
Almost Weakly 2-Generic Sets�Stephen A. FenneryComputer Science DepartmentUniversity of Southern MaineAugust 12, 1996AbstractThere is a family of questions in relativized complexity theory|weak analogs ofthe Friedberg Jump-Inversion Theorem|that are resolved by 1-generic sets but whichcannot be resolved by essentially any weaker notion of genericity. This paper de�nesaw2-generic sets, i.e., sets which meet every dense set of strings that is r.e. in someincomplete r.e. set. Aw2-generic sets are very close to 1-generic sets in strength, butare too weak to resolve these questions. In particular, it is shown that for any setX there is an aw2-generic set G such that NPG \ co-NPG 6� PG�X . (On the otherhand, if G is 1-generic, then NPG \ co-NPG � PG�SAT, where SAT is the NP-complete Satis�ability problem [6].) This result runs counter to the fact that most�nite extension constructions in complexity theory can be made e�ective. These resultsimply that any �nite extension construction that ensures any of the Friedberg analogsmust be none�ective, even relative to an arbitrary incomplete r.e. set. It is then shownthat the recursion theoretic properties of aw2-generic sets di�er radically from those of1-generic sets: every degree above 00 contains an aw2-generic set; no aw2-generic setexists below any incomplete r.e. set; there is an aw2-generic set which is the join of twoTuring equivalent aw2-generic sets. Finally, a result of Shore is presented [30] whichstates that every degree above 00 is the jump of an aw2-generic degree.1 IntroductionThe Friedberg Completeness Criterion [14] states that any Turing degree above 00 is rela-tively complete, i.e., it is the jump of another degree. One can prove this result by looking at1-generic sets (i.e., sets Cohen generic for one-quanti�er �rst order arithmetic) [20, 19, 31].�Journal of Symbolic Logic, 59(3):868{887, 1994. An earlier version appeared in Proceedings of the SixthAnnual IEEE Structure in Complexity Theory Conference, 1991yPartially supported by NSF Grant CCR 92-09833. Some of these results also appeared in [Fen91a],[Fen91b], and [Fen91c], and were proved while the author was a graduate student in the University ofChicago Computer Science Department, with the support of a University of Chicago Fellowship. Email:fenner@usm.maine.edu 1

It is well-known [19, Lemma 2.6 (ii)] that for any 1-generic set G,G0 �T G�K; (1)where K denotes the halting problem. Then, for any set S with K �T S, a 1-generic set Gcan be constructed such that G�K �T S: (2)See [31, pp. 97{98] for a complete proof along these lines.There are interesting complexity theoretic analogs of equation (1). In the current paperwe look at equation (1) and its analogs to determine \how much" genericity is actuallyneeded to prove them. We will show that 1-genericity is necessary in the following sense:essentially no weaker notion of genericity su�ces. Later, we will also show that the samequestion about equation (2) yields the same answer.A natural candidate for a complexity theoretic version of (1) would state that if G is1-generic, then some NPG-complete set is polynomial-time Turing reducible to G � SAT,where SAT encodes the NP-complete Satis�ability problem. In other words,NPG � PG�SAT : (3)This statement is unfortunately false, as can be shown by a straightforward forcing argument(see [28] for example). There are, however, a number of results in complexity theory whichapproximate equation (3) and whose proofs are similar to that of equation (1). The bestknown of these is due to Blum & Impagliazzo [6], which in essence states that for every1-generic set G, NPG \ co-NPG � PG�SAT: (4)See Appendix A for a list of the known results of this type.Since equation (4) relates to polynomial time-bounded computations, it is natural to askif it holds for generic sets in some weaker, perhaps polynomial time-bounded sense. Severalrecursive and subrecursive notions of genericity have been studied and applied successfullyin complexity theory [3, 13, 23, 25, 9]. For example, Ambos-Spies, Fleischhack, & Huwigintroduced p-generic sets in [2, 3] as those having all properties enforcible by \p-standarddiagonalizations," e.g., nonmembership in P, p-immunity, non-p-selectivity, etc. Buildingon earlier work of Mehlhorn and Lisagor in recursive Baire category, Lutz [23, 25] introducedthe alternate notion of a �-generic set for any function class �, subrecursive or otherwise.He showed, for example, that initial segments of PSPACE-generic sets have high circuitsize complexity and high space-bounded Kolmogorov complexity in�nitely often [25].1 Thepresent author has shown [9] that for certain time-bounded complexity classes �, �-genericoracles su�ce for proving many routine separation results in relativized complexity. Forexample, if we let FP denote the class of polynomial-time functions, then(8 FP-generic G)PG 6= NPG 6= co-NPG: (5)1Lutz has also developed resource-bounded notions of Lebesgue measure and randomness [24, 25].2

Stronger resource-bounded generic sets are also enough to separate the polynomial hierarchy[8]. One important reason for studying these weak, subrecursive notions of genericity is thatthere are recursive sets which �t the de�nitions. Resource-bounded genericity is closelytied to the notions of resource-bounded Baire category studied in [23, 9, 26]. They lead tosatisfactory \almost all" theories of many common complexity classes|even though theseclasses are countable. We might call sets which are generic in some resource-bounded sense`pseudogeneric'. Truly generic and n-generic sets, their relationship to Baire category, andtheir uses in recursion theory have been known for a long time (see [19, 29]).Another important reason for studying pseudogeneric sets is that they provide a way tomeasure quantitatively the inherent di�culty of a �nite extension argument in complexitytheory. Generic and n-generic sets embody the method of diagonalization by �nitely ex-tending initial segments in recursion theory. As with truly generic sets, pseudogeneric setsalso embody methods of diagonalization via �nite extension, but only those using limitedcomputational resources. Results such as equation (5) above express the fact that most�nite extension constructions in complexity theory can be made e�ective and use limitedresources|usually no more than an exponential blowup in the bounds used to de�ne thecomplexity classes involved.With the success pseudogeneric oracles have had in complexity theory, it is perhaps sur-prising that no recursive or subrecursive notion of genericity is strong enough to guaranteeequation (4). In fact, we will argue that essentially no notion of genericity weaker than1-genericity su�ces to guarantee equation (4) or any of the results of similar type listedin Appendix A. To do this, we de�ne a particular type of genericity, which we call almostweakly 2-genericity (or aw2-genericity for short), in a fashion similar to the weakly n-genericsets studied by Kurtz [22]. Given an arbitrary set X , we then construct an aw2-generic setG such that NPG \ co-NPG 6� PG�X (6)(Theorem 8), and our construction can easily be altered to defeat all of the other resultslisted in Appendix A simultaneously.We de�ne aw2-genericity precisely in Section 4. In short, an aw2-generic set must meetevery dense set of strings which is r.e. in some incomplete r.e. degree. Restricting therequirement so that only dense r.e. sets of strings need be met yields exactly the weakly1-generic sets. Expanding the requirement a little bit to include meeting dense sets r.e. in00 yields the weakly 2-generic sets, which are themselves all 1-generic (the hierarchy of weakn-generic sets interleaves with the hierarchy of n-generic sets [22]). Thus by merely adding00 to the requirement, we reverse the status of (4) from false to true.Equation (4) and the similar results in Appendix A thus stand far apart from otherresults in relativized complexity: the diagonalizations used to prove them are inherentlynone�ective, even relative to any incomplete r.e. set. By contrast, there are exponential-time computable FP-generics, so those resources are all that are needed for equation (5).As a consequence, we may classify �nite extension arguments in complexity theory as either3

