generations of engineers (Hensel 1989a, pp. 54 and 56–58). In consequence of 171

these discussions the VDI decided to develop a new policy for higher technological 172

education. A report published in 1894 by Alois Riedler (1850–1936), professor in 173

mechanical engineering, had a central role in the society’s deliberations. In this 174

report, Riedler described in detail the educational laboratory facilities of the best 175

American engineering schools. These laboratories were much superior to anything 176

seen in Germany. The educational methods were equally impressive. “Value is 177

attached not only to the use of instruments and equipment, but primarily to methods 178
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of scientific investigation and independent work as means to learning”6 (Riedler 179

1894, p. 512). He put much emphasis on the difference between such scientific 180

laboratories and workshops for learning practical work methods. Such workshops 181

“have no place in higher education”7 (p. 635). Riedler recognized that the American 182

engineering schools were largely modeled after the English ones (p. 612), but 183

the latter had much less resources and had not reached the same level as their 184

American counterparts (p. 630). In order to catch up with the Americans, the 185

German educational institutions would need resources for building laboratories, 186

but they also had to make room for laboratory work in their curricula. The major 187

obstacle to increased laboratory work was in his view “an excess of mathematical 188

education” (p. 632) in the German schools that could not be found on the other side 189

of the Atlantic8: 190

The mischief that subjects such as physics, mechanics, etc. that should be exclusively 191

devoted to knowledge about natural science, are represented and treated as mathematical, 192

cannot be found there . . . In our schools the interest and efforts of the students are consumed 193

by an overabundance of a farreaching and onesided “theoretical” education. There, the 194

students’ interest is stimulated by the superior means of education in laboratories and 195

independent work in these laboratories.9 (Riedler 1894, p. 632) 196

In an additional article, published in 1895, Riedler accused the mathematics 197

teachers at technological colleges of “an unmeasurable overestimation of analytical 198

methods” (Riedler 1895, p. 954). He saw it as imperative to remove “the theoretical 199

speculations of modern university mathematics” from the syllabus (p. 955).10 Since 200

mathematicians could not be trusted to implement these changes, they would have 201

to be replaced by teachers with another background: 202

The technological colleges should themselves educate the teachers in mechanics, physics, 203

and mathematics, since only those who know the needs and goals of the special sciences 204

from working themselves in these sciences, can satisfy the demands of these teaching 205

tasks.11 (Riedler 1895, p. 955) 206

6“Es wird nicht nur auf Handhabung der Instrumente und Apparate sondern vor allem auf
wissenschaftliche Untersuchungsmethoden und auf das selbschaffende Arbeiten als Mittel des
Lernens Wert gelegt.”
7“gehören überhaupt nicht an die Hochschulen”.
8“ein Übermaß von mathematischer Ausbildung”.
9“Der Unfug, dass Fächer, wie Physik, Mechanik usw., die ausschließlich der naturwissen-
schaftlichen Erkenntnis gewidmet sein sollen, als mathematische ausgegeben und behandelt
werden, besteht dort nicht . . . Bei uns werden das Interesse und die Kraft der Schüler durch das
Übermaß eines weitläufigen und einseitigen ‘theoretischen’ Unterrichts verbraucht, dort wird das
Interesse durch das hervorragende Mittel der Unterweisung in Laboratorien und durch selbständige
Arbeit in diesen angeregt.”
10“eine maßlose Überschätzung der analytischen Methoden”, “die theoretischen Spekulationen der
modernen Universitäts-Mathematik”.
11“Die technischen Hochschulen müssten die Lehrer der Mechanik, Physik und Mathematik selbst
ausbilden, den nur derjenige, der Bedürfnisse und Ziele der Fachwissenschaften aus eigener
fachwissenschaftlicher Arbeit kennt, vermag dem genannten Lehrerberufe zu genügen.”
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13.5 The Anti-mathematical Movement 207

Riedler’s attacks on the teaching of abstract mathematics found resonance among 208

many of his colleagues. As the mathematician Felix Klein wrote a few years later, 209

“what had long been slumbering under the surface broke out with elemental force: 210

the conflict between the engineers and the mathematicians on the amount and nature 211

of the preparative mathematical education that is necessary for an engineer”12
212

(Klein 1898, p. 1092). For instance, in a speech in 1894 at a meeting in the VDI, 213

Adolf Ernst (1845–1907), who was professor in the Stuttgart technological college, 214

went even further than Riedler and attacked not only the teaching methods but also 215

the validity and relevance of modern mathematics: 216

It is a fact that a too extensive mathematical apparatus is used to develop a whole series 217

of hypotheses whose conditions are not satisfied and whose conclusions therefore lead to 218

false results . . . The overemphasis on purely theoretical studies and lectures also [leads] to 219

an overestimation of a prioristic thinking and to a highly detrimental underestimation of the 220

value that perceptive ability has for our discipline, since our professional practice always 221

deals with concrete rather than abstract cases.13 (Ernst 1894, p. 1352) 222

According to Ernst, mathematics was just an “auxiliary science”.14 It was taught “far 223

in excess of the limits to what is necessary” (p. 1354), and it had to be substantially 224

reduced in order to make room for more practical approaches to engineering.15
225

Ernst’s speech was seen as the starting-point of the “anti-mathematical movement” 226

that now unfolded16 (Hensel 1989a, pp. 58–60). 227

Riedler’s report was vigorously discussed in the local and regional branches of 228

the VDI. Most of them were in favour of a reduction of higher mathematics in 229

engineering schools (Anon. 1895d, p. 1214). However, this standpoint was far from 230

unanimous. For instance, the branch in Aachen adopted a statement according to 231

which they could “by no means endorse a limitation of education in mathematics”, 232

in particular considering the “uneven and often inadequate” mathematical skills of 233

12“[W]as lange unter der Oberfläche geschlummert hatte, das brach mit elementarer Gewalt hervor:
der Gegensatz zwischen den Ingenieuren und den Mathematikern inbezug auf das Maß und die Art
der für den Ingenieur erforderlichen mathematischen Vorbildung”.
13“Sodann ist es Tatsache, dass eine ganze Reihe von Hypothesen mit weitschweifigen mathematis-
chen Apparat verarbeitet wird, deren Voraussetzungen nicht zutreffen, und deren Schlussfolgerun-
gen deshalb auch zu falschen Ergebnissen führen . . . [D]as Übergewicht der rein theoretischen
Studien und Vorlesungen [führt] auch zu einer Überschätzung des a prioristischen Denkens und
zu einer höchsts nachteiligen Unterschätzung des Wertes, der dem reinen Beobachtungsvermögen
gerade für unser Fach unbedingt zuzuerkennen ist, weil wir es in der Ausübung unseres Berufes
stets mit konkreten, nie mit abstrakten Fällen zu thun haben.”
14“Hilfswissenschaft”.
15“weit über die Grenzen des Notwendigen”.
16According to Hensel, this movement was in its own time called the “antimathematische
Bewegung” (Hensel 1989a p. 1). The earliest use of the term that I have been able to find is in
a speech that Felix Klein held in 1904 (Klein 1905, p. 37).



UNCORRECTED
PROOF

312 S. O. Hansson

the students17 (Anon. 1895b, p. 753). Similarly, the branch in Franken-Oberpfalz 234

warned against a reduction of the mathematical curriculum, emphasizing that 235

“the mathematical sciences as a whole contribute primarily to strengthening the 236

engineering student’s abilities in logical thinking”18 (Anon. 1895a, pp. 721–722). 237

Based on Riedler’s report and the recommendations of the local and regional 238

branches, the 1895 Congress of the VDI, meeting in Aachen, adopted a policy 239

in favour of the creation of educational laboratories. The policy specifically 240

endorsed reductions in mathematics teaching as a means to make room for the 241

new experimental studies. The use of abstract methods in mathematics should be 242

reduced, and the focus of the (reduced) mathematics curriculum should be on the 243

mathematical tools that were necessary for the technological disciplines. 244

Therefore education in the auxiliary sciences should be kept within the limits of what is 245

necessary for understanding the engineering sciences. It is in particular desirable that the 246

mathematical education, while not being restricted in the achievement of these goals, is 247

restricted in the use of abstract methods. Through vivid connections with the application 248

areas the students will be led faster and more safely to sufficient mastery of the mathematical 249

tools.19 (Anon. 1895c, p. 1095) 250

This was followed up in a report from the board of the VDI in which the teaching 251

of mathematics in technological colleges was explicitly criticized. According to the 252

report, the education as a whole had become too abstract; “to put it briefly, it has 253

become an end in itself and has neglected the constant contact with the practical 254

tasks that it should serve”20 (Anon. 1895d, p. 1214). 255

13.6 The Nature of the Controversy 256

The anti-mathematical movement combined several concerns, and its participants 257

seem to have had in part different motives. There were at least three lines of conflict. 258

First, there was competition for space in the curriculum. For some time, mathematics 259

had expanded, and teachers in the more practically oriented subjects felt a need to 260

defend their own disciplines. Although theoretically uninteresting, this was probably 261

a major component in the conflict. 262

17“eine Beschränkung des mathematischen Unterrichtes durchaus nicht gutheißen können”,
“ungleichmäßigen und häufig ungeeignete Vorbildung”.
18“die Gesamtheit der mathematischen Wissenschaften in erster Linie dazu beiträgt, die logische
Denkkraft des Studirenden der Technik zu schärfen”.
19“Deshalb muss dieser Unterricht in den Hilfswissenschaften das zum Verständnis der In-
genieurwissenschaften erforderliche Maß einhalten; insbesondere ist es wünschenswert, den
mathematischen Unterricht nicht in diesen Zielen, aber in der Benutzung abstrakter Methoden
zu beschränken und durch lebendige Beziehung zu den Anwendungsgebieten die Studirenden
schneller und sicherer als bisher zu ausreichender Beherrschung der mathematischen Hilfsmittel
zu führen.”
20“der Unterricht im ganzen zu sehr abstrakt gestaltet worden; er ist mit einem Worte zu sehr
Selbstzweck geworden und hat die stete Berührung mit den praktischen Aufgaben, denen er dienen
soll, vernachlässigt.”



UNCORRECTED
PROOF

13 The Rise and Fall of the Anti-Mathematical Movement 313

A second line of conflict concerned the nature of technological science. The 263

technological colleges had begun as schools for craftsmen. They fought a long battle 264

to achieve academic status, a battle that was finally to be won in the twentieth 265

century, when they received the right to confer doctorate degrees and most of 266

them changed their names to “technological universities”. However, although the 267

professors in technological colleges agreed on the goal to achieve academic status, 268

they were divided on how this should be done. There were two competing strategies. 269

The original strategy was closely connected with a view of technological science as 270

applied mathematics and natural science. Formulas from mechanics could be used 271

to characterize the movements of machine parts, and electromagnetic theory could 272

be used to design electrical machines and appliances. In this way, technological 273

science could be based on mathematics, physics, and chemistry. Consequently, the 274

obvious way to obtain academic status was to excel in these foundational sciences. 275

If the students of engineering schools learned as much physics and mathematics as 276

those of the established universities, then what reason could there be to deny the 277

technological schools the status of universities? Above, we saw this strategy at play 278

in the VDI’s policy document from 1865. 279

But there was also another opinion on the nature of technological science, namely 280

that it consisted primarily in the use of scientific methods in direct investigations 281

of the subject matter of technology, namely machines and other constructions 282

by engineers. According to this approach, the empirical basis of technological 283

science consisted in experiments with machines and other technological objects. 284

Many of the teachers in engineering disciplines conducted this type of research. 285

They built machines and machine parts and tested the functionality of alternative 286

constructions in order to optimize the construction (Faulkner 1994; Kaiser 1995). 287

In many cases this was the only way to solve the problems of practical engineering, 288

for the simple reason that available physics-based theories either did not cover all 289

aspects of the problems to be investigated or required calculations that were too 290

large to be performed (Hendricks et al. 2000). German researchers who promoted 291

this form of science were much encouraged by what they saw in American 292

laboratories. Unsurprisingly, they regarded mathematics and physics as auxiliary 293

rather than foundational sciences for the study of technology. With this approach 294

to technological science, it was not necessary to compete with the universities in 295

physics and mathematics in order to justify an academic status. Instead, that status 296

could be based on a type of research that was unique to the technological colleges, 297

namely empirical studies of technology. 298

There is an interesting parallel with developments in medical faculties in the late 299

nineteenth century. Although these faculties were already parts of the university 300

system, they did not have the high status that the natural sciences were increasingly 301

favoured with. Here as well, there were two competing strategies for achieving a 302

higher status. One was to develop medicine as an application of the natural sciences. 303

Through laboratory studies of sick and healthy organs, the causes of diseases could 304

be discovered and remedies developed. Claude Bernard (1813–1878) was a leading 305

proponent of this strategy. The other strategy was based on treatment experiments 306

in the clinic, i.e. what we today call clinical trials. By systematic evaluations of 307
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the outcomes of different treatment methods, the most beneficial methods could 308

be identified (Booth 1993; Wilkinson 1993; Feinstein 1996; Hansson 2014). Today 309

these approaches are seen as complementary, but in the late nineteenth century they 310

were considered to be in conflict, in much the same way as the two strategies of 311

technological educators just referred to. 312

The third line of conflict concerns two different views of mathematics. This was 313

a dividing line with interesting philosophical implications. The major target of the 314

anti-mathematical movement was the teaching of “higher mathematics”, by which 315

was meant differential and integral calculus and analytic geometry (Hensel 1989a, 316

p. 25). The anti-mathematical activists were particularly hostile to the new, more 317

stringent methods that mathematicians introduced into their teaching in this field 318

(Purkert 1990, pp. 179, 188). Previously, the calculation of integrals was based on 319

infinitesimals (hypothetical objects that are larger than zero but smaller than any 320

positive number). Infinitesimals had been used successfully for many years, but 321

mathematicians had discovered cases in which they give the wrong answers. They 322

were therefore replaced by new more stringent methods that were based on limits. 323

This transformation was largely based on work by Karl Weierstraß (1815–1897), 324

who showed how geometrical reasoning about infinitesimals could be replaced 325

by more precise reasoning expressed in formulas. This was commonly called the 326

“arithmetization” of analysis, but that designation is somewhat misleading since the 327

new method was based on a much more sophisticated manipulation of formulas 328

than that of common arithmetic. Felix Klein provided an excellent explanation in a 329

popular lecture: 330

A glance at the more modern textbooks of the differential and integral calculus suffices to 331

show the great change in method; where formerly a diagram served as proof, we now find 332

continual discussions of quantities which become smaller than, or which can be taken to 333

be smaller than, any given quantity. The continuity of a variable, and what it implies, or 334

does not imply, are discussed, and a question is brought forward whether we can, properly 335

speaking, differentiate or integrate a function at all. This is the Weierstrassian method in 336

mathematics, the “Weierstrass’sche Strenge”, as it is called. (Klein 1896b, p. 242) 337

Many teachers in engineering subjects were highly critical of the new methods. 338

In 1896 the journal of the VDI contained a book review by Gustav Holzmüller 339

(1844–1914) in which he denounced the “purely abstract theory of sizes that 340

completely refrains from geometrical illustrations”, and proposed a return to the 341

old geometrical methods in which “spatial means of apperception, especially 342

geometrical presentations” were used21 (Holzmüller 1896, p. 108). 343

Holzmüller used the word “Anschauung”; in translations I have followed the 344

tradition and rendered it as “apperception”. The term is strongly connected with 345

Immanuel Kant’s epistemology. In his Kritik der reinen Vernunft (Critique of Pure 346

Reason), Kant distinguished between two forms of apperception, namely empirical 347

apperceptions that are provided by the sense organs and pure apperceptions that are 348

21“eine rein abstrakte Größenlehre, die auf geometrische Veranschaulichungen vollständig
verzichtet”, “räumliche Anschauungsmittel, besonders die geometrische Darstellung”.
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a priori, i.e. independent of sensory experiences. These pure apperceptions referred 349

to time and space which we can, according to Kant, conceptualize independently of 350

our perceptions. Holzmüller and others proposed that students should develop their 351

abilities to apperceive geometrical objects in space. This, in his view, was the right 352

road to mathematical knowledge, rather than the precisely defined operations on 353

formulas that followers of Weierstraß recommended as a means to achieve sufficient 354

stringency. 355

In 1896, Alois Riedler published a new series of articles in the journal of the 356

VDI, in which he defended the old approach to calculus. He accused modern, 357

abstract mathematics of a “one-sided lack of apperception” that led to “fear of reality 358

and escape from it”22 (Riedler 1896a, p. 305). Instead, all teaching should “stand 359

on the foundation of apperception and, as its highest task, strive for apperceptive 360

logical thinking without formulas, that is thinking and operating with apperceptive 361

concepts”23 (p. 305). He did not trust academic mathematicians to perform such 362

mathematics teaching “without formulas”, and therefore proposed to put an end to 363

their teaching at the technological colleges. Instead, engineering students should 364

be taught a reduced mathematics curriculum by teachers who were themselves 365

engineers (pp. 342–343). He polemicized against the mathematician Felix Klein 366

who had spoken in conciliatory terms about the important tasks that mathematicians 367

had in making their subject relevant and useful for students of engineering. 368

Mathematicians did not have any such task at all, said Riedler. Instead, the students 369

should encounter “mathematics as an indispensable tool in the hands of those who 370

are educated in technology or at least the natural sciences”24 (Riedler 1896b, p. 371

990). His choice of Klein as the main target of this attack on mathematicians may 372

have been injudicious; among the leading mathematicians of his time Klein was 373

one of those who most emphasized the prudent use of geometrical intuitions (Klein 374

1896b, p. 246). 375

13.7 The End of the Movement 376

With this escalation of the rhetoric against them, it is no surprise that the mathemati- 377

cians at the German technological colleges felt obliged to respond. In December 378

1896, all the 33 professors in mathematical subjects made a joint statement. (One 379

of the signatories was Richard Dedekind who taught at the technological college 380

in Braunschweig.) They pointed out that mathematics was a foundational science, 381

