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Does Roush show that evidence should be probable?

Damien Fennell and Nancy Cartwright

Abstract

This paper critically analyzes Sherrilyn Roush’®(Q2) definition of evidence and
especially her powerful defence that in the ideaglaim should be probable to be
evidence for anything. We suggest that Roush tmeatt©ne sense of ‘evidence’ but
three: relevance, leveraging and grounds for kndgde and that different parts of her
argument fare differently with respect to differeenhses. For relevance, we argue that
probable evidence is sufficient but not necessaryRoush’s own two criteria of
evidence to be met. With respect to grounds farvwkedge, we agree that high
probability evidence is indeed ideal for the cdnt@ason Roush gives: When
believing a hypothesis on the basis of e it isrdés that e be probable. But we
maintain that her further argument that Bayesiaedrprobable evidence to warrant
the method they recommend for belief revision restsa mistaken interpretation of
Bayesian conditionalization. Moreover, we showt #idempts to reconcile Roush’s
arguments with Bayesianism fail. For leveraginjol we agree is a matter of great
importance, the requirement that evidence be ptebsldfices for leveraging to the
probability of the hypothesis if either one of Rbigstwo criteria for evidence are
met. Insisting on both then seems excessive. Aishfi we show how evidence, as
Roush defines it, can fail to track the hypothesighis can remedied by adding a
requirement that evidence be probable, suggestmghar rationale for taking
probable evidence as ideal — but only for a grotfod&nowledge sense of evidence.

1 Introduction

Evidence has always been a central topic in théogbphy of science. But with
debates raging throughout the U.S. and the U.Kutalmhat counts as evidence for
evidence-based policy, the topic has become onemmkdiate practical importance.

This makes very timely Sherrilyn Roush’s recenbef to characterize evidence.

Roush presents her account near the end of heitedetievelopment of a tracking
theory of knowledge, now one of the central topicepistemology. Even if tracking
is not the correct or the only good account of kiealge, it would certainly be a plus

to have a theory of evidence for which it couldassumed that anything that counts

" This study was conducted as part of the LSE AHR@#d projec€ontingency and Dissent in
ScienceWe are grateful to the AHRC for their support &am@n anonymous referee for detailed
helpful comments.



as evidence is a source of tracking knowledge. st\&dl here look into the question

of how her theory of evidence dovetails with hacking view of knowledge.

Our primary topic, however, is another importardird that Roush defends. Roush
claims for her account the special virtue thateplains why better evidence makes
knowledge more probable” (2005, p.185)his seems a truism: What we mean by
better evidence for h is evidence that makes h rpovbable. But this is not what
Roush means. For her, ‘better evidence’ is evidéinaehas a higher probability. If e

is to be evidence for anything, she maintains itieal that P(e) be high.

This conclusion matters, and not just for the @uolzhical explication of the concept
of evidence. Now that evidence-based policy is lyideandated, guides outlining

what counts as evidence for policy effectivenessiferate? Roush’s demand for

high P(e) is at their heart. The guides offer sob®that rank methods for producing
evidence according to the degree of certainty that method confers on the
conclusions it produces. So high quality evidenlznts are claims produced by
methods that make it likely that those claims ave,tclaims e for which P(e) is high,

No policy recommendation can get a top-grade ratingess it has top-ranked
evidence claims in it favour. For them it is notyoideal’ that P(e) be high if e is to

count as evidence; it is necessary.

There is a simple reason why one might adopt tlaa/.vit is almost certainly what
motivates the ranking schemes and it is one oféghsons Roush herself gives: If e is
to be good evidence for h, e should provide go@$ae to believe h. Surely we

shouldn’t believe h on the basis of e unless tieegood reason to believe e. So P(e)

1 In the remainder of the text, references and guetth page numbers alone refer to Roush (2005).

2 For instance evidence evaluation schemes from ¢o#ish Intercollegiate Guidelines Network, the
International Agency for Cancer Research, or theyMad rules in criminology.

% The guides clearly seem to make the assumptidrhihh probability can be assigned to results from
reliable methods. While an important issue, thisaisgential to concerns here about whether a claim
must have high probability if it is to be countedlesvidence.

* This raises a question as to how to interpret gdities. Roush claims that her definition of
evidence is compatible with both subjectivist atgeotivist readings. In section 3 we explore issue
relating to the subjectivist interpretation of pabilities when we consider Roush’s argument from a
Bayesian standpoint. To interpret Roush in anaihbjist way, we avoid standard controversies in the
philosophy of probability by assuming that e andoth denote event-types. This, however, is not to
say we believe that it is straightforward to find iaterpretation of probability that makes sense of
Roush’s definition of evidence or her arguments poobable evidence. Indeed, the difficulties
discussed in section 3.2 suggest otherwise.



should be high. We shall here accept this line effiedce for high P(e) without
discussion and concentrate on the rest of Roughtuskion, for she has far more
than this to offer. In particular she develops trainal, challenging defences of
high P(e), both of which open new perspectiveshenaige-old topic of evidence. The
first is based on an interesting mathematical ietahip and a related series of graphs
and the second on arguments against modellingisumprevidence as evidence with

low probability.

We shall argue that these defences do not carrgdhelusion. In good part that is
because there is not one conclusion in Roush’sussan but three, all expressed in
the same words: High P(e) is ideal if e is to biel@wce for h. We claim that there are
three conclusions because we think there are thfes¥ent senses of ‘evidence’ at
play in Roush’s discussion, senses that are impottadistinguish independent of

their role in the specific issue of P(e). They-are

(1) Evidence ashe ground for knowledgeln order for e to be evidence for h,
e should be an appropriate basis for knowledge hhathe version of
‘evidence as the ground for knowledge’ we find iauRh supposes both
that h be true — “as it must be for anyone to kitd\{p.153) and also that
e provides grounds for believing it So.

(2) Evidence as a two-placelevance relatior{‘e is evidence for h’) between
propositions or possible events, in which the evigeis supposed to be
relevant to the truth of the hypothesis, withouy gmesumption about
whether either the evidence or the hypothesisies tr

*>The idea here is similar to Williamson’s ‘E=K’ tie$2000, 185) that evidence is just what we know.
This thesis is motivated, as with Roush, by a @efiruse evidence to justify belief in a hypothesis
Williamson’s treatment is similar to Roush’s in ethrespects as well. For instance, he requirgs tha
P(hle) > P(h) for e to be evidence which is eqenito Roush’s discriminatiooondition. However
he does not adopt a condition similar to Roushdciation condition P(h|e)>1/2. Instead Williamson
uses the fact that evidence is knowledge and theirement that P(h|e)>P(h) to justify belief in the
hypothesis from evidence.

