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There are many uncertain problems in practical life which need decision-making with soft sets and fuzzy soft sets. The purpose of
this paper is to develop an approach to effectively solve the group decision-making problem based on fuzzy soft sets. Firstly, we
present an adjustable approach to solve the decision-making problems based on fuzzy soft sets. Then, we introduce knowledge
measure and divergence degree based on a-similarity relation to determine the experts’ weights. Further, we develop an effective
group decision-making approach with unknown experts’ weights. Finally, sensitivity analysis about the parameters and
comparison analysis with other existing methods are given.

1. Introduction

The mathematical modelling of vagueness and uncertainty
has become an increasingly important issue in diverse
research areas. In recent years, uncertain theories such as
rough set theory [1], fuzzy set theory [2], and intuitionistic
fuzzy set theory [3] and other mathematical tools have been
widely applied in lots of social fields. But all these theories
have their own difficulties as pointed out in [4]. To overcome
these difficulties, Molodtsov [4] proposed the soft set theory
for modeling uncertainty.

Recently, works on soft set theory are progressing rapidly.
Many efforts have been devoted to further generalizations
and extensions of Molodtsov’s soft sets. Maji et al. [5] defined
tuzzy soft sets by combining soft sets with fuzzy sets. Yang
et al. [6] initiated the notion of interval-valued fuzzy soft
set by combining the interval-valued fuzzy sets and soft sets.
Maji et al. [7, 8] introduced the concept of the intuitionistic
fuzzy soft set which is a combination of the soft set and the
intuitionistic fuzzy set. Xu et al. [9] defined a concept of
vague soft set. Moreover, they also studied its basic properties
and applications. By integrating the interval-valued intuitio-
nistic fuzzy sets with soft sets, Jiang et al. [10] proposed a

more general soft set model called interval-valued intui-
tionistic fuzzy soft sets.

Applications of fuzzy soft sets have made great progress,
especially in decision-making. Feng et al. [11] applied level
soft sets to discuss fuzzy soft set-based decision-making.
Based on Feng et al’s works, Basu et al. [12] further investi-
gated the previous methods to fuzzy soft set-based decision-
making and introduced the mean potentiality approach,
which was showing more efficiency and more accuracy than
the previous methods. Alcantud [13] presented two innova-
tions that produced a novel approach to the problem of fuzzy
soft set-based decision-making in the presence of multiobser-
ver input parameter data sets. Tang [14] proposed a novel
fuzzy soft set approach in decision-making based on grey
relational analysis and Dempster-Shafer theory of evidence.
Li et al. [15] introduced an approach to fuzzy soft set-based
decision-making by combining grey relational analysis with
Dempster-Shafer theory of evidence and given a practical
application to medical diagnosis problems. Liu et al. [16] pro-
posed a decision model based on fuzzy soft set and ideal solu-
tion. Alcantud et al. [17] put forward an algorithmic solution
for the diagnosis of glaucoma through a hybrid model of
fuzzy and soft set-based decision-making techniques.
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Group decision-making is an important research topic in
decision theory. In recent years, a lot of methods have been
developed for solving group decision-making problems in
existing literatures. Yue [18] presented a multiple-attribute
group decision-making model based on aggregating crisp
values into intuitionistic fuzzy numbers. Xu and Shen [19]
proposed an outranking method aimed at solving multicri-
teria group decision-making problems under Atanassov’s
interval-valued intuitionistic fuzzy environment. Wan and
Dong [20] developed some power geometric operators of
trapezoidal intuitionistic fuzzy numbers and applied them
to multiattribute group decision-making with trapezoidal
intuitionistic fuzzy numbers. Sun and Ma [21] studied the
group decision-making problem with linguistic preference
relations. Qin and Liu [22] investigated a new method
to handle multiple-attribute group decision-making prob-
lems based on a combined ranking value under interval
type-2 fuzzy environment. Wan et al. [23] developed a
new method for solving multiple-attribute group decision-
making (MAGDM) problems with Atanassov’s interval-
valued intuitionistic fuzzy values (AIVIFVs) and incomplete
attribute weight information. In [24], Wan et al. investi-
gated the group decision-making (GDM) problems with
interval-valued Atanassov intuitionistic fuzzy preference
relations (IV-AIFPRs) and developed a novel method for
solving such problems. In [25], Wan et al. investigated a
group decision-making (GDM) method based on additive
consistent interval-valued Atanassov intuitionistic fuzzy
(IVAIF) preference relations (IVAIFPRs) and likelihood
comparison algorithm.

In dealing with multiexpert group decision-making prob-
lems, experts have their own characteristics and structure of
knowledge; normally, each expert should have different
weights. So experts’ weights play an important role in group
decision-making. In this paper, we suppose that the weights
of experts are different and unknown. How to measure the
experts’ weights? Up to now, some methods have been devel-
oped to do this. Yue and Jia [26] used an extended TOPSIS
method and an optimistic coefficient to obtain the weights
of decision-makers. Mao et al. [27] introduced a method
for determining the weights of experts by using the distance
between intuitionistic fuzzy soft sets. Wan et al. [28] con-
structed an intuitionistic fuzzy linear programming model
to derive experts’ weights. Based on the generalized cross-
entropy measure, Qi et al. [29] developed a method to deter-
mine unknown experts’ weights by considering divergence of
decision matrices from positive or negative ideal decision
matrix and similarity degree between individual decision
matrices. Zhang and Xu [30] proposed the consensus index
from the perspective of the ranking of decision information
and constructed an optimal model based on the maximizing
consensus in order to derive the experts’ weights.