easy or hard, depending on whether or not recursive or subrecursive notions of genericitysu�ce to prove them.Section 5 consists mainly of our proof that equation 4 does not hold for aw2-generic sets.This proof is the only part of the paper that is chie
y complexity theoretic, and nothinglater in the paper depends on it. Thus, the proof may be safely skipped.In Sections 6 and 7 we turn our attention to the purely recursion theoretic properties ofaw2-generic sets. Comparing the degrees of aw2-generic sets with the 1-generic degrees inSection 6, we observe that the two notions are incomparable and very di�erent: Whereas itis known that 1-generic degrees exist below every nonzero r.e. degree, we show that no aw2-generic degree exists below any incomplete r.e. degree. Above 00 the tables are completelyturned; no degree above 00 is 1-generic, but every degree above 00 is aw2-generic. Our proofbears an interesting contrast with the proof of equation (2) above: there, the set S is codedinto the 1-generic set G, but K is needed to �nd where the set S is actually coded; in ourconstruction, we make an aw2-generic G �T S by coding the bits of S together with theinformation needed to �nd them all into G itself. Thus S is computable from G withoutthe use of K. All our proofs make crucial use of the Arslanov Completeness Criterion (see[31]). We obtain as a corollary that every degree a � 00 is hyperimmune with respect toevery r.e. degree b < 00, by adapting a result in [22] (see [22] for de�nitions).We further contrast aw2-generic sets with 1-generic sets in Section 7 by constructingan aw2-generic set G which can be computed in any nonrecursive B �m G. This G isthen the join of two Turing equivalent aw2-generic sets, and also the join of in�nitely manyaw2-generic sets, all Turing equivalent to G. Finally, we reproduce an unpublished proof byShore that aw2-generics can also be used to prove the Friedberg Completeness Criterion,which immediately implies the existence of low aw2-generic sets below 00.There are several remaining open questions regarding aw2-generic sets which we posein Section 8.2 PreliminariesWe adopt more or less the notation of [31]. We let ! be the set of natural numbers, welet 2<! denote the set of �nite 0-1 sequences (binary strings), and we let 2! denote theset of in�nite 0-1 sequences, which we identify with the power set of !. We also identifystrings with natural numbers by the usual binary representation. We normally denotestrings using lower case Greek letters, except when we use them as inputs to computations(natural numbers), in which case they are usually denoted with lower case Roman letters.We further identify a set A � ! with its characteristic function �A:! ! f0; 1g. If � is astring, we let j�j denote the length of � (likewise, jxj is the length of the binary representationfor the natural number x), and we denote the empty (length 0) string by ;. Note that ifx � y, then jxj � jyj. If � is a string, we write � �̂ to mean the concatenation of � followedby � . We use 0n or 1n to denote the concatenation of n 0's or n 1's, respectively. Note that0n represents the least natural number of length n. If f 2 2<![2!, we write � � f to mean4

that � is extended by (is a pre�x of) f , and we write � � f to mean that � � f and � 6= f .If is a (partial) function, we denote the domain and range of by dom() andrange(), respectively. We write (x) # or (x) " to mean that x is or is not in dom()respectively. We extend this notation to strings by identifying them with functions withdomain a �nite initial segment of ! and range f0; 1g. We de�ne the join A � B of twosets A;B � ! as f2x j x 2 Ag [f2x + 1 j x 2 Bg. We will also have occasion to join astring � with a set X , as in � � X . In this case, we always interpret � as the �nite setfx 2 ! j �(x)#= 1g.We let '0; '1; '2; : : : and f0g; f1g; f2g; : : : be acceptable numberings of partial recursivefunctions and relativized partial recursive functions, respectively. As is customary, we de�neWe df= dom('e). We let fegA denote the eth function partial recursive in the set A � !,and we let Ajnk denote the set fx 2 ! j x 2 A & x < kg. We �x a recursive enumerationK0; K1; K2; : : : of K. Finally, we �x a one-to-one pairing function h�; �i from ! � ! onto !which is recursive and recursively invertible; the one de�ned in [29] will do. Other recursiontheoretic concepts and de�nitions used can be found in [29] or [31].Our complexity theoretic notation is standard. We use the usual Turing machine modelfor resource-bounded computation, with input, intermediate calculation, and output all inbinary. We say a machine accepts its input if the output is nonzero; otherwise it rejects. Amachine recognizes a set S if it accepts an input x if x 2 S and rejects x otherwise. Forrelativized computation, we assume the machine explicitly writes its queries in binary ona separate tape; the query is then replaced by the oracle answer in one step. We de�neP (NP) as the class of all sets recognized in deterministic (nondeterministic) polynomialtime. The class co-NP consists of the complements of NP sets. For a set A � !, PA is theclass of sets recognizable in polynomial time with oracle A. NPA and co-NPA are de�nedsimilarly. See [17] for more details.3 n-Generic and Weakly n-Generic SetsA set S � 2<! is dense if every string has an extension in S, i.e.,(8� 2 2<!)(9� 2 S)� � �:If S is a set of strings and A 2 2!, we say that A meets S if there is a � 2 S such that � � A.We say that A strongly avoids S if there is a � � A such that for all � � �, � 62 S. Wenow give recursion theoretic de�nitions of two types of genericity. The �rst was originallyde�ned in [16], and further studied in [19].De�nition 1 (Hinman) For n � 1, a set G is n-generic if G either meets or stronglyavoids every �0n set of strings. In particular, a 1-generic set meets or strongly avoids everyr.e. set of strings.The second type of genericity was de�ned and studied in [22].5