® As Roush puts it in her discussion of tracking aemidlence “... if h is true — as it must be for angon
to know it — and e tracks h then it is unlikelyttids false. And, if e is false, then becausestiigect's
belief in e tracks e, the subject is unlikely tdidvee e. Since b(h) tracks b(e), the probabilitybgh)
given b(e) is low too. All of this suggests thattlile subject knows h through this trajectory, then
because in order to do that she must believedlikely to be true.” (p.153).



(3) Evidence for a hypothesis h adewer to infer P(h), that is, knowledge
about the evidence or its probability can be useddduce informative,

previously unknown constraints on P(h), or befh) itself.

The second is the usual topic of confirmation thesomand one could take it that
Roush’s explication is aimed here since she engagbsthe conventional literature
at various points. It is at any rate an importeogic, and again, not one just of
philosophical interest. Consider hypothesis testngolicy deliberation. Gathering
facts, finding out what is true and what is notnaacting experiments, even just
sitting and discussing the facts is costly and tamesuming. So one wants a concept
of evidence that tells us what facts bear on thaothesis in order to decide which
ones to find out about, which experiments to runvbich facts to let onto the table
for discussion. This is looking at evidence frone ferspective of the deliberation
process, prior to any views about whether whatdsitied as evidence provides
sufficient grounds for believing the hypothesis, ibefore considerations about issue
(2). This perspective also fits particularly nicelith Roush’s own concerns, which
we separate out as issue (3), that evidence sipooNide leverage. She does not want
P(h) to be presupposed in our attempts to settteiiftwo central requirements for
evidence are met because that would undermine loilityato leverage from the
evidence to the hypothesis.

Roush’s discussion of high P(e) does not diffeegatithese three notions, yet P(e)
seems to fare differently in each. For senseské&ms natural to suppose evidence
should have high probability for the trivial reastbrat e can hardly be the basis for
knowledge that h if e isn't itself true, or hightyobable, just as the evidence-ranking
schemes suppose. But high P(e) should surely bienhais a criterion for evidence in

sense 2. For sense 3, we shall argue, none of Ratske criteria are necessary.

We look at Roush’s defences of high P(e) in secBoeavaluating them both on their
own merit and with an eye to disentangling sensed 2 of ‘evidence’. We look at

leveraging in section 4. In section 5 we producgnaple counterexample to show
that, strictly speaking, evidence for h as defibgdRoush does not imply that e tracks

h, contrary to her hopes.



2. Roush’s definition of evidence

2.1. An ambiguity

Roush constructs her definition of evidence frono wesiderata. The first is that
evidence shouldiscriminatebetween hypotheses. She takes this to mean thasif
evidence for h then P(e|lh) > P(e|-h), or, in teohghe likelihood ratio (LR =
P(e|h)/P(e|-h)) that LR > 1. Roush takes the discrimination condition to be
uncontroversial and focuses greater attention secand desideratum, tiedication
condition, P(hle) > 0.5. The motivation for tisthat evidence should, when true,
make the hypothesis more likely than not, thusmgvus some reason to believe h
(rather than its alternative =f).

Roush then defines evidence so that both desidaratmet, with particular emphasis

on the indication condition.

R e is some/good evidence for h if and only if téhés a lower bound
greater than 1 on [LR] and a lower bound greaten th on P(e) such that
P(hle) is greater than 0.”/“greater than some kingbshold appropriate to
having good reason to believe” (p.183).

Unfortunately, this roundabout expression gives ttsan ambiguity. It suggests that
Roush intends to define evidence in terms of loaermds on LR and the probability
of evidence and yet the definition is logically aglent to the following simpler

definition.

(DEF1) e issomdalternatively,good evidenceor h if and only if
DC (Discrimination Condition)LR > 1
IC (Indication Condition) P(hle) > 0.5 [alternatively, P(hle) > a,
where a is some chosen level greater than 0.5]

" She further invokes a number of authors to ataethe likelihood ratio is the best measure af ho
good evidence is at discriminating.

% Roush notes “... we do not have good reason tewmlior even some reason to believe, a
hypothesis is true, if we have no assurance thlaptsterior probability [P(h|e)] is greater thag”0.
(p.165).



But this definition — in addition to ignoring theundabout nature of her own

formulation — also does not sit well with othertetaents made by Roush:

“An obvious solution ... is to adopt as a second dwom for e to be
evidence the demand that ...P(hle), be higlowever, that is merely a

restatement or our desideratuniemphasis added, p.166).

Further ambiguity is introduced when she adds:

R-addendum‘high P(e) is not necessary but is ideal” (p.183)

In sum Roush defines evidence in a roundaboutegatvalent way tdC andIC,
while explicitly stating that she does not wantl&dine evidence as that which merely
satisfies her desideratBC andIC. A further interpretive hurdle is added by her
comment that high P(e) is not necessary but idBal.andl C are both well rehearsed
conditions, familiar from debates about how to wefivhat we have prised out under
the label ‘evidence as a relevance relation’. pr@sent purposes we shall take her
arguments for them as sufficient for evidence melavance sense since our focus is

on her further requirement that P(e) be high.

Before turning to her defence of high P(e) we ribét Roush’s formulation is odd for

at least three reasons.

* As noted, it is roundabout. Roush explains that houndabout
formulation ofIC has two advantages. First, she wants to ‘levérage
P(h) from the evidence. We discuss this in sectioThe second reason is
to highlight a disagreement she has with Bayesam$ others about
surprising evidence, which we discuss in secti@n 3.

* DC andIC are treated asymmetrically. No constraints areqaan how
DC is to be satisfied. BUC is to be met in a certain way. We discuss this
in section 3.1.

 What is the status dR-addendu R is supposed to be a definition.
Presumably by not adding the addendum into thentiein Roush wishes



to allow that e can be evidence, indgeddevidence, for h even if P(e) is
low. Does she then have in mind three conceqimeevidence,good
evidencejdeal evidence? It seems not since the addendum isffesed
as a definition proper. The oddity can be madedisappear if one adopts
our view that her discussion uses only one wordidence’, but in fact
deals with three different notions, with differernsiderations supporting
proposals for different notions. He¥C and|C are familiar candidates
for evidence as a relevance relation. R-addendamtlen be seen as part

of the definition of evidence as a ground to knaige’

2.2. Roush’s graphical analysis and definition ofvadence

Roush uses a series a graphs to explain the coomdstween lower bounds on LR
and P(e) andC. These are based on an identity that she establisising the
probability axioms:

A. P(hle) = [LR-P(e|n)/P(e)]/[LR-1].

She points out thaf implies facts about how P(h|e) can increase uisgecial
circumstances. The special circumstances are that

1. LR>1

2. LR is held fixed

3. P(elh) is held fixed.
Note that this implies that P(e|-h) is also fixed.

Given these three conditions it follows fragkthat

B. P(hle) increases with increasing P(e).

° Of course once the two notions have been sepathtduestion of the relation between them comes
to light. Perhaps evidence as a ground to knovelesdhgpuld not be seen as a special case of relevance
evidence at all.



