A Penalty-Logic Simple-Transition Model
for Structured Sequences

Alan Fern AFERNQ@EECS.ORST.EDU
School of Electrical Engineering and Computer Science, Oregon State University

Abstract

We study the problem of learning to infer hidden state sequences of processes whose
states and observations are propositionally or relationally factored. Unfortunately, standard
exact inference techniques such as Viterbi and graphical model inference exhibit exponential
complexity for these processes. The main motivation behind our work is to identify a
restricted space of models, which facilitate efficient inference, yet are expressive enough
to remain useful in many applications. In particular, we present the penalty-logic simple-
transition model, which utilizes a very simple-transition structure where the transition cost
between any two states is constant. While not appropriate for all complex processes, we
argue that it is often rich enough in many applications of interest, and when it is applicable
there can be inference and learning advantages compared to more general models. In
particular, we show that sequential inference for this model, that is, finding a minimum-
cost state sequence, efficiently reduces to a single-state minimization (SSM) problem. We
then show how to define atemporal cost models in terms of penalty logic, or weighted logical
constraints, and how to use this representation for practically efficient SSM computation.
We present a method for learning the weights of our model from labeled training data based
on Perceptron updates. Finally, we give experiments in both propositional and relational
video-interpretation domains showing advantages compared to more general models.

1. Introduction

We consider hidden-state inference from the observations of processes with propositionally
and relationally factored states and observations. That is, processes where states and ob-
servations can be described in term of propositions, objects, and relations among them.
Unfortunately, standard exact inference techniques such as Viterbi (Forney, 1973) and vari-
able elimination for graphical models (Dechter, 1999) exhibit exponential complexity for
these processes. The main motivation behind our work is to identify a restricted space
of models, which facilitate efficient inference, yet are expressive enough to remain useful
in many applications. In particular, we note that in many domains it is possible to spec-
ify and/or learn rich logical constraints on states and observations that are rarely violated,
though not perfectly consistent with reality. Our model is motivated by the desire to provide
a framework for utilizing such constraints for robust sequential inference.

We introduce the penalty-logic simple-transition model which is parameterized by a set
of weighted logical constraints and a single state-transition cost.! Under this model, the cost
of a state sequence given an observation sequence is the weight of unsatisfied constraints plus
a transition cost for each state change. Note that this model uses a very simple-transition
structure that assigns a uniform cost for transitioning from any state to any other state.

1. This model was originally introduced in the conference version of this work (Fern, 2005).

While this type of transition model is not always appropriate, as argued later in this paper,
for many processes of interest it is adequate. Intuitively, for many sequential processes,
states persist for many time steps, and it is possible to robustly infer the state based on
just the observations it generates without considering neighboring states. In such cases,
our model effectively segments the observation sequence and utilizes the weighted logical
constraints to reliably infer the state corresponding to each segment. In this paper, we
study both learning and inference for this model.

We first study sequential inference for general simple-transition models (STMs). We
show that this problem can be efficiently reduced to what we call the single-state minimiza-
tion (SSM) problem, which involves inferring the least cost single state for an observation
sequence. This result indicates that we can obtain efficient sequential inference assuming
efficient SSM. We also show that STMs are somewhat distinguished with respect to efficient
SSM. In particular, we show that for even a small extension to the STM model, no such
efficient reduction is possible unless P=NP.

The next contribution of the paper is to show how to represent the atemporal part
of our model in terms of penalty-logic theories, which are simply sets of weighted logical
constraints. With such a representation, we show an approach to practically efficient SSM
using a combination of logical reasoning and bounded search. The result is a robust way
of utilizing nearly-sound logical constraints for sequential inference. We note that when a
significant number of constraints are not nearly-sound, i.e. highly probabilistic, our methods
are still applicable, but performance may suffer in terms of efficiency and/or accuracy.

We also describe a simple approach to learning the parameters of a penalty-logic-based
STM from labeled training data. Given a set of logical constraints, either provided or
learned by other mechanisms, we show how to instantiate a sign-constrained variant of the
structured Perceptron algorithm (Collins, 2002) to jointly learn both the constraint weights
and transition cost of the model. We show that this algorithm converges in a finite amount
of time given usual margin assumptions.

We evaluate the learning and inference method in two real domains. The first, is a
propositional domain, studied previously by Torralba, Murphy, Freeman, and Rubin (2003),
which involves inferring the sequence of physical locations based on observations from a
head-mounted web-cam. The second domain is relational and involves inferring relational
force-dynamic states from video sequences. The results show that our model is effective
and has advantages compared to a number of more general models.

In what follows, in Section 2, we first describe our problem setup and give an example
of the type of sequential inference problem we are interested in. In Section 3 we introduce
the simple-transition model. Section 4 then discusses inference for this model, showing the
efficient reduction to SSM and pruning mechanisms. In Section 5, we present a hardness
result for inference in non-simple models, showing that STMs are somewhat distinguished
with respect to reducibility to SSM. In Section 6 we introduce our propositional penalty-logic
representation for atemporal cost models and show how to perform practically efficient SSM.
Section 7 extends to relational representations via the introduction of penalty-logic schemas.
Section 8, describes how to apply the structured Perceptron algorithm to the problem of
learning the parameters of a simple-transition model. Section 9 presents experimental
results in two domains. Finally, Section 10 reviews related work.

Frame 1 Frame 3 Frame 14 Frame 21

Figure 1: Key frames in a video segment showing a hand picking up a red block from a green
block that is laying on the table. The object tracker’s output is shown by the polygons.
The video segment has two distinct force-dynamic states given by: { GROUNDED(HAND),
GROUNDED(GREEN), CONTACTS(GREEN, RED)} (frames 1 and 3) and { GROUNDED(HAND),
GROUNDED(GREEN), ATTACHED(HAND, RED)} (frames 14 and 20). The transition occurs
between frames 3 and 14. See Example 2 regarding the predicates GROUNDED, CONTACTS,
and ATTACHED.

2. Problem Setup

For simplicity, we describe our problem setup and approach for propositional (rather than
relational) processes, where in the spirit of dynamic Bayesian networks (DBNs) (Murphy,
2002), states are described by a fixed set of variables. In Section 7, we extend to the
relational setting.

We are interested in the problem of sequential inference where we are presented with
observation sequences and asks to label them by corresponding state sequences. Here obser-
vation sequences (o-sequences) and state sequences (s-sequences) are simply finite sequences
over elements of the observation space X and state space) respectively. Throughout we
assume that for any o-sequence the target state sequence has the same length and thus the
problem can be viewed as predicting a state label for each element of an o-sequence. By
convention, for a sequence @ = (qi,...,qr), we let Qij = (¢;,...,q;) for i < j. We will
use uppercase for sequences and lowercase for single states and observations. We say that a
sequential inference problem is propositional when its states are represented using a set of n
state variables over the finite domain Dy, yielding) = (Ds)"™. The value of the i’th variable
in state s is denoted by s). We will not need to assume a representation for observations
until Section 7.

In this paper, we are interested in the case where we are not provided with an explicit
description of the process that generates observation and corresponding state sequences.
Rather, we assume that we are given a training set of corresponding s-sequence/o-sequences
pairs drawn from the process of interest. We take a machine learning approach to solving
this problem, where we learn a model of the process from the training set and then use
that model to infer s-sequences for newly observed o-sequences. The focus of this paper is
on describing a particular model for propositional and relational processes along with the
associated inference and learning algorithms.

Example 1. The process in our video-interpretation domain corresponds to a hand play-
ing with blocks. Figure 1 shows key frames where a hand picks up a red block from a
green block that is laying on the table. The goal is to observe the video and then infer

the underlying force-dynamic states, where the force-dynamic state describes the support
relations among objects. States are represented as sets of force-dynamic facts, such as
ATTACHED(HAND, RED). Observations are represented as sets of facts quantifying basic ge-
ometry relations and object properties in the scene, such as DISTANCE(GREEN, RED) = 3,
that are derived from an object tracker’s noisy output. For a fized set of objects, the pro-
cess can be represented propositionally with a variable for each possible fact. However, our
system must handle any number of objects, requiring a relational process representation
described in Section 7.

3. The Simple-Transition Cost Model

Our framework utilizes an additive conditional cost model C'(S1.7|O1.7) to represent the
cost of labeling o-sequence O1.7 by s-sequence Si.p

C(SurlOur) = Y Calsilo) + Y Cilsi,si-1) (1)

1<i<T 1<i<T

where C, : Y x X — R is an atemporal-cost function, C; :) x Y — R is a transition-
cost function, and)Y and X are the state and observations spaces of the process under
consideration. Sequential inference involves computing arg ming, ,, C'(S1.7|O1.7) for a given
O1.7.

This model has a familiar Markovian form, corresponding to the condition version of
the cost model implicit in hidden Markov models and two-time-slice DBNs (Murphy, 2002).
Intuitively, C,(si|o;) represents the local cost of labeling the i’th sequence position as s;
given that we observed o;, and Cy(s;, s;—1) represents the cost of transitioning from state
$i_1 to s;. For simplicity, we only allow C, to depend on a single local observation. However,
as for conditional random fields (Lafferty, McCallum, & Pereira, 2001), all of our discussions
generalize to the case where the local cost of s; can depend on the entire observation sequence
rather than just o;.

In this work, we focus on models with a particularly simple-transition-cost function. We
say that C'(S]O) is a simple-transition model if Cy(s;, si—1) = K - 0(s; # Si—1), where 6(p)
is 1 if p is true and 0 otherwise, and K is a positive constant. Thus, a simple-transition
model can be parameterized by the pair (K, C,). This model charges a constant cost K for
each state transition, regardless of the states involved.

Clearly, it is generally the case that some state transitions are more likely than oth-
ers. If this likelihood information is critical for accurate inference, then a simple-transition
model will not suffice on its own. However, there are interesting classes of processes where
accurate inference is possible without exploiting non-simple-transition structure. For exam-
ple, in processes such as our video-interpretation domain, states tend to persist for many
observations, and a state can be reliably inferred by integrating only the observations that
it generates, without considering neighboring states. In such cases, sequential inference can
roughly be viewed as inferring the approximate state transition points and then integrating
the observations between transitions to infer states. Intuitively this type of inference can
be captured by the simple-transition model—the value of K can be thought of as indicating
the degree to which we expect states to persist. For such processes it is important to study
simple but sufficient models, as there can be considerable computational advantages, com-

pared to using more general transition models such as DBNs. In addition, when STMs are
well suited to a domain, there can be advantages with respect to generalization, compared
to more complex models with many more parameters.

Note that the value of K plays an important role in the resulting state inference. For
very small values of K the infered state sequences will not reward temporal continuity and
hence will be more susceptible to noisy observations. At the other extreme, for very large
values of K, the model will care more about temporal continuity rather than the local
information provided by observations. STMs allow for a spectrum of inference behavior
between these extremes and thus provides a parameterized structure for realizing the above
segmentation-style of inference. Our learning approach introduced later in the paper au-
tomatically optimizes the value of K so as to maximize the accuracy of inference on the
training set, relieving the user from this difficult task.

At first blush, STMs might appear to be quite implausible for problems that involve
many state variables, since if a single variable changes there is no additional cost from
the transition model for any of the the other variables to change their values arbitrarily.
However, it is important to note that the additional cost for such arbitrary changes will
typically be charged by the observation model since the changes will not agree with the
observed evidence as integrated over the segments between transitions.