De�nition 2 (Kurtz) For n � 1, a set G is weakly n-generic if G meets every dense �0nset of strings. In particular, a weakly 1-generic set meets every dense r.e. set of strings.Kurtz [22] showed that the weakly 1-generic degrees are exactly the hyperimmune de-grees, and also that the notions of n-genericity and weak n-genericity strictly interleave instrength.We are mainly interested in the following theorem (equation (4) above), which wasessentially proven in [6]:Theorem 3 (Blum, Impagliazzo) If G is a 1-generic set, thenNPG \ co-NPG � PG�SAT;where SAT is the NP-complete set of satis�able Boolean formulae.As was mentioned above, their proof technique is similar to that used to prove (1), andhas been used to prove several other results with the same
avor (see Appendix A). One ofour aims is to show that 1-genericity is necessary to prove Theorem 3, i.e., that a reasonable,slightly weaker notion of genericity does not su�ce to prove Theorem 3 or any result similarto it. To do this, we will de�ne aw2-generic sets (De�nition 7), then show (Theorem 8)that there is an aw2-generic set G which fails to satisfy the conclusion of Theorem 3. Todo this, we will �rst generalize the above notions of genericity by de�ning a �-generic setfor an arbitrary class of partial functions �.4 �-Generic and Aw2-Generic SetsDe�nition 4 A partial genericity requirement is a partial function h: 2<! ! 2<! such that� � h(�) for all � 2 2<! such that h(�)#. A genericity requirement is a partial genericityrequirement that is total. A string � meets a partial genericity requirement h if there is a� � � such that either h(�)" or h(�) � � . If A 2 2!, we say that A meets h if some � � Ameets h.Note that A meets the partial genericity requirement h if and only if A meets or stronglyavoids range(h) as a set of strings.De�nition 5 Let � be an arbitrary countable class of partial functions. A set G 2 2! is�-generic if G meets every partial genericity requirement in �.This de�nition originates out of the work of Lutz in resource-bounded Baire category[23, 25]. It is useful to de�ne �-genericity in terms of meeting functions rather than setsof strings, as this de�nition works particularly well for subrecursive classes �. Despite thechange of emphasis, �-genericity includes the other de�nitions of genericity given above:For n � 1 let �n and ~�n be the ;(n�1)-partial recursive and ;(n�1)-total recursive functions,6

respectively. It is easy to show that the �n-generic sets are exactly the n-generic sets, andthe ~�n-generic sets are exactly the weakly n-generic sets.We now de�ne aw2-genericity.De�nition 6 If d is a Turing degree, de�ne the class of total functionsrec(d) df= ff j (9A 2 d)f �T Ag:De�nition 7 A set G is aw2-generic if G is rec(d)-generic for every r.e. degree d < 00.If we included 00 itself in De�nition 7, we would de�ne a rec(00)-generic set, which isthe same as a weakly 2-generic set; for this reason, we call aw2-generic sets `almost weakly2-generic'.2 All weakly 2-generic sets are 1-generic (not conversely [22]), so Theorem 3holds for them. It is interesting that merely adding this last r.e. degree produces enormousdi�erences in the properties of the resulting generic sets. We will look at more of thesedi�erences in Sections 6 and 7.We will restrict our attention to the r.e. degrees only, and not concern ourselves with theproperties of sets which are rec(d)-generic for every incomplete �02 degree d. We currentlyknow little about such sets, and we pose as an open question whether they are the same asweakly 2-generic sets.5 Theorem 3 Fails for Aw2-Generic SetsWe now state one of our two main results, which says that aw2-genericity is not su�cientfor proving Theorem 3. In fact, our result generalizes for an arbitrary set joined with G,not necessarily SAT. The proof can be modi�ed easily to construct an aw2-generic G tocause all the results listed in Appendix A to fail simultaneously.Theorem 8 For every set X � !, there exists an aw2-generic set G such thatNPG \ co-NPG 6� PG�X :Corollary 9 There exists an aw2-generic set G such thatNPG \ co-NPG 6� PG�SAT:We will prove Theorem 8 by an initial segment construction with no injury. To dothis, we will need Lemma 12, which itself depends on two crucial facts regarding functionsrecursive in r.e. sets. The �rst of these is a generalization of the recursion theorem calledthe Arslanov Completeness Criterion (see [31, page 88]).Theorem 10 (Arslanov) An r.e. setA is complete if and only if there is a function f �T Asuch that Wf(x) 6= Wx for all x.2These sets were originally called inc-generic in [10].7

The second fact is a result of Jockusch relating Arslanov's criterion with the existenceof diagonally nonrecursive functions (see [31, page 90, exercise V.5.8]).Theorem 11 (Jockusch) If A is an arbitrary set, then(9f �T A)(8e)[We 6= Wf(e)]() (9h �T A)(8e)[h(e) 6= 'e(e)]:The two facts together immediately imply the following lemma:Lemma 12 If d is an incomplete r.e. degree and f 2 rec(d), then there exist in�nitelymany e such that f(e) = 'e(e).Proof: Suppose there are only �nitely many such e. Then there exists an ~f di�ering fromf on only �nitely many values such that (8e)[~f(e) 6= 'e(e)]. Let A 2 d be an r.e. set. Since~f �T A, A must be complete. 2Proof of Theorem 8: Fix an arbitrary set X � !. The basic idea is that we build G byalternating between meeting genericity requirements and diagonalizing against polynomial-time deterministic oracle Turing machines. We diagonalize by a standard NP hiding trickplayed in in�nitely many coding regions. We meet genericity requirements between thecoding regions. For these two tasks not to con
ict with each other, we must be able totell in polynomial time whether or not we are inside a coding region. We ensure this bymeeting each genericity requirement h only on an input e where h(e) = 'e(e) (we alsoencode e into the oracle). A polynomial-time oracle machine can then recognize the codingregions (without knowing h) by computing 'e(e).Let fg0; g1; g2; : : :g be the set of all genericity requirements g such that there exists anr.e. degree d < 00 with g 2 rec(d). (The particular enumeration we choose for this set isnot important, since at this point we do not seek to control the complexity of G. In theproof of Theorem 14, however, we do need to control the complexity of G, so there we willproceed more carefully.) For any � 2 2<! let `(�) be the least n such that �(x) " for allx with jxj � n. It will be convenient in this proof to de�ne a function Z so that for anystring � and number n, Z(�; n) = � if n < `(�), and otherwise Z(�; n) is � extended withjust enough 0's so as to be de�ned on exactly those numbers of length strictly less than n.Let fCege2! be a set of partial recursive functions such that1. (8e; x 2 !) 'e(x)#() Ce(x)#,2. (8e; x 2 !) 'e(x)#=) 'e(x) � Ce(x), and3. the predicate \Ce(u)#� v" is computable in time bounded by a polynomial in jej, u,and v. 8