Roush elaborates dhdefending her advice that P(e) should ideally log tiy taking

the reader through a series of graphs and formulae.

We summarize her eight graphs in Figure 1.

1.00—
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Figure 1 - P(h|e) vs. LR for various fixed P(e) wit P(e|h) =1

Her graph for P(e) = 0.4 is the one she presersts fOn it is displayed a shaded area
above the P(e) = 0.4 line in Figure 1, representitggcontinuum of lines graphing
P(hle) versus LR for the continuum of values of P@ssible above P(e) = 0.4.

She explains:

“This graph presents a convenient lower limit foe trends that we will
see when we increase LR and P(e). The resultgstths surface bounds
from below in the [P(h|e)] dimension every graphthwiR>1 and
P(e)>0.4, and as these terms increase the [P{afe)]increases. That is,
as LR and P(e) increase above 1 and 0.4 respgcthelvalue of P(h|e),
for any given values of P(e|h) and the LR, monaalhy rises to 1. We
can see why this is by inspecting the equation
P(hle) = [LR — P(e|h)/P(e)]/(LR-1)

If we suppose that the LR is some fixed value gretitan 1, then P(e|h)
will be greater than or equal to P(e)... In otherrdgp increasing P(e)

with fixed or rising LR will have the effect of ineasing P(h|e).” (p.168)



This means that with fixed LR, high enough P(e)rgntees whatever value of P(h|e)
is demanded. Specific values for P(h|e) are nacgss Roush’s characterization for
e to be some/good evidence for h. Supposing LRtféllows that high enough P(e)

is a sufficient condition for a condition (viz. B¢l > a) that is necessary for e to be
some/good evidence for e. High P(e) is not necgdbaugh, as Roush herself notes

in places. We stress this because we found someneats in her text that could be

misleading on thig?

Roush’s graphical analysis also suggests a deimitif evidence that resolves the
ambiguity pointed out in section 2.1. In her asaythe lower bounds on LR and
P(e) that are sufficient foiC are independent of the value of P(elh). Indebkd, s
states as much: “Through graphing P(e|h), P(e)taed_.R, we have found a result
that is independent of P(e|h) and depends only(epdhd LR.” (p.168) Roush then
defines evidence in her roundabout way suggestiag) the lower bounds in her

definition should be independent of the value R

To see what definition of evidence follows if P(eib not to be constrained, it is

instructive to construct lower-bound conditions igglent to DC and IC. In the

appendix we prove:

C. DC andIC if and only if there exist x > 1, y > 0 and 0<Z4 such that

0] LR > x

(i) Pe) >y

(i)  P(eh)< z

(iv) x-zly=1%.

x-1

Condition (iii) shows how, given lower bounds orePénd LR, whetheDC andIC
are met depends on P(e|h). Roush’s apparent desio®nstruct a definition of
evidence in terms of lower bounds that are independf P(e|h) suggests a natural

move. If one stipulates that z=1 then condition becomes P(e|k) 1, which is

trivially met. This suggests the following defioit of evidenc&

1% For instance, when she says “my proposal, thenhas the second condition on evidence, the
indication condition, be a lower bound on the vatieP(e)”. Or just after, “there are three broad
guestions to ask about this idea...a third is whelligh P(e) is plausibly a necessary condition for
evidence, since there seem to be counterexamles7 X).

- This reading is in accord with suggestions fronramanymous referee.

10



(DEF 2) e issome[alternatively,good evidence for h if and only if there exist
x>1, y>0such that
0] LR > x
(i) Pl) >y
(i) x-1ly = % [alternatively _x-1/y= a for appropriate a>%5]
x-1 x-1

(DEF2) fits Roush’s roundabout expression and gi€e|h)-independent lower
bounds in line with her graphical analysis. Itoatsakes explicit a trade-off: As the
lower bound on LR strengthens, the lower bound @) 8an weaken andce versa

Given this trade-off, high P(e) is not necessaryefto be evidence, since for any low
y there is a sufficiently high x that ensures thas evidence. Yet for any given x, a
higher y raises the lower bound on P(h|e) settutghow more probable evidence is
ideal. In sum, the above definition of evidencathefits Roush’s discussion and

resolves the ambiguity introduced in section 2.1.

In this definition IC andDC are necessary but not sufficient for evidence asbea

seen in the following probability distribution:

P(e) = 0.6001, P(h) = 0.8, LR=2

For this distribution P(h|ey 8/9. But e is not evidence because the lower ¢ham
P(e) would have to be less than 0.6001. By (iii$ implies that the lower bound on
LR would have to be greater thalis2which is false. This example shows that this
version of Roush’s definition has an undesirablaseguence of ruling out some
cases where e is probable da@andDC are met. Why shouldn’t e count as evidence

in cases like this?

What is missing here is why a definition of evidestiould be constructed in terms of
lower bounds of LR and P(e) that are independérihe value of P(e|h). Though
Roush does not explicitly discuss this, the natcaaldidate is that it yields a leverage
advantage by it allowing one to classify e as awaewithout needing to know P(e|h).
Roush’s discussion of the leverage advantage afjusilower bound on P(e) (p.170)
suggests that this may be her motivation. Howethés,leverage advantage comes at

a cost, since it rules out the case above, whiemseparadigmatically evidence on

11



Roush’s termslC andDC are met, P(e) is high). Moreover ignorance ofi(also

makes it hard to evaluate LR!

Finally, it should be stressed that, though Roudkfnition requires the existence of
a lower bound on P(e), it does not require thatlewie be probable at all, since the
lower bound on P(e) can — provided LR is high emoudpe arbitrarily close to zero.

So, although probable evidence is defended by Raaskeal, it is not a necessary
condition of evidence as she defines it. We thimk is an advantage, since we now

defend improbable evidence.

3. In defence of improbable evidence

We find in Roush three major arguments that hig) B(ideal:

* The argument from equatigvand the accompanying graphs.
* An argument against a simple story of Bayesian tipgla

» High P(e) has a leveraging advantage for finding.P(

The first argument seems most suited to a releve@ese of evidence, but we discuss
it in sections 3.1 more or less on its own growvdblout putting weight on our view
that there are three different senses of evidemeglved in Roush’s discussion. The
second argument seems geared to knowledge as adgréar knowledge. Bayesian
updating allows that surprising evidence — in tlemse of evidence with low
probability — can increase the degree of beliefairhypothesis more than non-
surprising evidence. Roush’s discussion seems ppase that this is incompatible
with her view that evidence should have high prdiigbWe address this in section
3.2. Section 3.3 briefly considers other shortdeees Roush offers for high P(e).
We take up leveraging in section 4.