22“anschauungslose Einseitigkeit”, “Furcht und Flucht vor der Wirklichkeit”.
23“auf dem Boden der Anschauung stehen und gerade das anschauliche logische Denken ohne
Formeln, das Denken und Operiren in anschaulichen Begriffen, als die höchste Aufgabe erstreben”.
24“der Mathematik als unerlässlichem Werkzeug in den Händen technisch oder mindesten
naturwissenschaftlich Gebildeter”.
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not an auxiliary one.25 They also made it clear that a reduction in the time 382

spent on mathematics was impossible due to “the difficulty and the size of the 383

material that is necessary to put forward, given the previous education that the 384

students currently receive in the secondary schools”.26 The teachers should have 385

a complete mathematical eduction, and it was “out of the question that a technician 386

can hold mathematical lectures even for beginners”.27 But on the other hand, they 387

emphasized that as mathematicians at technological colleges, they had a particular 388

obligation to pay close attention to the technological uses of mathematics. They also 389

conceded that “extensive references to apperceptive methods” were pedagogically 390

useful28 (von Braunmühl et al. 1897). 391

This was followed by a sharp retort from the anti-mathematical movement, 392

signed by 57 teachers in engineering disciplines. They said: 393

In the education of engineers, mathematics does not have the importance of an essential 394

foundation, but that of a tool. The contrary standpoint of the mathematicians explains 395

the errors that are made in the mathematical education at [technological] colleges . . . The 396

education in higher mathematics currently exceeds the actual needs, is a too heavy load 397

in the first four terms and should therefore be reduced in favour of a better preparatory 398

technological education during these terms. At the same time it should be strengthened 399

technologically through as much applications as possible for instance in technological 400

calculation exercises. Those parts of the mathematical sciences that are suitable for 401

enhancing spatial conception and graphical representation of quantities deserve to be 402

favoured . . . The current educational programme for mathematicians does not make them 403

able to correctly judge the needs of technology, which they misconstrue to the benefit of 404

mathematics. Therefore teachers with an education essentially based in technology should 405

be found for the mathematical education.29 (Arnold et al. 1897) 406

25“grundlegende Wissenschaft”, “Hülfswissenschaft”.
26“der Schwierigkeit und dem Unfang des nothwendig voranzutragenden Stoffes, wie bei der von
den Mittelschulen gegenwärtig gegebenen Vorbildung der Schüler”.
27“kann keine Rede davon sein, dass ein Techniker mathematische Vorlesungen auch nur für
Anfänger halte!”
28“ausführliche Heranziehung anschauungsmässiger Methoden”.
29“[D]ie Mathematik hat für die Ausbildung des Technikers nicht die Bedeutung einer
wesentlichen Grundlage, sondern die eines Hülfsmittels; der entgegengesetzte Standpunkts der
Mathematiker erklärt die Fehler, welche im mathematischen Unterrichte an den Hochschulen
begangen werden . . . Der Unterricht in der höheren Mathematik geht heute über die thatsächlichen
Bedürfnisse hinaus, belastet die ersten vier Semester zu schwer und ist daher zu Gunsten
einer bessern technischen Vorbildung in diesen Semestern einzuschränken, zugleich aber durch
möglichst weitgehende Anwendung – etwa in technischen Rechenübungen – technisch zu ver-
tiefen. Bevorzugung verdienen diejenigen Theile der mathematischen Wissenschaften, welche
geeignet sind, die Fähigkeit der räumlichen Vorstellung und der bildlichen Darstellung der Größen
zu fördern. . . . Der heutige Ausbildungsweg der Mathematiker befähigt diese nicht zu richtiger
Erkenntnis der Bedürfnisse der Technik, welche sie nach der mathematischen Seite überschätzen.
Deshalb müssen für den mathematischen Unterricht Lehrer mit wesentlich technischer Grundlage
ihrer Ausbildung gewonnen werden.”
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In the short run, the anti-mathematical movement had some success. In 1896, the 407

mathematics curriculum was considerably reduced in the technological college in 408

Berlin, where Alois Riedler was himself was professor. Such reductions were also 409

made in several other technological colleges (Hensel 1989a, pp. 78–81). But some 410

members of the movement were still not satisfied. In an article published in April 411

1899, Paul von Lossow (1865–1936) who was professor in mechanical engineering 412

at the technological college in Munich, extended his attacks and denounced not 413

only all mathematicians, but all teachers with a university background. Such people 414

“seriously overestimate the impact of education on later achievements”30 (von 415

Lossow 1899, p. 361). His description of university teachers was far from friendly: 416

After the end of their studies they remain stuck to the school, become assistants and later 417

Privatdozenten – the worst possible career path for a teacher in the art of engineering. Such a 418

man, who has spent his whole life in school and never broke free from the spell of one-sided 419

theoretical speculations, can do an infinite amount of harm when he later, as a professor, 420

exerts his influence for decades on hundreds of students.31 (von Lossow 1899, p. 356) 421

von Lossow’s article was the last major expression of the anti-mathematical 422

movement. In the last years of the nineteenth century, the mathematicians managed 423

to calm down the conflict by adjusting their teaching to the needs of engineers, 424

for instance by giving examples from engineering a more prominent role in their 425

lectures (Hensel 1989a, pp. 84–86; Purkert 1990, p. 192; Schubring 1990; Scharlau 426

1990, pp. 264–279). Felix Klein seems to have had an important role as a mediator 427

in these developments. He said already in 1898 that “an actual, though not formal 428

agreement” had been reached32 (Klein 1898, p. 1092). On the one hand it was agreed 429

that the teaching of mathematics should be better adapted to the needs of engineers, 430

on the other hand that engineers needed a broad base in mathematics (Cf.: Klein 431

1896a, 1905). One of the reasons why the movement lost its momentum may have 432

been that mathematics and other theoretical disciplines had an important role in the 433

argumentation for conferring on the technological colleges the right to grant doctor’s 434

degrees (Manegold 1970, p. 157). The decline of the movement was so fast that the 435

technological college in Munich decided already in 1904 to increase its mathematics 436

curriculum, which had been cut down in the previous decade (Otte 1989, p. 177). 437

In 1903 Arnold Sommerfeld (1868–1951), a physicist and mathematician at the 438

technological college in Aachen, described the fight between theoreticians and 439

engineers as a conflict that had been “still lively a few years ago” but had now 440

been replaced by “an unhesitant appreciation of the different fields of research”33
441

(Sommerfeld 1903, p. 773). In 1919 the mathematician Eugen Jahnke characterized 442

the anti-mathematical movement as belonging entirely to the past (Jahnke 1919). 443

30“überschätzen den Einfluss der Schulung auf die späteren Leistungen des einzelnen arg”.
31“Sie bleiben nach Abschlus ihrer Studienzeit an der Schule kleben, werden Assistenten und
später Privatdozenten – der verkehrteste Werdegang für einen Lehrer der Ingenieurkunst. Wenn
solch ein Mann, der sein ganzes Leben lang nicht aus der Schulstube und nicht aus der Banne
einseitig theoretischer Spekulationen herausgekommen ist, später als Professor Jahrzehnte lang auf
hunderte von Studirenden seinen Einfluss äußert, so kann er undendlich viel Unheil anrichten.”
32“eine allerdings nicht formelle, wohl aber thatsächliche Uebereinstimmung”.
33“noch vor weningen Jahren lebhaft”, “eine bereitwillige Würdigung der verschiedenen
Forschungsrichtungen”.
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13.8 Aftermath: A Nazi Movement Against Abstract 444

Mathematics 445

The anti-mathematical movement’s attacks on the abstract and strictly rule-bound 446

methods of modern mathematics had a brief resurgence in a much more sinister 447

context, namely attempts to align mathematics with Nazi ideology. 448

Although the new, more stringent, methods in mathematics had acquired a 449

dominant role in the 1930s, some mathematicians defended a traditional approach 450

that assigned a central role to intuition and apperception in validating mathematical 451

statements. The most influential among them was the Dutch mathematician L.E.J. 452

Brouwer (1881–1966). One of its most prominent German proponents was Ludwig 453

Bieberbach (1886–1982). In his inaugural lecture in Basel in 1914 he took a 454

formalistic view, but in the twenties he became a proponent of mathematical 455

apperception, in particular in geometry (van Dalen 2013, p. 496; Mehrtens 1987, 456

p. 166; Segal 2003, p. 348). 457

Like all other parts of German intellectual life, mathematics suffered great losses 458

during the Nazi regime. Between 1933 and 1937, about 30% of the mathematicians 459

at German universities lost their jobs due to racial or political persecution (Schap- 460

pacher 1998, p. 127; Mehrtens and Kingsbury 1989, p. 49). One example is the 461

statistician Emil Julius Gumbel (1891–1966) who was severely persecuted already 462

in the 1920s and had to emigrate in 1932. He was the only mathematician on the 463

Nazi regime’s first list of persons who were deprived of their citizenship in 1934 464

(Remmert 2004; Mehrtens and Kingsbury 1989, p. 49) (Albert Einstein was on the 465

same list.) Another was Emmy Noether (1882–1935), one the principal founders 466

of modern abstract algebra. In spite of strong support from David Hilbert (1862– 467

1943) and other prominent colleagues, her career was hampered first by Prussian 468

antifemale legislation and then by Nazi persecutions that targeted her because she 469

was a Jew and a socialist. She was expelled from the university and had to emigrate 470

(Segal 2003 p. 15). 471

Many German mathematicians took a clear stand against these persecutions. For 472

instance, David Hilbert, who was arguably the most influential mathematician of his 473

time, wrote in 1928: 474

[A]ll limits, especially national ones, are contrary to the nature of mathematics. It is a 475

complete misunderstanding to construct differences or even incompatibilities according to 476

peoples and races, and the reasons for which this has been done are very shabby ones. 477

Mathematics knows no races... For mathematics, the whole cultural world is a single 478

country. (Quoted in Siegmund-Schultze 2016) 479

However, there were also mathematicians who sided with the Nazis and tried to 480

obtain support from the regime for their own strivings. One of them was Ludwig 481

Bieberbach, who joined the Nazis in 1933 (Remmert 2004). In 1933 the prominent 482

philosopher Carl G. Hempel (1905–1997) described “disturbing events set in motion 483

by National Socialism: the eminent mathematician Ludwig Bieberbach strutting 484

about in a Nazi uniform, greeting his classes with the Hitler salute, and talking 485

of the racial facets of mathematics” (Hempel 1991, p. 9). 486
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In two articles published in 1934, Bieberbach divided mathematicians into 487

two major styles, which he attributed to different races. Basically, he associated 488

axiomatic and formal work with Jewish and French national character, and a more 489

intuitive or apperceptive approach with German character. However, he twisted 490

the classification in order to avoid classifying axiomatically oriented Germans like 491

David Hilbert and Richard Dedekind along with the Jews. Even Karl Weierstraß 492

who explicitly criticized reliance on intuition was classified among the intuitively 493

oriented mathematicians, for the simple reason that he was a German (Segal 1986, 494

2003, pp. 360–368). 495

Bieberbach took the lead in a movement for so-called German mathematics, 496

centring around the journal Deutsche Mathematik (“German mathematics”) that 497

appeared from 1936 to 1943 (Schappacher 1998; Remmert 2004). To put it mildly, 498

the contents of the journal did not do much to corroborate the supposed superiority 499

of German mathematics. 500

In this period, mathematicians who emphasized formal rigour and deductive 501

reasoning were mostly opponents of the Nazi regime, whereas many proponents 502

of apperceptive and intuitive mathematics went in the other direction. However, 503

there is certainly no necessary connection between intuition-based mathematics and 504

this or any other political ideology. There was, and still is, a highly respectable 505

intuitionist standpoint in mathematics. It sees mathematical intuitions as common to 506

humankind, which is of course very different from the Nazi view that mathematical 507

intuitions differ between the “races” (Segal 2003, pp. 33–34; Mehrtens 1987 p. 171). 508

There was a parallel Nazi movement in physics, the Deutsche Physik (German 509

Physics). Its members were opponents of relativity theory due to its unintuitive 510

nature. The term apperception (Anschaung) was used in this context as well. 511

So-called “Jewish” physics was accused of being too abstract and lacking in 512

apperception (Wazeck 2009). One of the leaders of Deutsche Physik was the Nobel 513

laureate in physics Phillip Lenard (1862–1947), who joined the Nazi party already 514

in the early 1920s. He rejected relativity theory due to its, as he saw it, non- 515

apperceptive nature. On a physics conference in 1920 he debated this with Einstein, 516

who retorted: 517

I want to say that what appears apperceptive to the human, and what does not, has changed. 518

The way of thinking about apperceptiveness is in a way a function of the time. I would say 519

that physics is conceptual, not apperceptive.34 (Quoted in Wazeck 2009, pp. 183–184) 520

Lenard went even further than Bieberbach in his criticism of abstract mathematics. 521

In an article in 1936 he denounced in principle all mathematics from the last century 522

or so, claiming that it had lost contact with the real world: 523

Gradually, presumably from approximately Gauss’ time on, and in connection with the 524

penetration of Jews into authoritative scientific positions, however, mathematics has in 525

continually increasing measure lost its feeling for natural research to the benefit of a 526

34“Ich möchte sagen, daß das, was der Mensch als anschaulich ansieht, und was nicht, gewechselt
hat. Die Ansicht über Anschaulichkeit ist gewissermaßen eine Funktion der Zeit. Ich meine, die
Physik ist begrifflich, nicht anschaulich.”
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development separated from the external world and playing itself out only in the heads of 527

mathematicians, and so this science of the quantitative has become completely a humanities 528

subject [Geisteswissenschaft]. Since the role of the quantitative in the world of the spirit is, 529

however, only a subordinate one, so this mathematics is presumably to be designated as the 530

most subordinate humanities subject . . . It is certainly not good to allow this humanities 531

subject with all its newest branches any large space in the school curriculum. (Quoted in 532

Segal 2003, p. 375) 533

Fortunately, the influence of Bieberbach, Lenard and their collaborators ended with 534

the defeat of the Nazi regime. 535

13.9 Conclusion 536

The proper extent and form of mathematics in engineering education has not 537

ceased to be contentious. The issues debated are much the same. Proposals are 538

still being made to reduce the mathematical rigour, to focus more on applications 539

from engineering subjects, and to let engineers rather than mathematicians teach the 540

subject (Barry and Steele 1993; Cardella 2008; Flegg et al. 2012; Ahmad et al. 2001; 541

Klingbeil et al. 2004). Hopefully, something can be learned from the history of the 542

anti-mathematical movement of the 1890s. The old methods in calculus that were 543

promoted by its adherents have since long been given up in mathematics education. 544

This can be seen as an indication that Einstein was right in his answer to Lenard: 545

What we consider to be intuitive changes with time. Demands for apperceptiveness, 546

or immediate intuitive appeal, can be counterproductive since they tend to hamper 547

progress in both fundamental and applied mathematics. 548

And we should not take it for granted that there is a conflict between applica- 549

bility and rigour. The purpose of mathematical rigour is to make sure that one’s 550

conclusions are valid, and that is certainly a paramount concern in engineering. 551
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Abstract This paper addresses the not infrequently voiced view that the immense 5

usefulness of mathematics in the physical sciences constitutes a deep philosophical 6

mystery, with potentially far-reaching implications concerning the relationship be- 7

tween the inquiring mind and the material world. It grants the broadly Humean point 8

that the very possibility of inductive projection from past to future, by whatever 9

intellectual means, must be considered a remarkable and perhaps inexplicable fact, 10

but calls into question the idea that the utility of mathematics in this regard is 11

especially baffling. While the aims pursued in pure mathematics may differ radically 12

from those of engineers and scientists, in their development of concepts and theories 13

mathematicians are nevertheless beholden to the same fundamental standards of 14

simplicity and similarity that must govern any reasonable inductive projection; and 15

this fact, it is suggested, may go a considerable way towards explaining why many 16

mathematical constructs lend themselves to empirical application. 17

14.1 Introduction 18

In his 1959 Richard Courant Lecture in Mathematical Sciences, later published 19

under the title “The Unreasonable Effectiveness of Mathematics in the Natural Sci- 20

ences” (Wigner 1960), the physicist Eugene Wigner gave voice to a deep perplexity 21

over the way in which mathematical concepts and theories, originally developed 22

in the pursuit of pure mathematics without any view to application, so often turn 23

out to be perfectly suited to the purpose of describing and predicting physical 24

phenomena. This seeming ability of mathematicians to presage the development of 25

natural science is all the more baffling, Wigner argued, in light of the very different 26

priorities of scientists and mathematicians. Whereas the prime objective of the 27

former is to produce an accurate description of the physical world, following the data 28
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wherever they might lead, the activities of the latter are more akin to artistic creation. 29

To be sure, as in any intellectual endeavour, mathematicians are constrained in 30

their construction of definitions and proofs by the rigours of deductive logic; but 31

in deciding which tracts of logical space to explore – what objects and operations 32

to define, and what properties of these constructs to investigate – they are guided 33

to a far greater extent by their sense of beauty and their appetite for intellectual 34

adventure and competition than by any desire to understand or manipulate their 35

physical surroundings. How is it, then, that ideas and theories resulting from such 36

creative pursuits in the realm of the abstract end up as indispensable tools for 37

studying and negotiating the material world? “The miracle”, Wigner writes, “of the 38

appropriateness of the language of mathematics for the formulation of the laws of 39

physics is a wonderful gift which we neither understand nor deserve.” 40

Stronger language still is employed in Mark Steiner’s book-length exploration 41

of the same topic, The Applicability of Mathematics as a Philosophical Problem 42

(Steiner 1998). Citing a multitude of instances, Steiner ventures to show that 43

eminent physicists in their mathematical development of theories have habitually 44

engaged in blatantly “anthropocentric” reasoning, hypothesizing that observable 45

reality will behave in accordance with certain equations that have been selected on 46

the basis of purely formal “analogy” with successful earlier theories, unsupported 47

by any substantively “physical” rationale. Such reasoning is anthropocentric, Steiner 48

maintains, in that, in its faltering progression from one mathematically formulated 49

hypothesis to another, it employs paths of association that owe their very existence 50

to various accidents of human intellectual history. The fact that theories of such 51

disreputable provenance have repeatedly wound up finding empirical vindication 52

amounts, in Steiner’s words, to a “challenge to naturalism” (pp. 75, 176) comparable 53

to making a “substantial physical discovery based upon the statistical distribution of 54

the letters of the Roman alphabet in Newton’s Principia” (Steiner 1989, p. 454). 55

My ambition in this essay is to articulate a point of view where the empirical 56

applicability of mathematics does not present itself as a significant philosophical 57

riddle. My position is not so much that of a thinker who has grappled with a 58

problem and finally solved it as that of someone who fails to perceive any real 59

difficulty in the first place. If my (perhaps somewhat rambling) exposition can either 60

guide the reader towards a similarly untroubled place or assist her in giving the 61

problem a sufficiently sharp formulation to enable complacents like myself to see 62

it, I shall consider my effort well spent. The leading thought, insofar as there is 63

one, is that mathematicians and scientists are beholden to a common conceptual 64

standard of simplicity and similarity, and that this fact may go a considerable way 65

towards explaining why many mathematical constructs lend themselves to empirical 66

application. 67

My discussion will mainly be focussed on the role of mathematics in enabling 68

us to predict future events – such as an instrument reading, or the behaviour of a 69

machine – on the basis of past observation. The “problem of induction” is sometimes 70

construed as the general question of how to justify an inference from the premiss 71

that a certain regularity has appeared in all observations of a certain phenomenon 72

to date (“all ravens observed so far have been black”) to the conclusion that this 73
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regularity will always obtain (“all ravens are black”). Such categorical conclusions, 74

however, raise difficulties of a probabilistic nature (Chalmers 2013, p. 48) which are 75

not encountered in more cautious predictions (“most of the ravens to be observed in 76

the near future will be black”), and I will not be concerning myself with them here. 77

Nor will my discussion be predicated on a conception of mathematically formulated 78

laws of nature as providing in any sense perfect descriptions of physical reality. 79

The general form of inductive inference to be considered in the present paper is 80

something like the following: “in most cases observed thus far, events have played 81

out approximately according to such-and-such a pattern; therefore, most near-future 82

cases will conform approximately to this pattern as well.” For pragmatic purposes, 83

including typical technological applications, inferences of this kind (with suitable 84

quantifications in place of “near”, “most”, and “approximately”) are sufficient. 85