Finally, we note that in addition to our blocks-world video-interpretation domain, we
are considering a number of other domains for which the simple-transition model appears
well suited. Some of these include:

e Sports Video Interpretation. Professional and college American football teams
spend a great deal of effort attaching semantic tags to football video in order to
facilitate fast semantic indexing by coaches during game planning. Automating the
interpretation process would be a valuable tool. Many properties of interest in sports
video, such as American football, evolve at a much slower time scale than frame
rate. For example, a defender will typically cover a particular offensive receiver for
many video frames, or in basketball, a player dribbles a ball for many video frames.
While such properties may not be reliably inferable from a single observation, such
properties produce distinctive sequences of frames, such that taken together can aid
reliable interpretation.

e Personal Location Tracking. The work in (Torralba et al., 2003) considers using
hidden Markov models to track the high-level location of a person wearing a head
mounted camera—e.g. inferring the room number or street name. In this application,
each location generates many video frames that are highly indicative of the particular
location. Our experiments with this data later in the paper verify that the simple-
transition model is suitable and generalizes better than a more general model.

e Motion Capture Interpretation. Another domain is the interpretation of multi-
object motion capture data. In particular, for interpreting the scenes in an assembly
tutoring system. Here motion-capture sensors are attached to the human subjects,
various assembly objects, and tools. In order to interpret the scenes it is critical to infer
the slowly changing force-dynamic properties based on the noisy marker position data.

Here each force-dynamic configuration gives rise to a large number of observations that
are highly indicative of the particular configuration.

e Task Prediction for Intelligent User Interfaces. The TaskTracer system (Dra-
gunov, Dietterich, Johnsrude, McLaughlin, Li, & Herlocker, 2005) is an intelligent user
interface that is structured around the idea of user tasks. An important component
of such a system is the ability to infer the current task of the user in order to provide
task specific assistance. In this application, the observations correspond to all of the
user interface events captured by the system, and for any particular task there are
typically a large number of observations that are indicative of that task. Preliminary
work in (Shen, Li, & Dietterich, 2007) verifies that STMs are well suited to this task.

4. Inference for Simple-Transition Models

In this section, we consider sequential inference for the simple-transition model, i.e. com-
puting arg ming, . C'(S1.7|O1.7). Here we treat C, as a generic function, although its rep-
resentation is critical for efficient inference and will be introduced in Section 6, where we
describe how to represent atemporal cost models using penalty logic.

Since the simple-transition model can be viewed as a conditional hidden Markov model
(HMM), we can apply the standard Viterbi algorithm (Forney, 1973) to compute the
minimum-cost state sequence Sy.7 in O(T -|Y|?) time. In fact, it is possible to improve this
computation by leveraging the simple-transition structure in order to obtain an O(T'-2-|))
time algorithm.? However, as is well noted for DBNs, these algorithms are impractical for
non-trivial propositional processes as the state-space scales exponentially in the number of
state variables n, i.e. |Y| = |Ds|™. Likewise, general-purpose graphical-model inference
techniques such as variable elimination and junction-tree algorithms exhibit exponential
behavior in n for the simple-transition model. This is due to the §(s;, s;—1) terms in the
simple-transition model, which causes the induced tree width (Dechter, 1999) of the corre-
sponding graphical structure to be linear in n, indicating that standard graphical techniques
will be exponential time in n. This exponential behavior is a result of ignoring the special
structure of the simple-transition model. For the relational processes we are interested in,
the effective value of n will typically scale at least quadratically with the number of objects,
making these techniques inapplicable.

4.1 Reduction to Single-State Minimization

For a given STM C and o-sequence O1.7 we denote the minimum-cost over all s-sequences
by C*(O1.r) = ming, ,, C'(S1.7|O1.7) and let the witness set C;(O1.1) be the set of optimal
s-sequences that achieve cost C*(O1.7).

Our approach to sequential inference for STMs, i.e. computing C*(O1.7), is by reduction
to a problem we will call single-state minimization (SSM).

2. For time step 4, the Viterbi algorithm considers the possibility of transitioning from each possible state
at time ¢ — 1 to each possible state at time i, which is quadratic in the number of states. For the
simple-transition model, at time ¢ we only need to consider the possibility of being in the same state at
time ¢ — 1 or not, which is linear in the number of states. This observation also follows by using distance
transforms for Viterbi maximization as in (Felzenszwalb, Huttenlocher, & Kleinberg, 2003).

Definition 1 (Single-State Minimization). Given an atemporal cost function C, and an
o-sequence Oy.p, the SSM problem is to compute the SSM cost function o(O1.7|Cy) =
ming Y ;<7 Ca(slo;) and the corresponding SSM witness function o,,(O1.7|Cy) = s where
state s is a state achieving o(O1.7|Cy) (i-e. 7(O1.7) = > cicqr Ca(s|oi)). When Cy is clear
from context we will denote the values of these functions by just 0(O1.7) and oy, (Or.1).

Solving SSM gives the minimum cost of labeling an o-sequence O1.7 by a single state—
i.e. the minimum cost label with no state transitions. An important property of STMs is
that C*(Oq.7) can be expressed in terms of the SSM cost function . In what follows we
say that an s-sequence Si.7 has a final transition at j, for j > 0, if s; # s;41 and all states
after s; are equal. We say that Si.r has a final transition at j = 0 if S1.7 has no transitions.

Proposition 1. Given a STM C' and o-sequence O1.1, for any 0 < j < T we have that
C*(Ol;T) < C*(Ol;j) + Kd(] > O) + O'(Oj+1;T)
with equality if and only if there is a member of C}:(O1.7) with final transition at j.

The proof is straightforward and is in the Appendix A. This proposition tells us that if an
optimal s-sequence has a final transition at j then C*(O;.r) is equal to the minimum cost
achievable up to position j, plus a transition cost K (unless j=0), plus the SSM cost for
the remaining suffix (no transitions occur after j). That is, the computation of C*(O1.7)
decomposes into two completely decoupled minimization problems, one for the prefix up to
7 and another for the postfix after j. This critical decomposition is possible because STMs
weigh all transition types equally.

Proposition 1 also tells us that for any 0 < j < T, C*(O1.7) will not be greater than the
expression C*(0Oy.;) + K-6(j > 0) + 0(Oj41.7). Since there must be some index j that is
the final transition of an optimal s-sequence, we can compute C*(O1.7) by minimizing this
expression over all j, which gives the following key recursion.

C*(Ovnr) = i, [C*(O15) + K - 6(j > 0) + 0(Oj41.7)] (2)

Equation 2 yields an efficient reduction to SSM based on dynamic programming, which
we call the SSM-DP algorithm. Simply compute C*(O1.) in the order t = 1,2,...,T for a
total of T2 SSM computations. It is straightforward to store information for extracting a
minimum-cost s-sequence in C}, (O1.7) (via calls to oy,) and we will denote any such sequence
by SSM-DP(Oq.7, 0, K).

We can view Equation 2 as the recursion used for inference in segment models (Osten-
dorf, Digalakis, & Kimball, 1996), specialized for our simple-transition structure. However,
like the Viterbi algorithm, segment-model inference typically involves enumerating the state
space. In our case this corresponds to computing the SSM function o by considering each
possible state to find the one of minimum cost. Computing SSM in this way has a time com-
plexity of at least O(T'-|Ds|™), and thus the SSM-DP algorithm would require O (T3 -|D4|™)
time, which is exponential in n, and not practical for our purposes.

At first blush it does not seem that our reduction to SSM has gained us anything, in fact
the complexity is now cubic in 7', rather than linear as for Viterbi. However, the utility of
this reduction, for large n, becomes clear when SSM can be computed efficiently relative to

n. That is, efficient SSM computation implies efficient sequential inference for the simple-
transition model. The complexity of SSM depends on the particular representation used
for the atemporal cost function C,. The basis of our approach is to use a representation
grounded in weighted logical constraints, or penalty logic, in order to provide practically
efficient SSM.

4.2 Pruning for SSM-DP

Though our reduction provides the potential for handling large state and observation spaces,
the naive DP reduction requires O(T?) calls to SSM, which will be unacceptable for many
applications. Here we describe a very effective pruning technique that we have empirically
observed to reduce the number of SSM computations to O(T).

The O(T?) complexity arises from the fact that when computing C*(Oy1.;), Equation 2
dictates that we consider all previous times j < t as possible locations for the final state
transition. Fortunately, in practice, it is possible to soundly eliminate most values of j from
consideration as DP progresses. Instead of computing C*(O;.4) by considering each value of
j < t we maintain a list L; of j values that have not yet been eliminated by pruning. When
computing C*(01.;) we only consider j < ¢ that are also in L;. Intuitively, after computing
C*(0O1.), if we find this cost is small compared to the optimal cost up to index j plus the
SSM value from j to t, then we can eliminate j from consideration as a final transition
point. This is because t could always be used instead of j as a final transition point and
achieve as good or better cost.

More specifically, the sets L; are updated as follows:
o Ly ={0}
o Liyr ={t}U{j € L | C"(O1) > C*(O1y5) + 0(Oj1:) — K- 6(j = 0)}

That is, after completing DP iteration ¢t we can eliminate any value j < t from L; that sat-
isfies C*(O1.¢) < C*(O1.5)+0(0j41:4) — K -5(j = 0). The resulting algorithm is summarized
in Figure 2. The soundness of this pruning rule is given by the following proposition which
shows that if we remove an index from Ly, then there will be another index in L;1q that is
at least as good.

Proposition 2. Given a STM C and an o-sequence O1.7, let the sets Ly be computed as
described above. For any 1 <t < T and any 0 < j < t,if j € Ly and j & Lyt (ie. j
was removed on iteration t), then there is a j' € Ly11 such that for any t' >t if C(O1.yp)
contains an s-sequence with final transition at j then it also contains an s-sequence with
final transition at j'.

The proof is in the Appendix. This proposition tells us that during SSM-DP, when
computing C*(O1.), it is safe to only consider minimizing over value of j that are in L.
In our video-interpretation experiments, this pruning mechanism dramatically reduces the
number of j values considered, typically to less than ten per DP step.

PRUNED-SSM-DP(O;.1,0, K)
L — {0}
for t=1,...,T
for-each j € L
Compute and store o(Oj41:)
Compute and store C*(O1.4) = minjer, [C*(On:5) + K - 0(j > 0) + 0(Oj41:4)]
L—Lu{t}—{jeL:C"(0O1) <C*(Or)+0(Oj414) — K -0(j =0)}
return C*(0O1.7)

Figure 2: The SSM-DP algorithm with the incorporation of sound pruning.

4.3 Sufficient SSM Approximation

In practice we do not need to compute the exact SSM function for all possible o-sequences.
Rather we need only to compute a sufficient SSM approximation as we define below. Later
we will translate this observation into practical computational savings.

We say that O;.; is a critical o-sequence of a sequential inference problem P if for some
possible o-sequence Oy.7 there is an optimal target s-sequence Si.7 in which O;.; is a maximal
subsequence generated by a single state. Let o be an SSM function corresponding to
some STM, presumably one that accurately predicts s-sequences of the sequential inference
problem P. We say o’ is a sufficient SSM approximation to o for P if both 1) for all o-
sequences O, 0(0) < ¢/(0), and 2) ¢/(0") = o(0’) for any critical o-sequence O’ of P. It is
straightforward to show that we can do as well at predicting s-sequences of P using o’ as
we can using o.

Proposition 3. Let o’ be a sufficient SSM approximation to o for sequential inference prob-
lem P, and assume that SSM-DP breaks ties according to a fixed ordering over s-sequences.
For any possible O1.7 and corresponding target Sy.r arising in P, if SSM-DP(O1.1,0,K) =
S1.7 then SSM-DP(OLT,O'/, K) = Syr.