In this paper, we present an adjustable approach to fuzzy
soft set-based decision-making problems using the distance
measure. Moreover, we introduce a new knowledge measure
and «-similarity relation over fuzzy soft sets. Based on the
proposed knowledge measure and a-similarity relation, we
develop two methods for obtaining appropriate experts’
weights. Then, an effective group decision-making approach
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is constructed by integrating the aforepresented methods,
from which we can find the optimal object with minor risk
by tuning the value of parameters.

The rest of this paper is organized as follows. In Section 2,
some basic notions of soft sets and fuzzy soft sets are
reviewed. In Section 3, a new method based on the distance
is proposed to solve the problems of decision-making.
In Section 4, a knowledge measure and a-similarity rela-
tion are proposed for obtaining the experts’ weights. Then,
an approach integrating the above methods for group
decision-making is developed. In Section 5, an example
and a comparative analysis are given to illustrate effectiveness
and practicality of presented methods. Finally, conclusions
are stated in Section 6.

2. Preliminaries

In this section, some basic notions of soft sets and fuzzy soft
sets are reviewed, which will be required in the later sections.
Let U be an initial universe set and E be a set of parameters.

Definition 2.1 (see [4]). A pair (F, E) is called a soft set over
U, if F is a mapping of E into the set of all subsets of U.
In other words, the soft set is a parameterized family of
subsets of the set U. Every set F(e) (e € E) from this family
may be considered as the set of e-elements of the soft set or
as the set of e-approximate elements of the soft set.

In [5], Maji et al. introduced the definition of fuzzy soft
set by combining fuzzy set and soft set, which can be
shown as follows.

Definition 2.2 (see [5]). Let U be the universe and A be the
parameter set. P(U) denotes the set of all fuzzy subsets of
U; a pair (F,A) is called a fuzzy soft set over U, where
F:A— P(U) is a mapping from A into P(U).

Definition 2.3 (see [5]). Let U be the universe and (F, A) and
(G, B) be two fuzzy soft sets over U; (F,A) is called a
fuzzy soft subset of (G,B), denoted by (F,A) € (G, B); if
ACB and Ve€ A, F(e) € G(e).

Example 2.1. Consider a fuzzy soft set (F, E), which describes
the “attractiveness of houses” that Mr. X is considering for
purchase. Suppose that there are four houses under con-
sideration, namely, the universes U ={h;, h,, h;,h,} and
the parameter set E={e;,e,,e;,e,}, where e; stands for
“beautiful,” “large,” “modern,” and “cheap,” respectively. Let
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The tabular form of such fuzzy soft set is represented
in Table 1.

Definition 2.4 (see [31]). Let (F, E) be a fuzzy soft set over U
and E be the parameter set, |U|=m,|E|=n. Fuzzy soft

matrix F= (fij),,,» Where f,= [,tF(ej)(xi), i=1,2,...,m,
j=1,2,...,n That is,
P‘F(el)(xl) Al’lF(ez)(xl) #F(en)(xl)
o AMF(el')(xZ) AMF(eZ‘) () - VF(en.) (%) . 2)
HEe)Xm)  BEe,)(Xm) HE(e,)(Xm)

From this definition, we can see that there is a one-to-one
correspondence between the fuzzy soft set and fuzzy soft
matrix, so we will use fuzzy soft set and fuzzy soft matrix
without distinction in the following.

Definition 2.5 (see [31]). Let F and G be two fuzzy soft
matrices over U and A > 0. Then,

FoG= (pp() (%) + Hae) () ~ Hr() (50) X (o) (%))

\E = (1 - (1-#r(e) <x">)h) o
3)

Theorem 2.1 (see [31]). Let F and G be two fuzzy soft
matrices over U and \, A\, \, >0, then we have

Theorem 2.2 (see [31]). Let F(k=1,2,...,K) be fuzzy soft
matrices over U and X= (A, \,, ..., \g) be a given weight
vector, where A, >0 (k=1,2,...,K), Y A, = 1, then

f)\(ﬁpﬁz’ ’FK) = & M Fy
K .
<1 - 1}:[1 (1 ~Hi(e) (xi)) )mxn-
(5)

From this theorem, we know how to integrate multiple
fuzzy soft sets into one fuzzy soft set.