Restricted to such cases, Wigner’s problem becomes: how is it that mathematics is 86

so effective in discovering and describing patterns capable of figuring in successful 87

inductive inferences of this form? 88

14.2 Induction Without Mathematics 89

Empirical extrapolations from past to future are often made without any use of 90

mathematics. It will be useful to have, as a backdrop for the discussion of our main 91

issue, some (fictional) examples of such non-mathematical induction. 92

Scenario A. Astronomers have just discovered a curious fluctuation in the visual 93

light emanating from a certain star some 500 light-years away. About once every 94

hour, the star is seen to emit a pair of light pulses – brief increases in the intensity 95

of radiation in a narrow frequency band – approximately 1 min apart. The first pulse 96

is always either red or green, and the same is true of the second. At the time our 97

story begins, the astronomers find themselves in the short interval between two of 98

these pulses, their observations so far having turned out as follows. ‘R’ signifies a 99

red pulse, ‘G’ a green one, and a comma the 1-h interval between pulse pairs. 100

RR, GG, RR, GG, RR, RR, GG, RR, GG, RR, RR, RR, GG, RR, GG, GG, GG, RR, GG, 101

GG, RR, RR, RR, RR, GG, RR, GG, GG, R 102

Now, should we expect the next pulse to be a red or a green one? Well – we may 103

not have much data to go on, nor any idea of what is causing the signals, but so 104

far, the two pulses in each pair have always been of the same colour, so the obvious 105

answer would seem to be that, since our last observation was one of a red pulse, in 106

all likelihood the next one is going to be red also. That is, on the basis of the fact 107

that all observations so far agree with the hypothesis stated below, we expect the 108

next one to do so as well. 109

H1. The pulses in any pair are always of the same colour. 110

Now, to be sure, H1 is not the only rule consistent with the observations made to 111

date. The same is true, for instance, of the following: 112
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H2. The pulses are always of the same colour, except in such cases where the latest eight 113

pairs form the pattern RR, RR, RR, RR, GG, RR, GG, GG; on such occasions the pulses in 114

the immediately following pair take opposite colours. 115

On H2, the next pulse should be green, not red. Yet to expect the next observation 116

to agree with H2, solely on the basis that all the previous ones have done so, seems 117

ridiculous. Our instinct is to expect future observations to conform to the simplest 118

patterns exhibited by past ones; in the circumstances envisaged, H2 is immediately 119

disqualified on the grounds of its needless and arbitrary complexity. 120

This, however, is not to say that, qua empirical hypothesis, H2 is somehow 121

beyond the pale come what may: 122

Scenario B. Several months have passed since our narrative from Scenario A left 123

off. Our brave astronomers have continued to observe red-red and green-green pulse 124

pairs arriving from the star in a seemingly random mix. From time to time, however, 125

the sequence is interrupted by a pair of pulses of opposite colours. These exceptions 126

to the general trend do not turn up at random; in fact, they have occurred exactly in 127

the way described by H2. Despite a frenzy of speculation, no one has yet come up 128

with a good explanation for the findings. The last few signals have been recorded as 129

follows. 130

. . . GG, RR, GG, GG, RR, RR, RR, RR, GG, RR, GG, GG, R 131

In this scenario, expecting a green pulse, on the grounds that H2 has held without 132

exception thus far, makes perfect sense. However mysterious the source of the 133

signals, the ability of scientists to notice the regularity specified in H2, given that 134

it occurs, should not be a cause for wonder; nor should their ability correctly to 135

predict the colour of the next pulse. Identifying a curious pattern and making rational 136

predictions on its basis does not depend on understanding why the pattern appears 137

(though, of course, the formulation of a plausible explanation might well justify a 138

greater degree of confidence in such predictions). 139

Scenario C. As in Scenario B, most, but not all, pairs of pulses arrive in matching 140

colours. This time, however, the exceptions do not appear in accordance with H2 but 141

instead as follows. 142

H3. The pulses in the n-th pair, counting from the first pair of pulses that were historically 143

observed, are of opposite colours if and only if the n-th character in Jane Austen’s Sense 144

and Sensibility is a full stop. 145

At first, of course, the correlation is dismissed as a fluke of chance, and no 146

reasonable person expects it to persist; but as one unmatched pair after another turns 147

up in perfect conformity with H3, the statistical significance of the correspondence 148

gradually reaches a level where the dismissive stance becomes untenable. When 149

a neighbouring star is discovered to exhibit a similar correlation with Pride and 150

Prejudice, a full-blown scientific crisis is precipitated. Is the observable universe 151

just a giant mirror of human creativity, emitting cryptic reflections of its products 152

centuries ahead of time? (Recall that the stars are 500 light-years away.) Or, 153

conversely, is the artistic human mind somehow set up to foreshadow observations 154

in the natural sciences? On either interpretation, the common, naturalistic view of 155

Man and his causal place in the Cosmos is shaken to its core. 156
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In each of the three scenarios we are dealing with an unexplained phenomenon; 157

but the degree of weirdness of the phenomenon increases steeply from the first to the 158

third. In Scenario A there is a simple regularity standing out against a background 159

of noise: although the colour of any given pair cannot be predicted in advance, the 160

second pulse is always similar to the first. In Scenario B it is still the case that 161

the second pulse in a pair can always be predicted given a record of the last few 162

observations. To be sure, the rule for doing so has an unsatisfactory, seemingly 163

arbitrary element to it – but there is no indication that the phenomenon is in any 164

way purposely adapted to human culture or cognition. In Scenario C, by contrast, 165

an all-out anthropocentric world-view seems to be the only possible response to the 166

data obtained. 167

In this essay I wish, firstly, to make an observation, and secondly, to formulate a 168

conjecture. 169

Observation: The universe’s propensity for exhibiting, amid its confusion of 170

particular detail, certain general regularities that enable human and non-human 171

animals to predict and shape the future on the basis of the past is indeed an as- 172

yet unexplained, and perhaps ultimately inexplicable, matter of empirical fact. This 173

unoriginal, broadly Humean point is fleshed out a bit in Sect. 14.3. 174

Conjecture: The fact that some of these regularities can be discovered and 175

described with the aid of mathematics does not, in the final analysis, add any further 176

mystery over and above the circumstance noted in the observation; contrary to 177

what is suggested in some of the literature on the “unreasonable effectiveness” of 178

mathematics, instances of empirically applied mathematics have more in common 179

with Scenarios A and B than with Scenario C. 180

The conjecture – various aspects of which are developed in Sects. 14.4 181

through 14.7 – is labelled as such, rather than as a thesis or a contention, in 182

recognition of the limitations of my own scientific erudition. Perhaps scholars 183

with greater insight into the practice and history of science and mathematics 184

will be in a position to reject my suggestions as predicated on inexperience and 185

misunderstanding. If so, the reader is cordially invited to set me straight.1 186

14.3 The General Mystery of Inductive Projection 187

Consider all the possible ways of filling a rectangular grid, such as a computer 188

screen, with black and white pixels. The vast majority of them exhibit no lawlike 189

regularities at all; if we decide to select one by a random process such as flipping a 190

coin for every pixel, we will be astonished if any sort of coherent pattern appears – 191

for instance, if pixels whose vertical coordinates are multiples of 10 always turn out 192

black, or if a picture of a galloping horse emerges on the screen. 193

1In the general thrust of its argument – acknowledging the existence of a problem concerning
reasoning in general, while calling into question the idea of mathematical reasoning being
particularly problematic – the present paper bears some resemblance to Sarukkai (2005).



UNCORRECTED
PROOF

330 T. Sandqvist

To be sure, on the extremely rare occasion, such a pattern will actually appear by 194

chance. Consider a situation where half of the pixels – say, the top half – have been 195

filled in, and we are speculating about how the remaining half is going to turn out. 196

Suppose that in the filled-in part of the screen we find a flawless depiction of the top 197

half of a horse. The rational reaction would be to conclude that our coin-tossing is 198

not in fact random, but in some mysterious way under the control of a furtive horse- 199

painter, and that the most likely outcome for the lower half of the screen is a picture 200

of the bottom half of a horse. But under the hypothesis that, contrary to appearance, 201

the process is actually random, the likely continuation is still a lower half-screen 202

of featureless noise – for the crushing majority of all possible screen configurations 203

featuring a partial picture of a horse in their top halves still have nothing but noise 204

in their bottom halves. To put it in Bayesian terms: if our initial credence function 205

assigns equal probability to all possible configurations, then no possible top-half 206

configuration gives any basis for projection to the bottom half. 207

Turning now from the fictional computer screen to the material world in which 208

we find ourselves, there similarly seems to be no a priori reason why the latter should 209

necessarily have been structured in such a way as to exhibit any kind of projectible 210

regularity; why, as it were, does the universe contain anything but white noise? To 211

be sure, if it did not, we would not be here to ask about it, so in this sense our very 212

existence establishes that certain non-random patterns exist. But this observation 213

goes nowhere towards explaining why they do. 214

Nor, as Hume noted, it is obvious why the existence of regularities in empirical 215

events up to the present time should provide any sort of justification for expecting 216

such regularities to persist in the future. Why, among those possible complete world- 217

histories that begin in the way ours has, should we favour the infinitesimal minority 218

that continue in similar fashion, as opposed to all those featuring nothing but white 219

noise from this moment on? The response “Because that’s what every sane person 220

just has to do”, while sufficient from a pragmatic point of view, does little to alleviate 221

the philosophical puzzle. 222

So there are really two separate conundrums here: one of a broadly scien- 223

tific/explanatory character, one purely epistemological. The scientific problem is 224

how to explain the fact that the world thus far exhibits any discernible regularities 225

at all; the epistemological riddle is how to justify the inference from the observation 226

that the past exhibits regularities to the prediction that the future will, too. As far as I 227

am aware, our position today with respect to these questions is little better than that 228

of Hume in his day; to paraphrase Wigner, the possibility of empirical induction is 229

a gift we neither deserve nor understand. In this way, insofar as mathematics-aided 230

induction is a form of induction, its effectiveness is indeed “unreasonable”. But 231

now let us turn to the question whether the usefulness of mathematics in inductive 232

projection adds any further mystery. My conjecture, to repeat, is that it does not. 233
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14.4 Mathematics-Aided Induction 234

In Sect. 14.2, in the course of our discussion of hypotheses H1 and H2, we remarked 235

that, in a situation such as Scenario A, where all of the available data are consistent 236

with either one of the hypotheses, H1 will be preferred to H2 on account of its 237

greater simplicity. It is hardly a controversial claim that similar considerations will 238

also be in play in cases where the hypotheses under consideration are formulated 239

in mathematical terms. For a highly simplified example, consider the fictional case 240

of a team of researchers with a proto-Newtonian understanding of gravitation. They 241

know that two 1-kg objects will attract one another with a force that depends on the 242

distance between them, and are trying to determine the nature of the dependence. In 243

all their observations to date, the force F , as measured in newtons, has been related 244

to the distance r , as measured in meters, in accordance with the equation 245

F = (6.674 · 10−11)/r2. (14.1)

While (let us suppose) no distance in the interval from 99 to 101 m has yet been 246

investigated, the 100 m case is the next one up for trial, and on the basis of their 247

observations so far our scientists are pretty confident that the result will be (6.674 · 248

10−11)/1002 = 6.674 · 10−15 newtons. 249

Now why is this? After all, all observations so far made have also been in 250

agreement with the rule 251

F =
{

(6.674 · 10−10)/r2 if 99 < r < 101,

(6.674 · 10−11)/r2 otherwise
(14.2)

– would the scientists not be equally justified in concluding, on this basis, that the 252

force observed at a 100 m distance will be (6.674 · 10−10)/1002 = 6.674 · 10−14
253

newtons? The obvious answer, just as in Scenario A, is that (14.2) will and should 254

be rejected on the grounds of its gratuitous complexity. 255

Another alternative to (14.1) which might conceivably be entertained is this: 256

F = (6.674 · 10−11)/r1.999. (14.3)

Let us suppose that the range and precision of the instruments used by our scientists 257

are insufficient to distinguish between (14.1) and (14.3); the data obtained are no 258

less closely approximated by the latter than by the former. Nevertheless, it is (14.1), 259

not (14.3), that gets provisionally accepted – a decision that is subsequently borne 260

out by measurements conducted with more sensitive instruments. 261

Why should this be? After all, we do not expect natural constants to assume 262

integer values when expressed in antecedently adopted units of measurement – why 263

take a different attitude towards exponents figuring in formulae like (14.1) or (14.3)? 264

Isn’t preferring an inverse-power-of-2 law of gravitation to an inverse-power-of- 265

1.999 law tantamount to numerological mysticism? And yet, this is essentially what 266
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did happen historically: gravitational force was hypothesised to vary in inverse 267

proportion to the square of distance well before instruments became sufficiently 268

precise to pin down the value of the exponent with any great precision; and once 269

more refined measurements became possible, the hypothesis was corroborated. In 270

this sense, in the oft-recurring phrase (cf. Wigner 1960, p. 9; Dyson 1964, p. 129; 271

Feynman 1967, p. 171) we “got more out” of our mathematically formulated law 272

than was put into it by way of data. How is such a feat of prediction possible? 273

Again, while always acknowledging the general philosophical mystery of the 274

possibility of predicting the future of the basis of the past, I would argue that this is 275

just another case of preferring a simpler theory to a more complex one. Squaring a 276

number is simpler than raising it to the power of 1.999 because the former operation, 277

unlike the latter, can be reformulated in terms of ordinary multiplication, thus 278

obviating the need to bring in the exponentiation function at all. In fact, in order 279

to say that the force F is inversely proportional to the square of the distance r – 280

i.e., that Fr2 is constant – we do not even need to multiply any physical quantities 281

together at all, but can confine ourselves to multiplication of physical quantities 282

by positive integers, which is to say, to repeated addition of physical quantities: in 283

a straightforward adaptation of the Eudoxian analysis of proportionality, F1r1
2 = 284

F2r2
2 just in case it holds of all positive integers m and n that (F2 ·m)·m < (F1 ·n)·n 285

if and only if r1 · m < r2 · n. (If this equivalence seems less than obvious, note 286

that the identity obtains just in case
√

F1/
√

F2 = r2/r1, whereas the quantified 287

biconditional holds good just in case it is true of every rational number m/n that 288

m/n <
√

F1/
√

F2 if and only if m/n < r2/r1.) 289

Of course, even if we come to agree that an inverse-square law is in a non- 290

arbitrary sense simpler than an inverse-power-of-1.999 law, there still remains the 291

question why pursuit of simplicity should at all be conducive to the pursuit of 292

accurate prediction. But this is just the general problem of induction again. 293

14.5 On the Genesis of Mathematical Concepts 294

It might be objected to the considerations of the previous section that they were 295

predicated on an already settled mathematical terminology. Yes – the objection 296

would go – given the basic concepts of mathematics, an inverse-square law of 297

gravitation may be the simplest way of fitting theory to data; but the deeper issue at 298

hand is why mathematical concepts should have any bearing on the physical world 299

in the first place. How is it that constructs of mathematics, even when developed for 300

purposes other than describing the empirical world, turn out, when combined with 301

simplicity considerations, to be so useful for that purpose? 302

In large part, I would suggest, the answer lies in the fact that the development of 303

mathematics always takes place under the influence of simplicity considerations 304

similar to those guiding human concept-formation and inductive projection in 305

general. 306
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Consider again Eqs. (14.1) and (14.2). With respect to these rival hypotheses, our 307

envisaged objector might point out that, while (14.1) is simpler than (14.2) when 308

formulated in terms of the conventional operation of division, it is easy to find 309

mathematical functions with respect to which the situation is reversed. For instance, 310

define the binary function ‡ as follows: 311

x ‡ y =
{

10x/y if 992 < y < 1002,

x/y otherwise.

Then (14.2) – the law we dismissed as being gratuitously complex – may be 312

rewritten 313

F = (6.674 · 10−11) ‡ r2, (14.2′)

whereas (14.1) – the simple and sensible one – comes out as 314

F =
{

(6.674 · 10−12) ‡ r2 if 99 < r < 101,

(6.674 · 10−11) ‡ r2 otherwise.
(14.1′)

In this sense, our opponent rightly observes, simplicity is relative to a terminology, 315

and if I wish to maintain that the empirical hypothesis equivalently expressed in 316

(14.1) and (14.1′) is in any real sense simpler than the one given by either one of 317

(14.2) and (14.2′), I need to justify the choice of carrying out the comparison in 318

terms of division rather than ‡. 319

As any reader who is familiar with Nelson Goodman’s (1955) classic discussion 320

of intuitively reasonable versus absurdly gerrymandered concepts will recognize, 321

for the purpose of discrediting ‡ it will not be sufficient to point to its manifestly 322

contrived definition in terms of division – for the converse characterization of 323

division in terms of ‡ is no more attractive: 324

x/y =
{

(x ‡ 10) ‡ y if 992 < y < 1012,

x ‡ y otherwise.