Proof. First we introduce the concept of “cost under an SSM function”. Given an o-sequence
O1.7 and an s-sequence Sy, we denote by O(O1.p,S1.7) = {01,04,...,0,,} the set of
maximal o-sequences of O1.7 for which there is no state transition in Sy.p. For a given K
we define the cost under SSM function o of Si.1 given O1.7 to be (m—1)-K+> .., 0(0;),
which is equal to the cost assigned to Si.7 given O1.7 by an STM corresponding to o. Note
that for an arbitrary SSM function there need not be a corresponding STM—mnevertheless,
this notion of cost under an SSM function is well defined. SSM-DP returns an s-sequence
that has minimum cost under its given SSM function.

Assume that Oq.7 is a possible o-sequence with target s-sequence Sy.p with respect to
P. In this case we have that

O(O1.1, S1.1) =4{01,04,...,0,}

is the set of critical o-sequences of Oy.p. If SSM-DP(Oq.7, 0, K) = S1.7 then we know that
there is no other s-sequence with a better cost under o. Furthermore since ¢’ is a sufficient

approximation we know that the cost of Si.7 under ¢’ is equal to the cost under o, and
we also know that no s-sequence will have a lower cost under ¢’ than under o. Thus, Si.r
will be a minimum cost s-sequence under ¢’ and since ties are broken according to a fixed

ordering we have that SSM-DP(Oy.7,0', K) = Sy.7. O

At this point it is unclear how one might compute a sufficient SSM approximation
without already knowing the true s-sequences. In Section 6, we describe how this can be
done for our constraint-based representation, and how it leads to computational benefits.
Intuitively, our computation of ¢/(O) will be based on searching for a minimum-cost state for
O, which will sometimes yield sub-optimal solutions with respect to o(O), in which case, we
automatically satisfy the first condition for sufficient SSM. Furthermore, the search needs to
only find optimal solutions for long enough state sequences to satisfy the second condition.
For these sequences we will argue that often very little search is needed to find the optimal
result, thus allowing for efficient and sufficient SSM computation.

5. Hardness for Non-Simple Models

Given our focus on SSM it is natural to consider efficient SSM reductions for non-simple
models. Intuitively, if a model distinguishes between different transition types, we may need
to consider states other than just SSM solutions (like Viterbi but unlike SSM-DP), possibly
resulting in exponential behavior in n even given efficient SSM. Below we show that an
efficient reduction is unlikely for a modest extension to STMs, giving a boundary between
efficient and inefficient models under efficient SSM.

We extend STMs by allowing the model to assign higher costs to transitions where
more state variables change, unlike STMs which can only detect whether some change
occurred. A cost model C', with atemporal component C,, is a counting-transition model if
Ci(siy8i-1) = K32 <<y, 6(s§j) # sgi)l), i.e. transition cost is linear in the count of propositions
that change. We say C allows efficient SSM if the SSM function for C, is computable in
time polynomial in its input o-sequence size and number of state variables.

Theorem 1. Given a counting-transition model C' that allows for efficient SSM, an observa-
tion sequence O1.7, and a cost bound T, the problem of deciding if ming, , C(S1.7|Ov.7) < T
18 NP-complete.

This result shows that STMs are somewhat distinguished with respect to their ability to
leverage efficient SSM computation. In the remainder of this section, we present the proof
of this result, which relies on a previous hardness results for 2-d grid Potts model inference.
A Potts model is a tuple (V, E, D, C},C,) where V and E C V x V are the vertex and edge
sets of a finite graph, D is a finite domain of vertex labels, C; : V x D — R is a label cost
function, and C), : E — R is a pairwise cost function. We interpret Cj[v,d| as the cost
of labeling vertex v with label d, and Cp[v1,v2] as the cost of assigning vertices v; and vy
different labels. A vertex labeling L : V' — D assigns each vertex a label from D, and the
cost of a labeling L is C(L) = >_,cy Civ, L(v)] 4+ 324, 1p)er Cpl(v1,v2)] - 6(v1 # v2). That
is, the cost is the total labeling cost over individual vertices plus the total cost incurred for
assigning neighboring vertices different values. Throughout this section we will assume that
the cost of a vertex assignment can be evaluated efficiently. We say that a Potts model is a

10

2-d grid Potts model if the graph given by V and F corresponds to a 2-d rectangular grid.
That is, vertices are arranged in a rectangular grid and there are edges between vertical and
horizontal neighbors in the grid. Figure 4a in Appendix A shows a graphical depiction of a
2-d grid Potts model. Potts models can be viewed as a restricted class of discrete Markov
random fields and 2-d models have been commonly used for image processing and computer
vision, where vertices correspond to pixels.
The following hardness result, credited to Jon Kleinberg, shows that finding the minimum-

cost labeling for Potts models is computationally hard, even for 2-d grids.

Theorem 2. (Veksler, 1999) Given as input a 2-d grid Potts model and a threshold T, the
problem of deciding whether there is a vertex labeling with cost less than T is NP-complete.

The first step in our proof of Theorem 1 is to give a non-trivial extension of this hardness
result to a more restricted class of 2-d grids where horizontal pairwise edge costs are all
equal. We say that a 2-d grid Potts model is h-constant if Cp[(v1, v2)] = K for all horizontally
neighboring vertices v; and vy in the grid, for some constant K. For example, the model
depicted in Figure 7 in Appendix A is an h-constant 2-d grid. The proof given for Theorem
2 does not extend to h-constant models as it relies on constructing models that are not h-
constant. To the best of our knowledge there are no published results on the complexity of
this restricted model class and our personal communication with Kleinberg and the authors
of (Veksler, 1999) suggests that the problem was open before our work. Interestingly, it
also appears the sub-class of our problem where all edge costs are equal (both vertical
and horizontal) is still open. This is somewhat surprising given that in practice image
processing and computer vision researchers often consider 2-d grid models where all edge
costs are equal.

Lemma 1. Given as input an h-constant 2-d grid Potts model and a threshold T, the problem
of deciding whether there is a vertex labeling with cost less than T is NP-complete.

The proof is in Appendix A. With this lemma in hand, we are now ready to prove
Theorem 1 by reduction from h-constant 2-d grid models.

Proof. Membership in NP is again trivial. To show hardness consider an h-constant 2-d
grid Potts model P* = (V, E, D, C}, C,) where all horizontal edge costs (given by C,) are
equal to the constant K. Let T and n be the number of columns and rows respectively in

P*. We will denote the vertex in column ¢ and row j as véj),

Intuitively, our reduction will treat v,gj) as the 7’th propositional state variable at time

t for some process, which we will denote by sﬁj). Note that if two neighboring vertices in

corresponding columns véj) and vgr)l are labeled differently then there will be a cost of K,
which corresponds exactly to the transition cost of the counting transition model (i.e. there
is a cost of K for each state variable transition). Below we define an atemporal cost function
for a counting transition model that corresponds exactly to P* and at the same time allows
for efficient SSM.

We assume that the observation space for which our counting transition model is defined
has exactly T elements {o1,...,0r}, and that the propositional state space is defined in

terms of n state variables over the domain D. As required for counting transition models,

11

we define the transition cost function as Cy(s,7) = K - > 1, 5(s9) # r0)). For each
observation o;, the atemporal cost function is defined as follows.

(slo) = > sV + Y Gl o)) 6(s9) £ 507D (3)

1<j<n 1<j<n

Intuitively, this equation calculates the atemporal cost for observation o; by ignoring all
of P* except for column t and then calculating the cost of that column under the labeling
given by s. For the o-sequence O1.p = (01,...,07), it is straightforward to verify that
the cost C(S1.7|O1.7) of a state sequence Sy under this counting transition model is
equal to the cost under P* of the labeling L(vﬁj)) = ng’). Since there is a one-to-one
correspondence between length T state sequences S1.7 and labelings of P*, we see that there
is a labeling for P* with cost less than 7 iff there is an Sy.7 such that C'(S1.7|O1.7) < 7. This
completes the reduction from our decision problem for h-constant 2-d grid Potts models to
the corresponding decision problem for counting transition models, showing NP-hardness.

It remains to show that the counting transition model we constructed allows for efficient
SSM. The SSM function o corresponding to the above atemporal cost function C, can be
expressed as follows.

0(0gs) = min Y Culslo) =min 3 6;(s01), 50 (4)

q<i<r 1<j<n
where,
007050 = 37 al? sV Gl o) 6D # 507
q<t<r
+0(j=2) Y Cly (5)
q<t<r

From Equation 4 we see that the SSM function o can be expressed as minimizing a sum
over the binary functions Hj(s(j —1,50)). Note that the dependency structure on the state
variables implied by these binary functions forms a length n linear chain. It is well known
that we can use dynamic programming, in particular the Viterbi algorithm to solve the
joint minimization problem for chains in time linear in the chain length and domain size
|D|. Clearly all of the #; can be computed efficiently using Equation 5 and thus we can
compute the SSM function efficiently. This shows that for an arbitrary h-constant 2-d
grid Potts model we can construct an equivalent counting transition model that allows for
efficient SSM. O

6. SSM Using Penalty-Logic Cost Models

We have seen that the efficiency of STM inference depends on the efficiency of SSM. In this
section, we describe a logic-based representation for atemporal cost models that supports
practically efficient SSM. We are motivated by the observation that in many domains,
including our video-interpretation domain, there are nearly-sound logical constraints on
states and between states and observations. In addition, it is often easy to automatically
learn or provide such constraints. An important question then is how to best leverage those

12

constraints for robust sequential inference. Any such method for doing this should be robust
to the fact that the constraints will sometimes be violated, though typically they will be
true. One such way for doing this is to attach weights to logical formulas and to treat the
weights as costs of violating the constraints. This idea of using weighted logical constraints
to represent cost models has been proposed previously by (Pinkas, 1991) under the name
penalty logic. Below we describe our use of penalty logic for representing atemporal cost
models and the associated SSM inference problem.

For simplicity, we assume that states have n binary state variables, i.e. Dy = {true, false}.
We also assume a set of m binary observation tests, each one mapping observations to
{true, false}. Non-binary extensions are straightforward. We will later extend to rela-
tional domains.

6.1 Propositional Horn Constraints

In this work, we focus on a subclass of logical constraints known as Horn constraints. While
the ideas we present extend easily to arbitrary logical constraints, as we will see below, the
use of Horn constraints will afford us improved tractability. A propositional Horn constraint
¢ is a logical implication (body — head), where body is a conjunction of state variables and
observation tests, and head is a state variable or false. Given an observation o and state
s, we let ¢lo] (¢[s]) denote the result of substituting observation tests (state variables)
in ¢ with the truth values under o (under s). If a constraint has no variables, then it is
interpreted as the truth value of the variable-free expression. Thus, ¢[o][s] is the truth value
of ¢ under o and s, and we say that o and s satisfy ¢ iff ¢[o][s] is true. A set of Horn
constraints is satisfiable iff there exists a state and observation that jointly satisfy each
constraint. Importantly, for Horn constraints, testing satisfiability and finding satisfying
assignments is polynomial-time computable (Papadimitriou, 1995). This is in contrast to
sets of arbitrary logical constraints for which test satisfiability is NP-hard.

6.2 Penalty-Logic Cost Functions

Penalty logic was developed by Pinkas (Pinkas, 1991, 1995) as a simple framework for
dealing with logical inconsistency. Rather than view logical constraints as absolute truths
about the world, penalty logic assigns a weight to each formula which indicates how much
it “costs” to violate a constraint relative to others. This basic idea is related to an earlier
proposal by Derthick (Derthick, 1990) with somewhat different semantics. A penalty-logic
knowledge base is simply a set of weighted logical formulas. When the constraints are
restricted to be Horn, we say that the set is a Horn penalty-logic knowledge base.