The set fCege2! corresponds to a Blum complexity measure [5] with certain additionalrestrictions on its values and running time. Such Ce clearly exist; for example, we may de�neCe(x) df= 0�(e;x)+1, where �(e; x) is the running time of the eth Turing machine on input x(we assume the input and output of the machine are both in binary). Also let P0; P1; P2; : : :be an enumeration of all polynomial-time deterministic oracle Turing machines (see [17] forexample), each Pi running in time pi(n) df= ni + i for all oracles. Finally, for all i let mi beleast such that pi(n) < 2n�1 for all n � mi.We construct G as a limit of binary strings
i,; =
0 �
1 �
2 � : : : � G:We build
0;
1; : : : so that for all i,
i+1 meets gi (and thus G meets gi, which makes Gaw2-generic). Also,
i+1 ensures that the set L de�ned below is not recognized by PG�Xi .L df= f0d 2 D j (9x)[jxj = d� 1 & x̂ 0 2 G]g;where D df= f0d0 ; 0d1; 0d2; : : :g, and the di are de�ned below in the construction of G. Wewill show that D 2 PG, thus evidently L 2 NPG. We will also ensure that for all 0d 2 D,(9x)[jxj = d� 1 & x̂ 0 2 G] () :(9y)[jyj = d� 1 & y 1̂ 2 G]; (7)so L 2 co-NPG as well. We keep L out of PG�X by the explicit diagonalization mentionedabove, which will prove the theorem.Let
0 df= ;. Given
i, we de�ne
i+1 as follows:1. De�ne fi df= �n:`(gi(Z(
i; n)̂ 1)). Note that fi �T gi, so fi satis�es the hypothesis ofLemma 12.2. Let ni df= (�n)[n � mi & n � `(
i) & fi(n) = 'n(n)]. The number ni exists byLemma 12.3. Let
 df= Z(
i; ni)̂ 1. Notice that
i �
 and
(0ni) = 1.4. Let
 0 df= gi(
). Note that
 �
 0 and
 0 meets gi. In step 8, we will de�ne
i+1 as anextension of
 0, so
i+1 meets gi as well. Notice also that`(
 0) = fi(ni) = 'ni(ni) � Cni(ni)#by our assumptions about Cni above.5. Let di df= Cni(ni). By the remark in step 4,
 0 is unde�ned on all numbers of lengthdi, and since di > ni � mi, we have pi(di) < 2di�1. (The ith coding region consists ofall numbers of length di.)6. Let
 00 df= Z(
 0; pi(di) + 1). 9

7. Let x and y be the least numbers of length di � 1 such that the machine P
00�Xi oninput 0di queries neither x̂ 0 nor y 1̂. (See the Section 2 regarding the meaning of
 00�X .) Such x and y exist by the previous remark about di.8. If P
00�Xi (0di) accepts, let
i+1 be the same as
 00 except that
i+1(y 1̂) = 1. IfP
00�Xi (0di) rejects, let
i+1 be the same as
 00 except that
i+1(x̂ 0) = 1. Here wediagonalize against Pi, preserving its erroneous computation. Note that
 0 �
i+1,and that
i+1 preserves all queries made by P
00�Xi (0di).The set G df= Si2!
i meets all the gi by step 4, thus G is rec(d)-generic for all r.e. d < 00,and thus G is aw2-generic. Recall that D df= f0d0; 0d1 ; 0d2; : : :g from the construction above,and L = f0d 2 D j (9x)[jxj = d� 1 & x̂ 0 2 G]g:By the diagonalization step 8, we have L(0di) 6= PG�Xi (0di) for every i, thus L 62 PG�X .Also by step 8, equation (7) above is maintained for all 0d 2 D. This implies that L 2NPG\co-NPG, provided D is easy to compute from G. We complete the proof by showingthat D 2 PG.First, notice that n0 < d0 < n1 < d1 < : : : . Fix an input 0d. We reconstruct k andd0; : : : ; dk such that dk � d < dk+1. Then 0d 2 D if and only if d = dk. The algorithmis given in the next paragraph. Since we coded a 1 into G at each point 0ni for i � k, wecan tell exactly where G meets each gi|at the
 de�ned in step 3. Since by step 4, gi(
)is de�ned only on strings strictly shorter than `(Cni(ni)), we can then \skip over" gi(
) bycomputing the value di = Cni(ni) and ignoring the oracle between length ni and di. Thiscomputation runs in time polynomial in ni by our assumptions about fCege2!. [For this towork, it was crucial in the construction of G that we could choose ni so that `(gi(
)) wasbounded by Cni(ni). This in turn relied on Lemma 12.]We start with n df= 0 and let n increase throughout the algorithm up to d. To �nd d0,we query G on ;; 0; 00; : : : ; 0n; : : : until either n = d or query 0n returns 1. If n = d, reject;otherwise n = n0 by step 3, and so d0 = Cn0(n0) = Cn(n) from step 5. If Cn(n) > d, reject;if Cn(n) = d, accept. Otherwise compute the actual value of d0 = Cn(n) by linear searchusing the predicate P (y) df= [Cn(n) � y]. Now to �nd d1, query G on 0d0+1; 0d0+2; : : : ; 0n; : : :until either n = d or query 0n returns 1. If n = d, reject; otherwise n = n1 by step 3, sod1 = Cn1 (n1) = Cn(n). If Cn(n) > d, reject; if Cn(n) = d accept. Otherwise, computed1 = Cn(n) < d as before. We continue this process to �nd n2; d2; n3; d3, etc., stoppingwhen we get up to d. The entire procedure takes time polynomial in d, and accepts if andonly if 0d 2 D. This completes the proof. 2If we neglect the non-r.e. degrees below 00 and restrict our attention just to the r.e.degrees, then Theorem 8 gives the best possible lower bound on genericity for guaranteeing(4). As was mentioned above, if we include the complete degree 00, then rec(00)-genericsare exactly the weakly 2-generics, and hence they are 1-generics as well, and so Theorem 3holds for them. 10

With a little care, the construction above can be altered to make G �T ;00 � X asfollows: replace the gi with the partial functions i df= fjgWk where i df= hj; ki. We need notworry about whether any particular i is a genericity requirement with Wk incomplete, aslong as we make sure in step 2 that ni exists. That is, given
i we check if there exists ann � max(mi; `(
i)) such that1. i(Z(
i; n)̂ 1)#�
i, and2. `(i(Z(
i; n)̂ 1)) = 'n(n).If no such n exists, set
i+1 df=
i. Otherwise, set ni to be the �rst such n we �nd andcontinue with the algorithm. Questions 1 and 2 above can both be answered in ;00. The setX is needed in steps 7 and 8.We can do better than G �T ;00 � X , however. The proof of Theorem 14 in the nextsection can be modi�ed easily to get G �T K �X , or more strongly, G �T S �X for anyset S such that K �T S. See the remark following Theorem 14.6 Degrees of Aw2-Generic SetsThe degrees of aw2-generic sets di�er drastically from 1-generic degrees inside the arithmetichierarchy. As mentioned before, below every nonrecursive r.e. set there is a 1-generic set,but no aw2-generic set exists below any incomplete r.e. set by Proposition 13 below. Onthe other hand, no 1-generic sets exist above 00 by virtue of equation (1), but as we showin Theorem 14, aw2-generic sets exist in all degrees above 00. Therefore, equation (1) doesnot hold for all aw2-generic sets, although it holds for \enough" of them, as we show byTheorem 19.Proposition 13 If A is an incomplete r.e. set, then there is no aw2-generic G �T A.Proof: Suppose G �T A. De�ne h(�) df= � b̂ where b df= 1�G(j�j). Clearly h �T G �T A,and h is a genericity requirement unmet by G. Thus G cannot be aw2-generic. 2The crucial property of our construction in the proof of Theorem 8 was that there werein�nitely many regions (the numbers of length di) where we could perform arbitrary codingwithout a�ecting the aw2-genericity of G. Moreover, these regions were decidable in PG,independent of what we put in them. We can adapt this technique to code an arbitraryset S into G while meeting all the other aw2-genericity requirements. This will allow us inTheorem 14 to construct an aw2-generic set in every degree d � 00. Thus aw2-genericity isessentially the strongest notion of genericity which is `dense upwards' in the Turing degrees.Theorem 14 is the second of our two main results. It bounds the complexity of G astightly as possible, combining the self-coding technique from the proof of Theorem 8 witha permitting argument adapted from Shore's construction of a 1-generic set below everynonrecursive r.e. degree. 11