Rather, the case for division has to be based on the clean-cut and uniform way in 325

which it fits into its surrounding conceptual framework. To begin with, division 326

being the inverse of multiplication (a = b/c just in case b = ac), any argument for 327

assigning a central role to multiplication will ipso facto do the same for division. 328

Now multiplication by a positive integer k is just repeated addition: 329

a · k =
k

︷ ︸︸ ︷

a + · · · + a, (14.4)
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and multiplication of arbitrary reals is just the linear (i.e., literally, the most 330

straightforward) extension of this. Precisely put: given any real number a, the one- 331

place function mapping each real x to ax is the only continuous function f such that 332

(i) f (k) = a · k, as specified by (14.4), for every positive integer k, and (ii) f maps 333

equal intervals to equal intervals in the sense that f (y1) − f (x1) = f (y2) − f (x2) 334

whenever y1 − x1 = y2 − x2. 335

(To see that this is so, consider any continuous f satisfying (i) and (ii). Let n/m 336

be any rational number, and μ the ex hypothesi constant amount by which f (x) 337

increases when x increases by 1/m. f (0) = 0 since, by (i) and (ii), a − f (0) = 338

f (1) − f (0) = f (2) − f (1) = (a + a) − a = a. For any integer l, therefore, 339

f (l/m) = lμ; in particular a = f (1) = mμ and so f (n/m) = nμ = an/m. Thus 340

f (x) = ax for every rational x; by continuity the same must hold good for every 341

real x whatever.) 342

In this way, the twin concepts of multiplication and division make for a natural 343

continuation of the theory of addition and its inverse, subtraction; one would be 344

hard put to portray ‡ in a similar light. As our hypothetical critic would have it, the 345

apparent perverseness of hypothesis (14.2) is but an artifact of an arbitrary decision 346

to formulate its content in terms of the traditional operation of division. What he fails 347

to appreciate is that, given the conceptual context of addition and its inverse, that 348

decision is supported by the same sort of consideration as informed our assessment 349

of the relative merits of (14.2) and (14.1) in the first place; the absurdity of (14.2) 350

and that of ‡ are two faces of the same coin. 351

As for addition itself, its utility in any empirical context only requires that 352

individual quantities remain unaltered when aggregated: after emptying a sack of 353

800 grains of wheat into one containing 1000, we find ourselves in the possession 354

of 1000 + 800 grains because none has been destroyed or created in the process; 355

adjoining a 1.5-m plank to a 2.1-m one will create a body measuring 2.1 + 1.5 356

meters because the operation does not change the lengths of the individual planks; 357

etc. Of course, a philosopher of Heraclitan inclination may find cause for wonder 358

in the fact that this sort of constancy from one moment to the next ever occurs in 359

the physical world – let alone with sufficient regularity to allow for the confident 360

prediction of future events – but this only brings us back to the considerations of 361

Sect. 14.3; no additional mystery is incurred by bringing a smattering of arithmetic 362

into the picture. 363

Thus far, our discussion has confined itself to the most elementary concepts 364

of mathematical analysis. But considerations of overall simplicity of theory are 365

very much in operation at more advanced levels as well. An instructive case in 366

point (and one accorded importance by both Wigner and Steiner) is the theory 367

of complex numbers – i.e., the theory that results from positing, in addition to 368

the real numbers, a number i such that i2 = −1, while retaining the usual laws 369

(commutative, distributive, etc.) of addition and multiplication. As suggested by the 370

term ‘complex’, the resulting field of numbers forms a more complicated structure 371

than that of the reals, topologically isomorphic to a plane rather than a line. But, as 372

so often happens in mathematics, the stipulative incorporation of a richer domain of 373

objects brings about a considerable streamlining on the level of theory. Whereas, on 374
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the real line, for every non-negative number a there exists an x such that x2 = a 375

(i.e., a root to the polynomial x2 − a), complex numbers allow us to drop the 376

restriction and simply state that for every a whatsoever there exists such an x. More 377

generally – the so-called “fundamental theorem of algebra” – every polynomial 378

in one variable has at least one root. What is more, even when the coefficients 379

and roots of such a polynomial are all real, the introduction of complex numbers 380

often makes it possible to specify the roots in algebraically uniform ways where 381

otherwise no such characterization exists – indeed this is how, in the sixteenth 382

century, mathematicians’ interest in complex numbers was originally piqued in 383

the study of cubic equations. In the realm of transcendental functions, too, the 384

introduction of complex numbers brings increased uniformity: for instance, rather 385

than constructing exponential and trigonometric functions separately from scratch, 386

we can now define the latter in terms of the former by identifying the sine and cosine 387

of x with (eix − e−ix)/2i and (eix + e−ix)/2, respectively. And so on. 388

This picture of the development of mathematical concepts is not altogether unlike 389

that given by Wigner. On his account, 390

mathematics is the science of skillful operations with concepts and rules invented for just 391

this purpose. [. . . ] Most more advanced mathematical concepts [. . . ] were so devised that 392

they are apt subjects on which the mathematician can demonstrate his ingenuity and sense 393

of formal beauty. [. . . ] [Mathematical concepts] are defined with a view of permitting 394

ingenious operations which appeal to our aesthetic sense both as operations and also in 395

their results of great generality and simplicity. [. . . ] 396

Certainly, nothing in our experience suggests the introduction of [complex numbers]. 397

Indeed, if a mathematician is asked to justify his interest in complex numbers, he will point, 398

with some indignation, to the many beautiful theorems in the theory of equations, of power 399

series, and of analytic functions in general, which owe their origin to the introduction of 400

complex numbers. 401

In addition to describing (as I have just done) qualities such as generality and 402

simplicity as desiderata of mathematical constructs, Wigner stresses the role of 403

these qualities as criteria of aesthetic beauty, picturing mathematicians as artists 404

in creative pursuit of these values, untroubled by concerns of empirical adequacy. 405

While I have no quarrel with this picture of the psychological forces driving 406

mathematicians, the crucial observation for our present philosophical concerns is 407

that simplicity and generality are precisely the core concepts at work in conventional 408

accounts of empirical induction. Take the simplest theory consistent with your data; 409

make the generalizing assumption that this theory applies equally well to cases yet 410

to be tried; there is your prediction for the future. Now if the original impetus for the 411

theory of real numbers, addition, and multiplication comes from pragmatic concerns 412

with the natural world; if empirical induction is the practice of extrapolating from 413

experience in the most straightforward and uniform way possible; and if the complex 414

plane is the most straightforward and uniform way of generalizing and rounding out 415

the theory of real numbers – then is it really a great cause for wonder that complex 416

numbers have found empirical application? 417

Once again I hasten to add that I do not pretend to offer any solution to the 418

Humean problem of why human standards of simplicity and uniformity should 419
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prove conducive to successful prediction in the first place. All I am suggesting 420

is that, insofar as these same standards are at work both in the development of 421

mathematical theory and in the scientific effort to understand the natural world, this 422

fact goes a good way towards explaining why the two exhibit a considerable degree 423

of confluence. 424

14.6 On the Genesis of Empirical Hypotheses 425

Thus far in our discussion of mathematically formulated physical theories, we have 426

been considering the fact of their empirical adequacy on an abstract level, without 427

any view to the question how such theories arise in the minds of working scientists. 428

While it is tempting to dismiss questions of the latter sort as matters of psychology 429

with little import for deeper philosophical issues, some authors have held that, on 430

the contrary, this is where the most theoretically significant cases of “unreasonably 431

effective” mathematics are to be found. 432

Steiner (1989) identifies a number of patterns of reasoning whereby scientists 433

have arrived at empirical hypotheses, subsequently experimentally verified, through 434

a process of what he characterizes as purely mathematical “analogy”, as opposed to 435

any consideration of (what the scientist takes to be) real physical happenings. For 436

instance: 437

Equation E has been derived under assumptions A. The equation has solutions for which A 438

are no longer valid; nevertheless, one looks for these solutions in nature, just because they 439

are solutions of the same equation. (pp. 456–57.) 440

As an example of this pattern of discovery, Steiner – and, following him, Mark 441

Colyvan (2001) – discusses the process through which Maxwell first arrived at his 442

celebrated equations of electromagnetism, now a staple of physical theory. Here, 443

somewhat abbreviated, is Colyvan’s account (pp. 267–68; emphases in original): 444

Maxwell found that the accepted laws for electromagnetic phenomena prior to about 445

1864, namely Gauss’s law for electricity, Gauss’s law for magnetism, Faraday’s law, 446

and Ampère’s law, jointly contravened the conservation of electric charge. Maxwell thus 447

modified Ampère’s law to include a displacement current, which was not an electric current 448

in the usual sense [. . . ], but a rate of change [. . . ] of an electric field. This modification was 449

made on the basis of formal mathematical analogy [with Newton’s theory of gravitation, 450

where energy and momentum are conserved], not on the basis of empirical evidence. [. . . ] 451

The interesting part of this story for the purposes of the present discussion [. . . ] is that 452

Maxwell’s equations were formulated on the assumption that the charges in question moved 453

with a constant velocity, and yet such was Maxwell’s faith in the equations, he assumed that 454

they would hold for any arbitrary system of electric fields, currents, and magnetic fields. 455

In particular, he assumed that they would hold for charges with accelerated motion and for 456

systems with zero conduction current. 457

And, Colyvan goes on to recount, this latter assumption allowed Maxwell to predict 458

the existence of electromagnetic radiation – a prediction which was later confirmed 459

experimentally. 460
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Thus, we have here a case of a scientist who, pursuing mathematically formulated 461

criteria of well-formedness of theory, was able to construct a new hypothesis which 462

then turned out to be applicable, and empirically supported, under a wider range 463

of conditions than those for which it was originally developed – and this without 464

guidance (in the theory-development stage) from any empirical data gathered under 465

these wider conditions, or from any well-developed idea of the nature of the 466

underlying physical forces. Mathematics itself, as it were, seems to have done the 467

better part of the work. 468

But, while intellectual feats like these are without question admirable, it is not 469

clear to me that, in the last analysis, they are really of a different kind from the more 470

humdrum projections from experience discussed in Sect. 14.4. Maxwell sought 471

a modification of Ampère’s law which would agree with the existing empirical 472

data and yet allow for the conservation of electric charge. Having found it, he 473

hypothesised that the new equation would hold up in a wider range of circumstances 474

than those for which data were available – and it did. How does this story differ from 475

that in Sect. 14.4, where our scientists, upon noticing that Eq. (14.1) had held in a 476

range of cases not including that of 100 m, hypothesised that it would hold up in the 477

100 m case as well? To be sure, there is a difference of degree – in the Maxwell story, 478

the new cases are more radically dissimilar to the old ones than in our little fiction. 479

But is the difference of such a nature as to raise any new philosophical puzzle? I do 480

not see how. In either of the episodes, it is a matter of inferring, from the observation 481

that a certain regularity has held in a limited class of situations, that it will hold in a 482

greater class. 483

Perhaps Steiner and Colyvan will wish to call attention to the fact that Maxwell, 484

in order to get things to work out properly, needed to postulate the existence of a 485

new physical process (the displacement current mentioned in the block quote above) 486

for which there was no empirical evidence at the time, thus venturing out in pursuit 487

of purely mathematical cohesion without anchoring his reasoning to any previously 488

known, robustly physical bedrock. But a similar lack of anchoring was assumed 489

to obtain in Scenario B, and may likewise be supposed to afflict the physicists 490

in Sect. 14.4 without detracting from the plausibility of that story. To notice a 491

regularity, be it of a combinatorial or an arithmetical nature, and rationally project 492

it from observed cases to unobserved ones, does not require any theory as to the 493

underlying cause of the regularity. Ask Newton: Hypotheses non fingo. 494

What about the fact that the original impetus for Maxwell’s work came from his 495

feeling that, just as Newtonian mechanics implies the conservation of energy and 496

momentum, so the theory of electromagnetism ought to conserve electric charge – 497

what Colyvan classifies as a case of reasoning by “mathematical analogy”? Well, 498

what of it? Yes, it was a good hunch, and one that could not have been spelled 499

out in a precise way without employing mathematical concepts. Now to Steiner’s 500

and Colyvan’s way of thinking, if I have understood them correctly, the latter fact 501

suggests that conservation of a quantity, be it momentum or charge, should be 502

classified as a property of the “formalism” employed in the presentation of the 503

theory – a property, that is, of roughly the same dignity as, say, the number of 504

symbols figuring in an equation – rather than as a substantive feature of the theory 505
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itself. On such a view, no doubt, the fact that Maxwell struck gold must appear as 506

a crazy fluke. But surely, to conceive of things this way is to draw the line between 507

notation and content in the wrong place. Mathematics is a body of theory, not a 508

notational toolkit. To say that two forces are both inversely proportional to distance 509

squared is not to say that physicists have elected to use similar symbols when writing 510

about them – it is to say that the forces have a structural property in common. 511

Likewise when two phenomena are both seen to obey conservation laws – it is a 512

more abstract kind of similarity, but surely the difference is one of degree, not kind. 513

As always, we must of course acknowledge the possibility-in-principle of 514

standards of similarity so unlike our own that, for instance, a black cat will be seen 515

to have more in common with a white bicycle (they are both black-if-and-only- 516

if-feline) than with a white cat (“Both are cats?”), or a black bicycle. (“Both are 517

black? What strange and arbitrary categories your thinking employs!”) From such a 518

perspective, to be sure, the structural similarities cited in the previous paragraph may 519

count for nothing – but now we are back to the quandaries of Hume and Goodman 520

once again. Given the classificational tendencies inherent to basic human sanity, 521

should commonalities of mathematical structure be considered as being on a level 522

with mere notational similarities? I cannot see any reason for thinking that they 523

should. 524

The story of Maxwell’s equations is but one of the multifarious historical exam- 525

ples that have been cited by those who consider the applicability of mathematics 526

a philosophical enigma (and, in fairness to Steiner, it is not the one to which he 527

attaches the greatest significance). I could not possibly discuss them all, but must 528

leave it to the reader to decide to what extent other potentially perplexing instances 529

of mathematics-aided theory formulation can be accounted for in similar ways. For 530

my part, I remain unconvinced that we are faced with a real problem. 531

14.7 Mathematicity as a Matter of Perspective 532

My principal aim in this paper has been to argue that cases of applicable mathemat- 533

ics which have been painted by some authors, more or less explicitly, as similar to 534

the outlandish Scenario C, may really have more in common with Scenarios A and 535

B: however striking, on closer inspection they do not give much reason to think of 536

mathematicians as mysteriously capable of foreshadowing empirical observation. 537

Still, though, in many cases one is likely to feel that the mathematical laws in 538

question have a rather arbitrary character to them – why this specific constellation 539

of mathematical operations, as opposed to some other? In this final section I wish 540

to take the paper’s main argument one tentative step further by suggesting that such 541

seeming Scenario B-style cases might actually in the final analysis be more akin to 542

Scenario A. 543

The point can be brought out by means of yet another fictional example, for 544

the presentation of which we shall first need to provide a bit of mathematical
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background. The functions of hyperbolic sine and cosine are defined as follows. 545

sinh θ = eθ − e−θ

2
, cosh θ = eθ + e−θ

2
.

The hyperbolic functions obey laws closely resembling those governing the ordinary 546

trigonometric functions. For instance, whereas, for any φ, ψ , and θ , 547

cos(φ + ψ) = cos φ cos ψ − sin φ sin ψ,

sin(φ + ψ) = sin φ cos ψ + cos φ sin ψ,

and 548

cos2 θ + sin2 θ = 1,

for the hyperbolic functions (as is easily verified by reference to their definitions) 549

we have 550

cosh(φ + ψ) = cosh φ cosh ψ + sinh φ sinh ψ,

sinh(φ + ψ) = sinh φ cosh ψ + cosh φ sinh ψ,

and 551

cosh2 θ − sinh2 θ = 1.

The analogy goes further, and is one of the reasons the functions have attracted the 552

attention of mathematicians since their introduction in the eighteenth century. 553

Now imagine the following counterfactual scenario. Experimental physicists, 554

as yet unaware of the principles of special relativity, are conducting empirical 555

investigations into the addition of speeds in a common direction of movement. That 556

is, they are studying situations in which an object B is moving with speed u relative 557

to an object A, while another object C is moving, in the same direction, with speed 558

v relative to B. (By the relative speed of Y and X we mean the speed of Y as 559

measured by equipment that is stationary with respect to X, or vice versa; as a 560

matter of empirical fact, the result will be the same either way.) Now let w be the 561

speed of C relative to A. Naturally, our relativistically innocent scientists expect to 562

observe that 563

w = u + v. 564

To their considerable surprise, however, the relative speeds are instead consistently 565

found to obey the law 566

θw = θu + θv, (14.5)
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where θu, θv , and θw are the numbers satisfying the equations 567

u cosh θu = c sinh θu,

v cosh θv = c sinh θv,

w cosh θw = c sinh θw,

c being the speed of light in a vacuum. 568

One can easily imagine the experimentalists scratching their heads over this 569

seemingly arbitrary law. Of all possible moderately complicated functions of two 570

variables, why should w be determined by u and v in precisely the way described 571

by (14.5)? Why not equally well some entirely different monotonically increasing 572

function? On the face of it, the situation looks similar to our Scenario B. 573

But now a clever theoretician points out that Eq. (14.5) can in fact be derived 574

in a natural way from one simple (if counter-intuitive) postulate: that c, the speed 575

of light, must be the same in all inertial frames of reference. The reasoning will be 576

familiar to any reader who (unlike our fictional scientists) has studied basic relativity 577

theory. Nevertheless, in order to get a firmer grip on the sense of “derivation” in 578

play here – physicists have been known to deploy the term rather more freely than a 579

mathematician typically would – let us recapitulate the argument. 580

Consider two frames of reference A and B, stationary with respect to the above- 581

mentioned objects A and B, respectively; for an unspecified event e, let x be its 582

spatial coordinate in A along the axis parallel to the movement of B, and t the 583

time at which e occurs in A. Similarly, let x′ and t ′ be e’s spatial and temporal 584

coordinates in B, x′ increasing in the same direction as x. For simplicity, let the 585

origins of the two coordinate systems coincide, so that when x = 0 and t = 0, then 586

likewise x′ = 0 and t ′ = 0. (Such coincidence can always be arranged by picking 587

an arbitrary event and using it as origin of both frames.) We now turn our attention 588

to the mathematical relation between x and t , on the one hand, and x′ and t ′, on 589

the other. In particular, how is the spatial coordinate in the one system determined 590

by the spatial and temporal coordinates in the other; in other words, what are the 591

functions f and f ′ such that 592

x = f (x′, t ′) and x′ = f ′(x, t)?

Some constraints on f and f ′ may be laid down at once. Firstly, for reasons 593

of symmetry, we must expect f and f ′ to be related in such a way that, for any 594

numbers ζ , ξ and τ , if ζ = f ′(ξ, τ ) then −ζ = f (−ξ, τ ), meaning that 595

− x′ = f (−x, t). (14.6)

For – if a bit of hand-waving be allowed – A as seen from B is exactly like B as 596

seen from A except that whereas B is moving through A in a positive direction, 597

the direction of movement of A through B is negative; and this in turn is exactly 598

like having the direction of movement the same but the signs of spatial coordinates 599

flipped. 600
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Secondly, lest the character of the transformation differ arbitrarily from one 601

time and place to another, we should expect equal intervals to transform into equal 602

intervals. That is to say, if x′
1 − x′

2 = x′
3 − x′

4 and t ′1 − t ′2 = t ′3 − t ′4, it ought to hold 603

that x1 − x2 = x3 − x4 and t1 − t2 = t3 − t4 (where xi and ti are the A-coordinates 604

of an event with B-coordinates x′
i and t ′i ). But this can only hold in general if the 605

function f is linear; in other words, there must exist numbers γ and δ such that 606

always f (ξ, τ ) = γ ξ + δτ , i.e. 607

x = γ x′ + δt ′ (14.7)

and, by (14.6), −x′ = γ (−x) + δt , i.e. 608

x′ = γ x − δt. (14.8)

Thirdly, the origin of B, by definition always located at position 0 on the x′
609

axis, will be moving trough A in accordance with the equation x = ut , so that 610

0 = x′ = γ x − δt = γ ut − δt , which is to say that δ = γ u, allowing us to 611

recast (14.7) and (14.8) as 612

x = γ (x′ + ut ′), x′ = γ (x − ut). (14.9)

Having thus established the general form to be expected of f and f ′, in order to 613

pin down γ we now invoke the postulate of the invariance of c. By this postulate, 614

a light pulse emitted at the common origin of A and B will travel in the positive 615

direction according to the equations 616

x = ct, x′ = ct ′. (14.10)

From (14.9) and (14.10) it follows by simple algebraic reasoning – the details of 617

which need not concern us here – that either 618

γ = 1
√

1 − u2/c2
(14.11)

or 619

γ = − 1
√

1 − u2/c2
. (14.12)

While, from a purely logical point of view, one might perhaps allow that (14.11) 620

should hold in some cases, (14.12) in others, the simplest, most uniform way 621

of having the disjunction obtain universally is for one of the disjuncts to obtain 622

universally, so as to render γ a continuous function of u. Universal validity 623

of (14.12), however, would entail, in the limiting case where u = 0, that γ = −1 624

and consequently x = −x′, which is impossible since in this situation frames A and 625

B are one and the same. So (14.11) it must be. 626
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Thus we arrive at the conclusion that time and place in frame B, and therewith 627

speed relative to B, are related to time and place in frame A, and therewith speed 628

relative to A, in the way indicated by Eqs. (14.9) and (14.11). And from these 629

relations, as it turns out, the puzzling velocity-addition Eq. (14.5) follows on purely 630

mathematical grounds. Again, the intra-mathematical specifics are immaterial to 631

our philosophical concerns; readers wishing to delve into the details may consult a 632

suitable textbook exposition, for instance sections 12.5 and 14.3 of Shankar (1989). 633