We will parameterize atemporal-cost functions using a Horn penalty-logic knowledge
base ® = {{(¢1,¢1),...,{(¢y,cy)}, with Horn constraints ¢; and non-negative weights ¢;
representing the cost of violating ¢;. The non-negativity requirement will be important
for inference as discussed below. The sum of costs in ® is denoted by CosT(®) and we
say ® is satisfiable if its set of constraints is satisfiable. Atemporal cost is defined as
Ca(slo,®) = 3= 14 ea ¢ 0(m0[0][s]), i.e. the total cost of unsatisfied constraints. In this work,
we will assume that ® contains “nearly sound” constraints, meaning that each constraint
is usually satisfied by the state/observation pairs generated by our process. Our primarily
non-theoretical goals do not require a formal notion of nearly sound (e.g. PAC).

13

Given ® and o-sequence Oi.j, we define the combined constraint set as I'(Oy.;,®) =
Ui<i<j Up,eyca(@loi],c), which involves only state variables and captures all of the state
constraints “implied” by ® and O1.;. The SSM function for C, is now given by

0(O15|®) =min) Culslo;, @) =min D c-6(=¢ls]) (6)

1§7/§J <¢7C>€F(01;j,¢')

which is equivalent to solving maximum satisfiability (MAX-SAT) (Jiang, Kautz, & Selman,
1995) for I'(Oy.j, @), where MAX-SAT asks for an s such that the weight of satisfied con-
straints is maximum. While the number of SSM variables is fixed, the constraint set grows
with sequence length. Fortunately, in practice we can significantly reduce this set by pruning
and merging. PRUNE(®) contains members of ® that do not have false in the constraint’s
body. MERGE(®) combines logically equivalent members of ® into one constraint by sum-
ming weights. MAX-SAT solutions are invariant under both operators. Thus, we solve SSM
via MAX-SAT for the smaller constraint set I'*(O.j,) = MERGE(PRUNE(I'(O1.5, ®))).

Intuitively, for our constraints ® to support accurate sequential inference for a process
P, we would like them to satisfy at least two properties. First, for any critical o-sequence
O1.; of P (recall Section 4), the SSM solution should have a low cost and yield the single
state s that generated O1.;. Second, for o-sequences generated by more than one distinct
consecutive state, we would like the SSM solution to have a higher cost so as to not be
included in the SSM-DP solution.

It is often possible to find constraints that satisfy these properties, as is the case in our
video-interpretation application. To see this, note that a critical o-sequence O1.7 must be
generated by a single state s. Intuitively, when our constraints are nearly sound, most all
members of I'(O1.7, @) will be satisfied by s. This means that s will tend to have low cost
and be an SSM solution for Oy.7 as desired. In the second case when Oqp.p is generated
by more than one consecutive state, the constraints in I'(Oy.p, ®) will tend to conflict with
one another, since neighboring states tend to have characteristics that are not entirely
compatible. The result is that the SSM solution for such o-sequences will tend to violate
more constraints and thus have higher costs.

6.3 A Dual MAX-SAT Approach

MAX-SAT is NP-hard even for Horn constraints (Jaumard & Simeone, 1988). Rather
than use general-purpose approximate techniques, we give a MAX-SAT approach that
leverages our setting of nearly-sound Horn constraints. Let 7 = I'*(Oy.;, ®) and II be
the set containing all satisfiable subsets of w. An equivalent dual form of Equation 6 is
0(01:|®) = CosT(7m) — max,err COST(n'), which asks for a maximum-cost member of II.
This motivates the following MAX-SAT approach that searches through constraint subsets
rather than variable assignments. Conduct a cost-sensitive breadth-first search through
subsets of 7w for a satisfiable subset—i.e. starting at m consider 7 subsets in order of non-
increasing cost until finding a satisfiable one. Any satisfying assignment for this set is a
MAX-SAT solution provided all weights are non-negative. For negative weights a satisfying
assignment for a consistent constraint set may not be a MAX-SAT solution. Although we
can always replace a negatively weighted constraint (¢, ¢) by (—¢, —c), =¢ may not be Horn,
possibly making satisfiability hard. Hence we require non-negative weights.

14

Since testing satisfiability is efficient for Horn constraints, the time required by the dual
approach primarily depends on the number of search nodes we consider. This number is
bounded by the number of subsets of m that have a cost greater than o(Oq.;|®), which
can be exponentially large. Thus, we compute an approximation ¢” to o by first searching
through subsets of 7 for a maximum of 7 steps. We return a solution if one is found and
otherwise return an upper-bound to o(O;.;|®) resulting from starting will all constraints
and greedily dropping them one at a time in order of increasing cost until a satisfiable subset
is found.

Though ¢ will not be correct for all inputs, we know from Section 4, that it need only be
a sufficient approximation to guarantee correct sequential inference. When our constraints
are nearly sound, ¢” will tend to be sufficient even for small 7. That is, o™ will equal o for
critical o-sequences. Recall that when O.; is a critical o-sequence it must be generated by
a single state s. Thus, s will satisfy most constraints in I'*(Oy.;, ®) and our search need
only remove a small number of constraints (the unsatisfied ones) to find a satisfiable subset.

In addition, it is also important to note that the MERGE operation on constraint sets
tends to place high weight on the satisfied constraints, which guides the search to remove
unsatisfied constraints first. We illustrate this idea with a simple example. Consider an o-
sequence (O1.; where state proposition p was true throughout. Suppose we have a weighted
constraint of the form (b(o) — p,c) where b(0) is a conjunction of observation tests on
observation o. For many of the observations in Oy.;, b(0) and other constraints that imply
p will likely be true resulting in many unit weighted constraints of the form (p,c) to be
in I'(Oy.j, ®). All of these unit constraints will be combined in I'*(O;.j, ®) by the MERGE
operation giving a single weighted constraint of the form (p,c’) where ¢’ is quite large.
Alternatively, suppose that state proposition ¢ is not true during Oy.;. For nearly-sound
constraint sets, if we consider rules of the form ' (0) — ¢ it is unlikely that many of their
bodies b'(0) will be satisfied for observations in Oy.;. If only a small number of the bodies are
satisfied then I'(O1.;, ®) will have only a small number of weighted constraints of the form
(g, ¢), resulting in I'*(Oy.;, ®) placing only a small weight on g. Thus, the dual MAX-SAT
approach described above will tend to consider removing the constraint ¢ before removing
p as desired.

7. Extending to Relational Processes

In the spirit of knowledge-based model construction (Wellman, Breese, & Goldman, 1992),
we extend to relational processes by compiling “relational penalty-logic schemas” to propo-
sitional penalty-logic knowledge based and use the ideas from previous sections.
Relational Processes. A sequential inference problem is relational when the obser-
vation and state spaces X and) are given by specifying a domain set of objects D, a
state-predicate set Ry, and an observation-feature set Fj,, each having a specified number
of arguments. An observation fact has the form “f = v”, where f is an observation fea-
ture applied to objects and v is a number. A state fact is a predicate from R, applied to
objects. See Example 1 for example facts from our video domain. Observations (states)
are finite sets of observation (state) facts, representing all the facts that are true, and X
()) contains all such sets. States are restricted to only involve objects that appear in the
corresponding observation. We often view relational states as propositional. Given a finite

15

Table 1: Force-dynamic state predicates R (top) and observation facts over our observation
features F, (bottom) for our application.

ATTACHED(z, y) x supports y by attachment
GROUNDED(x) support of x is unknown
CONTACTS(2,) x supports y by contact

DIRECTION(x) = d z is moving in direction d
SPEED(x) = s x’s speed is s

ELEVATION(x) = e ’s elevation is e

MORPH(x) = ¢ x’s shape-change factor is ¢
DISTANCE(x,y) = d distance between x and y is d
ADi1sT(x,y) = dd change in distance is dd
CoMPASS(x,y) = ¢ compass direction of y to x is ¢
ANGLE(x,y) = a angle between x and y is a

D' C D, denote by Y[D'] the propositional state space over n binary variables, one variable
for each of the n=0(|D’|?) state facts involving only objects in D’, where ¢ is the maximum
state-predicate arity.

Example 2. In our video domain we infer force-dynamic state sequences from videos of
a hand playing with blocks. D contains all hands and blocks we might encounter. There
are three force-dynamic state predicates and eight observation features, shown in Table 1.
Figure 2 depicts two distinct force-dynamic states. Observations are sets of observation
facts calculated for the objects and object pairs based on the object tracker output.

Relational Horn Constraints. A state atom is a state predicate or the relation “#”
applied to variables. An observation atom has the form “(f; r f2)”, where r € {=, <}, and
fi is a number or an observation feature applied to variables. A relational Horn constraint
has the form (body — head), where body is a conjunction of state and/or observation atoms,
and head is a state atom or false and may only contain variables that appear in body.® For
example, (DISTANCE(z,y) < 5) A (6 < Speed(y)) — ATTACHED(zx,y) is a relational Horn
constraint for predicting object attachment based on an observation. A relational Horn
constraint ¢ is a schema for propositional constraints. Any way of (consistently) replacing
variables in ¢ with objects gives a (propositional) ground instance of ¢. Given a set of
objects D', GROUND(¢, D) contains all ground instances with only objects in D’.

Relational Cost Models. A relational simple-transition model is a pair (®, K),
where K is the transition cost and ® = {(¢1,¢1),...,(dv,cy)} is a Horn penalty-logic
schema, where the ¢; are relational Horn constraints and the c¢; are non-negative costs.
Given a relational o-sequence Oi.r with objects D', we know that states may only in-
volve facts constructed from D’, and thus we need only consider the propositional state
space Y[D']. To infer an s-sequence over Y[D'] we use the set of propositional constraints
Py = Up,epee Uy e GroUND (6,01 (€5 €) tO define an atemporal cost function Ca(slo, ®,) as in

3. It is straightfoward to extend our definitions and semantics below to allow for constants to appear in the
constraints in addition to variables.

16

PERCEPTRON(TRN, {¢1, ..., ¢y}, 7, M)
K «— 0 C= 6;
repeat M times,

for-each (O, S) € TRN

® — {{¢1,c1),..., (Dv,c0)}
S «— SSM-DP(O, o] (:|®), K)
if S+,
C—[C+V(S,0)-V(s,0)Nt
K « [K + TRrANS(S) — TRANS(S)]*
return (C, K)

Figure 3: Generalized Perceptron Pseudocode. [C]* = C7 s.t. ¢, = max(0, ¢;).

Section 6. We then return the lowest-cost Si.7 given by SSM-DP(Oq.7, 07 (:|®), K), where
07 (01.|®) = 07(01.5|®,) is a relational SSM function with search bound 7. That is o7 is
computed by compilation to a propositional SSM function ¢” and then using our bounded-
search dual MAX-SAT approach.

A naive implementation of this approach can be expensive since ®,, can be large. For-
tunately, in practice, our relational representation allows us to avoid constructing most of
the set. It is straightforward to use efficient forward-chaining logical inference to construct
I'*(O1.7, ®p), the input to MAX-SAT, without explicitly constructing ®,.

Note that according to the above semantics, the number of propositional constraints that
appear in ®,, for a relational constraint grows with the number of variables in the constraint.
This means that relational constraints with more variables have more opportunities to be
violated and thus have a bias toward higher costs. Our learning algorithm will automatically
takes such biases into account when selecting the costs for relational constraints.

8. Learning a Relational Simple-Transition Model

In this section, we describe our approach for learning relational STMs. Naturally, this same
approach can be used to learn propositional STMs which are just special cases with no
domain objects. We use a two staged approach where we first learn and/or provide the
constraints of the STM and then tune their weights. The approach to acquiring constraints
depends on the domain and we give two examples in our experiments. As detailed in Section
9, in one case, we use a combination of classifier learning and human coding, and in another
case we automatically learn rules using the relational constraint learner CLAUDIEN (De
Raedt & Dehaspe, 1997)

Given a set of relational constraints we use a new training set of observation and state
sequence pairs to jointly tune the constraint weights and transition-cost K using a variant of
Collins’ Perceptron algorithm (Collins, 2002) for structured outputs. The algorithm extends
Rosenblatt’s perceptron for binary labels (Rosenblatt, 1958) to handle structured labels such

17

as sequences, and has convergence and generalization properties similar to Rosenblatt’s. The
main difference between our variant and Collins’ is that we restrict the cost parameters to
be non-negative, which is not enforced by Collins’ algorithm.

