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Abstract 

It is well known that Bayes’ theorem (with likelihood ratios) can be used to calculate the impact 

of evidence, such as a ‘match’ of some feature of a person. Typically the feature of interest is 

the DNA profile, but the method applies in principle to any feature of a person or object, 

including not just DNA, fingerprints, or footprints, but also more basic features such as skin 

colour, height, hair colour or even name. Notwithstanding concerns about the extensiveness of 

databases of such features, a serious challenge to the use of Bayes in such legal contexts is that 

its standard formulaic representations are not readily understandable to non-statisticians. 

Attempts to get round this problem usually involve representations based around some variation 

of an event tree. While this approach works well in explaining the most trivial instance of 

Bayes’ theorem (involving a single hypothesis and a single piece of evidence) it does not scale 

up to realistic situations. In particular, even with a single piece of match evidence, if we wish to 

incorporate the possibility that there are potential errors (both false positives and false 

negatives) introduced at any stage in the investigative process, matters become very complex. 

As a result we have observed expert witnesses (in different areas of speciality) routinely ignore 

the possibility of errors when presenting their evidence. To counter this, we produce what we 

believe is the first full probabilistic solution of the simple case of generic match evidence 

incorporating both classes of testing errors. Unfortunately, the resultant event tree solution is too 

complex for intuitive comprehension. And, crucially, the event tree also fails to represent the 

causal information that underpins the argument. In contrast, we also present a simple-to-

construct graphical Bayesian Network (BN) solution that automatically performs the 

calculations and may also be intuitively simpler to understand. Although there have been 

multiple previous applications of BNs for analysing forensic evidence – including very detailed 

models for the DNA matching problem, these models have not widely penetrated the expert 

witness community. Nor have they addressed the basic generic match problem incorporating the 

two types of testing error. Hence we believe our basic BN solution provides an important 

mechanism for convincing experts – and eventually the legal community – that it is possible to 

rigorously analyse and communicate the full impact of match evidence on a case, in the 

presence of possible errors.  
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1. Introduction 

Correct probabilistic reasoning has the potential to dramatically improve the efficiency and 

quality of the criminal justice system. Central to probabilistic reasoning is Bayes’ theorem: a 

mathematical rule prescribing the correct way for updating the probability of a hypothesis 

given new evidence  [5] [8] [11] [13]  [26]  [45] [47]. The application of Bayes’ theorem to 

probabilities is akin to the application of addition or multiplication to numbers: probabilities 

are either correctly combined by this rule, or they are combined incorrectly by other means. 

However, much contention surrounds the use of Bayes in the courtroom, not least because its 

formulaic analyses are often complicated, especially to lawyers, judges and juries, who are 

typically untrained in statistics. Presenting even a ‘simple’ Bayesian calculation using the 

standard formulaic approach, such as Figure 1, is clearly not feasible in court.  
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Figure 1 A typical Bayesian calculation: well beyond the comprehension of lawyers and juries 

 

Indeed, it was an attempt based on this exact example, that led to the ruling in  [1] that: 

“The introduction of Bayes' theorem into a criminal trial plunges the jury into 

inappropriate and unnecessary realms of theory and complexity deflecting them from 

their proper task” 

The difficulties in understanding Bayesian reasoning were exemplified in the recent, highly 

profiled case of R v T  [1], where the English Court of Appeal ruled that the use of formulas to 

calculate probabilities and reason about the value of evidence was inappropriate in areas such 

as footwear mark evidence where there was no ‘firm scientific base’. Although there have 

been many critiques of the ruling ( [6] [10]  [40]  [46]  [53]  [48]) it is directly impacting the way 

forensic experts analyse and present evidence to courts (we present actual examples of its 

potentially damaging impact below).    

One of the objectives of this paper is to explain why correct Bayesian reasoning about the 

impact of evidence on a case is so challenging for courts and also expert witnesses 

themselves. We focus on the generic case of match evidence, which we introduce in Section 

2. Our notion of a ‘match’ applies to all types of evidence (not just that which comes under 

the standard category of forensics). A match could refer to some feature of a person ranging 

from DNA, fingerprints, or footprints through to more basic features such as skin colour, 

height, hair colour or even name. But it could also refer to non-human artefacts (and their 

features) related to a crime or crime scene, such as clothing and other possessions, cars, 

weapons, soil etc. In all cases a standard approach to evaluating the impact of a ‘match’ is to 

compute the likelihood ratio (the probability of finding the match if it belongs to the target 

divided by the probability of finding the match if it does not belong to the target); of course, 

this requires access to statistical data and/or expertise about the frequency of the feature in the 

relevant population. Notwithstanding concerns (as raised in RvT) about the rigour of such 

data, there are two challenges: 

1. Ensuring the probability calculations are correct 

2. Explaining to lay people how the results were arrived at and what they mean 

It turns out, as we show in Section 3, that with certain extremely simplified assumptions 

(notably that there is a single piece of match evidence and every aspect of the matching and 

testing process is ‘perfect’ so there is no possibility of matching errors), challenge 1 is 

sufficiently simple for any type of evidence expert to do by hand. And for challenge 2 with 

these assumptions it is widely assumed that the underlying Bayesian arguments can be easily 
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explained to lay people by using event trees (or some equivalent like population diagrams) 

annotated with frequency values for probabilities of events  [29].  

However, as soon as things get more complex, such as where there are multiple pieces of 

dependent evidence or where the profile of a single matched feature is based on multiple 

interdependent components (such as the loci of DNA, or the characters in a car number plate) 

it is impossible to do the calculations manually, let alone explain them to lay people. 

Although probability experts have addressed some of these complexity problems extensively 

in the special case of DNA match evidence (notably, by using sophisticated Bayesian network 

models  [17] [18] [54]) these methods have not widely penetrated the expert witness 

community.  

Moreover, even if we ignore the complexity of dependent profile components, there is an 

extremely important additional complexity that generally must be considered in the simplest 

case: this is the need (highlighted by the likes of Koehler  [36] [37] [38] and 

Thompson  [55] [56])  to incorporate the possibility of matching errors (false positives and 

false negatives) that can occur at various stages of investigation and testing and which can 

have a devastating impact on the value of the evidence. It turns out that, even in the simplest 

case, in practice expert witnesses are either not aware of the need to incorporate the 

possibility of errors in their analysis or they do not know how to do it. Indeed, on the basis of 

several dozen confidential reports from expert witnesses that we have been asked to scrutinize 

in the last 5 years, we believe that in practice proper analysis (i.e. accounting for possible 

testing errors) is not undertaken even in the simplest case. The experts tend to simply ignore 

the challenge, making assumptions that are unrealistic (and often demonstrably false).  This 

results in presentation of the impact of their evidence that is often misleading and 

fundamentally flawed. 

The expert reports we have examined (primarily, but not exclusively from forensic scientists) 

considered different types of match evidence in murder, rape, assault and robbery cases. The 

match evidence includes not just DNA, but also handprints, fibre matching, footwear 

matching, soil and particle matching, matching specific articles of clothing, and matching cars 

and their number plates (based on low resolution CCTV images). Although the DNA experts 

in many of these cases provided explicit probability statements (such as “the probability that 

the trace found came from a person unrelated to X is less than one in a billion”) the other 

experts have invariably provided verbal quasi-probabilistic statements instead, most typically 

in the following format: 

“.. the probability/chances that Y belongs to anybody other than X is so small that it can be 

discounted
4
” 

“.. the probability/chances that Y comes from anything/anywhere other than Z is so small that 

it can be discounted” 

“ the evidence provides moderate/strong/very strong support for the proposition that Y 

belongs to /comes from X”  

In all cases there was some kind of database or expert judgement on which to estimate 

frequencies and ‘random match’ probabilities, and in most cases there appears to have been 

some attempt to compute the likelihood ratio. The verbal scale (ranging from “weak or 

limited support”, through to “extremely strong support”) is typically based on a Forensic 

Science Service Guide described in  [43] that is a direct mapping from the likelihood ratio. For 

example, “moderately strong support” corresponds to a likelihood ratio of between 100 and 

1000.  