3. An Adjustable Approach to Fuzzy Soft
Set-Based Decision-Making

Generally, the existing approaches to fuzzy soft set based-
decision-making are mainly based on different kinds of level

3
TaBLE 1: Fuzzy soft set (F, E).
(F, E) € ) €3 €4
hy 0.3 0.3 0.2 0.7
h, 0.4 0.5 0.8 0.3
hy 0.6 0.3 0.6 0.2
hy 0.3 0.5 0.3 0.1

soft sets. However, it is hard for decision-makers to select a
suitable level soft set. In dealing with decision-making prob-
lems, it is obvious that the smaller the distance between the
alternative and the decision-maker’s ideal object, the better
the alternative is. So in this section, we present an adjustable
approach to fuzzy soft set-based decision-making problems
using the distance of fuzzy soft sets in [32]. This approach
is effective and reasonable under uncertain conditions. It
not only allows us to avoid the problem of selecting the
suitable level soft set but also helps reduce the complexity
of computations in the process of decision-making.

Definition 3.1 (see [32]). Suppose (F,E) and (G, E) be two
fuzzy soft sets over U, the distance between (F,E) and
(G,E) can be defined as

1 n
e > |F(e)

i=1

ANgE

d((F, ), (G, E)) = Gle) ()| (6)
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Next, to cope with weighted fuzzy soft set-based decision-
making problems, we introduce a new distance between the
two fuzzy soft sets as follows.

Definition 3.2. Suppose (F, E) and (G, E) be two fuzzy soft

sets over U, the distance between (F, E) and (G, E) can be
defined as
- 1 m n
UEB(GE) = o3> pIF()(5) - Gle) (5)], )
i=1 j=1
where p,=1-w; and w; € (0,1] is the weight of the ith

parameter e;.
It is easy to prove that (6) and (7) satisty the follow-
ing properties:

0<d((F,E),(G,E)) <1
d((F,E), (G,E)) = 0&(F, E) = (G, E),
d((F,E), (G, E)) =d((G, E), (F, E)),
(F.E) < (G,E) € (P, E), <d((F, E), (G, E))
<d((F,E), (P,E)), d((G, E), (P, E))
<d((F,E), (P, E)).

(8)

In the following, we develop an algorithm to deal with
decision-making problems based on fuzzy soft sets.



Algorithm 1 (decision-making based on fuzzy soft sets).
Input: A fuzzy soft set (F, E) over U as given in Table 2, where
Eis a set of parameters denoted by E={e,,e,, -, ¢,,} and
U is an initial universe set denoted by U = {x,,x,, -, x, }.
Output: The order relation of all the alternatives.

Step 1. Construct an ideal fuzzy soft set (F,, E) with a single
object x as given in Table 3.

Step 2. Obtain a fuzzy soft set (Fi, E) (k=1,2,...,n) with
respect to a single alternative x; as given in Table 4.

Step 3. Calculate the distance between fuzzy soft sets (F,, E)
and (F, E) (k=1,2,...,n) using (6). If (F, E) is a weighted
fuzzy soft set and o = (w;, w,, ... ,w,,) is a weighting vector
of parameters, we will use (7) to calculate the distance, where
pi=l-wl(i=1,2,...,m).

It is clear that the smaller the d((F,, E), (F,, E)) is, the closer
the (F,, E) approaches to the ideal fuzzy soft set (Fy, E).
Thus, x; is better.

Step 4. Rank all alternatives according to d((F,, E), (Fy, E))
or d((Fy,E), (F, E)).

In order to better understand the above idea, let us consider
the following example.

Example 3.1 (see [14]). Let (F,A) be the fuzzy soft set
given in Table 5.

Then, we can use the proposed decision-making method
to get the ranking of the alternatives.

(1) Construct an ideal fuzzy soft set (F,, A) with a single
alternative x as given in Table 6.

(2) Based on the above fuzzy soft set (F, A), we get the
fuzzy soft set (F,, A)(k=1,2,3) with respect to a
single alternative x; as given in Tables 7-9.

(3) Utilize (6) to get the distance d((F,, A), (F;, A))
(k=1,2,3):

d((Fy, A), (F1,A)) =0.398,
d((Fy, A), (F,, A)) =0.358, 9)
d((Fy, A), (F5,A)) =0.366.

(4) Rank all alternatives according to the distance
d((Fy A), (FyuA)) (k=123).

Then, the order relation among all the alternatives is
X, > x; > Xy, and the best alternative is the alternative x,.

For comparison with different decision-making methods,
we give the ranking orders of the proposed method and other
methods [12, 14, 15] as shown in Table 10. Therefore, from
Table 10 we can see that the three ranking orders of them
are the same, and the alternative x, is the best choice in the
proposed method and the other two methods [14, 15]. But
Basu et al’s method [12] is another ranking order, and the
alternative x5 is the best choice.

TabLE 2: Fuzzy soft set (F, E).
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(F,E) e e, e e

X1 an ap a3 Am

X2 s Az a3 Aom

Xn an %) Ay Aym

TasLE 3: Ideal fuzzy soft set (Fy, E).

(Fy, E) e e, e e
1 1 1 1
TabLE 4: Fuzzy soft set (F, E).

(FwE) e e, e; e,

Xk k1 k2 A3 Aem

TaBLE 5: Tabular representation of the fuzzy soft set (F, A).

(F, E) ! € 4 €y ‘s

X 0.85 0.71 0.38 0.32 0.75

X, 0.56 0.82 0.76 0.64 0.43

X3 0.84 0.51 0.82 0.53 0.47
TasLE 6: Ideal fuzzy soft set (F,, A).