The algorithm requires representing cost using a linear combination of m features, which
we do as follows. Given Op.7 and Si.7 involving just objects in the finite D', and a rela-
tional STM ({{¢1,c1),...,{dv,c)}, K), the violation-count feature of ¢; is V;(O1.1,S1.1) =
D1<i<T 2o GROUND(4:,0r) 0 (7¢'[0i][s]), T.e. the number of unsatisfied instances of ¢;. We

let V(OlcT, S1.7) be the v-dimensional vector of violation-count features and C = [c1,. .., cy)
is the weight vector. The transition count feature TRANS(S1.7) is equal to the number of
state transitions in Si.p. It is straightforward to show that with these v + 1 features, the
STM cost can be represented as C(S1.7|O1.7) = V(OlzT,SlzT) O+ TRANS(S1.7) - K.
For notational convenience we denote the features of an o-sequence/s-sequence pair as
F(Oy1,51.1) = [V(OLT,SlzT),TRANS(SlzT)] and we will often use w = [5, K] to denote
the composite weight vector. It follows that C(S1.7|O1.7) = w - F(O1.1, S1.7).

The algorithm (see Figure 3) cycles through the training data and when an incorrect
s-sequence S is inferred in place of S, the weights are adjusted to increase the cost of
S and decrease cost of S. The input is a training set TRN, relational Horn constraints
{¢1,..., ¢y}, an SSM search bound 7, and the number M of iterations. The output is
the learned weights C and transition cost K. The goal is for the learned STM weights to
result in accurate sequential inference when using the search-bound relational SSM function
oy . Unlike Collins’ algorithm we require non-negative weights for inference and thus set
a weight to zero if a standard perceptron update would result in a negative value. This
variant has not yet been shown to possess the convergence and generalization properties of
the unconstrained version for the structured output case. However, this variant has been
shown to converge for Rosenblatt’s perceptron in the binary classification setting (Amit,
Wong, & Campbell, 1989). Below we show that the above algorithm does converge under
certain assumptions about 7 and the existence of a solution. Following standard practice
we first define the margin of a set of weights on a given training set as follows.

Definition 2 (Margin). A weight vector w has margin & on o-sequence, s-sequence pair
(O1.1, S1.) if for all other s-sequences Sy.p, w - F(Ov.r,S1.p) > w- F(Orr,S1.7) + 9, iec.
C(S1.7|01.1) > C(S1.7|0O1.7) + 6. The weight vector w has margin § on a training set of
o-sequence, s-sequence pairs if it has a margin of § on each pair.

The following shows that if 7 is selected large enough to guarantee sufficient SSM and
there is a non-negative set of weights with unit norm and a positive margin, then the
algorithm is guaranteed to converge in a finite number of iterations. Note that since it is
always possible to uniformly scale the weights without changing the inference results, the
focus on unit norm weights is not limiting. The proof is straightforward and can be seen as
an extension of Collins’ result to non-negativity constraints or a extension of (Amit et al.,
1989) to structured outputs.

Proposition 4. Assume that 7 is large enough such that for all sets of weights, o] allows
sufficient SSM. If there exists a non-negative weight vector w such that ||w| =1 and w has
margin § on the training data, then the algorithm in Figure 8 converges to a mon-negative
weight vector that correctly solve all of the training problems after committing no more than

18

(%)2 errors on the training set. Here R is a constant such that for any Ol;T,Sl;T,SLT,
||F(01:T751:T) - F(OI:T7 iT)H < R.

Proof. Let w; be the weights that are obtained by the algorithm after the k’th mistake.
Also, let O1.7 and S1.7 be the o-sequence and target s-sequence on which the k’th mistake
was made, and let S}, be the incorrectly predicted s-sequence for Oz using weights
wg—1. We have that wy = 0 and wg41 = [wg + F' — F*]*, where F' = F(Oq.1,S}.7) and
F* = F(Oy.7, S1.7)-

The proposition follows from two inequalities ||wg11]|? < kR? and w - wy41 > k6, which
are derived below. Given these we observe that

ko < w-wipn < ol wep | = fwei | < VER

from which we derive k < (%)2, showing that the number of mistakes is bounded as stated
in the proposition.

To complete the proof we derive the above two inequalities. First we bound ||wy41]|? as
follows.

lwea > = |wy + F' — F**|]?
< wg + F' — F*|?
= |lwgl?® + 2w - [F' — F*] + |[F' — F*|)?
< wgl® + 2wy, - [F' — F*] + R?
< Jlwg|? + R?

Using the fact that wo = 0 and the above inequality we have by induction that |jwy1[/? <
kR%. The first inequality follows from the fact that for any vector v, ||[v]T||?> < ||v||?. The
third inequality follows by assumption from the proposition statement. The final inequality
follows from the fact that we assume o7 is a sufficient SSM approximation. In particular,
since ¢ is sufficient, it follows from Proposition 3 that Sj.;- is a minimal cost sequence for
O1.1 given weights wy. Since the costs of S|, and S}, under wy, are wy, - F' and wy, - F*
respectively, we have that wy - F' < wy - F* which implies the final inequality.

Next we derive the lower bound on w - wi41, where w is the unit length weight vector
that achieves margin § on the training set. First notice that the update equation can be
rewritten as,

W1 = [wp + F' = F" =w, + F' = F* 4 [~ (wg + F' = F)]*

With this we can derive the following bound.

wowp1 = w-owg+w-[F—F 4w [—(w, + F — F*)]"
> w-w, +w- [F— F*]
> w-wp+6

By induction it follows that w - wy11 > kd. The first inequality follows from the fact that
by definition all components of [v]T are non-negative and the components of w are non-
negative by assumption. The second inequality follows from the margin assumption about
weight vector w. O

19

9. Experimental Results

We present experimental results in two domains: 1) wearable webcam location tracking,
where we use a propositional simple-transition model, and 2) force-dynamic state interpre-
tation from video where we use the full relational simple-transition model.

9.1 Wearable Webcam Location Tracking

In this section, we apply our simple-transition model to the problem of location tracking
based on data captured by a wearable webcam. We use the dataset collected in Torralba
et al. (2003) using a head-mounted 120x160 pixel color web-cam. The dataset includes
17 sequences, each arising from the movement of a subject through an environment under
realistic conditions. Each sequence goes through a series of locations, e.g. particular offices,
streets, corridors, elevators, labs, kitchens, etc, for a total of 63 distinct locations. The
goal is to process the sequences of video frames to infer the sequence of locations that
were traversed. Thus, here, the hidden states correspond to location names and the raw
observations correspond to 120x160 pixel video frames. Rather than working with raw pixel
values as the observations, Torralba et al. (2003) process the video frames arriving at an
80-dimensional real-valued feature vector representation that describes global properties of
video frames. These feature vectors are then treated as the observations associated with each
time point. All of our experiments use the filter-bank feature set from Torralba et al. (2003).
Note that the state space of this problem is small enough that Viterbi could be applied.
The main aim of our experiments with this data set is to investigate the effectiveness of the
simple-transition model on a complex real-world problem where it is typical to utilize more
complex models.

Propositional Representation. In order to utilize our previously described propo-
sitional representation, we first re-represent the 80-dimensional feature vectors as a set of
propositional variables {z1,...,2g3}, one proposition for each location of the world. We
use a learned classifier to transform the original numeric observations to the propositional
representation. To do this we followed the approach used in (Torralba et al., 2003) and ran-
domly sampled 100 observation vectors for each state in the training data. These prototype
vectors were then used to create a Parzen window density estimator over observation vectors
conditioned on the state. These estimators were then used to define a classifier from video
frames to states, by predicting the class that was most likely. Finally given this classifier
we define x; to be true for a video frame if and only if the classifier predicts state 4 for
the frame. We treat the assignment of truth values to these propositions as a propositional
observation where each proposition intuitively serves as a specialized noisy detector for a
particular location of the world. As we will see in the experiments, these propositions are
very noisy and achieve poor accuracy in predicting the actual location from single frames.
The state space for this problem is also represented by a set of propositions {y1,...,¥ys3},
one proposition for each state of the world, where y; is active if and only if the true state of
the world is 7. The goal of sequential inference will be to infer an accurate state sequence
given the sequence of propositional observations.

Constraint Set. Recall that our penalty-logic simple-transition model is defined by a
set of weighted rules defining the atemporal cost function and a transition cost, and that
our weight learning algorithm assumes a set of rules be provided. For this experiment, we

20

simply provided the following two sets of Horn rules. The first set
{z;i—y; 11<i<n,1<j<n}
allows the learner to learn the cost of predicting y; when z; is true. The second set of rules
{=yiVy; i # 5}

involve only state propositions and constraints the state space to having only a single propo-
sition true for any give time point. Since we know that the second set of rules represent
hard constraints, i.e. only one location is present at once, we fix their weight values to
effectively be infinity. Note that the constraints in the first set are not nearly-sound in
this case, indicating that the SSM inference method described previously may not be effec-
tive. However, in this domain it is not hard to prove that the rigid structure of the state
proposition constraints, mainly that exactly one state proposition must be true, allows for
the greedy hill-climbing approach to return optimal MAX-SAT solutions. Thus, for this
experiment we solve SSM using pure greedy hill climbing, i.e. 7 = 0. The execution time
for this inference is almost instantaneous.

Given this set of rules we used the Perceptron algorithm to learn a simple-transition
model—in particular learning the transition cost and the weights of the first constraint set
above. For comparison we also used the Perceptron algorithm to learn a full HMM model
following (Collins, 2002). This second approach is similar to that used by Torralba et al.
(2003) who used a full HMM model but with generative training and with a Parzen density
estimator used for the probabilistic observation model.

The only difference between our discriminatively trained STM and full HMM models
is that the full HMM model learns a cost for each possible state transition, for a total of
63x63 different costs, whereas the STM learns a single transition cost parameter. In this
domain, there is clearly first-order Markovian transition structure among state/location
transitions since some locations are not immediately reachable by others. Intuitively, this
suggests that one should use the full HMM transition matrix rather than the STM model,
which clearly ignores the state-transition structure. However, in this domain, it is also
the case that subjects stay in locations for many observations (e.g. it takes time to walk
from one location to another) and that considering all those observations together can often
give a good indication of the location. This suggests, that perhaps the location transition
structure is not critical for high accuracy and that an STM may provide good results. In
such situations, it is preferable to use an STM since there are many fewer parameters to
tune and hence over-fitting to a small training set is less of a problem. Our results below
demonstrate that this is the case in this domain.

Results. Following Torralba et al. (2003) we evaluate our approach via leave-one-
sequence-out cross-validation using the 17 sequences in the dataset. For each sequence we
recorded the percent prediction error after training on all other sequences and the number
of Perceptron iterations required to reach maximum performance. Here prediction error is
measured as the percentage of mispredicted locations in a given sequence. We also report
the average and median percent error across all sequences. Table 2 gives these results.