Theorem 14 (Kurtz, Fenner) For every degree d � 00 there exists an aw2-generic setG 2 d.Proof: Fix an arbitrary set S such that K �T S. We will construct an aw2-genericG �T S. We build G to satisfy the requirementsRhe;ii: If K 6�T We and figWe is a genericity requirement, then G meets figWefor all e; i 2 !. This implies that G is aw2-generic. We build G in stages 0; 1; 2; : : : by initialsegments. At each stage s we de�ne a string
s so that; =
0 �
1 �
2 � : : : � G:We code S(s) as the last digit of
s+1, and as in Theorem 8, we code into
s+1 the informationon where to �nd S(s). At each stage, we act upon at most one requirement, and eachrequirement, never being injured, is acted upon at most once, after which it is satis�edforever. The whole construction is recursive in S.De�ne the function t(x) df= (�z)[Kzjnx = Kjnx]:Clearly, t �T K.Stage 0:
0 df= ;.End of Stage 0.Stage s+ 1: Let t df= t(s). Given
s we de�ne
s+1 �
s as follows: let he; ii � s be leastsuch that Rhe;ii has not yet been acted upon and there exists a least x � t such that (letting� df=
ŝ 0x+1̂ 1),1. figWe(�) halts in no more than t steps, and2. � � figWe(�) = 'x(x) � t.If no such he; ii exists, set
s+1 =
ŝ 1̂ S(s). Otherwise, we act upon requirement Rhe;ii bysetting
s+1 = � Ŝ(s), where � df= figWe(�) = 'x(x). (Note that in this case
s+1 meetsfigWe.)End of Stage s+ 1.The construction above is recursive in S: sinceK �T S we can use S to compute t = t(s)and We uniformly in e, from which condition (1) is e�ectively checkable. Condition (2) ischeckable in S by asking if 'x(x)#. It follows that G �T S.Computing S fromG can be done in a way similar to the proof of Theorem 8. To �nd thevalue of S(y) we reconstruct
0; : : : ;
y+1, then read o� the last digit of
y+1. Suppose we12

are given
i � G for i � y, and j
ij = m. We �nd
i+1 by examiningG(m); G(m+1); G(m+2); : : : to �nd the least j such that G(m+ j) = 1. If j = 0, then
i+1 =
î 1̂ G(m+1) (thatis, no requirement was acted upon at stage i+ 1). If j > 0, then compute � df= 'j�1(j � 1)from which
i+1 = �^G(j� j) (the computation 'j�1(j � 1) must halt by our construction).Therefore, we can reconstruct
0; : : : ;
y+1 to �nd S(y), so G �T S.Now we need only show that G satis�es all requirements. Suppose that Rhe;ii is the leastrequirement not satis�ed by G. Since each requirement is acted upon at most once, there isa stage s0 > he; ii after which no lesser requirement is acted upon. Because Rhe;ii is neversatis�ed, it must be the case that We is incomplete and figWe is a genericity requirement,otherwise Rhe;ii would be satis�ed vacuously. We now describe how to compute the functiont from We, which contradicts the fact that We is incomplete. Note that t is recursive inany function that dominates t, so it su�ces to compute from We a function f̂ such thatf̂(s) � t(s) for all s � s0.Fix an arbitrary string
 2 2<! . De�ne the functionr
(x) df= figWe(
 0̂x+1̂ 1):The function r
 is clearly We-recursive. Since We is incomplete, by Lemma 12 there is anx such that r
(x) = 'x(x). Using We, we can search for such an x. Let x
 be the �rst suchx we �nd, and let c
 be the number of steps it takes for figWe(
 0̂x
+1̂ 1) to halt. Both x
and c
 can be computed from
 using We. De�ne the functionf(
) df= max(
; x
; c
; r
(x
)):It is clear from the arguments above that f �T We.We know that no requirement less than he; ii is acted upon at any stage later than s0.Therefore, for any s � s0 it must be the case thatf(
s) > t(s); (8)otherwise conditions (1) and (2) would hold for x = x
s , and Rhe;ii would be acted uponand satis�ed at stage s + 1, contradicting our hypothesis. We would now be done if wecould only use We to compute
s for all s � s0, but unfortunately we cannot hope to dothis: we cannot compute the value of S(s) from We, nor can we determine whether or notsome greater requirement Rhe0;i0i is acted upon in any given stage.Fortunately, without knowing
s directly, we can still get an upper bound on f(
s) fors � s0, which is then su�cient to compute t(s). Notice that at stage s+ 1 > s0, we havej
s+1j � max(j
sj+ 2; jt(s)j+ 1) � jf(
s)j+ 2by condition (2), the de�nition of f , and equation (8). This implies that given
s there isonly a �nite set of possibilities for
s+1, which we can compute using f . To bound t(s+1),we guess a string
 from among these possibilities, compute f(
) for each guess, then take13