At this point, the reader might not unreasonably take issue with our description 634

of the foregoing line of reasoning as a derivation of (14.5) from nothing but the 635

postulate that the speed of light be the same in all inertial frames of reference. In 636

addition to this premiss, it will be objected, in several instances we appealed to 637

extra-mathematical considerations of simplicity, symmetry, etc. Objection granted; 638

but the point of the example is that none of these additional premisses is nearly 639

as mathematically involved as (14.5) itself, and our invocation of them does 640

nothing to undermine the following lesson: an empirical regularity which initially 641

gives a mysterious impression of having been instituted for the mathematical 642

gratification of experimental scientists may on closer inspection turn out be a 643

necessary consequence of a set of mathematically much more pedestrian principles. 644

What initially (in our fictional chronology) looked like a Scenario B-like situation 645

has turned out, when regarded from the right point of view, to be more closely 646

comparable to Scenario A. 647

Here, then, is my suggestion. Perhaps it holds as a general rule that, whenever 648

scientists observe that the material world exhibits a lawlike regularity, describable in 649

mathematical terms but seemingly arbitrary in its specifics, in fact the mathematical 650

character of the law is an effect of the specific perspective from which they are 651

observing it. From a different conceptual vantage point it may be possible to give the 652

phenomena in question an equally full and precise description without employing, 653

on the level of basic postulates, any sophisticated mathematical functions whatso- 654

ever. 655

I am not suggesting that finding such a vantage point will typically be an easy 656

task. On the contrary, it may well be that in many cases the mathematics-free point 657

of view requires fundamental conceptual categories so far removed from the natural 658

workings of human cognition that we will never be able to attain it, and from 659

whatever perspective we are capable of looking at them, the phenomena will take 660

on a mathematically artful aspect. In this regard, the picture I am sketching differs 661

radically from the above-discussed example from relativistic kinematics, in which 662

the only real challenge on a conceptual level is to think of temporal intervals as 663

relative to a frame of reference. But what I am suggesting is that the difference 664

between the relativistic case, where a less mathematically involved point of view is 665

readily available, and the legions of cases where no such alternative is known, may 666

be one of degree rather than kind. 667

The suggestion is a vague one, and is not being advanced in a programmatic 668

spirit. Certainly I do not have any splendid mathematics-free reformulations of 669

physical theories on offer, nor am I admonishing physicists to do a better job of 670

coming up with them. What I am attempting is perhaps best described as a shift 671



UNCORRECTED
PROOF

14 Reflections on the Empirical Applicability of Mathematics 343

of the burden of proof with regard to the philosophical issue of the empirical 672

applicability of mathematics. Granted, our best physical theories make heavy 673

use of mathematics, not only in teasing out the testable consequences of their 674

fundamental postulates, but also in the formulations of these postulates themselves. 675

But, pending any argument that the mathematical character of physical theories 676

is an essential feature of the world they are describing, rather than a (possibly 677

humanly unavoidable) artifact of the conceptual lens through which that world is 678

being studied, perhaps a bit of caution is in order when pronouncing on the wider 679

philosophical implications of applied mathematics. 680

References 681

Chalmers, A. (2013). What is this thing called science? St Lucia: University of Queensland Press. 682

Colyvan, M. (2001). The miracle of applied mathematics. Synthese, 127, 265–277. 683

Dyson, F. (1964). Mathematics in the physical sciences. Scientific American, 211(3), 128–147. 684

Feynman, R. (1967). The character of physical law. Cambridge, MA/London: The M.I.T. Press. 685

Goodman, N. (1955). Fact, ficion, and forecast. Cambridge, MA: Harvard University Press. 686

Sarukkai, S. (2005). Revisiting the ‘unreasonable effectiveness’ of mathematics. Current Science, 687

88(3), 415–423. 688

Shankar, R. (2014). Fundamentals of physics: Mechanics, relativity, and thermodynamics. New 689

Haven/London: Yale University Press. 690

Steiner, M. (1989). The application of mathematics to natural science. The Journal of Philosophy, 691

86(9), 449–480. 692

Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge, MA: 693

Harvard University Press. 694

Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. 695

Communications on Pure and Applied Mathematics, 13(1), 1–14. 696



Metadata of the chapter that will be visualized online

Chapter Title What the Applicability of Mathematics Says About Its Philosophy
Copyright Year 2018
Copyright Holder Springer International Publishing AG, part of Springer Nature
Corresponding Author Family Name Wilson

Particle
Given Name Phil
Suffix
Division School of Mathematics and Statistics
Organization University of Canterbury
Address Christchurch,  New Zealand
Email phillip.wilson@canterbury.ac.nz

Abstract What does the existence of applied mathematics say about the philosophy
of mathematics? This is the question explored in this chapter, as we
take as axiomatic the existence of a successful applied mathematics,
and use that axiom to examine the various claims on the nature of
mathematics which have been made since the time of Pythagoras. These
claims – on the status of mathematical objects and how we can obtain
reliable knowledge of them – are presented here in four “schools” of the
philosophy of mathematics. The perspective and claims of each school
and some of its subschools are presented, along with some historical
development of the school’s ideas. Each school is then examined under
what we call the lens of the existence of applied mathematics: what does
the existence of applied mathematics imply for the competing claims
of these various schools? Although, unsurprisingly, this millennia-old
debate is not resolved in the next few pages, some of the key issues
are brought into sharp focus by the lens. We end with a summary and
a tentative discussion of the physicist Max Tegmark’s Mathematical
Universe Hypothesis.

Keywords
(separated by “-”)

Philosophy  -  Philosophy of mathematics  -  Philosophy of science  - 
Applied mathematics



UNCORRECTED
PROOF

Chapter 15 1
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Abstract What does the existence of applied mathematics say about the philosophy 5

of mathematics? This is the question explored in this chapter, as we take as 6

axiomatic the existence of a successful applied mathematics, and use that axiom 7

to examine the various claims on the nature of mathematics which have been 8

made since the time of Pythagoras. These claims – on the status of mathematical 9

objects and how we can obtain reliable knowledge of them – are presented here 10

in four “schools” of the philosophy of mathematics. The perspective and claims 11

of each school and some of its subschools are presented, along with some historical 12

development of the school’s ideas. Each school is then examined under what we call 13

the lens of the existence of applied mathematics: what does the existence of applied 14

mathematics imply for the competing claims of these various schools? Although, 15

unsurprisingly, this millennia-old debate is not resolved in the next few pages, some 16

of the key issues are brought into sharp focus by the lens. We end with a summary 17

and a tentative discussion of the physicist Max Tegmark’s Mathematical Universe 18

Hypothesis. 19

15.1 Introduction 20

We use mathematics to understand the world. This fact lies behind all of modern 21

science and technology. Mathematics is the tool used by physicists, engineers, 22

biologists, neuroscientists, chemists, astrophysicists and applied mathematicians 23

to investigate, explain, and manipulate the world around us. The importance of 24

mathematics to science cannot be overstated. It is the daily and ubiquitous tool 25

of millions of scientists and engineers throughout the world and in all areas of 26

science. The undeniable power of mathematics not only to predict but also to 27
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explain phenomena is what physics Nobel laureate Eugene Wigner dubbed the 28

“unreasonable effectiveness of mathematics in the natural sciences” (Wigner 1960). 29

Yet the success of mathematics in explaining the world belies a great mystery: 30

why is that possible? Why are our abstract thought and our manipulation of symbols 31

able to successfully explain the workings of distant stars, the patterns of stripes on 32

a tiger, and the weirdest behaviour of the smallest units of matter? Why is applying 33

mathematics to the real world even possible? 34

This is a question in the philosophy of mathematics. The traditional approach to 35

answering it is to first decide (hopefully on rational grounds) what to believe about 36

the nature of mathematics and its objects of study, and then to explore what this 37

philosophical standpoint says about the applicability of mathematics to the world. 38

In this chapter, I take a different approach. 39

I take as given the existence of applied mathematics. On this foundational axiom, 40

I ask the question “what does the existence of applied mathematics say about 41

the philosophy of mathematics?” In this way, we treat the existence of applied 42

mathematics as a lens through which to examine competing claims about the nature 43

of mathematics. What then do we mean by the existence of applied mathematics, 44

by the philosophy of mathematics, and what are the claims on the nature of 45

mathematics? 46

15.1.1 Applied Mathematics 47

It is not easy to define applied mathematics. The authoritative Princeton Companion 48

to Applied Mathematics (Higham 2015a) sidesteps this difficulty by instead describ- 49

ing what applied mathematics is based on what applied mathematicians do. This is 50

a strategy, the Companion argues (Higham 2015b, p. 1), with some distinguished 51

historical precedent (for example, Courant and Robbins 1941). 52

In this chapter I borrow a concise definition of applied mathematics from 53

mathematician Garrett Birkhoff (1911–1996), who took inspiration from physicist 54

Lord Rayleigh (1842–1919): “mathematics becomes ‘applied’ when it is used to 55

solve real-world problems” (quoted in Higham 2015b, p. 1). The breadth of this 56

definition, which includes “everything from counting change to climate change” 57

(Wilson 2014, p. 176), is important. It means that we can use the shorthand 58

“applied mathematics” for any application of mathematics to understanding the 59

real world, and the name “applied mathematician” for any person doing so. This 60

usage of “applied mathematics” and “applied mathematician” means we avoid any 61

confusion over how a particular example or person might be categorised according 62

to contingent academic disciplines in the workplace. 63

For our purposes, then, applied mathematics, is simply mathematics which is 64

applied. An applied mathematician is anyone who applies mathematics. 65

In a book like this we can take it for granted that the existence of applied 66

mathematics is undisputed. Its chapters present case after case of the overwhelming 67

success and importance of the application of mathematics to the world around us. 68
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Applied mathematics not only predicts the outcome of experiment, it also provides 69

understanding and explanation of the forces, fields, and principles at work. Indeed, 70

“Mathematics . . . has become the definition of explanation in the physical sciences” 71

(Barrow 2000). This is what I mean by the existence of applied mathematics, a useful 72

phrase which I will abbreviate to TEAM. 73

Here I take mathematics, science, and technology seriously, in that I believe 74

they have something important and objective to say about the world. While there 75

are cultural and social concerns with the institutional forms of transmission of 76

mathematics, I firmly reject the “woefully inadequate explanation” (Barrow 2000) 77

that mathematics is merely a social construct. This postmodern fallacy has been 78

hilariously exposed by Sokal (1996, 2008) and others. As a mathematician and 79

scientist, I also reject the notion, fashionable among some famous physicists, that 80

philosophy has nothing useful to say about science; see for example Weinberg 81

(1992), or Krauss (2012). This chapter is evidence against that view. 82

15.1.2 The Four Schools of the Philosophy of Mathematics 83

What is mathematics? What is the status of the objects it studies? How can we obtain 84

reliable knowledge of them? These are the general types of questions which animate 85

and define the philosophy of mathematics, and on which we will focus below. 86

If you think this sounds vague, I agree with you. In Philosophy of Mathematics: 87

selected readings (Benacerraf and Putnam 1983) compiled by the highly influential 88

philosophers of mathematics Paul Benacerraf and Hilary Putnam, the editors write 89

in their first sentence “It would be difficult to say just what comprises the philosophy 90

of mathematics”. 91

But we have to talk about something, so in what follows I present some of the 92

main ideas from the long history of this vaguely-defined area of philosophy. This 93

is not an exhaustive study of all of the schools of the philosophy of mathematics, 94

neither will we see all of the main areas of study. Those in the know might find it 95

shocking that I do not mention Descartes, Locke, Berkeley, or Wittgenstein, and 96

spend scant time on Kant and Hume. Their ideas fill these pages through their 97

influence on their contemporaries and those who came after them and on whose 98

ideas I focus. And while I try to present some historical development, this can only 99

ever be cursory in a single chapter covering over 2500 years from Pythagoras to 100

the present. I am painfully aware of the Western bias in my presentation, with no 101

mention of the great Indian, Chinese, and Arabic traditions. I hope that you are 102

intrigued enough to follow the references. If you are eager to start right now, then 103

Bostock (2009) gives a highly readable and comprehensive introduction, Benacerraf 104

and Putnam (1983) contains selected key papers and readings, Horsten (2016) is an 105

excellent starting point for an educational internet journey, and Mancosu (2008) is 106

a survey of the modern perspective. But I hope you will read this chapter first. 107

The chapter divides the philosophy of mathematics into four schools, each 108

of which has its own section. This division is broadly accepted and historically 109
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relevant, but not without controversy. I have also tried to present the arguments of 110

smaller subschools of the philosophy of mathematics. Sometimes this has required 111

discussing a subschool when a theme arises, even if historically it does not belong 112

in that section. I hope that historians of the philosophy of mathematics, and the 113

philosophers themselves, will forgive me. 114

Mostly I have tried to avoid jargon, but there are some important concepts that I 115

have tried to develop as they arise. However, there are two words needed from the 116

start: ontology and epistemology. Ontology concerns the nature of being. In terms of 117

mathematics: what do we mean when we say that a mathematical object exists? Are 118

mathematical objects pure and outside of space and time, as the platonist insists, 119

or are they purely mental, as the intuitionist would argue, or the fairy tales of the 120

fictionalist? Epistemology concerns the nature of knowledge, how we can come 121

to have it, and what justifies our belief in it. Speaking loosely, we can say that if 122

ontology concerns the nature of what we know, then epistemology concerns how 123

we know it. 124

15.1.3 The Lens 125

I focus on what TEAM says about the philosophy of mathematics. It is important to 126

distinguish this concern with what the applicability of mathematics says about the 127

nature of mathematics from a concern (even a philosophical one) with the nature of 128

the work done in applying mathematics. This latter question focusses on the praxis 129

of applying mathematics: how applied mathematicians choose which problems to 130

work on, how they turn a real-world problem into a mathematical one, what their 131

aesthetic is, how they choose a solution method, how they communicate their work, 132

and related questions. See for example Davis and Hersh (1981), Ruelle (2007), 133

Mancosu (2008), and Higham (2015a). 134

In training our TEAM lens on the four main schools of the philosophy of 135

mathematics, we bring into focus some aspects of old questions. This is comple- 136

mentary to a more modern focus on the so-called “philosophy of real mathematics” 137

(Barrow-Green and Siegmund-Schultze 2015, p. 58). This “new wave” as outlined 138

in the introduction to Mancosu (2008), currently avoids the daunting ontological 139

question of why mathematics is applicable, and focusses instead on expanding the 140

epistemological objects of study to include “fruitfulness, evidence, visualisation, 141

diagrammatic reasoning, understanding, explanation” (Mancosu 2008, p. 1) and 142

more besides. These everyday epistemological issues raised by working with 143

mathematics are used to refine what is meant by applied mathematics, to study how 144

applied mathematics and its objects of study relate to the rest of mathematics, and 145

what mathematical value there is in applied mathematics. Indeed, Pincock (2009, 146

p. 184) states “a strong case can be made that significant epistemic, semantic and 147

metaphysical consequences result from reflecting on applied mathematics”. The 148

interested reader is referred to the excellent overviews collected in Mancosu (2008) 149

and Bueno and Linnebo (2009). 150
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I take TEAM as axiomatic in order to examine the claims of various schools 151

of the philosophy of mathematics. This is distinct from those like Quine (1948) 152

and Putnam (1971) who take TEAM as axiomatic in order to provide a justifi- 153

cation for “faith” in mathematics. As outlined by Bostock (2009, pp. 275 ff), the 154

Quine/Putnam position is that mathematics is similar to the physical sciences in the 155

sense that both postulate the existence of objects which are not directly perceptible 156

with human senses. In the case of mathematics, this includes the integers, while 157

for the physical sciences, this includes atoms, to take an example in each field. 158

The Quine/Putnam position is that mathematics as well as the physical sciences 159

should be exposed to the “tribunal of experience”. In particular, since our atomic 160

theory leads to predictions which conform to our experience, we should accept the 161

existence of atoms as real. Crucially, claim Quine and Putnam, since all our physical 162

theories are mathematical in nature, and since those theories work, we must accept 163

the existence of the mathematical entities on which those theories depend as also 164

being real. The Quine/Putnam indispensability argument is that we must believe 165

that mathematical objects exist because mathematics works. We will return to the 166

indispensability argument, but I reiterate that we will use TEAM as an axiom for 167

examining competing claims on the nature of mathematics, rather than using TEAM 168

as an axiom for a new claim on the nature of mathematics. 169

The remainder of the chapter is structured as follows. We will examine each of 170

the four schools in turn, introducing their main ideas, explaining their ontology and 171

epistemology, and giving a brief overview of their history and structure. Within each 172

school’s section, we will use the TEAM lens to bring into focus the challenges faced 173

by the school’s followers as they attempt to explain the applicability of mathematics. 174

We end with a discussion and conclusion. 175

15.2 Platonism 176

The platonist believes that mathematical objects are real and exist independently 177

of humans in the same way that stars exist independently of us. Stars burn in 178

all ignorance of us, and while their properties are discoverable by humans, they 179

are independent of us. The same is true, says the platonist, of the existence 180

and properties of numbers, and of all mathematical objects. Thus the platonist 181

mathematician believes that we discover mathematics, rather than invent it. 182

The platonist position is that all abstract objects are real. An “abstract object” is 183

one which is both entirely nonphysical and entirely nonmental. The triangle formed 184

by the three beams over my head is an entirely physical object. When I hold it in my 185

mind, and as you now attempt to picture it in yours, we have a mental object which 186

is drawn from our experiences of the physical. But this mental object is still not 187

yet a platonic object. For the platonist there exists in a third “realm” apart from the 188

physical and mental ones the perfect, ideal form of a triangle, of which the imperfect 189

triangles in our minds, and the still less imperfect ones in our physical world, are 190

merely poor approximations. 191
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The platonist does not believe that mathematical objects are drawn off or 192

abstracted from the physical world; rather, that they exist in a realm of perfect, 193

idealised forms outside of space and time. But what does “existence” mean in this 194

statement? Existence usually refers to an object embedded in time and space, yet 195

these platonic forms are taken to be outside of time and space. Their existence is of 196

a different type to all other forms of existence of which we know. We can say that as 197

I type this my laptop rests on an oak table in New Zealand early in 2017. We can say 198

that our sun will be in the Milky Way galaxy next year, and that Caesar lay bleeding 199

in Rome two millennia ago. The verbs “rest”, “be”, “bleed” in these statements are 200

fancy ways of saying “is”, and the locations and times in each example are not two 201

pieces of information but one: a single point in the fabric of spacetime which Albert 202

Einstein (1879–1955) wove for us a century ago. By contrast, platonic objects “are” 203

in a “place” outside of spacetime. 204

Platonism is the oldest of our four schools, and for many mathematicians in 205

history this perspective was taken to be natural and obvious – and this remains true 206

for the typical mathematician or scientist today (Bostock 2009, p. 263). There is 207

some evidence that Plato (427–347 BCE) held this view (Cooper 1997), possibly 208

swayed towards the life of the mind and away from the life of the engaged citizen 209

philosopher after his great mentor Socrates was condemned to death. Plato presented 210

his theory of forms in his Phaedo, and developed it in his Republic (Cooper 1997), 211

with its enduring image of a shackled humanity deluded by shadows cast by ideal 212

forms on a cave wall. It is much less clear that the platonism we are discussing here 213

was a view held by Plato, since in later life Plato saw mathematical forms as being 214

intermediaries between ideal forms and perceptible objects in our world (Bostock 215