                                                                 

4
 We also found lawyers who automatically assumed that evidence of fingerprint and DNA ‘matches’ 

were synonymous with ‘identification’ – an issue explained in [34] and [49].  
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However, in all but the DNA cases the explicit statistics and probabilities were not revealed in 

court – in several cases this was as a direct result of the RvT ruling. Indeed, we have seen 

expert reports that contained the explicit data being formally withdrawn as a result of RvT. 

This is one of the key negative impacts of RvT - we feel it is extremely unhelpful that experts 

are forced to suppress explicit probabilistic information; stating “moderately strong support” 

instead of a specific likelihood ratio of, say, 200 is an unnecessary loss of important expert 

information. However, of far greater concern is the fact that in not one report did the experts 

make any attempt to incorporate into their explicit (or implicit) calculations the 

probabilistic uncertainty of match errors. Where experts considered the possibility of match 

errors at all it was only in the context of cross-contamination, which in generic terms can be 

considered as the case where the trace being tested is not the same as the trace associated with 

the crime or crime scene. In all such cases the experts simply dismissed such a possibility as 

either “impossible” or “so small that it can be discounted”.  

In Section 4 we provide a generic ‘solution’ to the case of a single piece of match evidence 

incorporating the possibility of testing errors. Although the paper  [55] considered (for DNA 

evidence) the case with false positives, we believe ours is the first generic solution 

incorporating the possibility of both false positives and false negatives. The solution in 

Section 4 is an event tree version. Unfortunately, even for such a constrained and simplified 

version of the problem this approach becomes computationally difficult and far too complex 

for intuitive comprehension (and might lead to a lack of trust in the transparency and accuracy 

of the results). We also argue that event trees do not adequately allow the unambiguous 

representation of the sorts of causal knowledge implicit in legal arguments linking hypotheses 

together with evidence.  

The calculations represented by, and carried out, using event trees are static versions of the 

kinds of adaptive, flexible calculations that can be much more easily and rapidly carried out 

using Bayesian Network (BN) technology. Hence, in Section 5 we present the generic BN 

solution. In stark contrast to event trees, the simple-to-construct BN solution not only 

automatically performs the calculations necessary to quantify the value of the match evidence, 

but may also be intuitively simpler to understand. For more complex versions of the problem 

BNs provide the only currently available method for doing the necessary calculations. We 

stress again that the use of BNs for probabilistic analysis of forensic evidence is by no means 

new (see, for example   [8] [15] [16] [24] [26] [31] [32] [41] [50] [53] [54] and also  [11] [12] [35] [58] 

for related evidence argumentation approaches) and our solution does not represent the state-

of-the-art of BN analysis for the special case of DNA (which can be found in articles such 

as  [15] [41]) but what we present is the first simple generic BN solution to this specific 

problem, in a way that we feel could be presented and used by practitioners. 

Based on previous experience of using BNs to help lawyers understand the impact of 

evidence  [24] [26], we feel that the BN solution can be used to more easily and accurately 

perform the necessary probabilistic analyses. However, we do not claim that such a solution is 

ready to be used in court. Instead, in Section 6, we recommend a process whereby legal 

professionals can trust the mathematical correctness of Bayesian calculations, in the same 

way as one would trust a calculator to carry out arithmetical calculations. Once they are 

assured of the mathematical certainty of the Bayesian method, legal professionals can then 

productively focus debate on the aspects of Bayesian calculations that are disputable and 

often very difficult: how evidence translates into the prior assumptions and probability values 

that are input into the calculation process.  

2. The simplest generic evidence ‘match’ problem 

In order for our analysis and recommendations to be as widely applicable as possible we 

consider a generic framework for the notion of evidence matching. It is applicable to, just 

about, any current and future area of forensic science involving physical properties of human 

beings, what they wear, and what they own. It also applies to areas of evidence not considered 
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as forensics but where there is a valid notion of ‘match’ evidence. To give a feel for why it is 

much broader than just DNA it includes the following diverse examples (in each case we 

want to know probabilistic impact of the match evidence): 

1. In fleeing a crime the person believed to have committed it stumbles leaving a shoe 

he was wearing at the scene. A shoe expert determines the size of the shoe to be 14. A 

suspect is examined and found to have feet requiring size 14 shoes. Hence, the 

suspect’s shoe size ‘matches’ that found at the scene
5
.  

2. An eyewitness to a crime states that the criminal had the following identifiable 

features: sex (male), complexion (East Asian) height (between 200 and 210 cm) and 

hair colour (light-coloured). Fred is a man, Malaysian, 206.8 cm tall (to one decimal 

place), with blonde hair. Hence Fred ‘matches’ the person seen by the eye witness.    

3. A fragment of a cheque is left at a crime scene. A cheque expert asserts that the first 

three numbers “3280” of the nine-digit account code are on the cheque. A suspect’s 

cheque account code is “328019456” and hence ‘matches’ that found at the scene.  

4. A blurred CCTV image from a crime scene reveals a car number plate. A car number 

plate expert (aided by an image expert) determines that it is a 7 character number, in 

which the first character is either R or P, the third and fourth are numbers 5 and 6 

respectively and the last is M or N. The suspect owns a car with number plate PC56 

KRM, and hence it ‘matches’ that found at the scene. 

5. A Harrods’s label grey bomber jacket with distinctive embroidered emblem of a 

cockerel sitting on a football is found at the crime scene. A CCTV image of a suspect 

captured the day before the crime shows him wearing a grey bomber jacket with an 

emblem resembling a bird. Hence the jacket found at the scene matches the one the 

suspect was known to wear.  

6. Soil found on a suspect’s car the day after a crime is determined by soil experts to 

contain two fairly rare hydrocarbon compounds. The soil at the crime scene contains 

the same two hydrocarbon compounds and hence matches the soil found on the 

suspect’s car. 

7. A recording of an emergency telephone call made by a murder victim shortly before 

his death includes the statement “Xavier is trying to kill me”. A man called Xavier 

Voss lives a mile from the victim and hence matches the name of the assumed 

murderer.  

8. A voice expert compares the voice in the telephone call (in 7 above) with a clear 

recording of a speech the victim made at his daughter’s wedding and determines that 

the voice patters are sufficiently similar that they match.  