12



3.1. Low probability evidence carsatisfy DC and I C maximally

We assume, for the sake of argument, that high iB(a@)reasonable requirement on
evidence as a ground to knowledge. But we doe®hsw it can be taken as an ideal
way to satisfy the definition Roush offers, whidhaay rate we think is best seen as a
reasonable candidate for defining a relevance natievidence. For despite Roush’s
proposal, a lower probability claim can make fotttére evidence using her own

criteria.

Supose P(e|h) = £, which is one way to model ‘h explains e’ in theddetive-
nomological account of explanation. Then Bayes Tém®mareduces to

D. P(hle) = P(h)/P(e).
Since P(e|h) = 1, it is follows that

E. P(e) = P(h) + P(e|-h)P(=h)
and so

F. P(hle) = P(h)/[ P(h) + P(e|=h)P(=h)].
Given P(e|h) = 1 it also follows that

G. LR = 1/P(e|=h).
So lowering P(e) by lowering P(e|-h) simultaneoysiyduces improvements in LR
and in P(hle), making e better evidence for h aim Bwoush’s criteria. While it is
true, as she concludes, that “increasing P(e) Wkdd or rising LR will have the
effect of increasing P(hle)” (p.168), it is equdlye that decreasing P(e) with rising
LR can have the effect of increasing P(h|e). Tthesgraphs hardly provide a strong
argument for increasing P(e) in order to satisg/c¢hteria for evidence.

Not only can lowering P(e) raise both LR and P(Hje} both condition®C andIC
can be maximally satisfied while P(e) takes any@alhatsoever. Suppose e is a
perfect sign of h; i.e.  h. Then P(h|e)=1 and LR is infinitely high, byePcan be
as small or as large as one would like. This exantpds another nice aspect.
Whenever there are two independent criteria forsémme thing, trade-offs may be
required, but here a trade-off is avoided. In tase (or any case with fixed P(e|h))
less probable evidence can be better evidence thychbiteria at once.

12 Similar examples can be generated for any fixau-zero value of P(e|h). Note that given P(e|h) =
1, e is evidence if and only if it satisfiB<C andIC.

13



We should also note that Roush’s graphical argusnmthigh P(e) depend on the
asymmetry (mentioned in section 2) with which gleats the two independent criteria
for evidence. Suppose e is ‘candidate’ evidencenftn the sense th&C is well
satisfied (i.e. LR is high). Then high P(e) isfmiént for the satisfaction dfC. But
the exactly symmetric claim is not true. Suppose‘eandidate’ evidence for h in the
sense thalC is well satisfied. Then it is not true that higfepPis sufficient for the
satisfaction ofDC.™®* So high P(e) is useful for obtaining high P(hjéjen LR is
sufficiently high, but high P(e) is not sufficiefar high LR when P(h|e) is high. Yet
there seems to be no special reason for considerthgr criterion differently from
the other:*

3.2. A Bayesian defence of improbable evidence aral frequency defence of

probable evidence

As a prelude to our arguments, we first set out thaiinct analyses on how the
probability of evidence relates to the probabildf the hypothesis. The first is
Roush’s while the second is an analysis often pteseto support the conventional
claim that evidence with a lower probability malkesypothesis more probable (all

else being equal) than evidence with a higher gidiba

Section 2 described Roush’s argument that if LRuiiciently high a lower bound
on P(e) is sufficient for a lower bound on P(h|e)importantly, given Roush’s
constraints — P(e|h) fixed and LR fixed (>1)) —)Fereases if and only if P(h)

increases.

A second analysis, one conventionally used in disicms of the greater confirmation
power of surprising evidencdfollows from Bayes Theorem:
P(hle) = P(h)P(e|h)/P(e)

13- See theorem 2 in the appendix.

14 We have not here rehearsed Roush’s argumen8Gaand|C but we don’t find anything in them
that gives a reason to treat the two in this défferway.

15 See, for example, Howson and Urbach (2005, p.97).

14



In this case, assuming P(e|h) and P(h) are fix@dePincreases as P(e) decreases. In
this case, LR must increase and P(e|-h) decrease Wfe) increases. Labelling
evidence that has lower probability as ‘more ssipg’, this result shows that the
more surprising e is, the higher P(h|e) is.

These two analyses can be summarised as follows:

Analysis Fixed Change to P(e) Resulting Resulting changes
Factors change in P(h|e) in other factors

Roush LR (>1), P(e) increases| P(hle)increases P(h)increases,
P(e|h) P(e|=h) fixed

Conventional| P(e|h), | P(e) decreases P(h|e)increases LR incregses,
P(h) P(e|-h) decreases

Table 1 - Two analyses of relationship between P(ahd P(h|e)

Since both analyses follow from the probability ans, there is no contradiction
between them despite their apparently conflictingatusions as to the relationship
between changes in P(e) and changes in P(h|e).thé\gable makes clear, the

difference is due to different factors being hexed.

This is just arithmetic with probabilities. Howeyéoth analyses are used to make
arguments as to the significance of the probabdityevidence. The conventional
analysis is used to argue, via Bayesian updativa,the more surprising evidence is,
the more confirmation it lends to the hypothesiseotearned. This clearly involves
evidence in the sense of grounds to knowledge. Reis used to support her claims
that more probable evidence is ‘ideal’ and if thesréo be a conflict at all, this must
involve evidence in the same sense. To clarifydispute we shall first consider what
Roush’s analysis looks like in a ‘Bayesian’ framekyahen what it looks like in a
‘frequentist’ framework. By a ‘Bayesian frameworkie mean one in which
probabilities represent degrees of belief and inclwton learning a new fact e,
probabilities are ‘updated’ by changing from theop probability (labelled K.)) to a
new ‘posterior’ probability (labelled:f)) by the rule: R.) = R(.|e).

Interpreted in a Bayesian way, Roush’s analysistban be expressed as follows. If

the agent holds a higher prior degree of beliedf,ibut the same values fa(dth) and

Pi(e|=h), then on learning e the agent would haviglaeh posterior degree of belief in
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h than would have been the case had the agenetearwhile holding the lower prior

belief in e. Though this is a consistent Bayesiecount of how higher priors in e can
be advantageous for obtaining a higher posteridér @am learning e, there is problem.
The agent can only have the higher prior in e, mittee other fixed conditional

probabilities, if the agent also has a higher pinathe hypothesis. This follows from
the fact that the higher,(B) also implies a higheri(R) given the factors Rush holds
fixed. One cannot then attribute the higher pasten the hypothesis to the higher
prior in the evidence rather than to the highgh)P as is required for Roush’s

argument to go through.