(F,A) 2! € & €y ‘s
x 1 1 1 1 1
TaBLE 7: Fuzzy soft set (F, A).

(Fy, E) € ) ) €4 %
X, 0.85 0.71 0.38 0.32 0.75
TaBLE 8: Fuzzy soft set (F,, A).

(F, A) €1 ) €3 €4 ‘s
X, 0.56 0.82 0.76 0.64 0.43
TaBLE 9: Fuzzy soft set (F;, A).

(F3,A) 61 ) €3 €4 %s
X5 0.84 0.51 0.82 0.53 0.47
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TaBLE 10: A comparison of the preference orders of the alternatives
for different methods.

Decision approach Reference Preference order
Basu et al.’s method [12] X3 > Xy > X,
Tang’s method [14] Xy > X3 > X,
Li et al.’s method [15] Xy > X3 > X,
Proposed method Xy > X3 > X

From above, we can see that the proposed method is
reliable and reasonable. Moreover, the complexity of the
proposed method of decision-making in this paper is lower
than that of Tang and Li et al.’s methods.

4. An Approach to Fuzzy Soft Set-Based
Group Decision-Making

As we all know, experts” weights play an important role in
integrating individual fuzzy soft sets into a collective one
for group decision-making problems. In [23], the authors
comprehensively considered the similarity and proximity
degrees and employed a control parameter to construct the
combined weight. In [24], considering different knowledge,
experiences, and preferences of diverse decision-makers,
the authors seek a weight vector such that the deviations
between the individual preferences and the group opinion
are minimized. In [25], to derive decision-makers’ weights,
the authors constructed an optimization model by maxi-
mizing the group consensus. In [33], the authors proposed
a method based on maximizing consensus for determining
experts’” weight for interval-valued intuitionistic fuzzy group
decision-making problems. Inspired by these works, we
introduce a new approach to determine experts’ weight for
group decision-making based on fuzzy soft sets.

In the practical group decision-making process, the
experts usually come from different research fields, and
each expert has his unique characteristics with regard to
knowledge, skills, and practical experience. Thus, they are
familiar with some of the attributes, but not others. In other
words, there usually exists the fuzziness of the information
provided for decision-makers by the experts and the diver-
gence among the individual experts’ opinions. Therefore,
we consider the group decision-making problem from the
perspective of the group and from the perspective of the
individual. That is to say, we consider not only the consis-
tency between the individual expert and the group but also
how useful he can provide information for decision-makers
as the individual expert.

4.1. Method Based on Knowledge Measure of Fuzzy Soft Set
for Determining Experts” Weights. In the practical multiexpert
group decision-making process, the weights of experts usu-
ally play an important role in determining the final decision
results and should be taken fully into account. Generally,
the existing methods for determining the experts’ weights
are mainly based on the relation between each expert and

the other experts or the ideal expert. Few methods are pro-
posed to obtain the individual expert’s weight by considering
the fuzziness of the information provided for decision-
makers by the expert. So in this subsection, we propose a
knowledge measure to measure the degree of fuzziness of
fuzzy soft set. Then, we develop a method for obtaining
appropriate experts’ weights by using the proposed knowl-
edge measure. In other words, the weights of experts can be
obtained from the perspective of the individual.

Definition 4.1.1. Let (F,E) be a fuzzy soft set over U, the
knowledge measure is defined as

It is easy to prove that the presented knowledge measure
satisfies the following properties:

(1) K(F,E) =1&Ve,; € E,Vx; € U, F(e;)(x;) =0, or F(e;)
(x;) =1
(2) K(F,E) = K((F, E)").

(3) K(F,E)>2K(G,E)(F,E) is less fuzzy than (G, E),
that is, Ve, € E,Vx; € U, F(e;)(x;) < G(e;)(x;) <0.5,
or F(e;)(x;) 2 G(e;)(x;) 2 0.5.

(4) K(F,E)=+2/2(F,E) is the fuzziest, that is,
Ve; € E,Vx; € U, F(e;)(x;)=0.5.

These properties show that the smaller the knowledge mea-
sure is, the fuzzier the available information becomes. During
multiexpert group decision-making process, if the knowledge
measure of a fuzzy soft set given by an expert is larger, he can
provide decision-makers with more useful information, then
the expert plays a relatively more important role in the group
decision-making process. Therefore, the expert should be
assigned a bigger weight. Otherwise, such an expert will be
judged unimportant by most decision-makers. In other
words, such an expert should be assigned a smaller weight.
Suppose there are P experts and they give evaluation
values in the form of fuzzy soft sets, respectively, namely,
(Fi,E)(1<k<P). We can get the weight of the expert k
as follows:

) K(F;, E)

ST K(FLE) )

4.2. Method Based on Divergence Degree for Determining the
Experts’ Weights. In order to solve group decision-making
problems, flexible and agile a-similarity relation is intro-
duced in fuzzy soft sets. Similar to the ideas in [24, 25, 33],
to measure the deviations between the individual preferences
and the groups’ opinion, the concept of divergence degree
based on the a-similarity relation is first proposed to deter-
mine the experts’ weights.