From the above examples, it may be seen that in general match evidence is characterised by 

the following concepts: 

 Feature and Trace: There is one or more feature (such as DNA, voice, size, code, 

and colour) of either a person, a person’s belongings or clothing, or an object 

associated with the person or crime scene that is found in the form of a trace. For a 

person the trace can be found in the form of actual human tissue (blood, semen, hair, 

skin, etc.), a type of ‘print’ (such as a fingerprint,  handprint, footprint, ear print etc); 

                                                                 

5
 Note that even if the suspect is determined to have feet requiring size 13 or 14 shoes, we would still 

refer to it as a ‘match’; thus, we deliberately avoid using the term ‘consistent with’ even though 

forensic scientists typically use that expression rather than ‘match’ in such situations. The distinction 

between ‘match’ and ‘consistent with’ is actually artificial and leads to much confusion since it 

suggests, wrongly, that a ‘match’ is somehow unique. Even using the term ‘exact match’ to distinguish 

“14” from “13 or 14” is potentially misleading because again it wrongly implies uniqueness. 
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or a ‘record’ (such as an image from a CCTV, an eye witness statement, a sound 

recording, or even a birth certificate). Similarly, for an article of clothing or object the 

trace can be in the form of a physical part of the object (ranging from a single fibre or 

particle through to the entire item left at the scene); a type of print (such as shoe print, 

tyre print, etc) or a ‘record’ (such as from a CCTV, eye witness statement, or 

invoice).  

 Profile: The profile, X, of the feature is some set of identifiable markers or 

parameters that can be determined from the trace; for example, the profile of the 

cheque account code is a set of up to 9 numbers (depending on how many are 

visible); for any type of ‘print’ the profile could be as simple as the specific length 

and width or as complex as a thousand shape parameters depending on the type and 

quality of print; for human tissue the feature of interest would normally be DNA and 

the profile would normally be in the form of a number of specific DNA loci (where 

the number depends on the quality of the trace); but where the trace is a record the 

profile of a feature such as ‘height’ of a person could be as simple as a single number 

or range.  

 Source, target, and reference trace: The trace found at the scene is called the 

source trace, from which we determine the profile of the feature of interest In 

addition, we assume that there is a person (normally but not always the defendant) or 

object from which it is possible to get a trace, referred to as the target trace, and from 

which it is possible to determine the profile of the feature of interest. So, in Example 

1 the cheque fragment is the source trace, and the account code is the feature of the 

bank account we are interested in. The target trace could be a cheque or bank 

statement taken from the defendant, from which we determine the profile of the 

account code and the target trace. Normally the profile of the source trace contains 

less ‘information’ than the profile of the target trace (but there are cases where the 

situation is reversed such as in Example 4 above where the whole item is found at the 

scene rather than in the possession of the defendant). For example, the profile of the 

‘source’ cheque in our example has just the first four numbers of the account code 

whereas the profile of the ‘target’ cheque has all 9 numbers. Whichever trace contains 

the more information is referred to as the reference trace.  

 Match: The evidence E of a match is the observation that the profile of the less 

informative trace, be it source or target, is a subset of the profile of the reference 

trace.  

To keep things as simple as possible we focus on the simplest possible case of match 

evidence where there is just a single marker/parameter that characterises the feature of 

interest.  Example 1 is fine since the shoe ‘size’ is characterised by a single number or 

number range.  Example 3, is also fine because as long as the numbers in a cheque account 

code can be considered random and independent of each other, then we can treat the entire 

code number as a single marker. Similarly, example 7 is fine providing the feature is 

restricted to ‘first name’ rather than full name. However, in contrast, in Example 4 the 

components of a car number plate are not all random and independent; for example, the third 

and fourth characters are normally digits corresponding to a particular year code (56 means 

the car was first registered in the second half of the year 2006). As a rule of thumb, if there is 

more than one marker required to characterise the feature then we need to ask the following 

questions: 

 Do the different markers require different tests or types of tests (which may have 

different levels of accuracy)? 

 Are there dependencies between any of the different markers (e.g. does the value of 

one influence the value of another)?  

 Do the values of different marker have different prior frequencies? 



7 

 

If the answer to any of these questions is ‘yes’ (as in Examples 2,4,5,6,8 above) then the 

correct probabilistic modelling of the match ‘as a whole’ is beyond the scope of this paper. 

DNA is another example where the individual markers are not genuinely independent and 

hence where correctly handling match probabilities requires sophisticated Bayesian network 

models  [17] [18] [41]. The fact that there were dependencies between the markers (that may 

not have been rigorously handled) in the RvT shoeprint case was one of the problems 

highlighted.  

For simplicity, we will also ignore the potential for mixed profiles (especially relevant to 

DNA), which adds massive complexity to the problem (see, for example  [15] [31] [54] for an 

understanding of the probabilistic complexities involved). However, the point we are making 

in what follows is that current approaches to analysing and presenting the impact of match 

evidence cannot adequately deal with even the simplest case; the fact that, in practice there 

are likely to be additional complexities actually strengthens our argument for ‘getting the 

basics right’. Moreover, in all of the above cases we can apply the reasoning we present to the 

separate markers (before worrying about how to handle the impact of dependencies).  

3. Probabilistic analysis for simplest case of match evidence 

So, with the simplistic assumptions stated in Section 2, we wish to know what the evidence of 

a claimed match between the source and target trace tells us about the hypothesis  

H: “The source trace belongs to the defendant”.  

(We use ‘the defendant’ here as a simplification because we could equally replace it with ‘the 

victim’, or any other relevant person, item or object associated with the crime or crime scene). 

Thus, in example 1 above this means we want to know what the matching shoe size evidence 

tells us about the hypothesis that the shoe found at the scene actually belongs to Fred. This 

example is deliberately chosen not just for simplicity but because it highlights a fundamental 

flaw in the RvT ruling, which assumed there is a clear distinction between forensics with a 

‘firm statistical’ base (of which DNA was cited as an example) and that for which there is not 

(of which footwear was cited). In reality getting accurate statistics on shoe size frequency is 

more realistic than getting accurate statistics on DNA profile frequency.  

In probabilistic terms the question we are asking is:  

How does the probability of H change after we observe the evidence E.  

For example, if the shoe size is extremely rare in the population then the impact of the 

evidence on H is far greater than if the shoe size is one of the most common in the population.  

Formally, the prior probability of H (our belief about H before seeing the evidence) is written 

P(H) and the posterior probability of H (our belief about H after seeing the evidence) is 

written P(H | E). 

In practice, if we assume that the profile testing is always perfectly accurate and that the 

entire investigation process is carried out without errors or malicious intent (meaning no 

possibility of the source or target traces being mixed up with any other traces at any stage), 

then it turns out that all we actually need in principle to determine the impact of E on H are 

the following two probabilities (although note that these may be extremely difficult to obtain 

in practice): 

1. The probability of E given H (the ‘Prosecution likelihood’) written P(E | H): This 

is the probability that we would find the defendant’s trace profile matching the source 

profile if the source trace belongs to the defendant.  

Example: if we assume we can get a trace from the defendant that is at least as 

informative as the one left at the scene, and that the nature of the trace is such that it 

does not change much over time (e.g. DNA, shoe size, complexion and height but not 
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hair length or colour), then since we are also assuming perfect testing it is reasonable 

to assume that the prosecution likelihood is equal to one in this case. 

2. The probability of E given not H (the ‘Defence likelihood’) written P(E | not H):  

This is the probability that we would find the defendant’s trace profile matching the 

source profile if the source trace does not belong to the defendant.   

Example: Suppose the trace is a shoeprint and that the matching profile is simply the 

size – say 14 – of the shoeprint, then a reasonable estimate of P(E | not H) would be 

the proportion of people who wear size 14 shoes.  

Although not strictly correct (see, e.g.  [7]) the defence likelihood is also sometimes 

referred to as the random match probability or the probability of an innocent match
6
. 