2009, p. 16). For this reason I do not capitalise the word “platonism”. 216

Mathematical platonism is the position that mathematical objects have a reality 217

or existence independent not only of space and time but also of the human mind. 218

Within this statement are the three claims that (1) mathematical objects exist, (2) 219

they are abstract (they sit outside of spacetime), and (3) they are independent of 220

humans or other intelligent agents (Linnebo 2013). All three claims have been 221

challenged by various schools, but the claim of independence sets platonism apart 222

from the other schools, as we shall see. For the platonist, the concept of number, the 223

concept of a group, the notion of infinity – all of these would exist without humans, 224

and even, remarkably, without the physical universe. The platonist ontology is that 225

mathematical objects are real, the realest things that exist. 226

But how can we know about them? Even mathematicians are physical beings 227

containing mental processes and which are embedded in space and time, so how can 228

they access this platonic realm, which sits outside of spacetime? The only platonist 229

answer to this epistemological problem is that we know about these abstract objects 230

a priori – that is, that they are innate, and independent of sensory evidence. 231

This is surely an unsatisfactory answer. To say that we know something a priori 232

is merely to rename the fact that we do not know how we know it. It is dodging the 233

issue – begging the question. If the innateness claim is taken to its extreme, the idea 234

that every abstract concept that humanity might ever uncover is somehow hardwired 235

from birth into a finite brain of finite storage capacity seems questionable to say the 236

least. And where is the information encoded which is uploaded into the developing 237

foetal brain? DNA has a finite, if colossal, storage capacity (Extance 2016). 238
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The other option is that (at least) the human mind somehow has the capacity 239

to access the platonic realm. But how can a physical, mental being access a realm 240

outside of those two realms? Plato himself saw this epistemological problem as a 241

grave issue, and in his later life he moved away from the viewpoint which bears his 242

name, as we saw above. 243

This problem of epistemological access was precisely formulated by Benacerraf 244

(1973). By breaking the problem into its constituent assumptions and deductions, 245

Benacerraf gave philosophers of mathematics more precise targets at which to 246

aim. There have been many responses to this challenge, as we shall see. But as 247

summarised in Horsten (2016), the fundamental problem of a how a “flesh and 248

blood” mathematician can access the platonic realm “is remarkably robust under 249

variation of epistemological theory” – that is, “[t]he platonist therefore owes us a 250

plausible account of how we (physically embodied humans) are able” to access the 251

platonic realm. 252

Such an account is elusive, although attempts are being made; see (Balauger 253

2016, section 5) for an excellent summary. It is worth noting here that even ardent 254

platonists such as Kurt Gödel (1906–1978) failed to avoid dodging the issue. Gödel 255

is a central figure in the philosophy of mathematics. As we shall see, he was a 256

platonist, who destroyed both logicism and formalism, and shackled the consistency 257

of intuitionistic arithmetic to that of classical arithmetic (Ferreirós 2008, p. 151), 258

where consistency means that contradictions cannot be derived. But returning to 259

the issue of epistemological access, we see for example, in Gödel (1947, pp. 483– 260

4) how he skips over it by stating “axioms force themselves on us as being true. 261

I don’t see why we should have less confidence in this kind of perception, i.e. in 262

mathematical intuition, than in sense perception.” But how do we come by such 263

intuitions? Whether they are innate (following the great Immanuel Kant (1724– 264

1804)) or acquired (following the equally great David Hume (1711–1776)) there 265

remains the question of how mental events correlated with physical brains localised 266

in spacetime are able to have them. 267

Platonism is a kind of realism. The realist believes that mathematical objects 268

exist, and do so independently of the human mind. Gödel was certainly a platonic 269

realist (Bostock 2009, p. 261). There are, however, non-platonic forms of realism, 270

and the Quine/Putnam position outlined in the Introduction is one example. Quine 271

and Putnam argue that mathematics is real because it underpins our physical 272

theories – since they work, mathematics must be true. By “work” here I mean 273

precisely what I meant when I defined applied mathematics in the Introduction, 274

and the breadth of that definition is important. Since it really does cover everything 275

from counting change to climate change, it is not just the use of mathematics in 276

highfalutin scientific domains such as climate modelling or fundamental particle 277

physics, but also includes the utility of basic arithmetic for counting sheep. 278



UNCORRECTED
PROOF

352 P. Wilson

15.2.1 Platonism Under the Lens 279

Under even the closest scrutiny beneath the TEAM lens, the ontology of platonism 280

remains as pure and perfect as its own ideal forms. Since the platonist believes that 281

the physical world is an imperfect shadow of a realm of perfect ideal objects, and 282

since in this worldview mathematics is itself a very sharp shadow cast by a more 283

ideal form, it is no surprise that our mathematics becomes applicable to the physical 284

world. This is not evidence for platonism, but the TEAM lens does not reveal any 285

evidence against platonism based on its ontology. 286

However, as we have seen, cracks appear when we examine the epistemology of 287

platonism – that is, when we ask how we are able to have knowledge of the platonic 288

realm of ideal forms. The problem of epistemological access is such a serious one 289

that it has prompted a rejection of platonism altogether, which we consider in the 290

following three sections. Another approach has been to recast platonism in forms 291

which avoid the epistemic access problem. 292

One example is plenitudinous platonism; see Balaguer (1998) and Linsky 293

and Zalta (1995, 2006) for two different versions. The central idea is that any 294

mathematical objects which can exist, do exist. Summarising how this approach 295

may solve the problem of epistemological access, Linnebo (2013) says “If every 296

consistent mathematical theory is true of some universe of mathematical objects, 297

then mathematical knowledge will, in some sense, be easy to obtain: provided that 298

our mathematical theories are consistent, they are guaranteed to be true of some 299

universe of mathematical objects.” 300

While plenitudinous platonism may solve the epistemic access problem (though 301

this remains controversial), it does not yet explain why mathematics is able to 302

be applied to the real world. Both platonism and plenitudinous platonism fail to 303

explain why any part of mathematics should explain the physical world. Simply 304

assuming that our mathematical objects (platonism), or objects in all forms of 305

mathematics (plenitudinous platonism) have an independent existence does not in 306

any way explain why they are applicable to the real world around us. Something 307

further is required, some explanation of why the platonic realm entails the physical 308

realm. This is what the TEAM lens brings sharply into focus for the platonist and 309

plenitudinous platonist arguments. 310

An idea similar to plenitudinous platonism and which goes some way to address- 311

ing epistemic concerns was developed by the mathematical physicist Max Tegmark 312

(b. 1967). In a series of papers beginning with Tegmark (2008), and explained in 313

layperson terms in Tegmark (2014), Tegmark shows that platonic realism about 314

physical objects implies a radical platonic realism about mathematical objects. 315

Tegmark argues that the hypothesis that physical objects have an independent exis- 316

tence implies his Mathematical Universe Hypothesis (MUH): “our physical world 317

is an abstract mathematical structure” (Tegmark 2008, p. 101). He goes on to argue, 318

echoing the plenitudinous platonists, that all mathematics which can exist does exist 319

in some sense, that our physical world is mathematics (not simply mathematical), 320

and that our minds are themselves self-aware substructures of this mathematical 321
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universe. In the MUH, ourselves, our universe, and the various multiverses which 322

our physical theories imply are subsets of this grand mathematical ensemble. The 323

MUH addresses (though was not motivated by) the same epistemic concerns which 324

motivated the plenitudinous platonists. Tegmark’s ideas have spawned much debate, 325

and in the grand tradition he has both defended and amended his hypothesis. 326

It is heartening to see a mathematical physicist engaging with philosophers and 327

mathematicians precisely around the issues of this chapter. For a starting point of 328

objections and Tegmark’s responses to them, see Wikipedia (2017). 329

As for Quine/Putnam realism, Bostock (2009, p. 278) observes that when 330

considering objections to the Quinean position it is important to be careful about 331

what is meant by science and the applications of mathematics. He argues that 332

adopting the kind of broad definition of applied mathematics that I have taken for 333

this chapter will undermine some of the objections to the Quine/Putnam theory, 334

such as those in Parsons (1979/1980) and Maddy (1990). However, surely we can 335

conclude that the Quine/Putnam idea is attractive under the TEAM lens? 336

Not so, claims Bostock (2009, pp. 305–6). One problem is the tenuous nature 337

of truth when it is defined in this quasi-instrumentalist and utilitarian way, when 338

the only true mathematical things are those which currently support our physical 339

theories. As the theories change, so does truth. Worse, it is possible to argue 340

that fewer and fewer parts of classical mathematics are required for our scientific 341

theories, leading, in the extreme, to the fictionalism of Hartry Field (b. 1946) in 342

which absolutely no mathematical objects are necessary; see the discussion in the 343

Formalism section. But even if a time-dependent notion of mathematical truth is 344

accepted, Paseau (2007) observes that the Quine/Putnam theory leaves unspecified 345

the ontological status of the objects it posits. Mathematical statements are true when 346

they are useful, but the Quinean can only shrug when asked whether mathematical 347

objects are platonic or have one of the other possible statuses given in the following 348

sections. 349

A final comment concerns the issue of causal agency for Quine and Putnam. 350

Their position argues that both quarks and real numbers are to be considered true in 351

as much as they are required in our quantum mechanics. Yet the former is a name 352

for something which has a causal role in the world, while the latter is the name for 353

a temporarily useful fiction with no causal power. 354

15.3 Logicism 355

To the logicist, mathematics is logic in disguise. All of the varied fields of 356

mathematics are simply the fecund outpourings produced when logic combines 357

with interesting definitions (Bostock 2009, p. 114). Mathematics equals logic plus 358

definitions. 359

In this way, logicists seek to reduce mathematics to something else: logic. 360

This idea can trace its lineage to Aristotle (384–322 BCE), who invented logic 361

and tried to formulate his mathematical arguments in logical terms. Aristotle 362
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rejected Plato’s insistence on a higher realm of ideal objects. He did not reject 363

abstraction, but saw it as a process of generalisation of examples in the world. 364

To him, the concept of triangle generalised real-world triangles. While Plato 365

believed that all Earthly triangles were poor shadows of an ideal triangle with an 366

independent existence beyond space and time, Aristotle believed that the concept of 367

a triangle was abstracted from our everyday experience of triangles in the world. All 368

Aristotle’s science and mathematics concerns these abstractions. His ontology is of 369

generalised ideas in the human mind, and his epistemology is one of perception, 370

even in mathematics (Bostock 2009, p. 16). Thus to Aristotle, and his conceptualist 371

viewpoint just outlined, we invent rather than discover mathematics, which is why I 372

described him as having invented logic. 373

Central to a reductionist view of mathematics is that it can be reduced to 374

something more fundamental, that the definitions of mathematics are a type of name 375

or shorthand for relationships between sets of the fundamental objects, and that the 376

correspondence of those names with things in the real world is of little interest or 377

relevance to mathematics. This type of reduction can be called nominalism, since it 378

concerns names, and there are two types (Bostock 2009, p. 262). One is logicism, 379

which reduces mathematics to logic, and states that mathematics is a collection 380

of names applied to logical objects. In this view, mathematics is a set of truths 381

derived (or discovered) by the use of logic. It is worth noting that in this nominalist 382

account, the mathematical objects have no independent existence. The second type 383

of nominalism is the fictionalism of Hartry Field, which we discuss below in the 384

section on Formalism. 385

The logicist ontology is that mathematical objects are merely logical ones in 386

disguise. This ontology neatly explains why the varied fields of mathematics are 387

connected: they lie in correspondence with one another because their objects of 388

study are at root the same logical objects (or collections of them), but with a 389

different overlay of definitions. Moreover, the central practice of mathematicians, 390

the proving of theorems, follows well-defined and closely prescribed logical rules 391

which themselves guarantee the validity and truth of the outcomes. No matter the 392

definitions of the objects, when logical operations are correctly applied to logical 393

objects (disguised as mathematical ones) the outcome will certainly be true. 394

In the logicist worldview mathematicians take disguised logical objects and 395

perform logical operations on them. Because of this derivation of new results by 396

a logical analysis of existing concepts, it is tempting to refer to these truths as 397

analytic, and thereby to invoke Kant, and in particular to set up an opposition with 398

Kant’s synthetic truths derived from experience. But to use these words here might 399

be misleading, since Kant himself argued for the synthetic nature of some, if not 400

all, mathematical truth (Bostock 2009, p. 50). To Kant, mathematical truths could 401

not be wholly derived by the action of logic; some a priori “intuition” of the objects 402

involved was required. In the context of logicism, an analytic truth means one which 403

is derived by the action of logic on logical objects plus definitions. This is the usage 404

employed by the key figure Gottlob Frege, as we shall see below. 405

To explore what it means to say that mathematics is logic plus definitions, we can 406

ask: what is a number in the logicist worldview? Surely something so fundamental to 407
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mathematics, at the core of arithmetic, cannot be open to debate? Yet to the logicist, 408

the idea of number is in some sense superfluous to the truths of arithmetic. Defining 409

number in a mathematical way simply overlays mathematical definitions on logical 410

objects. The overlay is done on multiple objects rather than single objects, since 411

if the latter were true then the logicist worldview would be rather barren. Merely 412

positing a one-to-one correspondence between mathematical objects and logical 413

ones would be no more interesting than compiling a very accurate thesaurus. If I 414

observe that every eggplant is an aubergine and that every aubergine is an eggplant, 415

then I can merely use the two words interchangeably, and I have not learned 416

anything new about eggplants. Or aubergines. Rather, in the logicist worldview, 417

a mathematical definition is powerful because it encodes multiple logical objects 418

and the relationships between them. The apparently simple task of defining number 419

logically takes us from the budding of logicism in the garden of a man named Frege, 420

through its flowering in the care of a man named Russell, to its wilting in the shadow 421

cast by a man named Gödel. 422

The soil for Frege’s garden was laid down by Richard Dedekind (1831–1916). 423

Dedekind is known to undergraduate mathematicians for putting the real numbers 424

on a solid basis. He defined them by means of “cuts”: an irrational such as the square 425

root of 2 cuts the rational numbers into two classes, or sets. One of these contains all 426

of the rational numbers smaller than the square root of 2, while the other contains 427

all of the rational numbers larger than the square root of 2. This gave Dedekind 428

the hope that all of mathematics could be built on logic plus set theory, with sets 429

conceived of as logical objects. 430

This dream was shared by Gottlob Frege (1848–1925), who is considered the 431

founder of logicism. Bostock in his (2009, p. 115) says “Frege’s first, and . . . 432

greatest contribution . . . is that he invented modern logic.” Extending Dedekind’s 433

ideas, Frege defined number in terms of classes of equinumerous classes. In this 434

way, the number 2 is the name for all sets which have two elements. Although this 435

smacks of circularity, it is formalised in a way which avoids it. However, Bertrand 436

Russell (1872–1970) found a paradox nestled at the heart of logicism as conceived 437

by Frege as a combination of set theory and logic. This is the famous Russell’s 438

paradox, which in words is the following. Consider a set which contains all sets 439

which do not contain themselves as members. Does this set contain itself? If it does, 440

then it does not, and if it does not, then it does. 441

A popular analogy is the following. Suppose there is a town in which every man 442

either always shaves himself, or is always shaved by the barber. This seems to divide 443

the men of the town into two neat classes; no man can be in both sets by definition. 444

But what about the barber? If he is a man who always shaves himself then he cannot 445

be, since he is also then a man shaved by the barber. And if he is a man who is 446

always shaved by the barber, then he will always shave himself, which he cannot. 447

Thus even the definition of quite simple sets is problematic. The problem is 448

surprisingly difficult to eliminate, leaving aside solutions such as a barber who does 449

not shave or is a woman. So difficult, in fact, that Frege gave up on his own logicist 450

dream. Russell did not. He developed with Alfred North Whitehead (1861–1947) a 451

new theory of “types”, which in essence are hierarchical sets. This “ramified” theory 452
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eliminated the type of paradoxes which bedevilled Frege’s logicism. A set could no 453

longer contain itself as a member. In the shaving story, it is as if the town now has a 454

caste system, and a man can be shaved only by someone of a lower caste. Thus the 455

barber can be shaved by someone of a lower caste, and can shave anyone in a higher 456

caste, but no-one can shave themselves (the lowest caste grows beards). 457

Russell and Whitehead wrote the monumental Principia Mathematica (Russell 458

and Whitehead 1910) to bring Frege’s dream to fruition through their ramified 459

theory of types. The power of the mantle of meaning which mathematics places 460

over logic is revealed by the fact that it takes 378 pages of dense argument in the 461

Principia to prove (logically) that one plus one equals two. 462

But despite these Herculean efforts, the dream of reducing mathematics to logic 463

died when Gödel rocked the mathematical world in 1931 with the publication of 464

his two incompleteness theorems (Gödel 1931; see also Smoryński 1977). The 465

first theorem is bad enough news: it says that any system which aims to formalise 466

arithmetic must necessarily be incomplete. Incomplete means that the system must 467

contain true statements which cannot be proved. And Gödel showed that this is true 468

for any system which aimed to formalise arithmetic, and, worse, for any system 469

which contained arithmetic. Thus Gödel’s theorem not only destroyed the approach 470

based on a combination of logic and ramified types developed by Russell and 471

Whitehead, but all possible approaches. This was a profound and philosophically 472

disturbing shock to mathematicians, who until that moment believed that all true 473

statements must be provable. Mathematics has not been the same since. 474

Even worse was to come from Gödel’s second incompleteness theorem: it 475

is impossible to prove the consistency of arithmetic using only the methods of 476

argument from within arithmetic. Thus to prove even the most basic of mathematical 477

areas consistent, that is to show that contradictions can never be derived within it, 478

requires stepping outside of that area. But then the new area of mathematics used 479

to establish consistency of the first area would itself require external techniques in 480

order to establish its consistency, and so on. 481

Gödel showed that any system which aims to formalise an area of mathematics 482

contains unprovable true statements, and that the consistency of the system can only 483

be established by stepping outside of itself. Logicism (and not just logicism, as we 484

shall see) seemed well and truly dead. But logicism lives on in modified forms; the 485

idea of number as a powerful naming convention for a set of interconnected logical 486

objects is closer to what is now called the neo-Fregean standpoint. The difference 487

between Fregean logicism and neo-Fregean logicism revolves around “Hume’s 488

Principle”, which asserts that two sets are of the same size if their members can 489

be placed in a one-to-one correspondence. Neo-Fregeans aim to derive elementary 490

arithmetic from Hume’s Principal plus logic rather than Frege’s axioms of set theory 491

plus logic. Frege himself rejected this approach since he knew that Hume’s Principle 492

did not clearly define number per se. Indeed, he observed that with Hume’s Principle 493

alone it is impossible to say that Julius Caesar is not a number. But Neo-Fregeans 494

attempt to avoid this problem by taking Hume’s Principle to be the very definition of 495

number; see for example (Bostock 2009, pp. 266 ff). Moroever, Russell’s theory of 496

types is now considered the start of predicativism. Both neo-Fregean logicism and 497
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predicativism seek to avoid paradox while retaining logic as fundamental. These 498

ideas have been developed for example by Bostock (1980); see also his (2009, 499

section 5.3). 500

If in some sense all mathematics can be reduced to logic, what is the ontology 501

of logic? The logicist rejects the realist idea that mathematical objects have an 502

independent existence in a platonic realm of ideal forms, and substitutes logic as 503

a foundation for mathematics. But this merely shifts the ontological question on to 504

logic, and here we see a divergence in the history of logicist thought. Its founding 505

father, Frege, was a realist of sorts, since he believed that logic and its objects 506

had a platonic existence (Bostock 2009, chapter 9). Although Russell’s views were 507

complex and evolved throughout his life, he also seemed to remain essentially a 508

platonic realist when it came to mathematics. Other logicists choose to remain silent 509

on ontology. 510

15.3.1 Logicism Under the Lens 511

What can the logicist say about the existence of applied mathematics? If at the heart 512

of mathematics we find only logic, and if the familiar objects of mathematics are 513

merely names under which hides a Rube Goldberg arrangement of logical objects, 514

then why should mathematics have anything useful to say about the real world? The 515

logicist is not allowed to answer that the universe is merely an embodiment of a 516

higher platonic realm of logic. To do so makes them a platonist. 517

There does not seem to be much more to see of logicism under the TEAM lens. 518

At its heart, there is either a dormant platonism in its classical form (which Gödel 519

destroyed anyway), or an echoing ontological silence in the modern forms. Since 520

these modern forms do not propose any ontology, it is hard to critique them via 521

the existence of applied mathematics. However, even they seem to have an implied 522

platonism at their heart, since the neo-Fregean adoption of Hume’s principle brings 523

with it a notion of infinity which is platonic in the extreme – see Bostock (2009, p. 524