In contrast the conventional analysis avoids thfiscdity. Here R(h) is fixed when
comparing the cases where evidence has low andpnighdegrees of belief. Thus
the higher posterior degree of belief in h onceag lbeen learned attributable to the
lower prior degree of belief in the evidence unither conventional view. Indeed, this
is just the Bayesian story as to why surprisinglence confirms more: Evidence with
a lower prior once learned raises the posteridghénhypothesis more assuming fixed
values for the probability for the hypothesis aadthe conditional probability of the

evidence given the hypothesis.

Unsurprisingly perhaps, given this tension betwéen analysis and a Bayesian
interpretation, Roush rejects the premise that Bllould be fixed when comparing
high and low probability evidence. Instead she sakehat high P(e) should make a
difference to P(hprior to learning that e is the case:
“Your degree of belief in e prior to the conditidisation is just P(e), so
high P(e) is (almost) sufficient for you to takasevidence for whatever e
happens to be positively relevant to, that is, emditionalize upon it.
Roughly, if you are confident of e, then you ougghtet your other beliefs
feel the appropriate effects of e’s truth” (p.174)
However, for a Bayesian this is irrational, sincB(e) is less than one then thigans
that the agent does not believe e is certain anddwvot rationally “let [their] other

beliefs feel the appropriate effects of e’s truth”.

18 Note that Jeffrey conditionalization does not Hedpe, since conditionalization on the originalueal
of P(e) does not lead to any change in the degrgleslief, and conditionalizing on a different valaf
P(e) is inconsistent with the agent’s degree atbal e.
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Roush, however, takes her unorthodox interpretatbrBayesian updating to be
virtuous, since it fits with her view that for e &widence for anything else it must
itself be probable:

“It seems to me inescapable that in order for thduer of P(e) that

precedes Bayesian strict conditionalization to ifyysBayesian strict

conditionalization P(e) must be high” (p.174).
It is as if Roush supposes that Bayesians haveea-8tep process. Agents begin with
degrees of belief represented by the ‘antecedeabability R. At the first step they
observe e. At the second they decide on this lagighe probability of e should be 1.
Because the probability of e is 1 they are juddifiat the third step, in changing their
degrees of belief to those represented by the épost probability R. But of course
Bayesians do not take three steps, only two. Thesgmwe e at the first step and at the
second, revise their probabilities in one fell swdo R, which among other features
sets the probability of e to 1For the Bayesian the new probability is justifieg
learning e, not by the fact that one has becomdidsont of e (i.e., already set the
probability of e high). The posterior probability an expression of one’s confidence,
not a justification of it. The Bayesian is far maybjective here than Roush would
have it: It is observations that justify new dexgeof belief, not simply one’s
antecedent degrees of confidence.

These difficulties suggest a possible fix: Do neglane e is certain when it is not, but
use Jeffrey conditionalization, under whicfieP= R(¢|e)R(e) + R(¢|-e)R(-e). With
this approach, one might be able to argue thathietter to have a higher prior in the
evidence, assuming identicaj(éth) and Fe|-h), than otherwise. However, as it
happens this runs into the same difficulty as wittict conditionalization, namely a
higher prior in the hypothesis is implied when thex a higher prior in the evidence.
Thus even with Jeffrey conditionalization, the hagiposterior cannot be attributed to

the higher prior in the evidenceé.

- This is as one would expect given that it is aegalisation of the strict Bayesian case already
discussed.
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Perhaps a resolution lies elsewhere. In her exesfibRoush describes scientists or
doctors finding out that the evidence is probaldeguing that having a high
probability here is important. This may suggestt ttihe way to make sense of the
importance of probable evidence for Roush is takdemce to be probablence the
agent has become confident otlitat is, to take her demand that the probalulitthe
evidence to be high to refer to the posterior mattan prior probability of the
evidence?? This would assume Jeffrey conditionalizationgsiin the strict updating
case the posterior of the evidence is always omenare or less probable evidence

cannot be modellet?.

At first blush, this modified approach looks promg To see why, assume identical
priors in the evidence and in the hypothesis ineprid allow one to attribute the
greater confirmation power to the higher probapildf evidence. With Jeffrey
conditionalization, the higher the posterior in thédence, the higher the posterior in
the hypothesié' Yet this is not consistent with Roush’s analysisce under these
assumed conditions,j(Rle) (which under Jeffrey conditionalization egué&l(hle))
must be the same across the comparison of highelcaver probability evidence.
Moreover, this proposed analysis amounts to annaegt that it is better to learn
more probable evidence because it raises the pmsiterthe hypothesis more. But
since P(h|e) is unchanged, this is not an argutiantprobable evidence makes for
better evidence in a relevance sense. It is radlhneargument that learning more
probable evidence makes for better grounds-for-keadge evidence since it leads to
a higher posterior in h. But that more probablielewce makes for better grounds for
knowledge is not in dispufg.

18 Such as the Rutherford example (p.174) and hesthgtical medical test example (p.171).

9% Such a reading also fits well with some of Rousttmments: “P(e) reports actual degree of belief,
not how much you expected at some prior stageythatvould believe e at this stage” (p.175).

20 yet another option would be to move to Jeffreyditianalization, take P(e) to be a posterior but
stick to something akin to Roush’s three-step updaby allowing the updating to P(e) before
updating other degrees of belief on e. This mlggditer describe how beliefs change in practice and
could also help modelling ‘old evidence’ situatipesce old evidence could be modelled as evidence
which has already been updated upon specifically,which has not been updated upon generally.
However, this approach also requires that the ageldtincoherent degrees of belief which undeséabl
when one is arguing for a normative model of beksfRoush is doing.

2L This follows immediately from the formula for Jeff conditionalization: i.e. the greatexd) is
(assuming LR1), the greater;h) will be.

2 A final attempt to find a suitable Bayesian intetation of Roush’s argument might be to try to
show that a higher posterior in the evidence aftdfrey conditionalization makes for highe(Hpe)
assuming identical posteriors fof(éfh), Re|-h) such that LR1 in line with Roush’s formal analysis.
We then know, from Roush, thaf(lle) must be greater wheg(é) is greater. But this also fails to
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Turn finally to the frequency perspective on prdbgh from which Roush’s
argument for probable evidencan be made sense of. Consider two populations
where event-types h and e both occur, where Péejth)P(e|-h) are the same across
both populations, and where LR>1. It follows byuRb’'s analysis that if e is more
long-run frequent — in this sense more probable the first population, then the
probability that h occurs in the subpopulation véheroccurs must also be greater for
that population. This shows that if an event-tiggenore probable (in the frequency
sense), it must also be more positively relevarit,tassuming P(e|h) and P(e|-h) are

the same (again in the frequency sense).