Intuitively, the smaller the defence likelihood is relative to the prosecution likelihood, the 

greater the ‘probative value’ of the evidence in favour of the prosecution. Hence, a commonly 

used measure of the impact of evidence is the likelihood ratio: the prosecution likelihood 

divided by the defence likelihood  [20]. Despite the reservations expressed explicitly about 

this measure in the RvT Ruling  [2], it is has become a fairly standard means by which 

forensic scientists evaluate the impact of their evidence  [5] [6] [20] [25] [40] [43]. There are, 

however, severe limitations about exactly when the measure can be applied – as explained in 

depth in  [27] and also  [7] [13] [19]  [30] [31] [39] [42] [50] [57]. 

Notwithstanding these concerns about the likelihood ratio, a major reason for its popularity is 

that it supposedly enables forensic scientists to focus on their area of expertise without having 

to make any assumptions about P(H), the prior probability of H.  However, as explained in 

several of the previously referenced critiques, there is a fundamental problem with this 

assumption. The (only) formal explanation for the probative value of the likelihood ratio 

relies on Bayes’ theorem. Specifically, (the ‘odds
7
 version of) Bayes’ theorem is the 

following formula:  

Posterior odds of H = Likelihood ratio × Prior odds of H 

It is only this formula that enables us to conclude formally that: 

 if the LR is greater than 1 then the larger its value the more strongly the evidence E 

supports the prosecution hypothesis H (because the posterior odds of H will be that 

much greater than the prior odds); 

 conversely if the LR is less than 1 then the smaller its value the more strongly the 

evidence E supports the defence hypothesis not H.  

 if the LR = 1 then the evidence E has no probative value on H because the posterior 

odds remain unchanged
8
.  

                                                                 

6
 Although the likelihoods P(E|H) and P(E| not H) are independent of the value of the prior P(H) they must take 

account of the same background knowledge that is implicit in the prior. For example, suppose that the prior P(H) = 

0.5 is based on the background knowledge that the defendant was one of only two men known to be at the scene of 

the crime and both men were a similar large size. Then if E is a matching shoe size 12, P(E| not H) is certainly not 

the random match probability. In fact, in this case P(E |  not H), like P(E |  H) will be close to 1.  

7 The odds of any hypothesis H (in this case the prosecution hypothesis) is simply the ratio of the probability of H 

over the probability of the negation of H (i.e. the defence hypothesis in this case). So the prior odds is just P(H) 

divided by P(not H) and the posterior odds of H is just P(H | E) divided by (P(not H | E). Odds can easily be 

transformed into probabilities: specifically, if the odd are x to y for hypothesis H over not H then the probability of 

H is x/(x + y) and the probability of not H  is y/(x + y). So odds of 100 to 1 in favour of H means the probability of 

H is 100/101 and the probability of not H is 1/101. Also note (we will assume this later) that if the prior odds are 

‘evens’ i.e. 50:50 then the posterior odds will be the same as the likelihood ratio. 

8 It is important to note that, as explained in [27], these crucial properties of the LR apply only when the defence 

hypothesis is the negation of the prosecution hypothesis H. Forensic scientists sometimes consider defence 

hypotheses that are not the negation of H. In such circumstances the LR is somewhat meaningless as it tells us 
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But now we have a ‘circle to square’: the LR is popular precisely because it can be calculated 

without having to consider any prior probability for H  [43]; but the only way to understand 

both why the LR is a measure of the probative value of evidence, and what the LR means in 

terms of impact of the evidence, is to explicitly consider P(H) the prior probability of 

H  [39]  [57] (there is also the need to consider the background knowledge involved in the prior 

of H as explained in footnote 4). Suppose, for example, that only one in a thousand adults 

have size 14 shoes; then with the above assumptions a match implies the LR of this evidence 

is 1000. That means the evidence E is 1000 times more likely to be observed if the 

prosecution hypothesis H is true than if the defence hypothesis not H is true. That sounds 

important but whether or not it is sufficient to convince you of which hypothesis is true 

depends entirely on the prior P(H). If P(H) is, say 0.5 (so the prior odds are evens 1:1), then a 

LR of 1000 results in posterior odds of 1000 to 1 in favour of H. That may be sufficient to 

convince a jury that H is true. But if P(H) is very low - say 10,000 to 1 against, then the same 

LR of 1000 results in posterior odds of 10 to 1 against H. That would certainly be insufficient 

to convince a jury that H is true.  

So, for anybody to really understand and accept what we mean by the impact of match 

evidence we have to provide an understanding of why Bayes' theorem works and this also 

involves considering the prior probability of H. This brings us on to a central issue of how 

best to explain that Bayes’ theorem is correct in the above context. 

A standard way to convince lay people that Bayes is correct is to put the above simple match 

scenario into what is commonly referred to as the ‘Island’ scenario  [8]: 

A crime has been committed on an island. All residents are equally likely suspects. A 

trace from the crime scene is found - with profile X and this matches the profile of 

Fred. It has been determined that the random match probability is 1/100, i.e. 1 in 100 

people have the trace profile type X.  So, with the assumptions above P(E | not H) = 

1/100 where E is the match evidence and H is the prosecution hypothesis that Fred is 

the source of the trace. If we assume that P(E | H) = 1 (i.e. that we would certainly 

find Fred's profile to be X if he was the source) then what does the evidence tell us. 

Specifically how does it change our belief in H?  

Clearly the answer to the question posed in the Island scenario depends on how many people 

are on the island. Suppose there are 1000 people other than Fred. This means the prior odds 

are 1000 to 1 against H (i.e. P(H)= 1/1001). Since the profile X occurs in about 1 in every 100 

people, this means we expect about 10 of the other 1000 people to have the type X. So, once 

we observe the evidence (Fred has profile type X) we can rule out all other people, except 

those 10, as having possibly left the trace. Thus, after observing the evidence the defendant 

and 10 others remain as possibilities. It follows that the posterior odds of H are now 10 to 1 

against. So, although the odds still favour the defence hypothesis the odds have swung by a 

factor of 100 (the likelihood ratio) towards the prosecution hypothesis that he is guilty. This 

demonstrates that Bayes’ theorem does indeed provide the correct ‘intuitive’ result. 

The island scenario is simple enough that it can be depicted using an event tree representation 

as shown in Figure 2, annotated with frequencies of events. This method has been claimed to 

help intuitive understanding and is considered by many as the best way to represent and 

communicate the variables, their states and the associated probabilities  [29].  

                                                                                                                                                                                        
nothing about the probative value of the evidence. Moreover, [27]  also showed that even when H and not H are 

used, the LR may tell us nothing about the probative value of E on some other hypothesis relevant to a case. In 

particular, this means that evidence E with an LR of one may still be probative elsewhere. 
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Figure 2: Bayesian calculation explained visually using an event tree annotated with 

frequencies (people who have Type X are shown in black squares) 

 

While such an event tree confirms Bayes’ theorem as ‘correct’, even for such a simple 

scenario there is a limitation when the random match probability is relatively low compared 

to the number of people on the island. For example, if there were just 10 other people on the 

island instead of 1000, then the event tree would have to show numbers that are a little 

unusual; the expected number of people who match is a fraction (one tenth) of a person. From 

a mathematical perspective this is not a problem: the prior odds are 10 to 1 against the 

prosecution hypothesis. After the evidence there is just 1/10 of another person other than the 

defendant, and the odds have now swung to 10 to 1 in favour of the prosecution.  However, 

the concept of 1/10 of a person may be challenging to grasp intuitively (as indeed the original 

1/100 random match probability may be). One possible method for gaining acceptance from 

lay people for very low match probabilities is to use hypothetical examples that do not 

involve fractions, and then explain that exactly the same method works no matter what the 

actual match probabilities are. Another possible method is to use a description such as: 

 “Imagine 10 identical cases with the same evidence. 1/10 of a person means that out 

of these 10 identical cases, there will be one innocent match.”  