270) for some of the controversy. 525

Perhaps one observation can be made using the TEAM lens. If even such a 526

simple concept as number veils a hidden complexity of logical objects, maybe 527

what mathematicians do is to select definitions which excel at encoding logical 528

objects and their interrelations. Having done so, perhaps mathematics is then a 529

process of selection and evolution. This principle of fecundity and an evolutionary 530

perspective is sufficiently general that it may apply in a broad sense to other schools 531

in the philosophy of mathematics. However, it has problems. For a start, what is 532

the ontological status of the fecund objects upon which evolution acts? Secondly, 533

there are epistemological problems with the claim (see for example Mohr 1977) 534

that minds with the best model of reality are those which are selected as fittest 535

evolutionarily. It is not clear that the objects of the human mind need faithfully 536

represent the objects of the physical universe. Mental maps of reality survive not 537

because they are faithful to reality, but because of the advantage they conferred to 538



UNCORRECTED
PROOF

358 P. Wilson

our ancestors in their struggles to survive and to mate. Moreover, while concepts 539

such as number and causality have obvious correlates in the real world, our modern 540

theories of physics involve concepts which have no obvious correlates in the real 541

world, such as complex analysis or the common-sense defying nature of quantum 542

mechanics. 543

15.4 Formalism 544

The formalist holds a radical ontological perspective: mathematical objects have no 545

real existence, they are merely symbols. The mathematician shuffles and recombines 546

these meaningless symbols according to the dictates of systems of postulates. No 547

meaning is ever to be ascribed to the symbols or the statements in which they appear, 548

nor is any kind of interpretation of these symbols or statements ever to be done. 549

Some formalists may be content to remain agnostic on whether meaning can ever be 550

ascribed to mathematical symbols and statements, preferring simply to insist that no 551

meaning is necessary, that the symbols and their interrelations suffice. Others, more 552

radically still, insist that no meaning can ever be given to mathematical symbols and 553

statements, and the systems in which they are used. 554

These symbols are manipulated within systems of postulates and rules, the formal 555

systems which give formalists their moniker. The formalist is in theory able to study 556

any formal system, but usually certain restrictions are placed on what counts as a 557

postulate, and what is an allowable rule. One of the main criteria for a formal system 558

is the concept of consistency which we have already encountered. 559

A formal system is consistent when its axioms and rules do not allow the 560

deduction of a contradiction. In the early days of the formalist school, its leader, 561

David Hilbert (1862–1943) believed that consistency implied existence (Bostock 562

2009, p. 168). It is hard to discern what is meant by “existence” here, given the 563

formalist insistence on the meaningless of mathematics – indeed, Hilbert himself 564

seems somewhat agnostic on this point (Reid 1996). However, I take it to mean that 565

any statement derived from the axioms and rules has (at the very least) the same 566

ontological existence as the axioms themselves. Thus while mathematics may be 567

seen as one among many formal systems, and while each can be studied in the same 568

way, if the axioms of mathematics are shown to have a more significant existence 569

then so do all other mathematical objects. 570

It is impossible to talk about formalism without talking about Hilbert. The school 571

probably would not exist without him. Hilbert was a towering figure of nineteenth 572

and twentieth century mathematics, and his name is attached to several important 573

concepts and theories (Reid 1996). He is also famous for listing 23 open problems 574

in mathematics in the published form of his address to the International Congress 575

of Mathematicians in Paris in 1900 (Hilbert 1902). Many of Hilbert’s problems are 576

still unanswered and remain the focus of research today. Hilbert in 1920 began his 577

so-called program to show that mathematics is a consistent formal system. As we 578

have seen, Gödel would show a decade later that this is impossible. 579
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Hilbert was already on the formalist track when in 1899 he published his 580

Grundlagen der Geometrie (The Foundations of Geometry) (Hilbert 1899), in 581

which he formulated axioms of Euclidean geometry and showed their consistency. 582

Hilbert is not the only mathematician to axiomatize Euclid’s geometry. The idea 583

is to eliminate geometrical intuition from geometry and to replace that intuition 584

with definitions and axioms about objects bearing geometrical names. From those 585

postulates can be derived all the theorems of Euclid’s geometry, but crucially and 586

as a direct result of the formulation of geometry as a formal system, those theorems 587

need no longer be taken as referring to geometrical objects in the real world. In fact, 588

they need not even be taken as referring to any kind of abstract geometry, neither to 589

the platonist’s ideal geometry, not to the Aristotelian’s geometry generalised from 590

the real world. Although the postulates use words such as “line” and “point”, these 591

objects are only defined by the formal system, and are not supposed to be taken as 592

referring to our everyday notion of lines and points. The words could just as easily 593

be replaced by “lavender” and “porpoise” – but again, without any sense that there 594

is any correspondence with lavender or porpoises in the real world. This is the start 595

of the formalist dream. 596

It was no great surprise when Hilbert showed in his Foundations of Geometry that 597

Euclidean geometry was consistent. At the time, the only area of mathematics over 598

which there was any doubt as to its consistency was Georg Cantor’s (1845–1918) 599

theory of infinite numbers (Bostock 2009, p.168). To introduce this theory, we first 600

need to consider the notion of countability. 601

A finite set is countable if it can be placed in one-to-one correspondence with a 602

subset of the natural numbers. This is a formal definition of what it means to count 603

the objects in the set. Counting means assigning each object a unique number, which 604

puts them in a one-to-one correspondence with a subset of the natural numbers, say 605

the subset of numbers from 1 to 10 if there are ten objects in the set. If the set is 606

infinite, we call it countable if it can be placed in one-to-one correspondence with 607

all of the natural numbers (not just a subset). (Some authors reserve countable for 608

finite sets and call countable infinite sets enumerable.) 609

The concept of countability puts infinity within our grasp. If the elements in an 610

infinite set can be paired with the counting numbers, then an incremental counting- 611

type algorithmic process can be set up to “access” everything in the set. For every 612

element in the set there is a unique positive whole number, and for every positive 613

whole number there is a unique object. However, this immediately leads to apparent 614

paradoxes. For example, the even natural numbers can be paired in an obvious way 615

with the natural numbers, and are thus countable. This means that the size of the 616

set of even natural numbers is the same as the size of the set of all natural numbers, 617

despite the fact that the latter contains the former! 618

Cantor asked whether the set of all numbers is countable. This set of real numbers 619

contains not just the natural numbers, but all integers, all rational numbers, and all 620

irrational numbers. He assumed first that the reals are countable, in which case, 621

by definition they can be listed alongside the natural numbers. The next step was 622

Cantor’s stroke of genius. He considered a real number whose decimal expansion 623

differs from the first real number on the list in the first decimal place, from the 624
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second real number in the second decimal place, and so on for every decimal place. 625

This number is therefore different from every number on the list, and so it is not 626

on the list. Yet it is a real number, and so if the assumption of the countability of 627

the reals were correct it is on the list. This contradiction implies that the assumption 628

of countability was wrong, and Cantor concluded that the reals are uncountable. 629

Stunningly, this means that there is a “bigger size” of infinity than the size of the set 630

of natural numbers. Moreover, Cantor showed that there is an infinite succession of 631

sizes of infinities, each bigger than the last, and he constructed a beautiful theory 632

of these infinite numbers. Within this theory, his famous continuum hypothesis 633

is that the second smallest size of infinity is the size of the set of real numbers 634

(Bagaria 2008). 635

Hilbert so loved Cantor’s theory that he desired that “[n]o one shall drive us 636

out of the paradise which Cantor has created” (Hilbert 1926, p. 170), and so he 637

was desperate to prove its consistency. He never did so, and Gödel incompleteness 638

theorems showed its impossibility before Hilbert had even finished shoring up 639

the foundations of arithmetic. As Hilbert waded through the mud he found in the 640

formalist foundations, he repeatedly encountered the notion of infinity. Although he 641

hoped to construct an edifice up to Cantor’s theory, Hilbert did not want infinity in 642

the formalist foundations on which he built. Hilbert could not prove the consistency 643

of arithmetic based on a finitary formal system. This insistence that as a finite human 644

in an apparently finite world we should use only “finitary” definitions and methods 645

will recur in our final school of mathematical philosophy, intuitionism, to which 646

Hilbert ironically was bitterly opposed. 647

The death blow for Hilbert and the formalist’s dream came with Gödel’s incom- 648

pleteness theorems, as described in the Logicism section above. These theorems 649

not only destroyed the logicist dream of a mathematics founded on (and in some 650

sense no more than) logic, but simultaneously destroyed Hilbert’s formalism. This 651

is because the theorems showed that any formal system sophisticated enough to 652

contain simple arithmetic would necessarily contain unprovable true statements, 653

and whose consistency required an external system. There was no way out, and 654

formalism was dead. 655

Consequently, it is unlikely that anyone would call themselves a formalist today 656

(Bostock 2009, p. 195). The idea which died is that formal systems are primary 657

in the sense that they are the object of study, and that any application of them to an 658

area of mathematics is essentially meaningless. But formalism evolved and survived 659

in the same way that dinosaurs both died out and are alive in the birds we see 660

around us. One surviving form is structuralism. The idea behind it, as advanced by 661

Dedekind (1888) and Benacerraf (1965) is that the common structures of particular 662

areas of mathematics are the object of study; they are primary. Like the formalist, the 663

structuralist believes that applications of the structures are secondary, and that it is 664

the structures themselves which must be studied. For example, the natural numbers 665

can be taken to be an example of a progression: a non-empty set of objects each of 666

which has a successor, as formalised in Peano’s axioms (Gowers 2008, pp. 258–9). 667

Because natural numbers are an example of a progression, they are less interesting 668

to the structuralist than the progression structure they model. 669
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The idea of structure being fundamental seems to be attractive to some physicists, 670

even if they do not necessarily acknowledge structuralism. Writing popular accounts 671

of the power of mathematics in the physical sciences, people like John Barrow, 672

David Deutsch, and Ian Stewart argue for the primacy of pattern or structure. 673

For example, Deutsch (b. 1953), a mathematical physicist, argues that the human 674

brain both embodies the mathematical relationships and causal structure of physical 675

objects such as quasars, and that this embodiment becomes more accurate over time. 676

This happens because our study of these objects aligns the structure of our brains 677

with the structure of the objects themselves, with mathematics as the encoding 678

language of structure (Deutsch 2011). What is the ontology of such structures? 679

The question is somewhat avoided by structuralists, but in essence they must claim 680

either a platonic existence for them, or one of the other positions detailed here. 681

Thus any claims of the structuralist are subject to some of the same ontological and 682

epistemological objections as the other schools herein. 683

Finally here, we consider not a variant of logicism but a subschool which has 684

in common with logicism the denial of any meaning in the objects of mathematics. 685

In the Logicism section I said that logicism could be considered to be one form 686

of nominalism. Another is given in Field (1980); see also Bostock (1979). By this 687

account, mathematics is a “fairytale world which has no genuine reality” (Bostock 688

2009, p. 262). In this fairytale world, numbers (and other mathematical concepts) are 689

powerful names for a collection of underlying objects and structures. These names 690

allow us to use, say, arithmetic rather than logic or set theory in our deductions. 691

This use of arithmetic as a set of names and rules is conservative in the sense that 692

we cannot prove anything in arithmetic that could not be proved by stripping away 693

the arithmetical names and working with a more fundamental structure (such as 694

logic). Thus the names are useful but not required, and no meaning is given to them. 695

Moreover, even if it is a useful fiction to treat them as real, the things to which 696

the names seem to point have no independent existence; they may be abstractions 697

of some kind, but they are not real in the sense of having an independent platonic 698

existence. 699

Of course, we sometimes choose names which correspond to things in the real 700

world. We know about numbers when we count shirt buttons, which is a kind of 701

instrumentalist view of the existence of numbers. Thus arithmetic can be taken 702

to be about the countable things we encounter in the world, whose ontological 703

status is either left vague or has a minimalist instrumentalist view. Any correctly 704

derived arithmetical statements are true both of numbers as fictions and of real- 705

world numbers. Arithmetical deductions which go beyond what can be encountered 706

in the world are true, but only in some fictional sense. 707

15.4.1 Formalism Under the Lens 708

If mathematics is a game, why should it tell us anything about the world? To the pure 709

formalist, mathematical objects have no “real” existence, and to do mathematics 710

is simply to explore a formal system or systems. But no particular formal system 711
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should be privileged over any other – some may be more interesting than others, for 712

sure, but none of them is taken to have any special ontological status. Why, then, 713

does mathematics help to explain the world? 714

The only way out of this conundrum seems to be to take Hilbert’s less hard 715

line view in which mathematical objects have a special ontological status, and that 716

the formal system or systems at the foundations of mathematics are therefore more 717

special than others. Although this does fix one problem, it creates another: what 718

does it mean for mathematical objects to have special ontological status? What 719

is that ontological status? The options are presumably those held by one of the 720

other schools of the philosophy of mathematics and therefore subject to the same 721

criticisms under the TEAM lens (amongst others). 722

Putting those criticisms to one side, and playing devil’s advocate, I could point 723

out that some games do teach us about the world. For example, in 1970 Martin 724

Gardner introduced the world to John Conway’s “Game of Life” (Gardner 1970). 725

Since that time, this simple game has become a field of study both in its own right 726

and as a model for processes in biology, economics, physics, and computer science, 727

as revealed by a quick search of Google Scholar. But although some features of the 728

Game of Life are emergent and therefore could not be predicted, the simple rules of 729

the game were chosen in order to mimic those of simple real-world systems. If we 730

wish to claim that this is comparable to the far more complex game of mathematics 731

mimicking the real world, then we would have to assert that the rules of mathematics 732

were chosen in order to mimic those in the real world. Once again, we are forced to 733

abandon the ontology of pure formalism, at least. 734

Other problems are visible under the TEAM lens. While it is easy to accept 735

that, say, the rules of arithmetic have been chosen because they mimic real-world 736

counting, it is harder to explain the important role that, say, complex analysis or 737

Hilbert spaces play in our best theories of the universe. In geometry, it is “natural” 738

to consider flat Euclidean geometry, and so the non-Euclidean geometry which arose 739

in the last half of the nineteenth century was viewed initially with distaste and seen 740

as something of a pointless game. Yet Einstein has taught us that our universe is 741

non-Euclidean. How, then, are we to know which of our formal systems have special 742

ontological status? Only those which are later shown to correspond to some aspect 743

of the real world? But this is surely a poor ontological status which seems predicated 744

both on time and on our ignorance. What if when our theories change we need an 745

area of mathematics and so it becomes “real” – but then later find we no longer need 746

it, at which it returns to being unreal? It seems that this is indistinguishable from the 747

Quine/Putnam indispensability argument, and so arguments against that position are 748

also valid here. 749

The structuralist might choose to argue that the structures of mathematics are 750

chosen because they mimic some aspect of the real world. But does this not give 751

a privileged ontological status to the real world, and the structures within it? What 752

is their ontological status? At this point, the structuralist has passed the buck. The 753

fictionalist seems Quinean when examined under the TEAM lens, for the only way 754

to distinguish between the real and the fictional is to expose a truth to the crucible of 755

the real world. The other option is to admit a platonic existence at the heart of your 756

fictionalist worldview, as Field himself did when he sought to remove it in Field 757

(1992). 758
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15.5 Intuitionism 759

Intuitionism was the first and remains the largest “constructivist” schools of 760

mathematics (Chabert 2008). Most of what I say in this section can be taken to be 761

true of the other constructivist schools, which include (i) finitism, (ii) the Russian 762

recursive mathematics of Shanin and Markov, (iii) Bishop’s constructive analysis, 763

and (iv) constructive set theory. It is always a pleasure to note that intuitionists claim 764

constructivism as a subschool and constructivists claim intuitionism likewise, but I 765

will mostly use the word “intuitionism” as an umbrella term in this section, and look 766

forward to the deluge it provokes from constructivists. 767

The defining characteristic of intuitionism is that existence requires construction. 768

The perspective of intuitionists, for example in Bridges (1999), is that believing that 769

existence requires construction forces upon the mathematician the requirement to 770

use a different logic. This logic is the intuitionistic logic which has at its heart a 771

rejection of the law of excluded middle and a rejection of the axiom of choice. I 772

will explain each of these points below. It is worth noting that, as in every area 773

we discuss herein, the argument for intuitionism has at least two sides. For every 774

Bridges arguing that construction implies intuitionistic logic, there is a Dummett 775

arguing that this is untrue (see his 1977, and Bostock 2009, pp. 215 ff). But we 776

continue, since all schools presented herein have adherents arguing their corner and 777

antagonists arguing them into one. 778

All mathematicians distinguish between an existence proof and a construction 779

proof. The former merely establishes whether a statement claiming the existence of 780

some mathematical object is true or not. A construction proof, by contrast, gives 781

steps which construct the properties of the object in question, and so gives in 782

addition to a proof of truth some insight as to why. In the case in which the statement 783

is not true, an actual counterexample is constructed. I now try to put a little flesh on 784

these bones. 785

A common question in mathematics concerns the existence of a mathematical 786

object. This is not the metaphysical notion of existence central to this chapter. When 787

a mathematician asks whether a mathematical object exists, she is not worried about 788

whether scientific methods can show it to be a real, physical thing in the world, nor 789

is she usually bothered with the ontological status of that object. Instead, she is 790

interested in whether the object exists in a mathematical sense. 791

For the majority of mathematicians, existence proofs suffice, even if construction 792

proofs provide more information. Not so the intuitionists, who believe that existence 793

is shown only when the object has been constructed. Construction here has a specific 794

meaning, and once again this has nothing to do with building an object in the real 795

world. Rather it has to do with providing a proof of a statement from which, at least 796

in principle, an algorithm could be extracted which would compute the object in 797

question, and any of its properties. Only when a constructive proof has been found 798

is the object said to exist. For the intuitionist, “existence” means “construction”. 799