Note that by contrast with the Bayesian cases glibedact that h must also be more
probable in the population where e is more probabiet a problem. Far from it, h’'s
being more probable in the first population shohat,tin addition to more probable
evidence making for better relevance evidenceh@ P(h|e) is higher), it makes for
better grounds for knowledge in that P(h) is higW#e must be careful, however,
about what claim ‘h’ represents. That P(h) is higimeone population than another
gives better grounds for knowledge of the claimt thaandomly drawn member of
that population will be an h. Likewise the otheolpabilities, P(e) and conditional

probabilities, must be interpreted accordinglytfe same populatiof.

Finally, it is important to emphasise that not tlat of Roush’'s examples of
hypotheses can be construed as event-types odaguinn (ideally) ‘infinite’

populations. Nor can most hypotheses for which wehwo have a theory of
evidence. There are notorious and well-rehearsifidutiies in applying this kind of

frequentist account to hypotheses of arbitrary fommich we need not repeat here.

give a plausible Bayesian argument for probablelence since it implies a higher prior in the

hypothesis for the case where one learns the motmple evidence (see theorem 4 in appendix).

% The importance of taking care when interpreting phobabilities can be seen in Eric Barnes’ recent
criticism of Roush’'s medical example (p.171) where argues that she equivocates in her
interpretation of P(e). See Barnes (2008, p55ixjetails.
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3.3. What we conclude about Roush’s defences of hig(e)

In conclusion, independently of her arguments al@aking knowledge (which we
turn to in section 5), Roush defends her claim @) be high in order for e to be
evidence for anything on three fronts. The firstalves arguments based on formula
A. and the accompanying graphs. These, we havedrguevide weak grounds for
the demand, if any at all. On the second frontattempts to defuse arguments to the
opposite conclusion, that P(e) should be low. ©hker central arguments on this
front is that Bayesians need high P(e) to warrlet hethod they recommend for
belief revision. We have countered that this argoinrests on a mistake about the
nature of Bayesian conditionalization. Further,hwideffrey conditionalization the
argument either reduces to a defence that moreplelevidence is better as a ground
for knowledge, with which we do not quarrel, orbi#gs the question by assuming
greater prior confidence in the hypothesis in tlasec where evidence is more

probable.

In addition to these two fronts, Roush points dwt twith LR>1 as the criterion, as
opposed to P(h|e) > P(h), e can still discrimireaten if it has probability very close
to 1. She also offers an alternative interpretatto some examples of Peter
Achinstein that were supposed to provide casesewliels the very improbability of

e that makes it evidence for h” (p.176). All theshow either that P(e) need not be
small or that it is no harm for it to be big. Tlésin line with the view that follows
from DC andI C, that the probability of e is irrelevant to whatleeis evidence or not.
A positive argument is still required for the claRraddendumthat “high P(e) ... is

ideal”.

4. Leveraging

We want to use evidence for h to arrive at an assest of P(h) — that's what
evidence is supposed to be good for. To use a otaim this way we should be
reasonably confident of e; hence Roush’s demandbifgt P(e). We should also be
reasonably confident thatis evidence for h. This gives Roush another reason to

make high P(e) a requirement for e to be evidemdkd ideal. If the ultimate aim is to
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use the evidence to arrive at an assessment of iP@hould not be necessary to
assign a value to P(h) in order either to assespd?(to assess whether e is evidence
for h. In Roush’s terminology, we shodklerageto P(h) by using information other
than P(h).

For Roush, evidence must meet b@K and IC. To assess iDC is met, it is
sufficient to assess LR and the usual and most oateeway to do this is to assess
P(elh) and P(e|-h)FormulaA shows that all that is required in addition toesss
whetherl C is met is an assessment of P(e). And the disauésilowing it shows that
high enough P(e) ensurES, given thaDC is met. So an ideal way to sati§€d and

IC is for P(e) to be high. If we know this, we canoknthat e is evidence for h

without having to assess P(h).

Leveraging is an idea we entirely endorse [cf. @aght (forthcoming)]. Indeed the
importance of leveraging cannot be stressed enadngim it comes to considerations
of the use of evidence, considerations that we think phildssp need to keep
centrally in view in developing accounts of whaidence ‘really is’. Both pure
science and policy want to use evidence for h tp teearrive at a reliable estimate of
P(h). This gives yet another argument, based @n idea of leveraging, for
concentrating as Roush does on the size of P(e).

Suppose one has gone down the route of demandagv¥idence must have a high
likelihood, as she supposes, or as many other seppoust satisfy a relevance
requirement, like P(h|e) > P(h|-e). In both caeasg it is known that either of these
requirements is met by knowing the relevant coaddl probabilities, it remains only

to learn P(e) to fix P(h) because both the follapiormulae are true:

P(h) = P(h|e)P(e) + P(h|-e)(1-P(e))
P(h) = _P(e)-P(e|=h)
P(e|h)-P(e|-h)
So from the point of view of leveraging, if one misow P(e) in order for e to be

usable as evidence (as one must given Roush’sresgemt that P(e) is high),
demanding knowledge either of the components of likelihood ratio or the
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components of the relevance difference is enoulyb. additional requirements are
needed, such a®C. More may be needed to characterize what it rsefdo be
‘relevant to’ the truth of h, that is, for our sedosense of evidence. But they are not
needed for leveraging, which can make do with éasl This is why we think it is
important to prise the two notions apart and tovaltlifferent accounts for them

In particular, for leveraging, tacking on requiranse from the other senses of
evidence can be highly restrictive. When it conescalculating a given target
probability, any kind of information that does fjod is as good as any other. It all
depends on what we already know or can efficiefilg out. The calculus of
probability constrains the relations among probsil facts, but a large variety of
combinations can fix the value for a given targdthis suggests that no particular
constraints should be put on what probabilistics§ahould be counted as evidence

when it is evidence as leverage to targeted préibiebithat is at stak&'

Leveraging has two aspects, of which we have sodiscussed only one.  For
evidence of h to be of genuine use, not only shauleklp us calculate P(h), but it
should also be more accessible than P(h) itsetbmRhis point of view we should
like to comment, albeit briefly, on a deep and oowversial position that Roush
defends: that evidence should be characterizetegniin terms of probability. Roush
argues that this should be done in order to avaidoducing concepts in the
explication of ‘evidence’ that are even more obsdiman ‘evidence’ itself. Indeed,
she claims, concepts are often offered in expbeatof ‘evidence’ themselves
generally receive their clearest explication immterof probabilities. Explanatory

relevance is a prime example.