However, the example shows that, even for the most bare-bones simple case of match 

evidence, the standard intuitive explanations present challenges in being clearly 

understandable to lay people. Because many types of forensic evidence (such as from good 

DNA samples  [21] [28] [43]) produce very low match probabilities, it is inevitable that we 

have to consider ‘fractions’ of people if we adopt this approach.  

Before considering what happens when we introduce the potential for testing errors, we 

conclude this section by presenting the generic formal event tree representation  [9] for the 

problem specified above. Specifically, we use probabilities rather than frequencies and we 

break up the evidence E into two component parts. Thus 

 (Prosecution) Hypothesis H: “The defendant is the source”. Same as before, and the 

defence hypothesis is simply “not H”. But now we assume the prior probability P(H) 

is equal to s. This means that P(not H) = 1-s. 

 Evidence E1: The source profile type has been tested to be type X.   

 Evidence E2: Defendant’s profile matches the source profile (i.e. both have type X). 
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Figure 3: Formalized event tree determining the possible scenarios and likelihoods in simple case with no 
testing errors (s is the prior probability that defendant is source; m is the proportion of people who have Type 
X. The bold branch is that consistent with the prosecution hypothesis and the dotted branch is that consistent 
with the defence hypothesis) 

Figure 3 shows the event tree corresponding to the Island scenario annotated with the event 

probabilities (conditional, but dependent on the preceding events) and branch probabilities 

(joint, i.e. a set of sequential events together).  Thus: 

 The prior probabilities (probabilities of the prosecution and defence hypotheses 

before the evidence) are represented by the two branches in the first (left-most) fork 

in the tree stemming from H, which we also call ‘prior branches’. Thus, the 

probability when H is true is s and the probability when H is false is 1 - s. 

 The influences of the additional evidence are represented by the extension of the tree 

beyond the two ‘prior branches’. In particular, in light of the evidence, the possible 

scenarios under the prosecution hypothesis are shown as branches that extend from 

the prior branch where H = True. Similarly, the possible scenarios under the defence 

hypothesis are shown as branches that extend from the prior branch where H = False. 

Thus, in an event tree, the ‘likelihood branches’ are the remaining segments of branch 

which extend out from the prior branches (and do not include the prior branches). 

Here we assume m is the proportion of people in the population who have type X.  

 The Prosecution likelihood is represented by the single branch that extends out from 

the prior branch that assumes that H is true in Figure 3 (H = True, E1 = True, E2 = 

True). So, the prosecution likelihood is equal to m. 

 The Defence likelihood is represented by the single branch extending out from the 

prior branch that assumes that H is false in Figure 3 (H = False, E1 = True, E2 = 

True). So, the defence likelihood is equal to m
2
.  

 The likelihood ratio, which is the ratio of the prosecution likelihood over the defence 

likelihood, is m/m
2
 = 1/m.  

We can read the posterior odds from the event tree diagram by summing the probabilities of 

all full branches where H is true and divide this by the sum of the probabilities of all full 
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branches where H is false. Note, here we refer to the probabilities of the “full branch”, which 

is composed of both the “prior branches” and the “likelihood branches” combined
9
. For the 

most simplistic case shown in Figure 3, which assumes no errors, the prosecution and defence 

hypotheses are each represented by a single full branch each, whose probabilities are shown 

on the right hand side of the figure. Thus the posterior odds in Figure 3 is equal to  

sm/[(1 - s)m
2
] 

 If the values are s = 1/1000 and m = 1/100 we get posterior odds of 1/10 as above. 

 

4. The scaling problem: extending event trees to make use 

of match testing error variables 

Whilst event trees have proven popular for representing Bayesian arguments in a number of 

domains (such as in safety critical applications where the likely consequences of hazards need 

to be assessed) their limitations are well understood  [3] [22]. In particular:  

 The causal sequence of events represented by an event tree is not sufficiently explicit 

to remove ambiguity.  

 Conditional independences between variables are implicit. Some events are 

considered in sequence even when preceding events have no relevance to the 

antecedent event in question. 

 A completely arbitrary sequence for the declared events is imposed. So in Figure 3 

we could have declared the variables in order {H, E1, E2} or indeed {H, E2, E1}. 

Which order should we choose? Does it matter? In some contexts the dependency 

order might meaningfully reflect some causal connection between events and 

therefore a different order may unwittingly lead to errors by suggesting causal 

dependence between events where it does not exist or by separating variables in the 

event tree where they are in fact causally connected. Similarly, the fact there may be 

more than one causal agent affecting a variable is actually impossible to represent in 

the event tree in any satisfactory way. 

 A single consequential event may have one or more causes and vice versa. This is not 

easily represented in a tree structure, thus prohibiting the representation of whole 

classes of evidential relationships. 

 The numerical calculations carried out using event trees are static and do not change 

in response to evidence. Given this they are not suitable for ‘what-if’ analysis nor can 

they be easily amended to take account of different facts that might be presented as 

evidence at different times. 

In addition to all of the above problems, it turns out that using an event tree simply to perform 

the required Bayesian calculations becomes intractable for all but the most trivial problems, 

even though, in principle, the analyst only has to compute the probabilities of each of the 

branches in the tree.  

                                                                 

9
 We use the term ‘full branch’ instead of ‘posterior branch’ because the term ‘posterior probability’ technically 

applies to the conditional probabilities P(H | e) and P(¬H | e), where H is the prosecution hypothesis, ¬H is the 

defence hypothesis, and e is the evidence. In contrast, the probability of the ‘full branches’ are actually the 

respective joint probabilities P(H, e) and P(¬H, e). Because )P(H | e) = P(H ,e)P(e , the posterior odds can be 

equivalently written as the ratio of the posterior probabilities or the ratio of the joint probabilities. That is: 

( | ) ( | ) ( ) ( , )

( | ) ( | ) ( ) ( , )

P H e P H e P e P H e

P H e P H e P e P H e
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It is this issue of 'scale' that we now focus on. It turns out that even the simplest case of match 

evidence quickly becomes too large and too difficult to understand using event trees. Here, 

we assume as in Section 3 that a ‘simple’ case is one in which there is only one piece of 

match evidence and the variables in the analysis take on simple binary, point values (in reality 

the problem is much more complex, involving numeric rather than binary variables and 

potentially multiple, related pieces of evidence etc.).  We show that even with these very 

simplified assumptions, the introduction of basic additional features quickly makes the event 

tree diagram and the calculations too complicated for simple representation and 

communication. 

The basic additional features we wish to add to the simple problem are the possibilities of 

testing errors. Specifically we wish to consider the possibility of false positive and false 

negative results on the matching. There are two scenarios by which a trace might be tested as 

having profile X:  

1. The trace has profile X and the test correctly determines it has profile X (true 

positive) 

2. The trace does not have profile X but the test determines it has profile X (false 

positive) 

The probability of the first scenario is determined by the probability v of a false negative (i.e. 

a profile of type X is determined by the test to be not X) since the probability of the true 

positive here is 1-v.  The probability of the second scenario is the probability of a false 

negative u.  

There are many reasons why the values u and v may be non-zero (as explained, for example, 

for the special case of DNA in  [36] [56]). Generally this includes inherent inaccuracies in the 

testing method depending on the quality of test equipment and/or experience of testing 

personnel; traces may get mixed up or contaminated accidently or maliciously, etc. In reality 

each stage where there is a potential error would have its own distinct error probability, but 

for simplicity we are using the ‘global’ error probabilities in what follows.  