The table gives results for three different models. First we give results for the Zeroth Or-
der model, which corresponds to the error rate that can be achieved by using the prediction

21

of the observation model alone with no transition model. That is, predictions are made at
each time point in an i.i.d. fashion. The STM column gives results for the simple-transition
model described above. The Full First Order column gives results for the full transition
matrix model described above. Comparing the zeroth order model to the sequential mod-
els, we see that for this dataset there are significant gains when using a transition model
in place of simply making i.i.d. predictions. We also see that for most sequences the STM
significantly outperforms the full first-order model in terms of both prediction error and
training iterations. Given that the full first-order model has significantly more parameters
to tune, it is not unexpected that its training time is significantly longer. However, we
also see that the use of the more complex model, appears to lead to over-fitting given our
fixed dataset compared to using the much simpler STM. Thus, for this dataset the STMs
simple-transition bias appears to pay off due to reduced variance.

The STM performs similarly to the full first-order model developed in Torralba et al.
(2003)*, achieving a median error of 26% compared to median error of approximately 28%
obtained by Torralba et al. (2003). The model in that work utilized priors and a likelihood-
rescaling parameter, tuned via cross-validation, to effectively avoid the over-fitting observed
with our full first-order model, which did not include any form of regularization. In contrast,
our STM provides an alternative, and arguably simpler approach, to avoiding overfitting,
by utilizing a much simpler model, while maintaining adequate expressive power.

9.2 Force-Dynamic State Inference from Video

Here we apply our relational STM model to the problem of force-dynamic state inference
from real video. The LEONARD system (Siskind, 2001) uses these states to recognize events,
such as “a hand picked up a block” (see Figure 1). Recently (Fern & Givan, 2004) developed
a trainable system for this problem using the forward greedy merge (FGM) algorithm,
which outperformed prior techniques. FGM also utilizes Horn constraints, but assumes
that they are sound, rather than nearly sound. Since this is not true for CLAUDIEN-learned
constraints, which were also used by FGM, that work utilized two ad-hoc steps to improve
performance: 1) A constraint pruning procedure was developed that searched for a small
set of constraints that appeared “sufficient” for the training data, thus reducing the chance
for a constraint violation. 2) Sequence-cleaning (SC) preprocessing was a step that removes
observations where certain types of constraint violations are “detected”. See (Fern & Givan,
2004) for details. While these steps allowed for good performance, the soundness assumption
limits the approach’s applicability, as such preprocessing will not always be effective. The
original motivation for the work in this paper was to develop a “softened” more robust
framework for utilizing nearly-sound constraints for sequential inference.

Procedure. Our corpus of 210 videos from (Siskind, 2003) contains 7 event types (30
movies each) involving a hand playing with up to three blocks (e.g. assembling a tower),
comprising a total of 11946 video frames. We use a training set of 21 hand-labeled movies,
3 of each event type from (Fern & Givan, 2004). Each video frame was processed resulting
in a relational observation sequence involving the observation predicates described in Table

4. This is inferred by comparing our median value with the 100% recall point of the “Filter Bank” curve
from Figure 4a in Torralba et al. (2003).

22

Table 2: % error on web-cam data set for each of the 17 sequences with average and median
results. Zeroth Order corresponds to the prediction obtained by using the observation model
alone with no transition model. STM corresponds to the simple-transition model. Full First
Order corresponds to a transition model with a full 63x63 transition matrix. The columns
labeled iterations give the number of iterations of the Perceptron algorithm through the
training set required to reach maximum performance.

Zeroth Order STM Full First Order
Sequence % Error % Error Iterations | % Error Iterations
1 82 24 29 50 763
2 78 29 45 36 3171
3 83 33 40 56 2421
4 88 49 21 74 2558
5) 87 29 118 79 2899
6 85 33 37 65 3683
7 85 35 439 62 4082
8 81 60 131 58 3822
9 80 20 16 34 3645
10 76 22 25 32 860
11 85 47 136 42 1259
12 74 17 26 29 2568
13 84 24 38 61 2004
14 79 19 11 o7 2619
15 69 18 31 31 3015
16 67 26 56 36 3012
17 72 26 89 46 1537
Average % Error 80 30 50
Median % Error 81 26 50

1. The label for each frame gives the relational force-dynamic state of the frame in terms
of the three force-dynamic predicates shown in Table 1.

In this domain, the eventual use of the force-dynamic models is for activity recogni-
tion and as such the utility of an inferred s-sequence S (giving a sequence of relational
force-dynamic states) primarily derives from the sequence of distinct states, rather than
identifying the exact state transition points. Indeed, in our video domain, the exact loca-
tions of state transitions are often ambiguous (as judged by a human) and unimportant for
recognizing activity—e.g. in Figure 1 it is unimportant to know in precisely which frame the
force-dynamic state transition occurs. Furthermore, LEONARD is able to accurately infer
event-types from force-dynamic sequences provided that the sequence of distinct states is
correct, regardless of the precise state transition points. In this light, we define our accuracy
measure for this domain as follows. Let COMPRESS(S) denote the sequence obtained by re-
moving consecutive repetitions in S. For example, COMPRESS(a, a, a, b, b, a, c,c) = a,b, a,c.
Our goal is to map an o-sequence O to an s-sequence S such that COMPRESS(S) is the dis-
tinct sequence of states that generated O. Our measure of accuracy is simply the percentage

23

of sequences for which the compressed force-dynamic state is correctly inferred. This mea-
sure is directly related to the event recognition accuracy achievable by LEONARD using the
learned force-dynamic models. To measure accuracy using this metric we labeled the 189
videos outside of the training set by their compressed s-sequences, which is considerably
less time-consuming than labeling each individual frame as required for the training data.
We then measured the error rate relative to these compressed s-sequences.

Rule Learning. In this domain, we learned Horn rules using the relational rule mining
CLAUDIEN (De Raedt & Dehaspe, 1997). CLAUDIEN takes as input a set of first-order models
and a declarative language bias that specifies a space of first-order clauses to consider. It
outputs the most general clauses consistent with the language bias that satisfy specified
coverage and accuracy constraints. We used 7 videos from our training set to generate
training data for CLAUDIEN. This number was selected to strike a balance between data
coverage (one per event type) and runtime of CLAUDIEN which took nearly a week. For each
video frame from the videos we created a model that specified the observation and state
ground facts for that frame. The entire set of models was then fed to CLAUDIEN with a
language bias restricting Horn rules to only allow state predicates in the head (empty heads
were also allowed). This restriction was selected so as to include the classes of rules that we
expect to be most useful, while reducing the search space enough to allow for reasonable
runtimes. We used an accuracy constraint of 100% (i.e. the rule must not be violated in
the training data) and a coverage constraint of 10. The result was a set of 479 Horn rules
which we used to define our relational STM model. Note that although we used an accuracy
constraint of 100%, the rules were not perfect for models outside of the 7 training movies,
though each rule was rarely violated.

Evaluated Systems. We learned STM models using the Perceptron algorithm to learn
the transition cost and weights for the CLAUDIEN discovered rules. For inference, we used
the dual Max-SAT procedure with three SSM search bounds 7 = 0,100, 1000 combined
with the PRUNED-SSM-DP. This resulted in three different STM models, each tuned for
a particular search bound. During testing of each model the same 7 was used for inference
as was used during training. All 21 training models, were used for weight learning. In each
case we ran the Perceptron algorithm for 100 iterations noting that fewer than 10 iterations
were required to reach maximum performance. Note that we conducted preliminary tests
using (unpruned) SSM-DP for inference and found that for our data PRUMED-SSM-DP
was at least an order of magnitude more efficient while producing identical results, which
was critical for reasonable training and evaluation times.

We compare against FGM used with and without sequence cleaning and always with
pruning, since without pruning results are very poor. We also compare against a system that
is closer to mainstream relational graphical modeling techniques, which uses the counting-
transition model of Section 4, and WALKMAXSAT (Jiang et al., 1995) for approximate in-
ference. The model is identical to our relational STMs, using the same CLAUDIEN-learned
constraints, except that it has a non-simple-transition structure. For sequential inference
we construct a single large MAX-SAT problem, with one variable for each state fact at each
time-step®, corresponding to the counting-transition model and use WALKMAXSAT to find

5. Actually, we first apply the compress operation to the input o-sequence to arrive at a shorter sequence
and then introduce one variable for each state fact for each compressed sequence index. This has the
effect of creating smaller, but equivalent, MAX-SAT problems.

24

Table 3: % error on test movies across training iterations. The last column gives frames
processed per second (FPS) by the best model in each row on our video corpus.

Iterations FPS
1 2 3 4 5 6 7 8
SSM-DP(0) 94 6.3 69 58 48 12 17 3.7| 15
SSM-DP(100) 93 3.2 37 37 32 10 21 85| 14
SSM-DP(1000) 93 32 37 37 32 10 21 8.5 8
WALKMAXSAT 95 47 50 60 49 50 45 52| 14
FGM / FGM+SC 15/ 3.2 29

an approximate solution.® We tune the model’s weights using the perceptron algorithm
with WALKMAXSAT (rather than SSM-DP) for inference. This model can be viewed as a
discriminately trained relational Markov network (Taskar, Abbeel, & Koller, 2002) using a
penalty-logic-based representation. More recent work has also considered applying the Per-
ceptron algorithm to this style of model under the name Markov Logic (Singla & Domingos,
2005).

Performance Across Iterations. Table 3 shows, for each training set, the testing
error of our learned STMs for 7 = 0,100, 1000 (shown as SSM-DP(7)), over the first eight
perceptron iterations. There is always a rapid improvement after iteration one, followed
by a period of fluctuating or constant performance. A major reason for this improvement
is that certain rules actually correspond to hard constraints of the domain (e.g. a block
can not be attached to two other blocks) and their cost increases, forcing the MAX-SAT
solutions to satisfy them. The results fluctuate out to iteration 100 (not shown), but never
improve over the best performance shown. Such fluctuating behavior is not uncommon
for the Perceptron algorithm (Collins, 2002). In practice, one could use cross-validation to
select a good model, or consider the use of “weight averaging” (Collins, 2002) to produce
more stable learning curves.”

Bounding Search. The search bound 7 = 0 means that SSM is (approximately) solved
via search-free hill-climbing. The results show that even wihtout search we are able to learn
weights that perform quite well achieving an error of 3.7%. Increasing the search bound to
100 improves performance with respect to the best model across iterations, but moving to
1000 did not improve results. The last column shows the frames processed per second when
inferring states for our corpus. Inference time apparently does not increase linearly with 7,
indicating that the SSM search typically end much before reaching the bound. Increasing 7
to 10,000, doubles inference time and learning time, but neither improves nor hurts results.

Other Techniques. We significantly outperform WALKMAXSAT (further iterations
out to 1000 did not help), which we allowed a generous search time, using search cutoff 10
with 10% random restarts (other settings did not improve). Further experiments suggest that

6. We also conducted a similar experiment where we encoded the simple-transition model into the MAX-
SAT problem and got similar results to the more general counting-transition model.

7. Runtime of CLAUDIEN (interpreted Prolog) was about six days. Thus, it was not feasible to average results
across many training sets to get smoother training curves. In another full experiment (21 movies), we
observed similar (slightly better) performance for SSM-DP, and similar relative performance to the other
systems.

25

WALKMAXSAT is simply not scaling well for our longer sequences (the number of variables
is linear in the sequence length). In one experiment, we used learned STM weights and
encoded the model as a large MAX-SAT problem and used WALKMAXSAT for inference.
WALKMAXSAT was able to correctly infer s-sequences for many of the shortest videos, but
it performed very poorly for long videos. This suggests the poor performance is primarily
due to the ineffectiveness of this general-purpose inference technique for our models. It
is possible that improved general-purpose MAX-SAT procedures may fair better on our
problems. However, our results show that for STMs such techniques are not required as
the SSM problem decomposition allows for a relatively simple and generic approach to be
effective.