the maximum over all guesses. This value bounds f(
s+1)|and hence t(s + 1)|because
s+1 is one of the guessed strings.We enumerate a sequence of canonical representations of �nite sets V0; V1; V2; : : :� 2<!e�ectively in f as follows: V0 df= f
s0g;Vn+1 df= f� : (9
 2 Vn)j�j � jf(
)j+ 2g:All the Vn are �nite, and a trivial induction shows that
s 2 Vs�s0 for all s � s0. Now forall s 2 !, de�ne f̂(s) df= (0 if s < s0,max
2Vs�s0 f(
) if s � s0.We have for all s � s0, f̂ (s) � f(
s) � t(s):It follows that t �T f̂ �T f �T We;contradicting the assumption that We is incomplete. The theorem follows. 2Remark: Given an arbitrary X � !, we could easily modify the above proof to constructan aw2-generic G �T S � X satisfying Theorem 8 and causing all the other results inAppendix A to fail simultaneously.Corollary 15 Every degree a � 00 is hyperimmune with respect to every r.e. degree b < 00.Proof Sketch: By slightly modifying the proof of the `only if' part of Theorem 2.3 in[22], one can show that every aw2-generic degree is hyperimmune with respect to everyincomplete r.e. degree. 27 Other Properties of Aw2-Generic Sets7.1 Many-One Degrees Below Aw2-Generic SetsJockusch [19, Prop. 2.9] showed that the ordering of the m-degrees (except f;g and f!g)below any 1-generic set A is isomorphic to the inclusion ordering of the r.e. sets modulo the�nite sets. The same holds for weakly 1-generic sets and thus for aw2-generic sets by thesame proof, but there is one important di�erence between the 1-generic and aw2-genericcases: If A is 1-generic, then it is not hard to show that all non-maximumm-degrees belowA have Turing degree strictly less than that of A. This assertion fails for aw2-generic sets14

in the worst possible way, however. We show that there is an aw2-generic set G with `m-minimal Turing degree' in the sense that there are no nonrecursive m-degrees below G thatare not in the Turing degree of G. We obtain as a corollary that G is the join of two sets (orindeed in�nitely many sets) all Turing equivalent to G itself. This stands in sharp contrastwith 1-generic sets ([20, Lemma 2] and [19]).Theorem 16 There exists an aw2-generic set G such that, for all nonrecursive B, if B �mG then G �T B.Theorem 16 rests on the following lemma, which proves the somewhat remarkable factthat there is an aw2-generic set which is fully encoded within any in�nite recursive part ofits characteristic function.Lemma 17 There exists an aw2-generic set G such that, for all in�nite recursive sets A,G �T G \A.Proof of Theorem16: Let B �m G via the function f . Since B is nonrecursive, range(f)must be in�nite. Let A be an in�nite recursive subset of range(f). For all x 2 A we havex 2 G() (�z)[f(z) = x] 2 B:Thus G \A �T B. By Lemma 17, G �T B. 2Proof of Lemma 17: Let A0; A1; A2; : : : be an arbitrary listing of all the in�nite recursivesets, and let g0; g1; g2; : : : be an arbitrary listing of all the genericity requirements recursivein incomplete r.e. sets, as in the proof of Theorem 8 above. We again build G by initialsegments ; =
0 �
1 �
2 � � � � � G:Given a string � and n 2 !, we will de�ne a recursive function �n;�(x) such that1. � � �n;�(x) for all x 2 !.2. For each i 2 !, there is a recursive operator �i(X ; �) such that if n � i, then for allx 2 ! and for all sets B � �n;�(x),�i(B \Ai; �) = x:Intuitively, we use �s;
s(x) to extend to a larger portion of G, where x is chosen so that
s+1 = 'x(x) as in previous proofs. The string �s;
s(x) is just long enough to encode x ina particular way. The operators �i are then designed to recover x by looking only at thosepositions of the oracle in dom(�s;
s(x))\Ai. We will de�ne �n;� and �i precisely later on.We construct G as follows: 15

Stage 0:
0 df= ;.End of Stage 0.Stage s + 1: We are given
 df=
s. Let xs be the least x such that gs(�s;
(x)) = 'x(x),and set
s+1 to gs(�s;
(xs)) = 'xs(xs). [Note that gs��s;
 satis�es the hypothesis of Lemma12.]End of Stage s+ 1.Set G df= Ss
s. Clearly, G meets every gs, so G is aw2-generic. Fix i 2 !. We show thatG �T G\Ai. Note �rst that for all s � i, we have xs = �i(G\Ai;
s) since G � �s;
s(xs).Starting with
i, we compute xi = �i(G \ Ai;
i). We then compute
i+1 = 'xi(xi). Wecompute xi+1 = �i(G \ Ai;
i+1) to get
i+2 = 'xi+1(xi+1) and so on, to reconstruct all ofG. It remains to de�ne �n;� and �i appropriately. The string �n;�(x) must encode x so thatfor all i � n, �i(B; �) can recover x by looking at the oracle B � �n;�(x) only at locationsy 2 dom(�n;�(x))\Ai. For n = 0 this is not a problem. Let y1 < y2 < � � � be the elements ofA0 outside dom(�). Set �0;�(x) df= � 0̂0 � � �001, where the last 1 occurs at position yx+1. Thefunction �0(B; �) then recovers x by determining where the �rst 1 occurs in the sequenceB(y1); B(y2); : : : . [Note that B(yj) = (B \A0)(yj).]For n > 0, we would like to do the same trick simultaneously for �0; : : : ;�n. We mustbe careful to avoid con
icts, however. For example, if n = 1, the number yx+1 2 A0 mayalso be in A1, and placing a 1 at that position for the sake of �0 may mess up �1's count.We remedy this by having �1(B; �) read past the �rst 1 it sees (whether or not at positionyx+1), and take x to be the number of 0's between the �rst and second 1. Thus �1 ignoresthe position of the �rst 1, since it may be used to encode x for �0. In general, �n;�(x)encodes x for �0; : : : ;�n in descending order of priority, and each �i reads past a certainnumber of 1's before computing x.We de�ne �i(B; �) as follows: let y1 < y2 < � � � be the elements of Ai not in dom(�).�i(B; �) examines the sequence B(y1); B(y2); : : :until exactly 2i�1 many 1's appear, the lastoccurring at, say, B(yd). �i(B; �) continues examining the sequence B(yd+1); B(yd+2); : : :until the next 1 appears, say B(yc). �i(B; �) immediately outputs c� d and halts.Fix � and x, and let �n denote the string �n;�(x). We will de�ne �n by induction on n,maintaining the following invariants throughout:1. � � �n,2. the last digit of �n is 1, and3. �n has at most 2n+1 � 1 many 1's at positions outside dom(�).We de�ned �0 = �0;�(x) above. For n > 0, assume � df= �n�1 is de�ned, and lety1 < y2 < � � � be the elements of An outside dom(�). Let w be the number of distinct yj16