As discussed in Section 1 in practice many experts assume (wrongly) that the probabilities u 

and v are zero (and hence that the respective probabilities of true positive and true negative 

are one). The authors in  [55] noted that, for DNA testing, although false positive probabilities 

were sometimes considered they were not dealt with in the same level of rigour as the match 

probabilities. They asked pointedly: 

“Why are the two possible sources of error in DNA testing treated so 

differently? In particular, why is it considered essential to have valid, 

scientifically accepted estimates of the random match probability but not 

essential to have valid, scientifically accepted estimates of the false 

positive probability?” 

The authors in  [55] provide a strong argument on why it is just as critical to include the false 

positive probability as the random match probability. However, even in this argument, the 

case for the false negative probability was overlooked; In fact, although several authors have 

tried it, we are not aware of the problem being presented correctly in any way other than by 

the full Bayes’ theorem formulaic approach and, even then, the presentations have not 

included the possibility of false negatives. The net effect is that, unless people are prepared to 

understand the formulas they will not be able to see that the theory agrees with personal 

intuitions.  

When we allow for the possibility of testing errors, the following relevant information must 

be considered: 

 Prosecution hypothesis (H1): “The defendant is the source”. This is unchanged from 

Section 2, although as there is now more than one hypothesis (see below) we use H1 

rather than H. As before the defence hypothesis is simply the negation not H1.  
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 Evidence E1: “The source profile is tested to be of type X”  (note: we can no longer 

assume the source profile actually is type X) 

 Evidence E2: ”The defendant profile is tested to be of type X (note: we can no longer 

assume the defendant profile actually is type X) 

Because of the probability of false positives we cannot assume from the above evidence that 

either the source or the defendant profile is type X. Instead these assertions are also unknown 

hypotheses: 

 Source type hypothesis (H2): “The source profile really is type X” (true or false) 

 Defendant type hypothesis (H3): “The defendant profile really is type X” (true or 

false) 

What we have, therefore, is a problem involving five ‘variables’ H1, H2, H3, E1, E2 which 

can all be true or false. But this means there are 32 different scenarios representing the 

different possible true/false combinations (although some are not observed, such as the 

evidence being false, and some are logically ‘impossible’, such as the defendant is the source 

and the source is type X while the defendant is not type X). We can show this in the event tree 

diagram shown in Figure 4. 

Even when we ignore the impossible branches and all the scenarios in which the evidence E1 

and E2 is false, we are left with six scenarios that need to be incorporated in the calculations 

for prosecution and defence likelihoods. 
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Figure 4 Event tree in simple case with testing errors. Here s is the prior probability that defendant is 

source; m is the random match probability for Type X; u is the false positive probability for X and v is the 

false negative probability for X (so 1- v is the true positive probability that we are interested in). The bold 

branch is that consistent with the prosecution hypothesis and the dotted branch is that consistent with the 

defence hypothesis. Cases of E1 and E2 false are not considered. 

Scenarios for the prosecution likelihood include all scenarios that stem from the branch H1 = 

true: 

 Scenario 1 (this is the ‘normal’ prosecution scenario) in which H1, H2, H3, E1 and 

E2 are all true. This scenario has probability m(1v)
2
 

 Scenario 2 (this is an often ignored prosecution scenario) in which H1 is true (the 

defendant is the source) but the defendant is not actually Type X. Both the test of the 

defendant and source, incorrectly results in a Type X classification. This scenario has 

probability (1m)u
 2
. 

Scenarios for the defence likelihood include all branches that stem from the branch H1 = 

False: 

 Scenario 3 (this is the ‘normal’ defence scenario) in which the tests are correct but 

the match is coincidental. This scenario has probability m
2
 (1v)

2
. 

 Scenario 4 this is the defence scenario in which the defendant is incorrectly tested to 

be type X. This scenario has probability m(1-m) (1v) u. 
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 Scenario 5 this is the defence scenario in which the source is incorrectly tested as 

Type X. This scenario has probability (1-m) mu(1v). 

 Scenario 6 this is an often ignored defence scenario in which both the source and 

defendant are wrongly tested to be Type X. This scenario has probability (1m)
 2
 u

2
.  

The prosecution likelihood is the sum of the probabilities for all scenarios that stem from the 

branch for the prosecution hypothesis, H1 = True:  scenarios 1 and 2.  

The defence likelihood is the sum of the probabilities for all scenarios that stem from the 

branch for the defence hypothesis, H1 = False: scenarios 3, 4, 5, and 6.  

As in the simple tree of Section 3 (Figure 3) the posterior odds can be read from the event tree 

as the sum of the probabilities of all full branches where H = True divided by the summed 

probability of all full branches where H = False. These probabilities are shown on the right 

hand side of Figure 4. However, in contrast to Figure 3, there are now six full branches to 

consider as compared to two. Thus, the analysis is no longer sufficiently ‘simple and 

intuitive’ to ensure that people can check they ‘agree with personal intuition’. Resorting to 

explanations using Bayes’ theorem and mathematical formulas, of course, only makes things 

much worse. 

Let us just recap briefly what is going on here: we have what appears to be a very simple 

problem:  

there is a claimed match, for which we know a) the random match probability, and 

the b) the probabilities of a false positive and false negative.  

All we want to know is the likelihood ratio for the claimed match – something which any 

forensic scientist is supposed to be able to do routinely given that the necessary statistical 

information is available (ignoring all issues of whether the data is correct or not). Yet, we 

have shown that the required calculations for such an apparently simple computation are 

remarkably difficult – and that most forensic scientists (even those highly trained in statistics 

and probability) would not attempt to do it. The obvious temptation for experts is therefore to 

ignore the error probabilities, which as we already remarked, is precisely what we have 

observed in practice.   

Of just as great concern is that, even once the event tree is constructed correctly, people may 

fail to understand it. Indeed, recent work  [51] has shown that, even for the simple match-

problem without errors, event tree representations performed significantly worse than textual 

descriptions in inducing correct responses to evidence interpretation from respondents. 

Furthermore, when errors were introduced into the problem as above, participants who saw 

the resulting complex event tree trusted the correct probabilistic answer less than other 

participants who only read word descriptions. Finally, participants who saw both simple and 

complex event trees felt they understood the problem significantly less than participants who 

saw words only. And none of the participants in any of the conditions, words or trees, felt that 

they trusted the calculations. 

In addition to these empirical concerns about the effectiveness of event trees, there are other 

practical and theoretical concerns. With regard to the causal interpretation of this larger event 

tree the difficulties inherent in getting the variable order correct are more pronounced than 

before. Here the variable declaration order is {H1, H2, H3, E1, E2}. However, there is a 

strong argument for more closely aligning the variables {H2, E1} and {H3, E2} since they are 

intimately causally connected; for example,  H3 is the cause of E2, which is itself a measure 

of the true unknown state of H3. Similarly, H3 and H1 are clear causes of H2 yet rather than 

state the probability of H2 given H3 and H1, i.e. P(H2 | H3, H1), we are forced to consider the 

unnatural variable order in the event tree. 