We take issue with this last claim, since it hasrbargued at length that causation,
and thereby causal explanation and thereby exjemat general, cannot be given a
purely probabilistic explicatiof®. But that is not the issue we would like to pdimt
here. Rather we worry about the fact that probiadsliare hard to come by. It is for
this reason that we urge that the project of eafihg ‘evidence’ should start a big

step before the starting position of Roush andretléo offer purely probabilistic

%% Note too that in this case it is not knowledgeeénts that is being employed but rather knowledge
of their probabilities.
- Cf., among works by many authors, Cartwright ()%&8d Cartwright (1989).
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accounts. For the purposes of both pure sciendealicy it is standard practice —
and a practice we would wish to defend — to fieghgr the evidence and then to use it
to assess various probabilities, e.g. P(h), P(R@)|-e), P(e|h) or P(e|-h). And for
this we need guidelines about what counts as eg@#mat are not couched in terms
of probabilities. One might think of these guidek as an approach to our second
notion of evidence as a two-place relevance realatiut it also helps with the
accessibility aspect of leveraging, since the ide@ isolate those kinds of facts that
will help in the assessment of the otherwise diffico reach probabilities. This,

however, is a project much in its infancy in thetemporary philosophical literature.

5. Evidence and tracking

What is the connection between tracking and evidexscRoush defines it, and what
role does high P(e) play in it? Very roughly, adks y means that x and y are
correlated: They both obtain or fail to obtain tig®. Roush is concerned with the
kinds of cases common in philosophy of science liichva subject comes to know h

via believing evidence e. For this she maintaias high P(e) is required because

“...in this trajectory for knowing h not only is true but also b(h)
TRACKS b(e), b(e) TRACKS e, and e TRACKS h. Nofq is true — as
it must be for anyone to know it — and e TRACKShért it is unlikely that
e is false.” (p. 153) [b(x) = ‘The agent believe$ x

This involves claims about beliefs whereas thetimiahip between evidence and
hypothesis does not involve belief. As one woulgheet therefore, the relevant
concept of tracking for evidence is different. Baling Roush (p.150) it can be

formulated as follows
Evidence e tracks a hypothesis h at level u (&dnd only if

TR1. P(elh) >u
TR2. P(e|-h) < 1- u.
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For Roush, it is important that evidence trackshipothesis because that ensures —
provided u is high enough and other tracking reteti are met — the desirable

epistemic goal that belief in the hypothesis tratleshypothesié®

Note that one could tak€R1 and TR2 to define evidence and call it ‘tracking
evidence’. By definition then, evidence would kabe hypothesis and it would,
following Roush (p.154), meet intuitive indicatiand discrimination conditions.
Tracking evidence is also an example of a relevarweept of evidence. Here
whether or not e is tracking evidence for h depgnasly on the relationship between
e and h, and the probabilities of e and h are mbgbahe characterization. Moreover,
it has the nice property that when e is trackingl@wce, then P(e) and P(h) must be
close in value. But, whether P(e) and P(h) aré biglow is independent of whether

e is tracking evidence for h.

Given the attractive properties of the trackingrgbn, one may wonder why Roush
does not adopt it. In short, Roush (n.7, p.16Q)lars that she does not define
evidence in this tracking way because so defineldeiag evidence for h does not
imply P(hle) > 0.5.Thus e can be evidence for h yetdfail to provide adequate
reason to believe h. Nevertheless Roush doesefhotuish the aim that evidence
should track the hypothesis. So it is importardgk whether evidence as she defines
it meets the tracking requirement. It is not htréee that it does not always do so.
The probability distribution specified by P(e) 20P(h) = 0.9, LR =19 has P(hle) =
0.994, P(elh) =0.22 and P(e|-h) = 0.012. Ividence under Roush’s definition, but
given the low value of P(e|h), e does not track h.

More generally, the relationship between Roushid®n of evidence and tracking
can be made clearer using two simple bounds oh)R{e¢l P(-e|hj’

() 1/LR > P(e|-h)

(i) P(e)/P(h}> P(e|h) > P(e)
When LR is sufficiently high, bound (i) implies tia(e|-h) must be low and thus that
TR2 will be met. Likewise, bound (ii) shows that aiP(e) is sufficient folf R1.

- This follows from the ‘transitivity enough’ propgrof the tracking relation (p.151-2).

2’ The bounds are derived as follows. First, LR &|®(P(e|-h), so P(e|-h) = P(e|h)/LR. But since
P(e]h)< 1, it follows that P(e|-h¥ 1/LR. Second, P(e]h) = P(e&h)/P(h), but P(e&hp(e) because
e&h => e, so P(e|l P(e)/P(h). Because LR>1, it follows that P(e|B(2).
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This fits Roush’s analysis well, since high LR aafk) are shown together to be
sufficient for evidence to track. Moreover, thgher LR and P(e) are, the better the
tracking will be. However, bound (ii) also showsahtracking can fail when P(e) is
significantly smaller than P(h) since then P(e|hjstrbe small sGR2 fails. This is

what happens in the example above.

The relationship between Roush’s evidence and itigckuggests another rationale
for imposing a lower bound on P(e): To ensure thatlence tracks the hypothesis.
However, doing this does not just imply trackingjo see why, recall that tracking
evidence is a relevance concept. However, whepleogented with a requirement
that P(e) be high, one can infer that P(h) mush &ls (quite) high in virtue of e
tracking h. Therefore, imposing a high lower bdbwam P(e) ensures e tracks h and
thus that P(h) is higff which is what is required for a grounds-for-knosge
concept. So high probability of evidence play®able role, which arguably leads to
a conflation absent in the simple tracking conagfpeévidence. Probable evidence
makes evidence track the hypothesis, a featureacteaistic of evidence in the

relevance sense, and simultaneously makes evidegiceind for knowledge.

To finish, it is interesting to note that Roush&ildre to define evidence so that it
implies that evidence tracks a hypothesis needbeota serious problem for her
concept of evidence. Tracking evidence is extrgmeiverful when one has it, since
if one knows the evidence is false, then one caprétty sure the hypothesis is false,
and conversely. This, though highly desirable, asely met in practice. Often
evidence speaks for the truth of a hypothesis wireknow it to hold, but when false
does not say much for the falsity for the hypothestor example, let

h: Jill murdered Jack

e: Jill's fingerprints are on the murder weapon.
In this case, e is intuitively evidence for h. Hower, e does not track h: Suppose that
Jill is a careful, intelligent person and if shedhdecided to murder someone she
would have used gloves, so P(e|h) is low. Giveataasible probability distribution

assignment to e and h here, e would be good ewdfemdh. So Roush’s concept of

% When LR>1, > P(e|h)-P(e|-h) > 0. But given P(h)=[P(e)-P(e[fAjg|h)-P(e|-h)]
it follows that P(h}> P(e) — P(e|-h). Since high P(e) ensures trackit{g@|-h) is low
and thus P(h) must be at least almost as highegs P(
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evidence models this situation well. In contrasg tracking concept is overly strong

and rules the fingerprints out as evidence.