such that �(yj)#= 1. By the third invariant, we have w � 2n�1. We �rst want to extend �to a string � that has exactly 2n � 1 many 1's, including its last digit, among the positionsy1; y2; : : : . If w = 2n � 1, then we can take � df= �, since in this case the positions of all 1'sin � outside dom(�) must be of the form yj , including the �nal digit of �. If w < 2n � 1,then let v df= 2n � 1� w, let k be least such that yk 62 dom(�), and set� df= �^00 � � �0100 � � �0100 � � �01| {z }v many 1's ;where the last v many 1's occur at positions yk ; yk+1; : : : ; yk+v�1. Finally, we de�ne�n df= �̂ 00 � � �01;where the last 1 appears at position yk+v+x . Note that there are exactly x many 0'sappearing at positions yk+v+j for 0 � j � x� 1.The �rst two invariants clearly hold for all n. The third invariant clearly holds for n = 0.Assume n > 0 and the third invariant holds for n�1. There are at most 2n many additionaly 2 dom(�n)�dom(�n�1) with �n(y) = 1. Thus the number of y 62 dom(�) with �n(y)#= 1is at most 2n � 1 + 2n = 2n+1 � 1, so the third invariant holds for n.The function �n;�(x) is easily seen to be recursive for all n and �: �n;�(x) can becomputed e�ectively given recursive indices for A0; : : : ; An. By viewing the de�nitions of�n;� and �i simultaneously, it is clear that �i(B; �) = x for all i � n and B � �n;�(x). Also,since �i(B; �) depends on B only at positions in Ai, we have �i(B \Ai; �) = �i(B; �) = xas desired. 2For a given set S � !, de�ne S0 and S1 to be the unique sets such that S0�S1 = S, andfor n 2 ! de�ne S [n] df= fx j hx; ni 2 Sg. If A is 1-generic, then A0 is Turing incomparablewith A1, and no set A[n] is computable in Lk 6=n A[k] [20, 19]. By contrast, we have thefollowing:Corollary 18 There exists an aw2-generic set G such thatG �T G0 �T G1 �T G[0] �T G[1] �T G[2] �T : : : :Remark: If G is aw2-generic, the most we can say about G0 and G1 is that they are bothaw2-generic and truth-table incomparable. The same thing holds true for all the G[n], andalso if `aw2-generic' is replaced by `weakly 1-generic'.7.2 Jump Inversion with Aw2-Generic SetsAre there aw2-generic degrees strictly below 00? Since there are aw2-generics above K, itis not true that equation (1), G0 �T G�K;17

holds for all aw2-generic G. Despite this, can the Friedberg Completeness Criterion beproved with aw2-generic sets? The answer to both these questions is yes. Shore [30] hasmodi�ed the proof of Theorem 14 to prove the Friedberg Completeness Criterion usingaw2-generic sets:Theorem 19 (Shore) For every degree d � 00 there is an aw2-generic set G such thatG0 �T G�K 2 d. (G is also 1-generic.)Proof: Fix a set S 2 d. We build G by initial segments ; =
0 �
1 �
2 � � � � � G instages 0; 1; 2; : : : as before, where S(s) is coded as the last digit of
s+1. We need to satisfythe requirementsRhe;ii: If K 6�T We and figWe is a genericity requirement, then G meets figWe,Qs: If 's is a partial genericity requirement, then G meets 's.The �rst set of requirements fRhe;iig will guarantee that G is aw2-generic; the second setfQsg will guarantee that G is 1-generic. The requirements are ranked in descending orderof priority as follows: Q0; R0; Q1; R1; Q2; R2; : : : :By equation (1), it su�ces to make sure that G � K �T S. As before, no requirement isinjured, and each requirement is acted upon at most once, after which it is satis�ed forever.Stage 0:
0 df= ;. u0 df= 0.End of Stage 0.Stage s + 1: We are given
s and us.Step 1: Let us+1 df= 1 +maxf(�z)[Kzjns = Kjns]; us; mg, wherem df= maxfj'j(�)j : j � s & j�j � us & 'j(�)#� �g:For j � s, we say that requirement Qj is hungry if Qj has not yet been acted uponand 'j(
s)#�
s.Step 2: For all he; ii � s, say that requirement Rhe;ii is hungry if Rhe;ii is not yet actedupon and1. figWe(
s) halts in no more than us+1 steps,2.
s � figWe(
s), and3. jfigWe(
s)j � us+1 � 1. 18

Step 3: If there are no hungry requirements, we set
s+1 df=
ŝ S(s). Otherwise, we actupon the hungry requirement of highest priority as follows: if Qj is the highest priorityhungry requirement, we set
s+1 df= 'j(
s)̂ S(s); if Rhe;ii is the highest priority hungryrequirement, we set
s+1 df= hfigWe(
s)i Ŝ(s).End of Stage s+ 1.The function u df= �s:us+1 serves the same purpose as the function t in the proof ofTheorem 14. Its de�nition is complicated slightly by our wish to maintain the followinginvariant for all s, which can be shown easily by induction:j
sj � us:Note that u dominates t, so K �T u. Conversely, it is clear that u �T K: the function u isde�ned independently from the set S. Thus u �T K.Since K �T S, the entire construction is evidently recursive in S, hence G �K �T S.On the other hand, the construction is also recursive in G�K: given
s and us, we use Kto compute us+1 and to determine which requirement, if any, is acted upon at stage s+ 1;we use G to determine the last digit of
s+1, which encodes S(s). Therefore, G�K �T S.Since G will be shown to be 1-generic, by equation (1) we have G0 �T S as well.It remains to show that all requirements are satis�ed. Suppose this is not the case. Wehave two possibilities:Case 1: The highest priority unsatis�ed requirement is Qj . Let s0 be a stage beyond whichno higher priority requirement is acted upon. Since Qj is not acted upon at stages0 + 1, it must be because either 'j(
s0) " or 'j(
s0) 6�
s0 . In either case, Qj issatis�ed. Contradiction.Case 2: The highest priority unsatis�ed requirement is Rhe;ii. It must be that figWe isa genericity requirement with We incomplete, otherwise Rhe;ii is satis�ed vacuously.We describe a We-recursive function which dominates u and thus dominates t. Thisimplies K �T We, which contradicts the fact that We is incomplete.Let s0 be a stage beyond which no higher priority requirement is acted upon. For alln 2 ! de�ne g(n) df= max(`+ 1; r);where ` df= maxj�j�n jfigWe(�)j;and r df= maxj�j�n [running time of figWe(�)]:19