Definition 4.2.1. Let (F, E) be a fuzzy soft set over U, ACE
and « € [0, 1], a a-similarity relation over fuzzy soft set (F, E)
can be defined as

@_ F(e;) (x)NE(e;) ()
(SA) - {(x’y> eUx U| W Zoc,Vei EA}.

(12)

From this definition, it can be observed that if a pair of
objects (x, y) from U x U belongs to (S,)", then they are per-
ceived as similar. It is easy to test that the a-similarity relation
(S,)" is a tolerance relation (a relation that is reflexive and
symmetric, but not necessarily transitive).

Let (F,E) be a fuzzy soft set over U; for xe U, A CE;
then, the a-similarity class of object x with respect to A
is defined as

(Pda)" =y €Ul x) € (S4)}- (13)

In dealing with multiexpert group decision-making
problems, the a-similarity relation under the expert k can
be expressed as

. Fe)®NFi(e)() |
(58)" = { e e 0V B R ) = e}

(14)

Then, the a-similarity classes of object x with respect to A
under the expert k can be expressed as

() ={revivme ()} as)

Thus, the family set of the a-similarity class under the
expert k for the alternative set U with respect to the
parameter set A can be obtained as follows:

(Sg)a:{([x}ﬁ)ﬂxe u}. (16)

In the following, we introduce the concept of divergence
degree between the experts k and [ for all alternatives with
respect to the parameter set A, which is defined as

by Ly (eh)"0 (1) 11 (BB) 0 ()1

|U | U |

X€ (17)

Equation (17) expresses the divergence degree between
two experts for all alternatives with respect to parameter set
A. It is easy to verify that 0 < Dy; <1 - (1/|U|). The closer
the Dy, is to 0, the poorer the divergence. That is to say, the
smaller the Dy, is, the more similar the experts k and [ are.
Further, it is easily seen that the above definition of diver-
gence degree is effective and reasonable because it avoids
the use of distance or similarity functions to measure the
divergence in group decision-making and thus reduces
the effect of the application of some different distance or
similarity functions for measuring divergence in group
decision-making.

Complexity

Then, according to (17), we can get the divergence degree
of expert k and all the other experts I(I=1,2,...,P,1#k)
as follows:

P
I=1,l#k

Based on the above analyses, we can get a simple and
exact formula for determining the weight of the expert k
as follows:

M—l
T (19)
Q1M
In practice, (11) and (19) can be integrated in accordance
to attitudinal characteristics of decision-makers as the fol-
lowing (20) for the determination of experts’ weights in
group decision-making based on fuzzy soft sets.

By integrating /\,((1) and A,(f), the ultimate weight of expert
k can be obtained:

M=pA+(1-pA? (k=1,2,...,P),  (20)

where p is the parameter that reflects attitudinal characteris-
tics of decision-makers, p € [0, 1].

Finally, we could develop an algorithm to deal with
multiexpert group decision-making problems with unknown
experts’ weights.

Algorithm 2 (group decision-making based on fuzzy soft sets).
Input: The fuzzy soft sets (Fj, A)(1<k<P) over a finite
initial universe U and a finite parameter set A.

Output: The order relation of all the alternatives.

Step 1. Calculate the knowledge measures of all individual
fuzzy soft set (Fi,E) of expert k (k=1,2,...,P), and
then get experts’ weighting vector A1) = (/\(11), /\g), s AS)),

through (10) and (11).

Step 2. Set the value of «, and calculate the divergence degree
between each expert and the other experts, and then ensure
the experts’ weighting vector A?) = ORI /\;2)) using

(17), (18), and (19).

Step 3. Set the value of p, and let A= (A}, A,, ..., Ap) be the
ultimate weighting vector of experts, which can be formed
through (20).

Step 4. Calculate the integrated fuzzy soft set (F, E) according
to (5).

Step 5. Apply Algorithm 1 to the integrated fuzzy soft set
(F,E), then get the optimal alternatives.

5. Comparison Analysis

In this section, we consider an illustrative example and com-
parison analyses to demonstrate the practicability, feasibility,
and effectiveness of the proposed method.
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5.1. Illustrative Example. In this subsection, to demonstrate
the applicability of the proposed approach for effectively
solving the group decision-making problem based on
fuzzy soft sets, we present an example modified from
[33] as follows.

Example 5.1. Suppose a company is considering 4 short-listed
candidates U = {x;, x,, x5, x4} for a job position. An inter-
view session is held where three experts are to evaluate
each candidate over four criteria, namely, good attitude
e;, pleasant personality e,, good command in English e;,
and competent communication skills e,. E={e,, e,, e;,¢,}
is the set of parameters. Here, we assume that the weighting
vector of the parameters is determined as o = (w,, @,, ws,
w,) =(0.1,0.2,0.6,0.1). And the experts’ weights is unknown.
(Fi,E) (k=1.23) is a fuzzy soft set given by expert k
(Tables 11-13).

Then, we utilize the developed approach to get the
ranking of the alternatives.

(1) Calculate the knowledge measure of fuzzy soft set
(F, E) (k=1,2,3).