6. Conclusion

It may be the case that high probability is a géloidg to require of evidence if

evidence is to be a ground for knowledge, but when aim is to assess more
accessible probabilities to leverage to P(h), i#gd) has no special advantage. And
when a two-place relevance relation is at stakethwe the argument has not yet

been made.
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Appendix

Theorem 1
LR >1 and P(h|e) > a > 0 if and only if there &xis1, 1 >y > 0 and 0 <g 1 such
that

0] LR > x

(i)  Ple) >y

(i)  P(elh)< z

(iv) x—-zly=a
x—1

Proof

First, (i) and x>1 imply LR > 1.

Roush (REF) derives the following useful formulanfrthe axioms of probability:

P(hle) =_LR - P(e|h)/P(e) @
LIR-1

Solving for P(e) yields

P(e) = P(e[h)
LR (1-P(hle)) + P(hle)

which with (ii) implies

P(elh) >y
LR (1-P(hle)) + P(h|e)

=>  P(elh) > yLR(1-P(hle)) + yP(h|e)

which with (iii) implies

z > yLR(1-P(hle)) + yP(h|e)
=> [zly — P(hle)]/(1-P(hle)) > LR
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Given (i), this then implies that

[zly — P(hle)]/(1-P(h]e)) > x
=> zly > x(1-P(h|e)) + P(hle)
=> zly > x - P(hle)(x — 1)
=> P(hle)(x-1) > x — zly
=> P(hle) > (x — z/y)/(x -1)
Finally, (iv) then implies that

P(hle)>a o
‘only if’

Let z = P(e|h) so (iii) holds. From (1) it followlsat

P(hle) =_LR — z/P(e) )
LR -1

Define the following function

f(p,q) =p —2z/q for LR>p>1, P(e)>q>0.
p-—1

Given the continuity of the right hand side of (3§ p> LR and q—-> P(e) then
G(p,q)—> P(h|e). Since P(h|e) > a, it follows by the d&bn of the limit there exist x

and y* such that LR x >1 and P(e) >y*>0 and

X-zly*>a
X-1

= x-zly* > a(x-1)
=> X - a(x-1) > zly*
=>  y*>z/[x-a(x-1)] .. (3
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Now define y by y = z/[x-a(x-1)].

Given x >1, 0 < ¥ 1 and O<a<1 it follows that y > 0.

Given (3) y*>y. Since P(e) > y* it follows th&e) > .

We have shown that LRx > 1 and P(e) >y > 0 and y = z/[(1-a)x + a].\&Baj for a
yields

x—2zly = a

x—1

The result followsm

Corollary 1
Given LR > 1, P(hle) > aif and only if P(e) > JAjg(1-a)LR + a]

Proof
Let x = LR, z = P(e|h) and y = z/[(1-a)x + a]. Rty LR and P(e|h) (i) and (iii) are

met and (iv) is met by definition of y. By theetbrem therefore, P(e) >y if and only
if P(h|e) > a. The result follows from substitutiof P(e|h)/[(1-a)LR + a] for ya

Corollary 2
Given LR > 1, P(hle) > ¥ if and only if and P(e(&lh)/(LR + 1)

Proof Follows from corollary 1 for a =va

Corollary 3
LR >1 and P(e) > 1/[(1-a)LR + a] => P(hle) > a

Proof Since 1> P(e|h), P(e) > 1/[(1-a)LR + a] => P(e) > P(§(h)a)LR + a], the

result then follows from corollary &

Corollary 4
LR >1and P(e)> 2/(LR + 1) => P(hle) > Y-
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Proof Follows from corollary 3 for a = ¥

Theorem 2
Given LR > 1, for any x > 1 there do not exist a grsuch that P(h|e) > a and P(e) >
y=>LR >x.

Proof: Solving (1) for LR yields

LR =[P(e|h)/P(e) - P(h|e)]/[1- P(h|e)]
The right hand side is continuous in P(e) for &xgd value of P(e|h) and fixed non-
unitary value of P(h|e). Given this it follows thas P(e)-> P(el|h), LR> 1.
Therefore imposing restrictions P(h|e) > a and P(g)can not imply LR > x for any
given x > 1, since one can always find a value(ej Bufficiently close to P(e|h) such

that x > LR > 1 by the definition of the limitm

Theorem 3
Given LR>1, P(e|h) and P(e|-h) fixed, P(h|-e) tyriacreases with P(e).

Proof:
P(h|-e)= P(h & -e)/P(-e)
=[P(h) — P(h&e)]/[1-P(e)]
= [P(h) — P(e)P(hle)[/[1-P(e)]
But by Bayes theorem, P(h) = [P(h|e)P(e)]/P(e|ludxstituting
P(h|-e)= P(e)P(hle)[ 1/P(e|h) - 1])/[1-P(e)] ... 4)
All the terms in the numerator increase, stricthcrease or stay constant with

increasing P(e) given fixed P(e|h), P(e|-h), whike denominator strictly decreases.

Therefore, P(h|-e) is a strictly increasing functad P(e).m

30



Theorem 4

Consider two possible posterior situations afterdatmg using Jeffrey
conditionalization on e. In one case one updatessadegrees of belief on e to the
posterior Ke), in the other to:Ae), where He) < R*(e).

Notation

Let B(.) denote the posteriors obtained by updating:(e) P
Let R() denote the priors before updating e

Let B*(.) denote the posteriors obtained by updatingPd(e).
Let B*() denote the priors before updating té(E).

It (a) R(elh) = *(elh)
(b) R(e|-h)=R*(e|=h)

(c) LR=LR*>1.

(d) R(e) = R*(e).

Then R(h) < R*(h).

Proof:

General result: in Jeffrey conditionalization PJtded P(h|-e) remain unchanged on

updating on e.

So R(hle) = Rhle), Rh|-e)=R(h|-e), P*(hle) = R*(hle) and P(h|-e) = R*(h|-e).

By the axioms of probability:

Pi(h) = R(hle)R(e) + R(h|-e)R(-e)

and

R(h) = PE(hle)R*(e) + R*(hl-e)R*(~e)

Substituting it follows that

Pi(h) = R(hle)R(e) + R(h|-e)R(-e)

and

P*(h) = P*(hle)R*(e) + R*(h|-e)R*(-e)
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And by (d) it follows that
R*(h) = P(hle)R(e) + R*(h|~e)R(-e)

Since Re)< R*(e), by Roush’s analysis it follows that;(Rle)<R*(h|e) and by

theorem 3 that #h|-e) < F*(h|-e). It follows by substitution of these inedjties
into the above thati{h) < R*(h). =
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