Note that g is total, We-recursive, and nondecreasing. Since Rhe;ii is not acted uponat any stage s + 1 > s0, conditions (1) and (3) cannot both hold in step 2 of stages+ 1. Thus g(us) > us+1, since j
sj � us. De�nef(k) df= uk for all k < s0;f(s0) df= us0 ;f(s+ 1) df= g(f(s)) for all s � s0:Clearly, f is We-recursive, and f(s) � us for all s � s0. Thus f(s) � us for all s 2 !,and so the function �s:f(s+ 1) dominates u and is We-recursive.2Remark: In the case where d = 00, the degree of the set G constructed in the proof above,as well as being low, is incomparable with every r.e. degree except 0 and 00. This followsimmediately by Proposition 13 and the fact that there is no nonzero r.e. degree below a1-generic degree.8 Further ResearchWe have shown that the notions of aw2-genericity and 1-genericity are of incomparablestrength. It is interesting to compare the properties of aw2-generics with those of 1-genericsand other sets of comparable genericity. For example, can an aw2-generic degree forma minimal cover? For another example, Martin (see [19]) showed that 2-generic degreescannot bound minimal degrees. More recently, Chong & Downey [7] and Kumabe [21]independently constructed a 1-generic degree bounding a minimal degree. There are aw2-generic degrees bounding minimal degrees, trivially because every degree is bounded by anaw2-generic degree by Theorem 14. Do there exist aw2-generic degrees which are themselvesminimal? We suspect not, despite the evidence suggested by Theorem 16 about m-degrees.More generally, what can we say about the structure of the Turing degrees below an aw2-generic degree?As was mentioned in Section 4, almost nothing is known about sets that are rec(d)-generic for all d < 00, not necessarily r.e. In particular, are any of these sets not weakly2-generic? It is easy to see that none of these sets can exist strictly below 00, so by Theorem19 there are aw2-generic sets which do not �t this description.Is the notion `almost weakly n-generic' useful for n > 2?AcknowledgmentsI would like to thank my thesis advisor, Stuart Kurtz, for his astute guidance and inspiration,as well as for suggesting that Theorem 16 is true and providing the key insight into its proof.20

I am also grateful to Richard Shore for communicatingTheorem 19, Lance Fortnow for manygood conversations and for proving an earlier result similar to Theorem 8, and to JamesFoster for helpful discussions and correspondence. Finally, I wish to thank WilliamGasarchfor his helpful comments on earlier drafts of this paper.A Analogues to Theorem 4The techniques used by Blum & Impagliazzo to prove Theorem 4 can be adapted to provea number of similar results. A general study of these and other techniques can be found in[12]. We list most of the known results here; in the listing, G can be any 1-generic set, andSAT is the NP-complete set of satis�able Boolean formulae. De�nitions of UP and FewPcan be found, for example, in [15] and [1] respectively. The class SPP is de�ned in [11] andin [27] under the name XP. The class BPP is well-studied; see [4] for example.� NPG \ co-NPG � PG�SAT [6].� UPG � PG�SAT [6].� FewP � PG�SAT [12].� Every pair of disjoint NPG sets is PG�SAT-separable [6, 9].� BPPG � PG�C , where C is any �p2-complete set [18] (�p2 df= NPNP).� SPPG � PG�E , where E is any set complete for PSPACE [12].References[1] E. W. Allender. The complexity of sparse sets in P. In Structure in Complexity Theory,Lecture Notes in Computer Science, vol. 223, Springer-Verlag, 1986, pages 1{11.[2] K. Ambos-Spies, H. Fleischhack, and H. Huwig. P-generic sets. In Proceedings of the11th International Colloquium on Automata, Languages, and Programming (Paredaens,editor), Lecture Notes in Computer Science, vol. 172, Springer-Verlag, 1984, pages 58{68.[3] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polynomial timecomputable sets. Theoretical Computer Science, 51:177{204, 1987.[4] J. L. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I, volume 11 of EATCSMonographs on Theoretical Computer Science. Springer-Verlag, 1988.[5] M. Blum. A machine-independent theory of the complexity of recursive functions.Journal of the ACM, 14(2):322{336, 1967.21

[6] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the28th Annual IEEE Symposium on Foundations of Computer Science, pages 118{126,1987.[7] C. T. Chong and R. G. Downey. Minimal degrees recursive in 1-generic degrees. Annalsof Pure and Applied Logic, 48:215{225, 1990.[8] S. Fenner. Notions of resource-bounded category and genericity. Technical Report90-32, Department of Computer Science, University of Chicago, 1990.[9] S. Fenner. Notions of resource-bounded category and genericity. In Proceedings of the6th Annual IEEE Structure in Complexity Theory Conference, pages 196{212, 1991.Journal version in preparation.[10] S. Fenner. Tight lower bounds on genericity required to prevent one-way functions.Technical Report 91-04, Department of Computer Science, University of Chicago, 1991.[11] S. Fenner, L. Fortnow, and S. Kurtz. Gap-de�nable counting classes. Journal ofComputer and System Sciences, 48:116{148, 1994.[12] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder's toolkit. In Proceedingsof the 8th IEEE Structure in Complexity Theory Conference, pages 120{131, 1993.[13] J. A. Foster. Forcing and Genericity on the Polynomial Hierarchy. PhD thesis, IllinoisInstitute of Technology, 1990.[14] R. M. Friedberg. A criterion for completeness of degrees of unsolvability. Journal ofSymbolic Logic, 22:159{160, 1957.[15] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.SIAM Journal on Computing, 17:309{335, 1988.[16] P. G. Hinman. Some applications of forcing to hierarchy problems in arithmetic. Z.Math. Logik Grundlagen Math, 15:341{352, 1969.[17] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-putation. Addison-Wesley, 1979.[18] R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proceedings ofthe 3rd IEEE Structure in Complexity Theory Conference, pages 29{38, 1988.[19] C. G. Jockusch. Degrees of generic sets. In F. R. Drake and S. S. Wainer, editors,Recursion Theory: Its Generalizations and Applications, pages 110{139. CambridgeUniversity Press, 1980.[20] C. G. Jockusch and D. B. Posner. Double jumps of minimal degrees. Journal ofSymbolic Logic, 43:715{724, 1978. 22

[21] M. Kumabe. A 1-generic degree which bounds a minimal degree. Journal of SymbolicLogic, 55(2):733{743, 1990.[22] S. A. Kurtz. Notions of weak genericity. Journal of Symbolic Logic, 48(3):764{770,September 1983.[23] J. H. Lutz. Resource-bounded Baire category and small circuits in exponential space.In Proceedings of the 2nd Annual IEEE Structure in Complexity Theory Conference,pages 81{91, 1987.[24] J. H. Lutz. Almost everywhere high nonuniform complexity. In Proceedings of the4th Annual IEEE Structure in Complexity Theory Conference, pages 37{53, 1989. Anupdated version appears as Iowa State University Computer Science Department Tech-nical Report #91-18.[25] J. H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing,19(6):1100{1131, December 1990.[26] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Unpublishedmanuscript, 1991.[27] M. Ogiwara and L. A. Hemachandra. A complexity theory of feasible closure properties.In Proceedings of the 6th Annual IEEE Structure in Complexity Theory Conference,pages 16{29, 1991.[28] B. Poizat. Q = NQ? Journal of Symbolic Logic, 51:22{32, 1986.[29] H. Rogers. Theory of Recursive Functions and E�ective Computability. McGraw-Hill,1967. Reprinted. MIT Press. 1987.[30] R. A. Shore, 1991. Private communication.[31] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.
23