According to Definition 4.1.1, we can get the knowl-

edge measure K(F;, E) (k=1,2,3) as the following:
K(F,,E) =0.7522,
K(F,, E) = 0.7393,
K(Fs, E) = 0.7489.

(21)

(2) Determine the weights of experts.

By utilizing (11), the weighting vector of experts can
be obtained as the following:

AW = (,\5”, AW, /\g”) = (0.3357,0.3300,0.3343).
(22)

(3) Set a=0.6, and obtain the family set of the
a-similarity classes under the expert k (k=1,2,3)
for the alternative set U with respect to the parameter
set E.

Through (14), (15), and (16), we can get the
family set of a-similarity class ([x]é)a (k=12,3)
as the following:

o {{x0 %0 X35 X4 }o {2005 X5 x4} {205 X3 5 {0 %00 X4 } )
(S4)
A

c

(32 & = {{xn X0 xy s {0 X0, x4 | {3} {x %0, X, 1 )
A

U
W = {{x0 x5} {300 X5, x4} {X95 X5, 23, X4 5 { %5, X3, X4 } ]
A

~—

(23)

7
TaBLE 11: The evaluation value of expert 1.
(Fy, E) 2! € 4 €4
X 0.6 0.7 0.5 0.8
X, 0.7 0.6 0.5 0.7
X3 0.4 0.9 0.6 0.7
X, 05 05 0.8 0.6
TaBLE 12: The evaluation value of expert 2.
(Fy, E) ! € % €4
X 0.5 0.7 0.6 0.6
X 0.5 0.6 0.7 0.7
X3 0.6 0.3 0.5 0.8
Xy 0.7 0.6 0.7 0.5
TaBLE 13: The evaluation value of expert 3.
(Fs, E) €1 2 ) 4
X 0.6 0.7 0.6 05
X 0.7 0.4 0.7 0.8
X3 0.7 0.6 0.6 0.5
Xy 0.8 0.4 0.8 0.6

(4) Calculate the divergence degree between the two
experts.

According to (17), the divergence degree between
the two experts can be calculated based on the
a-similarity class:

D,, =0.125,
Dy;=0.5, (24)
D,; =0.625.

(5) Obtain the weights of experts.
By utilizing the (18) and (19), the weighting vector of
experts can be obtained as the following:
A@) = (Aﬁ”, A, A§2>) = (0.4186, 0.3488, 0.2326).
(25)
(6) Set p=0.5, and determine the ultimate weight vector
of experts.

According to (20), the ultimate weight vector of
experts can be obtained as the following:

A= (A \) = (0.3772,0.3394,0.2834). (26)



(7) Calculate the integrated fuzzy soft set.

Through the (5), we can aggregate the overall
individual fuzzy soft set (Fy, E) (k=1,2,3) to get the
integrated fuzzy soft set (F, E) as given in Table 14.

(8) Rank the alternatives.

By utilizing the Algorithm 1, the ranking order of
all the alternatives x; (i=1,2,3,4) can be obtained
as the following:

X3 > Xy > X > Xy (27)

Thus, the optimal alternative is x5.

5.2. Sensitivity Analysis on the Parameters. In the above
example, the computation results are obtained by given the
parameters a priori in (14) and (20). Normally, the different

Fi(er) (x;) AFier) (7))

Fi(e;) (xj)VFk<ei) (J’j) e

aj = min

and

a=min {ay|j=12,...,|U,k=12,...,P},
(29)
b=max {ay|j=12,...,|U,k=1,2,...,P}.

We have « € [a, b], where |U| and P are the number of all
alternatives and experts, respectively, and E is the set of
parameters. It is clear that the divergence degree between
any two experts is 0 when a<a or a>b. So decision-
makers can choose suitable parameter « according to the
practical situation.

As can be seen from Table 15, experts’ weights vary along
the parameters « and p sensitively. When decision-makers’
attitudinal characteristic parameters p are not changed, we
find that the experts’ weights change as o changes. And when
the parameter « remains unchanged, the experts’ weights are
not same for different values of parameters p. In other words,
every expert’s weight changes when the value of any one of
parameters takes different values. Moreover, it is observed
that the ranking results may be not identical with respect to
different values of parameters a and p.

According to the above analysis, it can be observed that
the group decision-making approach proposed in this paper
enables decision-makers to express their preference informa-
tion more comprehensively during decision processes. In
other words, the proposed method can yield proper ranking
results in accordance with decision-makers’ opinions by
choosing suitable parameters. Furthermore, the proposed
approach can provide decision-makers with more choices

Complexity

TaBLE 14: Collective fuzzy soft set.

(F,E) ! ) 4 €4

X 0.5685 0.7000 0.5649 0.6720
X, 0.6432 0.5513 0.6362 0.7326
X3 0.5704 0.7132 0.5685 0.6979
X4 0.6757 0.5119 0.7705 0.5685

values of parameters can lead to different weights of experts,
then different ranking order of alternatives. To inspect the
influence of different parameters on the experts’ weights, it
is necessary to do sensitivity analysis of the parameters.