FGM without sequence cleaning (shown as FGM) is significantly worse than STMs
(which never use cleaning). We yield equal performance when sequence cleaning is used
for FGM. These results indicate that our penalty-logic based framework provides an auto-
matic and robust way to utilizing a large set of nearly-sound logical constraints. The FGM
approach require careful ad-hoc processing of the constraint set and sequence cleaning to
yield the same performance. FGM is faster, close to frame rate. A reimplementation of our
LISP prototype will likely achieve frame rate.

10. Related Work

Segment models (Ostendorf et al., 1996) generalize first-order Markov models by allowing for
arbitrary distributions on the durations of states and on the sequences of observations given
an interval/segment where a state is active. As noted in Section 4, our approach to STM
inference is similar to algorithms for segment model inference. We are not aware, however, of
prior work that has leveraged or noted the SSM reduction for large state spaces. Perhaps this
is because prior segment modeling work typically utilizes (non-simple) transition structure
(perhaps sometimes unnecessarily) and is typically applied to small state spaces that can
be enumerated during inference.

There are a variety of approximate sequential inference approaches that have been de-
veloped for problems involving large state and observation spaces. One generic approach
is to utilize beam search within Viterbi inference, resulting in complexity that does not
depend on the size of the state space, with the potential cost of pruning away optimal solu-
tions. Some examples of this approach with integrated learning algorithms include Collins
and Roark (2004), Daume IIT and Marcu (2005), Xu and Fern (2007). Related to these
approaches are forward probabilistic filtering approaches such as particle filtering (Doucet,
de Freitas, & Gordon, 2001) and the Boyen-Koller algorithm (Boyen & Koller, 1998), which
maintain and propagate compact, approximate representations of the state distribution at
each time step given the previous observations. An interesting direction of future work is
to compare these approaches which utilize approximate inference on expressive models to
approaches that consider learning restricted models that support efficient inference such as
our STM approach.

Our “model schema” approach for handling relational data is now standard in proba-
bilistic modeling (De Raedt & Kersting, 2004). Our overall relational STM model can be
viewed as a special case of relational Markov networks (RMNs) (Taskar et al., 2002). A
relational STM can be viewed as defining a log-linear conditional RMN, where the RMN

26

“clique feature templates” correspond to relational Horn constraints and a state transi-
tion template. RMNs are commonly trained by optimizing the conditional likelihood or
a related measure. Here we have chosen to drop the probabilistic interpretation during
training in favor of the much simpler Perceptron algorithm, which does not require the
computation of clique expectations. Note, if desired, one may still interpret the learned
cost functions as defining a log-linear probabilistic model, though with unclear semantics.
RMNs are very general and thus prior techniques do not fully exploit the structure of re-
lational STMs. Instead RMN-like proposals rely on general-purpose approximate inference
(e.g. belief propagation), with unclear practical implications. Likewise dynamic probabilis-
tic relational models (Sanghai, Domingos, & Weld, 2003) provide a generic schema-based
extension of dynamic Bayesian networks (Murphy, 2002) specialized to relational sequence
data. Again the generality precludes leveraging the STM structure.

Recent work on logical hidden Markov models (LOHMMs) (Kersting, DeRaedt, & Raiko,
2006) considers extending HMMs to deal with states and observations represented as first-
order logical atoms, possibly with structured terms. This represents a significant extension
to the range of problems approachable by HMM style approaches as the structure in the
atoms can be leveraged for improved generalization and inference. However, LOHMMs
do not directly apply to the types of relational processes described in this paper, since
our processes use sets of logical atoms to describe states and observations. One benefit of
considering only single atoms is that it allowed for a more straightforward lifting of HMMs
to the relational setting. However, the cost of the restriction is loss of expressive power for
states and observations. Our model, rather, can handle sets of atoms, but relies on a highly
simplified transition model compared to LOHMMs. Thus, our model is not appropriate for
many processes where LOHMMs might be expected to work well. Considering a tractable
combination of these two models is an interesting future direction.

The use of weighted constraints for defining cost functions is common in the area of con-
straint optimization and has been found to be an effective way for dealing with preferences
or inconsistency. There has been much less work on learning sets of weighted constraints
for the purpose of structured classification as in our application. Derthick (Derthick, 1990)
described how it is relatively straightforward to employ probabilistic methods for learning
penalty-logic models, however, this idea was not implemented. To the best of our knowl-
edge, prior to our original work (Fern, 2004) there were no implemented and evaluated
approaches for learning penalty-logic-based models. In concurrent work, (Richardson &
Domingos, 2006) learned such models in a probabilistic setting under the name Markov
Logic Networks. Follow-up work (Singla & Domingos, 2005) also considered training via
the Perceptron algorithm.

11. Summary

This paper introduced the penalty-logic simple-transition model as a way of leveraging
nearly-sound logical constraints for sequential inference in factored state spaces. First, we
showed that inference in simple-transition models can be efficiently reduced to the single-
state minimization problem. Furthermore, we showed that even slight extensions to our
model render such reductions impossible unless P=NP. Second, we introduced a penalty-
logic representation for atemporal cost models and showed how to leverage this represen-

27

tation for practically efficient SSM. Third, we showed how to learn the weights for our
model using a straightforward instantiation of a sign-constrained structured Perceptron al-
gorithm. Results in two domains indicate that our model can have advantages over more
general ones when applicable. A major thrust of future work involves applying our model
to new domains, generalizing the atemporal portion to handle richer constraint languages,
and investigating tractable generalizations to richer transition structures.

Acknowledgments

This work was supported by NSF grant 11S-0546867.

References

Amit, D., Wong, K., & Campbell, C. (1989). Perceptron learning with sign-constrained
weights. Journal of Physics A: Mathematical and General, 22, 2039-2045.

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. In
Conference on Uncertainty in Artificial Intelligence.

Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and
experiments with the perceptron algorithm. In Conf. on Empirical Methods in NLP.

Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. In
Proc. Annual Meeting for the Assoc. for Computational Linguistics.

Daume III, H., & Marcu, D. (2005). Learning as search optimization: Approximate large
margin methods for structured prediction. In ICML.

De Raedt, L., & Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26, 99-146.

De Raedt, L., & Kersting, K. (2004). Probabilistic logic learning. ACM-SIGKDD Ezplor.,
5.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2).

Derthick, M. (1990). Mundane reasoning by settling on a plausible model. Artificial Intel-
ligence, 46(1-2).
Doucet, A., de Freitas, N., & Gordon, N. (Eds.). (2001). Sequential Monte Carlo Methods

in Practice. Springer.

Dragunov, A., Dietterich, T., Johnsrude, K., McLaughlin, M., Li, L., & Herlocker, J. (2005).
Tasktracer: A desktop environment to support multi-tasking knowledge workers. In
International Conference on Intelligent User Interfaces.

Felzenszwalb, P., Huttenlocher, D., & Kleinberg, J. (2003). Fast algorithms for large state
space hmm with applications to web usage analysis. In Advances in Neural Informa-
tion Processing Systems 16.

Fern, A., & Givan, R. (2004). Relational sequential inference with reliable observations. In
ICML.

28

Fern, A. (2004). Learning Models and Formulas of a Temporal Event Logic. Ph.D. thesis,
Purdue University, School of Electrical and Computer Engineering.

Fern, A. (2005). A simple-transition model for relational sequences. In Proceedings of the
International Joint Conference on Artificial Intelligence.

Forney, G. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3), 268-278.

Jaumard, B., & Simeone, B. (1988). On the complexity of the maximum satisfiability
problem for Horn formulas. Information Processing Letters, 26, 1-4.

Jiang, Y., Kautz, H., & Selman, B. (1995). Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. In Joint Workshop on Al and OR.

Kersting, K., DeRaedt, L., & Raiko, T. (2006). Logical hidden markov models. Journal of
Artificial Intelligence Research, 25, 425-456.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference on
Machine Learning, pp. 282-289.

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. thesis, UC Berkeley, Computer Science.

Ostendorf, M., Digalakis, V., & Kimball, O. (1996). From HMMs to segment models: a
unified view of stochastic modeling for speech recognition. IEFEE Transactions on
Acoustics, Speech and Signal Processing, 4, 360-378.

Papadimitriou, C. H. (1995). Computational Complexity. Addison-Wesley Publishing.

Pinkas, G. (1991). Propositional non-monotonic reasoning and inconsistency in symmetric
neural networks. In Proceedings of the International Joint Conference on Artificial
Intelligence.

Pinkas, G. (1995). Reasoning, nonmonotonicity and learning in connectionist networks that
capture propositional knowledge. Artificial Intelligence, 77(2).

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1-2),
107-136.

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65, 386-408.

Sanghai, S., Domingos, P., & Weld, D. (2003). Dynamic probabilistic relational models. In
International Joint Conference on Artificial Intelligence.

Shen, J., Li, L., & Dietterich, T. (2007). Real-time detection of task switches of desktop
users. In International Joint Conference on Artificial Intelligence.

Singla, P., & Domingos, P. (2005). Discriminative training of markov logic networks. In
Proceedings of the Twentieth National Conference on Artificial Intelligence.

Siskind, J. M. (2001). Grounding the lexical semantics of verbs in visual perception using
force dynamics and event logic. Journal of Artificial Intelligence Research, 15, 31-90.

Siskind, J. M. (2003). Reconstructing force-dynamic models from video sequences. Journal
of Artificial Intelligence, 150(1-2), 91-154.

29

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational
data. In Conference on Uncertainty in Artificial Intelligence.

Torralba, A., Murphy, K., Freeman, W., & Rubin, M. (2003). Context-based vision system
for place and object recognition. In International Conference on Computer Vision.

Veksler, O. (1999). Efficient Graph-based Energy Minimization Methods in Computer Vi-
sion. Ph.D. thesis, Cornell University, Computer Science.

Wellman, M., Breese, J., & Goldman, R. (1992). From knowledge bases to decision models.
Knowledge Engineering Review, 5.

Xu, Y., & Fern, A. (2007). On learning linear ranking functions for beam search. In ICML.

Appendix A. Omitted Proofs

Proposition 1. Given a STM C' and o-sequence O1.1, for any 0 < j < T we have that

C*(Orr) < C*(015) + K-6(5 > 0) + 0(Oj+1:7)
with equality if and only if there is a member of Ci(O1.7) with final transition at j.

Proof. For the case of j = 0 the proposition is trivial. We first show the inequality for
the case of j > 0. Consider the s-sequence S}, where S ; € C};(01,;) and each state in
S’ 1 18 ow(Ojy1.7). If sj is not equal to 0,(0;j41:7), i.e. S} has a final transition at j,
then it is easy to show that C(S1.7|O1.7) = C*(O1;5) + K + 0(Oj41.7). Otherwise we have
that sj = 0y (Oj41.7) which gives C(S].7|01.7) = C*(O1:5) + 0(Oj11.7). This shows that
C(S1.7|01T) < C* (01) +K-0(j > 0)+0(0j41.7). Combining this inequality with the fact
that C*(O1.1) < C(S1.7|O1.1) we get that C*(Or.7) < C*(O1:5) + K -6(j > 0) +0(Oj41.7),
as desired.
We now show that equality holds for 5 > 0 if and only if there exists a member of
C3 (O1.7) with final transition at j. To show the backward direction assume that there is
some member ST, of Cy (Oq.7) with final transition at j. Note that for any s-sequence Si.7
with a final transition at j we have that

C(S1.7|01.7) = C(S1:]015)+ K -6(j > 0) Z Cu(sj+1]0:)
JHI<i<T

> C*(O15)+K-6(j >0)+0(0j41:7)

where the first line follows since we know the final state transition occurs between j and
j + 1. Thus, we get that C*(O1.1) = C(S1.7|01.7) > C*(O15) + K - 6(j > 0) + 0(Oj41.7).
This combined with the inequality from the first part of the proof gives that C*(O1.7) =
C*(O1:5) + K -6(j > 0) 4+ 0(Oj41:7), as desired.