The example also shows that, even for experienced Bayesians, it can be difficult to model the 

problem in a sensible way and difficult to perform the calculations (as we mentioned earlier, 
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we have not previously seen a full solution of this problem in the literature, taking into 

account both types of error probabilities). And this example still has many simplifications: it 

assumes that all three probabilities random match, false positive, and false negative are all 

‘point’ values, whereas in practice they would be uncertain distributions  [8]; it assumes that 

all variables have just two possible values (true and false); it assumes that there is just one 

trace; and it assumes the only evidence is the single component match evidence. When we 

include further aspects of reality that are present in most cases (for example: the possibility 

that wrong samples were collected or analysed at different stages of the investigation; the 

possibility of mixture profiles; the need to incorporate other hypotheses and related pieces of 

evidence as well as dependencies between multiple profile components) it becomes 

impossible to perform the correct Bayesian calculations manually (with or without formulas) 

– let alone explain them to a lay person.  

5. The Bayesian network solution 

The example analyses in Section 4 show that it is unrealistic to expect most Bayesian 

calculations to be presentable in an intuitively comprehensible manner using event trees. As a 

solution to this problem, we advocate, as others have also done  [26]  [54], that intuitions for 

Bayesian calculations may be established using such simple cases as the Island problem 

shown in Section 2, and these intuitions are then used to establish trust for more complex 

cases. For more complex cases, as most actual cases are likely to be, we need a method that 

allows expert witnesses and legal professionals to readily discuss the aspects of the analyses 

that are subject to debate: the prior assumptions, the causal relationships connecting 

hypotheses to evidence and probabilities that are fed into the Bayesian calculations.  It is now 

widely accepted  [54] that Bayesian networks (BNs) (see  [22] for a non-technical introduction 

and overview) are the most suitable method for handling these types of complexity in 

probabilistic reasoning
10

.   

A BN performs calculations based on local dependencies among the variables that are present 

in a scenario. These variables include observations (e.g., evidence such as the defendant and 

source are tested to have profiles of type X) and hypotheses (e.g., the target was the source, 

the defendant and source are actually type X) related to the case. By exploiting these local 

dependences, a BN is typically compact and efficient. It avoids the problem present in 

equation-based calculations and the event tree-diagram approach depicted above which 

required consideration of all possible combinations of variable values and explicitly listing all 

possible scenarios (statisticians express this formally by saying that ‘it is not necessary to 

consider the full joint probability distribution’). Instead, a BN only requires consideration of 

how individual variables relevant to the scenario are dependent on each other, causally, and 

the local values these individual variables can take.  

                                                                 

10
 In fact, a Bayesian network is the most tractable way of calculating complex statistical problems for which 

brute-force equation-based calculations become unwieldy and even intractable. Note, the results of a Bayesian 

network will be mathematically equivalent to the formal manual derivations for discrete variables. 
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Figure 5: Bayesian network solution equivalent to Figure 4. Each node has states true or false  

 

Visually, a BN can be represented as a set nodes connected by directed links (hence, it is also 

known as a graphical model). Figure 5 shows the graphical part of the BN solution to the 

problem described in Section 4 (match evidence with testing errors).  The nodes correspond to 

the variables (which, before evidence is presented are all uncertain) and the links show the 

local dependency relationships between these variables. In particular, directed arrows are 

drawn between variables that have a direct impact on another variable.  For example, whether 

‘Defendant is type X’ directly impacts the chances that ‘Defendant tested as type X’.  These 

local dependencies mean that we only need to specify how the values of a given variable 

depends on the values of the other variables it is linked from, i.e. other variables that have 

arrows pointing to the given variable (also known as ‘parent variables’). For example, in 

Figure 5, the graphical representation shows that the variable ‘Defendant tested as type X’ has 

one parent variable: ‘Defendant is type X’. This means that when setting up the BN, we only 

need to determine how the variable ‘Defendant is type X’ affects the variable ‘Defendant 

tested as type X’. In practice, determination of this local dependency means completing a 

table of conditional probabilities such as that shown in Table 1.  

Table 1 Probability table for node “defendant tested as Type X” (u is the false positive probability and v the 

false negative probability) 

Defendant is type X: False True 

Defendant tested as type X (False) 1-u v 

Defendant tested as type X (True) u 1-v 

 

The conditional probability tables for the nodes “source is type X” and “source tested as type 

X” are shown respectively in Tables 2 and 3. 

Table 2 Probability table for node “source is Type X” (m is the random match probability) 

Defendant is type X: False True 

Defendant is the source: False True False True 

Source is type X (False) 1-m 1 1-m 0 

Source is type X (True) m 0 m 1 
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Table 3 Probability table for node “source tested as type X” (u is the false positive probability and v the 

false negative probability) 

 Source is type X: False True 

Source tested as type X (False) 1-u v 

Source tested as type X (True) u 1-v 

 

The probabilities for the nodes without parents (“defendant is type X” and “defendant is the 

source”) are simply the prior probabilities.  

Thus, we do not have to simultaneously consider the effects of whether ‘Defendant was the 

source’ or whether ‘Source is type X’. Instead the ‘distant’ dependencies between globally 

linked variables will be automatically calculated by the BN based on the locally linked one 

already specified. 

Formally then the relationships in the BN are structured as a graph and so allow a much richer 

representation of cause and effect. Mathematically Figure 4 is represented by: 

P(H1, H2, H3, E1, E2) = P(H3 | H1, H2)×P(E1 | H2)×P(E2 | H3)×P(H1)×P(H2) 

So here we can model multiple parent causes of a single effect, e.g. P(H3 | H1, H2) and then 

separately consider test evidence P(E2 | H3), P(E1 | H2), and the priors P(H1), P(H2). This 

modular structure in the BN has the benefit of supporting the elicitation and calculation of 

probabilities, locally, without grappling with the model as a whole. In fact this is one of the 

major benefits of a BN – the algorithms used to compute the answers are tractable  [22] 

because of this modularity and the modular structure supports more efficient elicitation of 

model structure which is then easier to understand and much more natural for experts to 

consider and justify  [23]. 

This representation is conceptually simpler than the event tree in Figure 4 because the BN 

represents H1, H2, H3, E1, and E2 as single nodes which can take on one of two values: true 

or false. Thus, all the possible scenarios shown as different branches of the event tree in 

Figure 4 are now represented by all the possible combinations of node states in a BN. This 

visual representation of a BN is readily drawn using software packages that perform BN 

calculations (e.g  [3], which is used here).  

Once the relationships between nodes are defined and the probability tables are entered, we 

can then enter evidence as observations. The BN software automatically computes and 

displays the results showing how different hypotheses probabilities have been updated in 

response to this new evidence. The speed of this calculation allows us to readily compare how 

hypotheses probabilities change under varying assumptions about the evidence. This means 

we have the ability to dynamically test different scenarios that are impossible or difficult to do 

with an event tree.  

For example, in Figure 6 we show the results where we compare the cases:  

a) where we assume perfect testing accuracy, i.e. u and v are both set to zero. This is 

the case of no testing errors described in Section 2.  

b) where we assume that u (false positive) is 0.1 and v (false negative) is 0.01. This 

is the case of Section 3. 

Although in both cases we assume the same match probability m=1/100 and the same prior 

(50:50)
11

 for the prosecution hypothesis the difference is quite dramatic:   

                                                                 

11
 Recall that, by assuming a 50:50 prior, we know that the posterior odds are equal to the likelihood ratio. 
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in a) (no testing errors) the posterior odds
12

 are 100 to 1 in favour of the prosecution 

hypothesis; whereas  

in b) (small probability of testing errors) the posterior odds
13

 are only 65 to 35 (i.e. about 2 to 

1) in favour of the prosecution hypothesis.   