For a real-world analogy, we can turn the weather. When I look up the weather 800

records for my home town of Christchurch, New Zealand, I can see that in 2016 801
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the maximum recorded temperature was 34 ◦C on 27th February, and the minimum 802

recorded temperature was −5 ◦C on 11th August (WolframAlpha 2017). This means 803

that with confidence I can claim that there was a moment between 27th February and 804

11th August when the temperature was precisely 0 ◦C. My assertion rests on two 805

points: that for this time range the temperature starts at a positive value (34) and ends 806

on a negative one (−5), and that temperature cannot instantaneously change. From 807

these two observations, I know that there must exist a time, however short, when 808

the thermometer read 0◦, since it is impossible to go smoothly from 34 down to −5 809

without passing through 0. Of course, there were probably many such times, but the 810

mathematician’s interest in uniqueness is not our concern here, only existence. In 811

our temperature analogy we have demonstrated the existence of a time at which the 812

temperature was 0◦ in a way which would satisfy most mathematicians. 813

But the intuitionist weather-watcher would not be satisfied. She wants something 814

more: she wants an actual moment at which the thermometer read 0. In our analogy, 815

this means going through the weather station data until such a time is found. That is 816

a “constructive” proof of the existence of a 0◦ time. 817

Our analogy has flaws, as all do. It could give the impression that intuitionistic 818

mathematics is about data-sifting; this is untrue. Intuitionistic mathematics is 819

mathematics, but with tighter constraints on what can be used in the logical 820

arguments called proofs which establish truths. Indeed, Bridges argues in his (1999) 821

that the intuitionistic mathematician is free to work with whatever mathematical 822

objects she so desires. Another flaw is that although the analogy illustrates the 823

difference between existence and construction, it does not have an analogy for 824

intuitionistic logic. 825

I said above that intuitionistic logic has two features which distinguish it from 826

classical logic, and both features involve a rejection. The first of these is a rejection 827

of the law of excluded middle (LEM). For most mathematicians, something either 828

is, or is not. A number is either rational, or irrational. It cannot be both; it is 829

either. But the intuitionist will not say it is one or the other until it has been 830

constructed. A classical mathematician may present the following argument. Object 831

X can either have property P or not. If we assume for the sake of argument that 832

it has property P, we can investigate the consequences of our assumption. Suppose 833

that when we do that, we uncover a contradiction, an absurdity. Then (assuming we 834

have done everything correctly) the only problem was our assumption that object 835

X had property P. Thus it cannot have property P. This is the commonly used proof 836

technique called proof by contradiction, and we saw an example of it above when 837

we presented Cantor’s diagonal argument. 838

Such a proof would not be considered valid in intuitionistic logic. The reason 839

that it is invalid is that X has not been shown to have a particular property or not, but 840

simply that by assuming the converse a contradiction has been found. At issue is not 841

the assumption of whether or not X has property P. If the objects of study of which 842

X is an example are such that they must either have property P or not, then it would 843

be absurd to argue that they have neither, or, somehow, a superposition of both. 844

The intuitionist does not argue this. Rather, the idea is of a radical redefinition of 845

truth. To the intuitionist mathematician, a statement is true only when a constructive 846
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proof without recourse to the LEM has been given. A statement is false precisely 847

when a counterexample has been given. Since truth now has this specific meaning, 848

a statement is neither true nor false until such a constructive proof is furnished. 849

Although the truth of a statement becomes time-dependent, it is not the same 850

time-dependency as in the Quine/Putnam indispensability argument. There, some- 851

thing is real only for as long as it is necessary for a successful theory of the real 852

world; the status of mathematical objects are forever conditional. For the intuitionist, 853

on the other hand, truth is defined to mean proof by construction. Thus an object is 854

neither real nor not real until it is constructed, at which point it becomes and forever 855

remains real (or becomes and remains forever not real when a counterexample is 856

constructed). 857

To object that surely, say, the statement “the trillionth decimal digit of pi is zero” 858

has been true or false since the dawn of time is to confuse the platonic notion of truth 859

with the intuitionist one. The point is that although the trillionth decimal digit of pi 860

has a value entirely independent of the free will of humans, that it is indeed dictated 861

by something deeper than whatever human whimsy may want it to be, until its value 862

is actually calculated the statement has no (intuitionist) truth value associated with 863

it. 864

Although for the intuitionist mathematical objects have properties which can be 865

rigorously defined or derived, they nevertheless have the ontological status of being 866

purely mental objects. In this way, intuitionism is a form of the conceptualism which 867

harks back to Aristotle (Bostock 2009, p. 44). By making mathematics mental, 868

intuitionists avoid problems of epistemic access, since naturally we can access the 869

objects of our own minds. There is an ontological issue associated with insisting 870

that mathematical objects are purely mental. We must ask why they have properties 871

independent of the individual mind which explores or creates them. Thus an obvious 872

objection to this conceptualism is that these objects must rely on some deeper 873

structure that at the very least is shared by other human minds. But that suggests 874

that there is something more fundamental than the mathematics itself – and the 875

intuitionist certainly cannot claim that something like logic, language, “structure”, 876

or a platonic realm of ideas is more fundamental. 877

Indeed, the founder of intuitionism, Luitzen Egbertus Jan Brouwer (1881–1966), 878

echoing Kant and in agreement with the mathematicians Felix Klein (1849–1925) 879

and Henri Poincaré (1854–1912), believed that the basic axioms of mathematics 880

are intuited. In this he meant that they were known to our minds, but not that 881

our intuition reveals anything which exists outside of the mind. He went further, 882

claiming a stark independence of mathematics from both language and logic. If 883

there was any relation there, it was that logic and language rested on mathematics, 884

rather than the other way around. This was revolutionary, and put Brouwer directly 885

in harm’s way. His point of view, given in Brouwer (1907), was directly contrary 886

to both logicism and to Hilbert’s program of formalism as it developed in the 887

1920s. Hilbert’s program was popular and Hilbert himself was powerful. Brouwer 888

apparently did nothing other than disagree with Hilbert, yet Hilbert had Brouwer 889

removed from the editorial board of the prestigious journal Mathematische Annalen, 890

and sought to discredit him at every turn (van Dalen 2008, p. 800). 891
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Having discussed construction, the law of excluded middle, and the redefinition 892

of “truth”, I now consider the other idea which intuitionists reject, the axiom of 893

choice. Stated in words, it says that we can always select an element from each of a 894

family of sets. This is uncontroversial for a finite family of finite sets, but becomes 895

controversial otherwise, because an infinite number of choices can be made. For 896

most mathematicians this is not a problem; to put it crudely, the fact that there are an 897

infinite number of choices which can be made guarantees that one can be made. For 898

an intuitionist, the mere fact that a choice can be made is not enough: the choice must 899

be specified in order to count as a construction. Yet when a classical mathematician 900

invokes the axiom of choice it is usually for very general cases in which specificity 901

is impossible (or for which there is no perceived benefit in specifying the object). 902

To make this point clearer, suppose we have a countable number of sets, each of 903

which is countable. Now suppose that we wish to form a superset containing all of 904

the elements in all of the sets and to ask whether that new set is itself countable. 905

This is easy for a classical mathematician. For each set, she first lists the elements, 906

which we know can be done because every set in the family is countable. Then 907

she runs the lists together in turn, and hey presto, the superset is listed out, and 908

therefore countable. There is no “problem” with this proof for most mathematicians, 909

but the intuitionist asks: how did she choose the ordering for each set, and for the 910

family of sets? There is an infinite number of choices in each case, so the choice 911

function is unspecified. The proof uses (in quite a disguised way) the axiom of 912

choice. Whenever the axiom of choice is used, the proof is non-constructive. 913

Uncountable infinity is the heart of the rejections which define intuitionism. To 914

be clear, if the axiom of choice is invoked either in a finite context or in one which 915

is countable, then a choice function can be defined and the intuitionist is happy. 916

The problem is in the uncountable case. Likewise, the law of excluded middle is 917

connected with the notion of infinity; recently Bridges has argued that the continuum 918

hypothesis implies LEM (Bridges 2016). Only potential infinities, namely those 919

accessible through enumeration or by an algorithmic process are acceptable to the 920

intuitionist. 921

But to return to our starting point that intuitionistic mathematics is mathematics 922

done with intuitionistic logic, we note that it is sometimes possible to construct 923

intuitionistic theories of mathematical objects which in classical mathematics 924

require uncountable infinities. For example, Brouwer introduced the notion of 925

choice sequences to create a theory of the continuum (that is, the real number 926

line) which was apparently out of reach to intuitionists (Brouwer 1981). Brouwer 927

never defined choice sequences carefully enough to avoid problems, but Bishop’s 928

constructive mathematics (Bishop 1967; Bishop and Bridges 1985) does contain an 929

apparently sound theory of the reals which avoids uncountable infinities. This is 930

an example of how something which in classical mathematics requires uncountable 931

infinities can be given an intuitionistic theory which only uses countable processes. 932
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15.5.1 Intuitionism Under the Lens 933

Intuitionism has never been popular with mathematicians, and few applied math- 934

ematicians insist on a constructive approach to their work. But is it possible to 935

argue that intuitionistic logic’s insistence on countability, apparently so true of our 936

physical universe, is the reason for the success of mathematics in modelling the 937

world? 938

Does the universe only appear to rely on countability, and so are there unavoid- 939

able instances of uncountable infinities, both in our theories of the world and in the 940

universe itself? Since infinity is implied in our best theories of the very big and the 941

very small, it is no wonder that when intuitionism is under the TEAM lens what 942

comes into focus is quantum mechanics (QM) and general relativity (GR). 943

It may seem that on a large scale our universe is a finite (though huge) thing 944

containing a finite number (though huge) of discrete things. But we do not know 945

that to be a fact. At the other end of the scale, quantum mechanics suggests that 946

the structure of spacetime is granular at the very smallest of time and length scales. 947

However, that prediction has not yet been verified. It may be the result of our most 948

successful and accurate theory of science, but we do not know it to be true. Could 949

the universe be infinite in extent? Might spacetime be a continuum? 950

Continuous spacetime does not necessarily cause a fatal problem for intuitionism 951

since Bishop’s constructive mathematics has an intuitionistic theory of continua. A 952

potentially deeper argument, given by Hellman (1993, 1997), that intuitionism must 953

be wrong because QM requires a theory of unbounded operators which seems to 954

defy intuitionism, has been refuted by Bridges (1995, 1999) on the grounds that such 955

a theory is possible with an intuitionistic approach. These Hellman-type arguments 956

have also been refuted in the context of GR: see Billinge’s (2000) response to 957

Hellman (1998). However, what of mathematical objects essential to our theories 958

of the universe but for which no intuitionistic theory has yet been found? Does their 959

necessity destroy intuitionism? Billinge (2000) says no, when she powerfully argues 960

that just because we have not yet found a constructive proof of something does not 961

mean that it cannot ever be found. 962

The intuitionist’s belief that the objects of mathematics are purely mental avoids 963

the plantonist’s problem of epistemological access. But the TEAM lens shows us 964

a deeper ontological problem: if the objects of mathematics are purely mental, 965

why should they ever have any correspondence with the real world? Why should 966

mathematics ever be useful? 967

15.6 Discussion and Conclusion 968

The platonist see mathematics as eternal and changeless, existing outside of 969

spacetime. But how do we access such an ideal realm? How does this ideal realm 970

cast the physical “shadows” in our world which mathematics explains? The logicist 971
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reduces mathematics to logic in disguise. But why should logic explain the world? 972

Does logic have a platonic existence? The formalist is the ultimate reductionist, 973

claiming that mathematics is naught but a game, a meaningless shuffling of 974

semantically empty symbols. But why should the game of mathematics be able to 975

explain the world? Why that game and not another? Finally, conceptualism returns 976

with the intuitionists, who believe that only construction means truth. But while 977

intuitionistic logic and an insistence on construction are not at odds with our best 978

theories of the universe (our best applied mathematics), the intuitionist believes 979

that all mathematical objects are mental constructions. Why should such mental 980

constructions explain the world? 981

This last point is subtle, and slippery. Of course we expect that any idea which 982

explains the world will be in our minds; that is where we experience ideas. The 983

issue concerns how an idea can come to mimic and explain the outside world. This 984

is a debate with a long history. In the middle stand two figures directly opposed 985

to one another. Kant believed that our minds are primary, and thus that our applied 986

mathematics works not because our minds come to mirror reality, but because reality 987

must conform to the mind in order to be perceptible and comprehensible to us. By 988

contrast, Hume was an empiricist, naturalist, and sceptic, who believed that our 989

concepts came from experience of an independently-existing natural world, without 990

imposing an ontology on that world. At the far end of the chronology is Plato, 991

who believed that our mental realm can access a world of forms which projects 992

the physical world. This raises more questions than it answers. Nevertheless, it 993

seems to be the perspective of many theoretical physicists today, perhaps without 994

considering its epistemic problems. The modern structuralist, by contrast, might 995

argue that structure is fundamental, and so our mental world can be structured to 996

mimic the external world. We have already observed in the Formalism section that 997

such a perspective seems to pass the buck on the ontological status of structure. 998

This structuralist approach seems attractive to physicists such as Deutsch, whom we 999

encountered in our discussion of structuralism above, and who otherwise seems to 1000

be a realist in his worldview. 1001

When physicists make pronouncements about mathematics they are usually 1002

motivated not by concern about what mathematics is or what its foundations are, 1003

but only by what sort of mathematics should or can be taken to be the foundation 1004

of physics. For example, the Nobel laureate in Physics Gerard ’t Hooft (b. 1946) 1005

wants only finiteness in his theories of quantum mechanics (Musser 2013). It is not 1006

completely clear what he means by this, but it seems to be a kind of countability, 1007

since he mentions basing theory on the integers or finite sets (though the former 1008

are countably infinite). ‘t Hooft seems to be directly motivated by the granular 1009

discreteness of spacetime at the Planck scale predicted by QM. It would be wrong 1010

to suggest that he is rejecting classical mathematics and a platonic ontology in 1011

favour of, say, neo-Fregean logic, intuitionism, or a Hilbertean finitism, when he 1012

is only restricting himself to finite methods and objects for the mathematics of QM. 1013

He says nothing about the ontological status of other mathematics. Likewise, the 1014

physicist Lee Smolin (b. 1955) claims in his (2000) that topos theory is “required” 1015

for cosmology, and topos theory itself requires constructive set theory, a form of 1016
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intuitionism. Once again, this is not a statement of ontological intent for the whole 1017

of mathematics, just for what mathematics can be applied to physics. In both cases, 1018

the question of epistemology is left open, as is the ontological status of the objects 1019

being studied. However, when applied mathematicians such as these physicists do 1020

not explicitly acknowledge their adopted philosophical position they may overlook 1021

some difficulties, especially when their position combines ideas from different 1022

philosophical schools. This seems particularly acute when the physical objects are 1023

considered real but the mathematics used to model them is considered to be entirely 1024

mental. Note that neither of these physicists claim that the mathematics which helps 1025

them is the only mathematics which is true; there is no evidence that they adhere to 1026

the Quine/Putnam indispensability argument. 1027

The TEAM lens reveals other issues which we have not discussed above. For 1028

example, it is one thing to say that applied mathematics is possible, but we could 1029

also ask why we are able to do it. Why is the mathematics which seems to do so well 1030

at explaining the world accessible to our minds? We can imagine a universe in which 1031

rational, intelligent beings existed who were incapable of developing sufficiently 1032

advanced mathematics to understand that universe even though it were capable of 1033

being comprehended mathematically. 1034

Also, what about beauty, or the role of aesthetics? This is a commonly- 1035

observed inspiration for both mathematicians and those who apply mathematics. 1036

The mathematician GH Hardy (1877–1947) said of mathematics “Beauty is the first 1037

test: there is no permanent place in the world for ugly mathematics” (Hardy 1940). 1038

Einstein is quoted in Farmelo (2002, p. xii) as saying “the only physical theories 1039

that we are willing to accept are the beautiful ones”, while physicist colleague 1040

Hermann Weyl (1885–1955) said “My work has always tried to unite the true with 1041

the beautiful and when I had to choose one or the other, I usually chose the beautiful” 1042

(quoted in Stewart 2007, p. 278). But why should an aesthetic of mathematics help 1043

create new mathematics, and new applied mathematics? Are we simply wrong about 1044

beauty, especially when we use it as a selection criterion? Could ugly theories better 1045

explain the world, and even be more fecund mathematically? Perhaps we have been 1046

misled by mathematics because we are in the early days of science; are we even 1047

wrong about the power of mathematics to explain the world? 1048

Another question we have overlooked as we peered down the TEAM lens 1049

concerns the meaning of deductive steps in an applied mathematical argument. 1050

More specifically, if I have a mathematical model of a physical process which I 1051

then analyse mathematically to arrive at a physically-verifiable result, need each 1052

of the intermediate logical steps also have physical meaning? This question has 1053

been considered by Nancy Cartwright, among others; see for example her (1984), in 1054

which she says “derivations do not provide maps of causal processes. A derivation 1055

may start with the basic equations that govern a phenomenon. It may be highly 1056

accurate, and extremely realistic. Yet it may not pass through the causes.” This 1057

question, and the others raised above, deserve more attention. 1058
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15.6.1 Conclusion 1059

We do not know the ontological or epistemological status of mathematical objects. 1060

We do not know why mathematics can be applied to the world around us. 1061

Though it was too much to hope that the TEAM lens would itself provide an 1062

experimentum crucis which would eliminate all but one philosophy of mathematics 1063

and therefore resolve a millennia-old debate, the TEAM lens has brought into 1064

focus the questions which must be clearly addressed when defending a particular 1065

philosophical standpoint. 1066

I have attempted to summarise the systems of ideas which constitute these 1067

standpoints in four broad schools. Despite presenting them as separate, they are 1068

united in their concern with the ontological and epistemological questions, and 1069

in their focus on key ideas: what is number, what is a set, what is a proof, what 1070

is infinity, and more besides. As we saw, one person who has united them in a 1071

stunningly destructive way was Kurt Gödel. 1072

Another figure may pull some of these strands together. Max Tegmark introduced 1073

the radically realist Mathematical Universe Hypothesis, which earns him a capital 1074

P on Platonist if anyone ever deserves it. The MUH is a tentative, new, and 1075

controversial idea, and my positive view of it may not be representative. But I 1076

do think it takes seriously these philosophical questions and that it represents an 1077

important attempt to think clearly about them, and possibly to unite some of the 1078

schools. For example, structuralists and fictionalists might observe that in the MUH 1079

all mathematical objects exist and all things which exist are mathematical, and 1080

so there is no need for any particular structure or fiction to be privileged. Even 1081

the debate between Kantian innateness and Humean empiricism may be erased: if 1082

the mind is a self-aware substructure of the mathematical universe, then there is 1083

no epistemic gap between the mind and the world. For platonists, the problem of 1084

epistemological access may be solved because the MUH is more than plenitudinous 1085

platonism, which addressed the epistemic concerns. However, it also potentially 1086

fixes the platonist ontological issues and leaves us with an inspiring thought: if 1087

everything is mathematics and mathematics is everything, then there is only one 1088

realm. We are self-aware substructures of mathematics. 1089
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