From Example 5.1, we can see that if &« < 0.43 or a > 0.86,
the divergence degree between any two experts is 0, which is
meaningless. So it is significant for decision-makers to know
the range of the parameter a. Let

2,..,|ULk=12,...,P,e € E,x;#y; 5, (28)

in solving the problems of group decision-making and thus
has better flexibility and agility.

5.3. Comparison with Existing Methods for Deriving the
Experts’ Weights. To illustrate the advantage of our proposed
approach of determining experts’ weights, we make a com-
parative analysis with other previous methods including
Mao et al.’s method [27], Zhang and Xu’s method [30] and
Wan et al.’s methods [23-25].

The detailed comparisons with the methods [23-25, 27, 30]
are listed in Table 16.

As shown in Table 16, we can conclude the following.

Compared with Mao et al.’s method in [27], the proposed
method is based on divergence degree and knowledge
measure. Whereas, Mao et al.’s method is based on distance.
Considering the consistency between the individual expert
and the group, Mao et al. obtain the experts’ weights by using
the distance. However, different distance functions can pro-
duce different results. In order to avoid the use of distance
functions to determine the experts’ weights, we propose the
concept of the divergence degree for determining the experts’
weights. Moreover, we also consider the experts’ weights
from the perspective of the individual. That is to say, we
can obtain the experts’ weights by considering the fuzziness
of the information provided by the individual expert, so
we introduce the knowledge measure for determining the
experts weights. Therefore, the proposed method can
determine the weights of the experts more objectively.

Compared with methods [24, 25, 30], our method is
based on divergence degree and knowledge measure, and
the methods in [24, 25, 30] are based on consensus degree.
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TaBLE 15: Experts’ weights and ranking results with different parameters « and p.
Parameters Expert weights Ranking results Optimal
p=03 {0.3937, 0.3432, 0.2631} X3 > Xy > X > Xy X3
a=0.60 p=0.5 {0.3772, 0.3394, 0.2834} X3 > Xy > X > Xy X3
p=0.38 {0.3523, 0.3338, 0.3139} Xy > X3 > Xy > Xy X2
p=0.3 {0.3586, 0.3201, 0.3213} Xy 7 X3 > Xy > Xy X2
a=0.65 p=0.5 {0.3521, 0.3229, 0.3250} Xy > X3 > X > Xy X2
p=0.8 {0.3422, 0.3272, 0.3306} X3 > Xy > X) > Xy X3
p=03 {0.3478, 0.3460, 0.3062} Xy > X3 > X > Xy X2
a=0.70 p=0.5 {0.3443, 0.3415, 0.3142} Xy > X3 > Xy > Xy %2
p=0.38 0.3391, 0.3346, 0.3263 X3 > Xy > X1 > Xy X2
p=0.3 {0.3807, 0.3790, 0.2403} Xy > X3 > Xy > Xy X2
a=0.80 p=0.5 {0.3679, 0.3650, 0.2671} X3 > Xy > X > Xy X3
p=0.8 {0.3486, 0.3440, 0.3074} X3 > Xy > Xy > Xy X2
TaBLE 16: Comparison with other existing methods for deriving the experts’ weights.
Method Measurement tool The final results
Method in [27] Distance The consistency between the individual expert and the group
Methods in [24, 25, 30] Consensus degree The consistency between the individual expert and the group
Distance Similarit
Method in [23] . - iy
Distance Proximity

Divergence degree
Proposed method 5 5
Knowledge measure

The consistency between the individual expert and the group

The fuzziness of the information provided by the individual expert

In [24, 25, 30], the authors only consider the consistency
between the individual expert and the group for determining
the experts’ weights; they fail to consider the fuzziness of the
information provided by the individual expert. To derive the
weight of each expert more objectively, we consider the
problem not only from the perspective of the group but also
from the perspective of the individual. That is to say, we
consider not only the consistency between the individual
expert and the group but also how useful he can provide
information for decision-makers as the individual expert.
So the method in this paper is more suitable for determining
the experts’ weights.

Compared with the method in [23], experts” weights are
determined by similarity and proximity degree, where the
similarity degree in [23] is the knowledge measure in our
method in essence. The proximity degree defined by dis-
tance in [23] is similar to the divergence degree in our
method. However, different distance functions can produce
different results. In order to avoid the use of distance func-
tions to determine the experts’ weights, we propose the
concept of the divergence degree for determining the
experts” weights.

According to the above analysis, we can see that the
proposed method for determining the experts’ weights is
reasonable and effective. And it can determine the weights
of the experts more objectively. Furthermore, the weights
of the experts may be changed by changing the parameters

(see (14) and (20)), which can give greater flexibility to
the decision-makers in solving the problems of group
decision-making.

5.4. Comparison with the Method in [33]. In this subsection,
we compare the developed approach in this paper with
another method proposed by Sulaiman and Mohamad [33]
to explain the superiorities of the proposed method.

The detailed comparison with the method in [33] is listed
in Table 17.