 

   

a) Impact of evidence when error probabilities 

are assumed to be zero 

 b) Impact of evidence when false positive rate is 0.1 

and false negative is 0.01  

Figure 6: Comparing the different impact of the evidence when we assume different error rates (in both 

cases the match probability is 1/100 and the prior probability for “defendant is source” is 0.5) 

Not only does the BN remove the need for performing the difficult Bayesian calculations 

manually, but we believe that its graphical representation may be easier for a lay person to 

understand. The BN  is also scalable with respect to incorporating the additional complexities 

that would be present in most realistic cases as, for example, the models in  [18] demonstrate.   

Furthermore, complex causal assumptions linking hypotheses and evidence are more easily 

represented in a BN than in an event tree. We can represent common causes of single effects 

and multiple effects that follow from a single cause in the BN. This former case is especially 

important when we wish to explain away competing hypotheses that might give rise to the 

same consequential evidence (such as ‘Source is type X’ which is caused by ‘Defendant is 

type X’ and ‘Defendant is source’). Similarly, in the latter case we can represent multiple 

pieces of evidence each of which purport to accurately measure or indicate the same 

underlying causal hypothesis (in our example the cause might be ‘Defendant is type X’ and 

the evidential  effects are ‘Defendant tested as type X’ and ‘Source is type X’). 

For all its intuitive benefits, we are not, however, suggesting that the BN model is what 

should be presented in court. Instead, we recommend that it could be used for pre-trial 

analysis of the evidence by forensic experts and lawyers, preferably using different scenarios 

for the different ranges of match probabilities and error probabilities. This is exactly the 

strategy that was employed successfully in a number of recent cases  [24] [26]; in these cases 

BNs were used to explain to experts and lawyers the correct probabilistic impact of evidence 

                                                                 

12
 The likelihood ratio is 100, meaning equivalently the probability the prosecution hypothesis is true is 100/101 = 

99.01%) 

13
 The likelihood ratio is 65/35, meaning equivalently the probability the prosecution hypothesis is true is 65%). 
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that could not have been computed manually. Trust in the results was gained by first 

demonstrating that BN software provided the correct results in simple island-type examples. 

While we have provided an explicit (and immediately usable) BN solution for the generic 

match problem that we feel is very widely applicable, we do not underestimate the immense 

challenges involved in using either this same model, or other BNs when the match evidence 

has to take account of the further complexities we have discussed above. Even if the evidence 

satisfies the simple assumptions used in our model, there will generally be much 

disagreement about the prior probabilities required and, if they depend mainly on expert 

judgement rather than data, will be subject to the same inevitable legal criticism that was 

present in the R v T ruling. In some cases (as in  [24]) it may be possible to reach the same 

basic conclusion by trying the fullest possible range of alternative prior probabilities, but this 

will not always work and may not even be feasible. In the more complex cases there will 

generally be no unique obvious model structure; although there has been recent work (using 

common patterns and idioms) to standardise the structure of BN models for legal 

arguments  [23] [32] even BN experts may disagree on the most suitable structure. However, if 

the model structure cannot be agreed between relevant experts and lawyers, then they should 

at least be able to agree about what alternatives are possible. Then, it may be feasible to 

consider the results not just with different prior probabilities but also with different models.  

All that should be presented in court are clear statements of the prior assumptions being used 

(notably the match probabilities, and error probabilities) and the results of the calculations 

under the different assumptions. We argue that it is much easier to build and run a BN model 

with the relevant information than it is to either construct an event tree as before or to produce 

the necessary formulas. 

6. Conclusions and recommendations 

The R v T  [2] ruling raised a number of fundamental concerns about the use and presentation 

of Bayesian arguments and likelihood ratios to show the probative value of forensic match 

evidence.  This paper has demonstrated that presenting such evidence correctly, and in a way 

understandable to lay people, is extremely challenging even with the most simplistic 

assumptions. We have focused on the special difficulty of analysing and presenting match 

evidence when there is the possibility of different types of match testing errors. Because of 

the difficulties that this introduces, experts typically ignore it in their analyses, and hence 

often present their evidence in a way that is either wrong or highly misleading.  

We have introduced a completely generic framework for ‘match evidence’ that applies to all 

types of matching problems, well beyond currently accepted forensic practice. We have also 

presented what we believe is the first full probabilistic solution of the simple case of generic 

match evidence incorporating both false positive and false negative testing errors. Because 

event trees have been considered the most promising method for presenting Bayesian 

arguments to lay people, our first solution used this method of representation. Unfortunately, 

the necessary event tree solution is far too complex for intuitive comprehension, even in 

simple cases. The event tree also fails to represent or communicate the causal context that 

underpin legal arguments, they do not support easy calculation of the probabilities under 

varied and dynamic scenarios and lastly they divert attention away from the assumptions 

needed to ensure numerical calculations make sense and can be trusted.  

Because of the unsuitability of the event tree approach (and its inherent lack of scalability), 

we also presented a simple-to-construct graphical Bayesian Network (BN) solution that 

automatically performs the calculations and may also be intuitively simpler to understand. 

Although there have been multiple previous applications of BNs for analysing forensic 

evidence – including very detailed models for the DNA matching problem, these models have 

not widely penetrated the expert witness community – they are not accessible to forensic 

scientists or lawyers. Nor have they addressed the basic generic match problem incorporating 

the two types of testing errors. Hence we believe our basic BN solution provides an important 
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mechanism for convincing experts – and eventually the legal community – that it is possible 

to rigorously analyse and communicate the full impact of match evidence. 

It is unrealistic to expect lay people to understand complete Bayesian analyses. We believe 

that continued attempts to explain such arguments in legal reasoning by using first principle 

calculations and formulas, or event trees, will result in a doomed future for Bayes in the law. 

Instead, we argue that simple examples may only serve to instil confidence in the 

mathematical validity of Bayesian arguments. For more complex (realistic) cases, focus must 

be directed towards the aspects of the analyses that are subject to debate: the prior 

assumptions and probabilities that are fed into the calculations. In other words, the challenge 

over the next few years is to ensure that lawyers and experts understand the difference 

between: 

a. the genuinely disputable assumptions that go into a probabilistic argument; and 

b. the Bayesian calculations required to compute the conclusions based on the different 

disputed assumptions. 

Proper probabilistic approaches are commonly accepted in other areas of critical risk decision 

making, such as medicine and safety. In contrast, there have been significant challenges to the 

acceptance of probabilistic analyses in the legal domain. Future research, such as that in  [44] 

should aim to understand how it is possible to bring lay-people to this level of required 

understanding. Crucially, there should be no more need to explain the Bayesian calculations 

in a complex argument than there should be any need to explain the thousands of circuit level 

calculations used by a calculator to compute a long division. Lay people do not need to 

understand how the calculator works in order to accept the results of the calculations as being 

correct to a sufficient level of accuracy. The same must eventually apply to the results of 

calculations from a Bayesian analysis. The more widespread use of tools such as Bayesian 

networks makes this a feasible aim.  

However, ensuring that the distinction between a) and b) is firmly understood by lawyers is 

only a necessary requirement for the more widespread adoption of Bayes. There is, as yet, no 

significant understanding among lawyers that any legal argument can be couched in Bayesian 

terms. The challenge for statisticians is to break down this significant cultural barrier. In this 

challenge we also propose that the use of BN models will be useful, but any progress requires 

a major educational effort aimed at all levels of the criminal justice system. It requires ‘buy-

in’ from senior members of the legal profession and politicians, as well as a united front 

presented by the community of statisticians. 

If we can meet these challenges then there is no reason why Bayes should not become a 

standard (possibly even the central) method for evaluating evidence in every aspect of legal 

reasoning.  
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