To show the forward direction assume that C*(O1.r) = C*(O15) + K - 0(j > 0) +
0(Oj11.7) and consider the s-sequence S}., where Si:j € Cy(015) and s, = 04, (0j41.7)
for j+1 <+¢ < T. For the sake of contradiction assume that Si:T does not have a final
transition at j, i.e. the final transition must occur before j. In this case we have that

30

C(S}.7) = C*(01.5) + 0(Ojt1.1). Using this expression along with the facts that K > 0 for
STMs and j > 0 we get that,

C*(Or.1)

IN

C(S1.7/0vr)
C*(O1;j) + O'(Oj+1:T)
< C*(O1)+K-6(j >0)+0(0j11.7)

This shows that C*(O1.7) # C*(O15) + K - 6(j > 0) + 0(Oj41.7), which contradicts our
original assumption. Thus, S7., must have a final transition at j. Thus we know that
C(S1.7101.7) = C*(O1.5) + K - 6(j > 0) + 0(Oj41.7) which equals C*(O1.7) by assumption.
Thus S}.; € C(O1.7) and we have shown that some s-sequence in Cj(O1.7) has a final
transition at j which completes the proof. O

Proposition 2. Given a STM C' and an o-sequence O1.7, let the sets Ly be computed as
described above. For any 1 <t < T and any 0 < j < t,if j € Ly and j & Ly (i.e. j
was removed on iteration t), then there is a j' € Lyy1 such that for any t' >t if Cj(Oy.p)
contains an s-sequence with final transition at j then it also contains an s-sequence with
final transition at j'.

Proof. We use induction on the iteration number ¢. For the base case of ¢ = 1, we have that
Ly = {0} and it is easy to see that 0 will also be in Ly (i.e. Ly1) since C*(O1.1) = 0(01.1)
which does not satisfy the condition for pruning j = 0. Thus, the proposition is trivially
satisfied for the base case of t = 1.

For the inductive case of ¢ > 1 assume that for some 0 < j < ¢, j € Ly and j & Lsy1.
Note that since j was pruned from L; when constructing L;y; we know that C*(O1.) <
C*(Olzj) + O'(Oj+1;t) - K- 5(] = 0)

Let j' be a final transition point for some sequence in C*(01.;). We know from the
inductive hypothesis that at least one such index must be in L;, since otherwise the pruning
would have been unsound for some t' < ¢, which violates the inductive hypothesis. Fur-
thermore we know that j’ will not be pruned from L; and thus must be in L, since by
Proposition 1 we have that C*(Oy.;) = C*(O1.5) + K - 6(j' > 0) + 0(Ojr41.), which does
not satisfy the pruning constraint.

The above argument shows that 7/ will be in L;,1 along with ¢, which is included in
L1 by definition. To complete the proof we show that one of these indices will be at least
as good as using j as a final transition point in future iterations. To see this consider some
t' > t and assume that j is a final transition point of some sequence in C7(O1.4). We show
that either ¢ or j/ must also be a final transition point for some member of C(O1.y).

Let S, be a sequence such that S}, € C*(O1.) and for each i > t s, = 0(Ops1.07)-
Note that S, has a final transition at either ¢ or j/. The following derivation shows that
S{:t/ is an optimal s-sequence.

31

C(S1.4|01.v) < C*(Or) + K + 0 (Opp10r)
< C(01) +0(Ojt14) — K- 6(j = 0) + K + 0(Oy1)
= C%(01) +0(0j41:4) + K- 6(j > 0) + 0(Opy1.07)
< CO1;) + K-6(j > 0) + 0(Oj41:0)
= C*(O1y)

Here the first line follows from Proposition 1. The second line follows by the fact that
j was pruned from L; and thus satisfied the pruning condition. The fourth line follows
from the fact that 0(Og4.c) < 0(Ogp) + 0(Op.) for any a, b, and c¢. The final line follows
from Proposition 1 and the fact that j was assumed to be a final transition point for some
member of C(O1.4). This expression shows that C(S].,/|014) = C*(O1.¢) and thus S},
is in C}(Oy.¢). Since t and j’ are in L;41 and one of them is a final transition point of S,
we have completed the proof. O

Lemma 1. Given as input an h-constant 2-d grid Potts model and a threshold T, the
problem of deciding whether there is a vertex labeling with cost less than T is NP-complete.

Proof. Membership in NP is trivial. Simply use the finite set of vertex labelings as cer-
tificates. The cost of each certificate can be evaluated efficiently and then compared to
T.

We show hardness by reduction from the decision problem in Theorem 2 for 2-d grids
Potts models. We proceed in two steps. First, given a 2-d grid Potts model, we construct
an “equivalent” model that can be derived from an h-constant 2-d grid by removing some
vertices and edges. Next, we construct an “equivalent” h-constant 2-d grid model by adding
in the missing vertices and edges.

Consider an arbitrary 2-d grid Potts model P = (V, E, D, C;, Cp) and let K be a constant
that is greater than the maximum-cost labeling of P, i.e. K is a strict upper bound on
cost for P. Such a constant can be efficiently computed by summing the absolute values
of all possible labeling and pairwise costs. We now construct a new Potts model P’ =
(V',E',D,Cj,C,) from P, where Figures 4a and b show an example nine vertex model P
and the corresponding model P’. For each vertex v € V, the vertex set V' contains six
vertices Q[v] = {v],...,v5}, giving that |V'| =6 |V|. E' contains edges that form a cycle
over Q[v] for each v € V, i.e. the edge set {(v],v}), (v5,v5),..., (vg,v])} is contained in E'
and no other edges between vertices in Q[v] are in E’. In addition, for each edge (v1,v2) € F
there is a single edge Q[(v1,v2)] = (q1,¢2) in E' where ¢1 € Q[v1] and g2 € Q[v2]. Note that
|E'|=6-|V|+|E|.

For each v € V we select one member v of Q(v) and let Cj[v',d] = Cj[v,d] for all
d € D and for the remaining members of)(v) we define the labeling cost function so that
it always returns zero. As depicted in Figure 4b, the graph corresponding to V'’ and E’ can
be embedded in a grid structure where the Q(v) form rectangular cycles (with two vertical
edges and four horizontal edges), and the cycles Q[v1] and Q[vs] are connected by a single
edge iff (v1,v2) € E. For each set Q[v], we let C)[e] = K for each of the four horizontal
edges €' in the cycle Q[v], and let C)(¢’) = 2- K for each of the two vertical edges ¢’. In

32

addition for each e € E we let C,[Q(e)] = Cyle]. As depicted in Figure4b, it is important to
note that all such edges Q[e] are vertical edges in our grid embedding—thus all horizontal
edges in the embedding have a constant cost of K. However, P’ does not form a full 2-d
grid, as it is missing many vertices, and thus is not an h-constant 2-d grid model.

For each vertex labeling L of P, let L be the vertex labeling of P’ such that for allv € V
and v € Q(v) we have that L'(v") = L(v). We refer to the set of all such labelings of P’ as
the feasible labelings for P’. Note that there is a one-to-one correspondence between feasible
labelings of P’ and labelings of P. It is easy to verify that for any feasible labeling L’ derived
from L that the cost of L’ under P’ is equal to the cost of L under P. Furthermore, we
know that for any non-feasible labeling, there must be a v € V such that at least one pair of
neighboring vertices in @ (v) have different labels. Thus, the cost of any non-feasible labeling
L’ must be at least K. Since K is an upper bound on the cost of any feasible labeling,
we know that only feasible labelings need be considered as minimum-cost solutions for P’.
This shows that P’ is equivalent to P in the sense that P has a labeling with cost less than
7 iff P’ has a labeling with cost less than 7. Note that we can obtain this same property by
constructing a P’ with only two vertices in each Q(v) rather than six. The reason we use
six is that the “extra space” helps us to convert P’ into an h-constant 2-d grid as shown
below.

We now show that we can construct an h-constant 2-d grid model P* that is equivalent
to P’. Though P’ is embedded in a grid, it is missing many vertices and hence is not a grid.
We correct this in two stages. First, we add vertices and edges to the “exterior” of P’ to
get a new model P” as shown in Figure 5. The label cost function for each new vertex is
always zero (i.e. the label does not matter), the newly added horizontal edges have costs
of K, and the vertical edges have costs of zero. Just as for P’ it is easy to see that there is
a set of feasible labelings of P” that are in one-to-one correspondence with labelings of P
and that all other non-feasible labelings have cost at least K. Thus, P” has a labeling with
cost less than 7 iff P does also.

P” is not yet an h-constant 2-d grid as it has gaps, each one corresponding to two
missing vertically aligned vertices. We now show how to “fill in” these gaps to obtain P*.
Figure 6 shows a new model P/’ that results by filling in a single gap of P” with a gadget
consisting of two vertices t and ¢/, and five edges. The label cost functions for the two new
vertices always return zero, the four new horizontal edges have cost K, and the single new
vertical edge between ¢t and t' has a cost of —2 - K. For any labeling L” of P”, there is
a corresponding set of extended labelings of P/ that are identical to L” but consider all
possible combinations of labels for ¢t and /. A straightforward case analysis can be used to
verify the following properties:

e For any feasible labeling with cost C' in P”, there is a corresponding extended labeling
with cost C' in Py

e For any feasible labeling of P” with cost C, there is no corresponding extended labeling
with cost less than C' in P}

e For any non-feasible labeling of P”, all corresponding extended labelings have a cost
of at least K.

33

Using these properties it is easy to show that P|’ has a labeling with cost less than 7 iff P”
does also. Note that our choice of using six vertices rather than four vertices for each Q(v)
in P’ allowed space in the grid for our gadget. Now starting with P;’ we can continue to fill
in gaps using our gadget until there are none left. The resulting model P*, shown in Figure
7, is an h-constant 2-d grid Potts model. Again the above properties allow us to conclude
that P* has a labeling less than 7 iff P/’ does. Hence, as desired, P* has a labeling with
cost less than 7 iff P does. Since P was assumed to be an arbitrary 2-d grid Potts model we
have described a reduction from 2-d grid Potts models to the restricted case of h-constant
2-d grids. This completes the proof.

O

34

Figure 4: First step of the construction used in the proof of the Lemma. (a) Graphical
structure of a nine vertex 2-d grid Potts model. Each edge is associated with a numeric
pairwise cost (not shown) and each vertex is associated with a labeling cost function. This
model is referred to as model P in the text. (b) Graphical structure of P’ which is derived
from P as described in the text. Each vertex v; in P is associated with a cycle of six vertices
denoted by Q(v;). The thick edges between cycles correspond to edges in P.

35

Figure 5: The second step of the construction used in the proof of the Lemma. This is the
graph P” referred to in the text and is constructed by adding exterior vertices and edges to
P’. The newly added nodes are connected via dashed edges. The vertical edges connected
to these nodes are not shown as they all have a cost of zero. The label cost function for these
newly added nodes always returns zero. Note that this graph is still not a complete 2-d
grid because of the four interior gaps, where each gap corresponds to two missing vertices.

36

Figure 6: The third step of the construction used in the proof of the Lemma. This is the
graph P/’ referred to in the text and is the result of filling in one of the interior gaps in P”.
The two newly added vertices t and ' have a pairwise cost of —2 - K between them, which
allows us to prove the necessary properties. Note that all horizontal edges in the graph have
a cost of K.

37

Figure 7: The final step of the construction used in the proof of the Lemma. This is the
graph P* referred to in the text and is the result of filling in the remaining gaps in Py
Any vertical edges not shown have a cost of zero. Note that all of the horizontal edges have
a cost of K. Thus this model is an h-constant 2-d grid. The text argues that there is a
labeling for P* with cost less than 7 iff there is a labeling for P with cost less than 7.

38