From Table 17, we can see that the ranking of the alterna-
tives obtained by the proposed method is not the same as that
obtained by Sulaiman and Mohamad’s method. The chief
reason for different ranking results is that the methods used
to obtain the weights of experts in the proposed approach
and in [33] are different. The method in [33] only considers
the consistency between the individual expert and the group,
and it ignores the fuzziness of the information provided for
decision-makers by the individual expert. To derive the
weight of each expert more objectively, the proposed method
considers not only how close the expert’s opinion is to other
experts’ but also how useful he can provide information for
decision-makers as an expert in the process of group
decision-making. So we introduce a knowledge measure
and divergence degree between two experts based on « simi-
larity relation for obtaining the experts’ weights. In [33],
Sulaiman and Mohamad proposed a method based on
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TaBLE 17: Comparison with the method in [33].
Method Measurement tool Parameters Experts’” weights Ranking results
@=0.60,p=0.3  {0.3937,0.3432,0.2631}  x,>x, > X, > x,
a=0.60,p=0.5  {0.3772,0.3394,0.2834}  x;>x,>x, > x,
a=0.60,p=08  {0.3523,0.3338,0.3139}  x,> x5 > X, > X,
@=0.65p=03  {0.3586,0.3201,0.3213}  x,> x5 > X, > X,
@=0.65p=05  {0.3521,0.3229,0.3250}  x,>x; > X, > x,
@=0.65p=08  {0.3422,0.3272,0.3306}  x,>x, > X, > x,
Proposed method Divergence degree and knowledge measure €=0.70, p=0.3 {0.3478, 0.3460, 0.3062} P
a=0.70,p=0.5  {0.3443,0.3415,0.3142}  x,> x5 > X, > X,
@=0.70,p=0.8  {0.3391,0.3346,0.3263}  x,> x5 > X, > X,
«=0.80,p=0.3 {0.3807,0.3790, 0.2403 } Xy > Xy > X > Xy
@=0.80,p=0.5  {0.3679,0.3650,0.2671}  x3>x,>x, > x,
a=080,p=0.8  {0.3486,0.3440,0.3074}  x,>x;>x, > x,
Method [33] Similarity measure a=0.50 {0.3308,0.3322,0.3370} Xy > Xy > X > Xy

Note: “a” in [33] is different from that in this paper.

similarity measures for determining the experts’ weights in
multiexpert group decision-making. However, different
similarity functions can produce different results. In order
to avoid the use of similarity functions to determine the
experts’ weights, we introduce the concept of divergence
degree for obtaining the experts’ weights. It is easily seen
that the definition is simple and reasonable. Moreover, if
[33] uses the decision-making method proposed in Section
3 to rank the alternatives, the ranking of the alternatives is
X, > X; > X5 > x,. From Table 15, we can see that the ranking
results are different from those obtained by the decision-
making method in [33]. Therefore, the different decision-
making approaches given in our approach and in [33] are
another reason of different ranking results. The former uses
the proposed distance between two fuzzy soft sets to rank
the alternatives, while the latter ranks the alternatives based
on the score indexes. And the costs of computation of
decision-making method in this paper are lower than those
in [33].

Although different values of parameters will result in dif-
ferent ranking order of alternatives, we can see from Table 17
that the desirable ranking order may be x, > x;>,x > x, or
X3 > X,>1x>x,. But how to determine which ranking
order will be the desirable ranking order? We observe
that x, > x;>,x > x, occurs eight times and x5 > x,>,x > x,
occurs four times in Table 17, so we can choose the desirable
ranking order according to their frequency of occurrence;
thus, x, > x3>,x > x, will most likely be the desirable ranking
order. So it will have minor risk when we choose x, as the
optimal object.

Because of the parameters «, p involved in Algorithm 2,
we know that different values of parameters will result in dif-
ferent ranking order of alternatives. So we can do repeated
experiments through choosing the parameter values of «, p
randomly in Algorithm 2, which will output multiple ranking
results. Counting the occurrence times of every ranking order

among all of ranking orders, then the desirable ranking order
is obtained, which is the one repeated most often among all of
the ranking orders.

Compared with Sulaiman and Mohamad’s method [33],
our proposed approach has some advantages:

(1) The proposed approach has capability to deal with
the involvement of multiple experts and the presence
of subjectiveness and imprecision in the multiexpert
group decision-making problem.

(2) The introduced technology can determine objectively
the weights of the experts, which avoids the subjective
randomness of determining the weights.

(3) The weights of the experts may be changed by chang-
ing the parameters, which can give greater flexibility
to the decision-makers in choosing the ranking order
which will most likely be the desirable ranking order.

6. Conclusion

In this paper, we develop a new method based on distance to
solve the fuzzy soft set decision-making problem. In order to
determine the weight of each expert objectively, we introduce
the concepts of knowledge measure and divergence degree.
Based on the concepts, we develop two methods for obtain-
ing appropriate experts’ weights. The ultimate weights of
experts are obtained by integrating the two methods. Then,
we develop an effective group decision-making approach by
integrating the aforepresented methods. Finally, we give an
example and a sensitivity analysis about the parameters to
illustrate the proposed method and compare this method
with other existing methods, which demonstrates the reason-
ability and efficiency of the new group decision-making
method proposed in our paper.
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Further study could be required to extend developed

approaches to other practical decision-making environments
such as interval-valued intuitionistic fuzzy environment.
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